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Abstract

Multiphase flows are described by the multiphase Navier-Stokes equations. Numerically solving these
equations is computationally expensive, and performing many simulations for the purpose of design,
optimization and uncertainty quantification is often prohibitively expensive. A cheaper, simplified model,
the so-called two-fluid model, can be derived from a spatial averaging process. The averaging process
introduces a closure problem, which is represented by unknown friction terms in the two-fluid model.
Correctly modeling these friction terms is a long-standing problem in two-fluid model development.

In this work we take a new approach, and learn the closure terms in the two-fluid model from a set of
unsteady high-fidelity simulations conducted with the open source code Gerris. These form the training
data for a neural network (NN). The NN provides a functional relation between the two-fluid model’s
resolved quantities and the closure terms, which are added as source terms to the two-fluid model. With
the addition of the locally defined interfacial slope as an input to the closure terms, the trained two-fluid
model reproduces the dynamic behavior of high fidelity simulations better than the two-fluid model using
a conventional set of closure terms.
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Chapter 1

Introduction

1.1 Multiphase flow

Gas-liquid multiphase flow is a problem of interest in the oil and gas industry. For example, oil and gas
are often transported together in long pipelines from remote fields to an offshore platform or an onshore
plant [1]. Ever more remote and deep underwater fields are being tapped as more easily accessible fields
are depleted. Transport of liquefied natural gas (LNG) is another hot topic in the oil and gas industry; it
is currently greatly on the rise [2], [3]. During the loading and unloading of a carrier, the carrier will be
only partially filled with liqui(ﬂ so that external waves may induce sloshing inside the carrier [2]. This in
turn may induce harmful rolling motion of the ship [4] or damage the thermal insulation [5].

For these multiphase flows, accurate numerical models have been proposed [6], [7]. However, a trade-off
will always have to be made between model accuracy and computational expense. This difficult trade-off
has persisted to today.

Some applications require the numerical model to be solved repeatedly. An example is Uncertainty
Quantification (UQ), which has become an active area of research in recent years. This field (see e.g. [8])
is concerned with determining the effect of model error or input parameter variation on the outcome of
the simulation. Different algorithms exist with varying requirements on the number of model evaluations.

Another example where repeated model evaluations are required are optimization problems. Often, in
order to find the optimal values of a set of performance indicators, it is desired to calculate these for
different values of a potentially large set of tunable parameters. Only with a large number of model
evaluations can one map all the local and global minima or maxima in the performance reliably.

For these problems where many potentially expensive model evaluations are required, it is necessary
to resort to low fidelity models. These make a trade-off between accuracy and computational efficiency
that leans more towards computational efficiency. In this thesis we will study low-fidelity models for the
multiphase applications mentioned above.

1.2 Low fidelity model for two-phase pipe flow

One way to create a cheaper model is to reduce the dimensionality of the model. In the case of pipe flow,
we are mainly interested in variation of the averaged flow properties along the pipe’s axial direction. We
therefore reduce a full three-dimensional (3D) model to a one-dimensional (1D) model. However, the
effect of the flow structure in the cross-sectional plane - which the 1D model does not solve for - on the
1D flow variables, must be modeled in some way. We add so-called closure terms to the 1D model which
approximate this effect. A different well-known example of closure terms is the concept of a turbulence
closure model, which models the effect of unresolved turbulence on the averaged flow.

The focus in this project is the 1D stratified two-fluid model, a simplified model for stratified liquid-gas
flow in a pipe or square cross-section duct geometry . In the 1D two-fluid model the velocity
fields are not resolved along the direction normal to the duct wall; they only vary along the direction of
flow through the duct (s in the figure). The wall and interface stresses, which are important terms in

n order to liquefy the natural gas, so that it takes up less volume, it is cooled to low temperatures. Due to imperfect
thermal insulation some of the LNG will evaporate and remain in the tank as a gas phase. Loading and unloading of a
carrier may take up to 24 hours, at an offshore platform or at an onshore facility.
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the governing equations, depend on the unresolved wall-normal velocity profile slope. Therefore the 1D
two-fluid model requires closure terms for the wall and interface stresses.
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Figure 1.1: A schematic of the 1D two-fluid model for a circular pipe. Left: a cross-section, representing a single
cell for which the areas Ar, Ag and the velocities ur, ug are defined. Right: a string of these cells together
forming a length of the pipe. The total friction terms are calculated as products of the mean stresses 71, 7, Tint
and the perimeters over which they act.

For laminar single-phase flow, analytical closure relations are easily found (based on fully developed
steady state flow). For turbulent single-phase flow these cannot be found and conventionally closure
relations based on empirical data are used, of which a multitude exists (see . They are mostly
determined for a circular pipe geometry, but this equivalence is not exact and the error is large for the
laminar case. The friction factors are usually determined for steady, fully developed flow. They all have a
specific range of Reynolds numbers for which they are said to hold. The functional forms of common
friction factors are not very insightful; they are simply fit to match data.

For two-phase flow empirical relations are harder to construct because the pressure drop in fully
developed flow is now determined by the sum of three different stresses, instead of a single stress in the
case of single-phase flow. Additionally, the interfacial stress is complicated to model; depending on the
relative fluid viscosities the interface may be approximated as a free surface for the liquid and as a no-slip
wall for the gas. The effect of interfacial waves on the interfacial stress is hard to quantify. Furthermore,
the possibility of backflow in inclined pipes complicates the situation. The same average velocity may
result from a very different flow profile with very different velocity gradients (even reversed), so that
expressing the friction closure terms as a function merely of the average velocity becomes dubious, and a
correction is hard to find empirically. Additionally, the vast majority of the literature concerns circular
pipe flow and it can be hard to find good closure terms for a different geometry.

For two-phase laminar flow, analytical closure relations may be found [9]. In a 2D channel geometry
elegant exact expressions are the result, but for pipe flow the expressions are not practical; they require
numerical integration of complex integrals. It is great that these analytical solutions exist, but they hold
only for steady state, fully developed, smoothly stratified (not wavy) flow.

In conclusion, modeling wall and interface stresses in terms of resolved quantities (averaged velocity
fields), either by fitting experimental data or physical arguments, is a difficult task. Our proposed
alternative is to the extract friction factors to close the 1D two-fluid model from high-fidelity simulation
data. If we have highly resolved 2D or 3D simulation data, the wall and interface stresses can be calculated
exactly. From this one can determine a closure relation relating the wall and interface stresses to the
averaged flow variables which are resolved in the two-fluid model. The flow need not be steady state and
fully developed; this operation is possible in any kind of flow conditions. With a simulation code the
geometry, fluid properties, and initial conditions can be adjusted relatively easily. This would have the
advantage of enabling friction factor calculation more specific to the geometry and flow parameters of
interest to the user of the two-fluid code. More generally this approach can be useful for the closure of
other low fidelity flow models; it was pioneered by Ma et al. [10], [11] for bubbly vertical channel flow.

Different strategies can be conceived for the determination of the closure relations from high fidelity
simulation data. A straightforward approach is to use linear regression. Using this approach we would
have to assume a functional relation for the closure term, of which the unknown coefficients could be
fitted to the data. Having to choose a functional relation could be an advantage, since in defining it we
can use our knowledge of the physics of the problem. However, it could also be a disadvantage, since
we are in fact already determining the form of the solution, while the data might suggest a different
functional form.
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Figure 1.2: The general idea, applicable not only to the low fidelity 1D two-fluid model but to any low fidelity
flow model requiring closure.

Therefore we propose to use instead artificial neural networks (ANN) to perform the fitting. The
general approach is summarized in Using a neural network, we need only to specify a network
architecture. The network training algorithm automatically finds a (possibly complex nonlinear) function
which fits the data well.

1.3 Neural networks

Artificial neural networks have made a name for themselves in recent years through remarkable results in
applications such as image classification [12], natural language processing [13], and learning to beat the
masters at the complex Chinese chess-like game of ‘Go’ [14]. This diversity of applications illustrates
their remarkable ability to represent complex relations between arbitrary inputs and outputs. Training a
neural network is a form of function fitting, but with a complex nonlinear structure which allows the
neural network to approximate a wide range of functionsﬂ

An artificial neural network is a computational graph of connected nodes, which individually perform
straightforward operations. They generally take a weighted sum of the values of the incoming connections
and apply some non-linear activation function to this sum. The original incarnation of these nodes was
called the ‘perceptron’, by researchers who were trying to model the human brain [16]. The power of
neural networks lies in the concept of connecting these nodes in large and diverse networks, in ways
which model the network of neurons in the brain. A schematic of a simple (fully connected, feed-forward,
non-convolutional) network structure is shown in The schematic shows one possible structure;
the number of hidden layers and number of nodes in each layer can be chosen freely (besides more
imaginative alterations).

Essential to their utility is their ability to be trained efficiently, via the backpropagation algorithm [17].
A loss function defined at the output layer measures the current predictive performance of the network
for a given set of inputs, by comparing the difference between output training data and the model output.
The backpropagation algorithm efficiently calculates the gradient of this loss function to the weights of
the node connections, which are the free parameters of the network which determine the degree to which

Input Layer Hidden Layers Output Layer

Figure 1.3: A schematic of a neural network.

2A neural network with a single hidden layer can approximate almost any function with an arbitrary degree of accuracy,
depending on the number of nodes. Neural networks are a class of universal approximators |15|.



4 Introduction

a signal is passed on between two consecutive nodes. Using this gradient an optimization algorithm can
tune the weights; this is called the ‘training’ or ‘learning’ of the network, in analogy to the brain.

Some recent introductions to neural networks are given by [18], [19]. An older book (1996 first edition)
by the authors of the MATLAB shallow neural network implementation is [20].

1.4 Neural networks in fluid dynamics

As noted above, the need for closure terms for the shear stresses in 1D flow is analogous to the need for
turbulence closure terms in insufficiently resolved turbulent flow. Neural networks have already been
applied successfully in this area. Sargini et al. [21] used a neural network to create a subgrid scale (SGS)
model for a Large Eddy Simulation (LES), which reproduces the dynamics of LES using an expensive
SGS model (Bardina’s scale similar (BFR) SGS model), at a lower computational cost. Their neural
network output a turbulent viscosity coefficient (a.k.a. eddy viscosity) as a function of the gradients of
the spatially averaged velocities, and products of the velocity fluctuations. Their learned closure term
produced good results, for Reynolds numbers within and close to the range of Reynolds numbers used in
the training data. Moreau et al. [22] used neural networks fed by pseudospectral DNS data of turbulent
flow to model the subgrid variance in the concentration of an advected species for an LES, but did not
test simulations with the learned closure term. An eddy viscosity coefficient for atmospheric flow over an
urban boundary layer was obtained using a neural network by Esau [23].

Yarlanki et al. [24] tried an unusual inverse approach. The parameters of the k — e turbulence model
are to be determined and form the inputs to an ANN, and the differences between CFD results and
experimental results are the outputs of the neural network. The neural network learns the error between
simulation and experiment as a function of the turbulence model parameters, and thus the parameter set
which yields the smallest error can be found indirectly. The found k — € model parameters reduced the
discrepancy between simulation and experiment significantly compared to standard parameters, for their
specific test case. Tracey et al. [25] reproduced the Spalart-Allmaras turbulence closure model (without
a specified functional form) from the output of simulations done with this closure model. They report
very promising results, but stress the importance of choosing appropriate ANN inputs and cost function.
Gamahara and Hattori [26] recently used DNS to obtain a functional relation for the Reynolds stress
tensor directly, which shows performance close to that of a Smagorinsky SGS model.

In multiphase flow applications, the use of neural networks to identify closure terms is still in its
infancy. One existing example is Lu et al. [27], [28], who trained a neural network with data from
micro-scale DNS simulations of a gas-solid mixture under influence of a shock, to provide closure relations
for the particle-particle and gas-particle interactions for use in coarse macro-scale simulations. The
main inspiration for the current project is taken from Ma et al. [10], |11]. They consider dispersed
liquid-gas flow, for which they take a reduced order model, averaged along the streamwise direction and
one spanwise direction, and bounded by periodic boundaries in their 3D DNS simulations. The closure
relations required for their simplified model are for the wall-normal liquid flux, the average of the product
of the streamwise and wall-normal velocities, and the average surface tension. They obtain these using
neural networks fed by their 3D DNS data, with good results. They also tried linear regression with a
predetermined functional relation, which produced similar results to the neural network, but is deemed
by them to be a far less general approach. Gibou et al. [29] review numerical methods for simulating
multiphase flow and machine learning applied to computational physics. Their review confirms that there
is only limited existing work connecting neural networks and multiphase flow, and raises a number of
questions to be tackled.

There has been some work connecting pipe flow stress closure terms (in the form of friction factors)
and neural networks. Neural networks were trained to replicate different implicit empirical friction factor
correlations by [30]-[38]. For the studies which generate an explicit form of the Colebrook-White friction
factor equation (see , the inputs are the Reynolds number and the relative roughness and the
output is the friction factor. The training data consists of iterative solutions of the Colebrook-White
equation for different Reynolds numbers and relative roughnesses. The usefulness of this work is limited
though, since simpler explicit approximations of the Colebrook-White equation with a smaller error than
the deviation of the Colebrook-White equation from the empirical data have existed for some time (e.g.
Haaland (1983) [39)]).

An important question when using neural networks in fluid dynamics is if we can mold them to be
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more than just a fit of the data, i.e. if their output can incorporate known physical principles. This is a
challenging and outstanding problem, but one good illustration of this principle was given by Ling et
al. [40]. They remarked that any scalar flow variable, such as pressure or velocity magnitude, will be
invariant to rotations, reflections, or translations of the frame of reference. Without special care a machine
learning algorithm output will not adhere to this perfectly. Ling et al. describe two ways to enforce
rotational invariance on trained neural network outputs in the context of turbulence modelling. One way
is to simply feed the neural network training data to which a number of different rotations have been
applied. But a far more efficient way is to use as inputs to the neural network only quantities which are
themselves rotationally invariant. Doing this naturally ensures that the output is rotationally invariant.
Another strategy they employ is making the inputs non-dimensional. This ensures that the output is
non-dimensional as well, so that if an output variable is chosen that should indeed be non-dimensional,
there will be no problems of dimension in the output functional relation.

Overall, good results are reported in the literature on fluid dynamics with neural networks. In the range
of the training data nonlinear relations are reproduced accurately, and simulations using learned closure
terms produce results close to the original data. Currently the advantage of neural networks lies in their
application to specific cases, to which they may be applied relatively easily to learn correlations specific
to a certain set of conditions. However, their extrapolating qualities are still limited, and improvements
in choice of network inputs and structure are needed if neural networks to one day outperform e.g.
conventional closure terms in general cases.

Particularly in turbulence closure models neural networks have been applied successfully. In multiphase
flow the first steps have been made, but the approach is still new, especially for the two-fluid model
that we consider in this work. When training neural networks to produce closure terms many difficult
choices and trade-offs have to be made, and a lot of work is left to be done before the level of the highly
problem-specifically optimized convolutional neural networks such as those used in image classification
[12] is reached.

1.5 Project plan

It was discussed in that existing friction closure terms for 1D two-phase flow are lacking.
Cases for which analytical solutions cannot be found are usually closed by experiment. But conclusive
empirical relations are hard to find in some cases. Therefore in this project the neural network approach
to finding closure terms will be applied to this problem. We will train a neural network on high-fidelity
computational model data. With this method, the aim of this project is to combine the easy general
applicability and accuracy of a high fidelity model with the low computational cost of a simplified model.
This would alleviate the existing necessity for trade-offs between accuracy and computational efficiency
in the simulation of multiphase flow.

shows a schematic of the project plan. We restrict ourselves to (periodic boundary) laminar
stratified channel flow, but the plan is applicable to circular pipe flow with some modifications. The figure
shows two cases that are discussed in this work: smooth, fully developed, steady state flow and wavy,
transient flow. High fidelity simulations can be conducted for both cases with the open-source code Gerris
[6], which solves the full viscous incompressible Navier-Stokes equations. We start with smooth, fully
developed, steady state channel flow, for which analytical solutions and closure relations are available for
channel geometries (see . These relations can be used to assess the accuracy of the high fidelity
model simulations. Furthermore, we will train neural networks on steady state data and compare this to
the analytical closure relations, so that the neural network can be tuned and the approach validated.

For wavy, transient flow, existing closure relations are lacking, and we will proceed to directly train a
neural network based on the high-fidelity simulation results, with the same architecture that will have
already been validated for the case mentioned above. The new closure terms can be validated by plugging
them into the 1D two-fluid code (our low fidelity model) and evaluating if with these closure terms its
behavior is similar to the 2D ’truth’ given by the high fidelity model.
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Figure 1.4: A flow chart of the project structure. We analyze two different sets of solutions of the Navier-Stokes
equations, one of which has analytical solutions. These are used to validate the high-fidelity (Gerris) simulations
and the extraction of closure terms using a neural network. Afterwards the same architecture is applied to
construct closure terms for wavy, transient flow, which are then tested in a low-fidelity model.

1.6 Structure of the report

In we outline the physics of stratified multiphase flow, and our high fidelity computational
model which we use to model these physics. presents the 1D stratified two-fluid model and
casts it into a form specialized to 2D channel flow. This chapter includes a detailed discussion of the
closure terms for the wall and interface stresses and existing empirical relations for them.

In we analyze the stability and well-posedness of our flow problem. The employed two-
fluid model turns out to only be well-posed under certain conditions. A linear stability analysis of the
two-fluid model and of a 2D model for the same flow problem yields predictions for the propagation and
amplification of small wave-like disturbances. These predictions are used to validate our computational
models for the inviscid case, and to examine fundamental restrictions in getting the 1D model to emulate
the dynamics of the 2D model. The inviscid dispersion relations may be used for qualitative explanations
of phenomena occurring in viscous simulations in later chapters.

In we validate our high and low fidelity models for smoothly stratified (non-wavy) viscous
flow. We discuss the difficulties in extracting the required training data for our neural network.

provides a brief introduction to neural networks, before applying them to the case of fully
developed, steady, laminar 2D channel flow. We discuss the choices made in defining our neural network
and validate them using the analytical closure terms. Finally, we apply our neural network to the case of
wavy, unsteady flow in We test our learned closure terms in the 1D two-fluid model.



Chapter 2

2D and 3D Multiphase Flow Models

2.1 Introduction

In this chapter we will discuss the physics and solution scheme of our high-fidelity multiphase flow model,
which resolves the flow in two or three spatial dimensions. We will first go over the physical laws of fluid
dynamics, paying special attention to their application to multiphase flow. These laws form the basis
of our computational model. Afterwards we will see a method for solving the equations corresponding
to these physical laws on a computational grid. We use the open source code Gerris [6], [41] as our
high-fidelity model.

2.2 The Navier-Stokes equations for fluid flows

In the following, we employ the continuum hypothesis. This means averaging out individual interacting
molecules into a continuous fluid with continuously defined properties such as p (density) and u (velocity).
This allows us to convert the principles of mass and momentum conservation into a set of continuous
equations; the Navier-Stokes equations. See also textbooks such as [42], [43].

2.2.1 Mass conservation

In any classicaﬂ physical system, mass must be conserved. This means that the change in time of the
mass inside a control volume V, illustrated in is equal to the mass flowing in and out of the
control volume at its boundaries. For the flow of a continuous fluid this can be written as

4 pdV:—%pu-ndS, (2.1)
dt Jy g

where d/dt is a derivative with respect to time, fv dV is an integral over the control volume V', p = p(x, )
is the density (x representing coordinates in three-dimensional space and t representing time), fs ds is
an integral over the closed surface S bounding V', u = u(x,t) is the velocity vector and - n is the inner
product with the vector normal to the surface S, pointing outward.

Since the control volume V is fixed in space, the time derivative on the left hand side can be brought
inside the integral using Leibniz’ rule. For the right hand side we can apply the divergence theorem, or
Gauss’ theorem, to obtain

d
/ di’dv = - / V - (pu)dV. (2.2)
v dt v
In the limit V' — 0 the above implies
dp
el . =0. 2.
5 +V.(pu)=0 (2.3)
This is a specific form of the generic conservation law
dq
5 TV fa) = cla), (2.4)

'n relativity theory, mass and energy are equivalent, so that mass is conserved together with the energy of the system.
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Figure 2.1: A schematic of two control volumes Vp, V1 in two-phase flow. The control volumes are bounded
by So and S; respectively, with normal vectors pointing outward. Here we place the boundaries of the control
volumes on the interface so that they only ever contain one fluid. The spatial coordinate vector x has components
s, y (not pictured), and h. The velocities in these directions are the components u, v, and w of u, respectively.

where ¢ = ¢(x,t) is a conserved quantity, f is the flux of ¢ and ¢ is a source of ¢ (which can also be a
function of g).
In (2.3) the flux is only the convective flux of p

fe = pu. (2.5)

If there are multiple species, there may also be a diffusive flux, given by Fick’s law, with a diffusion
coefficient D:

fi=fc:+fp, with fc;=pu, fp;=DVp;. (2.6)

In our model the flux is only the convective flux, since we make the assumption of sharp interfaces |44, p.
22]. The fluids are assumed immiscible, so they do not diffuse into each other. Then a change of p in the
control volume can only result from a net flow of mass, i.e. .
The material derivative describes the change of a property of a fluid parcel as we follow it during its
flow. It can be defined
D 0

5 =3t VO (2.7)

Using this and an expansion of the divergence operator:

V-(pu)=u-Vp+pV -u, (2.8)
([2.3) can be rewritten as
Dp
D= PVow 2.9
pt PvVH (2.9)

This shows that the density of a fluid parcel can only change if the flow is divergent or convergent, in
which case the fluid parcel expands or compresses. The flow can be said to be incompressible if this does
not happen:

V.u=0, (2.10)

in which case the density of a fluid parcel traveling with the flow does not change. Though in the
incompressible case a fluid parcel cannot be compressed or expanded, the density might still vary between
different fluid parcels (e.g. between two different fluids in a multiphase flow simulation).
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2.2.2 Momentum conservation

Momentum conservation for fluids is an application of Newton’s second law. The change in time of the
momentum contained in a control volume is dictated by the magnitude and direction of the forces acting
upon it. Momentum can also enter or leave the control volume with the flow, just as mass can. These
ideas can be expressed mathematically as

d
— [ pudV = —?{pu(u~n) dS—]{pndSJr]{T-ndSJr/ pgdV, (2.11)
dt Jy s s s v

where p = p(x,t) is the pressure, 7 = 7(x,t) is the stress tensor, and g is the gravity force vector. For
any fixed control volume V' this equation will hold so that via Gauss’ theorem and Leibniz’s rule the
differential form

0
%z—V&puu)—Vp—i—V-T—kpg (2.12)
can be found, where
V - (puu) = pu- Vu+uV - (pu), (2.13)

so that using (2.3)) the balance is reduced to

ou

pa+pu~Vu:—Vp+V~7-+pg. (2.14)

On the left hand side we can now recognize the material derivative of u (multiplied by p).
The intermediate form (2.12)) is an equation in conservative form (2.4), with q = pu,

f=fc+fp, with fo=puu, fp=-—-71, (215)

and
c=pg— Vp. (2.16)

In this interpretation, puu is the convective flux of momentum, the stress term represents diffusion of
momentum, and the pressure gradient and gravitational field are sources of momentum.

The interpretation of —7 as a diffusive flux of momentum is justified by its constitutive law for
Newtonian fluids

T =2/ {D - %(V - u)I] +¢(V -u)l, (2.17)

with I the identity matrix and D the rate of strain deformation tensor. According to Stokes’ hypothesis
the bulk viscosity ( is zero. If furthermore incompressibility is assumed, the stress tensor reduces to

T =2uD, (2.18)
where D = 1 (Vu+ VuT) and in Cartesian coordinates, with x = (s,y,h) and u = (u,v,w) (see
Figure 2.1f), and D is given by

1 8871; ) %(%a+ %Z) %((%:—F%)
v u v w v
w u w v w

3las +an) 2(ay +an) o

For incompressible flow with constant density and viscosity, by substitution of V -u =0 and p = pv, it
can be shown that

V.-1=V.pv[Vu+ (Vu)T] =vV?pu=V - -vVpu. (2.20)

Thus, returning to (2.4} and (2.15)), for all intents and purposes we could write fp = —7 = —vVpu. This
is exactly Fick’s form of the diffusive flux (given in (2.6]) for mass), but with the kinematic viscosity v
playing the role of diffusion coefficient.
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2.2.3 Energy conservation

A similar expression as for mass and momentum conservation can be formulated for energy conservation.
Alternatively, the flow can be assumed isothermal, and the system can be closed with an equation of state

p = f(p). (2.21)

This eliminates the need for an energy equation.
For incompressible flows neither an energy equation nor an equation of state is needed. The density is
determined by
Dp
Dt
as discussed in If a fluid starts out with uniform density, then in an incompressible flow
the fluid will retain that density everywhere and need not be solved.

The pressure must be such that it forces, via the momentum balance, the velocity to satisfy .
The pressure is the only unknown besides the velocity in the momentum balance . With these
multiple unknowns there are multiple combinations of u and p which satisfy the momentum balance. But
the continuity equation narrows the choice down to one possible combination. If we choose an
appropriate pressure, then from the momentum balance we will obtain a velocity field that is incompressible.
This can be viewed as the pressure projecting the velocity field into the space of functions that satisfy

]

0, (2.22)

2.3 Multiphase flow and the interface

The main difficulty in simulating multiphase flow lies in handling the interface. In this project, we deal
with two fluids which, as stated before, are immiscible and have a sharp interface. These two fluids
may be for example a liquid and a gas. The equations of motion as derived above apply to both fluids
separately. They can in principle be solved for one of the fluids at a time, with the influence of the other
fluid entering via the boundary conditions at the interface. In practice this can be complicated since the
interface is part of the solution and can assume complex forms.

2.3.1 Kinematic boundary conditions

We consider a thin control volume centered on the interface between two fluids, illustrated in
The thickness of the control volume tends to zero, so that no mass can accumulate inside of it. The
control volume travels with the interface at velocity u;yt. The integral formulation for mass conservation

(2.1) then leads to the Rankine-Hugoniot condition
P1 (U1 — uint) -n = Po (110 — uint) ‘N = ’ﬂ"L, (223)

in which uj, is the interface velocity, uy is the velocity of fluid 1, ug is the velocity of fluid 0 and 7 is
the mass flow across the interface. A mass flow across the interface means that one phase gains mass at
the expense of the other, and thus implies phase change. If there is no phase change, m = 0.

If there is no phase change, leads to the boundary condition

Uipg "N =1U; -0 =1 - N, (2.24)

which can also be applied at a solid boundary.
With the continuum hypothesis, there can be no slip between gas and liquid at the interface since
a discontinuous velocity profile would result in infinite stress. The no-slip boundary condition can be

combined with (2.24) to yield
u; = Up. (225)

We can obtain another boundary condition by applying the integral momentum balance (2.11)) to the
control volume in Again, no momentum can accumulate in the control volume due to its
vanishing thickness. The gravitational term in (2.11)) must be converted to a surface integral:

/ pgdV = —/ VUV = —]f Unds, (2.26)
|4 1% S
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Figure 2.2: A schematic of thin control volume V' with boundary S, centered around the interface. The normal
to the interface is n and the tangent is t.

with U(x) the gravitational potential energy

h
U:/ pgdh/, (2.27)
0

in which p = p(x).
The inflow and outflow of momentum then balance in the following way:

prug (W) — Wing) -0+ pin — 71 -0+ Uy = poug (Ug — Wint) - 0+ pon — 7o -0+ Uy = M, (2.28)

where M is the momentum transfer across the interface. Since the control volume is vanishingly thin, the
difference between U; at the boundary on one side of the interface and Uy at the boundary on the other
side of the interface is negligible (calculated via ), and so these terms cancel out. In the absence of
phase change the advection terms are zero by virtue of . We are left with

(p1 —po)n — (11 —79) m =0, (2.29)
By taking inner products with n and t, this is split into two boundary conditions{ﬂ :

p1—po—m- (11— 7o) -n=0, (2.30)
t-(t1—7T0) - n=0. (2.31)

The expression 7 - n signifies the stress acting on the interface, so that n - 7 - n is the stress acting on
the interface in the direction of n, and t - 7 - n is the stress acting on the interface in the direction parallel
to the interface: the shear stress. These conditions express that the force that the first fluid exerts upon
the second should be opposite but equal in magnitude to the force that the second exerts upon the first,
i.e. Newton’s third law.

With the identity (2.18)), (2.30) and (2.31)) can be written as

p1—n-pu(Vuy +Vul) -n=py—n-pu(Vuy+ Vug ) - n, (2.32)
t- i (Vu +Vul) -n=t-pu(Vug + Vul) - n. (2.33)

In 2D, for a flat interface at constant h, these reduce to

(9101 - 6wo
p1+ 2#187 =po + QMOW (2.34)
ouy Oown . dug Owg
H <8h i a) = Ho <8h + a) : (2:35)

2In 3D, the second boundary condition holds for two different tangent vectors.



