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Abstract

In the past several years of drug design, advanced high-throughput synthetic
and analytical chemical technologies are continuously producing a large num-
ber of compounds. These large collections of chemical structures have resulted
in many public and commercial molecular databases. Thus, the availability of
larger data sets provided the opportunity for developing new knowledge mining
or virtual screening (VS) methods. Therefore, this research work is motivated
by the fact that one of the main interests in the modern drug discovery process
is the development of new methods to predict compounds with large therapeutic
profiles (multi-targeting activity), which is essential for the discovery of novel
drug candidates against complex multifactorial diseases like central nervous sys-
tem (CNS) disorders. This work aims to advance VS approaches by providing
a deeper understanding of the relationship between chemical structure and phar-
macological properties and design new fast and robust tools for drug designing
against different targets/pathways.

To accomplish the defined goals, the first challenge is dealing with big data set
of diverse molecular structures to derive a correlation between structures and
activity. However, an extendable and a customizable fully automated in-silico
Quantitative-Structure Activity Relationship (QSAR) modeling framework was
developed in the first phase of this work. QSAR models are computationally fast
and powerful tool to screen huge databases of compounds to determine the bio-
logical properties of chemical molecules based on their chemical structure. The
generated framework reliably implemented a full QSAR modeling pipeline from
data preparation to model building and validation. The main distinctive features
of the designed framework include a)efficient data curation b) prior estimation of
data modelability and, c)an-optimized variable selection methodology that was
able to identify the most biologically relevant features responsible for compound
activity. Since the underlying principle in QSAR modeling is the assumption
that the structures of molecules are mainly responsible for their pharmacological
activity, the accuracy of different structural representation approaches to decode
molecular structural information largely influence model predictability. How-
ever, to find the best approach in QSAR modeling, a comparative analysis of
two main categories of molecular representations that included descriptor-based
(vector space) and distance-based (metric space) methods was carried out. Res-
ults obtained from five QSAR data sets showed that distance-based method was



superior to capture the more relevant structural elements for the accurate char-
acterization of molecular properties in highly diverse data sets (remote chem-
ical space regions). This finding further assisted to the development of a novel
tool for molecular space visualization to increase the understanding of structure-
activity relationships (SAR) in drug discovery projects by exploring the diversity
of large heterogeneous chemical data. In the proposed visual approach, four non-
linear DR methods were tested to represent molecules lower dimensionality (2D
projected space) on which a non-parametric 2D kernel density estimation (KDE)
was applied to map the most likely activity regions (activity surfaces). The ana-
lysis of the produced probabilistic surface of molecular activities (PSMAs) from
the four datasets showed that these maps have both descriptive and predictive
power, thus can be used as a spatial classification model, a tool to perform VS
using only structural similarity of molecules.

The above QSAR modeling approach was complemented with molecular dock-
ing, an approach that predicts the best mode of drug-target interaction. Both ap-
proaches were integrated to develop a rational and re-usable polypharmacology-
based VS pipeline with improved hits identification rate. For the validation of
the developed pipeline, a dual-targeting drug designing model against Parkin-
son’s disease (PD) was derived to identify novel inhibitors for improving the
motor functions of PD patients by enhancing the bioavailability of dopamine and
avoiding neurotoxicity. The proposed approach can easily be extended to more
complex multi-targeting disease models containing several targets and anti/off-
targets to achieve increased efficacy and reduced toxicity in multifactorial dis-
eases like CNS disorders and cancer.

This thesis addresses several issues of cheminformatics methods (e.g., molecular
structures representation, machine learning, and molecular similarity analysis)
to improve and design new computational approaches used in chemical data
mining. Moreover, an integrative drug-designing pipeline is designed to im-
prove polypharmacology-based VS approach. This presented methodology can
identify the most promising multi-targeting candidates for experimental valida-
tion of drug-targets network at the systems biology level in the drug discovery
process.

Keywords: Virtual screening; Systems biology; Polypharmacology; Systems
pharmacology; Machine Learning, QSAR modeling, Chemical space visualiza-
tion, Molecular docking



Resumo

Triagem virtual (VS — de “Virtual Screening”) refere-se a uma variedade de
métodos in-silico que servem como andlogos computacionais de triagem bioldgica
de alto rendimento no processo moderno de descoberta de farmacos. O objet-
ivo de VS € pesquisar em grandes bases de dados de pequenas moléculas para
selecionar as estruturas quimicas que possuem maior probabilidade de atividade
em testes bioldgicos num programa de descoberta principal. Assim, o VS pode
reduzir o custo total do desenvolvimento de farmacos, selecionando nimeros
razodveis de moléculas candidatas/principais. Uma molécula principal é um
composto que possui as propriedades farmacoldgicas necessdrias e, portanto, €
usado como um bom ponto de partida para a descoberta de farmacos. O processo
de VS depende da disponibilidade e da quantidade de informacdes estruturais e
bioatividade de outros compostos sobre 0s mesmos alvos.

Nos altimos anos oprocesso de design de farmacos tem usado tecnologias quimicas
sintéticas e analiticas avangadas de alto rendimento que estdo continuamente
uma grande quantidade de informacao sobre a interac¢ao entre alvos terapéuticos
e moléculas candidatas. Simultaneamente o grande desenvolvimento da técnicas
de sintese organica tem potenciado um aumento exponenencia das estruturas
conhecidas.Estas grandes cole¢des de estruturas quimicas resultam em muitos
conjuntos de dados moleculares publicos e comerciais. Assim, a disponibilid-
ade de conjuntos de dados maiores levou a oportunidade de desenvolver novos
métodos de prospeccao de dados usando técnicas de aprendizagem automatica
em VS. Este trabalho de investigacao é motivado pelo facto que um dos prin-
cipais interesses no processo moderno de descoberta de farmacos € o desen-
volvimento de novos métodos para prever compostos com perfis terapéuticos
com atividade multi-alvo, essencial Este é um factor importante na descoberta
de novos candidatos a fairmacos contra doencas multifatoriais complexas, como
distarbios do sistema nervoso central (SNC). Este trabalho visa avancgar aborda-
gens de VS, proporcionando uma compreensao mais profunda da relacao entre
estrutura quimica e propriedades farmacoldgicas e desenhar novas ferramentas
répidas e robustas para design de farmacos para alvos terapéuticos distintos.

Para atingir os objetivos definidos, o primeiro desafio € lidar com um grande con-
junto de dados de diferentes estruturas moleculares para encontrar correlagdes
entre estruturas e atividades. ,Para tal, no decorrer deste trabalho uma frame-
work automatizada de modelagdo extensivel e personalizavel textitin-silico para



modelacdo da Relacdo de Atividade de Estrutura Quantitativa (QSAR “Quatit-
ative structure Activiy Relationship”) foi desenvolvida. O objetivo principal das
ferramentas baseadas em modelos QSAR € o desenvolvimento de modelos de
aprendizagem automadtica sobre bases de dados de pequenas moléculas devida-
mente anotadas com informagao sobre a sua actividade, para posteriormente en-
contrar compostos promissores com os efeitos biologicos desejados, executando
esses modelos em grandes repositérios de estruturas moleculares. A modelacao
QSAR ¢é uma aplicacdo de abordagens de aprendizagem automadtica queé cada
vez mais utilizada pelas maiores empresas do sector farmacéutico, sobretudo nas
fases iniciais do desenvolvimento de farmacos. A aprendizagem automatica no
processo de descoberta de farmacos € tipicamente usada para produzir modelos
QSAR robustos, capazes de prever com confianca a atividade farmacoldgica de
compostos com base nas suas informacdes estruturais moleculares, assumindo
uma forte correlacdo entre estruturas e atividade bioldgica. Assim, os modelos
QSAR associam quantitativamente a atividade biol6gica de moléculas (ligan-
dos) com a sua estrutura tipificadas sob a forma de caracteristicas quimicas e
propriedades moleculares. A framework gerada implementou de forma fidvel
um processo completo de modelacdo QSAR, desde a obtencdo e preparacao de
dados até a construcdo e validacdo dos modelos. As principais caracteristicas
distintivas da estrutura projetada incluem: a) curagdo eficiente de dados; b)
estimagdo prévia da modelabilidade dos dados; c¢) metodologia otimizada de
selecdo de varidveis que foi capaz de identificar as caracteristicas biologicamente
mais relevantes responsaveis pela atividade de compostos. O desempenho da
metodologia implementada de modelacdo QSAR foi testado em trinta conjuntos
de dados de diferentes alvos terapéuticos do SNC. A andlise dos resultados ob-
tidos mostrou que o procedimento de selecao de varidveis desenvolvidas no fluxo
de trabalho de modelacdo QSAR automatizado foi capaz de remover 62-99 % de
dados redundantes e procedeu de forma consistente com conjuntos de dados de
alta dimensao (1141 preditores). A selecdo da melhor representacdo molecular
para decodificar eficientemente as informagdes das estruturas moleculares em
formatos legiveis por computador ainda é uma tarefa desafiante na informaética.
A representacdo numérica de estruturas € utilizada como matrizes de dados de
entrada para modelar e compreender relacdes quantitativas entre estruturas e
atividade biol6gica na modelacao de QSAR. Para encontrar a melhor abordagem
na modelacdo QSAR, foi realizada uma anélise comparativa de duas categorias
principais de representacdes moleculares que incluiram métodos baseados em
descritores (espaco vetorial) e baseados em distancia (espaco métrico). Uma
representacio de espaco vetorial ou espaco linear ocorre quando o conjunto de
instancias de modelagdo € representado como um vetor, com suas caracteristicas
medidas em relacdo a algum referencial e, portanto, ha uma no¢ao de magnitude
e direcdo a partir da origem. Na maioria dos estudos de modelagao de QSAR,



0 espago vetorial € a representacdo mais usada, onde cada estrutura quimica é
traduzida usando um conjunto de descritores moleculares. Isso geralmente é
chamado de ‘espaco dos descritores moleculares °, que representa diferentes ca-
racteristicas / propriedades estruturais. A representacao do espaco métrico, por
outro lado, € construida usando ase distancias medidas entre um conjunto de
instancias que queremos modelar, usando qualquer métrica.

