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ABSTRACT 
 

The multibody simulation of railway dynamics needs a reliable and efficient method to properly describe the contact 

between wheel and rail. 

In this work are presented innovative methods to evaluate the position of contact points. The aim is to develop a method 

which can be implemented on-line, assuring a calculation time consistent with real-time calculations of multibody 

dynamics. At the same time it has to be very accurate, to properly predict the local forces at contact in order to describe 

even the wear of contact surfaces. 

In this work the authors present two different approaches to find stationary points during a multibody simulation. In the 

former the conditions to define a local minima are wrote in an analytical way. This makes possible to combine the 

conditions in order to reduce the analytic problem's dimension and then to solve numerically the problem with a low 

computational burden. The latter approach calculates the location of local minima using a method based on neural 

networks.  

The paper will cover the details of the proposed methods and the performances, in terms of computation time and 

accuracy, will be compared with those of the conventional algorithms used by commercial softwares, showing their 

reliability and low computational burden. Moreover, an implementation of the proposed models in a multibody 

simulator will be presented, in order to show their suitability for this application. 

 

1 INTRODUCTION 
 

Numerical simulations of system dynamics are today a 

standard in the design of railway vehicles. Their typical 

applications are the suspension kinematics, handling 

performance and ride comfort as well as the generation 

of load data for lifetime prediction. One of the key 

points in this type of simulations is the model of the 

wheel-rail interaction, which means the definition of the 

forces exchanged between the wheels and the rail in the 

contact points. The direction and the magnitude of the 

contact forces  depends on the number and the location 

of the contact points. The procedure that allows to 

define the geometry of the contact has then a significant 

effect on the reliability of the simulation. The aim of the 

work is to develop a method for the evaluation of the 

positions of all contact points between wheel and rail, 

which can be implemented in a multibody simulator of 

the railway vehicle dynamics. Different solutions of this 

problem are present in the literature and are 

implemented in commercial multibody softwares (MSC 

Adams, Simpack etc.) 

In multibody analysis of railway dynamics there are two 

different approaches in simulation of wheel-rail contact: 

the rigid contact formulation and the semi-elastic 

contact description. In the rigid approach the contact 

between the bodies is guaranteed by the constraint 

equations [1],[2],[3],[4]. In the formulations based on 

the elastic approach, the wheel has six degrees of 

freedom with respect to the rail, and the normal contact 

forces are defined as a function of the indentation using 

Hertz’s contact theory or using assumed stiffness and 

damping coefficients [5],[6]. In literature several 

methods are present for the evaluation of contact points, 

based on the minimization of the distance or difference 

between wheel surface and rail surface. Often 

substantial hypothesis are applied in order to simplify 

the geometry of the problem [7],[8]. 

The methods present in the literature and their 

performances have some limits that reduce their 

suitability in a reliable and efficient simulation of the 

dynamics of a railway vehicle, because they are often 

based on arbitrary assumptions, such as not considering 

all the degrees of freedom of the wheel, or assigning an 

arbitrary bound to the number of contact points, or 

introducing geometric hypotheses on the position of the 

contact points. 

The problem of the individuation of contact points, in a 

semi-elastic formulation, could be generally represented 

as the research of the local minima of a real function. 

The methods available in literature to solve this general 

problem can be classified in two main groups: methods 

based on the value of the function and methods based on 

the derivatives of the function. In some preceding works 

the authors presented a method [9],[10] in which the 

contact points are searched minimizing the difference 

between the wheel and rail surfaces by means of the 

Simplex Method. These procedures do not introduce 

additional geometric hypotheses and allow an efficient 

management of the multiple contacts (up to two contact 

points for wheel). The challenge of this preceding study 

was the realization of an efficient multibody model, 

running in real–time conditions; however the developed 

solutions did not allow a direct implementation of the 
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research procedure in the multibody model. In other 

words, the developed solutions were used to generate 

look-up tables to be used during the simulation of the 

vehicle dynamics. 

The other sort of methods are those based on 

derivatives, which apply the analytic definition of 

minimizer: for a real valued function, a point is a 

minimum when all the first order partial derivatives 

vanish, and the Hessian matrix, which contains the 

second order partial derivatives, is positive definite. This 

approach will be the basis of the innovative methods 

presented in this paper. 