12 2D and 3D Multiphase Flow Models

of which 5 5

w w

70 (2.36)

s s
due to the no-slip condition (2.25); more generally t - Vu® - n is continuous across the interface. Similarly,
t-Vu-t =t-VuT - t, which reduces to du/ds for this geometry, is continuous due to the no-slip condition.
As a result, incompressibility (V - u = 0) implies the continuity of n- Vu-n = nVu® - n, dw/0h for
this geometry. Summarized, we have continuity between the two fluids of the following velocity gradient
components:

8w1 o 5‘w0

t- T n=t- T, 0 2.
Vu; ‘n Vu; -n — s 55 (2.37)
t-Vu t=t-Vul t=t-Vug-t=t - Vul -t L dm_ Ouw (2.38)
0s 0s
ow ow
n-Vu,-n=nVu] -n=n-Vuy-n=nVu] -n — a—hl:a—ho. (2.39)

If the terms (2.39)) are smalﬂ n -7 -n will be small for both fluids and (2.32)) determines that the
pressure will be continuous over the interface; p; = poﬂ In this case the boundary conditions ([2.32)) and
(2.33)) express the existence of a single interfacial stress

Tt =T1 -0 =Tp N, (2.40)
with only a tangential component:
Tt =t - T =t-71-n=1t-7¢-n, (2.41)

where n is the interface normal seen from the liquid like n; in so that this stress enters the
momentum balance for control volume 1 in directly, but requires an added minus sign
to be applied to control volume 0. Thus, the forces on the control volumes in are opposite but
equal in magnitude, as required by Newton’s third law, and consist now solely of the shear stress.

If the characteristic horizontal length scale is much larger than the vertical length scale: L > HEL a
further simplification of the interfacial stress can be achieved. In this case the terms will be small
compared to t - Vu-n — du/0h. The boundary condition — then simplifies to

8u1 8u0

t-uy1Vuy -n=t.puVug-n — “lﬁzuoﬁ'

(2.42)
This relation will lead to a sharp gradient in velocity for the gas and a relatively low velocity gradient for
the liquid since the liquid viscosity is generally much higher than the gas viscosity. The large gradient in
the gas velocity may make it appear that there is a jump between the liquid and gas velocity when a
discretization is performed with a limited grid resolution, however this is not allowed by .

At solid boundaries the terms and will be firmly zero so that like explained above the
stress will consist solely of a shear stress of the form . However the stress in a solid cannot be
modeled in this way, but we do not need to explicitly model it if we simply assume the solid to be
stationary and non-changing.

2.3.2 One-fluid formulation

For incompressible flow we now have a complete set of equations and boundary conditions. The mass and
momentum balances are solved separately for both fluids. In a 2D or 3D numerical solver this means
that the grid must be adapted each time step so that the boundaries of the grid cells line the interface.
Considering that the interface geometry may be very complex, this is not always practical. It can be
beneficial to write the equations in such a way that the same equations apply to the entire domain, and
not just in the area where one of the fluids presides. This is the so-called one-fluid formulation.

3For example if the interface is approximately parallel to some impenetrable solid boundaries (which is likely if we
consider a shear flow with a long wavelength perturbation), so that we have approximate hydrostatic balance.

4 Alternatively, for irrotational flow this condition will hold.

5For example if we have a shear flow with a long wavelength perturbation applied to it. This, along with pure parallel
shear flow, is the case we shall consider.
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In the one-fluid formulation, the mass and momentum balances that have been derived will hold for
a control volume containing two different fluids. What changes is that the material properties such as
viscosity and density will jump abruptly at the interface. All forces in the momentum balance apply to
an arbitrary control volume taken anywhere in the computational domain. We neglect surface tension
here because capillary waves are not of interest in our simulations.

The one-fluid version of the Navier-Stokes equations for multiphase incompressible flow becomes

V-u=0 (2.43)
ou 1 T
E—Fu-Vu:;(—Vp—i—V-[uVu—i—u(Vu) ])+g (2.44)
with at solid walls the boundary conditions
U N — Uyay -0 =0, (2.45)
and
u-t—ug.-t=0. (2.46)

In these equations, p and p are functions of x and for their determination it is still necessary to know the
shape of the interface.

A graphical representation of this model applied to 2D channel flow is given in In the
figure, M is a marker function which marks which fluid is located at a particular point. Where the marker
function is 1, the viscosity and density will have the values corresponding to fluid 1, and where it is zero
the viscosity and density will be those of fluid 0.

A
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1
|
__________________________________________________ .>
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Figure 2.3: A schematic of the one-fluid model for 2D channel flow.
The marker function is advected with the fluid via an equation of the form of (2.4):
oM
5+ (Mu) =0, (2.47)

which corresponds with the advection of mass via (2.3)). Like the mass it represents, the marker function
does not diffuse and has no source term. For the marker function in incompressible flow it therefore also

holds that DM
— =0. 2.48
D (2.48)
In single phase flow, the second term in (2.3]), corresponding to the second term in (2.47)), is zero and the
equation is trivial. But in the one-fluid formulation for multiphase flow either (2.47) or (2.48) must be

solved explicitly to determine the evolution of the location of the interface.

2.4 Direct numerical simulation of multiphase flow

Using the one-fluid formulation of it is possible to solve the flow equations with methods
developed for single phase flow. The important difference is that we must allow for variable material
properties. The determination of the material properties requires solving for the location of the interface.
The evolution of the location of the interface is usually determined by advecting a marker function for
it. Effectively, we have an extra coupled equation to solve, along with the mass and momentum
equations.
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2.4.1 Spatial discretization

The system and needs to be discretized in order to be solved numerically. Derivatives with
respect to time and space are not mixed in these equations and thus they can be considered separately. A
method of lines approach is adopted here, in which we first discretize the spatial derivatives and only
then consider the problem of how to integrate the equations in time.

Spatial discretization of the Navier-Stokes equations is often done using finite volume methods. These
have the advantage that they are conservative by design. This is because they are formulated using the
integral form of the momentum balance, e.g. , applied to the individual grid cells. The expression
used for the inflow of mass or momentum at a cell boundary is identical to the expression used for the
outflow of the neighboring cell.

When applying a finite volume method to incompressible flow, it is natural to use a staggered grid,
illustrated for 1D in This means that grid points where the velocities are defined are shifted
relative to the points where pressure and material properties are stored. For the solution of the equation
for mass conservation, a control volume is used which is centered around the point where the pressure is
defined, with the velocities defined at the centers of the edges of the control volume. If there is a net
inflow, the pressure of the control volume must increase, and if there is a net outflow the pressure must
decrease. For incompressible flow this must happen instantaneously so that there is never a net mass flux
into a control volume.

For the solution of the equation for momentum conservation, a control volume is used which is centered
around the velocity for which, after being multiplied by the density, we are enforcing the conservation law.
That is, the momentum fluxes through the control volume boundaries must balance (or, for a non-steady
problem, alter the momentum of the control volume).

Finite volume methods can also be used with colocated grids, in which velocities and the pressure are
defined at the same grid points. The main comparative advantage of a staggered grid is that the coupling
between the velocity and the pressure at different grid points is increased. The momentum balance
links the velocity and the pressure gradient. On a 1D staggered grid this means concretely that w; ;o is
related to p; and p;11. Therefore p; and p;;1 both depend on w;,1/o; they are coupled. Also, u;y3/2 is
related to p;+1 and p;ya, so that p;41 and p;yo are coupled and by extension p;;o2 and p; are coupled,
and all pressure points can be shown to be coupled in this way. On a 1D colocated grid u; is related
to p;—1 and p;y1, and u;41 is related to p; and p;4o. Therefore p;_1 and p; 1 are coupled, and p; and
Dit+2 are coupled, but the pairs are not coupled to one another! The grid can be shown to consist of two
separate sets of coupled points. This lack of coupling can lead to wild oscillations in the pressure field,
even while the continuity equation is satisfied [45], [46].

Mass conservation

control volumes i Pi+1 Pit2
L o o o e  m m m - - 1 o L L L L L L - 1 o L L L L L L L L D — -4
r--—---—=-—=-=-=-=-=-=-=-=-=-- I
I : :
. I
Momentum conservation ! : |
| L] [ ]

control volumes | Uit1/2 : Ui4+3/2 l
I | !
~ |

Figure 2.4: A schematic of a 1D staggered grid. The momentum conservation control volumes are shifted by
half a grid cell with respect to the mass conservation control volumes. In a mass conservation control volume,
the evolution of the pressure is determined by the difference between the flow at the boundaries, which for
incompressible flow should sum to zero so that the pressure remains constant. In a momentum conservation
control volume, the evolution of the flow is determined in part by the difference in pressure between the cell
boundaries (which comes down to the pressure gradient which appears in )

However, colocated grids are simpler to use when solving equations in complex geometries [45].
Therefore methods were developed to get around the coupling problem and according to Ranade (2002)
[45] most commercial CFD codes now use colocated grids.
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2.4.2 Time integration

With the spatial discretization completed one can write the most basic time integration scheme as
un+1 _ un
At

in which n denotes the time step and At is the length of the time step. A} is the discrete form of the
advection term at time step n, V;p"t! is the discrete form of the pressure gradient at time step n + 1,

7 is the same for the diffusion, and f" is the same for the body forces (e.g. gravity, surface tension) at
time n.

As explained in for incompressible flow it is necessary to find the pressure, which
projects the velocity such that the continuity equation is satisfied. This can be done using a
so-called projection method, introduced by Chorin (1968) [47]. A basic example of a projection method
which does what was explained in words in is given by [44].

It begins by splitting (2.49) in two parts. The first part is the predictor step, where an intermediate
u* is found by solution 0, but leaving out the pressure:

1
= A} + po (=Vipp" ™ +Dj +£7), (2.49)

ut —u”
At

In the second step, the projection step, the pressure adjusts (‘projects’) the velocity u* to the new velocity
u™*! via the formula

1
=—A} + o (D, +£"), (2.50)

u"t! —u* 1
—x = fp—nvhp"“. (2.51)
Solving this equation for u* and substituting into yields exactly the original equation , SO
u"t! satisfies the original equation.
In order to make u™*! also satisfy the continuity equation

Vi -u"tt =0, (2.52)
the divergence of ([2.51)) is taken and the continuity equation for u™*! is substituted to yield

Vi - (plnvhpn+1> = évh -u*. (2.53)
In the above equation, u* is already known from the predictor step so that V;p"*! can be found directly
and substituted in to enable calculation of u™*!.

In single phase flow, p™ can usually be taken out of the divergence in , yielding a Poisson
equation for the pressure, for which many solution methods exist. The variable density in the case of
multiphase flow leads to some added difficulty. The solution of the pressure equation is often the most
time-consuming part of a simulation, since it generally needs to be solved iteratively.

Note that in this method, we are only solving the momentum balance explicitly; the mass balance only
enters the solution as a constraint which determines the pressure. This pressure then modifies the velocity
field to make it divergence-free. With the staggered grid described in the pressure at
the center of mass conservation cells is directly coupled, without need for interpolation, to the velocities
which are defined at the mass conservation cell boundaries (see [Figure 2.4)), via (]2.51[)|ﬂ With , a
divergence-free velocity field is directly computed at the mass conservation cell boundaries, so that mass
is conserved.

The given method is only first-order in time. Kim and Moin (1985) [48] describe a projection method
with second-order accuracy in time. Other methods of integrating the incompressible Navier-Stokes
equations in time exist, a notable one being the PISO method [49).

2.4.3 Advecting a fluid interface

The most apparent extra requirement of a multiphase flow simulation code is the need to keep track of
the location of the interface between the two fluids. In the one-fluid approach, this is done by advecting a
marker function representing one or the other fluid, as discussed in It is not practical to
solve the transport equation directly. This is because any finite difference scheme would numerically
diffuse the discontinuity in the marker function at the interface [44].

6The mass conservation cell boundary centers are the momentum conservation cell centers. In the finite volume
formulation the pressure gradient is equivalent to the difference in pressure between the cell boundaries; see (2.11]).
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The volume-of-fluid method

In the volume-of-fluid (VOF) method [50], the marker function is averaged over the grid cells to define
the color function

1
C = V/‘/MdV. (2.54)

The color function is a function which gives the volume fraction of the reference fluid in a grid cell. The
material properties in grid cells ¢ can then be expressed as functions of this color function. For example

pi = Cip1 + (1 — Ci)po, (2.55)
pi = Cipr + (1 = C;) o, (2.56)

with p; and pq the density and viscosity of the fluid indicated by M = 1 and pp and g the fluid indicated
by M = 0. For the density, this formulation is necessary in order for mass to be conservedﬂ For the
viscosity, different averaging and interpolation methods may be used: see

The color function advection is performed in two steps, which are shown in [Figure 2.5 If we know
the location of the interface and the velocities, we can calculate the amount of fluid 1 that is advected to
the next grid cell. Then we know the color function C' of that grid cell. After the interface advection
step, we need to reconstruct the interface using C', for use in the next advection step.

) ! 1 | '
I
I . I
l | l |
—) —) —p
wAt " uAt uAt

e .
Interface Reconstruction

\

Figure 2.5: An illustration of 2D VOF color function advection, for the simple case w = 0. The values of the
color function in each grid cell are used to construct an interface, via PLIC. This allows geometric advection
of the color function, which is conservative. The new values of the color function in each grid cell are used to
construct a new interface, for the next time step.

In 1D the interface reconstruction step is not necessary since the color function already determines
the interface uniquely. In 2D the relation between color function and interface geometry is not unique.

"The mass present in a grid cell is the unweighted average of the product of the density and the marker function over
the grid cell, multiplied by the size of the grid cell. This formulation for p; yields the mass in the grid cell divided by the
grid cell size.
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We have to make a choice in some way; a commonly used method is piecewise linear interface calculation
(PLIC) [51]. In PLIC the interface is represented as a single diagonal line drawn through the grid cell.
This is an approximation which leads to sharp corners (seen in the last part of which can
break away as ‘flotsam’ or ‘jetsam’ [52].

To determine this line first the normal of the line must be computed. This is done using the value of
the color function in the grid cell and in the eight neighboring cells. After the normal is determined, the
offset (distance from the cell boundaries) of the interface is determined by demanding that the area of
the resulting polygon matches the color function of the cell.

Once the interface is known, two points which describe this line uniquely (e.g. the intercepts of the
line with the cell boundaries) can be advected exactly using the local velocity, which should be known
from the solution of the momentum balance. This advection method can be regarded to be based on
. In 2D it is done in two steps; one for each velocity component. These steps can be described as
linear mappings of the original area occupied by the reference fluid to the new time step. The appropriate
combination of an explicit mapping (using the velocity at the previous time step) and an implicit mapping
(using the velocity at the new time step) yields a conservative scheme (without diffusion). The result of
the linear mappings is the value of the color function in each grid cell. A detailed discussion is given by
Rider and Kothe [53].

Front tracking

The first development of front tracking methods for viscous multiphase flow was done by [54]. In front
tracking methods, marker points are advected instead of a marker function. This can be done simply and
exactly, for example with the formula

X = X} + AL, (2.57)
in which x7 is the location of front point f at time step n, and uf its velocity. The interface need not
be reconstructed; the advected points directly define the interface. The points live separately from the
grid points, and carry the information of their exact location. In 2D the front can be structured, which
means the the front points are ordered and know which front point comes before and which comes after
on the interface. In 3D unstructured fronts are used, in which the points carry no information on their
connections but instead triangular surface elements store the indexes of the front points which are their
vertices.

Information (such as the local velocity) is passed from the grid points to the front points by interpolation,
in which close by grid points are weighted most. Precisely the other way around the grid points are
assigned values for the gradient of a marker function. The marker function, just as before, denotes the
presence of one or the other fluid and at the interface its gradient is a constant, pointed normal to the
interface. When each grid point knows the local gradient of the marker function, the marker function can
be reconstructed at each grid point starting from a grid point where the marker function is known. This
marker function then determines the local values of the material properties.

Level-set methods

A third important class of interface advection methods is the level-set method, introduced by Osher et
al. [55]-[57]. In this method a marker function is used which is a smooth function of the distance to
the interface. It is zero at the interface, negative on one side and positive on the other. No interface
reconstruction is needed in this method. The marker function is smooth and thus can be advected by
standard numerical methods applied to .

The full advection equation can be simplified by substitution of V - u = 0 and the observation that
with the current definition for the marker function the interface normal (see is given by

VM
_ _ 2.58
With these substitutions, (2.47) simplifies to
oM
— —(u-n)|[VM| =0. (2.59)

ot
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The density and viscosity are defined as smooth functions (with continuous first derivatives) of the
advected marker function. The velocities of the next time step can be calculated using the new p(x) and

wu(x) via (2.43)) and (2.44)). The new velocity field can then be used to advance ([2.59)) in time. In practice
the time stepping does not have to be purely explicit though.

2.4.4 Comparison

All these three methods for interface advection operate within the one-fluid framework discussed in
But still the approaches differ significantly.

Changes in the front topology must be handled explicitly in front tracking methods. Since the front
points (or the elements in the case of unstructured grids) carry information to which front points they
are connected, it must be explicitly determined if these connections should be altered at the new time
step. This is the main downside of this method relative to VOF, where the color function at the new
time step is the result and the interface is calculated from this naturally.

The front tracking method is also not naturally mass conservative, whereas the VOF method is.
Level-set methods have the same problem of being non-conservative. Adjustments can be made to improve
the mass conservation property, but these complicate the method, while the main advantage of level-set
methods are their comparative simplicity in simply requiring another PDE to be solved [44].

The main advantage of VOF methods is their natural conservative quality, while their main downside
is that the interface reconstruction can be quite laborious, and introduces ‘jetsam’ and ‘flotsam’. The
calculation of the surface tension involves similar processes and is also time-consuming. In front-tracking
methods surface tension can be calculated on the front and this is more natural. However, we will not
consider surface tension in this project.

Other classes of simulation methods exist. For example Smoothed Particle Hydrodynamics (SPH).
The main difference with the methods described above is that it is not grid-based, but particle-based.
Good reviews are given by [58] and [59].

This method has an efficient, highly parallel GPU implementation in the form of DualSPHysics [7],
which, like Gerris, is open source. A further advantage of the particle-based method is that discontinuities,
large perturbations and complex geometries are dealt with naturally. However the treatment of boundary
conditions is quite complex (and different to the way our low-fidelity model treats them) and the calculation
of stresses is not straightforward and susceptible to fluctuations in the particle density. Furthermore the
method is weakly compressible and not incompressible like our low-fidelity model (discussed in .

Lattice Boltzmann methods are also widely used in multiphase flow. Their main advantages are
their potential to model complex physics at the meso-scale, their suitability to complex geometries and
again their capacity for mass parallelization. An open source implementation is Palabos [60], [61]. We
do not quite need the qualities listed above. We do not need to deal with probability distributions for
particles; a macro-scale continuous Newtonian fluid description is preferable since it is more in line with
our low-fidelity 1D two-fluid model.

By choosing the DNS approach, we keep the physics simple and general, and similar to those of our
low-fidelity 1D two-fluid model. Using VOF interface advection, mass conservation is ensured. The
essential step of calculating the stresses is straightforward; we just need to calculate the velocity gradients
at the boundaries numerically using velocities defined at the centers of fixed grid cells (further discussion
can be found in [section 3.4] and [section 5.4]). DNS was also used as the high-fidelity model for the
generation of data for the learning of closure terms in multiphase flow by Ma et al. [10], [11]. The VOF
method is implemented in commonly used CFD codes such as Fluent [62] and OpenFoam [63].

2.5 Gerris

The Gerris flow solver [6], [41], is an open source solver which works according to the principles explained
in In this project we use the 2D implementation of Gerris. The finite volume approach to
spatial discretization is taken. A colocated grid is used, since the grid can be complicated in Gerris.
Gerris allows local quadtree grid refinement in two dimensions, which means that some of the root cells
can be split in four, and the resulting cells can be split in four, etc. The grid is structured (all grid cells
are square) and there are limits to the jump in refinement between grid cells. Gerris has the ability to
refine the grid adaptively according to some preset condition (e.g. refine to a set level all grid cells where
the absolute vorticity exceeds some set value). In our simulations, we will use a uniform refinement.
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It is often necessary to convert the cell-centered values of u, p, and p into face-centered values. This
can be done using central interpolation, i.e. a face-centered value is obtained by averaging the cell-centered
values of the two neighboring cells. The fluid-dependent parameters p, and p at the cell faces are based
on the color function C' interpolated in this manner. The gradients at cell boundaries are calculated as

6pi+1/2 _ Dit1 —Di
0s As

(2.60)

when the two grid cells are of the same level. Gerris also offers limiters to calculate gradients at cell faces,
for a good balance between stability and convergence. We use the Van Leer generalized minmod limiter
with 6 = 2 [64].

For temporal discretization Gerris uses a second order projection method [65], in which a multilevel
Gauss-Seidel iterative method is used to solve the pressure Poisson equation (e.g. (2.53)). The velocity
advection term is discretized according to the second order unsplit upwind scheme of [66], and for the
diffusion term a Crank-Nicholson discretization is employed.

Using a colocated grid complicates the projection scheme compared to the principles described in
[subsection 2.4.1| and [subsection 2.4.2] In order to couple the pressures and velocities for this colocated
grid an approximate projection method is used for the cell-centered velocities [67]. The face-centered
velocities are projected to be exactly (discretely) divergence-free.

For the interface advection a Volume of Fluid approach, as described above, is taken. The VOF
advection makes use of the exactly divergence-free face-centered velocities. Gerris takes the one-fluid
model of multiphase flow and solves the dimensional equation

%tl +u-Vu= % [-Vp+ V- (u(Vu+ VuT))} + Source(u), (2.61)

with as the source term normally g.

A dimensionless form of the equations can be derived by substituting for the dimensional variables
their dimensionless equivalents multiplied by some characteristic value. Then the simulations can be
run in dimensionless form by giving for p the density divided by a reference density (possibly pr), for u
similarly a Reynolds number depending on the local viscosity, and for g a term —(1/Fr)z. This can be
done, but with large density and viscosity differences the difference in dimensionless numbers between
the two fluids remains large, and the choice of characteristic values is difficult, certainly when considering
different initializations and boundary conditions. The non-dimensionalization is further complicated if it
is to match with the non-dimensionalization of the low fidelity model discussed in This is then
also connected to the non-dimensionalization of closure term inputs and outputs, to be learned by the
neural network. To keep the framework general, consistent, and simple, we do not non-dimensionalize the
simulations.

We use all standard Gerris settings, except that we lower the tolerance of the projection and
approximate projection from 1-1073 to 1-107%. The grid spacing As = Ah is a user input, and the time
step is set so that the maximum value of
|u|At

As

anywhere in the simulation is 0.8. However, there is an additional constraint that in mixed VOF cells the
maximum value should be 0.5. We do not filter the color function (i.e. averaging over multiple cells), to
keep the interface relatively sharp.

Gerris has been validated against viscous linear instability theory by Fuster et al. [68] and Bagué et al.
[69]. It has been experimentally validated for a number of cases, including sloshing in a rectangular tank
[70] and liquid jet atomization |71]. Wroniszewski et al. |[72] compare Gerris favorably to a few different
multiphase DNS codes for the case of runup of a coastal wave.

CFL = (2.62)

2.6 Conclusion

The Navier-Stokes equations and their application to multiphase flow were laid out. We consider
incompressible flow without surface tension. We have derived the boundary conditions at solid boundaries
and at the interface between two fluids. We can in principle constantly adjust the boundaries of the
domains in which the two fluids reside and require mass and momentum conservation for these two
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domains separately, with the effect of the other fluid entering through the boundary conditions. But it is
more practical to consider the one-fluid formulation, in which the equations are solved for a single, unified
domain, with the material properties being functions of the spatial coordinates, according to which fluid
is currently present at those coordinates.

We have discussed different methods for the numerical solution of the equations for multiphase flow.
The domain is split into finite volume cells with exact mass and momentum conservation properties. In
the time integration mass conservation for the next time step is enforced via a fractional step projection
method, in which a first guess for the velocity is computed from the momentum balance, and subsequently
adjusted to be incompressible by an appropriate pressure field. This pressure field is calculated via an
implicit Poisson-like equation, which is more complicated than the single-phase equation due to the
inclusion of the density in the argument of the divergence operator. The calculation of this pressure field
is the most time-consuming step in the calculation.

The VOF advection method is defined by the geometric advection of a color function, which defines
the fraction of a grid cell filled by a reference fluid. In VOF mass conservation during the advection of
the interface comes naturally.

Gerris is an open source code which uses the one-fluid formulation on a colocated grid with the VOF
method for interface advection. The use of a colocated grid complicates the projection method but allows
for complex geometries and locally refined grids. Gerris may be less efficient in terms of computational
cost than codes which make use of SPH or LBM methods, but it contains the physics we need to model
our pipe flow and which correspond to those of our low-fidelity 1D two-fluid model, discussed in

Gerris may be viewed in some sense as a 2D extension of our 1D two-fluid model. This is what we
want for our high fidelity model. For with this 2D extension, we can calculate stresses explicitly using the
2D resolved velocity field. These explicitly calculated stresses can be linked to averaged velocities and
flow parameters, to form closure terms for our 1D low fidelity model.



Chapter 3

1D Two-Fluid Model

3.1 Introduction

In this chapter, we discuss our low fidelity model. This is our 1D model, which can be evaluated at
low computational cost, at the expense of requiring closure and neglecting some of the physics. In this
chapter the assumptions made to arrive at this 1D model will be laid out and it will be shown where the
need for closure terms arises. We will discuss the meaning of the closure terms, and conventional versions
and their limitations. Afterwards we will discuss the connection between the model equations for a 3D
geometry and a 2D geometry, the latter of which we focus on in this project.

The two-fluid model that will be described here is a quasi-1D model. It was introduced by Wallis
[73], and worked on further by e.g. Ishii [74]. It is used by many companies as a basis for the simulation
of multiphase pipe flow [75]. An insightful derivation of the two-fluid model is offered by [76], which is
repeated below. For a more extensive discussion of the two-fluid model see e.g. [77].
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Figure 3.1: A schematic of the geometry of the 1D two-fluid model for pipe flow.

shows the geometry of the problem of interest. We have a long pipe with horizontal
coordinate s, that may be tilted at an angle ¢. As a function of s we may define the cross-sectional areas
Ar, and Ag of two different fluids, with the subscripts L and G suggesting ’liquid’ and ’gas’. The liquid
and the gas interact with each other along the interfacial perimeter P,,; and with the wall along the wall
perimeters Pr, and Pg respectively.

3.2 Single-phase flow

We start the derivation considering only single-phase flow. The starting points for the derivation of
Sanderse [76] are the integral mass and momentum balances. The balances are applied to a
three-dimensional pipe segment of arbitrary geometry. Fluid can only flow in or out of the pipe segment
at the streamwise boundaries. The other boundaries are impenetrable and will in principle be no-slip
boundaries.

We define )
=3 [ o, v [ av (3.1)
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or, in words, the volume average of a scalar quantity f in a volume V is equal to the inverse of the volume
multiplied by the integral of the quantity over the volume V. The original quantity is a function of time
and position, but the volume average, for a given volume, is only a function of time. The area average
(often a cross-sectional average) is defined similarly:

() (s,t):%/Af(x,t)dA, A:/AdA. (3.2)

The cross-sectional average is still a continuous function of the streamwise coordinate s. Using these
definitions the integral balances can be rewritten in terms of the volume and area averages of the various
unknowns (p, u).

For the mass balance of a small volume V = A(s)ds, pictured in we obtain

d
= {PH(B)A185) + (pu) (s + 85, ) A2 — {pu) (5,1) Ay = 0, (3.3)
where u is the streamwise velocity, arising from the u-n term in the integral mass balance, and A; = A(s)

and As = A(s + ds). This equation is divided by ds and the limit s — 0 is taken. In this limit the
volume average becomes an area average which is a function of s. The approximation

(fg) = (F)9) (3.4)
is used to simplify the expression. The equation for mass conservation then becomes
0 0
— (pA) + — (pud) = .
o (pA) + £ (pud) =0, (35)

in which all variables now represent cross-sectional averages (u = (u)) and are functions of s and ¢ only.
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Figure 3.2: A small (6s < H) control volume for single-phase pipe flow. At the top and bottom the control
volume is bounded by impenetrable no-slip boundaries. The reference frame is rotated compared to [Figure 3.1} so
that the gravitational vector is viewed as standing at an angle ¢ relative to the domain.