Os esultados obtidos a partir de cinco conjuntos de dados QSAR mostraram
que o método baseado em distancias foi superior para capturar os elementos
estruturais mais relevantes para a caracterizacdo precisa de propriedades mo-
leculares em conjuntos de dados altamente diversificados (regides de espaco
quimico remoto). A descoberta a partir de andlise comparativa de representagdes
moleculares ajudou ainda no desenvolvimento de uma nova ferramenta para a
visualizagdo do espaco molecular para aumentar a compreensdo das relacoes
estrutura-atividade em projetos de descoberta de drogas, explorando a diver-
sidade de grandes dados quimicos heterogéneos. Moléculas dentro de espacos
quimicos tedricos/conceptuais de alta dimensao sdo consideradas objetos € as
distancias entre elas sdo usadas para extrapolar atividade ou propriedades bioldgicas.
O tamanho do espaco quimico é enorme e ndo tem um ndmero bem defin-
ido. Uma pequena fracdo de espaco quimico indefinido, variando de milhares
a milhdes de compostos, estd disponivel em pequenas bases de dados molecu-
lares que sdo usados para explorar e visualizar a complexidade das estruturas
quimicas durante o processo de drug development. Os métodos de visualizag@o
do espaco quimico combinam o conceito de estrutura molecular e similaridade
de atividade. No entanto dependem criticamente das representacdes molecu-
lares e do modo de quantificacdo da similaridade, que € posteriormente usado
para calcular a representacao espacial métrica. Na abordagem visual proposta,
quatro métodos de projeccdo de espagcos métricos num referencial vectorial em
2 dimensoes foram testados para representar uma menor dimensionalidade de
moléculas (espago projetado 2D) em que uma estimativa da densidade de prob-
abilidade nao- paramétrica foi aplicada para mapear as regides de atividade mais
provaveis (superficies de atividade) . A analise destas superficies probabilisticas
de atividades moleculares (PSMA de “probabilitic surface map of activity”) de
quatro conjuntos de dados mostrou que estes mapas possuem poder descritivo
e preditivo, podendo ser utilizados como modelos de classificagdo, como ferra-
menta para realizar VS utilizando apenas a similaridade estrutural de moléculas
sem necessidade de qualquer parametrizacdo ou ajustamento adicional.

A abordagem de modelagdo QSAR acima referida foi complementada e com-
parada com a utilizagdo dos métodos dedocking molecular, uma abordagem
que prevé o modo de interagcdo molécula-alvo terapéutico. Ambas as abord-
agens foram integradas para desenvolver uma pipeline de VS Para validar o



pipeline desenvolvido, um modelo de design de farmacos de duplo alvo para
a doenca de Parkinson (PD) foi desenvolvido por forma a identificar novos ini-
bidores para melhorar as fungdes motoras dos pacientes com PD, aumentando a
biodisponibilidade de dopamina mas evitando a neurotoxicidade. A abordagem
proposta pode ser facilmente adaptada para outros modelos de doenca multi-
alvo mais complexo, contendo vérios alvos e anti-alvos para alcangar maior
eficdcia e reducdo da toxicidade em doencas multifatoriais, como outras pato-
logias do SNC ou cancro. Em suma, este trabalho aborda vérias questdes de
métodos de quiminformética (por exemplo, representacdo de estruturas molecu-
lares, aprendizagem automatica e andlise de similaridade molecular) para mel-
horar e projetar novas abordagens computacionais usadas na prospec¢ao de da-
dos quimicos. Além disso, um pipeline integrativo de design de farmacos foi
projetado para melhorar a abordagem VS baseada em polifarmacologia. A met-
odologia apresentada pode identificar as moléculas candidatas mais promissoras
para multiplos alvos.

Palavras Chave: Triagem virtual; Biologia de Sistemas; Polifarmacologia; Far-
macologia de sistemas; Aprendizado de Maquina; modelagem QSAR; Visualizacao
de espaco quimico; docking molecular
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Introduction

Today drug design and discovery has moved from the molecular/single target to the tar-
get networks (polypharmacology) and systems-biology-oriented level (systems pharmaco-
logy)[1]. According to the National Institute of General Medical Sciences “Systems biology
seeks to predict the quantitative behaviour of an in-vivo biological process under realistic
perturbation” [2]. To address the current challenges in biomedical science, systems bio-
logy incorporates information from various levels (genomics, transcriptomics, proteomics,
metabolomics, and etc.) of biological systems. Instead of considering only local states of a
system, the systems biology based approaches also accounts for the complex and highly pre-
cise interactions of current state with other explicit systems components. Consequently, sys-
tems biology methods combined with experimental validations are being used by researchers
to provide a valuable understanding of the multifactorial and complicated cellular mechan-
isms in complex diseases like central nervous system (CNS) disorders or cancer [3, 4]. The
primary purpose of these approaches is the integration of quantitative information about

multiple molecular- and cellular-level components (omics data) for investigating biological
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networks and predicting drug targets and their role in pathophysiology (Figure 1.1) [5, 6, 3,

4,7].
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Figure 1.1: Applications of polypharmacology in systems pharmacology

Recent advances in omics technologies and the availability of the resulting data in pub-
lic databases significantly contributed to increasing success rates in systems biology and its
applications in drug discovery or pharmacology [5, 8]. Systems pharmacology inherits meth-
ods from systems biology to integrate drug discovery with biological information and then

uses this integrated representation to elucidate the drug action mechanism. (Figure 1.1).

In the new systems pharmacology paradigm, to understand the complex binding profile
of drugs molecules at the network level, the traditional single-target drug discovery process

is being replaced with multi-target drug designing (polypharmacology) to predict the promis-



cuous (multi-targeting) behaviour of drugs which provide an opportunity not only to discover
new uses for already known compounds, but also to increase the efficacy of already known
drugs, and avoiding affinity to related off-targets (Figure 1.1). Thus, the identification of new
drug-target interactions appears as the key to finding new targets for old drugs and new drug

candidates for known targets [9, 10, 11].

Systems pharmacology that combines methods from systems biology and poly pharma-
cology has become the current state-of-the-art method for drug designing. The figure 1.2,
plotted by considering the number of publications for “systems biology”, “poly-pharmacology”,
and “systems pharmacology” terms that were searched in PubMed clearly shows a paradigm

shift towards systems pharmacology for drug discovery.

30000
25000
20000

15000 Term - system biology

Term - system pharmacology

10000 Term - poly-pharmacology

Publication Count

5000

Figure 1.2: The growth of the total number of publications in the field of systems biology,
systems pharmacology and poly-pharmacology in the PubMed database.

Nonetheless, the success of drug designing for complex diseases depends on an interdis-
ciplinary multistep process which mainly involves: a) understanding of disease mechanism

(system biology level) for the identification of clinically and biologically validated targets
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(right targets), b) screening of exogenous entities (right drug molecule) from the large chem-
ical space that can manipulate required biological targets for normalizing several disease
associated pathways and networks and finally, ¢) analysis of the mechanism of action of the
drug in complex biological systems (system pharmacology level) to test and achieve required

therapeutic effects (right phenotypic effect) (Figure 1.1).

Several omics studies clearly indicate that CNS disorders such as Parkinson’s disease,
Alzheimer’s disease, Huntington’s disease, or amyotrophic lateral sclerosis are multifactorial
in origin and have complex pathomechanisms [12, 13]. Systems-biology-oriented analyses
of complex disease phenotypes in CNS disorders have been helping in narrowing down bio-
logical networks into a fewer number of relevant disease-causing targets [14, 15, 16]. Better
biology of such complex diseases provides both opportunities and challenges in the discovery
and development of novel medicines for their treatment [17, 18]. In such highly heterogen-
eous diseases where many potential defects in the structure, function, or regulation of the
cells are involved, single-target medications have failed [17, 19]. Thus, there is a mounting
need to bring new drugs into clinical practice for the rebalancing of the several proteins or

events, that contribute to the etiology, pathogenesis, and progression of diseases.

Due to the complexity of the large network of disease-causing factors in CNS pathology,
in recent years, in-silico methods for polypharmacology are being promoted in pharmaceut-
ical industries and academia to achieve a desired multi-target activity profiles of drugs [17,
19, 20]. Polypharmacology approaches have discovered many drugs with enlarged thera-
peutic ranges including single drug-multiple targets interaction (promiscuous ligands) and
also multiple drugs binding to one target (promiscuous targets) (Figure 1.1). The purpose of
predicting drug promiscuity is twofold: firstly, for screening all possible off-target proteins
that can detract drug action towards unwanted side effects and, secondly, the promiscuous
behaviour of drugs that can also be exploited for multi-target drug design [19]. Thus, many
of the modern drug design methods are mainly focused on drug repurposing (i.e., new tar-

gets for known/old drugs) [17, 21]. Drug repurposing can significantly reduce the cost of
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an expensive and time-consuming process to bring a drug to market with improved clinical

efficacy and safety [17, 22, 23].

Virtual screening (VS) has been typically considered an area of computer-aided drug dis-
covery where computational approaches including ligand-based VS, or structure-based VS
aim for predicting drug-target(s) binding affinities to reach desired therapeutic effects and
off-target(s) binding for avoiding possible adverse effects. In the absence of the target pro-
tein structure, ligand-based VS methods are used for identifying new molecular structures
(ligands) based on the principle that similar molecules are likely to have similar proper-
ties [24, 25]. Commonly used ligand-based VS approaches (e.g., similarity searching [25],
pharmacophore mapping [26] and machine learning methods [27, 28, 29]) analyse large mo-
lecular databases on the basis of compounds chemical and biological properties, structure,
shape, bioactivity, and in-silico descriptors or computed properties to identify ligands likely
to have similar properties to the known actives [25, 30, 31, 32, 33]. On the other hand,
structure-based VS approaches use experimentally known structure of the target proteins to
apply well-known molecular docking to discover small molecules that mimic the binding
interaction of ligands into the active site with a high predicted binding affinity (scoring) [34,

35].