In this work the authors will propose two innovative 

approaches to determine the wheel-rail contact points. In 

the former the conditions to define a local minima are 

wrote in an analytical way. This makes possible to 

combine the conditions in order to reduce the analytic 

problem's dimension and then to solve numerically the 

problem with a low computational burden; that is why 

this is referred to as semianalytic approach. The semi-

analytic approach can be considered significantly 

reliable because considers all degrees of freedom of the 

wheel with respect to the rail, it doesn’t impose any 

arbitrary bound to the number of contact points and it 

doesn’t introduce additional geometric hypotheses on 

the position of the contact points. Moreover the 

management of multiple contact points is easy and 

efficient. 

Semi-analytic procedures are more reliable and faster 

than numerical procedures, so they are more efficient in 

the creation of look-up tables; the weak spot of these 

procedures is that the computation time is not yet as 

small as real time applications needs. The on-line 

implementation is slower than the off-line 

implementation, because the calculation time is 

significantly higher than the time required for the 

reading of look-up tables. 

An application of neural networks to the wheel-rail 

contact problem is then proposed in this paper in order 

to further reduce the time of evaluation of contact 

points. The objective is to approximate the unknown 

function that relates the relative position between the 

wheel and the rail to the contact points. This can be 

done by setting an appropriate value to several  weight 

parameters, which are included in the neural network 

structure, using a process known as training, which 

requires a set of informations obtained by measurements 

or reliable methods. In the proposed implementation the 

sets of data for the training were obtained by the 

aforementioned semi-analytic method. The advantages 

of neural network method are mainly related to the 

computational performance: no iterative calculations are 

needed and the analytical form is very simple. The main 

advantages of the semi-analytic methods are maintained: 

there is no upper limit to the number of minima (training 

with semi-analytical methods), but the neural network 

based implementation requires lower computational 

time, comparable with the time required for the reading 

of look-up tables, and then are suitable for an on-line 

real time implementation. The weak spot of neural 

networks is that the process of training requires a long 

calculation time, and it must be done again if the profile 

of wheel or rail has to be changed. Anyway this process 

can be performed once for each wheel/rail profile pair 

and can be easily automated. 

 

2 TRACK GENERATION AND 

DEFINITION OF THE REFERENCE 

SYSTEMS 
The relative position between wheel and rail is 

described by means of parameters which relates the 

relative position of certain coordinate systems defined in 

this section. First the fixed global reference system Of xf 

yf zf (Fig. 1) is defined: the xf axis is tangent to the 

centerline in the point Of and the zf axis is normal to the 

plane of the rails.  

With respect to this fixed global system the railway 

track can be described by means of a three-dimensional 

curve (s). 

 
Figure 1: Definition of the rail track, base and auxiliary 

reference systems. 

 

A second reference system (referred as auxiliary 

reference system) Ob xb yb zb (Fig. 2, 3) is necessary 

for the problem formulation. It is defined on the rails but 

follows the wheelset during the simulation. 
The xb axis is tangent to the centerline in the point Ob 

and the zb axis normal to the plane of the rails. 

 

 
Figure 2: Track auxiliary reference system and wheelset 

local reference systems. 

 



 

Finally the local wheelset reference system Or xr yr zr 

is defined. The yr axis is coincident with the rotation 

axis of the wheels and is rigidly connected to the axle 

(except for the rotation around this axis). The xr axis is 

contained in the plane xb yb and the origin coincides 

with the center of mass or of the wheelset. 

The rotation matrix that links the local system with the 

auxiliary one is defined as: 

 

        xz RRR 2  (1) 

 

where α and β are respectively the yaw and roll angles 

of the axle with respect to the track. 

In the local system the axle (and therefore the wheels) 

can be described by means of a revolution surface, 

whose generative function r(yr) is known and is 

schematically sketched in Fig. 3. 

 

 
Figure 3: Generative function of wheelset 

 

The following notation will be used in the next sections 

of the paper: the expression ax
y
 means that the variable a 

is located in the surface x and expressed in the reference 

system y. In particular, r will denote the axle surface and 

the local reference system, while b will denote the rail 

surface and the auxiliary reference system. 