The derivation of the momentum balance from is exactly analogous. The only notable difference
is that the no-slip walls enter the equation. They enter through the stresses that are nonzero there,
and the wall pressure that acts upon the control volume and may have an influence on the streamwise
momentum balance if the normal n of the wall has a streamwise component. The intermediate equation
for a small control volume with V' =~ A(s)ds is [76]

% {pu}V) + (pu®)2As — (pu)1 A1 = — ((p)24A2 — (p)141) — (pes - m)3As
— gsin(@){p}V + (Tss)2 42 — (Tss)141 + (Teot)3A3, (3.6)
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in which A; is the inflow boundary at s, Ay is the outflow boundary at s + ds, and Az is the no-slip
boundary. The angle ¢ is the inclination of the pipe segment in the streamwise direction. The term 7t
is the total streamwise stress acting at the pipe wall

Teot = (T - 1) - €, (3.7)

with e, the unit vector in the streamwise direction.
The average streamwise stress at the no-slip boundary is (7i04)3 and it can be written as

(Ttot)3As = /ﬂotP ds = Tyt PJs, (3.8)

with Tyot the average stress along the perimeter (a function of s) and P the perimeter length. The viscous

normal stress at inflow and outflow (755)1 41 and (7s5)2 Ao are neglected (see [section 3.4)).
Like for the mass balance, (3.6]) reduces to

9 2 Ip

uwA) + — A) = ——A — pgAsin¢ + 1ot P, 3.9
S (pu) + o (P A) = =LA~ pgAsing + i (3.9)
in which again all variables are area averages, except for the stress which is a perimeter average. Note
that the pressure term differs from the convection term in the sense that it is not in conservative form.
This is because of the wall pressure term at As in (3.6]), which is nonzero for the case of pipes with
changing cross-sectional area.

3.3 Stratified two-phase flow

In this thesis we will consider stratified multiphase flows, to which the equation describing mass con-
servation can be applied to each phase individually. The control volume considered before can
be split into two at the interface between the two fluids, as illustrated in Since no mass
can traverse the interface (see [subsection 2.3.1)), for the purpose of mass conservation this boundary
behaves exactly like the pipe wall, with boundary condition . The mass balance thus applies to
both fluids separately, with the understanding that the cross-sectional area in the equation represents the
cross-sectional area of the concerned fluid. The density and velocity also differ per fluid. We note the two
mass balances for the different fluids:

0 0

¢ (PrAL) + oo (prurAr) =0, (3.10)
0 0
5 (Pedc) + 5o (paucAc) =0, (3.11)

where we choose to refer to one fluid with the subscript L (liquid) and the other with subscript G (gas).

For the momentum balance the extension is slightly less straightforward. Momentum also cannot
traverse the interface, since momentum is carried by a mass flow. Pressure and friction forces do act upon
the split up control volumes at this interface, according to boundary conditions and (2.31). The
As in the intermediate equation now includes the interface, and excludes the pipe wall in contact
with the other fluid.

As in the single phase case, the wall pressure term combines with the inflow and outflow pressures into
a (Op/0s)A term. However, this pressure is now the average pressure in the fluid under consideration.
The wall friction term in is split into contributions from the pipe wall and from the interface. The
result for the two fluids can be written

0 0

% (prurAr) + 35 (pLuQLAL) = ;)L A+ 7 Pr — Ting Pint — prALgsin ¢, (3.12)
0 Opa .

8t (pG’U,GAG) + 87 (pGUGAG) = _aLAG + 17¢Pa + Tint Pint — PGAGgsm (b’ (313)

in which again all variables are area averages (e.g. (9pr/0s) Ar — ((Opr/0s) AL) = (Opr/Is)AL =
/ 4, (Opr/0s) dA). At the interface between the two fluids we may expect to see the effects of surface
tension. However for large Weber numbers (which arise in large scale flows) and low surface curvature,
its effects may be neglected.
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Figure 3.3: Two small (6s < H) control volumes for two-phase pipe flow. At the top and bottom the control
volume is bounded by impenetrable no-slip boundaries. At the interface the two control volumes meet. Mass and
momentum are conserved for the two control volumes separately.

We can reduce the number of unknowns in (3.12)) and (3.13]) using the vertical momentum balance.

We assume a hydrostatic balance, i.e.

Jp

a5, = —Pacos(9), (3.14)
with h the vertical coordinate. This is possible if the vertical velocity is negligible. Then the pressure
of the two fluids as a function of height (these are not averaged cross-sectionally like the p;, and pg in

(3-12) and (3.13)) can be defined relative to the interface pressure piy at height iy
pr(h) = Pine — prg cos (¢) (h — hint) , (3.15)
pG(h) = pine — pcgcos (¢) (h — hint) - (3.16)
Normally the liquid will be below the gas so that the pressure in the liquid will be higher.
Now we want to have (3.12)) and (3.13) be functions of only the interface pressure and not the average

pressure in both fluids. To achieve this the integral (Opr/0s) AL is split into a term (Opint/Is) Ar and a
remainder, using (3.15)) (and the same for the gas). The result is

0 0 Opin .

g (pLurAr) + 75 (pruiAr) = — gStAL + LG + TP — Tint Ping — pLALg sin ¢, (3.17)
0 0 Opin .
5% (pcucAc) + 75 (peugAc) = —%AG + LG¢ + 76 Po + Tint Pt — paAcgsin g, (3.18)

in which the two remainder terms LG, and LGg have appeared. These are the so-called level gradient
terms, and they represent the effect of streamwise pressure variation due to deformation of the interface.
They are given by

16 =2 [ prgcos(@)(h — him)dA, (3.19)
85 AL

LGq = 3 pcg cos(@)(h — hing) dA, (3.20)
Js Ac

and in a rectangular duct geometry with width W, height H, and area A = W H (see|Figure 3.4)), they
evaluate to

0 |1 A 0
LG =—4- {PLQCOS¢Hh12m] =32 [

1 H

2

01 A 2] 0 [1 H 5
LGg = s [nggcosqSH (H — hint) } =5 |:29COS ¢ApgAG:| . (3.22)
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For incompressible flow in a cylindrical geometry the level gradients are often expressed as |75)

ahint
LGy = —prgAp—— 2
GL PLIAL =5 (3.23)
ahint

o (3.24)

LG = —pagAc
The above expressions need to be closed by a relation hiny = hint(Ar). If we fill in hyy = (H/A)AL =
(H/A)(A — Ag) for rectangular duct flow, we recover (3.21) and (3.22). For the cylindrical geometry the

connection hing = hint(Ar) can be made via the so-called wetted angle according to Biberg’s relation 78],
but we will consider the rectangular duct geometry from now on for simplicity.
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Figure 3.4: A schematic of the geometry of the 1D two-fluid model for rectangular duct flow, with total
cross-sectional area A = WH.

3.4 Stress terms

3.4.1 Introduction

In this section we first expand our understanding of the stress terms appearing in the momentum balances
and . We focus on the rectangular duct geometry of for simplicity. Afterwards we
discuss conventional relations for these stresses, called closure terms. We discuss differences between the
closure terms for single-phase and two-phase flow, and for various duct geometries and flow conditions.
Finally we examine an analytical solution for laminar, fully developed, steady state two-phase flow and
the closure terms which can be derived from it.

3.4.2 Interpretation of the stress terms

The total stress at the no-slip boundaries of the two-phase control volumes are (Tio1)r,3Arz,3 for the liquid
and (Tiot)¢,3Aa,3 for the gas and they can be written as

(Ttot)L,3AL3 = /TLPL ds + / —Tint Pint s = 71, PL0S — Ting Pint0s, (3.25)
(Tot) 3463 = /TGPG ds + /Tintpint ds = 7¢Pgds + Tint Pnt6s (3.26)

(compare to (3.8))). The stresses acting at the solid boundaries are given by

1
T — Pf Ttot dpP (327)
L J Py
1
TG = 7/ Ttot AP, (3.28)
PG Pg
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if the duct cross-section A is constant, and the interfacial stresses are given by

1 Ttot
int = —— ———dP, 3.29
Thnt Ping /,m len -ng| ( )
1 / Ttot
TGint = dp, 3.30
* " Pt len - ng| (3:30)

mt

with Tyo¢ calculated from the respective control volumes. The cross-sectionally averaged stresses which
appear in the momentum balances and ( - are

(Teot) 1,3 = TLPL + TL int Pint (3.31)
(Ttot)G,3 = T Pa + 76 int Pint- (3.32)

All these expressions depend on the local (unaveraged) streamwise stress 7ot
Tiot = (T - 1) - €. (3.33)

In the above expression, 7 - n is the stress acting at the boundary Az with normal n, and the inner
product with e, is taken because we need its influence on the streamwise momentum balance. The other
momentum balances are not considered. Regardless, the vertical momentum balance is trivial with w = 0,
since we assume hydrostatic balance.

The form of the stress tensor for incompressible flow is , with the deformation tensor .
Using these definitions one can see that in a Cartesian coordinate system, with the = coordinate replaced
by the streamwise coordinate s and the z coordinate replaced by the vertical coordinate h

Teot = Tss(€s - ) + Tys(ey - 1) + Ths(ep - ). (3.34)

The expression for the streamwise stress acting at As is thus determined by the (local) orientation n of
As.
For a rectangular duct geometry one of the three stresses will act at each bounding plandﬂ

0
s = 2,ua—z, with es - n =1 at the positive (h,y) plane, (3.35a)
v  Ou : .
Tys = 1\ 35 + o) with e, - n =1 at the positive (s, h) plane, (3.35b)
Ths = <88w + gz> , with e, -n =1 at the positive (s,y) plane, (3.35¢)
s

and at the opposing bounding planes the inner products are negative. Generally, the no-slip walls need
not align with any bounding plane, but for a rectangular duct geometry they will align with the (s, h)
and (s,y) planes, with 7,5 and 73, the corresponding shear stresses.
At the inflow and outflow of a control volume (in either a cylindrical or rectangular duct geometry)
we have only 7ot = F7ss, which is a normal stress (not a shear stress). As stated in this stress
is neglected. If it were not neglected, it would gives rise to a term

OTss A OTss 0A 0%u Ou 0A
95— aSAJrT.;Sa =2u 82A +2u 1o B (3.36)
in the final equation for single phase flow , and likewise for and . This term must
thus compete with the pressure gradient and the shear stresses. In the single-phase cross-sectionally
averaged model this term must be identically zero to satisfy the assumption of incompressibility, which
with v = w = 0 reduces to du/ds = 0. In two-phase flow du/Jds may be nonzero but will be small if
the characteristic horizontal length scale is much larger than the characteristic vertical length scale, i.e.
L>H.
As derived in at the solid walls the stress is purely in the tangential direction and of
the form

7=t -uVu- n (3.37)

1Here the notation ‘(z1,x2) plane’ means the plane at which z1 and x2 are variable and z3 is fixed. The normal of the
plane thus lies along 3.
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At the (s, h) and (s,y) planes this reduces to

Teot = ug—z at the positive (s, h) plane, 7ot = —,ug—z at the negative (s, h) plane (3.38)
Tiot = u% at the positive (s,y) plane, Tt = —,u% at the negative (s,y) plane (3.39)

i.e. Tyot represents the wall friction due to the streamwise velocity and its gradient normal to the no-slip
walls. The found 7ot can be filled into and and the integrals can be calculated.

In two-phase flow the interface behaves like a no-slip wall for the fluids considered separately, except
for the fact that this wall can move. The general form of the streamwise stress is given by , .
Since in the two-fluid model hjyg is only a function of s (not of y), the interface normal vector cannot
have a component in the e, direction so that (e, - n) = 0 and only the first and third terms in
remain. We have already said to neglect 7,5 and thus only 7,,(es - n), given by (3.35¢) remains. With
the assumption w = 0 (due to hydrostatic balance) or L > H (see [subsection 2.3.1|) this reduces to

0
Thot = ua%(eh ‘n). (3.40)

In [subsection 2.3.1| we had already found that under the condition of hydrostatic balance (2.41)) holds,
with ny, as in [Figure 3.3]and t as in

Tint =t -Tiw =t -7Tp -np =t-7¢-ng, (3.41)

i.e. the interfacial stress acts tangential to the interface and the stress acting on the gas and the stress

acting on the liquid are opposite but equal in magnitude. Thus, filling in (3.40) in (3.29) and (3.30)), the
factor (e, - n) cancels against |(ep - n)| except for a minus sign for the gas, and we find

1 dug 1 ouy,
int = — int = 55 - —dP = — —dP. 3.42
TG int TL,int Py Lnt e oh P /F)iut ML oh ( )
To agree with convention, we define
Tint = TG,int (343)
so that we can rewrite (3.31) and (3.32) as
(Ttot) 2,3 = TLPL — Tint Pint, (3.44)
(Ttot) @3 = T Pa + Tint Pint, (3.45)

which is what has been used in writing the intermediate versions and of the momentum
balances.

Even in the greatly simplified expressions (3.38]), (3.39)), and (3.40), we have a problem. They require
knowledge of the dependence of v on h and y. But in the two-fluid model the momentum balances ,
are derived for control volumes containing the whole domain from the interface to the pipe wall; only
in the s direction the limit to ds = 0 is taken. The equations form a model for the average liquid and gas
velocities (ur) and (ug); which are functions only of s and ¢t. Therefore we cannot compute the stresses
directly. We need to make approximations for them in terms of known variables, also called ‘closure
terms’, much like the closure terms needed to close the Reynolds-averaged Navier-Stokes equations.

Note that the stresses , , and may be functions of h and y in a 3D simulation.
However, in the 1D two-fluid model, we only require the perimeter averaged stresses 7r,, 7, and Tint-

3.4.3 Single-phase closure terms
Definitions

Friction closure terms are conventionally based on the fully developed steady state force balance
Pr = AB, (3.46)

with B the body force

3)
B= a—i + pgsin(o). (3.47)



28 1D Two-Fluid Model

The force balance can equivalently be written as

apmod
Pr=A 3.48
T R (3.48)
with pmoq the modified pressure including the gravitational potential:
Pmod = P + pgsin(e)s. (3.49)

The force balance yields an expression for the stress at steady state as a function of the body force.
But it gives no information on the averaged fluid velocity. We therefore need to conduct experiments, or
analyze the 2D or 3D equations, to obtain expressions relating the body force and the fluid velocity, and
by extension expressions relating the stress and the averaged fluid velocity.

A relation of the form 7(B) will not generalize to unsteady flow, since B will not change throughout
the evolution of a flow to steady state. A stress that does mot increase with increasing velocities also
means that an unsteady simulation starting from a zero velocity field will never reach a steady state; the
velocities can keep growing without a balancing stress.

A relation of the form 7(u) however, has potential for generalizing to unsteady flow, if the form of the
velocity profile is similar between the unsteady flow under consideration and the fully developed steady
state solution. This is because the stresses are directly determined by the slope of the velocity profile at
the boundaries, via expressions like (3.38)), (3.39), and (3.40). The averaged velocity u will correlate with
the slopes of the velocity profile, though we cannot hope for a unique relation, because different velocity
profiles are possible which yield the same averaged velocity.

The general (conventional) form for the wall friction in the case of positive velocity is

1
T = —§J‘puz7 (3.50)

with u the average velocity. This form can be applied to different flows as long as we adjust the Fanning
friction factor to the flow at hand. In this light the Fanning friction factor of a steady fully developed
flow through a conduit is defined [79)

1 1
f=—1—= —thamed (3.51)

1 pu? 4 ds  Lpu?’

Note that for u > 0, Opmoa/9s < 0. The hydraulic diameter Dy, is defined as

4A
Sometimes the Darcy (a.k.a. Darcy-Weisbach, or Moody) friction factor is used, which is just four times
the Fanning friction factor. The Darcy friction factor (4f) appears in the Darcy-Weisbach equation for
head loss Ah = Apmoa/pg which can be obtained from (3.51]) by substituting 9pmed/9s = ApPmod/As:

As u?
Ah=4f——. 3.53

Iy (3.53)

The friction factor can be derived analytically when assuming incompressible, fully developed, station-

ary, laminar flow in a pipe geometry (Poiseuille flow). Then we can use the 3D steady state balance to

find a direct relation between the pressure gradient and the averaged velocity, and then via (3.51)) an

equation for the friction factor. In this case the Fanning friction factor f can be shown analytically to be
[80L p. 181]

16
= — 3.54
f Re’ ( )
(i.e. C =16 and n = 1, as noted above) with the Reynolds number defined
D
Re = puu LY (3.55)

For a circular pipe the hydraulic diameter given by (3.52)) is just the pipe diameter, and for a
rectangular channel with width W it is given by Dy = 12{ In the limiting case W > H we get
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Dy, = 2H. For laminar rectangular cross-section pipe flow an analytical friction factor as a function of
the aspect ratio W/H has been derived by Cornish (1928) [81]. For a square cross-section (W = H) the
friction factor is
16
po VT 16 (3.56)
2 Re
and for a pipe with an infinite width to depth ratio (W/H — oo) the friction factor becomes

3 16

f=5 %o (3.57)

These relations have been experimentally validated by [82], with some discrepancy. There are two
differences in these equations with respect to (3.54)); they contain a constant pre-factor close to 1 and the
Reynolds number is based on a different hydraulic diameter (via (3.52)) and (3.55))).

Pipe flow empirical friction factors

For turbulent flow the friction factor can not be derived analytically but must be determined experimentally
using ([3.51). Already in 1913, Blasius [83] determined f experimentally for turbulent pipe flow (Re > 3000)
to be

~0.0791
- Rel/4 )
This relation is still considered to be a very accurate approximation to the experimental data for
Re < 10°[84]. The Blasius equation holds for a smooth pipe. For laminar flow the pipe roughness has no
influence on the friction factor, but for turbulent flow it does [85]. A widely used equation which takes
into account the roughness of the pipe was introduced by Colebrook and White [86]:

1 € 1.254
- 17371 3.59
JT " <3.707Dh * Reﬁ) ’ (3:59)

in which e represents the effective surface roughness height. The Colebrook-White equation is not practical
to use directly since it is an implicit equation, but good explicit approximations exist (see e.g. [39]).

In the limit of fully developed turbulent flow, with Re — oo, the second term in the logarithm in
becomes negligible and the equation reduces to the correlation found by Nikuradse [87]:

f (3.58)

1
v
In the smooth pipe limit, ¢/Dy — 0 and the first term in the logarithm in (3.59) becomes negligible:

=1.7371n(3.707Dy /€) . (3.60)

L
VF

This is the friction factor correlation found by Prandtl and Von Kédrmén [88]. It is discussed in [89).

In [90] (after the work done in [91], [92]) Churchill combined experimental correlations for the friction
factor in different flow regimes to obtain an equation for the friction factor which is valid in all flow
regimes. He combined , and another correlation by Colebrook [86] for smooth pipes, though
he notes that in place of this last correlation may also be used. He furthermore added an empirical
relation for the friction factor in the transitional regime based on data by Wilson and Azad [93]. The
combined result is

—1.737In (0.7962 Re\/}) . (3.61)

g\ 12 ) 1/12
=2 (R) EE (3.62)
with
1 0 37,530\ '
A= {24570 — and B= (2227 (3.63)
7199 | 0.27¢ Re
%) + Dy

which can readily be seen to reduce to (3.54) for Re — 0.
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Channel and rectangular duct flow friction factors

The Churchill correlation does not hold for channel flow in the laminar regime; for this case the friction
factor is missing the factor (3/2) from . However, in early literature it is postulated that in
the turbulent regime the friction factors for pipe flow and rectangular cross-section duct flow follow
approximately the same relation, given that the hydraulic diameter given by is used [82], [94]-[96].
In this context the hydraulic diameter is known as the equivalent diameter. Vennard (1940) [95] explains
that for turbulent flow in a rough pipe the equivalence holds because for this type of flow the resistance
is mainly determined by the extent of the wetted perimeter, of which the effect is incorporated in the
friction factor relation through the hydraulic diameter. The resistance is mainly determined by the extent
of the wetted perimeter since the friction phenomena are confined to a thin boundary layer at the pipe
surface. For laminar flow the equivalence does not hold since in this case friction phenomena result from
the fluid viscosity and are distributed throughout the whole pipe cross-section.

In later work though, for rectangular duct flow with high aspect ratios W/H the friction factor is
observed to tend upwards of the circular pipe flow correlations at constant Reynolds number, with the
conventional hydraulic diameter given by 197]. Jones (1976) |97], following a similar idea by Rehme
(1973) 98], introduced a modified Reynolds number for use in the friction factor relations as

D
Re* = 247L (3.64)
I
with a laminar-equivalent diameter
Diam = ¢* Dy, (3.65)

with ¢* a geometry factor which is a function of W/H, defined such that for laminar flow all geometries
satisfy the friction factor relation

16

f - Re* .

By comparison with (3.54)), (3.56]), and (3.57), we conclude that for circular pipe flow ¢* = 1, for square
cross sections ¢* = 2/4/7 and for infinite width channel flow ¢* = 2/3. These geometry factors are

defined for arbitrary rectangular duct flow aspect ratios using the general laminar analytical friction
factor solution of Cornish (1928) [81].

Substituting his modified Reynolds number in the smooth pipe form of the Colebrook-White equation
, Jones finds better agreement with a range of experimental studies of turbulent flow in rectangular
ducts. Mishima et al. [99] also found experimental agreement to Jones’ model. We may expect that in
any case for smooth pipes the Churchill correlation with Jones’ modified Reynolds number will
produce sufficiently accurate friction factors, since in the laminar limit Re* — 0 the correlation is exact
and in the turbulent regime it is based on an equation similar to the Colebrook-White equation. In
the turbulent fully rough regime the friction factor is independent of Reynolds number and of the duct
geometry, except for the direct dependence on wetted perimeter through the hydraulic diameter [100].

Sadotomi et al. [101] employ a similar approach to Jones but takes the geometry factor out of the
Reynolds number (and thus out of the power). In this approach their geometry factor for turbulent flow
is not equal to that of laminar flow (as in Jones’ method) but is an implicit function of it. He and Gotts
(2004) |102] provide a literature review of different friction factor adaption methods and introduce a
new method in which the laminar flow solution is not needed. Duan et al. |[100] regard fully developed
turbulent flow in non-circular geometries and propose a definition of the Reynolds number with the length
scale being the square root of the duct cross-sectional area.

(3.66)

3.4.4 Two-phase closure terms
Conventional closure terms

For multiphase flow the situation is far more complicated. Instead of one steady state force balance, we
now have two separate force balances, coupled by the interfacial stress:

Pr7 — PintTinge = ALBL, (3.67)
PGTG + RntTint - AGBG7 (368)
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with the body forces

0 .

By = 32+ pugsin(e), (3.69)
0 .

Be = 8{ + pagsin(g). (3.70)

This means that we do not have a fully determined system, so that the three stresses (as functions of the
fluid velocities) cannot be determined directly from experimental dataﬂ Now, if we experimentally or
analytically determine expressions for the body forces as functions of the (now two) averaged velocities,
these do not directly yield expressions for the stresses as functions of the velocities. In order to determine
the stresses, assumptions must be made about the form of the stresses, or a relation between the stresses
must be assumed. The forms of the stresses are therefore based on the single-phase forms, and the
interfacial friction factor is often based on the gas friction factor.

The conventional closure terms for the perimeter averaged stresses in 1D stratified gas-liquid flow are
given by Taitel and Dukler (1976) [103]. A slight modification to make them directional yields (compare
to (3.50)))

1 1 1
TL = *ifLPLUL|uL|, TG = *gfapcuG\UGL Tine = — 5 finePG (ug —ur) lug —ugl. (3.71)

The Taitel and Dukler Fanning friction factors are given by

c
- = 3.72
fL RerLz ) fG Reg ; ( )
with Reynolds numbers
D D
Re; = M7 Reg = w’ (3.73)
29 22e]
hydraulic diameters
4A; 4Ag
Dy =-—2L pg=-—2G 3.74
Lo “" Pa+tPrg (8.74)
and coeflicients
C = 0.046 for turbulent flow, or C = 16 for laminar flow, (3.75)
and
n = 0.2 for turbulent flow, or n =1 for laminar flow. (3.76)

The coefficients C' and n for turbulent flow given here come from the McAdams correlation, found in
e.g. |104] (noted here to hold for smooth pipe flow with Reynolds numbers between 5000 and 200,000).
Choosing the hydraulic diameters in this way means that the gas-liquid interface is taken to act as a
(nearly) free surface for the liquid and as a no-slip surface for the gas [105]. In a 2D channel flow the
hydraulic diameters evaluate to

Dy = 4hie, Dg = 2(H — hing). (3.77)

It was established by Gazley (1949) [106] that for smooth, stratified, cocurrent flow, the interfacial
friction factor is equal to the gas friction factor. Therefore Taitel and Dukler originally took the interfacial
friction factor to simply be equal to the gas friction factor:

fint = fa. (3.78)

If the interface is wavy the interfacial friction is increased relative to an identical case but with a
smooth interface [107]. Johnston (1984) [108] even observes that the interfacial stresses can act opposite
to the predicted direction (—sgn (ug — ur)), when the interface height moves towards the top of the
pipe and the gas velocity increases. For small and regular amplitude wavy flow, [109] tested the use of
a friction factor of f; = 0.014, based on the data of [110]. Cheremisinoff and Davis (1979) |109] find
that another relation is required for large-amplitude roll waves, which is linearly dependent on the liquid

2The variability of Pr, Pg, Pint, AL, Ac, and the possibility of different flow regimes including wavy flow, annular flow
and dispersed flow further complicate experiments.
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Reynolds number. Andritsos and Hanratty (1987) [107] find results that counter this, but suggest that
the the ratio f;/f, increases with the ratio of the wave amplitude to the wavelength and with the gas
velocity. They conclude that f; = f, if the velocity difference is lower than the critical gas velocity for
Kelvin-Helmbholtz instability, and that a relation for f; can be derived to be f, plus a term increasing
with the ratio of the liquid holdup to the pipe diameter and with the ratio of the gas velocity to the
critical gas velocity. Based on these considerations [111] propose an interfacial friction factor of

fint = max (fg,0.014) . (3.79)

Together the presented closures form a relatively simple set used by e.g. [112], [113].

Other empirical closure terms

The set of relations and coefficients given above is but one of many possible choices. Agrawal et al. [105]
present a few different models and propose their own, in which the liquid wall friction is based on the
average velocity that a pipe filled entirely with the liquid would have if the average velocity in the part
actually occupied by the liquid is uy,. For turbulent flow the friction factor is then calculated using the
Blasius correlation . Their interfacial friction factor carries coefficients C' = 1.3, n = 0.57 and uses
the gas velocity in the definition of the Reynolds number and in the shear stress expression .

Kowalski [114] performs experiments for liquid-wall, gas-wall, and interfacial friction in smooth and
wavy stratified pipe flow and compares the results to a number of different models. Agreement with
Agrawal et al. [105] or Taitel and Dukler [103] is only obtained for the gas-wall friction; for the other
two stresses Kowalski proposes new relations. Brauner and Maron (1993) [115] propose an expression for
the interfacial stress (like ) which is directly dependent on the local streamwise interfacial height
gradient. An important more recent contribution to the collection of two-phase pipe friction closure
models, based on theoretical considerations, was made by Biberg [116].

Using most closure models one must switch between closure terms for laminar flow and turbulent flow
in some way when using them in a computer code. A simple way which avoids a sudden jump in the
friction factor is to just choose which one of the two is higher for the current Reynolds number [117].
A more intricate method, employed by [113], is to use Churchill’s correlation instead of @
The approach is to calculate Churchill’s friction factor for the liquid and gas separately, using @ and
(3-74). The interface friction factor can then still be defined as . In using the Churchill correlation
one is in fact using the Colebrook-White equation on which it is partly based.

Reviews of interfacial friction factors are given by [117]-[119] and [117] also provides a review of gas
and liquid wall friction factors.

Analytical closure terms

For the special case of laminar two-phase pipe flow analytical solutions exist, which can be used to
derive friction factor expressions. An early analysis is given by [120]. A more recent analysis considering
two-phase horizontal pipe flow with interfaces curved in the spanwise direction is given by [121]. Biberg
and Halvorsen [122] considered flat interfaces in inclined pipe flow and calculated the mean interfacial
and wall stresses as a function of the (constant) body forces in an insightful manner. They did this
for a circular pipe geometry, and also for the considerably simpler case of a channel geometry. For the
latter case, as a function of the vertical coordinate z defined relative to the position of the interface
(2 = h — hint), the velocity profiles are

BLh2 ¢ z 2 Tint Pint <
— _2L%nt |9 _ Jmtthmt g )
ue(2) 2pr [ (hint> I * Pint |’ (3.80)
Bg(H — hint)2 z 2 Tint (H — hint) <
S S P [ I (. S 1-— .81
u(2) 2o =) |t o ek (3.81)

with stresses
peBrhi — prBa(H — hint)?
2 [pching + pr(H — hing)]

7L = Brhing + Tint,  T¢ = Bahint — Tint, (3.83)

(3.82)

Tint =
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and body forces given by and .

