
 

 
Abstract— Video-conferencing is becoming an essential part in 

everyday life. The visual channel allows for interactions which 
were not possible over audio-only communication systems such as 
the telephone. However, being a de-facto over-the-top service, the 
quality of the delivered video-conferencing experience is subject to 
variations, dependent on network conditions. Video-conferencing 
systems adapt to network conditions by changing for example 
encoding bitrate of the video. For this adaptation not to hamper 
the benefits related to the presence of a video channel in the 
communication, it needs to be optimized according to a measure 
of the Quality of Experience (QoE) as perceived by the user. The 
latter is highly dependent on the ongoing interaction and 
individual preferences, which have hardly been investigated so far. 
In this paper, we focus on the impact video quality has on 
conversations that revolve around objects that are presented over 
the video channel. To this end we conducted an empirical study 
where groups of 4 people collaboratively build a Lego® model over 
a video-conferencing system. We examine the requirements for 
such a task by showing when the interaction, measured by visual 
and auditory cues, changes depending on the encoding bitrate and 
loss. We then explore the impact that prior experience with the 
technology and affective state have on QoE of participants. We use 
these factors to construct predictive models which double the 
accuracy compared to a model based on the system factors alone. 
We conclude with a discussion of how these factors could be 
applied in real world scenarios.  
 

Index Terms— Multi-Party video conferencing, Quality of 
Experience, Over-the-top, subjective quality, quality metrics, user 
study 

I. INTRODUCTION 

Video-conferencing has now reached the end consumer 
market, and is booming. Cisco is reporting a growth in desktop 
video conferencing1; Skype reports that multi-party (group) 
video conferencing is especially on the rise2. Video-
conferencing for the consumer is a de-facto over-the-top 
service, and thus varying quality is unavoidable. To ensure user 
satisfaction, video-conferencing solutions try to adapt their 
configuration to changes in the system conditions, e.g. by 
adapting the encoding quality, resolution and framerate in the 
event of a decrease of bandwidth availability [1]. The goal is to 
provide the user with the best Quality of Experience (QoE), 
given the system constraints, yet using the least amount of 
necessary resources. 
                                                           

M. R. Schmitt, CWI: Centrum Wiskunde & Informatica, 1098XE 
Amsterdam, Netherlands (e-mail: m.r.schmitt@cwi.nl). 

J. A. Redi, TU Delft, Mekelweg 4, 2628 CD Delft, Netherlands (e-mail: 
j.a.redi@tudelft.nl). 

P.S. Cesar, CWI: Centrum Wiskunde & Informatica, 1098XE Amsterdam, 
Netherlands (e-mail: p.s.cesar @cwi.nl). 

Quality of Experience is defined as the degree of delight or 
annoyance of a user with a service or system [2]. It is a measure 
of how system factors such as bitrate, delay, or packet loss 
impact user experience in a given context, and it is essential to 
steer resource usage optimization in multimedia systems. In this 
paper, we are primarily interested in characterizing QoE for 
videoconferencing systems. We strive to design a QoE model 
that can automatically predict a user’s QoE when using the 
videoconferencing system, and steer adaptation accordingly.  

Whereas models for videoconferencing QoE prediction exist 
[3], there is room for improvement in their accuracy. Most of 
these models base their estimations on an analysis of system 
factors only: for example encoding bitrate, or packet loss. It 
should be clear instead, from the definition given above, that 
QoE depends not only on characteristics of the video-
conferencing system, but also of the context of usage and the 
users using it [4]–[6]. This paper sets out to understand how 
these elements could be integrated into a model for 
videoconferencing QoE estimation. 

Our previous research has shown that, when modeled as 
random factors, user individual preferences explain as much 
variance as system factors in video-conferencing QoE ratings 
[4]. Several researchers have similarly addressed the high 
diversity of users’ opinions [7], [8]. This diversity cannot be 
merely ascribed to poor experimental design or small sample 
sizes, as even with large numbers a significant diversity within 
users’ opinions remains [7]. Different users really do have a 
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Fig. 1 QoE model adapted from [14] with factors examined in this study 
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different experience with the same system factors: individual 
differences with respect to demographics, personality, and 
cultural background, for example, have been shown to play a 
role in QoE of streamed video [5], [9]. In addition, dynamic 
factors, hereafter referred to as user state, which include 
motivation, engagement and enjoyment, can also influence and 
be influenced by QoE [10]. 

Furthermore, it has been shown that in computer mediated 
communication, the impact of system factors on QoE depends 
on the ongoing interaction between users [11]–[13]. Hence, 
interaction should also be accounted for, when modeling 
videoconferencing QoE. The ‘Framework for QoE and User 
Behavior Modelling’ [14] conceptualizes the reciprocal 
relationship of QoE, user state (e.g. mood) and user behavior. 
Both user state and user behavior are as well an input to QoE as 
an output. Take the example of a brainstorming session over 
video-conferencing. It could have a fast paced interaction due 
to the excitement of participants (or a rather slow one due to not 
interested participants). A long delay usually leads to a worse 
QoE with a faster conversation [15]; this might in turn cause 
frustration and break the initial excitement, eventually leading 
to the abandonment of the current service in favor of another 
(e.g., email). On the other hand, for other users the effect could 
be different: some people may find the disrupted interaction still 
as  natural, and some people might only attribute it to rudeness 
of fellow interlocutors [16]. We argue that to be able to steer 
QoE optimization in videoconferencing systems, it is of essence 
to clarify these mechanisms first. 

In this paper, we set out to assess the impact that system 
factors, in the context of multi-party video-conferencing, on a) 
the user behavior, and especially interaction of participants and 
b) the QoE under consideration of user factors. Our approach to 
gain insight into this topic is depicted in Fig. 1. The figure is 
based on the model proposed in [14] and shows the factors 
examined in this paper and their relation. Our hypothesis is that 
the context will shape, together with the user and the system 
factors, the user behavior. The user behavior describes how the 
users interact with the system and through the system with each 
other. Interaction depends on the task at hand and the current 
state of the user (e.g. depending on engagement). In addition, 
and differently from [14], we consider also the possibility that 
user behavior can be influenced by system factors. Finally, 
user, context, and system factors along with user behavior will 
influence the users QoE, which in turn will influence user 
behavior and current state of the user. 

To collect data for our investigation, we conducted an 
empirical study. We manipulated the system factors encoding 
bitrate and packet loss, which vary based on network conditions 
and can be dynamically adjusted during a conferencing session, 
to impact video quality and QoE in general. We chose not to 
manipulate context for this specific investigation, fixing the 
physical surroundings and task. We used an ITU-T recommend 
task [17], in which participants cooperatively build a Lego® 
model together over video-conferencing (see screenshot Fig. 2). 
We choose this task as it is representative for the common 
situation [18] in which users show objects to communications 
partners. The task is often employed in audiovisual 
communication test [19]–[21] and was adapted by us for a 
multi-party situation. We recruited always groups of 
participants which were familiar with each other, i.e. friends or 

family which shapes the social context of our study. We had 
participants self-report their Quality of Experience, as well as 
personal information covering both demographics and current 
state (and especially enjoyment and engagement). Finally, we 
quantified audiovisual interaction by analyzing both the audio 
and video feeds of the experimental sessions to understand 
speech patterns and user activity [21]–[23]. 

We specifically focus on the following three research 
questions: 

R1. How does a change in video quality (as caused by a 
decrease in encoding bitrate and/or an increase in packet 
loss) impact interaction, and in turn QoE? 

R2. How do user factors influence QoE perception? 
R3. Does accounting for user and interaction factors on top 

of the system ones improve a model’s accuracy in 
predicting QoE? 