The position of a generic point of the axle in the local 

reference frame has consequently the following analytic 

expression: 

 

   
T
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r

r
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while the position of the same in point in the auxiliary 

reference system is: 

 

     rr

r

r

b
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b

r
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The position of the wheelset center of mass in the 

auxiliary reference system and the rotation matrix R2 

describe  the relative displacement between the wheelset 

and the rail, that can be represented by means of the 

displacements Gy and Gz of the center of mass or with 

respect to the yb and zb directions respectively and the 

angles α and β previously defined.  

Similarly the rails can be described in the auxiliary 

system by means of an extrusion surface. The generative 

function, indicated with b(yb) is known and is sketched 

in Fig. 4. 

 
Figure 4: Generative function of rail 

 

The position of a generic point of the rail surface in the 

auxiliary system is: 

 

    Tbbbbb

b

b
ybyxyxp ,  (4) 

 

For both the surfaces the normal unitary vectors 

(outgoing for convention) can be defined: nr
r
(pr

r
) is the 

normal vector to the wheel surface, while : nb
b
(pb

b
) is the 

normal vector to the rail surface. 

 

3 SEMIANALYTIC METHODS 
 

3.1 DIST Method 

 

As mentioned in the introduction, in each contact point 

the distance between the wheel surface and the rail 

surface assumes a local minimum, that can be defined 

imposing the following conditions (Fig. 5): 

 The unitary normal vectors of wheel and rail 

surface have to be parallel:  

    0
b

r

b

r

b

b

b

b pnpn  (5) 

 

  The normal vectors has to be parallel to the 

distance db = pr
b
 − pb

b
 between the points of 

wheel and rail surfaces in which they are 

applied: 

  0 b

b

b

b

b dpn  (6) 



 

 
Figure 5: DIST method: definition of distance between 

the contact surfaces 

 

Only four of the six equations above defined are 

independent, due to the description of the rail as an 

extrusion surface and the description of the wheel as a 

revolution surface. Solutions of this equation’s set will 

be defined with a set of 4 coordinates (xri
C
, yri

C
, xbi

C
, 

ybi
C
), while pri

b,C
 = pr

b
(xri

C
, yri

C
) and pbi

b,C
 = pb

b
(xbi

C
, ybi

C
) 

will be the contact points respectively on wheel and rail 

surfaces.  

So we need to solve a four dimensional problem. The 

numerical solution of this problem would have a very 

high computational burden, but, as hinted in the 

introduction, it is possible to reduce the problem’s 

dimension by combining the four equations defined. 

In particular the second component of the vectorial Eq. 

5 can be written as: 

 

     rrrrr yryrrxrxyrr '1211

22

13   (7) 

 

where rij is the (i,j) component of the rotation matrix R2. 

Squaring both members of the Eq. 7 it can be solved to 

obtain xr as a function of yr. Because of the second 

power of xr in the Eq. 7, two different solutions xr1,2 will 

be obtained for each value of yr. It’s important to 

remember that squaring both members of Eq. 7 to obtain 

xr1,2(yr) lead to the introduction of additional solutions, 

which are to be excluded because they do not represent 

effective contact points. So checks on solutions will be 

performed at the end of this section. 

The first component of Eq. 5 can be manipulated 

obtaining an equation in the form: 

 

   rb yfyb 2,1'  (8) 

 

where f denotes a rational function of yr, which depends 

on r(yr), r’(yr) and xr1,2(yr). That is why two different 

values of b’(yb) can be calculated for each value of yr. 

In railway applications, due to the rail geometry, the 

function b’(yb) is invertible, then we can calculate 

yb1,2(yr). 

Finally the second component of Eq. 6 can be written as: 

 

    rrr

r

rrb yyxpryx ,2,112,1   (9) 

where r1 is the first column of matrix R2. 

The expressions found for xr, yb and xb can be 

substituted in the first component of Eq. 6, leading to 

two scalar equations in yr: 

 

  02,1 ryF  (10) 

 

which can be easily solved numerically. The solutions of 

these equations are the coordinates which define the 

contact points. 

As previous stated, checks on solutions are needed to 

avoid additional incorrect solutions due to the solving of 

Eq. 5 and 6. In particular, the following conditions need 

to be verified for the i
th

 solution: 

 xri
C
 has to be a real number 

   22 C

ri

C

ri xyr  has to be a real number 

 (xri
C
, yri

C
) need to be an effective solution of 

Eq. 7 

Moreover, a generic solution can be an effective contact 

point only if the contact surfaces are penetrating there, 

so a check on indentation is needed: 
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An additional check on curvatures of contact surfaces is 

needed: the generic solution has to verify the following 

conditions: 
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where the subscript 1 refers to the longitudinal curvature 

while the subscript 2 refers to the lateral curvature. 