1.1 Problem statement and the aims of the study

Given the complexity and multifactorial nature of CNS diseases, efforts have been made
by academic researchers, medicinal chemists, and pharmaceutical industries for the develop-
ment of polypharmacological approaches as a promising therapeutic strategy to find multi-
targeting drug molecules [17, 5, 19, 20]. However, the reported sensitivity of these methods
is around 50% [36, 19] which must be improved to get the desired predictive performance.
The possible reason for lower or reduced predictability for multi-targeting drugs is a global

assumption behind ligand-based VS and structure-based VS methods that are mostly adopted
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for polypharmacology techniques [19]. Ligand-based VS focus on known active molecules
to find similar molecules considering the assumption that structurally similar molecules have
the tendency to bind to similar targets [24] and structure-based VS uses structures of target
proteins following the supposition that proteins with similar binding sites will bind similar
ligands [37]. Nonetheless, to work at the level of systems pharmacology, the main challenges
are: a) at molecular level (i.e., dealing with big data sets of diverse molecular structures
and their biological properties for the understanding of the structure-activity relationship),
b) at cellular level for exploring complex cellular networks, and c) finally at the organism
level to model whole biological system for the understanding of big systems-based picture.
On the molecular level, polypharmacology approaches are adapted for computationally fast
large-scaled screenings of millions of compounds against all of the desired proteins using
their known molecules as a query and the most promising molecules are selected for further

chemical synthesis and experimental (in-vitro and in-vivo) testing [17, 19, 20, 8].

It is then possible to clearly define the goal of this work, which can thus be formulated

as:

Can existing modeling approaches be improved so as to advance virtual screening in

multi-target drug design?

Keeping in mind this goal, the presented document covers the design and implementation
of cheminformatics methods to tackle different chemical data manipulation and modeling
problems in medicinal chemistry, with particular emphasis on machine learning applications
in QSAR modeling, molecular structural representation methods, and molecular similarity
analysis and its applications in chemical space visualization (Figure 1.1). Moreover, this
thesis further compares the performance of molecular docking and QSAR modeling and
integrates the advantages of theses two different methods of VS in polypharmacology, an
important task in systems pharmacology. Such efforts can play a significant role in com-

putational chemical data mining and understanding of the relationship between chemical
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structure and desired properties to identify and prioritize promising multi-targeting candid-
ate molecules for experimental validation at the systems level in the drug discovery process.
A more specific overview of the objectives of this study is represented in Figure 1.3 including

the following tasks:

e Objective-1: Automation and validation of the a state-of-the-art machine learning
approaches to develop a fully automated and reliable QSAR model building platform.
This platform would provide an efficient data curation process for preparing a good
quality data by directly accessing online manually curated databases to build global
models. Moreover, to check the processed data quality the automated workflow will

include prior estimation of data modelability to avoid time-consuming modeling trials.

e Objective-2: Extensive analysis of molecular representation methods to assess differ-
ent data analysis and modeling methods. This objective was divided into two tasks.
First task would be a comparative analysis of the most widely used molecular structural
transformation methods used to convert compounds structures into machine readable
formats, which is required for fitting machine learning models in QSAR problems.
Second tasks is designing a novel tool for visual characterization and diversity ana-
lysis of chemical data by representing high dimensional molecular spaces into reduced

dimensionality.

e Objective-3: To optimize and establish a rational and re-usable polypharmacology-
based drug designing pipeline by integrating molecular docking and QSAR modeling

approaches.

1.2 General methodology

An overview of the designed and implemented methodology to achieve the above defined

objectives is explained as follows.
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In the first objective (Figure 1.3), an extendable and highly customizable automated
QSAR modeling framework was developed that can be used as a QSAR modelling pipeline
to build robust predictive models. The workflow, given a target or problem, automatically
collect and curate molecular structures and corresponding biological activity data for a spe-
cified target. Furthermore, to quantify various features of molecular structures a variety of
chemical descriptors are computed. Before entering in the laborious process of feature se-
lection, model building and validation, data modelability evaluation is performed for data
quality validation. Difficult or poor-quality data sets are not recommended for modeling.
After data quality assessment, QSAR modeling framework follows a feature selection pro-
cess to select an optimal set of features by using a state-of-the-art methodology and follows
an unbiased standard protocol of QSAR model building with external and internal retrospect-

ive validation.

The first task of the second objective (Figure 1.3) of this document details a thorough
evaluation of existing molecular structure representations as the accurate characterization of
biological molecular properties in QSAR modeling largely depends on the relevance of the
selected molecular representation. To accomplish this task seven different molecular rep-
resentations from two main categories of molecular representation (vector space and metric
space) were used in five distinct QSAR data sets. For completion two different dimension-
ality reduction methods (principal components reduction and feature selection) were tested,
thus, in total eighteen different approaches for each data set were implemented. The number
of features was selected using cross-validation, and, each final model was assessed against
an independent validation set randomly selected from the initial data set, which was never

used in any step of the model fitting phase.

It was further developed a reliable pipeline that can efficiently be used to build probab-
ilistic surfaces of molecular activity (PSMAs) for a visual characterization of molecules in
molecular activity spaces. This approach is, to my knowledge, new and allows building a

non-parametric classification model out of raw data of molecular similarity. Visualization
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of such high dimensional metric space data is a difficult challenge in many different do-
mains of data analysis, as it demands efficient and robust techniques to adequately represent
data variability in lower dimensions (2D or 3D). In this study, four different dimension re-
duction algorithms were tested to transform structural distance matrices in 2D to generate
a topographical map, which should be able to present a visual analysis of the diversity of
large heterogeneous chemical data, from the projected space (X, Y coordinates). The gener-
ated activity probability maps were assessed and validated as a classification model for four

different QSAR datasets.

Finally, it was aimed to integrate the knowledge of molecular docking with the state-
of-the-art QSAR modeling methodology (established in previous objectives) to develop a
rational drug designing methodology pipeline. The developed approach was used to perform
fast and computationally efficient virtual screening of large databases to predict compounds
that bind multiple targets against Parkinson’s disease chosen as a case study. The identified
hits were ranked/sorted according to three criteria including a) best docking predictions only,
b) best QSAR predictions and c¢) both (consensus) best docking and QSAR model predic-
tions. Compounds from these three categories were considered for testing in in-vitro assays
to compare the robustness of best performing understudy approaches. The purpose of this
task is the development of novel and re-usable polypharmacology method for rational design

of multi-targeting ligands.

1.3 Overview of the document

Other chapters of this document are organized as follows:

e Chapter 2 gives a background on several concepts to explain this work. The chapter
starts with an introduction to VS and provides an overview of the most common com-

putational approaches used to perform VS. Two different domains of VS methods in-

10
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cluding cheminformatics applications in ligand-based VS and structure based VS us-
ing molecular docking are explained. Background on cheminformatics covers several
areas including molecular structure representation/transformation methods, molecular
similarity applications in similarity-based VS and molecular spaces visualization, and
this section ends with the introduction of QSAR modeling. In the section of molecu-
lar structure-based VS, overview of the important tasks to perform molecular docking
analysis is presented, namely target structure analysis and selection for docking, dock-
ing software selection and parameters optimization and, ligands database preparation
for virtual screening. In the last section of this chapter large compound repositories

for VS are briefly explained.

Chapter 3 pinpoints the need of automation of the QSAR modeling process and high-
lights the advantages of automation of repetitive tasks in the laborious drug discovery
process. This chapter provide a review of QSAR/QSPR modeling “life cycle” some
standard steps, critical for reliable model building, and presents a fully automated

QSAR modeling platform.

Chapter 4 focuses on a thorough comparative analysis of molecular structures repres-
entation (vector space and metric space) methods to find the best suitable approach to
describe molecular structural information, which is used for predicting relationships
between biological activity (response variable) and structural information (predictors)

in QSAR modeling.

Chapter 5 presents a methodology that is able to integrate the advantages of the dif-
ferent methods including (a) molecular space representation, (b) non-linear dimension
reduction methods and (¢) Non-parametric 2D kernel density estimation (KDE) func-
tion to build a probabilistic surface of molecular activity (PSMA). The activity prob-
ability maps characterize actives and inactives into lower dimensional metrics spaces

that is useful for chemical activity spaces visualization and can also serve as spatial

11
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classification model with clear predictive properties.

e Chapter 6 describes the problem of low sensitivity of polypharmacological approaches.
It also highlights the applications of VS methods in the identification of chemical struc-
tures with multi-targeting activity. Additionally, chapter 6 covers all the concepts such
as the implementation and validation of molecular docking and QSAR methods for
hit identification, and presents a polypharmacology-based VS methodology that integ-
rates molecular docking and QSAR modeling approaches. The purpose of integrating
these two approaches was to identify promising inhibitors against PD by introducing

a dual-targeting drug designing.

e Chapter 7 Presents an overview of each objective, concludes their corresponding con-

tributions and discusses limitations and future directions of the present work.

1.4 Publications and participation in academic activities

1.4.1 Papers in scientific peer-reviewed journals

1. Kausar S, Falcao AO (2018). An automated framework for QSAR model building.
Journal of Cheminformatics. 16;10(1):1. doi: 10.1186/s13321-017-0256-5.

e QSAR modeling workflow zipped source file and all generated models with
their completely curated data sets are available at: https://github.com/

Saminakausar/Automated-framework—for-QSAR-model-building

2. Kausar S, Falcao AO (2019). Analysis and comparison of vector space and metric
space representations in QSAR modeling. Molecules. 24(9).
doi: https://doi.org/10.3390/molecules24091698
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1.4 Publications and participation in academic activities

e Supplementary data (Additional file 1) contains three supplementary tables in-
cluding: Table S1: List of RDkit 2D and 3D descriptors, Table S2: 5-fold
cross-validation results, Table S3: External validation results and a Figure S1:
Selection of optimized number of PCs: PVE vs. number of PCs plot from
PCA on metric space are available at: https://www.mdpi.com/1420~
3049/24/9/1698.