The hypothesis for R1 is that if the video quality is 
insufficient to perform the task at hand unhindered, users will 
adapt their behavior to accommodate for the bad quality. Thus 
we examine how different visual and conversational interaction 
cues are affected by the system factors. For R2 we investigate 
how demographical factors and prior experience with video 
conferencing, as well as the current state of the user represented 
by engagement and enjoyment, influence QoE. Finally, to 
address R3, we employ the elastic net [24] to determine, from 
all the factors listed above, which are the most relevant to be 
included in a predictive model for individual videoconferencing 
QoE. We eventually show that linear models with including a 
subset of our user and interaction features more than doubled 
the accuracy of prediction compared to relying on system 
factors alone. 

The remainder of this paper is structured as following: 
section II contextualizes the study within other research that has 
been done in this area. In section III we detail the study setup 
and data gathering. In section IV we detail the data preparation 
and methods used in the analysis. In section V we present the 
analysis of the user behavior, in section VI the analysis of user 
factors and QoE and in section VII a model for predicting QoE. 
Section VIII discusses the results and how they would be 
applied in real world context. Finally section IX concludes the 
paper. 

II. RELATED WORK 
The most common model for QoE [2] includes three categories 
of independent variables: user, context and system influence 
factors. It has been addressed that the model has some short 
comings when it comes to interactivity and QoE [11] and an 
approach to better describe the relation between user behavior, 
user state and QoE has been presented [14]. Further the quality 
formation process from [2] has been refined for the multiparty 
context [25].  

A. Impact of system factors on videoconferencing QoE and 
interaction 

Video quality for video conferencing is usually assessed with 
subjective tests (passive or active) based on which objective 
video quality metrics are developed. Passive tests are conducted 
by letting users rate the quality of video clips using video 
conferencing related content, for example [26], [27], [28]. As 



 

these tests have limited ecological validity, active studies have 
been proposed, where participants actually interact through the 
system. The majority of these works has been conducted in two 
party scenarios [29], [20], [30], [31], [19], and employing the 
Lego® building blocks [17] task. It should be noted that most 
of these studies use relatively low resolution video (640x480px 
[31]) and encoding bitrates (maximum 2Mbit [31]). In today’s 
scenario, higher resolutions (e.g. 720p) are used for 
videoconferencing, which require higher encoding bitrate. It is 
unknown whether the results obtained at lower resolutions are 
applicable to more recent settings. 

Looking more in detail at studies on the impact of system 
factors on videoconferencing QoE, results exist on packet loss, 
encoding bitrate and delay mostly. Detailed analysis of packet 
loss have shown that its impact is very dependent on the type of 
packet lost and the motion in the video [32]. Packet loss in 
video-conferencing was approached by measurement of system 
behavior (e.g. [33]) , or simulations (e.g. [34]) but there is only 
one study which investigated the effect in video-conferencing 
with an interactive subjective test [20] with a relatively dated 
setup (CIF, 15fps, theora codec). 

The majority of studies investigating QoE in multi-party 
video-conferencing has looked at delay, as it inherently 
interferes with turn-taking, the process describing “who speaks 
when” in a conversation [22]. This may in turn hinder 
communication, thereby impacting QoE. The effect of delay in 
multi-party situations was found to be more relaxed than in two 
party settings [13], [27], further asymmetric settings, like a 
single participant with high delay [35] or audio/video de-
synchronicity [21], have been researched. Faster paced 
conversations are more susceptible to delay (measured over e.g. 
the speaker alternation rate [15]) and unintended interruptions 
disturb the experience severely [36]. In collocated settings, it 
has been shown that turn taking is also dependent on a number 
of non-verbal cues like gaze [37] and nodding [38]. The usage 
of visual cues in video-conferencing is relatively unexplored, 
one study [30] used manually annotated cues, but did not find 
significant differences between the two tested resolutions 
(640x480px vs 320x240px). Another study employed an 
automatic method to calculate motion of the video and found an 
impact based on different delay levels [21]. 

Recently, the impact of encoding bitrate and packet loss on 
multiparty video-conferencing has also been studied [4]. The 
study revealed that participants had an ‘okay’ QoE with low 
encoding quality (256kbps) and good to excellent experience 
with medium and high encoding quality (1Mbps and 4Mbps 
respectively) without significant differences between these two 
levels. Packet loss seemed to have a marginal effect instead. 
Interestingly, the results also indicated that (1) although only 
video quality was manipulated, perceived audio quality was 
judged as lower in worse video quality conditions and (2) this 
effect (as well as the overall QoE perception) was strongly 
varying across users [39]. In fact, a large amount of the variance 
in the data could be explained by factors other than the system 
ones [4].  

B. Effect of context and user factors on QoE 
Diversity in QoE perception due to user and context factors 

has been addressed in several works [7], [8]. It has been shown 
that user factors can explain more of the variance in user ratings 

than the system factors [4], [9]. In the context of video watching 
experiences, social context and demographic factors [5], and 
personality and culture traits [6] have an impact on QoE. With 
respect to context, studies have looked at physical surroundings 
(e.g. in public with a mobile vs at home on a computer) [40] or 
economic factors [41].  

Previous experiences are known to influence the perception 
of future experiences [2]. This effect has been studied for short 
time frames for Web QoE [42][43] in which it has been shown 
that after experiencing bad quality, participants reported a 
worse QoE even after the quality was back to normal. In relation 
to this, age has been shown to play a role in QoE, with elderly 
people reporting more problems in the usage of mobile phones, 
more skepticism towards new technology and a later adoption 
rate [44] (albeit differences in usage would often disappeared 
after elderly got more acquainted with the devices [45]). 

The interplay between user state and QoE has recently also 
become of more interest [14]. In the context of video streaming, 
it has been found that participants who are more interested in 
the video content have a better QoE given the same system 
factors [46]. Similarly, user engagement has been found to play 
a role in computer mediated human to human interaction [47]. 
In the context of video watching it has been found that users of 
an error free connection reported higher engagement than users 
with error [10]. 

C. Prediction of videoconferencing QoE 
Most work for prediction of QoE in real time communication 
with automated methods has focused on audio only connections 
(e.g. the ITU e-model [48]). The ITU has a recommendation for 
predicting the perceived quality of an audiovisual connection 
[49], but it requires a large amount of system specific 
parameters that need to be obtained in user studies for each use 
case. The method has recently been extended to integrate the 
encoding resolution and video size automatically [3]. Including 
user factor besides system factors has been used to improve the 
accuracy of models predicting QoE for video watching 
scenarios [6], [50]. To our knowledge there are no models for 
predicting the QoE in multi-party videoconferencing based on 
video quality, nor any that consider user factors and interaction 
for an increased accuracy. 

III. STUDY DESIGN 
Our investigation starts from a user study aimed at quantifying 
the impact of system and user factors on interaction and, in turn, 
QoE. We designed the study to resemble a current multi-party 
desktop video-conferencing at home, and especially in a 
scenario where video usage would be core to support the 
communication. In the following we detail the setup of the 
experiment by first explaining how we designed the visual 
focused scenario (experiment task), which system factors we 
manipulated (independent variables), how we administered the 
conditions (experiment design and protocol), which measures 
we obtained (dependent variables and covariates) and how we 
realized the setup technically (apparatus).  