Curvature is positive when the surface is convex [11]. 

It’s important to stress that the position of contact points 

depends on 4 variables, which are physically expressed 

by the parameters which define the relative position 

between wheel and rail; these parameters are gathered in 

vector  Tzy GG 
~

. 

 

3.2 DIFF Method 

 

The DIFF method is based on the idea that the contact 

points minimize the difference D(xri, yri):  

 

  0,  rr yxD  (13) 

 

which is the difference between the wheel surface and 

the rail surface in the direction identified by the unitary 

vector kb, defined as the third unitary vector of the 

auxiliary reference frame. The function D(xri, yri) is 

defined as: 
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b

r
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r
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Minimization of the function D(xri
C
, yri

C
) requires that 

the gradient of D vanishes and that the Hessian Matrix 

HD(xri
C
, yri

C
) is positively defined. 

The function D, applying its definition, is expressed as: 
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r

ryrr

r

rz

rr

b

rrr

b

rrr

yxprGbyxprG

yxybyxzyxD

,,

,,,

23 


 (15) 

 

By imposing the vanishing of the two partial derivatives 

of D, two scalar equations are obtained. Combining 

them it is possible to express xr as a function of yr. 

Substituting this expression on the other equation lead to  

a simple scalar equation in the form: 

 

  0ryF  (16) 

 

which can be easily solved numerically. 

A generic solution of Eq. 16 is an effective contact point 

only if the contact surfaces are penetrating there, so a 

check on indentation is needed: 

 

  0
,


C

b
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b
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It is very important to notice that in Eq. 15, which gives 

the complete expression of D(xri , yri), the parameter Gz 

is an additive constant. So, by deriving this expression 

with respect to xr and yr, this term will vanish. This 

means that the equations obtained by the vanishing of 

partial derivatives depend on α, β and Gy, but they do 

not depend on Gz. So the position of local minima, 

which are potential contact points, depends only on 3 

variables, gathered in vector  TyG  . 

 

4 NEURAL NETWORKS 
 

4.1 Theoretical aspects 

 

In the preceding section we described two different 

deterministic methods to solve the wheel/rail contact 

problem; these methods gave excellent results in terms 

of precision, but the computation times, even if superior 

to all the numerical procedures tested by the authors, 

were significantly higher than the reading of look-up 

tables. The implementation of a model based on neural 

network was developed in order to find a faster 

algorithm, which could be implemented on-line, 

assuring low computational time without the need to 

store in memory large look-up tables. The 

semianalytical procedures, because of their superior 

performances with respect to the numerical procedures, 

will be used to generate the reference data needed to 

define the neural networks model. 

The identification of a function using neural networks 

requires three steps. The first step is the collection of 

reference data; each datum is a vector which contains an 

allowed input vector and the corresponding desired 

output vector. Then the user has to choose the network’s 

architecture (organization of neurons in the network and 

definition of the activation function for each neuron). 

Finally the network has to be trained: reference data are 

submitted to the network and the values of parameters 

are updated in an iterative process in order to minimize 

the distance between the network’s output and the 

desired output. The distance can be defined in several 

manners; we decided to use as a measure of the distance 

the mean square error (mse). 

The chosen architecture is a multilayer perceptron, using 

in the training process the Levenberg-Marquardt 

algorithm. 

In the previous sections two different semi analytic 

procedures has been focused: the DIST method and the 

DIFF method. Concerning their precision in the location 

of the contact points, these methods can be considered 

equivalent (as will be shown in the following section), 

then both of them could be used to train the networks. 

Anyway the DIFF method has been chosen because of 

its simpler structure. 

In the wheel rail contact problem the input is the relative 

position between wheel and rail, described by the 

displacement vector and the rotation matrix R2, while 

the output is the position of all contact points. 

Because of the geometry of the problem there are two 

parameters that do not affect the position of the contact 

points: the rotation of the axle about its axis and its 

translation in the track direction. The other parameters, 

which values affect the position of contact points, can be 

gathered in the vector 
~

. 

The substantial difference between the previously 

described analytic methods is that while in the DIST the 

value of Gz is needed for the localization of the contact 

points, in the DIFF method this parameter is used only 

to check the indentation, in order to determine if a local 

minimum is an effective contact point. 