3. Kausar S, Falcao AO (2019). A visual approach for analysis and inference of molecu-

lar activity spaces. Journal of Cheminformatics. (First revision submitted)

e All data sets and R source code (PSMA.Rmd and PSMA .html) for analysis and
inference of molecular activity spaces are available at: https://github.
com/Saminakausar/A-visual-approach-for—-analysis—and-inference-

of-molecular—-activity—-spaces

4. Kausar S, Guedes RC, Falcao AO (2019). Comparative analysis of QSAR modelling

and molecular docking: a rational approach in polypharmacology. (In progress)

e COMT and GSK3B QSAR classification models are available at: https://
github.com/Saminakausar/Automated-framework—-for-QSAR-model-

building

1.4.2 Participation in conferences

1. Kausar S, Falcao AO (2015). Predicting amyotrophic lateral sclerosis progression: a
simple Bayesian model for longitudinal and time-to-event clinical trial data. Poster
presented at the LaSIGE workshop, Department of Informatics, Faculty of Science,

University of Lisbon. November 7, 2015

13


https://www.mdpi.com/1420-3049/24/9/1698
https://www.mdpi.com/1420-3049/24/9/1698
https://github.com/Saminakausar/A-visual-approach-for-analysis-and-inference-of-molecular-activity-spaces
https://github.com/Saminakausar/A-visual-approach-for-analysis-and-inference-of-molecular-activity-spaces
https://github.com/Saminakausar/A-visual-approach-for-analysis-and-inference-of-molecular-activity-spaces
https://github.com/Saminakausar/Automated-framework-for-QSAR-model-building
https://github.com/Saminakausar/Automated-framework-for-QSAR-model-building
https://github.com/Saminakausar/Automated-framework-for-QSAR-model-building

1. INTRODUCTION

2. Kausar S, Falcao AO (2017). An open-source platform for automated processing and
integration of data in pharmacological activity modelling. Poster presentation at a
conference “From Single- to Multiomics: Applications and Challenges in Data Integ-

ration”, EMBL Heidelberg, Germany. November 12th-14th 2017.

3. Kausar S, Falcao AO (2018). Analysis and inference within the molecular space: A
visual approach using NAMS and multidimensional scaling. Poster presentation at a
conference “11th International Conference on Chemical Structures”, Noordwijkerhout

The Netherlands. May 27th-31st 2018.

4. Kausar S, Falcao AO (2018). Selective modelling of MAO-B inhibitors for neurode-
generative disorders’ in-silico molecular screening. Poster presentation at workshop
“WORKSHOP ON INTEGRATIVE APPROACHES IN NEURODEGENERATION”,
Faculty of Sciences University of Lisbon, Lisbon, Portugal. Jun 21st-23rd 2018.

5. Franco C, Kausar S, Brito MA, Guedes R, Falcao A. Computational modeling in glio-
blastoma: a comprehensive approach to overcome the blood-brain barrier and target
EGFR and PI3K signaling. Annual Blood-Brain Barrier Consortium Meeting. Port-
land, OR, USA, March 7-8th, 2019, [P11].

1.4.3 Participation in academic competitions in science

1. Participated in a Multi-Targeting Drug Dream Challenge where anticipated outcomes
was: 1) novel and re-usable methods for rational design of multi-targeting compounds
and 2) a benchmark standard for assessing multi-targeting compounds. Under this
competition, a polyphamacology-based virtual screening approach was developed to
predict the structures of candidates that can bind to and inhibit the activity of mul-
tiple independent targets for two biological problems including medullary thyroid car-

cinoma and neurodegenerative model of tauopathies.
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Background/state of the art

2.1 Virtual screening approaches

Virtual screening (VS) refers to a range of in-silico methods that serve as computational
analogues of biological high-throughput screening in modern drug discovery process [1].
The aim of VS is to search large small-molecule databases to select the chemical structures
that have the largest probability of activity in biological testing in a “lead discovery pro-
gramme”. Thus, VS may reduce the total cost of drug development by screening the exper-
imentally manageable numbers of candidate/lead molecules [1, 2, 3, 4, 5]. A lead molecule
is a compound that has the required pharmacological properties and thus is used as a good
starting point for drug discovery. VS procedures (Figure 2.1) depending on the availability
of the amount of targets structural and bioactivity information use one or a combination of

computational methods which can be classified as ligand-based VS and structure-based VS
[6].

Structure-based VS, such as molecular (protein—ligand) docking can be implemented if
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Chemical space
Estimated size ~109°

Biological space
Estimated size ~10* to 10°

3D structure of
target protein

Unknown Known

molecules Human proteins
Available Virtual Validated and
compounds screenin g tractable targets

Ligand-based

Structure-based

methods methods
Actives known | Actives and inactives known
| |
Similarity QSAR modeling: Molecular
analysis Machine learning docking

I
Similarity
searching

Chemical space

visualization

Figure 2.1: Overview of virtual screening approaches
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the crystallographic structure of the biological target is known [7]. While in the absence of
a 3D structural model of target, different ligand-based VS that incorporate various level of
chemical information and representations (three-, two-, and even one dimensional) [8, 9, 10]
are preferred. Examples of ligand-based approaches include: a) similarity searching (e.g.,
shape-based [1 1], and fingerprint-based similarity [12, 8] is commonly used when single or
just a few chemical molecules are known, b) Pharmacophore-based mapping/matching [13]
can be implemented when many actives and inactive are available, and c) machine learning
methods are well suited for larger amount of active and inactive ligand molecules to derive
a quantitative structure-activity relationship (QSAR) [14, 5, 15]. Moreover, similarity ana-
lysis has further applications in the visualization of the characteristics of big chemical space
which can also serve in predicting biological activity [16, 17, 18]. However, ligand-based
VS methods identify molecules from large chemical libraries that share some structural/bio-
logical activity similarity with the active ligand molecules at hand which have been identified
as potential leads. Ligand-based VS approaches are being addressed mainly under chemin-
formatics and considered as a fast and powerful virtual screening methodology to deal with
big chemical space comparatively to traditional and relatively computationally “inefficient”

molecular docking and scoring approaches (Figure 2.1).

The scope of this thesis focuses on molecular docking studies as mainstream structure-
based VS method and advanced cheminformatics applications for VS particularly chem-
ical data transformation methods, similarity analysis and, QSAR modeling. Pharmacophore
methods that extract common 3D pharmacophoric pattern (features important for the mo-
lecule to be active) from known actives and later used to a 3D database searching are out of

the scope of the presented study.
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2.1.1 Cheminformatics applications in virtual screening

Cheminformatics (also known as chemoinformatics and chemical informatics) is a broad
field that was originally developed with the goal for computationally fast and accurate search-
ing of large compound databases for chemical information retrieval and extraction using
computer science and information technology [6, 19, 20]. The term chem[o]informatics was

first time defined as:

“mixing of those information resources to transform data into information and informa-
tion into knowledge for the intended purpose of making better decisions faster in the area of

drug lead identification and organization” [21].

Cheminformatics techniques soon became a critical part of the drug discovery process
to tackle other chemical problems including molecular graph processing, descriptor and fin-
gerprint construction for transforming chemical structure into chemical information (com-
pounds physical, chemical, and biological properties) for further applications in similar-
ity searching and chemical space exploration, pharmacophore and scaffold analysis, lib-
rary design, and data mining using machine learning methods to correlating structural fea-
tures with biological properties [14, 6]. However, such approaches that correlate structure-
activities are among the most focused areas in pharmaceutical companies and lie at the heart
of virtual screening, the most important current application of cheminformatics in the pro-

cess of drug designing [14].

2.1.1.1 Molecular structure representation/transformation methods

One of the major tasks in cheminformatics is the transformation of chemical structures
into computer-readable formats. Molecules are complex entities that have atoms connected
with covalent bonds and also chemical reactions can convert them from one form to another

form. Thus, the conversion of molecular structures to information/properties is not a simple
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process but involved multilayer computational processing. In the first step, a molecular struc-
ture is represented as molecular graph/connection table and then features vectors (known as
descriptors and fingerprints) are calculated that stores different form of information including
chemical properties, geometries, interactions and reactions. Since, each representation does
not include all information about all structural elements, which arises a question of select-
ing the best structural transformation each time for characterizing compounds under specific
problems. Hence, chemical structural representation is not always explicit and unique [22].
Nowadays, a large variety of methods have been developed for encoding a compound as a

feature vector to represent and to mine the molecular information [23, 6].

In this section, the basic concept of graph theory and molecular representation like mo-
lecular descriptors and fingerprints are described. These methods are most commonly used
for performing several operations (e.g., storage/retrieval, identity, substructure/superstruc-

ture relationships, similarity and multivariate relationships).

Molecular/chemical graph theory

Molecular/chemical graph theory is a topology branch of mathematical chemistry which
is important to understand the structures (specified by their graph representations) containing
the chemical information that influences their biological activities and is necessary to solve
molecular problems [24]. A molecular graph (also known as a “chemical graph” or “struc-
tural graph”) is a simple graph represents structural formula of a molecule having nodes to
represent atoms and edges that represent covalent bonds between the corresponding atoms. A
molecular graph represents only the topology of chemical structure and has no information
about their 3D arrangement. Therefore, molecular graphs can only distinguish molecules
isomeric forms (structurally distinct compounds (non-isomorphic graph) but same molecu-
lar formula) but cannot discriminate stereoisomers or conformational isomers. Different

ways for constructing chemical graphs have been proposed [25, 26, 6] and these variations
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of chemical graphs representation may not obviously correspond to a “standard” chemical
compound. Graph representation reduces the complexity of chemical systems due to loss
of some structural information (properties derived using molecular geometry, stereochem-
istry or 3D conformation). But atomic connectivity information from chemical graphs using
a bond adjacency matrix, or topological distance matrix supports the calculation of several
molecular descriptors treated as the molecular signatures that are useful for cheminformat-
ics modeling [27]. It is necessary to have efficient methods to convert the molecular graph
to computer-readable format for further application of chemical graphs (e.g., chemometric

analysis for comparing and quantify chemical diversity) [27, 28].