A. Experimental task 
We focused the task around the common scenario that video 
conferencing participants often use the video channel to show 
objects that are the current topic of the conversation [5]. We 



 

adapted the ITU-T P.920 building blocks task [17], [20], [21] 
to a multiparty situation (and in particular, to parties of 4). Each 
participant was supplied with an unassembled Lego® 
locomotive3, and only part of the instructions to build it. Other 
participants had complementary parts of the instructions: so, to 
complete the model, participants had to communicate and share 
their part of the instructions. Compared to the original ITU 
scenario, our model included smaller pieces (smallest ca. 
5mmx5mmx2mm) to make the task more demanding for the 
video quality. Based on pre-trials with colleagues and 
experience from previous experiments, we opted for having, per 
each group of participants, four rounds of seven minutes each, 
each round covering a different experimental condition (i.e., 
combination of dependent variables). Together with 
introduction, questionnaires and debriefing this would make for 
2 hour sessions with each group. 

B. Independent variables  
The main technical components determining the video 

quality in a video conferencing application are the capturing 
quality of the senders webcam, the encoding quality, the 
network capacity (bandwidth and packet loss) and the receivers 
monitor [51]. The parameters encoding and network can 
dynamically change during a session and thus are of more 
interest for optimization, in comparison to webcam and monitor 
which are usually fixed. As a result, we decided to have the 
same monitor and webcams for all participants (see more detail 
in Table 1). As the perceived video quality might be influenced 
by size and layout of the video streams, we also decided to have 
a fixed party size of 4 taking part in the task and to show the 
video streams of all 4 participants were in the same size in a 2x2 
layout (thus, including self-view). We choose instead to 
manipulate encoding bitrate and loss rate as independent 
variables (often referred in short as bitrate and loss). We used a 
H.264 coded optimized for real time communication. The 
detailed configuration can be seen in Table 1.  

We choose three encoding bitrates (with a for real-time 
communication configured version of H.264, see Table 1) that 
represent common internet connections: “low encoding” 
(256kbs up and 768kbs down), similar to mobile or slow xDSL 
connections; “medium encoding” (1Mbps up and 3Mbps 
down) representative of a typical xDSL connection and “high 

encoding” (4Mbps up and 12Mbps down) for broadband-like 
TV cable connections. We further decided on two packet loss 
levels: (1) no packet loss, typical for a wired connection and (2) 
0.5% random packet loss, a common scenario for a slightly 
impaired wireless network [28]. The screenshot in Fig. 2a 
shows the low encoding quality and Fig. 2b shows a screenshot 
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with high encoding quality with packet loss (of which the seen 
effect would mostly only last for a fraction of a second). 

C. Experimental design and protocol 
With 3 bitrate values and 2 loss rates, we had a full factorial 

design with 6 conditions. To not risk fatigue, we decided on a 
mixed blocked design. 28 people participated in the experiment 
(18 female, average age: 31.9, sd: 10), thus we had 7 groups of 
4 participants each. Each group assessed 4 of the 6 conditions 
in a counterbalanced in order, hence each condition was rated 
by at least 16 participants. 

Upon arrival, participants were briefed about the purpose of 
the study, after which they gave written consent for data 
gathering. Each participant was then led to a separate 
experimental room, and seated at a distance of 68cm from the 
monitor to be used for the experiment, as recommended by 
ITU-T P.913 [52]. The video-conferencing software was started 
remotely by the experimenter. In the beginning the 
experimenter was present in the video conferencing to ensure 
that the system was working properly (e.g. adjusting the 
volume), and that the participants understood the experimental 
task. In this respect, a brief training session was also run where 
participants familiarized with the best and worst condition 
possible, for anchoring purposes. The experimental task then 
began, structured in for 7-minutes rounds with a different 
condition. The participants were informed beforehand that after 
7 minutes the system would automatically display a 
questionnaire (see section III.E) and the next round would begin 
when all participants had finished it. Between each condition 
we asked if a pause was needed. After the four rounds, a final 
questionnaire was administrated and participants were gathered 
again for a debriefing. 

D. Apparatus 
Each of the participants performed the task in a separate 

room with similar lighting and background conditions. A 
computer, display, webcam and headset (see Table 1 for detail) 
were provided. For the experimental task, we used the video 
conferencing client presented QoE-TB [51]. The software 
employs GStreamer for the media handling and transports them 
with RTP over UDP as the transport protocol.  

To realize the packet loss, RTP packets were dropped on the 
sender’s buffer, thus all participants saw the same distortions. 

 
(a)                   (b) 

Fig. 2 Screenshot from (a) low quality (256kbit) video stream of participant 
showing object into the camera and (b) high quality video (4Mbit) with 
distortion 

Table 1 System Setup 

Hardware 
Model Nuc 5i5ryh: Core i5u, 8GB Ram, SSD 
Displays Dell 27” 2560 x 1440 (WQHD) 
Headsets Creative Soundblaster Xtreme 
Webcams Logitech C920 

Fixed 
System 
Parameters 

Resolution 1280x720  – per participant 
Framerate 24 fps 

Encoding 
H264 (x264) with Tune zero-latency, 
ultrafast speed-preset, GOP size 24, no b-
frames, sliced threads encoding 

Audio AMR encoded 
Delay One-way ca. 120 ms 

Conditions 

Encoding Bitrate 
LowEnc: 
256kbps 

MediumEnc: 
1024kbps 

HighEnc: 
4096kbps 

Loss 
None (0%) Random (0.5%) 

 



 

The employed webcams (Logitech C920) compressed the 
captured video in H.264 in the camera as the USB2 link could 
not transfer raw video for resolutions above VGA. The 
encoding bitrate can be set in the camera up to 20mbps, but tests 
showed that not more than 5.8mbps would be delivered in 
practice. The video was always captured in highest quality and 
then re-encoded with GStreamer x264 to have more control of 
the exact settings (see Table 1). 

E. Dependent variables 
After each condition, the participants filled in a questionnaire 
about the experience they just had. Five questions were directly 
related to the quality: three ITU questions regarding overall, 
audio and video quality, one question inquiring annoyance and 
one question assessing how well they could see facial 
expressions (‘How well did you see facial expressions of other 
people?’ on a scale from ‘very well’ to ‘not at all’, for the other 
items see [17]). We further asked six questions based on a 
questionnaire developed for engagement in computer usage 
[53]. After the experimental task was finished, one post 
experiment questionnaire regarding demographical information 
and enjoyment of the task was administered (questions shown 
in Table 2, except age and gender). All items (condition and 
post experiment) were assessed on a 5-point ACR scale [17]. In 
addition, throughout the experiment, the audiovisual streams of 
all sessions were captured on the sending and receiving sides. 

IV. DATA PREPARATION AND ANALYSIS 
To answer the research questions presented in the introduction, 
we employ different techniques. First, we use descriptive 
models to analyze the relationship between the independent 
variables that we controlled (bitrate and loss) and interaction 
cues we extracted from the audiovisual streams. We then 
proceed with descriptive models to analyze how user factors 
alter the impact from system factors on QoE. To combine the 
interaction, user and system factors into a predictive model, we 
use feature selection with a machine learning approach. In the 
following, we first describe how we quantified interaction from 
both the audio and video feeds of the experimental sessions. 
Then, we introduce the statistical and learning methods that we 
apply in our analysis.  

A. Interaction cue extraction 
To quantify interaction, we extracted several indicators from 

both the audio and the video streams.  
Audio stream analysis. The analysis of the audio recordings 

aimed at better understanding (changes in) speech patterns 
among the participants, looking at turn-taking, overlapping 
speech, and pause length. Previous research has shown that for 
example delay alters the natural communication patterns [54]. 
Hence, we looked for indicators of these changes. 