If the DIFF method is used as reference for the training 

of the neural network, the function that has to be 

identified by the network depends on the parameters 

contained in the vector  . A neural network based on 

the DIFF method will have three inputs, while if it was 

based on the DIST method it would have four inputs. In 

order to obtain a simpler structure of the network and a 

higher efficiency the DIFF method have then be chosen 

as reference for the definition and the training of the 

network. 

 

4.2 Implementation  

 

4.2.1 Classification of the configurations on the basis of 

the number of outputs 

 

The aim of the presented work is to create a neural 

network that fits properly the unknown function that 

relates the position of all local minima to the relative 

position between wheel and rail. A standard neural 



 

network has a fixed number of outputs, defined by the 

user. The function that the network has to fit in this 

particular application has a variable number of outputs, 

depending on the configuration. The number of outputs 

is the product between the number of local minima 

(which depends on the configuration) and the number of 

coordinates used to define the position of each local 

minimum (usually four: xrk
M

, yrk
M

, xbk
M

, ybk
M

). Foregoing 

classification is needed, which evaluates the number of 

local minima for the examined configuration; then L 

neural networks are created, where L is the maximum 

number of local minima that can be obtained for all the 

allowed configurations. Each network has 4×k outputs, 

with k = 1,…,L. The classification selects the neural 

network that has to be applied: when the classification 

estimates that in a configuration there are k local 

minima, the neural network with the proper number of 

output is selected.  

In the presented application the ranges in the space of 

configurations with 1,2,…,L local minima were directly 

detected. It can be observed that the dependence on the 

angle α is weak, so the partition in domains can be 

performed in a 2D domain, with dependence on β and 

Gy. It can be furthermore noted that the domains can be 

simply separated, with a small error, using straight lines. 

Fig. 6 and 7 show the results obtained using the wheel 

profiles ORE S1002 and rail profile UIC60 with laying 

angle 1/40; the first one is obtained with α = 0, while 

the second is obtained with α = π/180. The no filled area 

represents the range in which only one local minimum is 

present, while the light gray identify the configurations 

with 2 minima, and the gray area those with 3 minima. 

Straight lines represent the approximation of regions 

with different number of local minima with planes. As it 

can be seen the approximation is good for α = 0, while 

when α = π/180 there is a small region in which the 

classification fails. The same considerations are valid 

when the laying angle is 1/20. For the sake of brevity, 

the corresponding figures are not included in this paper.  

 

 
Figure 6: Number of local minima (αp = 1/40, α = 0) 

 

 
Figure 7: Number of local minima (αp = 1/40, α = 

π/180) 

 

In order to evaluate the accuracy of the classification, 

the percentage error on classification Ec was calculated 

on a set of more than 2 millions of different 

configurations, choosing the DIFF method as a 

reference; every time that the classification procedure 

gave in output a number of minima which was different 

from that calculated by the DIFF method, a number of 

error equal to the difference of these two numbers were 

defined. 

For the analyzed configurations, the error Ec is 0.91% 

for αp = 1/40, and 0.85% when αp = 1/20. In both cases 

the total error is lower than 1%, then the approximated 

classification can be considered sufficiently accurate. 

Once the classification of the configurations on the basis 

of the number of outputs has been realized, for each case 

a proper neural network for the localization of the 

contact points has to be defined.  

Authors found that for a laying angle αp = 1/40 there 

can be up to 3 contact points; however configurations 

with 3 contact points are quite rare, so in the 

classification the configurations were divided in 2 

groups, with 1 and 2 contact points respectively. 

According to this classification, two neural networks 

were then defined. For αp = 1/20, the configurations 

with 4 local contact points were neglected, and the 

classification procedure divides the configurations in 

three groups corresponding to 1, 2 and 3 contact points; 

in this case three different neural networks were then 

defined. 

 

4.2.2 Definition of neural networks 

 

The performances of a neural network depends on its 

architecture; for the examined problem double-layer 

networks have been chosen, with hyperbolic tangent 

activation functions in the hidden layer and linear 

activation functions in the output layer. 