Ullmann et al. [9], [123] note that for closure of the two-fluid model, expressions for the mean stresses
as functions of the averaged fluid velocities and holdup are needed, as has been discussed above. For
the circular pipe geometry case, obtaining these requires numerical integration of complex expressions.
However, for channel geometries, with the velocity profiles and , exact expressions can be
obtained. These are given by Ullmann et al. |9] as

TL = —iprLuLluLl “Fr, 16= —§fGPGUG|UG| “FG,  Tine = _ifGPG (ug —ur) [ug|Fiy g (3.84)

Note the (small) difference between (3.84) and (3.71)) in the definition of the interfacial stress, where the
term |ug — uy| is replaced by |ug|. The friction factors are given by

3 16 3 16
_ 2. — 2. = 3.85
fL 2 ReL 5 fG 2 ReG B ( )
with Reynolds numbers
D D
Rey = PLluLlDe o poluciDe. (3.86)
27 e
hydraulic diameters
Dy, = 2hint, Dg =2(H — hint)- (3.87)

These are evidently just the analytical expression found for single-phase flow in a channel geometry,
regarding the gas-liquid interface as a wetted perimeter in the calculation of the hydraulic diameter.
However (3.84) also includes the two-phase correction factors for the wall friction

14 luc [lLLuiLH*hmt_l] 14+ Lur |poue _hine
_ =

2ur | pG uG  hing 2ug | pr ur H—hint
Fy = (3.88)
2 H_hin ’ G 12 hin ’
L e L b
and for the interfacial friction
. 1
int,G = 1 Pin . (389)
T
The interfacial friction can equally be written as
1
Tint = _iprL (ug —ur) |up|Fine,r, (3.90)
with
N S (3.91)
int,L — L H—hine .
1 + rG hint .

Ullmann et al. remark that in the limit of ug > uy, and %H%ht‘“ > 1, F5 — 1 and F} — 1/2, thus
reducing the effect of the correction factors simply to a doubling of the liquid hydraulic diameter (to
4hint). This is insightful, since the same liquid hydraulic diameter results if it is defined as in ,
i.e. if the gas-liquid interface is regarded as a free surface for the liquid. The correction factors also
enable reversal of the shear stresses (the correction factors can be negative) in the case of back-flow or
counter-current flow.

Ullmann et al. propose closure terms for circular pipe flow, which are not exact but which are based
on the principles of the exact closure terms found for channel flow. They compare the predictions of a 1D
two-fluid model incorporating these new closure terms to the exact 3D analytical solution and obtain
good results. Ullmann and Brauner generalize these closure relations to turbulent flow in [124]. It is
important to note that these closure terms are derived for the case of smooth, flat interfaces. Yu and
Sparrow [125] conducted experiments that showed that laminar flow theory is still valid in the presence
of very small interfacial waves, but in the presence of large amplitude waves the closure relations will
probably break down, in view of the results given by the literature discussed above (e.g. [107]).
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3.4.5 Conclusion

The stresses 71, g, and Tiye appearing in the 1D two-fluid model are perimeter-averaged stresses, which
represent the effect of gradients in the streamwise velocity normal to pipe walls and the interface. These
gradients are not resolved in the 1D two-fluid model, and therefore closure terms are needed from external
sources.

The friction closure of flow through a conduit is a difficult problem, for which a great deal of literature
exists. Closure relations aim to relate the averaged flow variables (such as averaged velocity) and the
friction force, via the velocity profile. Considering only steady state flow, a direct relation between
the averaged velocity and the velocity profile can be established, but when including unsteady flow the
relation becomes non-unique.

The single-phase closure relations depend on the pipe geometry, the level of turbulence and the wall
roughness. For single-phase flow through a circular pipe the choice is easy enough, but for more complex
geometries there is no definite answer on how to model the friction factor.

For two-phase flow the problem is even more difficult. The steady state force balances, of which we
now have two, do not directly determine expressions for the stresses even if expressions for the two body
forces as functions of holdup and the two velocities are established. Particularly the modeling of the
interfacial stress in two-fluid models is a controversial and difficult problem [115]. It is usually based on
the gas wall friction factor, but this approach loses accuracy for increasingly wavy flow. The liquid and
especially the gas friction factor modelling are often based upon correlations for single-phase flow (e.g.
the Blasius correlation )7 although more complicated relations also exist.

Fortunately, for fully developed, smooth, flat interface, laminar flow in a channel geometry, analytical
closure terms can be formulated [9]. The same is possible for a pipe flow geometry but expensive to
calculate integrals remain in the expressions [9]. In this work, we will turn our attention to laminar flow
in a channel geometry and use the exact Ullmann closure terms [9] as a reference.

3.5 Equations for a 2D domain

The governing equations (3.10)), (3.11), (3.17)), (3.18) describe 1D flow in a 3D geometry, with walls on
all sides. If we consider the rectangular duct geometry of with width W and height H, we can
substitute in these equations the level gradients given by (3.21]) and ([3.22)):

0 0
% (PLAL) + % (pLuLAL) =0, (3.92&)
0 0
En (pcAc) + 75 (pcucAc) =0, (3.92b)
0 0 OPin 0 |1 H .
e (prurLAr) + s (pLuiAL) = — gStAL ~ % |:2;0Lg cos (bAAQL} + 7. Pp — TingPine — prArgsin g,
(3.92¢)
0 0 OPin 0 [1 H .
& (pGugAg) + % (pGuQGAG) — gStAG + % |:2g cos ¢APGA2G] + 17¢Pg + Ting Pt — pgAgg sin ¢,
(3.92d)

We then make the substitutions

AL — Whim, AG — W(H — hint)> A—WH
P, — W +2hing, Po— W +2(H = hin), Pt =W,

in which we use the fact that hy is only a function of s and not of the depth coordinate y. If the width
of the channel W is assumed constant, it can be divided out of the equations and the system can be
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written as
o 0
a (pLhint) + % (pLuLhint) = Oa
o 0
e (pc(H — hint)) + s (pcuc(H — hint)) =0,
0 8 apimt 8 1
En (pruphing) + s (prulhing) = — s hint — s [QPLQ COS¢hi2m]
2 in .
+ TLW+T]H — Tint — pLhinthIH ¢7
0 15} OPin g |1
57 (Patc(H — i) + = (peug(H = hin)) = — gst(H = hint) + 5 [20G9C05¢ (H - hint)2:|
W +2(H — hiy, .
e (W ) + Tint — PG (H — hing)g sin ¢.

Now, considering W to be the length scale of variation along the depth coordinate y, in the limit
W/H — 00, hine will hardly vary along y, and will naturally only be a function of s. In this limit the
fractions that appear in the above system tend to 1:

W + 2hint - 1, W + 2(H - hint)
w w
Taking this limit entails the approximation of the 3D domain (with walls on all sides) as a 2D domain.
The 2D domain has no walls (or walls infinitely far away such that they have no influence) with normals
pointing along the depth coordinate y, but only top and bottom walls and possibly left and right walls
(see |[Figure 3.5)). The system for 2D channel flow can thus be written as

1. (3.93)

0 0
ot (pLhint) + 95 (pruphing) =0, (3.94a)
0 0
En (pc(H — hint)) + 75 (pcuc(H — hing)) = 0, (3.94b)
0 0 OPin o [1
ot (prurhing) + s (PLUQLhint) = - &St Ring — 9s [Q,OLQ COS(W%%J (3.94c¢)

+ 7L — Tint — pLhintg sin @,
0 [1
(H — hint) + D5 {QPGQ cos¢ (H — hint)2:|

+ 76 + Tint — pc(H — hing)g sin ¢.
(3.94d)

. 8pint
Os

0 0
¢ (Peuc(H = hine)) + o (pau(H — hint)) =

By comparison with the system (3.92)) for 3D channel flow, an important observation can be made.
The 2D system of equations is the same as the system of equations for 3D channel flow, but with the

substitutions

AL—)hint, Ag—>H—hint, A—H (3 95)
P, —1, Pg—1, Pp —1. '

We can thus use the same solver for 2D channel flow as for 3D channel flow, if only we
e interpret the solution for Ay, as hint, Ag as H — hing,

e interpret the input for A (the specification of the domain) as the input for H, and

e set Pr, Pg, Py = 1 for the friction calculation.
shows the 2D geometry graphically.

For our 2D geometry we only have wall stresses at the (s,y) planes, given by (3.39)). Since we know
(or require) that the liquid lies below the gas, we can directly write

ou
L = —Ma—}f (3.96)

ou
TG = MGT}?’ (397)
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Figure 3.5: A schematic of the 1D two-fluid model for 2D channel flow.

where the perimeter averages (3.27) and (3.28]) are trivial because the stress no longer varies along the
perimeters. At the interface, like before in (3.42)) but without a need for averaging, the stress is given by

6UG 8uL
Tint = Tint,G = —Tint, L. = _HGW = _HLW

The two-fluid model system (3.94]) may also be used to model free surface flow, in which the gas exerts
no force on the liquid. For this case the equations are shown to reduce to the shallow water equations in
Append A

For convenience, the system ([3.94) may be abbreviated as

(3.98)

0 0
It (pLhint) + D5 (pruphing) =0, (3.99a)
0 9]
o7 (P = hine)) + == (peuc(H — hine)) = 0, (3.99b)
0 0 9 OPint .
En (pLurhing) + 75 (prufhing) = _Whint + LG + Fr, — prhintgsin ¢, (3.99¢)
9] 0 Opin .
5 (pGUG(H — hint)) + % (pG’U%;(H - hint)) - - gst (H - hint) + LGG + FG - PG(H - hint)g SIHQJ).
(3.994d)
Here the stresses are bundled into closure terms for this system
Frp =171 — Tint (3.100)
Fa =76+ Tint (3.101)
and the level gradient terms are not written in full:
LG = _9 1 cos ¢ h? (3.102)
L — s 2pLg int | » .
0 [1 2
LGg = s 2Pcy cos @ (H — hint)” | (3.103)

3.6 Numerical two-fluid model

In this research the ‘Rosa’ code developed by Sanderse et al. [113], [126], [127] is employed for solving
the incompressible form of , under the constraint Ay, + Ag = A. With the substitutions the
code can be used for 2D channel flow.

The code discretizes the equations using a finite volume method on a staggered grid (recall.
This means that the mass conservation equations of are integrated over a certain set of grid cells,
and the momentum conservations are integrated over a set of grid cells which is displaced by half a grid
cell relative to the previous set. This allows for a strong and straightforward coupling between the two.
Still interpolation is needed for some variables: here we employ a central interpolation scheme, which
ensures second order spatial accuracy.
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After the system is discretized spatially, the time stepping is considered. We use the explicit three-stage,
third order strong-stability preserving Runge-Kutta method referenced in [113], which follows Gottlieb
et al. [128]. Explicit time integration methods are generally not feasible for the compressible two-fluid
model due to the high velocities of the acoustic waves. For incompressible flow this is of no concern; the
pressure field is calculated implicitly such that velocity field is divergence-free and the volume constraint
A + Ag = A is satisfied, following the same principles presented in [subsection 2.4.2l Details on the
constraint-consistent time integration scheme are available in [126].

3.7 Conclusion

The 1D two-fluid model is a model for stratified two-phase flow which can be derived by averaging the
equations over the cross-section of an arbitrarily shaped duct. The same equations hold for 2D channel
flow, with appropriate substitutions. In the derivation, we assume hydrostatic balance, so that the vertical
velocity is negligible. The streamwise normal stress is neglected with the argument that we consider a
horizontal length scale far larger than the vertical length scale.

The shear stresses in pipe flow depend on the streamwise velocity and its gradient normal to the pipe
walls, and the interface. In the 1D two-fluid model the velocity field is not resolved; only the averaged
streamwise velocities are known. Therefore closure terms, based on experiments or analysis, are needed
to relate the averaged velocities (and material properties and pipe geometry) to the stresses. In general
there is no one-to-one relation for this. However, narrowing the scope down to fully developed steady
state flow there is, and this is what is used in conventional practice.

The closure terms found in literature for stratified two-phase flow have more problems. There is no
consensus on closure terms for wide ranges of pipe geometries, interface waviness, and turbulence regimes.
However, for the case of laminar, fully developed, flat interface steady state flow in a 2D channel the
stresses can be calculated via an analytical algebraic expression. The derivation of these closure terms is

referred to as step [1] in the flow chart [Figure 1.4
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Chapter 4

Stability Analysis

4.1 Introduction

Our goal in this project is to introduce closure terms in the 1D two-fluid model which let its predictions
match those of a 2D model. That is, we aim for step [8] in our project flow chart to show
the best possible agreement between our high- and low-fidelity models, with the low-fidelity model still
being more computationally efficient than our high-fidelity model. In this chapter, we analyze some
fundamental differences between the two models, which define limits to our approach.

In this chapter, we perform linear stability analysis on both the 1D two-fluid model and on 2D
potential flow. We analyze the inviscid dispersion relations, which predict how a small disturbance of the
interface (and associated disturbances in the velocities) will evolve in time. Comparing these dispersion
relations for the two models yields insight in the fundamental differences between them. These are
differences that closure terms cannot overcome.

We find that the 1D and 2D models agree theoretically when the horizontal length scale (in the form
of the wavelength of a perturbation) is much larger than the vertical length scale. Additionally, we show
that 1D and 2D simulations agree with the theoretical dispersion relations for short periods of time.

In the first part of this chapter, we will furthermore discuss an important property of the 1D two-fluid
model: its tendency to become ill-posed for certain initial conditions. This is another fundamental
limitation of the two-fluid model, for when the model becomes ill-posed its predictions carry little meaning.
Thus for certain regions of the parameter space the 1D two-fluid model cannot be used. We need to map
this region so that it can be avoided in later chapters.

4.2 Well-posedness

The two-fluid model, comprised of the equations , is our main object of study. There are some
mathematical properties we need to know about this model before we blindly discretize it and run a
simulation. For one, we need to know if the model is well-posed in the sense of Hadamard. In this sense a
problem can be said to be well-posed if

1. a solution exists,

2. the solution is unique,

3. the solution depends in a continuous manner on the initial and boundary conditions.
According to |129], these conditions imply

1. that one should not have too many (conflicting) boundary conditions, 2. that we should
not have too few, and 3. that the effect of small perturbations is also small.

Thus if our boundary conditions are appropriate, only the third condition is of concern.

The third condition does not state that a small perturbation of the initial conditions cannot grow
at all. It is sufficient if a small perturbation of the initial and boundary conditions does not grow in an
unbounded manner. The vague phrase ‘an unbounded manner’ can be understood as ‘with a growth rate
tending to infinity’.
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We may test the equations by substituting a wave-like trial solution and seeing if, and how much,
it grows in time. A system of quasi-linear partial differential equations of which the homogeneous part
propagates a wave-like solution without growth or damping can be said to be hyperbolic [130, p. 112].
Thus, for a time-dependent problem, hyperbolicity of the equations is a sufficient (but not necessary)
condition for well-posedness, while an elliptic system is ill-posed [131]. Here, ‘the homogeneous part’
indicates the part of the equation containing derivatives of the unknown variables.

Hyperbolic equations require (for well-posedness) initial conditions for each unknown, and boundary
conditions along each boundary, corresponding to the number of characteristics which propagate from
that boundary. The solution may evolve in time without a final boundary. Therefore if we can prove
our equations to be hyperbolic, we can set the appropriate number of boundary conditions, and give an
initial solution and watch its evolution in time.

We consider the system of first order PDEs

0 0
We substitute the trial wave-like solution
u="tuexpli(ks —wt)], (4.2)

with k the wavenumber and w the angular frequency, which dictates the change of the solution with time
(and is thus of interest in determining whether the system is hyperbolic). This yields

[—iwA + ikB] i = 0, (4.3)

which has non-trivial solutions for @ (that is, solutions other than @ = 0) if the determinant of —wA + kB
is zero. This condition can be written as the generalized eigenvalue problem

det | B —cA| =0, (4.4)

with ¢ = w/k. In [Appendix B| we demonstrate the solution of this problem with an example, and
determine the characteristics of the system.
The problem of determining if the system is hyperbolic reduces to finding the eigenvalues which satisfy

det |B — cA| = 0. (4.5)

A necessary and sufficient general condition for hyperbolicity of the first order system can be posed
as: all eigenvalues ¢ of the system (found via ) are real and there is a complete system of linearly
independent eigenvectors [42]. Note that the source term contains no derivatives and has no influence on
the classification. If none of the eigenvalues are real, the system is elliptic. If all of the eigenvalues are
real but there is no complete system of linearly independent eigenvectors, the system is parabolic.

The classification is based solely on the homogeneous part of the system; the inhomogeneous part has
no influence on the characteristic analysis [131]. Therefore the classification will also apply to systems of
the form

0

0
Aau—l—B%u =c(u) (4.6)

(in which c(u) has nothing to do with the eigenvalue ¢). Since the source term has no influence on the
determination of the hyperbolicity of the system, it also has no influence on the well-posedness [131].
However, the source terms will influence the stability of the model.

4.3 Analysis of the two-fluid model

We recall the governing equations of the two-fluid model for 2D channel flow (3.99)). Unfortunately, the
system cannot be written in the conservative form

Ju

— + V- f(u) = c(u), (4.7

ot
due in part to the non-conservative streamwise pressure gradient term. However, the system can be
written in the quasi-linear form

0 0

A(W)&w + B(w)gw =c(w). (4.8)
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Assuming incompressible flow, the constituents of (4.8]) are given by

hint
_ | uL
W=l (4.9)
p
oL 0 0 0
—paG 0 0 0
A= , 410
prur  prhing 0 0 (4.10)
—paug 0 pc(H — hing) 0
PLUL pLNint 0 0
—PGUG 0 PG (H - hint) 0
B = , 411
pru3 + prhingg cos ¢ 2pruphing 0 Pint (4.11)
—pcul + pc(H — hing)g cos ¢ 0 2pcuc(H — hing)  (H — hiny)
and
0
c= 0 . (4.12)

—Fp — prhintgsin ¢
—Fe — pa(H — hint)gsin ¢

4.3.1 Well-posedness of the two-fluid model

We need to determine if this system is well-posed in the sense of Hadamard. To this end we classify the

system as discussed in Solving
det [B — cA| =0 (4.13)

with ¢ = w/k yields four eigenvalues leading to four possible dispersion relations. Two of them are given
by

_ P pauch & \/(PL +pcé1) (pr = pa)himg cos ¢ — prpcés (ug — ur)?

w
pL + pcéi

, (4.14)
with

_ hint

- H - hint ’

The same derivation can be done for the 1D two-fluid model with a 3D (e.g. pipe or rectangular duct)
geometry; the result is

&1

prurAcA + pgugArLA + \/{(pLAG +pcAr)(pr — pa)Hgcos ¢ — prpc (ug — ur)? A] ArLAcA
prAcA+ pcALA

w==k

3

(4.15)
and making the same substitutions as in one retrieves (4.14). An alternative form in terms of
the holdups o, = hint/A, ag = (H — hin)/A is given by [75] and [112]

LLUL | pOUG \/(g; + Z%) (pr — pa)Hgcos ¢ — £LE9- (ug —ur)’

T (4.16)
w = T pa .
ai + a(G;
From (4.14)) one can see that w, and thus the eigenvalue, has an imaginary component if
hin H - hin
AU? = (uc;—uL)2 > < ! —|—t) (pL — pa)g cos ¢, (4.17)
PL PG

in which case one of the two possible wave-like solutions of the homogeneous system will grow exponentially
in time and the system cannot be said to be hyperbolic. The system can also directly said to be ill-posed
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in this case since the wavenumber k will tend to infinity for small wavelengths, leading to unbounded
growth.

Two of the four eigenvalues are neglected in this analysis. They are related to the speed of sound of
the flow, which is infinite in the incompressible limit, leading to elliptic behavior of the pressure. These
eigenvalues do not need to be considered explicitly here, if incompressibility is treated as a constraint,
instantaneously satisfied at each moment in time. Sanderse and Veldman [126] provide a thorough
discussion.

4.3.2 Linear stability analysis

The linear stability analysis is similar to the classification of quasi-linear PDE’s based on substitution of
a wave-like solution (see . The difference is that we now take into account the inhomogeneous
part of the equations, and that we perform a linearization. This is as done by Liao et al. |112], Fullmer et
al. [132], and Sanderse [75].

The linearization can be done by substituting

w=w"+ Aw, (4.18)

with Aw a small disturbance (Aw < w"), into the system of governing equations (4.8) to yield

AW’ + Aw)% (W’ + Aw) + B(w’ + Aw)% (W7 + Aw) = c(w” + Aw), (4.19)
where A, B, and c are functions of w® + Aw. This means that they are just as they were defined earlier
but with the four variables Ay, vz, ug, and p replaced by h?nt + Ahing, u% + Aug, uOG + Aug, and
p° + Ap respectively.

We consider a reference state w® that is in steady state, so that Ow®/dt = 0. The reference state is
also fully developed, so that the spatial derivatives of the liquid and gas holdups and of the velocities are
zero (but not that of the pressure). These terms can thus be dropped from the equations. The remaining
system for the reference state is

0
oy | 0 0
Bw') | o | =c(w). (4.20)
LPO
ds
The pressure gradient is constant and is necessary to drive the viscous fluids through the pipe/tank. We
define the left hand side of the above equation as d(w?). It is given by

0 0
0 0
d(WO) = B(WO) 0 = 1o ap° . (421)
apo int 9Os o0
Similarly, we define
0 0
d(w’ + Aw) = B(w" + Aw) ol X op° (4.22)
a00 (h?nt + Ahint)é)ig ,
’71; (H - h?nt - Ahint)da%

We apply the assumptions about the reference state in ([#.19) (Ow°/0t = 0, Ohiny/0s = 0, dur,/ds = 0,
dug/0s = 0) and subtract the steady state balance (4.20)). This can be written as

A(w® + AW)%AW +B(w’ + Aw)agAw +d(w’ + Aw) —d(w’) = c(W + Aw) — c(w). (4.23)
s

Then terms with products of disturbances are neglected (e.g. AuL% or gAarAppsing). The
resulting system of linearized equations is

A(WO)QAW +B(w")

ey Aw = ¢, (4.24)

9
Os
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with
Ahfint
. AUL
Aw = Aug | (4.25)
Ap
and
0
¢ =c(w’+ Aw) —c(w’) —d(w’ + Aw) +d(w") = ; (4.26)
Ahlnt 6 — AFL, — ppAhipggsin ¢ )
Ahmt s AFG + pGAhmtg sin ¢
The system (4.24]) is not yet a linear system since € is still a function of Aw.
We can make first order approximations for Fy;, and F¢g in terms of the perturbations Aw;
OFL, OFL, OFL, OFL,
Fi, ~ F? + Ahin Au Aug——+ Ap—— 4.27
b F o Mg o Dup s+ Aucp s+ Ap (4.27)
8F 8FG 8FG aF‘G
Fg ~ F2 + Ahyy, Aup—+ Aug—— + Ap——, 4.28
0 = B+ Mgy o+ Ay, B Bua, o Apy S 28)

with the derivatives taken at the reference state w®. Then AFy, = F, — F? and AFg = Fg — FQ, and
we can rewrite € :

with C(w") the sum of two Jacobians
0 0 0 0
dc(w?)  od(w?) 0 0 0 0
C(w?) = N = 4.
(w?) ow ow —L — prgsing — gfii _gfi _gfé _86% ; (4.30)
OF, OF, OF, OF,
W + pGy Sln¢ - Bhift - Buf _ﬁ _TPG

where it is required that 9p°/ds is constant. Now ([4.24]) can be approximated as

0 =~ 0 Aw = C(w")Aw, (4.31)
ds
which is a linear system since now none of the coefficients are functions of Aw (they are only functions
of the constant reference state).
With the linearized system we can perform a stability analysis by substituting for the disturbance
the wave form

Aw") 2

3tAW + B(w

Aw = Awexp [i (ks — wt)], (4.32)

with Aw the amplitude. In fact, through a Fourier transformation, any disturbance can be written as a
sum of functions in the above form (with different amplitudes, frequencies and wavenumbers). For each
of the wave functions will hold separately, since the equation is linear. Therefore an analysis based
on the substitution of the given wave-like function can be used to make conclusions for an arbitrarily
shaped continuous function.

Proceeding with the substitution, we get

[—iwA + ikB — C] Aw = 0, (4.33)

which has nontrivial solutions if
det |kB — wA +iC| = 0. (4.34)

If both fluids are inviscid and gravity has no component in the streamwise direction (¢ = 0), then via
(4.20) Op/0s is also zero and C = 0. In this special case the same results are found as in the analysis
of the well-posedness of the system; the dispersion relation is (4.14)) and the condition for instability is
(4.17).

If C is nonzero, extra imaginary terms are added to the dispersion relation. Writing the dispersion
relation out in full, these terms are seen to contain the factor k, and thus lead to infinite growth for
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small wavelengths. This does not contradict the assertion that the inhomogeneous term has no effect on
the well-posedness of the system, since here we are not considering the original system. We are instead
considering the linearized system.

The allowed relative amplitudes Aw are the eigenvectors of kB — wA + ¢C corresponding to the
two different dispersion relations found via . For the inviscid case (C = 0) the expressions for the
velocity perturbations as a function of the freely chosen Ahyy are relatively simple:

A}ALimt A}Alint R
N | _ —:}iﬁ%A’fim (4.35)
AU? k(;]t(j;::t) Ahfint
Ap
The pressure perturbation can be expressed using either the third or fourth row of (4.33):
Ap = pp kzu% — k2hineg cos ¢ — 2kwur, + w? A}Alinty
thint
k*uZ + k*(H — hint)g cos ¢ — 2kwug + w? | -
= - Ahint - 4.36
b K2(H — hiny) ¢ (4.36)
The evolution in time of a disturbance with wavenumber k£ can then be written as
Aw = Re{Awj exp[i (ks — wit)] + Awgexp [i (ks — wat)]}, (4.37)

in which Aw is the amplitude vector with relative amplitudes determined by the eigenvector corresponding
to wy, which is the angular frequency determined by k and the first dispersion relation. Similarly, wy is
determined by k and the second dispersion relation and Aws is its eigenvector. This disturbance may
alternatively be written as

Aw = |Aw, | ™M cos (ks — Re {wi} t + 01) + |Avws| ™ @2  cos (ks — Re {wa} t + 05).  (4.38)
with the angles

arctan (Im {Aﬁim,l} /Re {Aﬁinm }) arctan (Im {Aﬁinm} /Re {Aﬁirlt72 })

0, = arctan (Im {A4r 1} /Re {Adr1}) ’ 0, — arctan (Im {Adr o} /Re {Adr 2})
arctan (Im {Atg 1} /Re{Atg1}) arctan (Im {Adg 2} /Re {Atlg2})
arctan (Im {Ap;} /Re {Ap1}) arctan (Im {Ap2} /Re {Ap2})

39)

The arctan function maps all angles to the range [—7/2,7/2]. If the real part of the complex amplitude
is negative the actual angle should fall outside that range. In this case a constant 7 must be added to the
result of the arctan to obtain the correct angle. The complex amplitude absolute magnitudes are given by

i R 2 . 2 i . 2 . 2
\/Re {Ahint,l} + Im {Ahint,l} \/Re {Ahint,Q} +Im {Ahint,Q}
|AW1| _ \/Re {AaL,l}Q + Im {AQL,l}Q , and |AW2| _ \/Re {AQLQ}Q + Im {AQLQ}Q
V/Re {Aig1)? + Im {Adg, ) V/Re {Aiig2)? + Im {Adig o}
| VRe{8p) +Im{Ap) | | Re{2p) + Im{Ap) |
(4.40)
The initial disturbance at ¢t = 0 is given by
Aw = Re {Aw exp [iks] + AWz exp [iks]}, (4.41)
or equivalently
Aw = |Aw;|cos (ks + 01) + |Aws|cos (ks + 02) . (4.42)

Any initial disturbance can now be written as a sum of initial disturbances of this form, with different
wavenumbers, and as stated before, the analysis will still hold.



4.4 2D Linear stability analysis 45

4.3.3 Discrete stability analysis

Fullmer et al. [132] show that, for a specific finite discretization, the numerical two-fluid model is
unconditionally well-posed, in contrast to the analytical model (where ‘well-posed’ is taken strictly to
mean the absence of unbounded growth). This is evidenced by the fact that there is a cutoff wavelength
below which no growth takes place, whereas for the analytical model the growth rate tends to infinity for
wavelengths tending to zero. The shortest waves are damped most strongly by numerical diffusion.

However, discretizations of the two-fluid model can still be numerically unstable, even if they are
well-posed. In the ill-posed regime of the continuous two-fluid model, any consistent discretization will
have large positive growth rates for waves slightly longer than a certain cut-off wavelength, determined by
the grid resolution [132]. Even though simulations can be run in the ill-posed regime (since the numerical
model is unconditionally well-posed due to numerical diffusion) numerical solutions of the two-fluid model
in this regime are generally regarded to have no physical meaning [112], and will not converge upon grid
refinement.

Instead, some authors interpret a migration of the numerical solution towards the ill-posed regime as
triggering the transition to slug flow [111], [133], related to the fact that the inherent assumptions in the
two-fluid model break down. Slug flow is characterized by the occurrence of pockets of liquid alternated
by pockets of gas, such that the interface height is locally equal to the pipe diameter. In order to correctly
predict the transition to slug flow (which is important for practical applications) it is desirable that the
numerical two-fluid model becomes unstable close to the stability limit of the analytical two-fluid model.
This requires a sufficiently fine grid and time step and appropriate discretization method.

4.4 2D Linear stability analysis

Our high-fidelity model Gerris solves the 2D incompressible Navier-Stokes equations and .
This can be seen as a 2D extension of the two-fluid model, not assuming hydrostatic balance or L > H.
The Euler equations are the inviscid form of the Navier-Stokes equations, in which the viscous terms are
neglected. We will show the stability analysis of the 2D equations, so that we can see some of what the
1D two-fluid equations are missing.