                                                           
4 https://julius.osdn.jp/juliusbook/en/adintool.html 

We used the data as received at the client side to include the 
system delay in the calculations. From the recorded audio we 
extracted chunks of speaking/not-speaking blocks with the help 
of the Adintool from the Julius voice recognition software4. The 
tool outputs blocks (start/end times) of voice activity. The 
blocks correspond to single utterances, which can then be 
investigated singularly or in groups to better understand speech 
patterns. The metrics are calculated for each participant 
separately, based on his/her temporal reality, i.e. based on how 
the audio arrived with the delay at that participant. Due to this, 
metrics such as pause duration may have slightly different 
values across participants, which would not exist if all 
participants were collocated.  

Per participant and round, we identified a number of 
elements in the conversation (adapted from [22], [55]): 

 Turn: A sequence of blocks from a single speaker with 
less than 200ms pauses between the blocks (similar to a 
sentence, except that we don’t necessarily speak in 
complete sentence structures) 

 Pause: moments on which no participant is speaking 
 Floor: part of a conversation held by the same speaker.  

A floor starts when a participant begins speaking alone 
and ends when the next speaker starts with an utterance.  

 Overlap: moment in which two or more participants 
speak simultaneously. It is detected as an overlap in 
parts of two or more blocks. The person who started to 
speak first is referenced to as the interrupted, the other 
one as the interrupter.  

 Group turn: a turn containing an overlap 
 Uninterrupted turns: turns without overlap 
 Speaker alternation rate: Frequency of change in 

speakers holding the floor 
 Simultaneous start: an overlap within the first 200ms 

of the turns 
 Interruption with speaker change: Change in speaker 

after an overlap occurred, e.g. A starts speaking, B starts 
speaking, A stops speaking while B continues 

For each conversation element except for speaker alternation 
rate, we recorded the number of occurrences (count per minute), 
duration (mean length in seconds), percentage per participant 
over the total number of occurrences or total duration of that 

Table 2 - Questions of the post experiment questionnaire. The ‘label’column indicates the abbreviation that will be used to indicate the dependent 
variable in the following analysis 

Question Scale left/right label 
I enjoyed participating in this study Not at All / Very Much enjoyment 
I liked the task of playing with Lego. Not at All / Very Much likelego 
I am very experienced in using video-conferencing systems. Very unexperienced / Very experienced priorexp 

 

Fig. 3 Visualization of speech patterns 



 

condition (percentage count and percentage duration). For 
speaker alternation rate, we computed the occurrences of 
speaker changes per minute. For double talk metrics (overlap, 
group turn, simultaneous start) we also counted how many 
times a participant was interrupted or interrupting from the 
perspective of each participant (e.g. with a high delay both 
participants could get the impression they were interrupted). 

Video stream analysis. To better investigate the impact of 
video quality on interaction (one of the focuses of our study), 
we analyzed video streams. For the video analysis we used the 
unimpaired video streams (sender side), to limit the impact that 
degradations may have in the computation of the indicators 
described hereafter.  

A preliminary inspection of the video feeds revealed changes 
in posture and movement of participants depending on quality 
conditions. Here, we focused on two constructs which should 
relate to visual interaction: movement of participants and 
distance to the screen. More movement is related to the showing 
of objects to the camera and moving closer to the screen is often 
performed by a user so that he/she can see details better.  

To quantify the movement of participants we are using 
Temporal Activity (TA, sometimes also referred to as Temporal 
Information - TI). TA is recommended by the ITU [56] to 
quantify the amount of movement present in videos, e.g. when 
comparing the performance of different encoders [57]. In our 
use case, TA provides an interesting tool to quantify the amount 
of physical activity of a participant: having a fixed camera 
position and fixed background, changes in TA must come from 
the movements performed by the participant. Previous research 
has shown an increase of TA [23] in presence of delay. TA is 
defined as the total change in luminance between one frame and 
the previous. For frame tn: 

𝑇𝐴(𝑡𝑛) =  𝑟𝑚𝑠[𝐹(𝑡𝑛) − 𝐹(𝑡𝑛−1)]   (1) 
where rms is the root mean square function (over all pixels 

in the frame) and F(𝑡𝑛) is the luminance only video frame at 
time 𝑡𝑛. Since in our setting, the background is fixed for all 
participants, TA will be mostly influenced by movements of the 
participant. Hence, a drop in TA will indicate a decrease in 
participant movement. We computed TA for every participant 
and round by means of the mitsu video analytics toolset5. 

We further used the publicly available face recognition 
software OpenFace6 [58] to quantify changes in distance of 
participants from the screen. OpenFace estimates the head 
position in 3D, rotation of the face and recognizes facial action 
units. We use the estimated distance to the camera (in mm) as a 
measure of the distance of the participant from the screen (as 
the camera is always mounted on top of the screen). The values 
are expressed in mm to the screen, thus a higher value means 
that the participants are more away from the camera.  

B. Statistical analysis 
To investigate the influence of system on interaction and in turn 
on quality of experience we make use of linear mixed effect 
models (LMEs) [59]. Linear models are the simplest types of 
models that can be used to explain data; for Occam’s razor 
principle, we prefer to employ those over non-linear ones to 
avoid overfitting. Moreover, linear models have high 
interpretability and allow the quantification of the effect of the 

                                                           
5 http://vq.kt.agh.edu.pl/index.html 

independent variables (factors) on the dependent one (in our 
case, QoE measures), which is highly desirable in this 
exploratory phase.  
LMEs extend classical linear models, to adapt them to repeated 
measures experimental designs (such as ours, where subjects 
were exposed to multiple conditions). In repeated measures 
setups, groups of data may not be fully independent from each 
other. For example, QoE measures coming from the same 
participant may be similarly biased depending on the 
participant’s individual preferences [60]. LMEs model these 
correlations in the data by accounting for the so-called random 
factors, on top of the fixed ones (i.e., the manipulated 
independent variables, such as bitrate in our case). An 
individual offset (i.e. intercept) or slope (i.e. coefficient) is 
built in the model for each level of the random factor(s) (e.g., 
for each subject). This allows to explore the differences in 
the random factors in more detail (see e.g. the analysis of 
different groups in [4]), and to explain a larger part of the 
data variance, thereby making the effect of the fixed factors 
stand out more. LMEs are commonly employed in the field 
of psychology for user studies because they allow to 
investigate the effect of a factor while accounting for 
individual differences. Compared to a traditional repeated 
measure ANOVA, LMEs allow to better model the mixed 
repeated measure / between subject experiment design. In 
LMEs random factors can be modeled in a nested manner, 
here repeated measures from participants nested within 
groups, and can handle unequal number of samples per 
condition. Many QoE models employ (transformed) linear 
models as they are interested in only predicting an average 
perceived quality rating (Mean Opinion Score). In this work 
the focus is exactly in exploring these individual aspects.  

In formal terms, a linear mixed model predicts the dependent 
variable y based on the following structure:  

 𝑦 = 𝑋𝛽 + 𝑍𝛾 + 𝜖      (2) 
where X is the design matrix for fixed factors with the 

corresponding coefficients 𝛽, Z is the design matrix for the 
random factors with corresponding coefficients 𝛾, and 𝜖 
represents the residuals. It is assumed that the random effects 
are independent and distributed as 𝑁(0, 𝜏2), the errors are 
independent and distributed as 𝑁(0, 𝜎2), and the random effects 
and errors are independent. This construction has the advantage 
of allowing an explanation of variance due to individual (or 
group) differences (random factor matrix Z), making the effect 
of the fixed factors more significant in turn. In our scenario this 
construction is particularly appealing, as we have repeated 
measures for both single participants and groups (due to the 
mixed block design). Variance in the data may be due to both 
individual preferences and group interactions, as we showed in 
our previous work [4]. Hence, to be able to quantify correctly 
influences of user, group interaction and system factors on QoE, 
we adopt LMEs for our analysis. 