The performances of a network are evaluated analyzing 

the errors on the test set. For the k
th

 network which 

outputs are the coordinates of k contact points, for each 

configuration, an error is defined when the distance 

between the contact point locations calculated by the 

DIFF method and the contact points calculated by neural 

network is more than a specified tolerance, which in our 

application was set to 1 mm. The percentage error for 

the k
th

 network on a test set which contains Qk
t
 



 

configurations is then given by the ratio between the 

number of errors identified by the above mentioned 

algorithm and the total number of contact points 

calculated for the analyzed configurations: 
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(18) 

 

where ej is the number of errors on the j
th

 configuration 

From the informations on the number of contact points 

for each configuration and the errors of NN the total 

error of the proposed algorithm can be evaluated: 
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where L is the maximum number of contact points per 

configuration (L = 3 if αp = 1/40, L = 4 if αp = 1/20), Ek 

the percentage error for the k
th

 network and Ak the 

available data for the k
th

 net. 

In order to simplify the training, the symmetry on α has 

been considered: if xbi
M

, ybi
M

, xri
M

, yri
M

 is a local 

minimum for the configuration [α β Gy]
T
 , thus −xbi

M
, 

ybi
M

, −xri
M

, yri
M

 is a local minimum for the configuration 

[α β Gy]
T
. 

Networks were trained using the informations on 

position of minima for 2099601 different wheel-rail 

relative positions, obtained varying α, β and Gy in ranges 

summarized in Table 1, for two different values of 

laying angle αp = 1/40 and αp = 1/20). 

 

Variable Min Value Max Value Step 

α [rad] 0 π/180  π/3600 

β [rad] - π/240 π/240  π/4800 

Gy [mm] -10 10 0.5 
 

Table 1: Configuration variables, variability range. 

 

The output of the network is the position of the contact 

points in the rail surface. Moreover, because the 

coordinate zb can be obtained from the yb according to 

the relation zb = b (yb), the network outputs are the 

coordinates xb, yb for each contact point. 

For the training the Levenberg-Marquardt algorithm 

has been chosen, using as Performance Function the 

mean square error on training set data. A limit of 150 

epochs for the training process has been set, imposing 

that it would be stopped earlier if the mse on validation 

set would increase for 5 consecutive epochs (early 

stopping).  

 

4.2.3 Training 

 

As previously discussed, for a laying angle αp = 1/40 

two networks are necessary; the first gives 2 outputs 

(coordinates of a single point), while the second gives 4 

outputs (coordinates of 2 points). For αp = 1/40 three 

networks are needed, the first gives 2 outputs 

(coordinates of a single point), the second gives 4 

outputs (coordinates of 2 points), while the third gives 6 

outputs (coordinates of three points). Only a subset of 

the reference configurations (which were more than 2 

millions) have been used, in order to reduce the 

computational load. 

The percentage error Ek for each network vary from 

0.3% to 4%. From the informations on the number of 

contact points for each configuration and the errors of 

each network, the total error of the proposed algorithm 

can be evaluated.  

For αp = 1/40, the calculated global percentage error is 

ENN = 2.12% while for αp = 1/20 the error is ENN = 

2.41%. 

 

5 NUMERICAL RESULTS 
 

In order to analyze the performance of the developed 

methods for the identification of the wheel/rail contact 

points they were implemented within the simulation of 

the dynamics of a railway vehicle. The objective of this 

analysis is to check the reliability of the proposed 

models and to evaluate their numerical efficiency. 

Because of the little difference in results between 

semianalytic methods and neural networks, we decided 

to show only the results of one method. So, the results 

of the simulations performed with the Neural Network 

method implemented on-line in the developed model 

were compared with those obtained with a model 

realized with a commercial multibody software 

(SIMPACK). 

 

5.1 The Performances Of The New Methods 

 

In this section the performances of the new procedures 

for the detection of the contact points will be compared 

with those of other methods previously developed 

([9],[10]). 

All methods except DIST are based on the minimization 

of the surface D(xr, yr); in this problem, the position of 

contact points does not depend on the parameter Gz. 

Therefore, the configurations on which the methods 

have been compared are obtained varying only the 

parameters Gy, α and β. 

Nevertheless, in the comparison between DIST and 

DIFF method the value of Gz is necessary; its value has 

been chosen, once the value of the other parameters was 

set, in order to have, in correspondence of the contact 

points, normal indentations pn physically acceptable. In 

this case the bound pn ≤ pl = 0.33 mm has been defined, 

the limit value pl has been calculated through the Hertz 

theory assuming a maximum normal load of 10
5
N 

applied on a single contact point. 