4.4.1 Unbounded domain

The classic Kelvin-Helmholtz instability for incompressible horizontal shear flow of two fluids is found by
considering inviscid flow, which is described by the incompressible Euler equations. If the flow is initially
irrotational, the flow will remain irrotational by virtue of Kelvin’s circulation theorem. This means that
the flow can be described as a potential flow with a potential ¢, u = V¢, and V2¢ = 0. For irrotational
flow one may derive the Bernoulli equation from the Euler equations.

The boundary conditions are

e At all times the flow infinitely far away from the interface remains in the initial state.
e Kinematic: the fluid parcels must move with the interface.

e Dynamic: the pressure is continuous over the interface.

Furthermore the resulting system of equations is linearized by assuming that the velocity perturbations
on the initial flow remain small, along with the perturbation of the interface. The resulting system of
equations (adapted from [134], [135]), which holds at z = 0, is

96 _On ., On _

9: ot "Gas (4432)
0¢y, _ On on _
Ll o, (4.43b)
g | 09g _ 0¢), . 99y

PG (Ucas + TS +gn| =prL|uL 95 + B +gn. (4.43c)

In this system 7 is the perturbation of the interface height, z is the vertical coordinate defined relative to
the interface, t is the time coordinate, and s is the horizontal coordinate which is parallel to the interface
and the basic velocity u. ¢, is the perturbation of the velocity potential in the upper part of the domain,
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Figure 4.1: A schematic of a 2D flow with a perturbation applied to the interface.

ug is the unperturbed velocity here, and ¢} and uy, are the same for the lower fluid. shows
the flow schematically.

The interface height 1 and the perturbations of the velocity potentials in the upper ¢g and lower ¢,
fluids are then written as

n = fpeltks=wt) (4.44a)
¢y = Bge Frellhamet), (4.44b)
¢, = Bretzeiltks—wt) (4.44c)

where 7}, Bg, and By, are constants which determine the amplitudes of the disturbances, and k and w
are the wavenumber and frequency of these disturbances. The wavenumber can take any value, and a
sum of these functions with different wavenumbers can create an arbitrary wave form. Substituting
in (along with z = 0) yields the linear system

Au=0, (4.45a)
—i(ugk — w) —k 0 7

A= |—i(upk —w) 0 k , u= |Bg]|. (4.45b)
(pr —pc)g  —ipc(ugk —w) ipr(urk —w) Br

This system will have multiple solutions other than u = 0 if and only if the determinant is zero. This
condition,
—(pr — pc) gk* — i?pa(uck — w)*k — i®pr(upk — w)?k = 0, (4.46)

produces the dispersion relation [134]:

2
w— EPLuL tpcuc | J9PL = PG oLpC (ug UL)2’ (4.47)
pL+ PG kpr+ pa (pr + pc)
or
pLur + paug + \/%(PL + pc)(pr — pa) — prpc (ug — UL)2
w=k , (4.48)
pL + pa

which gives the frequency w/2m for a wave of wavelength A = 27 /k.
We can replace g by its vertical component gcos(¢) in the case of a tilted domain:

prLur + pcuc £ \/%S(@(PL + pc)(pr — pc) — prpc (uc — UL)2
w=k . (4.49)
pL + pa
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The eigenvectors of A are the solutions of (4.45)) for u:

Bg = —i (uG - %) A (4.50)
By =i (uL _ %) A, (4.51)

with 7 free to be chosen and (two different) w given by (4.49)). According to the notation of [subsection 4.3.2

we may write 7 = Ah;ye. The amplitudes of the horizontal velocity perturbations are then given by

/
Aug = a;SG = Aug = (kug — w) e %% Ahyy, (4.52a)
s
3¢IL ~ kz A T
Aup, = 5 Auyp, = — (kur, — w) €"* Ahing, (4.52b)

which may be used to yield an analytical expression for the solution in time in the form of (4.38]). The
(complex) amplitudes of the vertical velocity perturbations, which are superimposed on the base flow of
wg = wy, = 0, are calculated in the same way:

/

Awg = 38(;5G = Awg =i (kug — w) e % Ahiy, (4.53a)
2

Awy, = a(;;s L Awp =i(kup —w) e Ahyg. (4.53b)
z

We may also substitute z = h — hint.

4.4.2 Bounded domain

Milne-Thomson (1960) [136] has done an analysis similar to the one above, but with horizontal walls
bounding the domain at the top and bottom, as opposed to the domain extending out infinitely in the
vertical direction. This bounded geometry is the one considered in The only difference in the
derivation with respect to the unbounded domain (i.e. Kelvin-Helmholtz) discussed above, is a changed
boundary condition. For the unbounded case we take 0¢/9z = 0 at z — +00, stemming from the demand
that the disturbance dies out infinitely far from the interface. For the bounded case we take d¢/0z = 0
at z = —hjyt and z = H — hjng, stemming from a demand that the vertical velocity must be zero at the
lower and upper bounding walls. This means that the expressions for the perturbations change; instead

of (4.44) we get

n = 't (4.54a)
¢ty = Bg cosh (k(H — hiyg — 2)) e'Fs=t), (4.54b)
¢, = By, cosh (k(z + hiyg)) et k5798, (4.54c)

The rest of the analysis proceeds in the same manner as in the unbounded case.
The resulting dispersion relationship is similar to the dispersion found for an unbounded domain (i.e.
Kelvin-Helmholtz) (4.49)):

PR + poucéa £ \/w(m +pata)(pr — pa) — prpcs (ue — up)? (4.55)
w= , )
prL + pcée
with
tanh(khint)
&2

" tanh(k(H — hint))

This equation is equivalent to equations 2.43 and 2.80 in Montini (2011) [131].

If we take the limits khin — 0o, k(H — hint) — oo (i.e. short wavelengths), the hyperbolic tangent
functions approach 1, so &, — 1, and the dispersion relations of unbounded and bounded domains become
identical. If we take pg = 0, we obtain the dispersion relationship for free-surface gravity waves (usually
derived with uz, = 0):

w = kur, + +/gk tanh(khint ). (4.56)
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In the limit of long wavelengths (or shallow fluid layers),

tanh(khing)
k

tanh(khint) Pint
- =& for k(H — hine) — 0. 4.57b
Cann(k(H — hing)) | B~y 1 T A = i) = (4.57b)

— hine  for  khine — 0, (4.57a)

13

In this limit the dispersion relation thus reduces to that of the 1D two-fluid model (4.14)), which we repeat
here for convenience:

kauL + pcucé £ \/(pL + pc€) (pr — pa)hing cos ¢ — prpcés (ug —ur)” (4.58)
w= , )
pL + paét

The most important difference between the inviscid dispersion relation for the 2D analysis and
the inviscid dispersion relation for the 1D analysis , is the appearance of the factor 1/k inside the
square root. This means that according to the 2D analysis, the velocity difference for which the wave is
unstable is dependent on the wavelength of the wave (compare to (£.17))):

(4.59)

AU? = (ugs —up)? > (tanh(khint) . tanh(k(H — fm))) (o, — p) L5250

PL PG k

For a given velocity difference, the system can be unstable to waves with short wavelengths (large k) while
being stable for waves with long wavelengths (small k). However, taking the limit of long wavelengths was
seen to remove the dependence on k . According to Montini (2011) |131], ‘the logical consequence is
that the averaging of the equations in order to obtain a one-dimensional system intrinsically implies the
long wavelength (k — 0) assumption’. The two-fluid model assumes negligible vertical velocities and a
requirement for this is that the interfacial height does not vary too steeply along the horizontal direction.
This is assured with the long wavelength assumption. The long wavelength assumption can be associated
with the assumption L > H, discussed in [subsection 2.3.1| and [subsection 3.4.2

The amplitudes of the velocity perturbations, similar to @, are calculated by determining the
coefficients Bg and Bp, in using equations (4.43)). The coefficients are given by

kug —w

B~ = —; N 4.
&= 'ksinh (k(H — hig)) " (4.60a)
o kup —w
By =i "% 4.60b
L= ' sinh (khing) | (4.60b)

According to the notation of we may write 7 = Ahiy,. Therefore the horizontal velocity
perturbations can be calculated to be

_ 9¢g cosh (k(H — hing — 2)) , »

A'LLG = s — A’U,G = (k‘uG — w) sinh (k‘(H — hint)) Ahint» (4613)
0 . cosh (k(z + hint)) 4 &
Auy = Aty = — — Ahint. 4.61
ur, Ep — ir, (kur, — w) Sinh () Rint (4.61b)

The vertical velocity perturbations, which are superimposed on the base flow of wg = wy = 0, are given
by

0P ) . sinh (k(H — hint — 2)) . 2
Awe — A = — Ah; 4.62
wag 82 — wag 2 (kuG w) sinh (k(H — hjnt)) hlnt7 ( 6 a)
09, L sinh (k(z + hing)) , 5
A’LUL = 92 — A’UJL =1 (kUL — CU) <inh (khint) Ahlnt~ (462b)

Again, the vertical coordinate used here is related to h via z = h — hjy.

4.5 Comparison of dispersion relations

We compare the different dispersion relations for inviscid flow. We have
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e for 1D flow (two-fluid model) the dispersion relation (4.14)) with perturbations (4.35]) and (4.36)),

e for unbounded 2D flow (Kelvin-Helmholtz) the dispersion relation (4.48) with the velocity perturb-
ations (4.52)) and (4.53),

e and for bounded 2D flow the dispersion relation (4.55) and the perturbations (4.61)) and (4.62).

We plot the dispersion relations in using the values in Apart from the velocities,
these are the test case parameters used in The stability limit for the two-fluid model given by
(4.17) is ug —up = 7.55 m/s.

Table 4.1: Kelvin-Helmholtz test case parameters.
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Figure 4.2: Inviscid dispersion relations, using the parameters given in |[Table 4.1

In the figure the limiting behavior of the dispersion relations is readily observed. The dispersion
relations for the 1D bounded and 2D bounded cases indeed converge for long wavelengths, and the
dispersion relations for the 2D unbounded and 2D bounded cases converge for short wavelengths. The
2D cases are always unstable to perturbations with the shortest wavelengths. Only if viscosity were to
be added stable solutions can be reached. The instability of the inviscid 2D case does not mean that a
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similar case that would include viscous terms is ill-posed, since the analysis is based on the linearized
equations, and not on the full set. Moreover, the viscous terms in the 2D case contain derivatives of the
velocity and thus should be included in the homogeneous part of the equations when analyzing viscous
flow.

The inviscid 1D bounded model is either stable and well-posed or unstable and ill-posed for all
wavelengths, depending on the velocity difference. The inviscid equations form the homogeneous part of
the viscous equations, so that the viscous two-fluid model can also directly said to be ill-posed.

For a slightly differenct casein which all models have a nonzero imaginary part of w,
shows the growth of initial perturbations of a certain wavelength with time. Depending on the sign of
the imaginary part of the w to which the perturbations correspond (referring to the + in ), the
perturbation is amplified or damped. The 2D Gerris simulations match the predicted growth rate initially,
but deviate after some time. This is to be expected; nonlinear effects are not taken into account in the
linear stability theory.

The two-fluid Rosa simulations stick to their predicted growth rate for longer. This is to be expected
since this growth rate can be deduced directly from the full set of inviscid equations, not from a linearized
version as is the case for the 2D equations. For the inviscid case, the linear stability analysis performed for
the two-fluid model in yields the same dispersion relations as the treatment in
which is based on the full, non-linearized equations. These two-fluid simulations are fragile though,
since the model equations are ill-posed, and if there is not enough numerical diffusion small wavelength
perturbations might grow with an unbounded growth rate (see the discussion in [subsection 4.3.3)).
Nevertheless, these plots indicate the correctness of the simulation codes, and our understanding of linear
stability theory.

Maximum Perturbation Amplitude Maximum Perturbation Amplitude

1073 10~
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——2D Theory
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——1D Theory
£ £
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o o
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ing to the plus sign in (4.55). ing to the minus sign in (4.55).

Figure 4.3: Comparison of the growth rate of the perturbations in Gerris simulations, in 2D linear stability
theory , in Rosa (two-fluid) simulations, and in 1D two-fluid model analysis , all inviscid. Using most
parameters given in but with pg = 980kg/m® and ur, = 0.01m/s, ug = 0.06 m/s. The wavelength is
equal to the domain height and length, 0.1 m.

4.6 Stability diagrams

A stability diagram can be made by computing the steady state of the two-fluid model for a range of liquid
and gas velocities, and for each steady state computing whether the dispersion relation predicts complex
angular frequencies. This is shown in and is similar to the map found in |137]. Alternatively,
these steady states can be computed as a function of the given pressure gradient and hold-up - this is
shown in

The boundary between ill-posedness and well-posedness (shown in as the dividing line
between the white and gray-shaded areas) is determined by the inviscid analysis which was described
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Figure 4.4: Two maps of the stability regions of the two-fluid model as described in The plots show
whether steady states corresponding to the parameters on the axes are stable, unstable, or ill-posed. The dashed
lines in (a) are lines of constant holdup. The dashed lines in (b) are lines of constant velocity.

in [subsection 4.3.1] If complex eigenvalues result from the homogeneous equations via (4.14]), this will

lead to an unbounded growth rate (for small wavelength perturbations) and the system is thus ill-posed.
This happens when the velocities, driven by the constant background pressure gradient, lie too far apart
(according to (4.17))).

In the ‘well-posed stable’ area initial disturbances are damped. This is an area where it is safe to
carry out simulations: we can have trust that our model will remain well-posed, as long as the initial
disturbances are small enough.

There is an area where the dispersion relation based on the homogeneous equations, or equivalently
the inviscid equations, yields real eigenvalues, but the dispersion relation based on the viscous equations
yields complex eigenvalues. Here, the two-fluid model is well-posed, but the viscous two-fluid equations
are unstable. This is called the ‘well-posed unstable’ area in An initial disturbance will grow
according to (4.38)). Initial states in this area can often only be analyzed for limited amounts of time
with the two-fluid model, since with time these states are likely to evolve into states which are ill-posed.
On the other hand, these states might lead to the transition from wavy flow to slug flow.

4.7 Conclusion

If one wants to find a well-behaved solution to the two-fluid model equations, the equations must be
well-posed. If the set is hyperbolic, with correct boundary conditions, the time-dependent problem is
well-posed. The propagation without growth or damping of a waveform or the existence of a complete set
characteristics with all real eigenvalues are sufficient conditions for proving hyperbolicity of a quasi-linear
PDE system.

The considered two-fluid model is hyperbolic and thus well-posed when the velocity difference between
the liquid and gas phase is not too large. This analysis concerns only the homogeneous part of the
equations, which for the two-fluid model coincides with the inviscid equations. Linear stability analysis of
the full (viscous) equations shows that the two-fluid model can be unstable and well-posed at the same
time.

In our generation of training data for the neural network, we will need to take care that our two-fluid
model is well-posed for the chosen parameter ranges, and stable so that there is no danger of ill-posedness
arising after some time. For our two-fluid model is useless (produces unphysical results) when the model
equations are ill-posed. This is a given with the current two-fluid model. Closure terms aimed at getting
the two-fluid model to agree with high-fidelity simulations can do nothing to change the ill-posedness
problem, since they are a source term in the model equations . They do however have an influence
on the boundary between the well-posed stable and well-posed unstable regimes shown in
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A similar linear stability analysis can be done for the incompressible Euler equations for 2D channel
flow. There is a difference between the vertically bounded and vertically unbounded case, though they
converge for short wavelengths. The inviscid 2D bounded dispersion relation and the inviscid two-fluid
dispersion relation converge for long wavelengths. Since the inviscid dispersion relations do not depend
on the closure terms, any kind of closure term will do nothing to change the discrepancy between the
two-fluid model and the 2D analysis for low wavelengths. Put otherwise, the assumption L > H is
inherent to the employed two-fluid model, and cannot be remedied by appropriate closure terms.

With the analysis in this chapter, we have thus gained insight into the fundamental limitations of
the two-fluid model, which we should not hope to improve upon with our closure terms learned from
high-fidelity simulations.



Chapter 5

Viscous Validation

5.1 Introduction

In this chapter, we conduct viscous simulations with both our high fidelity (Gerris) and low fidelity
(Rosa) models. We validate our models for the viscous case by comparison to the steady state analytical
relations 7. By evaluating the convergence of the Gerris simulations to the analytical solution,
we can make a well-founded choice for the resolution of the simulations. For Rosa we need to perform
wavy unsteady simulations in order to make a good choice of spatial and temporal resolution. We
compare Gerris and Rosa wavy unsteady simulations and analyze the results. Additionally, we discuss
the complications in extracting the necessary neural network training data, in particular the stresses,
from the high fidelity simulations.

We use Gerris to simulate 2D channel flow with periodic boundaries under a constant body force.
For pipe flow the boundary conditions at top and bottom are no-slip. The constant body force is a
combination of a constant background pressure gradient and a gravitational force arising due to inclination
of the domain:

B, = % . + prgsin(¢), Bg = % . + pegsin(e).

The body forces arising due to channel inclination are different for the liquid and the gas. However, we
will limit our analysis here to cases driven by solely a background pressure gradient.

The physics behind Gerris is explained in and its numerical details are given in
The 1D two-fluid model is described in and the numerical properties of the Rosa code are
discussed in

5.2 Test case

As described in we first examine the steady, fully developed, flat interface case of fully
developed stratified flow (step [2] in is the current validation). We take as a basic test case
a case with relatively low Reynolds numbers, so as to ensure laminar flow and thus adherence to the
analytical solution. Another condition for the test case is that the two-fluid model is well-posed and stable
for the conditions of the test case. The linear stability of the steady states of the two-fluid model, which
result for a given initial holdup and pressure gradient in a periodic domain, is discussed in
The cross in locates our standard test case, and its parameters are given in

The simulations are run with a domain length of L = H. The domain length does not matter very
much because the simulations are started from a fully developed initial condition and the simulations
remain fully developed throughout. The length of the domain is not a characteristic length scale here;
the height is the relevant measure.

With the analytical solution given by [122] and [9] (discussed in [subsection 3.4.4), the averaged
velocities and stresses can be calculated. These are given in It is clear that the chosen
parameters lead to low Reynolds numbers which fall well in the laminar regime (in the literature the
critical Reynolds number for single phase pipe flow ranges from 1700 to 2300 [138]).
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Table 5.1: Test case parameters.

Parameter Symbol  Value Units
Background pressure gradient 9p/0s -1 kgm™2572
Liquid density oL 998 kgm™3
Gas density le 1.2 kgm™3
Channel height H 0.01 m

Initial interface height Rint 0.3H m

Liquid viscosity 1133 1.002-1072 kgm ts7!
Gas viscosity e 1.82-107® kgm 's7!
Acceleration of gravity g 9.81 ms~2
Pipe inclination 10) 0 degrees

Table 5.2: Test case solution.

Parameter Symbol  Value Units
Averaged liquid velocity — up, 0.00818 ms~!
Averaged gas velocity UG 0.232 ms~!
Liquid wall stress TI —0.00646 kgm 's2
Gas wall stress TQ —0.00354 kgm~ls72
Interfacial stress Tint —0.00346 kgm 's2
Liquid Reynolds number Rep, 48.9 -

Gas Reynolds number Reg 214 -

Liquid Froude number Fryp, 0.00114 -

Gas Froude number Fra 0.391 -

5.3 Flat interface validation

shows that if we run Gerris simulations for the case discussed in initialized either
from a zero velocity field or the theoretical steady state, we indeed get the theoretical velocity profile
predicted by Biberg and Halvorsen [122], from which the averaged stresses and velocities given above are
calculated. The theoretical, red-dashed, line lies on top of the Gerris simulation results and its cubic
spline interpolation.

shows how the simulated averaged velocity converges towards the theoretical steady state
value, both with time and with grid refinement. The simulations are initialized with a zero velocity
field, which is set in motion by the imposed constant pressure gradient. The results of two-fluid model
simulations, performed with the Rosa code introduced in are plotted alongside the 2D
simulations.

It is good to see that the temporal evolution of the 2D simulations converges toward the temporal
evolution of the 1D simulations, upon grid refinement. Clearly the two-fluid code is very accurate for this
simple case. It shows the same results (down to machine precision) for a wide range of relatively low
different grid resolutions (As = H/32 is plotted), at constant A¢/As = 3.2. This is because for the flat
interface case with periodic boundaries, the flow is uniform along s and all derivatives (except the driving
pressure) in this direction are zero and can be exactly calculated to be so by the 1D code. The 2D code
still needs to deal with derivatives in the vertical direction though, and needs a sufficiently fine resolution
to resolve the velocity profiles well.

The corresponding stresses are plotted in [Figure 5.3] The Gerris simulations indeed converge to
the Ullmann analytical closure terms, evaluated at the steady state. These closure terms were used in
the two-fluid model simulations, and the combination of [Figure 5.2| and [Figure 5.3| shows that using
these closure terms the two-fluid model simulations converge to the 2D analytical steady state. This is
encouraging: for the flat interface steady state case the two-fluid model, 2D theory, and 2D simulations
give the same results.

However, initially the two-fluid model does give a deviating result: the liquid wall stress first rises
to become positive, causing a force in the direction of the average flow. Only after some time the
stress becomes negative, opposed to the direction of the average flow, as would be expected. The factor
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Figure 5.1: Simulated velocity profile, with its spline interpolation, compared to the theoretical profile. Grid
spacing is H/128, uniform in both directions. The magenta line indicates the interface height.

responsible for this change of sign is the correction factor F;} given by . The possibility for this
factor to change sign is desired in order to take account cases where the velocity profile has a change
of sign: for example if there is a region of backflow at the bottom of the channel, above which the flow
reverses to make the overall depth-averaged liquid velocity positive (see . In this case a liquid
wall stress in the direction of the flow would be physical. However such a flow profile is not observed in
the plotted 2D simulations; such a flow profile would sooner be expected in a flow forced by a channel
inclination.

This error can be explained by considering that the closure terms are in principle derived for steady
state only. Their generalization to unsteady flow is not supported by analytical derivations, rather we
expect the closure terms to generalize because we expect the depth averaged velocities (which are the main
inputs for the closure terms) to have a direct relation to the velocity gradients (which actually directly
determine the stresses). This may be the case when only considering steady states, but it is certainly not
the case when also considering unsteady states, for which in principle infinitely many velocity fields are
possible for a given averaged velocity, as long as it is divergence-free and continuous. The problem of
determining the velocity profile from the averaged velocity is an inverse problem with infinitely many
solutions; we call this a uniqueness problem.

From the information that is fed to a closure term there is no way to know if the flow is unsteady,
and if so what the actual profile is out of infinite possibilities. We can only attempt to learn, for example
with a neural network, what the most likely unsteady profiles are and return the stresses for these profiles.
Which velocity profiles arise will depend on the initial conditions and on the stability of different profiles:
the flow will converge to the steady state profile with time; and we will see the profiles that take the
flow from the initial condition to the steady state. For now, our analytical closure term takes the (exact)
profile corresponding to the steady state, which in this case is inclined flow with backflow. The conditions
for liquid backflow are a large (negative) pressure gradient with an opposite inclination, leading to large
ug and low uy, as seen in and indeed corresponding to the situation at low ¢ in
making this explanation plausible.

This error is a good illustration of the limitation of applying closure terms, with limited input
information, to unsteady flow. Still, when the transient (and non-fully-developed) terms are relatively
small the flow will be near some steady state and the approximation of assuming steady state flow, for
which a one-to-one mapping between averaged velocities and profiles does exist, will be acceptable.
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Figure 5.2: This figure shows the evolution in time of the vertically averaged velocities, which are constant
along s. The subplots show the results of using different grid resolutions in the 2D Gerris simulations. The grid
spacing is varied while keeping the Courant number ~ At/As constant. Changing the resolution in the 1D Rosa
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simulations had no effect on these plots (As = H/32 is plotted).
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Figure 5.3: This figure shows the evolution in time of the stresses, which are constant along s. The subplots
show the results of using different grid resolutions in the 2D Gerris simulations. The grid spacing is varied while
keeping the Courant number ~ At/As constant. Changing the resolution in the 1D Rosa simulations had no effect
on these plots (As = H/32 is plotted). Two interfacial points are excluded in the interfacial stress calculation (see
Soction 5.1).
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Figure 5.4: This figure shows steady state theoretical velocity profiles according to relations (3.80)) . Using
the same parameters as in [Table 5.1} but changing dp/Js and ¢, we can create regions of backflow, while the
averaged velocities uz, and ug remain positive.
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5.4 Extracting stresses from 2D Gerris simulations

5.4.1 Problem description

In section 5.3] [Figure 5.3 stresses extracted from 2D Gerris simulations were shown. The code does not
give these directly; they must be calculated from the velocity profile. This can be done in different ways.
Here, we fit a cubic spline to the velocity profile (see . A cubic spline consists of piecewise
polynomials set between each pair of consecutive points. Each polynomial is based on four surrounding
points. At the endpoints the polynomials are based on three surrounding points and the boundary
condition is set that the second derivative of the polynomial should be zero.

Using a spline has the advantage that we can easily evaluate the spline’s, and its exact derivative’s,
value at any point (this is also used for integrating the velocity profile in the calculation of the average
velocities). The stresses are calculated using the derivative of the splines, fitted separately for liquid and
gas, at the endpoints. The stress can be calculated on either side of the interface, since the stress must be
continuous over the interface. In order to reduce the error the average is taken of the stresses on either
side.

[Figure 5.5a] and [Figure 5.5b|show a problem that is encountered when performing the spline interpola-
tion. The figures show that the 2D Gerris steady state deviates slightly from the analytical steady state -
this was already clear in [Figure 5.2] and [Figure 5.3 At the interface minor differences in the velocity
profile lead to large differences in the velocity gradient. This in turn leads to inaccurate interfacial stresses.
This error in the velocity profile is caused by the inaccurate calculation of stresses at the interface in a
VOF simulation. [Figure 5.6a] and [Figure 5.6b| show that this problem is not resolved simply by increasing
the resolution of the simulation. Although the difference between the analytical and the theoretical
velocity profiles indeed becomes smaller, the velocity gradient is calculated over a smaller vertical distance
so that the error in the interfacial stress is not reduced.

illustrates the problem with the numerical handling of the interfacial stress. We would like
to see the velocity profile as illustrated in the figure, with a discontinuous velocity gradient (with a jump
at the interface) but a continuous stress (discussed in [subsection 2.3.1). If we want to advance a time
step from this situation, we need to calculate the stress 7,4, /2 at the boundary of the finite volume cell
corresponding to u;. With a central discretization, this stress is given by

U —Uj

i1 Ujy1 — Uy
Tj+1/2 = ﬂj+1/27j Ah e A . (51)

= 1(Ciny2) = %7

The viscosity ;412 at the grid cell boundary is a priori unknown and can only be based on the viscosities
and color functions C of grid cells j and j + 1. This formulation for the stress will generally carry a
large error because the approximation of the velocity profile’s slope is inaccurate due to its discontinuous
nature. In the depicted case the calculated slope will be lower than is realistic. The final interfacial stress
depends also on the viscosity. If we use the standard method, , known as the arithmetic mean

1(C) = Cur + (1 - C)pa, (5.2)

with a central interpolation scheme
Cip1 + 0

Cisryp = =5 (5.3)
the calculated viscosity at point ¢ 4+ 1/2 will be orders of magnitude larger than the gas viscosity, while the
point is in fact occupied by the gas. These effects combine to make the interfacial stress rather inaccurate,
which then interacts with the velocity profile to take it away from the analytical solution, which in turn
alters the stress again. shows that the effect is strongly dependent on where the interface is
located relative to the grid points; if the interface is located approximately halfway between two grid
points the accuracy is better.

5.4.2 Mixed cell viscosity

The problem described above can be alleviated by defining the viscosity used in (5.1]) differently. One can
use a so-called harmonic mean for the viscosity:

1—=Cjt1)2 n Cj+1/2>_1
Ha KL .

Mjyi/2 = ( (5.4)
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Figure 5.5: This figure shows velocity profiles, zoomed in at the interface, for flat interface steady state viscous
flow. For the plots in which the grid points closest to the interface are not excluded in the calculation of the
velocity profile slope, the error in the slope is large on the side which harbors the grid point closest to the interface.
Excluding the two points closest to the interface helps to make the slope of the interpolated velocity profile match
the theoretical profile better.

This was proposed by Coward et al. for viscous shear flow. In a finite volume scheme, if the
interpolation of the color function is exact, this ensures continuity of the stress across a flat, horizontal
interface (see also p. 62-64]). In our stratified channel flow the interface will often indeed be
approximately horizontal. shows that this continuity is not observed in practice, though.
Using the harmonic mean means that the mixed cell viscosity is less ’biased’ towards the higher
viscosity. See[Figure 5.9|for an illustration. The arithmetic mean’s higher viscosity generates an artificially
large viscosity region by displacing the ”effective interface” from the true interface position towards the
less viscous fluid p. 64]. This has a stabilizing effect, but it distorts the velocity profile, bringing
the effective bending point upward and reducing the gas average velocity as a result. This is shown in
Overall, regarding [Figure 5.6 and [Figure 5.10] we can conclude that using the harmonic
mean has a positive effect on the agreement between the Gerris simulations and the theoretical relations,
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Figure 5.6: The convergence of the interfacial stress, with time and grid resolution. The interfacial stress is
calculated with or without exclusion of interfacial points in the interpolation of the velocity profile, and with
different methods for calculating the mixed cell viscosity.
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Ah

Figure 5.7: A schematic of grid cells and the desired velocity profile near a VOF interface.

when used in conjunction with the exclusion of interfacial points, discussed in the following section.