To assess whether a factor in our model has a significant 
impact we are using the likelihood ratio test (LRT) [61] which 
detects whether a model with the factor in question has a 
significant better fit than the same model but without the factor, 
in comparison to the additional parameters used. Having 

6 https://cmusatyalab.github.io/openface/ 



 

established that a factor has a significant impact on the 
dependent variable, we further investigate it in detail, clustering 
participants based on the factor with k-Means [62]. The fewer 
groups help to visualize and understand the effects of the factor 
better. The number of clusters was determined with an elbow 
plot [63]. 

C. Predictive model 
The LMEs employed in previous work [4] rely on the 
availability of self-reported ratings of the users, which are 
available to us in the post analysis of an experiment, but not in 
real life scenarios. In this work we examine how well prediction 
would work if instead we include engagement, demographics 
and interaction cues in our models. A challenge here is that 
these factors might be correlated while many statistical models 
assume that all factors are independent (i.e. absence of 
multicollinearity).  

Methods that include regularization have been known to 
help with correlated features (i.e., the factors we feed into the 
model) [64]. The basic idea of regularization is to introduce a 
penalty term in the cost function that drives the model 
parameter optimization, yielding better generalization and 
limiting overfitting [64]. In this work, we make use of the 
Elastic Net [24], which uses a combination of L1 and L2 
regularization. The L1 regularization term includes the sum of 
the absolute value of the model coefficients to the cost function. 
This ensures that coefficients for unimportant features will be 
set to 0, thereby performing feature selection. The L2 
regularization term (sum of the square of the coefficients), 
makes the cost function strictly convex, also allowing the 
selection of correlated features. 

To evaluate the performance of our models we employ the 
coefficient of determination (R2), which quantifies the 
proportion of variance explained by the model compared to the 
total variance in the data. This is the most commonly used 
method to evaluate goodness of fit in statistical modeling. To 
assess how correlated the finally selected factors q are, we use 
the variance inflation factor (VIF), a statistical diagnostic 
method to check the severity of multicollinearity of fixed 
factors of a model [65]. Every factor j = 1, …, q is modeled as 
a linear combination of the other q-1 factors. The VIF is defined 

over the resulting 𝑅𝑗
2, i.e., the coefficient of determination for 

factor j of the model as: 
VIFj  = 

1

1−R𝑗
2   (3) 

Perfect independent variables that show no signs of correlation 
would have a 0 VIF (as a rule of thumb, VIF should be below 
10 [65]).  

V. USER BEHAVIOR ANALYSIS 
In this section we investigate whether users adapt their behavior 
in presence of impairments in the video feed. Specifically, we 
hypothesize that the interaction in presence of highly impaired 
video (low encoding condition) will be different than when 
video is provided at higher bitrates. As we have a task that 
involves showing objects into the camera we further 
hypothesize that participants will use the video channel less 
when more impairments are present. In turn this could lead to 
an increased speech activity to compensate.  
For the analysis we use an LME (See section IV.B), modeling 
the interaction cues as dependent variables and the system 
factors as fixed factors. As interaction is highly personal but 
also dependent on the other group members, we are including 
User and Group as random factors.  

A. Visual Interaction 
As detailed in section IV.A we are using Temporal Activity 

(TA) and distance of participant to screen (DTS) as indicators 
for visual interaction. As these metrics are calculated per frame 
but our system factors are on a per round granularity, we are 
averaging TA and DTS per round. We first analyze the impact 
of system factors on TA. In Fig. 4a we can observe that the less 
impaired is the video (higher bitrate, lower loss), the more 
participants move. LRT confirms that even though difference 
in TA between bitrate conditions is small, it is significant (0.29 
points TA difference between low encoding and high encoding). 
More in detail, the contrasts show that the difference between 
low and high encoding is significant (p=0.02) and so is the one 
between no and 0.5% packet loss (p = 0.03). Including 
interaction between bitrate and loss does not provide a 
significantly better fit (p = 0.36), nor does adding Group or 
User as random factors p~1). Fig. 4b shows the impact of 
bitrate and loss on the average distance participants kept from 
the screen (DTS). Participants are closer to the camera with 
better quality (for both bitrate and loss). Both bitrate and loss 
have a significant effect (p < 0.05 in both cases), with also 
interaction (p =0.03). Neither including Group as a random 
factor improved the fit (p = 0.65) nor did including random 
slopes per participant (p = 0.98). The contrast showed that the 
distance to the screen (DTS) was significantly smaller for high 
encoding than for low and medium encoding (p < 0.01 and p = 
0.01 respectively) and the contrast between conditions with and 
without packet loss was significant (p < 0.01). In other words, 
with more impairments, participants moved less and were 
further away from the screen – both indicate that they interacted 
less visually.  

  
(a)                                              (b) 

Fig. 4 (a) Mean Temporal Activity (TA) by bitrate and loss with 95% 
confidence intervals (b) Mean distance of participants from the screen, as 

impacted by bitrate and loss with 95% confidence intervals 
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B. Speech Patterns 
As already done for the visual cues, we average the speech 
metrics per round. Perhaps due to the fact that they can rely less 
on the visual channel, participants seem to speak more in the 
low bitrate condition. The LRT test showed a significant effect 
of bitrate and loss, as well as their interaction, on turns 
percentage duration (each p < 0.05). As can be seen in Fig. 5a, 
participants speak for longer time in the low bitrate condition 
and more with packet loss in that condition while there is no 
significant difference in the medium and high encodings in both 
bitrate conditions. The conversation also gets slower, as can be 
seen from the significant lower speaker alternation rate in the 
low encoding condition (Fig. 5b). For speaker alternation rate 
there is a significant effect of bitrate (p < 0.01) but not of loss 
(p > 0.05). Further, participants are speaking significantly more 
at the same time in the low bitrate condition. There is a 
significant effect of bitrate on group turns duration (p < 0.05) 
but no effect of packet loss (p > 0.05). Again here the 
differences are between the low encoding condition and the 
higher ones, we thus further corroborate our hypothesis that 
1Mbit per second is sufficient to enable the task without 
hampering interaction.  

VI. QOE USER FACTOR ANALYSIS 
In previous work [4] we had investigated the impact of system 
factors on audio, video and overall quality as observed from the 
experiment reported in Section III. Fig. 6 shows average scores 
with 95% confidence intervals for the five questions inquiring 
about QoE (overall, audio and video quality, annoyance by 
video quality and recognition of facial expressions, see also 

section III.E) in the six experimental conditions, ordered 
according to the expected perceived quality. We can see in Fig. 
6 that the ratings have a large variance, suggesting that factors 
other than bitrate and loss could have influence on QoE. To 
look deeper into this, we employed an LME (see Section IV.B) 
modeling bitrate and loss as fixed factors and User and Group 
as random factors. The p-values for the obtained contrasts [66] 
for each dependent variable are listed Table 3. We found a 
significant impact of the system factors, with the high and 
medium encoding obtaining significantly higher ratings (except 
for audio quality) than low encoding. However, the high 
encoding (4Mbit) did not increase the QoE significantly when 
compared to medium encoding (1Mbit). Packet loss also had an 
effect, albeit smaller. The models, also revealed a strong effect 
of User and Group factors (e.g. overall quality had 30% 
explained variance by system factors, but 79% explained 
variance by system factor when combined with the User and 
Group factors). In other words, different users were affected by 
system factors differently, and the group they carried out the 
experiment with also mattered. This further motivate us to look 
into how user factors affect QoE. Specifically, we will now 
investigate the impact of static factors such as demographics 
and previous experiences, and of dynamic factors such as 
engagement determining the current state of the user.  