In order to evaluate the performances of the different 

algorithms, a procedure was defined in which every 

single algorithm was tested against a reference 

procedure. We chosen as a reference the GRID (G) 

method ([9],[10]) which require the tabulation of the 

function and find eventual local minima by the 



 

comparison of the tabulated values. This method has a 

very low efficiency because it requires the calculation of 

the value of the function in a great number of points, but 

is very reliable. An error is computed every time the 

tested procedure fails to find a contact point defined by 

the reference procedure (this means that the tested 

method didn’t find this point, or calculated its 

coordinates with an error higher than a predefined 

tolerance), and every time the tested method calculates a 

contact point which wasn’t found by the reference 

procedure (again within a predefined tolerance). The 

tested procedures are the multidimensional numerical 

iterative ones, such as Simplex (S) and Compass Search 

(CS), the semianalytic methods such as DIST (d) and 

DIFF (D) and the Neural Network model (NN). Table 2 

summarizes the results of the comparison. Tolerance 

was set to 2 mm. The acronyms in the first column refer 

to those already defined: the acronyms on the left refer 

to the tested method, while the acronym on the right 

refer to the reference method, which is always the GRID 

method. 

 

Methods αp = 1/40 αp = 1/20 

S-G 3.6% 7.1% 

CS-G 3.2% 5.9% 

d-G 0.7% 1.5% 

D-G 1.1% 2.1% 

NN-G 1.4% 2.6% 
 

Table 2: Global Error (Reference = GRID; Tolerance = 

2mm) 

 

First, it can be observed that the semianalytic methods 

are those with the lower error percentage. Even neural 

networks are characterized by good performances, while 

the numerical procedures are those with the worst 

precision, which is greatly affected by laying angle. But 

precision is not the only parameter to measure the 

performances of these methods: the computation times 

has to be compared in order to understand if these 

procedures can be implemented in real time procedures. 

Table 3 summarizes the mean time required to evaluate 

the contact points in a generic relative wheel-rail 

configurations. All the times in question have been 

obtained with a processor Intel Pentium 4 (3.0 GHz). 

Table 3 includes also the time required for the reading 

of look-up tables (referred to as LUT), in order to better 

appreciate the time performances achieved for the 

developed methods. 

 

Method Time [s] 

GRID 9.3 

CS 0.26 

S 0.11 

d 0.0011 

D 0.0006 

NN 0.0003 

LUT 0.0003 
 

Table 3: Computation times 

 

The described results allow to conclude that: 

 the performances of the DIST (d) and the DIFF 

(D) methods are similar in terms of precision 

and computation times; 

 the semianalytic procedures are reliable, and 

more accurate than the procedures based on the 

numerical iterative algorithms, which 

furthermore require an higher computational 

time; 

 the Neural Network model has a proper 

accuracy, and implies a calculation time that is 

much smaller than the time required by all 

other procedures.  

The computation time required by the Neural Network 

model is almost equal to the time required to read look-

up tables, so it can be implemented on-line obtaining 

acceptable calculation times in dynamic analysis. On the 

other hand it’s necessary to train new networks every 

time we need to modify the profile of one or both the 

contact surfaces. 

 

5.2 Dynamic Simulations 

 

The railway vehicle chosen for the dynamic simulations 

is the Manchester Wagon whose physical and geometric 

characteristics are available in literature ([9],[10],[12]). 

 

The multibody 3D model of the Manchester Wagon, has 

been implemented in the MATLAB® computation 

environment. The vehicle is composed of the car body, 

two bogies , four axles, primary and secondary 

suspensions (modelled by three-dimensional non linear 

force elements like bushings, dampers and bumpstops). 

The wheel profile is the ORE S1002 while the rail 

profile is the UIC 60, with a laying angle αp = 1/40. The 

Wheel–rail friction coefficient was supposed to be 0.4. 

The simulation was performed on a S-shaped curve of 

radius R = 190 m with four-meters-long intermediate 

tangent track, without irregularities nor superelevation at 

a velocity of 40 km/h: this scenery reproduces the 

typical manoeuvre of the train on a railway switch. Each 

bend is 30 m long (the first is on the right) and the S-

shaped curve is preceded by a straight track 50 m long 

and followed by a straight track 100 m long. 