5.4.3 Exclusion of near-interface grid points

As seen in [Figure 5.6| and [Figure 5.10] the harmonic mean for viscosity leads to a faster convergence of
the interfacial stresses and averaged velocities. However, for the interfacial stress, a much more important
improvement comes from excluding a few grid points closest to the interface from the spline interpolation.
The spline interpolation based on the remainder of the grid points is simply extrapolated to the interface,
assuming a zero second derivative. This simple act filters out much of the unphysical behavior near the
interface. Further from the interface there are no difficulties with mixed cell viscosities and velocity field
discontinuities, so we can trust the solution better in this region and base the interfacial stress on the
velocity profile slope here. This principle is shown in where comparing plots (a) and (b) we
can directly (graphically) see the improvement of the gas velocity profile slope at the interface.

The choice is left of how many points to leave out of the analysis. In the schematic of we
have one grid point (center of a grid cell) on each side of the interface which is impacted directly by the
questionable stress 7;,1/2. Therefore it would seem prudent to leave out the two velocities u; and w41,
i.e. the velocities of the two grid points closest to the interface.

One empirical argument for this choice is the relatively quick convergence of the interfacial stress in
Figure 5.6 (where the interfacial stress without exclusion does not seem to converge at all). Furthermore,
[Figure 5.11] shows that this choice leads to agreement between the stress calculated in cases where the
interface position is almost exactly the same, but just on the other side of a grid point or grid cell
boundary. This is at should be; the stress should not depend on the locations of grid points or cell
boundaries. Additionally, shows that excluding points reduces the disagreement between the
interfacial stress calculated from the liquid side and the same thing calculated from the gas side of the
interface.
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Figure 5.8: Shown is the stress calculated from the velocity profile just below the interface (liquid), and from
the velocity profile just above the interface (gas). In a perfect simulation these should be the same, and normally
they are averaged to yield a single value for the interfacial stress. Plotted are cases with the interface located just
below a grid cell boundary (hint = 0.29675H) and just above a grid cell boundary (hint = 0.297H). The grid cell

boundary is located at h = 0.296875H.
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Figure 5.10: This figure shows the convergence of the cross-sectionally averaged velocities, with time and grid

resolution.
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Figure 5.11: The interfacial stress error is dependent on where the interface is located relative to the grid points.
Shown in (a) are cases with the interface located just below a grid point (hint = 0.3046H) and just above a grid
point (hine = 0.3048H). This grid point is located at h = 0.3046875H; the resolution is As = Ah = H/64. Shown
in (b) are cases with the interface located just below a grid cell boundary (hine = 0.29675H) and just above a
grid cell boundary (hint = 0.297H). The grid cell boundary is located at h = 0.296875H..
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5.5 Wavy interface validation

We have validated Gerris for the flat interface case, by using theoretical solutions for its steady state.
For the wavy case we do not have a theoretical solution. Although a linearized evolution in time of the
flow may be derived for the case of infinitesimal perturbations using the Orr-Sommerfeld equation, as
performed for example by Bagué et al. . This is outside the scope of this thesis. Instead, we compare
the results of Gerris and Rosa simulations.

5.5.1 Short and long wavelengths

We conduct simulations with the same parameters as used previously, given in But we
superimpose a perturbation on the interface of Ahy,y = 0.01H. We also initialize the simulations in the
same way, starting from a zero velocity field. The theoretical closure terms (3.84])) are again used as
closure terms in the Rosa simulations. We initially perform simulations with the same dimensions for the

domain: L = H. shows the interface perturbation in the whole domain, at different time
steps.
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Figure 5.12: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
(H = 0.01m). Each plot shows a different time step. Gerris resolution is As = Ah = H/64, Rosa resolution and
time step are As = H/21 and At = 0.001 s respectively. The domain length is L = H.
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The wave clearly oscillates at a much higher frequency in the Rosa simulations. This can be explained
using the inviscid stability analysis discussed in [section 4.4] and [section 4.5| as a first approximation, valid
when viscous effects are small. Viscous effects are not necessarily small in our low Reynolds number
flow, but it still gives an impression. provides plots of the dispersion relations analogous
to but with the parameters of the current test case. Here we see that at small wavelengths
~ 0.01m, the two-fluid model equations (‘1D Bounded’) yield real angular frequencies larger in magnitude
than those of the ‘2D Bounded’ analysis, thus causing the Rosa wave to lead the Gerris wave in [Figure 5.12]
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Figure 5.13: Inviscid dispersion relations, using the standard test case parameters of [Table 5.1 and uniform
base velocities corresponding to the average velocities of The column on the left shows the angular
frequency for one of the two possible waves, the column on the right for the other.

This difference in angular frequencies is also visible in the plot of the interface height at the middle of
the domain in The stresses oscillate at the same angular frequency as the interface. The
Rosa solution eventually breaks apart into two waves, while Gerris continues with just one.

It should be expected that the Gerris and Rosa solutions do not match for the described case. For it
was noted in that there is a long-wavelength assumption (khi,, KH — 0) inherent to
the two-fluid model. The two-fluid model should be used to describe flow in long pipelines, with spatial
variation occurring across similarly large horizontal length scales. If the wavelength is too short, the
angular frequency will be very high and the vertical velocities will be too higlrﬂ which the two-fluid model
cannot describe due to the assumption of hydrostatic balance. The vertical velocities needs to be small
compared to the horizontal velocities, and the same applies to its derivatives to s, h, and zﬂ Thus the
two-fluid model can only describe dynamics along the horizontal direction, not along the vertical direction.

1Since the material derivative of the density (2.9) is zero, no particles traverse the interface and there must be particles
with the same velocity as the interface. Recall also the interface condition ([2.24)).

2This is necessary to be allowed to write (3.14)) and to substitute (3.15) and (3.16) into (3.17) and (3.18).
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Figure 5.14: Simulations with the parameters of started from a zero velocity field, but with a
perturbation on the interface. The Rosa simulations use the theoretical closure terms. Gerris resolution is
As = Ah = H/64, Rosa resolution and time step are As = H/21 and At = 0.001 s respectively. The length of the
domain, and the wavelength, is equal to the height: L = H.

It is not a fundamental problem that the horizontal velocity varies along the vertical directiorﬂ (as can be
seen in , as long as its averaged value is much larger than the vertical velocity. Increasing the
wavelength changes nothing for the averaged velocity, but does ensure that the vertical velocities vanish.

We therefore turn our attention to perturbations with longer wavelengths. shows frames
of a simulation with a domain length of L = 12H and an equal wavelength. The remaining parameters
are the same. It is directly seen that the Rosa results remain in tune with the Gerris results for much
longer. The Rosa wave still has a higher frequency than the Gerris wave, but the difference is much
smaller, on the time scale of an oscillation: the Rosa wave remains close to the Gerris wave for two full
oscillation periods.

shows the results for ur, ug, hint, 71, 7@, Tint at the middle of the domain, for these
simulations with L = 12H. The agreement between Rosa and Gerris is much better than in
The period of oscillation clearly matches, the same steady states are reache(ﬂ7 and the evolution to this
steady state follows similar patterns. The discrepancies that are present (such as again a backflow related
liquid stress as discussed in are similar to those of the flat interface case, which is intuitive if
we see the flat interface case as a special case of the wavy case, with infinite wavelength. What is odd
is that in Gerris the interface perturbation amplitude decreases monotonically, while in Rosa there is
an upswing around ¢ = 7. This behavior is strongly dependent on the closure term, as we will see in

chapter 7|

5.5.2 Wave dynamics

In the frames of we see a standing wave. This is a result of initializing the interface
perturbation without velocity profile perturbations corresponding to eigenvectors of this perturbation.

This can again be explained using the inviscid linear stability analysis of The 2D
dispersion relation (in the long wavelength limit equal to the 1D dispersion relation) is , repeated
here:

et pcucés £ \/w (oL + pcéa)(pr — pa) — pLpcs (ua — uL)?
w =
pL + pcée

: (5.5)

with
tanh(khing)

" tanh(k(H — hing))
If the velocities are zero (which is how we initialize the simulations), the first part of the dispersion
relation is zero. Only the second part is nonzero. Since we are in the well-posed regime, the second part

3

3The effect of the variation of the horizontal velocity along h is the existence of stresses and is modeled by the closure
terms.

4Save for the inaccuracy in Gerris’ gas velocity due to the limited resolution: the constraint As = Ah means that these
simulations are more expensive than the L = H simulations, at constant Ah.
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Figure 5.15: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
(H = 0.01m). Each plot shows a different time step. Gerris resolution is As = Ah = H/64, Rosa resolution and
time step are As = H/21 and At = 0.001 s respectively. The domain length is L = 12H.

is real. We get a summation of the two waves +. This forms a standing wave. The disturbance vector
(including the perturbations in the interface height and velocities) can be written as (4.38)), repeated here:

Aw = |Aw, | ™1 cos (ks — Re{wi} t 4 01) + |Aws| ™«  cos (ks — Re {wa} t +65).  (5.6)

Since the imaginary parts of w and Ahiy are zero, and as a result the imaginary parts of the velocity
amplitudes ((4.35)) for 1D, (4.61)) for 2D) and thus the angles 6; and 65 are zero if we start from a cosine
shaped interface disturbance, this is simplified to
Aw = Aw; cos (ks — wit) + Awg cos (ks — wat) . (5.7)
And since w; = —wy = w
Aw = Aw; cos (ks — wt) + Awy cos (ks + wt) . (5.8)

We can define Aw; = Aws, by splitting Ahiye into to equal parts (Aﬁinm = Aﬁinm = Aﬁint/Q). This is
possible because the initial velocity and pressure perturbations are zero, and we only have one height
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Figure 5.16: Simulations with the parameters of started from a zero velocity field, but with a
perturbation on the interface. The Rosa simulations use the theoretical closure terms. Gerris resolution is
As = Ah = H/64, Rosa resolution and time step are As = H/21 and At = 0.001 s respectively. The length of the
domain, and the wavelength, is equal to twelve times the height: L = 12H.

perturbation, which might just as well result in one or the other wave. In this case the above simplifies to

Aw = AW [cos (ks — wt) + cos (ks + wt)] (5.9)
_ A P (iks) exp (—iwt) + exp (—iks) exp (iwt) 4 &P (iks) exp (iwt) + exp (—iks) exp (—iwt)
B 2 2
= 2Aw cos(ks) cos(wt). (5.10)

This is a wave with a spatial structure which does not change from the beginning cosine. The amplitude
is amplified or damped by the time dependent cos(wt).

If there are small liquid and gas velocities so that the first part of the dispersion relation is
nonzero, the two w will not be the same in magnitude but will differ slightly:

w1 =wp + dw, wo = —wy+ dw,

where wy is the dominant part, corresponding to the square root term in (5.5)). In this case the result is a
bit different:
Aw = 2AW cos(ks — dwt) cos(wot). (5.11)

This is a traveling wave with wave speed ¢ = dw/k in which dw is half the difference between w; and ws.
So the traveling speed is slow compared to the amplitude modulation by cos(wgt). The spatial structure
does not change though, the wavelength should remain 27 /k. This behavior is indeed what we see in
Gerris, after the velocities have had some time to grow, or when initializing the simulations from a state
with nonzero velocities.

In practical pipeline applications, we will usually have higher pipe diameters and higher velocities
than those given in [Table 5.1|and |Table 5.2] Via a larger liquid Froude number (very low for our test
case) this will result in a higher dw than for our test case, and thus waves with larger traveling velocities
dw/k, compared to their ‘standing wave frequency’ wg. Furthermore, if the simulation is initialized with
velocity perturbations corresponding to either wy or we, we will get only one of the two waves, which will
not oscillate but only travel.

If we somehow had two standing (or slowly traveling) waves of the form , with slightly different

w:
Aw = Aw cos(ks) cos(wit) + AW cos(ks) cos(wat) (5.12)
_ 2 A cos(ks) [exp(iwlt) —l—Zexp(—iwlt) N exp(iwat) +2exp(—z'w2t)
= 2AWw cos(ks) cos <w1J2ert) cos (w12w?t) , (5.13)

we get the phenomenon referred to as a ‘beat’ (in time) with beat angular frequency “*5<2. This might
explain the resurgence of the interface oscillation in the Rosa simulations seen in from t = 7.
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Of course the inviscid stability analysis cannot explain everything in these viscous simulations. One
aspect that it cannot explain is the damping of the perturbations, despite the absence of imaginary
components in the angular frequencies. This is an obvious result of viscosity in the simulations, along
with the forming of the velocity profiles and steady states.

5.5.3 Interfacial stress problems

Despite the methodology developed for extracting stresses from Gerris simulations accurately (discussed
in , problems still appear when conducting wavy simulations. The three stresses as a function
of s are shown in and the main problem is shown in At certain points in the
domain, there are sharp discontinuities in the interfacial stress. This is likely to be at points where the
interfaces traverses a grid cell boundary or grid cell center point, as we have seen in that
significantly different values for the interfacial stress are obtained depending on which side of such a
location the interface finds itself on. The effect was reduced by excluding interfacial points in the spline
interpolation, but not eradicated. Luckily, such extreme situations are rare (as can be seen in7
and it is our hope that a neural network might filter out this ‘noise’ and discover the pattern with physical
meaning.

Even without these interfacial stress discontinuities, the agreement between the Gerris and Rosa
simulations is poor. However this might be expected, since in the given simulations Rosa employs closure
terms derived for the fully developed steady state. It is our hope that a neural network might learn the
stresses for these unsteady states and thus improve upon the steady state closure terms.

5.5.4 Grid resolution

In [section 5.3} we have conducted Gerris simulations with a flat interface, with different spatial resolutions.
From the results we can select a vertical spatial resolution Ah, which sufficiently resolves the velocity
profiles and interface (after which Gerris automatically selects a time step to keep the Courant number
below 0.8). A good resolution is Ah = H/128, a sufficient resolution when computational resources are
limited is Ah = H/64. The grid cells in 2D Gerris are square; As = Ah, and so our resolution in both
directions is determined.

However, for Rosa the flat interface case does not help us to select a resolution: as we have noted
the results are identical for different spatial resolutions (keeping the Courant number constant), down to
machine precision. This is because of the nature of the equations Rosa solves; there are no derivatives
with respect to the vertical coordinate, only with respect to the horizontal coordinate. When the flow
starts out fully developed, and the boundary conditions are periodic, there is no source of variation along
s. This could only arise from instability of a numerical perturbation, but this is not observed (and not
predicted by linear stability analysis). Because the flow is constantly fully developed, there are no spatial
derivatives, and any resolution will be sufficient to exactly compute these zero derivatives.

Therefore for evaluation of the convergence of Rosa, we consider the wavy case, in which horizontal
spatial derivatives do exist. A convergence study of Rosa has been conducted with the long domain case
(L = 12H), starting from a zero velocity field. We have analyzed the convergence at constant Courant
number ~ At/As of our variables of interest hin, ur, ug, 7o, TG, Tint, at the center of the domain
(s = 0.06), at time ¢ = 5. Some results are shown in

seems to show significant error for simulations with fewer time steps per second. However,
from we can deduce that this is solely the result of the increasing spatial resolution associated
with increasing the number of time steps at constant Courant number. For in we see almost
no difference between simulations with the same number of cells per diameter (i.e. H) and different
Courant numbers, i.e. number of time steps. This indicates that at the analyzed temporal resolutions the
simulations are easily converged with time. We may expect this as we are using a third-order Runge-Kutta
method (see [section 3.6).

Only the line with the highest Courant number in starts to diverge slightly from the
others. On this basis we choose the highest shown ratio At/As = 2.13 for which this does not occur, so
that the number of time steps is not unnecessarily high but the simulations are still strongly converged
with respect to At. A supporting argument for this ratio is obtained by computing the Courant number
using the steady state gas velocity (much higher than the liquid velocity) given in which yields

ua At
As

C= =0.49, (5.14)
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Figure 5.17: Evolution in time of the stresses throughout the domain, for the same simulations as |[Figure 5.15
and [Figure 5.16| (L = 12H). Each plot shows a different time step.
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Figure 5.18: Interfacial stress throughout the domain, for the same simulations as At this time
instant there are particularly sharp discontinuities in the Gerris interfacial stress.
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Figure 5.19: The convergence of hint at s = 0.06, t = 5, for wavy Rosa simulations. Convergence is shown with
respect to spatial and temporal resolution, at constant Courant numbers (proportional to At/As). In (c) the
absolute error is shown with respect to the simulation with the finest resolution (which itself does not appear in
this plot). The line is a fit (on the log-log scale) of Error = CAs™, with n the convergence order.

a number safely below 1 but not unnecessarily low.

For the spatial resolution we choose a point which lies in the flat-looking part on the linear scale of
and closely below the approximately second order convergence line of (to be
expected using a finite volume scheme with central interpolation of which equivalence to a central finite
difference scheme can be shown). At this point the resolution is As = H/21.33 = L/256, and the time
step is At = 0.001s; 1000 time steps per second.

5.6 Conclusion

We have validated the Gerris simulation code by observing the evolution of 2D two-phase channel flow
starting from rest to a laminar fully developed steady state which is predicted analytically. The parameters
of the simulations lie well in the stable and well-posed regime of the two-fluid model. The agreement with
respect to the exact analytical solution converges with time and with grid resolution. The agreement
between Rosa and Gerris for these simulations is good for both the steady state, and for the evolution
in time of the averaged velocities towards this steady state. On the other hand, the evolution of the
stresses proceeds differently for Rosa and Gerris. This exposed a fundamental limitation of closure
terms using the conventional cross-sectionally-averaged inputs: there is only a direct relation between
the averaged velocities and the velocity profile (and by extension the stresses) when steady states are
considered. Therefore these closure terms do not have enough information to determine the correct
stresses for unsteady states in general.

Generally, in a simulation we do not expect just any velocity profile to occur, but only certain velocity
profiles which lie between the initial condition and the steady state (if perturbations are damped). A
neural network might be able to find the pattern of velocity profiles which do occur, given specific
simulation conditions. Additionally, closure terms which incorporate more inputs than the conventional
closure terms might have enough information to form a direct relation between averaged velocities
and velocity profiles (and by extension the stresses). Additional input features are relatively easy to
incorporate in a neural network. See [chapter 6| and [chapter 7]

Extracting the wall stresses from the employed VOF code (Gerris) is rather straightforward, but
extracting the interfacial stresses is not. We base the stresses on spline interpolations of the velocity
profile. In a VOF code the interface is not sharp; rather there exist cells with intermediate values of
the viscosity and velocity gradient. We employ the harmonic mean for the viscosity to sharpen the
interface, and disregard one cell on each side of the interface in our velocity profile interpolation, favoring
cells without intermediate viscosities and velocity gradients. This improves results, but we do not reach
full agreement between the interfacial stress predicted from the liquid or gas velocity profiles, or from
interface placements just below or above a grid cell boundary or grid cell center, indicating that numerical
problems remain.
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We compare unsteady Gerris and Rosa simulations with wavy interfaces, and confirm that the two-fluid
model is not suitable for cases with short-wavelength perturbations. In this case the dispersion relations
significantly differ, and this case violates the assumption of hydrostatic balance. The shortcoming of the
two-fluid model that it cannot model dynamics along the vertical direction cannot be remedied simply by
closure terms. The hydrostatic balance is a fundamental assumption of the two-fluid model. Addition of
a more advanced vertical momentum equation (with additional closure terms) is probably necessary to
resolve dynamics in the vertical direction. Closure terms of the form considered can only serve to model
the profile of the horizontal velocity and the associated horizontal stresses.

With a longer wavelength perturbation, the agreement between Gerris and Rosa improves significantly.
We observe slowly traveling ‘standing’ waves which are formed as a superposition of two opposing waves,
each with one of two possible angular frequencies. In wavy simulations, the extremes of the deficiencies
of our calculation of the interfacial stress are visible (e.g. in . But these extremes are rare
and may be filtered out by a regularizing neural network, that will be studied in the following chapter.
The computed stresses in our 2D simulations differ from the stresses predicted for the same conditions
by closure terms based on the steady state. Thus closure terms learned for unsteady states have the
potential to improve low fidelity model results.

Based on Gerris and Rosa results computed at different grid resolutions and time steps, and considering
the available computational resources, we make a choice of resolution of As = Ah = H/64 for Gerris
with a Courant number of 0.8, and As = H/21.33 with 1000 time steps per second for Rosa.

With these results we can have some confidence in our simulations and analytical calculations and
proceed to use them to train neural networks in the coming chapters.



Chapter 6

Neural Networks

6.1 Introduction

Artificial neural networks are called neural networks because they are initially based on a model for
neurons in the brain, proposed by Rosenblatt (1958) |16]. Such a neuron can be represented as a basic
computational unit, depicted in It takes an arbitrary number of inputs x;, multiplies them by
their weights w;, and sums them together. Usually also a neuron-specific bias b is added to the sum of
the inputs. A nonlinear activation function is applied to the output (a common choice is tanh(z)). The
output is then passed on, as an input to other neurons.

Neuron Output

Figure 6.1: A schematic of a single perceptron, or neuron.

The power and versatility of neural networks stem from the possibility of large and diverse combinations
of neurons into networks. Taken apart, the neuron is a very simple model, but taken together larger
networks can form complex relations between inputs and outputs. A typical structure of a neural network
is shown in However, this is just one possibility, and the choices available to the analyst in
the structure of the network and choice of activation functions mean that the framework can be adjusted
to the needs of different types of problems (e.g. convolutional neural networks for image classification
problems). Due to these freedoms the neural network framework can be shown to be a generalization of a
number of different machine learning methods [18]. It is this power to make predictions (or choices) for
virtually any kind of problem, together with the iterative data-based learning algorithm, which justifies
the comparison of this computational graph to the human brain.

In this chapter we will discuss various aspects of neural networks and the associated choices to be made
in the definition and training of a neural network. We will evaluate the effect of these choices by training
networks on wall and interfacial stress data for the case of flat interface, steady, fully developed, laminar
2D channel flow. This corresponds to the connections [3] and [4] in the project flow chart
shown in the introduction. However, since it has been established in that the Gerris simulations
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Input Layer Hidden Layers Output Layer

Figure 6.2: A schematic of a multi-layer perceptron neural network. Its nodes are fully connected, in a
feed-forward fashion.

converge to the theoretical steady state (equations 7), we can use analytical steady state data
to train the networks, instead of Gerris simulation data. This is advantageous because this saves costly
simulation time.

In this project we use the MATLAB shallow neural network implementation, included in the Deep
Learning Toolbox [140].

6.2 Learning algorithm

The goal of the neural network is to use known data to create a predictor (or merely an interpolator) for
unseen cases. In supervised training this is done by getting the neural network to predict the known data
well. The measure of the difference between the neural network prediction and the known output, for a
given set of inputs, is called the cost function (or loss- or performance function). Here, we use the mean
squared error cost function

LN
—_— o A. 2
C= N ;Zl(yz Ui)~, (6.1)

where y; is the data for a set of input variables 7 and ¥; is the model prediction for these inputs. This
cost function is nice and smooth and likens our optimization objective to that of linear regression. In
this chapter we will often refer to the value of this cost function for a given data set and set of network
predictions as an ‘error’.

The training objective of a neural network can be formulated as minimizing the cost function over
the training data. This is done by adjusting the weights and biases in the network. They are adjusted
iteratively; the basic algorithm for this is gradient descent. One step in the optimization consists of a
modification to the weight and bias vector w of

oC
W w— A T’ (6.2)
where A is a parameter called the learning rate which dictates the step size of the optimization. For this
step we need the derivatives of the cost function to all the weights and biases in the network. These can
be calculated efficiently using the backpropagation algorithm [17], which basically iteratively calculates
the derivative of the cost function to activations further and further from the end of network, using the
derivative to the activation one step closer to the end, and the chain rule.

The backpropagation algorithm runs the risk of encountering the vanishing or exploding gradient
problem. Because the gradient of the cost function to weights earlier in the network is calculated using
the multiplication of the gradients further in the network, it might ‘vanish’ if all these gradients are
smaller than 1 or ‘explode’ if they are all larger than 1. This means that the training becomes respectively
insensitive or oversensitive to weights earlier in the network, which in turn makes the network hard to
train. This problem depends on the choice of activation functions; see
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In this work, we use the Levenberg-Marquardt neural network training algorithm [20], [141]. This
is a second-order algorithm, meaning that it makes use not only of the first derivative, but also of an
approximation to the second derivative of the cost function to the weights. It combines the Gauss-Newton
method (basically an approximation to Newton’s method) and the gradient descent method. Initially, the
algorithm takes a step similar close to the step gradient descent would take. As the optimization moves
closer towards a minimum or saddle point in the loss landscape the algorithm takes steps closer to that of
the Gauss-Newton method. This helps the algorithm to move into the minimum much more quickly than
a purely first order method would. The ratio between the gradient descent step and the Gauss-Newton
step is determined by a parameter p, similar to the learning rate in . Only an initial value needs to
be set, the algorithm handles the subsequent adaptation of this important parameter.

The Levenberg-Marquardt method is particularly efficient for smaller networks, where its additional
computational complexity is not inhibitive.

The training is concluded when either

e A goal for the cost function is reached.
e The norm of the gradient of of the cost function to the weights falls below a specified value.
e The maximum number of epochs is reached.

e The algorithm, adjusting p up to some maximum value, fails to perform a step which reduces the
value of the cost function.

For the hyper-parameters involved, we use the MATLAB defaults [142].

6.3 Network structure

The starting point for a choice of neural network structure is the fully connected, feed-forward structure
of This structure is very general: it encompasses many different network structures. If more
is known about the desired structure of the relation between input and output, the network structure can
be altered to force this structure. For example, connections can be removed and the weights of certain
connections can be forced to match in order to form a convolutional neural network [143|, [144]. In this
way a convolutional neural network incorporates spatial structure in the data.

Input Layer Hidden Layers Output Layer

Figure 6.3: A schematic of the neural network structure as applied in this work. The number of hidden nodes
and layers are still to be specified. The inputs and outputs are as given in (6.3).

As a first pass we do not specialize the structure of the network as it is a priori unclear what kind of
special structure would be beneficial for our application. We are fitting functions,

Oh;
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without regard for spatial or temporal correlationsﬂ The stresses are only functions of the averaged
variables at a single location, and are independent of the forcing (9p/0ds, g) as is customary for friction
closure relations and is necessary for generalization to flows with different types of forcing and boundary
conditions (this was discussed in [subsection 3.4.3| and [subsection 3.4.4| and e.g. [145]). For this kind of
function fitting, where the inputs represent very different things, and input and output have a range
which is in principle unbounded, this straightforward structure may be the most appropriate.

We do break somewhat from the structure of conventional closure terms by including the slope of the
interface as an input. However this term can also be defined locally and is not directly related to forcing
or boundary conditions. This is necessary in order to take into account the influence of wavy interfaces
on the interfacial stress, discussed in literature and in [subsection 3.4.4] This term will not come into
play in this chapter where we only consider steady, fully developed flow. In it will make an
important difference.

The interfacial slope can be added easily to the neural network as an input without any knowledge
of the relation between it and the stresses. This term is not possible to include in conventional closure
terms which are calculated for the fully developed steady state, since it is a locally defined variable. If
fully developed flow is assumed, or similarly the effect of the wavy interface is averaged out over a length
of pipe (as is done by e.g. Andritosos and Hanratty |[107]), the average interface slope will be zero (for a
flow with a wavy perturbation) and cannot be used to differentiate stresses at different phases of the
wavy perturbation.

We can conclude from our knowledge of conventional closure terms that the different
stresses 71, 7g, Tint typically depend on similar factors. This suggests that we can use a single network
with 77, 7, Tint as the three different outputs, shown schematically in In this way they share
the largest part of the network, with the exception of the connections from the last hidden layer to the
output layer. However, due to the training the situation may arise that nodes in the later layers are
connected to only one of the three stresses.

This means that the first part of the network can be trained on more data and more diverse data,
from all three stresses, so that the network will have a larger chance to indeed learn these common factors,
with more generally applicability, instead of just over-fitting the data. Training a single network in this
way is also more efficient than training three different networks. Moreover, using a single network saves
time when it is applied in the low-fidelity model for the calculation of closure terms.

The question remains of how many hidden nodes and layers to include in the network. This is
determined by a search of this parameter space. The results are shown in Results for the final
cost function value (defined in )7 measured on data excluded from the training (so-called ‘validation
data’), are shown for different network configurations. Three different plots are shown, of which two
on the right show results when adding noise to 7, 7, and 7Ty in the training data. This is done in
order to let the analytically calculated data better represent actual simulated data. Furthermore, adding
noise to the training data can also be a strategy for regularization, though this mostly concerns the input
variables [146, p. 242].