A. Prior Experience and Age  
Both prior experiences [43] and age [67] have been 

hypothesized to influence QoE, and research in computer-
human interaction with elderly users has suggested that there 
might be a relation between these two factors [45]. Different 
age groups may be used to different media technologies, and be 
more or less acquainted with different types of impairments. 
For example, coding artifacts are a typical problem of digital 
media over the internet, which is nowadays the preferred way 
to consume video content, but rarely appear in analog TV or 
DVD content, to which senior people may be more accustomed.  

To investigate whether these factors play a role in QoE, we 
include them, individually, as covariates in our models for each 
dependent variable (overall, video and audio quality, 

Table 3 Significant differences between Conditions for QoE questions 

Question LowEnc- 
HighEnc 

LowEnc - 
MediumEnc 

MediumEnc 
- HighEnc 

None – 
random0.5% 

Overall quality >0.01 >0.01 0.22 0.01 

video quality >0.01 0.01 0.3 0.02 

Audio quality 0.07 0.28 0.43 0.75 

Annoyance >0.01 0.01 0.3 0.03 
Facial >0.01 >0.01 0.62 0.18 
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 (a)      (b) 

Fig. 5 (a) Percentage of turns by bitrate and loss (b) mean speaker alternation 
rate by bitrate. Each with 95% confidence intervals 
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annoyance and recognition of facial expressions). We then 
check through LRT whether the addition of each covariate is 
significantly beneficial to the goodness of fit of the model, as 
compared to the basic LME with only bitrate and loss.  

Our analysis shows that overall quality and recognition of 
facial expressions (label facial) are significantly affected by 
prior experiences (label priorexp, each p < 0.05), whereas 
including age as a covariate only results in a better fit for overall 
quality.  

To understand the effects of prior experience on QoE we 
clustered the participants in two groups based on how they rated 
their prior experience (priorexp) with videoconferencing (one 
less experienced group with mean ~2.67 (9 participants) and the 
other with ~4.26 (19 participants)). The plot of overall quality 
ratings for both groups in Fig.7a shows that the less experienced 
group penalizes worse quality much more. The more 
experienced group gives lower ratings for the best quality: the 
pattern suggests more that more experienced participants are 
less affected by quality changes. We also clustered participants 
according to age, into two groups with averages of ~25 years (9 
participants) and ~44 years (19 participants), respectively. Fig. 
7b shows that the older age group scores QoE lower than the 
younger group (p < 0.05). 

Interestingly, the LRT also revealed adding both factors and 
their interaction to the model was beneficial. By adding the 
combined age*priorexp factor to the LME model, we obtained 
a better performing model than those including just one of the 
factors (each p < 0.05). To understand the impact of this term, 
we performed a clustering on both factors. In preparation for 

this we scaled age to 1-5 not to give it more weight than prior 
experience ratings. We obtained three clusters (suggested by 
an elbow plot), shown in Fig. 8a. We found a young and 
experienced group (green), an older and experienced group 
(blue) and an unexperienced group (red). In Fig. 8b we can see 
that the younger and more experienced group (green) is indeed 
more relaxed then the other two groups; the less experienced 
younger participants and the older participants independent of 
prior experience.  

B. Current state of the user 
To estimate the user current state, we assessed engagement 

during the experiment. We further asked participants about 
enjoyment of the study and the Lego® task. 

Engagement and enjoyment have both been linked to QoE 
[10], both as influencing factors and influenced variables. In 

this work we investigated them as influencing factors. We use 
enjoyment as a measure for how comfortable participants were 
in the context of participating in this study (as measured by a 
question at the end of the whole experiment). Engagement is 
used as a proxy with flow, immersion in a task: it has been 
shown that impairments can disturb this flow [10], and a flow 
interruption can hamper QoE.  

Our first hypothesis for affective factors was that participants 
who enjoyed the experiment more had a higher QoE. For 
enjoyment this was however the case. Adding enjoyment to our 
LME in a similar manner as we had done with priorexp and age 
showed that enjoyment as covariate improved the models for 
overall, video, audio quality and recognition of facial 
expressions (each p < 0.05). Even though the variance in 
enjoyment ratings was relatively low (mean 4.5, sd .88), the 
trend that participants with a higher enjoyment gave better 
ratings is visible in Fig. 9a, in which we plotted two groups 
(mean 5 and 3.6, each group 12 participants) with the four 
affected dependent variables.  

Engagement was assessed with a six item questionnaire in 
each round (see III.E). A reliability analysis revealed an 
excellent consistency between the items with a raw Cronbach’s 
alpha of 0.79. We thus computed a combined engagement score 
per participant. We first checked whether the system factors 
(bitrate and loss) had a direct effect on engagement. Analogue 

 
                                 (a)                                                         (b) 
Fig. 8 Clustering by age and prior experience. a) (left) clusters by both factors. 

b) (right) overall quality ratings by clusters 
 

 
                                (a)                                                      (b) 

Fig. 7 Mean overall quality ratings with 95% confidence intervals by (a) 
prior experience groups (b) age groups 
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                             (a)                                                         (b) 
Fig. 9 (a) Significantly affected QoE ratings by enjoyment groups (b) 
Engagement and overall quality ratings by sd engagement clustering. Each with 
95% confidence intervals.  

 



 

to how we proceeded with the QoE ratings, we tested if a 
significant effect exists via a LRT with mixed models and 
engagement as the dependent variable. The LRT showed that 
there is no significant effect of bitrate and loss on engagement 
(p = 0.29). 

We wanted to understand if this holds for all users. Similar 
to investigating user subgroups in [7], [39] we examined the 
engagement ratings from each user in more detail. We looked 
at how constant the engagement of users was throughout the 
experiment by taking the standard deviation (sd) of the 
engagement ratings they expressed after each round. A higher 
standard deviation of the ratings would indicate higher 
fluctuations of engagement, possibly due the changes in bitrate 
and loss. K-means identified two clusters of users, the largest 
of which had smaller fluctuations in engagement (21 
participants, sd mean 0.3) whereas the other showed more 
variance (7 participants, sd mean .8). We can see in Fig. 9b that 
with different engagement in the same condition the experience 
of participants with more fluctuation in their engagement is 
significantly worse than their more engaged counterparts. We 
checked the contrasts to confirm that the ratings of both groups 
are statistically different (p < 0.05 except in the high encoding 
condition). Further the contrasts between bitrates show that for 
the less engaged participants the difference between medium 
and high encoding was rated significantly different, while this 
was not the case for the more engaged group. 

Turning now to the relationship between QoE and 
engagement, we continued to include engagement as covariate 
to bitrate and loss for modeling QoE. For audio, video and 
overall quality, engagement proved to be a significant covariate 
(p < 0.05). To visualize the effect engagement has on the overall 
quality we show in Fig. 10 how the overall quality changes with 
engagement in the fitted model that contains engagement as 
covariate. As we can see, a one-point higher engagement yields 
around 0.5 points higher overall quality. 