Molecular descriptors

Molecular structural descriptors are numerical vectors of features describe the informa-
tion encoded in chemical structures [29]. These descriptors are derived with mathematical
formulae obtained from Chemical Graph Theory, Information Theory, Quantum Mechanics,
etc., while others directly illustrate some relevant feature of the molecules (Table 2.1) [30,

31]. Molecular descriptors are typically defined as:

”The molecular descriptor is the final result of a logic and mathematical procedure which
transforms chemical information encoded within a symbolic representation of a molecule

into a useful number or the result of some standardized experiment” [31].

Molecular descriptors can be divided into 4 broader categories depending on the degree/-
level of structural information required to compute them [32, 22, 6, 31]. Thus, molecular
descriptors can be constitutional (0 or 1 dimensional (D)), topological (2D), geometrical
(3D) and physico-chemical properties-based (4D) (Table 2.1) [33, 34, 22, 31]. 2D descriptors
including topological indices, molecular profiles and 2D autocorrelation descriptors are the
most commonly used types of descriptors reported in the literature [33]. 2D descriptors give

equally good or even better performance than the other higher dimensional types and save the
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Table 2.1: Types of molecular descriptors according to dimensions

Type Dimension Derived from Description

Reflect the chemical information of

molecules without considering atom

Constitutional connectivity information.
(Theoretical 0D, 1D
descriptors)

Molecular formula

and chemical graph Example: Molecular weights, atom counts,

bond counts, fragment counts, functional
group counts etc.

Use the information of connectivity of
atoms in molecules without their geometric
information.

Example: Balaban, weiner, zagreb and
randic connectivity indices, BCUTS etc.

Topological
(Theoretical 2D Structural topology
descriptors)

Represent the 3D information regarding the
molecular size, shape, and position of the
atoms in space.

Example: GETAWAY, autocorrelation
WHIM, and 3D-MORSE etc.

Geometrical
(Theoretical 3D Structural geometry
descriptors)

Used to describe molecular properties from
conformational behaviour or observed
chemical interactions with the surrounding

Physicochemical Chemical behaviour space
(Theoretical + 4D (th.ermodyna.mics), Example: Different constants (partition
experl_mental steric properties, and  ¢oefficients (logP), hydrophobic substituent
descriptors) electronic properties  (p), acid dissociation, Hammett, taft steric,

and Charton's constants), molRef (Molar
refractivity), Volsurf, raptor, GRID etc.

computational time required for a laborious process of 3D structural features (e.g., autocor-
relation descriptors, substituent constants, surface: volume descriptors and quantum—chemical
descriptors) or 4D molecular properties or structural conformations prediction [33, 10, 35].
Description and examples of each type of descriptors are described in Table 2.1 [36, 31].
Different types of descriptors are used for various tasks in cheminformatics e.g., molecular

data mining/VS, compound diversity analysis and activity prediction [36, 31].

As several types of representations of molecular structures and descriptors calculations
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programs (free and commercial) are available that automatically extract thousands of descriptors
from different structural representations and differ in their computation time and the com-
plexity of the encoded information [22, 31]. Software programs for generating different

molecular descriptors are listed in Table 2.2.

Molecular fingerprints

Molecular fingerprints are high-dimensional vectors (binary bit strings) that encode a
fragment or characteristic of a given molecule. Fingerprints are well-known molecular rep-
resentation commonly used in molecular diversity analysis, similarity-based virtual screen-
ing, and in the clustering of chemical databases [37, 14, 6, 22]. Different settings (e.g.,
generation method, length, size of patterns and number of bits activated by each pattern etc.)
are used to encode molecular information in the binary vectors of fingerprints. Each bit
in the bit strings or fingerprints represents the absence (0) or presence (1) molecular struc-
tural feature or chemical descriptor value [12, 38]. However, molecule fingerprints serve
as the simpler form of molecular representation that is used for assessing molecular sim-
ilarity through their fast and computationally easier comparisons and are also deployed as
descriptors for predictive modelling to estimate the biological activities [39, 40, 41, 23, 42].
In the past years, the definitions and classification of molecular fingerprints and their applic-
ations have been reviewed in detail [43, 38, 44, 45]. Molecular fingerprints the most popular
for VS can be grouped into different classes depending on the methods used to compute them
(Table 2.3) [12, 38]. Table 2.3 summarises several types of fingerprint and softwares have

been developed to generate them by mapping molecular structures to bit strings [38].

2.1.1.2 Molecular similarity concepts

Molecular similarity analysis has numerous applications including molecular structure

superposition, common substructure searching, similarity-based virtual screening (similar-
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Table 2.2: Software programs for calculating different molecular descriptors.
I

home page

Software

Total
descriptors

Type of descriptors

Operating system/
Platforms

Commercial

Constitutional, topological,
2D-autocorrelations, geometrical, WHIM,

DRAGON 5270 @ A, IR, rine el s, ST Windows/ Unix/Linux Link
etc.
Topological, physical properties, structural Windows/Linux/ SGI .
MOE over 300 e /MAC /Sun Link
Molecular Connectivity, Shape, and Windows /Unix .
10IECO NI R Information Indices (topological) /Linux /MAC Link
constitutional, functional group counts,
. 297 (2D: 266 and topological, E-state, molecular patterns, Wi .
indows
ADMET predictor 3D:31) electronic properties, 3D descriptors, hydrogen Link
bonding, acid-base ionization etc.
Predict molecular properties (molecular
ACD/labs - weight, density, log P, log S, log D, and pKa, - Link
etc.)
Global physicochemical descriptors, atom
1244 property-weighted 2D- and . . o
ADRIANA. Code 3D-autocorrelations and RDF, surface Windows /Unix Link
property-weighted autocorrelations.
Constitutional, topological, geometrical,
CODESSA 1500 charge-related, semi-empirical, Windows Link
thermodynamical
ADAPT 260 Topological, gt?ometricgl, electronic, Unix /Linux Link
physicochemical
MOLGEN-QSPR 707 Topological, constitutional, geometrical etc. Unix /Linux /Sun Link
Freeware
Topological, geometrical, electronic, ‘Windows /Unix L
CDK over 200 constitutional /MacOS Link
ALOGPS2.1 - log P, log S, and pKa etc. Web-based Link
Molecular descriptors from several open
ChemDes 3679 source packages (Chemopy, CDK , RDK:it , Web-based Link
Pybel ,BlueDesc , and
PaDEL etc. )

E-DRAGON Over 1,600 Molecular descriptors ‘Web-based Link
JOELIb over 40 Topological, geometrical, properties etc. Windows/Unix/Linux Link
MODEL 3778 Constl.tutlonal, electronic desc.rlptors, Web-based Link

topological, and quantum chemistry etc.
MOLD2 719 one and two-dimensional molecular descriptors - Link
863 (1D and 2D: L . .
Java JRE
PADEL 729 and 3D: 134) Constitutional, WHIM, topological etc. ava Link
PreADMET 955 Consututlonal,’ topolog}cal, geometrical, hiloms Link
physicochemical etc.
PowerMV over 1000 Constitutional, BCUT etc. ‘Windows Link
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Table 2.3: Types of molecular fingerprint used for virtual screening

Derived from the molecular graph by capturing paths of
molecular features (e.g., molecular size, shape, branching, . RDKit, CDK, OEChem
. Daylight and
presence of heteroatoms and number of connecting bonds) AtomPairs TK, Open Babel, and
and encode features information as numeric form into bit jCompoundMapper etc.
string patterns.

Set each specific bit of the bit string depending on the OEChem TK, RDK:it,

presences or absence of certain features including Pug/(Lj?lSn(ise,m d MOE, Pipeline Pilot, Open
functional groups, substructure motifs, or structural BCI ? Babel, CDK ChemFP, and
fragments from a given list of structural keys. BCI toolkits etc.
are hashed topological fingerprints that record radial Open Babel,

environment of each atom instead of considering . jCompoundMapper,
o T . Molprint2D and . ~° . N
molecular paths. Each individual bit in these fingerprints ECFP2-6 Pipeline Pilot, Chemaxon’s
has no specific meaning, therefore, they cannot be suitable JChem, CDK and RDKit
for substructure queries in VS. etc.

Encode the information of features and interactions
important for biological activity (pharmacophore). In
pharmacophoric fingerprints, a list of distance ranges
(patterns) is calculated using three-(or four-) point Pharmacophore
combination of features and distances (topological in 2D fingerprints in
(number of bond lengths), Euclidean in 3D (space)) and 2D/3D
generated patterns are then stored in a bit string.
Consequently, pharmacophore fingerprints can encode 3D
information are usually quite sparse.

MOE, jCompoundMapper
and Canvas etc.

Combine the same bits string bits set using different

UNITY 2D SYBYL-X
approaches

ity searching in chemical databases), diversity selection in virtual combinatorial libraries,

chemical/activity spaces visualization and QSAR/QSPR modeling [19, 46, 47].

At a qualitative level, calculation of molecular similarity is a central task in cheminform-
atics and also played a fundamental role in medicinal chemistry [46, 48, 49, 45, 50]. The
underlying idea of molecular similarity bases on the cornerstone Similar Property Principle,
which states similar compounds should have similar properties [46]. Since molecular simil-
arity is typically evaluated as an indicator of activity similarity, biological activity is extra-
polated from the calculated similarity in current studies. Ideally, according to this principle,
small structural changes of compounds behave proportionally to all physical and biological
properties or in other words increasing structural similarity between two compounds correl-
ates with an increased likelihood to share the same activity. In practice, it is usually observed

in the ligand optimization that progressive small structural changes mostly disrupt or destroy
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compounds biological activity. Hence, overall similarity is not always crucial for the similar
activity, whereas, sometimes, the local similarity of the molecules (specific active regions)
give rise to related activities. This exception of local similarity concepts falls outside the

applicability domain of the Similar Property Principle.

Despite the apparent simplicity, the Similar Property Principle does not guide method-
ologically for defining and calculating the structural similarity of two molecules. A variety
of methods, structural descriptors/fingerprints (explained earlier in previous sections), and
similarity functions/coefficients have been introduced [29, 46, 48, 49, 45, 51, 52, 53, 54].
Irrespective to the specific analysis, molecular similarity values (always lies between O to 1)
largely depend upon an appropriate combination of two basic components including (a) a
molecular structural representation to find the overlapped or similar features and (b) similar-
ity function/coefficient to quantify the similarity between them. Also, sometimes a weighting
scheme is also applied if differential weighting is required for important structural features

for similarity assessment [29, 46, 48, 49,45, 51, 52, 53, 54].