Without added noise the network performance improves monotonically with the number of degrees of
freedom in the network. This is probably just because the data can be overfit more and more with the
increase in degrees of freedom. The validation data without noise here is not distinct enough from the
training data (see [section 6.7) and [section 6.8). Adding noise to the data gives rise to an optimal band in
the plots of [Figure 6.4, We make the remaining trade-off between number of nodes and number of layers
on the basis of the following considerations:

e Increasing the amount of layers at the expense of the amount of nodes per layer (i.e. with a fixed
total number of nodes) increases the ability of the network to incorporate patterns in the data, as
opposed to just ‘memorizing’ the data plainly and overfitting, and allows networks to approximate
the function better with fewer degrees of freedom [147], [148] (as long as the function is complex
enough).

e Deeper networks are harder to train [149], [150]. This is because the structure of the loss landscape,
the value of the cost function as a function of the network parameters, becomes more complex and
less convex [151], [152]. This makes it harder to find a good (near-global) minimum during the
network training. An other important contributor to the difficulty in training is the exacerbation of

IThough in future research it would be interesting to incorporate velocities and interface heights at surrounding grid
points and preceding time steps as inputs. This would give the network extra information, particularly on the unsteadiness
and waviness of the flow. If this were to be done it would be a good idea to include convolutional structures.
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Figure 6.4: Plots of the validation cost (6.1]) after training of nets with different numbers of nodes and layers.
The second and third plots have Gaussian noise added to 7, TG, and Tint in the training data, with the given
percentage of the original data value as the noise standard deviation.

the vanishing gradient problem with increasing network depth (discussed in [section 6.2]).
We settle at a balance of 4 hidden layers with 18 nodes each, located in the middle of the optimal bands

of [Figure 6.4] (b) and (c).

6.4 Activation function

The choice of activation function is also influenced by the problem at hand. In order to be able to produce
the outputs 71, 7¢, Ting With unbounded ranges, the output layer neurons have linear activation functions.
The hidden layers carry hyperbolic tangent g(z) = tanh(z) activation functions. These provide a good
deal of nonlinearity, and have a range of [—1, 1], appropriate for our regression problem (see .
They suffer less from the ‘vanishing gradient’ problem (see than the traditional sigmoid
activation function.
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Figure 6.5: Different activation functions.

In recent years, the ReLu activation function has become very popular. This activation function is
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given by

o) = {0’ 2<0 (6.4)

z, z2>0.

It does not suffer from the vanishing or exploding gradient problems, and its gradient is very easy to
compute. Moreover, in a trained network some nodes can be set to give a zero output for the entire input
space, thus pruning unnecessary nodes from the network. These advantages are all only significant for
very deep networks though, which we will not be using. The last advantage can also be a disadvantage; if
neurons reach this inactive state during the training their weights will no longer be adjusted because the
gradient of the activation function is zero here. The neurons are said to ‘die’; they remain in this inactive
state even though they might be advantageous to a fully trained network.

The sigmoid activation function is more appropriate for e.g. classification problems where a probability
between 0 and 1 is required. Its maximum gradient is lower than that of the hyperbolic tangent, leading
to more vanishing gradient problems.

6.5 Regularization

A great concern when training neural networks is the danger of overfitting the data. The high number
of degrees of freedom in neural networks can enable them to approximate the training data very well,
without having any generalizing capability to points located between or outside of the training data
points. These points, unseen by the network during the training, are used as wvalidation data, to test
how well the trained network generalizes. Overfitting a large neural network is akin to fitting to data a
polynomial with degree equal to the number of data points minus 1. See for an illustration.
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Figure 6.6: A demonstration of overfitting with a polynomial of a degree equal to the number of data points
minus 1. The data is generated by setting y = 0.9z, and adding random noise. The high degree polynomial has a
much lower value of the cost function on the training data (theoretically zero), but the low degree polynomial
interpolates and extrapolates better. This means it will have a lower cost function value when measured on
distinct validation data.

One possible solution to this problem is adding a regularization term to the cost function. In L2
regularization, the cost function (6.1)) is modified as follows:
1—a o —

i=1

with a the parameter determining the strength of the regularization, and w; all the weights and biases of
the network. Adding this term penalizes high weights and biases, reverting neurons with the hyperbolic
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tangent activation function back towards the point where the activation is zero and the derivative of the
activation to the input is 1 (see . This means that the neuron will pass the input through very
weakly, and linearly.

The incoming weights and biases of a neuron are pushed towards this passive state if the reduction in
cost function due to increasing weights and biases to values which fit the data better is not worth the
increase in the cost function due to the regularization term. Thus neurons only divert from their passive
state if that would contribute to getting a significantly better fit on a significant part of the data. This
has the effect of pushing the network to discover patterns in the data (which yield a large decrease in the
cost function), which allows the network to generalize better.

In we test the effect of regularization for our data set (see for details on the
data). The plots, surprisingly, do not show a minimum in validation error depending on the regularization
parameter « from . They do show a range in regularization below which the validation error is
low and quite constant. Moreover, the validation error is lower than the training error, which can be
explained from the fact that the training error contains noise. Apparently the network learns to filter out
the noise from the training data and find some underlying structure which predicts the clean data well;
better than the random noise can be fit.

Since this takes place at low values of the regularization parameter, it might be concluded that our
specific network does not need regularization to prevent overfitting, with the properties and size of this
data set. Regularization here only inhibits the degree to which the network is allowed to learn the patterns
in the noisy training data which predict the clean validation data well. Therefore we decide not to use
this form of regularization.

Neural Net Optimization Neural Net Optimization

1073 1073 1073
——Training —— Training
104 Validation Validation
e 104 10-4 7 {
10-° / /
X / 1075 107°
107¢ /
% % 13
S 1077 S 10~¢ 3 1076
O e O O
i [
10
1077 107"
107°¢ /|
/\ —\/
A /\/ B, 10-8 108
10710/ |
V
Y
—11 10-9 10~°
107410712107 107® 107¢ 104 1072 10° 10741072107 10-® 107% 107* 1072 10° 107410721071 10~® 107¢ 107* 1072 10°
Regularization Regularization Regularization
(a) No noise in the data. (b) 5% Noise. (¢) 10% Noise.

Figure 6.7: Plots of the training and validation cost function value (sometimes referred to as ‘error’) after
training nets with different regularization parameters. The second and third plots have Gaussian noise added to
7L, TG, and Ting in the training data, with the given percentage of the original data value as the noise standard
deviation.

If we were to use regularization, we might want to choose a regularization parameter automatically.
To this end an algorithm has been devised to choose the regularization parameter on the basis of Bayesian
probability theory. The Bayesian regularization method was devised by MacKay [153], |[154] and combined
with the Levenberg-Marquardt algorithm by Foresee and Hagan [155]. In this method, a Gaussian
probability distribution for the weights given the network and the data is formulated as a combination of
the likelihood of the data given the weights, the prior probability for the weights, and the likelihood of
the data given the model. From this, the maximum of the probability distributions for the regularization
parameters o and 1 — « (independent in this framework) is derived. A useful intermediate result is the
number of effective parameters +, a measure for the amount of weights and biases (degrees of freedom of
the network) that contribute significantly (i.e. without overfitting) to fitting the data well.

Our choice of network structure, discussed in is supported by this metric, displayed for
different network structures, with differing degrees of freedom, in Initially, all the degrees of
freedom of the network can be used effectively to fit the data. However, after a certain network size, the
amount of effective parameters increases less with network size and the amount of unnecessary parameters
starts growing. There are large oscillations in the plot because it makes a difference if we increase the
amount of nodes or layers, even if such an increase carries the same amount of extra free parameters.
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However, there does seem to be a trend of convergence (where the number of effective parameters no
longer grows with the number of free parameters), which is underway for our chosen network structure
with 4 hidden layers with 18 nodes each and 1245 degrees of freedom.
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Figure 6.8: Plots of the amount of effective parameters v found via Bayesian regularization, for the different
network structures also mapped out in Increasing the amount of layers or nodes increases the amount
of free parameters in the network, but the growth in the amount of these parameters that can be effectively used
falls off after a certain network size. The red-dotted vertical line shows the amount of free parameters in a network
with 4 hidden layers with 18 nodes each.

6.6 Initialization

Before training, the weights and biases of the neural network must be initialized to some value. It is
important to consider how to initialize the network, because for some sets of weights and biases the
network may train very poorly. For example, if using ReLu activation functions (see , the
network may be initialized in such a way that all the neurons are ‘dead’ from the beginning. Similarly,
with our hyperbolic tangent activation function, the network may exhibit the vanishing gradient problem
from the start and training will be slow.

A certain degree of randomization is desired in the initialization, because we do not know a priori
what the weights and biases should be and we do not want the trained network weights to be strongly
dependent on our baseless guess. Furthermore, the different weights and biases should differ from one
another. Otherwise they would all be modified in exactly the same way during the training and differences
between the neurons together in a layer would never arise (so that the network is effectively reduced to a
network with 1 node per hidden layer).

Nguyen-Widrow initialization [156] is used as the method of random initialization. In this method
of initialization, the input space of a layer is divided over all of the neurons in that layer. The neurons
are assigned weights and biases such that they all have their linear domain (see in different
parts of the input space, and that together their linear domains cover the whole input space. The linear
domains are allowed to overlap slightly and there is a random element to the initialization. With this
initialization we know that the whole input space will be utilized in the training from the beginning, and
that no neurons are ‘near death’ (where their gradient is very small, see again .

In we investigate the effect of multiple random initializations on our problem. We want to
know if our network runs a high risk of not being able to reach a good optimum, when its initialization
is unlucky. Therefore we initialize the network a specified amount of times, and record the validation
error of the best of the trained networks. In we plot this validation error, for different numbers
of initializations. By averaging the results over a number of runs, we get the expectation and standard
deviation of the error. We see that the expected validation error hardly decreases with increasing amounts
of initializations, on the scale which we are interested in (orders of magnitude like in and
. It can therefore be concluded that multiple random initializations are not necessary.
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Figure 6.9: Plots of the training and validation error (using 5% noisy training data and clean validation data)
when taking the best net (lowest validation error) out of a specified number of initializations. The results are
averaged over ten runs; the shaded bands show the standard deviation.

6.7 Training data

The data used for the networks in this chapter is uniformly sampled around the parameters of the
standard steady state case discussed in The precise ranges are given in Every
possible combination of the different uniformly sampled parameters is taken. This sampling results in
24576 data points. For each data point the theoretical steady state averaged velocities and stresses are
calculated via equations 7.

A downside to this sampling method, is that many data points share a lot of the same parameter
values, with only one or two parameters differing between the data points. This means that multiple data
points are likely to end up with similar averaged velocities and stresses. The data points will thus be
relatively clustered; they will not fill the parameter space well. Also, when randomly splitting the data
set into training and validation data sets, the validation data set will contain points very similar to points
in the training data set. Therefore, it may not be distinct enough to be good test of the generalizing
behavior of the network. We have seen this in [Figure 6.4] and [Figure 6.7] when we use training data
without added noise. We eliminate this problem by using Latin Hypercube Sampling (LHS) [157] in

Table 6.1: The ranges for the analytical steady state data used in this chapter for tuning the neural network
parameters.

Parameter Symbol Range Units Number of samples
Background pressure gradient 9p/0s [0, —3] kgm™2s572 4
Liquid density oL [500, 1500] kgm™3 4
Gas density Il [0.6,1.8] kgm™3 4
Channel height H [0.005,0.015] m 4
Initial interface height Rint [0.02,0.98] H m 6
Liquid viscosity 1759 [0.5,1.5] - 1072 kgm™'s~! 4
Gas viscosity e [0.9,2.7]-107% kgm~ls7! 4
Acceleration of gravity g 9.81 ms~2 1
Pipe inclination 1) 0 degrees 1

As stated above, we add Gaussian noise to the output variables 77, 7g, and 7y, with a standard
deviation equal to 5% of the original value, so that the training data mimics measured data better.
Another form of preprocessing is performed on the data. The data is mapped to the range [—1, 1], not
coincidentally the range of the hyperbolic tangent activation function and its approximate linear domain
(see . This means that the weights need not be very large or very small in order to get the data
in the active range of the neuron. Furthermore, the biases can a priori be centered around zero. This
helps the numerical stability of the network. When using the network (after training), input data that is
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fed to it is stretched and translated in the same way as the input training data was, and the output is
stretched and translated opposite to the way the output training data was.

In an equation:

~ - (/N YL

Z; *)
max ||

: (6.6)

where Z; is some input variable, and (1/N) > x; and max |z;| are determined from the training data set.
The inverse is done for the output:

N
G — gimax |y;| + (1/N) Y ui, (6.7)
=1

where 7; is a network prediction and max |y;| and (1/N) > y; are determined from the training data set.

It is important to know if we have enough data to train our network with its many degrees of freedom. If
we have less data points than degrees of freedom and we apply no regularization, we can expect overfitting
to occur like when fitting a polynomial of overly high degree (discussed in [section 6.5)). [Figure 6.10| shows
network performance after training our network with different amounts of data, randomly sampled from
the total data set of 24576 points.
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Figure 6.10: Plots of the training and validation error after training with different amounts of data (the
validation data set remains constant). The red dotted line shows the amount of degrees of freedom in the tested
network with 4 hidden layers with 18 nodes each. The second and third plots have Gaussian noise added to 71, 7¢,
and Tint in the training data, with the given percentage of the original data value as the noise standard deviation.

We do indeed observe high validation errors with low amounts of data, decreasing with increasing
amounts of data until convergence, for the networks trained on noisy data. With noise added to the
data, we observe the training error growing with increasing amounts of data, before convergence. The
training error grows because the network can no longer overfit a small collection of data points, but must
generalize to find the pattern behind the noise, which works decently for all data points. The validation
error drops while this is happening. At some point the training error is dominated by the noise in the
training data and it does not grow anymore, while the network can still improve its performance on the
validation data by perfecting its learned pattern with the help of more training data.

A common test for overfitting is to see if the validation error converges to the training error (if they
do not match we have overfitting), however this is not applicable when adding noise to the data. It is in
principle applicable to plot (a) of where no noise was applied to the training data. Though
in this case, the network is probably still overfitting even though the training error and validation error
match. The validation and training data sets used here are probably not distinct enough in this case,
since their performance shows the same erratic behavior.

From plot (b) of [Figure 6.10| we can conclude that when using the 5% noisy training data our amount
of data is sufficient; the validation error will not be significantly reduced by adding more training data.
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6.8 Results

After all the hyper-parameters have been set according to the discussion in the previous sections of this
chapter, we need some metrics to evaluate the network’s final performance, other than a cost function
value which does not provide enough information. The scale of the cost function is determined partially
by the scale of the network outputs. The single cost function value that we show in this chapter is the
mean of the cost for the three different stresses. We thus need a metric which is more differentiated and
which has a meaningful scale. For this we derive inspiration from Ma et al. [11] and make regression and
error distribution plots.

A regression plot as meant here, plots the value of a stress as given in the data for a certain set
of inputs on one axis, and the value that our model (the neural network) predicts for this same set of
inputs on the other axis. Ideally, the model would predict the data perfectly, and the blue points in the
regression plots of would all lie on the line Y = T (prediction = target). The R? value

R2—1_ Zil (Yi — yl,i)Z _ (6.8)
S (5 - /N S )

provides a metric to indicate to what degree this is the case (the maximum value is 1, the minimum value
is 0). In this definition, g; is the model prediction. We construct a linear fit of the model prediction
¥; as a function of the data and call it y;. The value y;; is the value of the linear fit at the data point
yi, corresponding to prediction g;. With definition , R? is the square of the correlation coefficient
between data and predictions.

We see in that the network predicts the theoretical steady state validation data well. The
other plots show the distribution of the normalized error, defined here as the difference between the model
output and the (validation) data:

Yi —Yi
€; o (6.9)
It would ideally be centered around zero and remain close to zero. For the theoretical steady state
validation data this is indeed the case in for all three stresses; the liquid wall stress 77, the
gas wall stress 7, and the interfacial stress 7iyg.

In we will perform 2D CFD simulations of wavy flow to gather neural network training data,
but to make this feasible we vary only three parameters: hin, Op/Js, and the interface amplitude Ahjy.
shows the performance of the network trained on the data, on the analytically
calculated steady states of the sets of parameters corresponding to the data used in the following chapter.
These steady states fall within the range of the training data, and are generated in the same way. The
correlation is reasonable, but still it is significantly worse than the correlation for the validation data set
with the same range and distribution as the training data set.

The problem could be that the data used in this chapter is not distributed randomly; we improve on
this in the following chapter. It may also simply be that the data used in this chapter is very sparse, due
to the high dimensionality of the data (we vary 7 parameters). The network performs well in the areas
around clusters of data points (of which points are likely present in both the training and validation data,
due to our sampling method), but bad in empty regions. New data sampled in a different way has a high
chance of being in these empty regions. This is likely the case for the clusters of points far from the
centerline in the regression plots of which correspond to the outliers in the error histogram.

When we evaluate our network for the actual unsteady simulation data of we get some
more remarkable results, which are shown in Particularly for the liquid stress, our network
does not predict these simulation results well. This is because the oscillations in the liquid stress are
very large, while the gas and interfacial stresses remain relatively close to their steady state values. In
it is seen that the stresses oscillate with a greater amplitude than steady state closure terms
based on approximately the same velocity and interface height values would predict (the Rosa simulations
use these closure terms and show their values). This causes the model to predict identical stresses for
many different stress values actually appearing in the data. Our network does not predict this unsteady
behavior at all and this is well visible in the liquid stress regression plot, with the fit through the data
deviating strongly from the line Y = T'. But even for the gas and interfacial stress we see large deviations
from the center line in the regression plots. The ‘shocks’ in the interfacial stress depicted in
will also contribute to this, because here the simulations (unphysically) give widely different interfacial
stress values for exactly the same velocity profile.
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Figure 6.11: Regression and normalized error ((y; — ¥:)/y:) distribution plots for a neural network trained on
the 5% noisy data from [Table 6.1} tested on clean analytical validation data corresponding to the wavy simulations

done in [chapter 7
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Figure 6.13: Regression and error ((y; — ¥i)/y:) distribution plots for a neural network trained on the 5% noisy

data from tested on the wavy unsteady simulation data used in

The same poor results as seen in are obtained when the analytical closure relations are
tested (as the model) on the wavy unsteady simulation data directly, so without passing through a neural
network first (as the training data). What this tells us is that we need to train our network on unsteady
simulation data in order to obtain accurate closure terms for the unsteady case. This may seem obvious,
but the conventional closure terms discussed in are all based on fully developed steady
state flow, and will thus likely correlate similarly poorly with our 2D wavy unsteady simulation data.
Training a neural network on the unsteady simulation data, which we will do in thus has the
potential to yield new dynamic closure terms which are much better suited to dynamic simulations.

In [section 5.3 we had already discussed the uniqueness issue with calculating stresses, implicitly via
velocity profiles, from averaged velocities. This is a problem inherent to forming a relation of the form
, and is not alleviated by training a network on unsteady simulation data. However, adding extra
inputs, such as the interface slope, does alleviate the issue, and this is easy to do when using our method.
Notably, this specific extra parameter helps to distinguish between unsteady and steady states.

The point of training on unsteady data itself stands somewhat separated. This will in principle
improve the performance of the closure terms for unsteady flow at the expense of its performance for
steady state flow. Though there need not be a negative effect for the steady state closure terms if these
are also included in the training data and the structure behind them is similar to that of the unsteady
closure terms.

6.9 Conclusion

We have looked into a number of the numerous choices to be made in the formulation and training of a
neural network. In the process we have discussed a number of aspects of neural networks and metrics
to monitor. We have performed experiments with analytical steady state data to inform these choices.
With these choices we have come to a network which performs reliably (R? = 1) on the validation data
corresponding to its training data, and a bit worse (R? = 0.84-0.91) on analytical steady states sampled
very differently. This performance can likely be improved by changing the data sampling method, and we
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will do so in the following chapter.

Nonetheless, we have found a satisfactory network architecture using steady state data and validated
it with analytical data, corresponding to a (modified) step [3] and [4] in our project flow chart
The architecture is a fully connected multilayer perceptron network (MLP), a basic first choice for function
fitting. With the chosen input-output relation, more advanced architectures are hard to justify. The
chosen neural network should have just enough degrees of freedom to produce this relation, and not too
many. [t was shown that multiple initializations are unnecessary, and that the tested data set containing
24000 points was large enough, so that regularization via the cost function is unnecessary.

On wavy, unsteady, simulation data, the network performance is unsatisfactory. Particularly for the
most unsteady output variable, the liquid stress, the model prediction is poorly correlated to the data.
This may seem obvious, but conventional closure terms are all based on steady state
flow. Seeing as our network can reproduce steady state closure terms relatively well, it seems here that
closure terms based on steady state flow are not sufficient for application to unsteady flow.

This justifies the research of the next chapter, where we will use unsteady high fidelity simulation
data to learn closure terms which should hopefully perform better for the unsteady case.



Chapter 7

Closure Terms for Unsteady
Simulations

7.1 Introduction

In this chapter, we train neural networks using unsteady, wavy, Gerris simulation data. This corresponds
to step [5] in our flow chart The simulations are similar to those analyzed in
In we saw that Gerris simulations and Rosa simulations using the analytical steady state
closure terms show good agreement at steady state, but less during the unsteady phase of the simulations.
Furthermore, in we saw that neural networks trained using theoretical steady state relations
showed poor agreement (especially for the liquid wall stress) with unsteady wavy simulation data. In
F it was noted that no direct relation exists between the current closure term inputs (listed in
(6.3)) and the velocity profile (and thus the stresses), when all possible unsteady states are included.
However, it may be possible to find which unsteady velocity profiles are common, using our high fidelity
code, when starting from certain types of initial conditions. A neural network might learn the commonly
occurring velocity profiles and the associated stresses in an automated fashion, and in this way it might
be possible to find closure terms which improve the agreement between our high fidelity and low fidelity
codes, for the wavy unsteady regime.

In order to judge the performance of closure terms based on unsteady data we insert our neural
network into the low-fidelity code to serve as its closure terms, in place of the analytical closure terms or
any of the empirical correlations discussed in [subsection 3.4.4] This is step [7] in For step
[8] in we quantify the difference between the Rosa results that follow and the Gerris results,
and compare this to the difference found when using analytical closure terms. We also compare physical
aspects of the Rosa solutions using the two different sets of closure terms to the Gerris simulation results.

7.2 Training data

Our aim is to learn closure terms for a limited parameter space encasing the standard test case described
in This test case is plotted as a cross in where it is shown to be well in the
well-posed stable regime of the two-fluid model. This means that we can safely apply perturbations to
this case, with confidence that the waves will damp out with time, so that our simulations will remain
limited to stratified, small perturbation flow. In the long wavelength limit, 2D inviscid stability analysis
gives a stability boundary equal to the ill-posedness boundary for the two-fluid model (also shown in
Figure 4.4b)). Therefore we can be confident that our 2D simulations will be similarly stable. Because our
standard parameter set is deep in the well-posed stable area, we can safely conduct simulations with a
parameter range around this point.

Our parameter ranges are shown in Two of the three varied parameters are axes of
the stability map shown in the third parameter Ah;,; has no influence on this plot. We
choose to vary only three parameters as opposed to the seven varied in because now we are
using space- and time-dependent simulation data as opposed to analytical steady state data, so that we
require much more computation time per parameter set. This makes it infeasible to sufficiently fill out a



90 Closure Terms for Unsteady Simulations

Table 7.1: The ranges for the parameters of our wavy unsteady high fidelity simulations, used as training
data. The remaining parameters are kept constant and equal to the standard parameters of We start
simulations with two different types of initial conditions; one where the fluids are completely at rest, and one
where at each position along s the theoretical steady state is calculated, corresponding to the local interface height
hint.

Initialization hing [H] Op/0s[Pa/m] Ahy[H] N
7€r0 Wavy [0.05,0.95] [0, —3] [0.00,0.04] 30
developed wavy  [0.05,0.95] [0, 3] 0.00,0.04] 30

seven-dimensional parameter space with the available computational resources, while a three-dimensional
space remains manageable.

The parameters of are sampled using Latin Hypercube Sampling (LHS) [157], with N = 30
samples per initial condition. With this sampling method, the input space of each variable parameter is
divided into N sections. Then a random sample is taken within each of these sections, for each variable.
The random samples taken per parameter are randomly coupled with the random samples of the other
variables. With this method we ensure that the input space of all parameters is representatively sampled,
and that values of the parameters are never repeated over multiple samples. As is noted in the original
article by McKay et al. [157], this is an advantage when the output of the model is dominated by only one
or a few of the varying parameters, which was hypothesized to be a problem with the uniform sampling
method described in section 6.7

Out of all the parameters that we can vary, we choose to vary hint, Op/0s, and Ah,, with regard
for practical application. If the fluids and pipe geometry are set, these parameters are all that remain,
besides perhaps the wavelength of the wave. Having a closure model trained on data in which these
parameters are varied allows dynamic low fidelity simulation of flow in a fixed pipe with fixed fluids,
without running much risk (determined only by the chosen ranges) that the model might enter a regime
for which the closure model has not been trained.

We limit the parameter ranges as to not consider very thin layer flow (at low and high hiy), which is
difficult to resolve with our 2D code, leads to different effects in our 1D code (see top of ,
and which nears single-phase flow, the transition to which our codes cannot handle.

The dynamics of our test case were studied in [subsection 5.5.2] For both initial conditions we get
‘standing’ waves which travel at low speeds, and damp out after some time. For the developed wavy
case the waves travel a bit faster from the beginning. The standing wave behavior arises because two
waves traveling in the opposite direction are generated from the initial perturbation. In practical pipeline
applications, the velocities will be higher and the traveling behavior will be more prominent than the
oscillating behavior. However, our test case does include both behaviors and serves as an example of low
Reynolds and low Froude number behavior.

Varying the parameters as given in will give rise to many different velocity profiles, and
stresses. Performing unsteady simulations means we will acquire many data points per parameter set,
equal to the number of grid cells along the s-axis multiplied by the number of snapshots that we take, as
opposed to just one steady state per parameter set as in Though we can increase the amount
of data by increasing the spatial and temporal resolution, if the resolutions are high the data points might
be nearly identical and not actually add extra information. This also depends on the state of the flow; in
the initial unsteady phase of the simulations different points will contain more information than in the
eventual steady and fully developed phase. Therefore we take the approach to take many snapshots (40
per second, over 10 second simulations) and take data from each horizontal position (spatial resolution
from is H/64, with L = 12H making 768 points along the s-axis). We aggregate the ~ 300000
data points per simulation to form our data set, resulting in over 9 million points per initial condition,
and then randomly sample a small portion (5-10%) of it.

In this chapter, we train networks on the initial conditions of separately, and we train
networks on a data set in which the data for the two initial conditions is combined. We refer to these
networks as

e ‘zero wavy net’,
e ‘developed wavy net’,

e ‘zero + developed wavy net’.
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The first two nets are trained on 5% of their respective data sets. The third net is trained on 10% of the
data combined for both initial conditions.

7.3 Training of the network

We initialize a neural network with the structure discussed in However, because we only vary
hint, Op/0s, and Ahiys, the only network inputs of those listed in that remain variable are hjyg,
ur, ug, and Ohiny /s, so that our network will only learn the relation between these variables and the
stresses, at constant values for the other parameters. This could have some influence on the optimal
choice of network structure, but we assume that a network which performs well with all the parameters
as inputs will perform adequately when only a subset of them is varied. Technically, when the inputs are
limited to this the structure of the network changes from [Figure 6.3 to [Figure 7.1|

Input Layer Hidden Layers Output Layer

Figure 7.1: A schematic of the neural network structure as applied in this chapter. We have only four variable
inputs, and three outputs. There are four hidden layers with 18 nodes per hidden layer.

We train the network using the Levenberg-Marquardt algorithm discussed in In order
to prevent unnecessarily long training, and improve generalization, we apply validation stopping. The
network is trained on training data which is a random subset of the total data set. After each optimization
iteration, also called an epoch, the performance on a different subset of the data set, the validation data,
is tested. If the performance on the validation set fails to improve a certain number of epochs in a row,
the training is halted. The progression of the training is shown in

During the initial phase of the training, the cost function decreases rapidly. Afterwards the progress
is slow. This may indicate a structure of the loss landscape as described by Choromanska et al. [151] for
larger networks, where many local minima of high quality are located in a narrow band in terms of the
cost function. In the high-dimensional loss landscape spanned by the weights and biases, there is a group
of local minima with similar cost function values. It is relatively easy to get into this band, but finding
the best minimum in this band is hard, though in practice it does not matter much where exactly in this
band we end up (so we might as well end our training earlier).

The training shown above was done on 10% of the combined data for both initializations, and took in
the order of a couple of days to complete (on a single CPU). For each epoch, the training goes through the
entire selected training data set. The computational cost and generalization capacity may be improved in
the future by using a stochastic gradient descent algorithm [158], which is not implemented in the current
version of the used MATLAB toolbox.
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Figure 7.2: Training curve for a network trained on wavy unsteady Gerris data for both initial conditions given
in The cost values for the training, validation, and test data largely overlap. The training stops when
the cost measured on the validation data no longer diminishes.