In the following figures, we present a comparison 

between some results obtained with the SIMPACK 

model and the MATLAB® model: to reduce the length 

of this paper, we have chosen to report a selection of 

curves relating only to some of the most interesting 

quantities for the running behavior of a train. In every 

figure, the continuous grey line refers to results obtained 

with SIMPACK, while the dashed black one refers to 

MATLAB® results. 

 

 

 



 

 
Figure 8: Lateral displacement (y) of the centre of mass 

of car body. 

 

 
Figure 9: Forces acting on the first wheelset: left wheel: 

Vertical force (Q) 

 

 
Figure 10: Forces acting on the first wheelset: left 

wheel: Lateral force (Y) 

 

We just observe that there is a really good accordance 

between the two models for the kinematic measurement 

(see Fig. 8), while Fig. 9 and 10 show some transient 

differences between the two models. These differences 

can be explained by the different procedures used by the 

two models to calculate the contact forces. 

The presented results confirm the satisfactory 

performances in terms of precision of the developed 

procedures. The multibody model in which these 

procedures are included give an accurate prediction of 

the vehicle dynamics. Moreover the comparison in 

terms of the computational time between the SIMPACK 

model and the MATLAB® model , shows that the 

model developed by the authors is faster than the 

commercial one: Table 4 shows the average 

computation time with a processor Intel Pentium 4 (3.0 

GHz) for a single integration step, using an Ode 5 

(Dormand-Price) integration algorithm (Explicit, Fixed 

Step, h=0.5 ms). 

 

 

 

 

 

 

Model Time [ms] 

SIMPACK 14.2 

MATLAB® 6.2 
 

Table 4: Average computation time for a single 

integration step 

 

The author’s developed multibody model has 

satisfactory performances in terms of precision (Fig. 8-

10), but requires less than a half the computation time 

required by the SIMPACK model. 

 

6 CONCLUSIONS 
 

In this work two innovative approaches for the detection 

of the wheel-rail contact points are presented. 

The first is the semianalytic approach, which consider 

the wheel and the rail as two mathematical surfaces 

whose analytic expression is known. This approach has 

been applied to two different definition of contact 

points, leading to the development of two different 

procedures: the first is based on the idea that the contact 

points minimize the distance between the surfaces and is 

equivalent to solve an algebraic 4D-system; the second 

instead is based on the idea that the contact points 

minimize the difference between the surfaces and is 

equivalent to solve an algebraic 2D-system. In both 

cases the original problem has been reduced analytically 

to a simple mono dimensional that is then solved 

numerically. Since the problem dimension is one, even 

elementary non-iterative algorithms like the GRID 

algorithm (a non iterative method based on the 

evaluation of the function in the points of a fixed grid 

and on the comparison between the obtained results) 

have shown to be efficient and reliable. 

The second approach consists in the application of a 

black box model, based on neural networks. The aim of 

this approach is to develop a model reliable as the 

semianalytic methods, but requiring a lower calculation 

time, consistent with real-time constraints of multibody 

simulations. 

The neural network algorithm is composed of a first part 

in which, on the basis of the wheelset geometric 

configuration, the number of contact points is defined. 

Then the location of the contact points is calculated with 

feedforward neural networks. The networks are trained 

using the results of semianalytic procedures based on 

the minimization of the surface defined as the difference 

between the wheel surface and the rail surface. 

Subsequently the performances of the new procedures 

have been compared among them and with those of the 

methods present in the literature. The GRID method and 

other procedures based on numerical iterative 

algorithms (like the Compass Search algorithm and the 

Simplex algorithm) have been considered. The 

comparison has been carried out in terms of precision 

and computation times. 

The semianalytic procedures (named DIST and DIFF 

methods) have similar performances in terms of 

precision and computation times; both of them are 

reliable as regards the precision and are more accurate 

and faster than the procedures based on the numerical 

iterative algorithms, so they are more efficient in the 



 

creation of look-up tables. However these procedures 

are much slower than the reading of look up tables, so 

the on-line implementation leads to higher calculation 

times than the off-line implementation. 

The neural network model is a less accurate model (but 

the error doesn’t noticeably affect the multibody 

simulation), but requires a calculation time which is 

much smaller than the time required by all other 

procedures and comparable with the time necessary to 

read look-up tables, allowing on-line implementations 

also in real time. 
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