Similarity-based virtual screening

Similarity-based VS is also known as ligand-based VS [55, 56]. As it has been ex-
plained earlier (Section: molecular similarity) molecular similarity based on Similar Prop-
erty Principle, thus by holding this principle in the similarity-based VS method any lib-
rary/database of compounds with unknown activity is compared to a set of known active
molecules (reference or target structure), and the molecules that share similarity above a
certain threshold are considered likely to be active. Although screening can be performed
using several other methods or their combination, the simpler and straightforward approach
is similarity-based VS [43]. But, in VS, quantification of structural similarity between two
compounds is itself complex and bound with a problem of numerical representation of mo-

lecular structures, which is still a challenge in cheminformatics [38]. Hence, some level of
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simplification is required to make a comparison between molecular representations fast and
computationally easier. The most popular methods to represent molecular structural features
in similarity comparison can be divided into two broader categories including descriptors-
dependent methods and descriptors-independent methods. Descriptors-dependent methods
include structural descriptors and molecular fingerprints. Descriptors-independent methods
include molecular graph matching approaches, which use graph theory to represent a mo-
lecule with a labelled graph where vertices correspond to the atoms and edges represent
covalent bonds (see the section: Molecular/chemical graph theory). Several molecular graph
matching approaches with some advantages and limitations are available to compare labelled

graphs [57, 58, 59, 60].

The most commonly used structural representation for comparing molecules is molecu-
lar fingerprints (Table 2.3). Different types of molecular fingerprints have different lengths
(number of bits) and encode chemical information ranging from simple 2D to complic-
ated higher dimensions (3D/4D). Nonetheless, 2D fingerprints are usually preferred be-
cause of the simplicity and high computational efficiency of methods used to calculate them.
Moreover, in VS simple 2D chemical information show relatively better performance than
the higher dimensions (complex chemical features) that also have been explored for quanti-

fying similarity between pairs of molecules [35].

The molecular comparison is finally assessed to quantify molecular similarity. A variety
of (dis)similarity functions/coefficients have been introduced that return a molecular simil-
arity score to indicate the level of similarity between molecules under comparison [48, 53,
61, 62, 54]. In cheminformatics, for molecular fingerprints, the most popular, fast and easily
implemented similarity function is Tanimoto coefficient (7c) [54, 62]. Tc compares binary
vectors (any type of fingerprint) of two molecules and quantifies the fraction of the number
of “on” bits (feature present) common in the pair of molecules to the total number “on” bits

in both molecules under comparison.
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Similarity-based VS methods have several advantages, e.g., these are (a) adaptable be-
cause they can consider any molecular representation that is supportive to similarity com-
parisons and (b) efficient because do not require models fitting or complex parametrization

required for QSAR modelling.

Molecular similarity and chemical/molecular space visualization

An important aspect of molecular similarity is the definition of high dimensional theoret-
ical/ conceptual chemical spaces where molecules are considered as an object and distances
between them used to extrapolate biological activity or properties [54]. Size of the chemical
space is huge and has no well-defined number. A small fraction of undefined chemical space
ranging from thousands to millions of compounds is available in small molecular databases
that are used for exploring and visualizing the complexity of chemical structures during
drug designing [17, 16, 63]. Chemical space visualization methods combine the concept
of molecular structure and activity similarity; however, they critically depend on molecular
representations and the way of similarity quantification (discussed earlier: section “molecu-
lar similarity”) that is further used to compute metric space (spatial) representation. In a
metric space, a molecule is defined as a set or vector of distances measured from the sim-
ilarity between that molecule to all the other molecules in a given chemical data set. A
large number of similarity computations methods are available some of them use molecular
descriptors/fingerprints as input molecular representation [29, 46, 48, 49, 45, 51, 52, 53, 54]
and others directly use molecular graph matching [57, 58, 59, 60] (see section “molecular

structure representation’).

As in chemical space small intermolecular distances represents high structural similarity
and similar activity (also known as activity spaces), interactive analysis and visualization of
it can describe the molecular diversity of all possible potential biologically active molecules

and; thus, can serve as a strong virtual screening tool (see thesis chapter 5).
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2.1.1.3 Quantitative Structure-Activity Relationship (QSAR): machine learning

The main objective of in-silico quantitative structure-activity relationship (QSAR) models-
based tools is fast and accurate mining of the large small-molecules databases to find prom-
1sing lead compounds with desired biological effects. QSAR modeling is as an application
of machine learning approaches that have become a trend in the early stages of drug devel-
opment [64, 65, 66]. Machine learning in drug discovery cycle is used to produce a robust
QSAR model, capable of trustful prediction of the pharmacological activity of compounds
based on their molecular structural information assuming a strong correlation between struc-
tures and biological activity. Thus, QSAR models quantitatively link the variations of the
biological activity of molecules (ligands) with changes in their structures (molecular charac-

teristics/properties) [67, 19, 68] (Figure 2.2).
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Figure 2.2: Overview of QSAR modeling

Many successful studies have been reported in the literature that show the productiv-
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ity of machine learning approaches combined with traditional practices to study medicinal
chemistry challenges [69]. Moreover, it is accepted that it is not feasible to develop a model
providing reliable estimates for all possible compounds. Classical QSAR methodologies
have many limitations, specifically (1) the model’s predictive power dependency on the vari-
ety of highly correlated predictor variables; (2) the molecular diversity and distribution of
the molecules in the training set; and (3) model’s requirement to be retrained every time
with addition/removal of new compounds [70, 71, 72, 73, 74, 75, 76]. However, the re-
liable predictability of a QSAR model for large and diverse datasets depends on multiple
steps involved in the process of model building. Accuracy or mistakes in each preceding
step of QSAR modelling cycle may affect the subsequent ones and eventually the overall

performance of produced QSAR models [76, 77, 78, 79].

The most critical standard steps for reliable QSAR model building include a) the selec-
tion of the chemical dataset for bioactivity type of interest, b) data curation, c¢) choice of
appropriate molecular representation to describe the information encoded in the given struc-
tures to generate the input data suitable to the machine learning, d) selection of optimal set
of biologically relevant variables (feature selection), e) the selection of algorithms for inter-
pretable model building by the application of one or several machine learning approaches, f)
the validation of the built models with an internal test set to assess their quality and for final
model selection and, g) an external validation of the selected model with an external test set
(Independent Validation Set) to ascertain its predictability for unseen data that never used in

model training process [79, 69] (see chapter 3).

Similarity-based VS methods (discussed above) are unable to capture the specific features
that drive critical similarities/differences because they treat similarity as a scalar quantity and
do not have sufficient data granularity [51]. Hence, to have a granular insight into structure
and activity relationships QSAR modeling is an alternative way to find a quantitative relation

of sub-structural features to biological activities [80].
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2.1.2 Molecular docking analysis and structure-based virtual screening

Molecular docking is a computational structure-based VS technique that is used to mod-
eling and predicting best fitting conformation of a ligand into the active/binding site of the
3D structure of a protein (intermolecular complex) [81, 82]. The crucial factor necessary for
molecular docking-based hit identification are a) the target structure analysis and selection,
b) the software selection and parameters optimization, and c) the ligand database preparation

for VS (see thesis chapter 6). Each of these factors is explained in the following sections.

2.1.2.1 Target structure analysis and selection for docking

Analysis and pre-processing of the 3D structure of a target protein is required to get a
good quality structure before performing docking [83, 84]. For example, for 3D structures
that are produced using X-ray crystallography method, low R-factor and high resolution are
used as indicators of good quality structures. Moreover, crystallographic structures due to
different experimental conditions may contain salts and other molecules, and also some ad-
ditives. Structures must be cleaned from these molecules prior to docking analysis. There
are many other factors including protonation states, coordinating metal ions, co-factors, wa-
ter molecules, conformational states (active/inactive), and mutations. The most crucial step
to define search boundaries (search space) in docking search algorithm is the binding site
selection. Big search space not only increase the computational cost but may reduce the

accuracy (high false positive rates) [83, 84, 85, 86, 2, 87, 4].

2.1.2.2 Docking software selection and parameters optimization

Docking software selection and parameters optimization: Docking algorithms in differ-
ent docking software have two basic components like search algorithm and scoring function

[83, 84, 85, 86, 2, 87, 4]. Search algorithms generate “poses” (protein-ligand geometries) of
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the ligand within the selected active site of the target protein. Scoring function identifies the
best position, conformation and orientation of ligand using defined search space boundaries
and estimate THE binding affinity (minimum energy-most stable and strong binding). Dif-
ferent docking software (AutoDock, GOLD, and DOCK etc.) use different scoring functions
to rank the most likely ligands in VS [88, 6, 3, 83, 84, 85, 86, 2, 87, 4]. Several comparative
analysis of docking programs have shown that no software is the absolute best choice across
all protein structures [89, 88, 90]. However, if the known binders (ligands with experimental
coordinates) are available, several docking softwares should be tested to optimize or to select
scoring functions and selection of software that is able to reproduce the experimental pose
and affinity of known molecules. The docking results of known molecules-target interactions
can also be used as reference score (threshold) for further ranking and evaluating the VS hits

[83, 84, 85, 86, 2, 87, 4].