Interrestingly, Engagement explains a lot of the variance that 
we formerly had attributed to the random factors User and 
Group [4]. In Fig. 11 we visualize the Marginal R2 (variance 
explained by fixed factors alone) and Conditional R2 (variance 
explained by including the random factors) of a model without 
(m1) and a model with engagement (m2) for overall quality. 
Model m1 was identified in [4] as the one best explaining 

variance in our data bsed only on system factors. The model 
includes bitrate and loss without interaction and a random slope 
per bitrate for the random factors User and Group (m1: overall 
quality ~ bitrate+loss+(bitrate|User/Group)). We introduce 
here model m2, which additionally includes engagement as a 
fixed factor, interacting with bitrate and loss (m2: overall 
quality ~ (bitrate+loss)*engagement+(bitrate|User/Group)). 
As we can see in Fig. 11, m1 explains ca. 40% of the variance 
with the fixed factors (blue part of the leftmost bar) but reaches 
ca. 75% explained variance including the random factors 
(fullleftmost bar). m2 explains ca. 60% of the variance with 
fixed factors (blue part of the rightmost bar). The portion of 
variance now explained by random factors (individual and 
group differences) is now much smaller. This suggests that the 
variance not explained by bitrate and loss in m1, and which 
westill followed a systematic within individual Users and 
Groups, can be for a large part explained by Engagement of the 
user with the conversation.  

VII. A MODEL FOR PREDICTING VIDEOCONFERENCING QOE 
So far, we have detailed how system factors influence the 
interaction of participants and the users current state, and how 
user factors (e.g. prior experience and engagement) influence 
QoE. The analysis in the previous sections, however, focused 
on single factors and explanatory statistical models. In this 
section we are testing how well QoE (specifically overall 
quality) can be predicted by including our non system factors. 
It is also of interest to understand which, among the many 
factors we considered, is most relevant for the prediction. 

As detailed in section IV.C, we will be using an elastic net to 
model QoE, as its properties fit our scenario well (handling of 
correlated variables, feature selection). To investigate the 
contribution of each type of factor, we divide them into 
different categories based on our previous analysis: visual cues 
and speech patterns (see IV.A), background (age and priorexp) 
and current user state (engagement and enjoyment).  

We ran the elastic net algorithm with 10-fold cross-validation 
with different values of the regularization parameters and 
selected the model with the lowest Root Mean Squared Error 
(RMSE). The results for the models accounting for different 
factors categories, including the input factors, the finally 
selected factors and model performance (R2 and RMSE) are 
shown in Table 4. We tested with the VIF (see section IV.C) 

Fig. 10 Overall quality against engagement by bitrate and loss. Points represent 
the individual ratings (jitter on y for better visibility), lines represent the fitted 

model 
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Fig. 11 Comparison of Marginal and Conditional R2 of modeling overall 
quality with system factors alone (m1) or with engagement (m2). The 
random factors for both modes is (bitrate|User/Group). 



 

that the selected features did not exhibit a too high degree of 
collinearity, and this was not the case: all were under 10.  

The model based on system factors alone performed at best a 
R2 value of ca .23. In other words: even though we could clearly 
show that there is a significant effect of our system factors on 
QoE, a model predicting an individual’s QoE using only the 
system factors still performs poorly. We can see in Fig. 12 that 
all models perform better than the system factors alone but there 
are substantial differences on how much the different factors 
considered improve prediction accuracy. The inclusion of user 
factors proved to be beneficial in all cases; when adding all 
factors (user model in Table 4), the model performed best. It 
should be noted that the model based on solely current state 
factors yielded just slightly lower accuracy than the model 
including all user factor categories.  

Interaction cues improve the model compared to a model 
including only system factors substantially (R2 of 0.53). Speech 
features improve the model more while the visual information 
yields only little improvement (compare visual, speech and 
interaction model in Table 4). The combination of interaction 
and user factors (interaction + background and interaction + 
current state) performed better than interaction or user factors 

alone (interaction and user). The final model including all 
features achieves an R2 of 0.63. and outperforms all other 
models. We can see that if we want to predict the QoE of an 
individual, system factors alone do not provide sufficient 
information; especially including the dynamic factors current 
state and interaction more than doubled our prediction 
accuracy. 

VIII. DISCUSSION 
In this paper, we analyzed how bitrate and packet loss impact 

interaction and engagement in videoconferencing, and that, 
when combined with information on the user background, 
current state and behavior, they can predict QoE with relatively 
high accuracy. We used a scenario in which video usage was 
particularly stressed, with the conversation focusing around 
objects at hand. Video conferencing shows its added value best 
in these situations, compared to audio-only solutions (e.g. 
telephone conference), as the object of conversation can simply 
be shown. Thus, although a number of scenarios exist where 
videoconferencing is used without a strong visual focus, we 
wanted to investigate video quality in a scenario in which the 
visual channel actually played an important role in the 
conversation. Because of this setup, it is important to note that 
the results of this study are likely to be more sensitive compared 
to situations with no direct use of the visual channel. 

With respect to interaction, we showed that low encoding 
(256kbit) had a significant impact on movement patterns of 
users as well as speech patterns, with respect to higher bitrates. 
We showed that at this lowest quality level the interaction of 
our participants was affected: the visual channel was not 
sufficient for the details of the Lego® model and thus 
participants compensated by talking more, as proven by an 
increase in the length of speaking turns. 

Table 4 Input features, selected features, and diagnostics R2 and RMSE for the constructed models.Speech features include: speaker alternation rate, pauses (count, 
% duration, duration), utterances, turns, floors and group turns (duration, count per min, % count, % duration) uninterrupted turns (count per min), simultaneous 
starts( count per min, interrupted/ interrupter count per min,) interruption with speaker change (count per min), overlaps interrupter/ interrupted (count per min) 

category features Selected features R2 rmse 
system bitrate, loss rate bitrate, loss rate 0.23 0.39 

background system + priorexp, age bitrate, loss rate, priorexp, age 0.31 0.35 

current state system + engagement,, enjoyment bitrate, loss rate, engagement, enjoyment 0.50 0.26 

user System + background + current state bitrate, loss rate, priorexp, enjoyment, age, engagement 0.53 0.24 

visual system + Temporal Activity (TA) and 
distance to screen (mean, sd) 

bitrate, loss rate, mean TA 0.24 0.39 

speech system + see caption bitrate, loss rate, pauses (count, % duration), floors (count per min), simultaneous 
starts (interrupter count per min), overlaps (duration, interrupted count per min), 
group turns (duration), blocks (% count) 

0.52 0.25 

interaction System + visual + speech bitrate, loss rate, mean TA + pauses (count, % duration), floors (count per min), 
simultaneous starts (interrupter count per min), overlaps (duration), group turns 
(duration) 

0.53 0.24 

Interaction 
+ 
background 

System + visual + speech + background bitrate, loss rate, mean TA, pauses (count, % duration), floors (count per min), 
simultaneous starts (interrupter count per min), overlaps (duration), utterances 
(duration, % count), priorexp, age 

0.56 0.23 

Interaction 
+ current 
state 

System + visual + speech + current state bitrate, loss rate, mean TA, pauses (count, % duration), floors (% count, count per 
min), simultaneous starts (interrupter count per min), group turns (duration), 
utterances (% count), engagement, enjoyment 

0.61 0.20 

all System + background + current state + 
visual + speech 

bitrate, loss rate, mean TA, pauses (count, % duration), floors (% count, count per 
min), simultaneous starts (interrupter count per min), utterances (% count), 
engagement, age 