7.4 Quality of approximation of data

In we show the regression plots and error distributions for our neural network trained on the
combined Gerris data with both initializations: the ‘zero 4+ developed wavy net’. It shows the performance
of the network on validation data from the same dataset as the training data. The plots in the figure
show that our data is predicted sufficiently well by our neural network. The prediction is less precise than
the perfect score of our net trained on noisy analytical data in but this is to be expected
since in actual simulation data there will be artifacts (such as the shocks in the interfacial stress shown in
, and noise. Moreover, the simulations exhibit complex wavy unsteady behavior, as opposed
to the simple steady states considered in

The validation data used in is the same data which is compared to our analytically
trained net in With the current network being trained on the unsteady data, it succeeds
in reproducing the data much better. The current good performance is a confirmation of our network
architecture and training. The network seems to be able to capture the unsteady stresses, when given
unsteady training data.

In[Figure 7.4 we can see the results if we leave out the interface slope as an input for the neural network.
The performance deteriorates significantly, particularly for the liquid stress (seen in the reduction of
R? from 0.978 to 0.732). Apparently the interfacial slope is an essential piece of information for the
determination of the stresses. It seems to be a good measure of the interface waviness, and of the local
phase of the wave. The liquid stress was already seen in to oscillate strongly for our test
case, at the wave frequency. Thus to determine if the liquid stress should locally be at a positive or
negative extreme, or in between, it is essential to know the local phase of the wave, and this information
is provided by the interface slope.

The deterioration in the approximation of the gas and interface stress seems insignificant in comparison.
However, the relative strength of the oscillation in the liquid stress compared to that of the gas and
interfacial stresses is likely particular to the current test case. For in this test case the liquid velocity
is low, and much lower than the wave velocity. This is indicated by the very low Froude number in
the flow is deep in the subcritical regime. Thus the varying liquid velocity induced by the
waves is large compared to the mean flow; and the same holds true for the liquid stress. The gas Froude
number is much larger and thus the oscillations are weaker compared to main flow.
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Figure 7.3: Regression and relative error ((y; — ¥s)/y:) distribution plots for a neural network trained on the
data combined for both initial conditions of
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Figure 7.4: Regression and relative error ((y; — ¥s)/y:) distribution plots for a neural network trained on the
data combined for both initial conditions of However, in this network the interface slope is not included
as an input. This leads to a clear deterioration in performance, particularly for the liquid stress.
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7.5 Two-fluid code results

7.5.1 Overview

We sample the data with replacement to get five different data sets, each a small percentage of the total
data set. We train (randomly initialized) networks on each of these subsets of the data, and load each of
them into the Rosa code. This corresponds to step [7] in At each stage in the Runge-Kutta
time integration scheme, the variables as given in are fed to the trained neural networks to arrive at
values for the stresses 71, 7, and 7. The final prediction for the stresses is obtained by averaging the
predictions of each of the five networks. This averaging procedure is called ‘bagging’ and was shown to
improve accuracy for learning algorithms sensitive to changes in the training data [159]. This technique
was also employed by Ma et al. [11].

Unfortunately, with the current MATLAB shallow neural network implementation, using these
networks significantly slows down the Rosa code simulations. Just using one neural network, instead of
the analytical closure terms, the simulation time is increased by a factor of five. Bagging five neural
networks as described above, the simulation time increases by almost a factor of twenty. This is currently
a large drawback, but it might be improved by implementing the networks more efficiently; as they are
not very deep and would not be expected to be so costly to calculate.

We evaluate our results mainly by comparison to the high fidelity simulation ‘ground truth’. This
refers to step [8] in the project flow chart An important assumption in our procedure is that
the high fidelity data represents a good ground truth.

The Gerris and Rosa simulations use different grid resolutions. In order to be able to compare Gerris
and Rosa results quantitatively, cubic splines of the variables of interest are constructed, along the
horizontal axis. The s-dependent Gerris result at t = ¢; is y;, with ; the corresponding Rosa result. We
compute characteristic values y. for each variable of interest, based on analytical solutions for laminar
single phase flow. shows the following relative error measure for the difference between Gerris
and Rosa results, termed the ‘normalized averaged error’ (NAE):

NAE_NTZ\/ /SO yyy> ds. (7.1)

The parameter Nt is the total number of time steps and L is the length of the domain. This can be
regarded as the root-mean-square-error (RMSE) of the normalized variables along the horizontal axis,
averaged over time.

This error is shown for simulations initialized from different initial conditions, and using different
closure terms. Analytical closure terms are tested alongside closure terms learned from the wavy
unsteady data of using neural networks. Where the neural network assisted error is smaller
than the analytical closure error, the error value is highlighted green in

We calculate the factor by which the error is changed, using neural network instead of analytical
closure terms, for each variable of interest. This factor is averaged over all the variables of interest and

displayed in the last column of

Table 7.2: Normalized and averaged errors between high-fidelity and low-fidelity simulations, according to 7
for different variables of interest. The results are given for Gerris and Rosa simulations starting with different
initial conditions, and with the Rosa simulations using either analytical or learned closure terms. The final column
shows the value of the neural network closure error divided by the analytical closure error, for each variable
separately, and then averaged.

Case Normalized Averaged Error [1073]  Relative
Initialization Closure hint ur ug L TG Tint
Z€ro wavy analytical 1.05 84.6 139 212 733 264 -
7€ro wavy zero wavy net 0.31 754 4.22 283 26.2 38.5 2.65
Zero wavy zero + developed wavy net 0.52 193 15.2 233 10.8 285 1.25
developed wavy analytical 1.09 755 122 215 7.56 18.2 -
developed wavy developed wavy net 0.42 385 3.52 215 5.07 18.7 141

developed wavy zero + developed wavy net 0.51 112 126 173 8.20 26.6 1.06
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The table shows that the neural network assisted error is smaller than the analytical closure error, for
some of the variables of interest. The performance is improved most for the interfacial height, and least
for the liquid velocity. Looking at the final column in on average the learned closure terms do
not seem to improve the performance, though the zero + developed wavy net comes close. However, the
error metric displayed in is just one metric, which does not measure the similarity in dynamic
behavior between the high and low fidelity simulations.

The best results overall are obtained for the developed wavy initialization, using networks trained on
both initial conditions (the zero 4+ developed wavy net). We show the results graphically side by side
with the results obtained using the analytical closure terms, in The figure shows the velocities,
stresses, and interface height at the center of the domain, as a function of time.

In we see a comparison of the Rosa and Gerris results for the interface height throughout
the domain, for the same developed wavy case. Here, the Rosa simulations also use the zero + developed
wavy net closure terms. This figure can be compared directly to where analytical closure
terms are used in the Rosa simulations. From this comparison we can see that the Rosa simulations using
neural network closure terms succeed in following the Gerris simulations better.

7.5.2 Wave damping behavior

The figures [Figure 7.5 and |Figure 7.6/ show how the scale and form of the oscillations is captured better
by the neural network closure than by the analytical closure. Particularly at later times the analytical
closure causes different wave behavior. This difference in the replication of the wave behavior is seen in
the velocities, the stresses, and the interface height. The problem with the analytical closure terms is
shown well in in which the same simulation results are shown for later time instants (with
the analytical closure). The waves acquire a sharp wavefront, and in its wake small spurious waves are
formed. This seems to be an example of numerical dispersion.

The simulations using the neural network closure use the same numerical scheme, but do not show
this problem. The neural networks, with unsteady wavy data as training data and the interface slope as
an input, learn to replicate the damping behavior. Rosa simulations with the neural networks as closure
terms show the same damping behavior as the high fidelity simulations, and do not form near-shocks or
spurious oscillations.

An explanation is that the stresses should damp the oscillations. Inviscid linear stability analysis
predicts that the waves should propagate without growth or damping, for this test case (and the inviscid
1D two-fluid model was shown to agree with this analysis to a good degree in . In these
viscous simulations, the waves are damped.

Both the analytical closure terms and the neural network have the averaged velocities and interface
heights as inputs, which vary along the length of the wave. This allows stresses to vary along the length
of the wave, enabling damping. However, these alone, considered locally, offer no information on the
wavelength or phase of the wave: the analytical closure terms just consider the steady state corresponding
to these inputs.

A part of the oscillations of the stresses can likely not be fully explained by the changes in velocity.
This is because the velocity profiles are shaped differently during different phases of the wave, so that a
given averaged velocity at some point along the wave gives a different velocity profile than if the same
averaged velocity were found at another point along the wave. An explicit dependence on the waviness and
local wave phase may be necessary. This can be provided, for example, by the interfacial slope. Adding
an input parameter to the closure relation alleviates, in this way, the uniqueness problem discussed in
lsection 5.d!

For the neural network the interfacial slope is easily added as an extra input, since the neural network
is based on direct calculation of the stresses from high fidelity data as opposed to steady state balances
(as discussed in section 6.3). This extra parameter makes a significant difference, given that we have also
tested a neural network without this parameter as an input (seen earlier in ; this results in
extreme oscillations.

The neural networks learn the relation between the averaged velocities, the interface height, the slope
in the interface height, and the stresses. On the other hand, the analytical closure terms are based on
the flat interface steady state and are not informed on the stresses in wavy flow. They freely allow the
growth of interface height discontinuities and small wavelength perturbations (which may arise due to
numerical error).
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Figure 7.5: Evolution in time of the velocities, stresses and interface height at the center of the domain.
Initialized with the ‘developed wavy’ initial condition.

(e) Analytical closure.

(f) Zero + developed wavy net closure.
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Figure 7.6: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
(H = 0.01m). We see Rosa results with a ‘developed wavy’ initialization and ‘zero + developed wavy net’
closure. This figure can be compared directly to where analytical closure terms are used in the Rosa
simulations.

We note that closure terms for wavy flow exist (see e.g. Andritsos and Hanratty (1987) [107] or
Cheremisinoff and Davis (1979) [109]). However, even these wavy closure terms are based on the fully
developed steady state. This means that the waves are not explicitly modeled with the interface height
as a function of the horizontal coordinate. Rather, the averaged effect of the wavy interface in a section
of pipe is considered. Because of this, it is not possible to include the interfacial slope as an input for the
closure relations; its average value is zero.

Our methodology allows for direct calculation of the stresses and any known quantity in the 1D
averaged model, at any time and location in the high fidelity simulations, and automatically infers a
relation between them, so that we can have closure terms which differentiate between different phases of
the wave.
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Figure 7.7: Evolution in time of the interface between liquid and gas throughout the domain, zoomed in
(H = 0.01m). We see Rosa results with a ‘developed wavy’ initialization and analytical closure.

7.5.3 Wave speed

An aspect where the Rosa simulations using neural network closure show a difference with the high-fidelity
simulations in is the wave speed. The wave speed of the Rosa simulations is slightly larger
than that of the Gerris simulations, so that the two slowly drift out of phase. They seem to be 180
degrees out of phase after about 12 oscillations. This effect becomes unnoticeable due to the damping of
the wave, after which the simulations come to agree roughly on the steady state.

This difference in wave speed causes the large differences between the Gerris and Rosa codes as
calculated according to (shown in to persist, even though the behavior of the waves is
otherwise similar.

The difference in wave speed between Gerris and Rosa simulations is unsurprising, for it was discussed
in [chapter 4] and [section 5.5| that the models differ fundamentally in this aspect due to the form of the
model equations, already without consideration of the closure terms. The inviscid dispersion relations
for the test case, plotted in [Figure 5.13] indeed show a higher wave speed for the 1D model than for
the 2D model. This wave speed vanishes at increasing wavelengths, but apparently is still visible at the
wavelength A = 12H considered here.

7.5.4 Other networks

The Rosa simulations using the other learned closure terms, listed in have roughly the same
characteristics as the results shown here. The difference for simulations initialized with the ‘zero wavy’
initial condition is of course the evolution of the averaged velocities to the steady state. The same plots
as given in are shown in for this initial condition.

The agreement is once again improved, although in these simulations the liquid stress prediction is off
at the beginning of the simulations. This can be attributed to odd behavior of the liquid stress in the
initial period of the high fidelity simulations. The liquid stress spikes quite sharply and erratically here,
particularly when simulations with low interface height are considered. This might be due to a fault in
the high fidelity simulations, or in the calculation of the stresses from the simulations (as discussed in

for the interfacial stress).
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Initialized with the ‘zero wavy’ initial condition.
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For the network trained solely on training data with the ‘zero wavy’ initial condition (not pictured),
the final liquid velocity is badly missed however: it is predicted to be near zero. Also for the developed
wavy case, the network trained on both initial conditions (the ‘zero 4+ developed wavy nets’) seems to
outperform the network trained on only the single initial condition. One factor in this will undoubtedly
be the higher amount of data that networks trained on both initial conditions have seen.

Additionally, a regularizing effect may be caused by training on these different flows, with possibly
similar patterns connecting the averaged variables and the stresses, and differing noise. This is not at all
obvious; one might equally well expect different patterns for the different initial conditions, which would
mean that networks would have to be trained for the different initial conditions separately. The finding is
advantageous however: it means that our neural network closure can be applied to a wider range of flows.

It should be noted here that neural networks trained on data of only one of the initial conditions show
poor correlation coefficients when tested on data of the other initial condition. This effect is particularly
strong for the liquid stress. This indicates that our neural network training does not extrapolate well; it
only interpolates.

We have also applied neural network closure without bagging (averaging the predictions of multiple
networks trained on different subsets of the data). The performance without bagging is significantly
worse than the performance with bagging. Small and sharp oscillations are not damped sufficiently.

7.6 Conclusion

We have trained neural networks on unsteady wavy DNS data, with a parameter range ensuring damped
wavy flow, starting from two different types of initial conditions. Our networks were observed to correlate
well with validation data, indicating that our architecture is suitable. However, leaving the interfacial
slope out as a neural network feature was seen to significantly deteriorate the neural network performance.
Apparently in this case the network misses the information needed to have a unique relation between the
known inputs and the stresses.

We have used only the interfacial slope as an extra input, compared to conventional closure terms.
However, we might relatively easily include more inputs, so that with more information the network might
make even better predictions. Example extra inputs are velocities and interface heights at surrounding
grid points and at preceding time steps.

The neural networks were applied as closure terms in our low fidelity 1D two-fluid model code, Rosa.
Using these new closure terms significantly improved agreement with the high fidelity simulations on
which they were trained. Particularly the damping behavior of the waves was captured better, when
compared to Rosa simulations using conventional analytical closure terms. This is enabled by the closure
terms being dependent on the local phase of the wave (via the interface slope). This is different to the
conventional wavy interface closure terms of e.g. Andritsos and Hanratty |107], which consider only the
spatially averaged effect of a wavy interface on a fully developed flow.

The steady state behavior was also captured satisfactorily. The main difference that remains is the
difference in wave speed, which is caused by the differences between the 1D model and 2D model that do
not involve the closure terms.

Networks trained on data sets including high fidelity simulations initialized from both initial conditions
were found to perform well. This leads us to believe that the relation between averaged variables and
stresses has a structure common to both initial conditions, which is beneficial for the generalizing capability
of our neural network closure.

Furthermore, averaging the predictions of multiple networks was found to increase the accuracy, and
improve the damping behavior.

What is lacking at the moment is an efficient implementation of the neural network forward propagation
which allows quick predictions, so that the low-fidelity code remains computationally efficient.



Chapter 8

Conclusions and Recommendations

8.1 Conclusions

In this thesis, we have trained neural networks on high fidelity simulation data to learn closure terms for
the wall and interfacial stresses in our low fidelity model; the 1D two-fluid model for stratified channel
flow. We used a 2D volume of fluid code as our high fidelity simulation code. The aim of learning closure
terms in this way was to get our low fidelity model to give predictions which match the predictions of the
high fidelity model better.

Closure terms of the conventional form suffer from a uniqueness problem, which is a result of the
cross-sectional averaging of the two-fluid model equations. This is masked by assuming fully developed
steady state flow, for which it is possible to formulate a unique relation between local averaged quantities
and stresses. In this work, the ‘conventional’ closure terms of Ullmann et al. [9] are shown to not generalize
well to unsteady wavy flow.

Another problem with conventional closure terms is their great variety, from which it can be hard
to make a choice. Particularly for non-standard geometries, or for wavy interface flow, the choice is
not straightforward. For two-phase flow, closure terms based on fully developed flow need to contain
assumptions on the form of at least one of the stresses or the relations between them, because the three
stresses cannot be determined uniquely from the two steady state balances.

Therefore our approach is to conduct 2D transient simulations of two-phase channel flow with a
perturbed interface, and use a neural network to find a relation between the averaged quantities and the
stresses. In these simulations, the stresses and the averaged quantities can be calculated locally, and at
each instant in time, also for unsteady flow, in a direct manner. As a result, no assumptions are needed,
and local effects can be taken into account. In conjunction with the neural network, this allows the
addition of extra inputs to the closure relations, alleviating the uniqueness problem; in this work we add
the interfacial slope.

Our method can in principle be applied to any geometry and flow conditions for which good high
fidelity simulation data is available, without much knowledge or an experimental setup. This provides
independence from the closure terms in literature, which might not generalize to the problem at hand.

We tuned and validated our network architecture by experimenting on analytical steady state data.
We made a choice for a single network to predict all three stresses; since in literature they are all based on
similar dimensionless groups, and the network will be more likely to find these groups if tasked with the
prediction of three different stresses. Additionally, using a single network for the three stresses reduces
the computation time when applying the network in the low fidelity model.

Training on wavy unsteady simulation data, we have succeeded in generating closure terms for the
wall and interfacial stresses in the 1D two-fluid model, which perform better, for wavy unsteady flow,
than the reference conventional closure terms of Ullmann et al. [9]. We considered laminar flows with
damped waves, initialized from a zero velocity field or with velocities near the steady state velocities. The
performance is evaluated by measuring the difference between results of low fidelity simulations using the
learned closure terms, and high fidelity simulations. For some of the variables of interest, the space- and
time-averaged error is smaller when using the learned closure terms than when using the conventional
closure terms.

The learned closure terms excel particularly in reproducing the damping behavior of a wavy perturba-
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tion. This is likely largely enabled by the addition of the interfacial slope as an input parameter to the
closure relations. This addition is an important novelty in our method, not present in conventional closure
terms. It allows the closure terms to have a dependence on the phase of the wave, which goes beyond
only a dependence on the averaged velocities and interface height varying over the phase of the wave.

The wave velocity remains different for the 1D and 2D models, as expected from the stability analysis.
This explains, for a large part, the significant remaining error between the neural network enhanced low
fidelity simulations and the high fidelity simulations, even though the damping behavior is replicated well.
The difference in wave velocity is the result of a limit to the degree to which improved expressions for
the stresses can be used to improve the agreement between the models, a limit which is shared by our
approach and the conventional approach. The difference between the dynamics of the 1D and 2D models
is not wholly attributable to deficiencies in the stresses. Other approaches are possible, e.g. finding closure
terms such that the difference between low and high fidelity simulations is minimal.

‘Bagging’ the neural networks, i.e. averaging the predictions of networks trained on different subsets
of the training data, was found to be an important factor in improving their performance.

The network trained on both considered initial conditions performed well for simulations starting from
both initial conditions. This bodes well for the more general application of neural networks as closure
terms for the 1D two-fluid model.

8.2 Recommendations

With our approach validated for a relatively simple case, with low Reynolds numbers, and a smoothly
damping wave, we should move on to more challenging cases. In order to be able to use a neural network
practically, it needs to be robust to different flow conditions. With the current applicability of the neural
network to flow with two different types of initial conditions, it would be interesting to see if the network
can generalize to flow with multiple wavelengths, inclined flow, and flows with growing waves (but with
the 1D two-fluid model remaining well-posed, and stratified).

It may also be more interesting to consider a traveling wave, rather than the near-standing wave we
consider here. For this it would be good to initialize simulations with waves with accompanying velocity
perturbations computed via Orr-Sommerfeld viscous stability analysis. This could provide some more
insight in the physical behavior of our simulations and the simulations with neural network closure.

Even better results may be obtained by incorporating extra inputs in the closure relations. The success
of adding the interfacial slope motivates this. An option is adding averaged velocities at surrounding grid
points and preceding time steps. This would be a good application for convolutional layers in the neural
network. Similarly, we might add appropriate combinations of the averaged quantities as inputs.

The structure of the learned closure terms should be investigated further. We might evaluate the
response of the network directly, when varying input parameters or meaningful ratios and products of
them, and compare this to conventional closure relations.

Going further, there is room for improvement in terms of the neural network architecture. For example,
by specialization of the network architecture to the current application. This might be possible if we
were to train a neural network to reproduce the velocity profile instead of the stresses, and then calculate
the stresses from the profile. One could include knowledge about wall boundary conditions and interface
conditions in the neural network training step.

Good training data is essential for the capability of a neural network, and we have encountered some
problems generating it. In the employed one-fluid model with volume of fluid interface advection, the
interfacial stress is a quantity which does not converge with grid resolution and is not continuous across
the interface. The interface is not sharp but spans a grid cell. Fortunately, with smart post-processing,
good results could still be achieved with the neural network. In the future, even better results might be
obtained with for example front tracking methods with a sharp interface.

In the longer term, it would be interesting to see how the method performs for 3D turbulent pipe flow;
which is a problem of greater practical interest. The methodology can in principle be applied similarly, if
good high fidelity simulations are available (which is not easy for multiphase flow). The difference for a
3D geometry is that the stresses need to be computed all along the wall in the high fidelity simulations
and the perimeter average needs to be taken to obtain the stresses needed in the 1D two-fluid model.
The performance of the network might be reduced if the interface height is not well-defined (e.g. with an
overhanging wave) or if turbulent fluctuations are too large.
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Appendix A

Shallow Water Equations

The two-fluid model system may also be used to consider a free surface flow, in which the gas
exerts no force on the liquid. We can thus leave out the equations for the motion of the gas. In a
free-surface flow, the interface pressure piy; is just the constant atmospheric pressure, the term containing
its streamwise derivative thus drops out. If we furthermore assume constant density for the liquid, the

continuity equation (3.94a)) reduces to
ah/int auL hint

=0. Al
ot 0s 0 (A1)
We write the level gradient term for the liquid (found in (3.94d))) as
8hin
LG = —prg cos dhing 85t' (A.2)

Then, neglecting the interfacial friction, the momentum balance (3.94¢)) divided by a constant pr, becomes

ou 8hin ou hin ou 8hin T .
aitLhint +up, 5 b g gs ' 4 aisLuLhint = _hintwtg cos ¢ + /Ti — hintg sin ¢. (A.3)

By substituting (A.l) and dividing by hi, this is simplified to

Ouy ., Qur _ Ol
ot " hs T as I

cos ¢ + 1 (. g sin ¢. (A.4)

With the closure term substituted, equations and together form the nonlinear
shallow water equations in one dimension. These are also known as the Saint-Venant equations (for 2D
channel flow).

The system can be generalized to an arbitrary open channel geometry with any hiny = hint(Az) and
P, = Pr(Ar). To do this follow the same derivation as described above, but starting with and
and using for the level gradient. The resulting equations are [160]

8AL 8uLAL

W + s — O7 (A5a)
our, ouy, o Ohint . &E .
W+uLg—— s g cos ¢ + AL on gsino. (A.5b)
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Appendix B

Classification of PDEs

B.1 Introduction

In we discussed the well-posedness of the 1D two-fluid model. A sufficient condition for
well-posedness of the system is that the system is hyperbolic. Here we demonstrate two methods for
the classification of hyperbolic PDEs, and the determination of their characteristics. Both methods for
classification are shown to reduce to finding eigenvalues ¢

det | B —cA| =0. (B.1)
of the system
Agu—kBgu—O (B.2)
ot or '

An example linear partial differential equation which is easy to classify is the wave equation

¢ %9

It (along with many quasi-linear second order PDEs [130, p. 116]) can be rewritten as a system of first
order PDE’s

ou v
Oou Ov

using the substitutions u = 9¢/0t and v = O¢/Ox. In matrix form this system reads

0 0

1 0 0 —a u
A_[O J, B—[l 0], and u-[v}.

B.2 Classification based on the wave form

with

We substitute the trial solution
u=uexp i (kz —wt)], (B.6)

with k the wavenumber and w the angular frequency, which dictates the change of the solution with time
(and is thus of interest in determining whether the system is hyperbolic). This yields

[—iwA 4 ikB] 4 = 0, (B.7)
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which has non-trivial solutions for @ (that is, solutions other than @ = 0) if the determinant of —wA + kB
is zero. This condition can be written as the generalized eigenvalue problem

det |B — cA| =0, (B.8)

with ¢ = w/k and yields

c=++a. (B.9)

This can also be written as the dispersion relationship
w = +ak, (B.10)

so that w and c are real if @ > 0.

If @ < 0, w will have an imaginary component, leading to growth of the wave-like solution (B.6)), so
that the system is not hyperbolic according to the aforementioned definition by [130]. Moreover, the
growth will tend to infinity for wavelengths tending to zero, since for these wavelengths the wavenumber
k will tend to infinity. Thus the problem will be ill-posed. If a > 0 the wave-like solution will simply
propagate without growth or damping and the system is hyperbolic.

The dispersion relationship determines the characteristics; it states that the phase speed of the two
possible waves is w/k = ++/a. This means that a wave crest will move at a speed ++/a, so that the wave
function can be said to be constant along characteristic lines

[iﬂlzﬁ - xz—Vat=C (B.11)

and

[‘zL:_\/a S s+ yat=C (B.12)

with C' an arbitrary constant. The functions which are constant along these characteristic lines are the
solutions u, because we have taken the trial solution . We must still find the solution for 4, i.e. the
generalized right eigenvectors of B — cA. These can easily be determined to be

ci=+va — a:[_f‘} (B.13)

and

co=—V/a — u= [\/6] : (B.14)

B.3 Classification based on characteristics

An alternative definition of a hyperbolic system is that the system can be rewritten to a system of
ordinary differential equations (ODEs) with real independent variables only. For the wave equation this
may be found by adding (B.4a)) and (B.4b)) multiplied by a constant ¢ to yield

(8875 - ca(i) (u) + (gt - Zaax) (—cv) = 0. (B.15)

This is an ODE if w and —cv are differentiated in the same, real, direction. They are differentiated in the
same direction if

& =a, (B.16)
and ¢ = +1/a and the two corresponding directions are real if @ > 0. This yields the system of ODE’s

0 0
Cl—\/& — 6781('11/_\/&11)—0, 8751

0 0 0 0

(gt + ﬁi) , (B.17a)
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The lines along which the so-called Riemann invariants u + y/av and u — \/av are constant are called
characteristics. The first can be found by demanding this for the first Riemann invariant:

d 0 or 0
= V) = (= Vaw) + S aw) =0, (B.18)

ot Ox
which by comparison with (B.17a]) yields

0
ai;:ﬁ - z—+Vat=C, (B.19)
with C' an arbitrary constant. The second characteristic is found similarly and is given by
Ox
E:j/a —  x++at=C. (B.20)
The system (B.17a)), (B.17b)) can be found in a more general way by considering that a general linear
combination of (B.4al) and (B.4b|) can be written as (using (B.5))
0 0
L - (A= B—u|=0. B.21
( 5 Y + p u) 0 ( )
We hope to find combinations such that
0 0 0 ow;
L-(A= B—ul]=1- = = B.22
' ( 8tu+ axu> ¢ C@slu 882' 07 ( )

where w are the Riemann invariants and the index i specifies one of two valid linear transformations
(and corresponding Riemann invariants and characteristic directions).
These combinations may be found by performing the coordinate transformation

0 ot 0 x| 0 0 0

o~ Lan), G+ (31, 30) = (G o). (B2
where we take the freedom to fix [0t/0s]; = 1 and define ¢; = [0x/0t],. Then (B.21)) can be written as

0 9] 0 0 0
which is an ODE to s; if
0
li . (B — CzA) %u =0. (B25)

The du/0z will generally not be zero, so for this system to hold generally we must have

for which non-trivial solutions will exist if and only if the determinant of B — ¢; A is zero. This yields the

eigenvalues
C1 = \/Efa Co = _\/67 (B27)

which are real if a > 0. The solutions for the left eigenvectors which satisfy the generalized eigenvalue
problem (B.26)) can then be found to be

L=[1 Val, L=[1 —ad. (B.28)
Substituting these eigenvectors into (B.21)) and keeping in mind the definition (B.23]) we find exactly

the system of ODE’s , (B.17b)). Alternatively we could recognize by substitution of (B.25)) into
(B.24) and subsequent comparison to (B.22)) that C = A. Then, since 1; and A contain only constants

we can find the Riemann invariants w; and we by computing

w; = l1Au = u — av, wo = lbAu = u + v/av, (B.29)
so that the system can be written as
owy Owsg
— =0 — =0. B.30
681 ’ 882 ( )

The characteristic lines can be found in the same way as before or by directly identifying ¢; = [0z /0t],

(from the definition in (B.23)).
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