2.1.2.3 Ligands database preparation for virtual screening

Ligands database preparation for VS: The choice of compounds in the database to be
screened in VS is the most essential step for a successful finding of potential ligands. Secondly,
the compounds structures in the selected database should be cleaned up to prepare their
physical states (e.g., the correct protomers, tautomers, and enantiomers) or 3D geometries
compatible to the docking program being used. Many other factors are considered depend-
ing on the objective of the VS to filter ligands with undesirable physicochemical properties.
The most important filters include a) apply properties (molecular weight, logP, polar surface
area, and number of hydrogen bond donors and acceptors) cut-offs using the Lipinski rules
to choose drug-like compounds, b) lead-like compounds can be selected by eliminating big-
ger compounds, unattractive as leads for optimization, ¢) compounds that contain functional
groups (e.g., nitro groups) linked with toxicity or the ones whose structures can interfere
with the pharmacological assay and also are more prone to aggregation should be removed

[91, 2, 86].
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2.1.3 Large compound repositories for virtual screening

In the past several years of the drug discovery process, the advance high-throughput syn-
thetic and analytical chemical technologies continuously producing a large number of com-
pounds. As a result, the amount of synthesized and known chemical data is exponentially
growing with the passage of time. Nonetheless, in recent years, cheminformatics data col-
lection methods made it possible to store the huge heterogeneous experimental testing data
in chemical databases that are being available to the research community [41]. However, the
availability of large collections of chemical structures in many public (PubChem, ChEMBL,
and ZINC etc.) and commercial (ChemDiv, Specs, and Enamine etc.) molecular databases
[85, 2] providing the opportunity for developing computational knowledge mining/VS meth-
ods. These methods serve as fast and robust tools for the discovery of novel drug candidates
against new targets/pathways and also useful for a deep understanding of the relationship

between chemical structure and pharmacological properties.

Many researchers usually use in-house virtual libraries for screening while freely avail-
able repositories such as ZINC database (www.zinc.docking.org) [92] contains ap-
proximately 35M high-quality ligand structures ready to be used in ligand-based or structure-
based VS. ZINC database gives several options of compounds selection like custom filtering
to getting desired ligands or choosing the pre-defined subsets of ligands e.g., drug-like, lead-
like, and fragment-like, ready-to-dock, in-stock categories. Different physicochemical prop-
erty cut-offs, structural forms/3D formats and availability restrictions are used to prepare the

pre-defined subsets of compounds in ZINC.
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An automated framework for QSAR

model building

SAMINA KAUSAR AND ANDRE O FALCAO

Abstract

Background: In-silico Quantitative-Structure Activity Relationship (QSAR) models based
tools are widely used to screen huge databases of compounds in order to determine the biolo-
gical properties of chemical molecules based on their chemical structure. With the passage of
time, the exponentially growing amount of synthesized and known chemicals data demands
computationally efficient automated QSAR modeling tools, available to researchers that may
lack extensive knowledge of machine learning modeling. Thus, a fully automated and ad-
vanced modeling platform can be an important addition to the QSAR community. Results:

In the presented workflow the process from data preparation to model building and valida-
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tion has been completely automated. The most critical modeling tasks (data curation, data
set characteristics evaluation, variable selection and validation) that largely influence the per-
formance of QSAR models were focused. It is also included the ability to quickly evaluate
the feasibility of a given data set to be modeled. The developed framework is tested on data
sets of thirty different problems. The best-optimized feature selection methodology in the
developed workflow is able to remove 62% to 99% of all redundant data. On average, about
19% of the prediction error (RMSE) was reduced by using feature selection producing an
increase of 49% in the percentage of variance explained (PVE) compared to models without
feature selection. Selecting only the models with a modelability score above 0.6, average
PVE scores were 0.71. A strong correlation was verified between the modelability scores
and the PVE of the models produced with variable selection. Conclusions: We developed
an extendable and highly customizable fully automated QSAR modeling framework. This
designed workflow does not require any advanced parameterization nor depends on users de-
cisions or expertise in machine learning/programming. With just a given target or problem,
the workflow follows an unbiased standard protocol to develop reliable QSAR models by
directly accessing online manually curated databases or by using private data sets. The other
distinctive features of the workflow include prior estimation of data modelability to avoid
time-consuming modeling trials for non modelable data sets, an efficient variable selection
procedure and the facility of output availability at each modeling task for the diverse applic-
ation and reproduction of historical predictions. The results reached on a selection of thirty
QSAR problems suggest that the approach is capable of building reliable models even for

challenging problems.

Keywords: Quantitative-Structure Activity Relationship (QSAR); Machine Learning;Feature
selection; Variable importance;Random forests;Support Vector Machines;KNIME;Data set

modelability
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3.1 Introduction

3.1.1 Background

The advantages of automation of repetitive tasks in the laborious drug discovery process
are numerous and include increased research quality by reducing error along with significant
time saving, boosted up productivity, and capacity to name a few. In this era where large
amounts of data are produced every day and large computational resources are available, the
introduction of machine learning approaches has significantly automated the drug discov-
ery procedure and provides a faster alternative for ultrahigh-throughput screening of large

databases of chemical molecules against a biological target [1, 2, 3].

Machine learning approaches are being applied in the drug discovery cycle to produce
a robust model, capable of empirical predictions of biological properties of candidate com-
pounds for new therapeutic molecules. Many successful studies have been reported in the
literature which attests the importance of machine learning approaches combined with tra-
ditional practices to approach medicinal chemistry challenges [4]. In traditional lab work
methodologies, many expensive tests are often required which many times include animal
testing to provide information about human safety for suggested chemicals. The legislation
does not support such frequent experiments on laboratory animals, but rather promotes the
sharing of data to the use of integrated alternative in-vitro and in-silico strategies of tox-
icokinetics [5, 6, 7]. Currently the Avicenna Research and Technological Roadmap, funded
by the European Commission, strongly suggests the use of in-silico techniques coupled with
clinical trials [8]. This framework describes strategic priorities to establish the safety assess-
ment of new medical interventions and at the same time minimizes the ethically concerned

activities such as the animal or human experimentation.

Several available in-silico QSAR models based tools are widely used to screen very large

databases of compounds in order to determine toxicity or any desired biological effects of
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chemical molecules based on their chemical structure [9, 10]. The well-characterized inter-
nationally accepted validation principles for creating validated models have been used by
regulatory agencies of United Sates (US) and gaining a boost in the European Union (EU)
too [11, 12, 8, 13]. In the EU, the standard recommendations of chemicals risk assessment
by regulatory QSAR models has been set by the REACH (Registration, Evaluation, Author-
ization, and Restriction of Chemicals)[14] and the Organization for Economic Co-operation
and Development (OECD)[15]. The progress of such projects highlights the increased im-
portance of productivity gains from fully accessible automation in the drug discovery and

QSAR modeling fields.

These days, the aim of pharmaceutical projects is the integration of complex non-homogeneous
data to build global models intended to be applicable within wide ranges of chemical space.
However, with the passage of time, there is an exponentially growing amount of synthesized
and known chemical compounds data being added to the many existing molecule databases,
public or private. This rise of available data is producing new opportunities to build models
with broader applicability domains while at the same time challenging the existing models,
as wider data sets allow for a more extensive testing and validation of previous in-silico
screening efforts. From these databases, data can easily be explored to build QSAR models
based on available structural properties of the compounds that correlate with their biological
activity [16, 17, 18]. These models can also be used as an efficient tool to improve the un-
derstanding of biological processes. Also, well-trained and properly validated models are
reliable for automated prediction of physiological characteristics of new compounds to as-
sist the experimental drug discovery process by decreasing the time of the initial screening

stages [19, 20, 21, 22].

The QSAR/QSPR modeling “life cycle” involves some standard steps, critical for reli-
able model building. These steps include 1) model building by the application of one or
several machine learning approaches, 2) model validation with an internal test set to assess

its quality 3) model selection according to the results of the internal validation procedure,
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and 4) model validation with an external test set (Independent Validation Set) to ascertain its
predictability of the properties of compounds never tested in model building and thus giving
a more reliable measure of the selected model quality [22, 4]. It is also important to consider
model updating as new data may become available. This repetitive nature of QSAR/QSPR
modeling “life cycle” highlights a fundamental requirement of automation of critical steps
with well-defined input, outputs, and success criteria in both the drug discovery industry
and biomedical research. To achieve this objective, it is fundamental to have a scrutinizable
procedure for applying to a variety of problems. Automating such procedures in the form
of a reusable workflow is a reachable goal with current technology, provided that a reliable
method is extant and applicable to a wide range of problems. Such automation would reduce
the necessary and often tedious labor of model building, while at the same time guaranteeing

that, for the available data, a quality model is reached.

Over the past decade, attempts have been made to attract the attentions towards the need
of automation of the QSAR modelling process. More recently, Dixon et al. [23] developed
a machine-learning application (AutoQSAR) for automated QSAR modeling. It is unable
to access data directly from online repositories and users required deep understanding to
prepare a curated and standardized data set before modeling by AutoQSAR. eTOXlab [24]
which is another framework allows automated QSAR mainly by a command line interface.
Python programming skills are necessary to work with eTOXlab. An interesting alternative
of integrated solution for fully automated modeling is OCHEM [25] but it’s online nature
makes it unsuitable for using it with private/sensitive data sets, which demand better privacy
and safety independent of third party. Cox et al. [26] designed a Pipeline Pilot web applic-
ation (QSAR Workbench). This application makes the built models available to all users in
Pipeline Pilot [27], which is not freely available to the vast scientific community. The Auto-
mated Predictive Modeling, another modeling system [28], demands expert technical skills

and significant resources for model development and maintenance.
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3.1.2 Objectives

Some of the major pinpointed gaps in the above discussed software packages include
lack of fully automated process, require that users have a thorough understanding of the data
and modeling problems and several require computer programming and/or machine-learning
knowledge, complex parameterization to customize complex modeling algorithms, and most
do not give full access to view the intermediate results at each step of the modeling. Also
to the best of our knowledge, none of these packages provide a facility to check overall
data quality/feasibility to produce a robust QSAR model (data modelability), which can be
an important measure to minimize time and computational cost. In the current work, we
developed an open source automated QSAR modeling system that addresses these issues by
providing better solutions for expert and non-expert users. The key ideas behind structuring

the presented automated QSAR modeling workflow platform are:

e [t should be freely available and support any operating system with easy installation

e Should be easily be applied for fully automated QSAR modeling by directly accessing

up to date data from online molecules databases or by using private data sets

e Provide automated data curation facility including removal of irrelevant data by se-
lecting only the bioactivity type of interest, filtering out missing data, handling of
duplicates (e.g. same or two experimental records: same structure) and dealing with

several forms of the same molecule (including salt groups)

e Reliably perform most critical tasks of QSAR modeling including descriptor/finger-

prints calculation, feature selection, model building, validation, and prediction

e Make a prior estimation of the feasibility of any given data set to produce a predictive
QSAR model before the time-consuming process of feature selection, model building

and validation
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e [t should adopt the best optimized feature selection methodology to select the adequate
features for each problem. This is a critical task necessary to avoid over-fitting and to

have a better understanding of the data, the model and the factors involved.

e The application must follow the same protocol of training series to re-train and update

models with new molecules as they become available and to make external predictions

e For different applications and reproduction of historical predictions, all outputs of in-
termediate tasks and each previous version of models must be stored on local ma-

chines.

e Regarding extensibility, the framework should provide useful starting points for per-
forming customization to modify and further extend the existing workflow by domain

specific interests.