0.63 0.19 
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All participants made heavy use of the video screen to show 
Lego parts and instructions. In the case of the lowest encoding 
bitrate, this interaction was hampered. We also observed 
comments from participants during the study confirming this. 
In one situation a participant, that asked to look at the screen to 
see how the current step was, was answered (without looking 
up) ‘that doesn’t work anyway’. Sometimes participants 
requested repeatedly to hold the piece or instruction longer and 
closer to the camera. We conclude that the threshold to enable 
the visual interaction without breaking the flow of the 
interaction lies between 256kbit and 1Mbit (for 720p H.264 
video). If the video quality is below this threshold, users can 
still perform the task; however, they have to adapt their 
behavior. In our case that meant that participants spoke more 
and made less use of the visual channel. It was also the point in 
which QoE ratings were severely impacted. This might be the 
point where, in real life, users will look for alternatives to the 
current session: reschedule in the hope that the network quality 
will better another time or change service altogether. To prevent 
this, given that video-conferencing is in most cases an over-the-
top service, and disruptions due to bad network conditions 
cannot be controlled by the videoconferencing provider, system 
providers may look into implementing tools to support users in 
their task. For example, we could imagine that in such cases a 
specialized ‘present object’ option, which takes a high quality 
picture that is transmitted additionally to the video stream, 
could easily improve the interaction. The network conditions 
were designed by typical conditions that we can find at the 
home. While bandwidth is steadily increasing7 so is the 
variation in them. In the foreseeable future users will be at 
locations in which no high speed connection is possible. Our 
study showed that the video quality is in such cases not 
sufficient to support interaction that is visually focused on 
objects with small details – the very point where video 
conferencing excels over audio conferencing. H.265 has shown 
a reduced bitrate consumption, up to 50%, for providing similar 
perceived quality [57]. Although these measurements were not 
done with settings specialized for real-time conferencing, they 
highlight that we have not currently reached the limit of 
compression. This is an essential part for the future of video-
conferencing systems. One the one hand it raises the quality we 
can achieve for high-end conferencing connections (i.e. in 
connection with the more and more widespread 4K resolution 
screens) but on the other hand it also raises the quality available 
for low bandwidth connections. The latter is of special interest 
for video-conferencing to get the status of an ‘always available’ 
communication medium, even in remote locations with limited 
data access. This can a valuable step into making video 
conferencing a tool that is available everywhere. 

As detailed by conceptual models of the quality formation 
process [25], [2] the past experiences form a feedback loop 
influencing future QoE perceptions. While the effect has been 
studied in smaller scale [42], [43], long term aspects are 
unclear. We hypothesized that age and previous experiences are 
related. Our data showed that young experienced participants 
gave higher quality ratings than the other groups. This may be 
related to habituation and sensitization [68]. This dual-process 

                                                           
7 http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-

networking-index-vni/VNI_Hyperconnectivity_WP.html 

describes how we adapt over time to a stimulus: habituation if 
our reaction weakens (e.g. because the stimulus is repeatedly 
perceived as negligible), sensitization if the opposite happens. 
The typical quality degradations of streaming media over the 
internet, which we introduced in this study, are only common 
in the last two decades. Young participants grew up with this 
kind of artifacts, while older users are possibly more acquainted 
with previous audiovisual media (TV, DVD), which had no 
coding impairments or highly fluctuating quality. Our finding 
that QoE was less affected by system factors for younger 
participants than for older participants with similar level of 
experience suggests that the extent to which participants have 
dealt with degradations in the past plays a fundamental role in 
how their QoE is affected. Specifically, it would seem that the 
more participants are used to a certain type of artifact, the less 
this affects QoE, following an habituation process [68]. Of 
course, this would need more investigation in the context of 
QoE, also accounting for quality fluctuations. However, if 
confirmed, this result may be a game-changer in quality 
optimization for future generations of users.  

We further found that the QoE was influenced by 
engagement and enjoyment. While the main experience of users 
will be shaped by the conversation they are having, they might 
notice good quality (and be delighted) or bad quality (and be 
annoyed by it). In our study we captured how engaged 
participants were into the session of building the Lego® model. 
For the majority of participants, the effect of bitrate and loss on 
engagement was not significant, but still participants with 
higher engagement reported a higher QoE. Even though the 
interaction had to change in presence of low bitrate, for the 
majority of participants this did not disrupt their flow, or at least 
their engagement. For a subgroup of participants, instead, 
engagement was influenced by bitrate and loss: they also 
reported a much stronger degradation in QoE. This goes along 
with our previous finding that for some participants even the 
audio quality seemed to be impaired [39] in presence of video 
impairments. For some users bad video quality seems to break 
the experience holistically, also affecting their current affective 
state.  

These findings highlight the complex role that affective 
states play in QoE. At this point we cannot infer a clear cause-
effect relationship between engagement and QoE, and it is 
possible that they are reciprocally interlinked. This is also 
mentioned in the Qualinet white paper [2], where affect is both 
an influencing factor of QoE, and influenced by it. By the 
inclusion of engagement in our models, we could improve their 
accuracy. We also explicitly found engagement to explain a 
large portion of individual and group differences in our models 
(see section VI.B). Hence, it is of core importance that objective 
measurements of QoE are enriched with information on the user 
affective state. Yet, to be useful within QoE control cycles, 
insights about user affect must correctly represent the current 
state of the individual user, yet measure it unobtrusively. In our 
study, users were explicitly self-reporting their engagement 
level at the end of the sessions. Whereas self-report can be 
easily employed in user studies, it is not suited for real world 
systems. More promising solutions, inferring affective states 



 

from objective data such as behavior, social cues or sensory 
data [69] are currently being developed by the Affective 
Computing community. For example, engagement can 
nowadays be inferred from physiological measurements (e.g. 
GSR or EEG) [70]. Audio and video cues [71], which are 
anyway captured in videoconferencing, can improve accuracy 
in affective state prediction, also providing much finer 
granularity when the processing is done in real time, as done, 
for example, in [72]. Systems able to detect in real time mood 
and engagements changes and correlate them with quality 
changes could potentially much better understand whether the 
QoE is currently impacted by the network problems, and act 
upon it. On the other hand, this would pose privacy concerns 
that are yet to be addressed. 

As last step we trained a linear model to predict individual 
videoconferencing QoE based on all the investigated factors. 
The final model including all factors achieved an R2 of .63, 
which is a considerable improvement over the R2 value of .23 
with only system factors. By only using system factors and 
interaction indicators (which can all be obtained automatically, 
without the need for user to self-report their state), our model 
already achieved an R2 of .53. The improvement due to the 
addition of visual interaction features to the audio interaction 
ones was very small, but it is likely that the relative coarse off-
the-shelve metrics we used. Prediction could be improved with 
video analysis tools specialized for the video conferencing 
scenario. An application of such tools could be to estimate the 
importance of the video to the user in the current situation. The 
best performance improvement of our models was achieved by 
including current state features (R2 .52). 

IX.  CONCLUSION 
In this paper we presented an extensive analysis of a study that 
investigated the impact of video impairments on 
videoconferencing QoE. We specifically focused on a scenario 
where users are dealing with a conversation task that requires 
both audio and visual interaction, and video usage is 
particularly stressed.  
In this context, we could clearly see that a video feed encoding 
bitrate of 256kbit was interfering with user experience. It 
manifested in an interaction that was of slower pace and shifted 
focus from the video to the audio channel. We observed how 
impairments affecting the QoE of young, experienced 
participant significantly less than the of other participants. We 
hypothesize that the reason behind this is more exposure with 
video degradations which lessens the effect on the experience. 
Further the QoE of more engaged participants was higher than 
that of the less engaged participants. It indicates how once a 
system has enabled users to engage in an interaction, 
participants will be quite forgiving about quality degradations, 
until it brings them out of the flow. With this data we tested 
predictive models and including all the examined factors did 
double the accuracy of our models. This research shows that if 
we want to accurately estimate the QoE of participants knowing 
the system factors alone does not suffice. It is necessary to know 
the users and understand what they are doing to build systems 
that can actually balance the quality for the current situation. 
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