Many research labs aim to develop their own complete workflow by using workflow
automation tools for a broader domain of related biological problems [29, 30, 31, 32].
Some of the more popular workflow frameworks include Taverna [33], Pipeline Pilot [27],
Galaxy[34], Kepler [35], Loni Pipeline [36] or the KoNstanz Information MinEr (KNIME)
[37]. These well-deployed workflows with graphical user interface provide a clear view
of the running process rather than working as a black box, or with complex and opaque
code. Moreover, it is an efficient way to manage complex chemical data to help standardize
procedures, automate laborious procedures, and assist in data analysis [29]. For the cur-
rent study, we have selected KNIME, an open source data-mining framework developed by
the Nycomed Chair for Bioinformatics and Information Mining at the University of Kon-
stanz to manipulate and analyze data with a strong emphasis on chemical manipulation and
information management. KNIME has made it easy to perform the calculation of molecu-
lar descriptors to quantify molecular structures, evaluation of chemical similarity and other
cheminformatics problems [CDK [38], RDKit [39], Schrodinger [40, 41], ChEMBL [42],
OpenPHACTS [43], BioSolvelT (http.//www.biosolveit.de/KNIME).
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The developed open source automated QSAR modeling KNIME workflow embeds all
tools necessary to perform all steps of the QSAR life cycle by following best practicing
methods [22, 44]. This designed workflow can easily be applied to build the predictive
QSAR models reliably by directly accessing online manually curated databases or using
users own private data without having expertise in machine learning/programming. In this
work, we illustrate and describe a model building workflow with an optimized feature se-
lection methodology and show its application in real world examples, by directly fetching
binding data for thirty different QSAR problems from an online manually curated database
(ChEMBL [42]) and building models using runtime prepared processed data. The workflow,
given a target or problem, automatically accesses and processes molecular data, calculates
descriptors and fingerprints, evaluates data set modelability, selects optimized set of features
by using an established methodology [45] and follows an unbiased standard protocol [22,
44] of QSAR model building by external and internal validation. The objective of this work
is not to highlight the predictive power of the presented models but rather to elaborate a re-
liable methodology to automate the production of models with good predictive qualities for
very difficult problems. Nonetheless, the quality of the results suggests that the approach is

capable of building reliable models for a large variety of problems.

3.2 Automated model building

The main focus of the current work is to present an implementation of a well-defined
and efficient modeling procedure capable of building robust and reliable models and validate
them both internally and externally. To accomplish this it was necessary to address two
critical issues in QSAR modeling. The first one is to know how to deal with high dimensional
data by identifying and selecting the subset of descriptors sufficient to predict the desired
biochemical property. The second aspect in a modeling workflow is model validation, so that

the model results can be unbiasedly assessed. This will ultimately qualify the applicability
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of the model for activity prediction of external compounds in drug discovery processes [22].

An overview of the standard protocol of automated QSAR modeling workflow is shown in

Figure 3.1.
e
8
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Figure 3.1: Overview of automated QSAR modeling workflow

This workflow starts with data preparation and data quality validation, data curation that
includes gathering molecular structures and corresponding biological activity data for a spe-
cified target. Furthermore, to quantify various features of molecular structures a variety
of chemical descriptors are computed. Before proceeding to the time-consuming trials of
feature selection, model building and validation, data modelability evaluation is performed.
Difficult data sets will not be recommended to model. After this step, the feature selection
process follows, so as to identify an optimized non-redundant set of variables that can lead
to best models. This critical step not only provides a better understanding of generated data

but also improves the prediction performance of relevant predictors [45]. This latter phase
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typically involves extensive testing of different models with an increasing set of variables.
Finally, when a relevant and reduced set of variables has been determined, it can be used
to develop the final QSAR model by following a rigorous internal and external validation

process without compromising model quality assessment.

3.2.1 Architecture

This QSAR modeling workflow uses several customized nodes of (KNIME version 3.2)
and is able to access online databases with millions of bioactive compounds. KNIME
nodes can perform an extensive set of functions for many different tasks such as read/write
data files, data processing, statistical analysis, data mining, and graphical visualization.
Moreover, to reduce the complexity of large complicated workflow, a particular part of the
workflow (sub-workflows) can be isolated in meta-nodes. The developed workflow aims at
the simplification and automation of the QSAR model building. An overview of the imple-

mented methodology is shown in Figure 3.2.

The complete process is divided into several systematic tasks of QSAR modeling in-
cluding a) data access and processing, b) descriptors calculation, ¢) data set modelability
estimation d) feature selection, €) model building and f) validation, along with adequate
data visualization. Each of these subtasks is enclosed within the KNIME meta-nodes that
are isolated from the rest of workflow enabling easy parameterization with a user-friendly

configuration interface. The details of each task are covered in the following sections.

3.2.2 Data access and processing

There are typically two different alternatives for data set construction in model building,
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Figure 3.2: Automated QSAR modeling methodology
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either the user has its own private data set with measurements curated from different sources
or measured in the lab, or else retrieves the information from an available online data re-
pository, that is continuously being updated by dedicated teams. The proposed workflow is
able to encompass both approaches, giving the user the ability to use its own data set (with

optional structural and descriptor calculation) or use an online repository (Figure 3.3).

1. Fully automated mode
User input option 1
1. UniProt Id. of Target
2. Biological Activity of Interest
3. Fingerprint Type (Options are Given)
Workflow Processes
1. Fetch Data from ChEMBL

2. Data Curation

3. Calculate Descriptors/Fingerprints - = = -
4. Data Transformation

5. Data Set Modelabilty Estimation

6. Feature Selection

7. Model Building

2. Customized mode
User input option 2
1. Curated data set having molecular
SMILES and corresponding
measured activity
2. Fingerprint Type (Options are Given)

‘Workflow Processes -
1. Calculate Descriptors/Fingerprints - - = =
2. Data Transformation (optional)

3. Data Set Modelabilty Estimation
4. Feature Selection
5. Model Building

User input option 3

1. Curated data set having measured
activity of understudy compounds and
any molecular representation

‘Workflow Processes

1. Data Set Modelabilty Estimation
2. Feature Selection
3. Model Building

1. Select only the bioactivity type of
interest (for example K, K, ACsy, ICsg,
and EC_-;O)

2. Remove missing data

3. Remove salt groups

4. Handle duplicated records
a) Same experimental records: same

structure
b)Two experimental records: same
structure

1. Remove predictors with zero variance

Input data set options

Figure 3.3: Input data set options. Overview of possible ways to submit input data to the
automated QSAR modeling workflow
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Nowadays, there are several large open source databases with annotated bioactivities for
small molecules, with comprehensive information on biological properties of millions of
chemicals. This wide data availability is one of driving forces beneath this effort. Most
popular molecular databases like PubChem [46, 47], PDSP Ki [48], and ChEMBL [42]
have become leading cheminformatics resources. The “Fully Automated” mode focus on
ChEMBLdb by taking advantage of KNIME facility to access ChEMBL data. KNIME
provides two built in nodes “ChEMBLdb Connector” and “ChEMBLdb Connector Input”
to interact with RESTful and XML web services of ChEMBLdb. This facility for other
chemical databases is not available yet. However, the ChEMBL database of more than 1.5
million bioactive compounds and 9,000 biological targets is capable to provide an ample vari-
ety of problems. In KNIME, the “ChEMBL database” meta-node encapsulates a complete
workflow to access data from ChEMBLdDb, data processing, and descriptor and fingerprint
calculation. Hence, users can quickly access ChEMBLdb chemicals data for any target of
interest by just a simple query of the desired UniProt ID and associated biological activity.
The data obtained from ChEMBL may contain information related to all available biological
activities extant for a given biological target (for example K;, K;, ACsy, ICsp, and ECsp).
This retrieved data is processed by retaining only the user’s requested biological activity
type records, and other relevant information related to chemical structures and assays. As
the objective is to quantify a ligand-target interaction (activation or inhibition of the target),
therefore any activity value can be utilized to count data related to the hypothesis. Overall
data curation also includes the identification of missing data and duplicates (current year re-
cords are considered in two experimental records for same molecular structure) and dealing

with several forms of the same molecule (including salt groups).
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3.2.3 Descriptors calculation

The usage of descriptors and other computational representations of molecular structures
is one of the principal methods applied to screen the new active molecules. The current work-
flow automatically calculates several molecular descriptors and structural characteristics for

the retrieved molecules.

Along with this facility of online data access, users can also submit their fully prepared
data file by using other input data set options with any types of descriptors calculated else-
where. The workflow is able to use RDKit for descriptor calculations and can compute
as well nine different fingerprint types, including Morgan, FeatMorgan, AtomPair, Torsion,

RDKit, Avalon, Layered, MACCS and Pattern [39]

3.2.4 Data transformation and data partitioning

Scaling/transformation of the response variables (associated bioactivities) can be per-
formed to standardize highly varying values in raw data for proper training of predictive
model, where often data is transformed with a logarithmic function. This transformation can
be skipped if data is already normalized. For the assessment of the applicability (prediction
error) of the developed QSAR model, at this stage, the submitted data (either by automated
retrieval from an online source, or by direct loading from a private data set), is divided into
training set and Independent Validation Set (IVS) through a random partition. The training
set is further used in N-fold cross validation process for internal model evaluation and selec-
tion while the IVS data is used to perform an unbiased model validation after the best model
is built and selected. The latter is never used for any feature selection or model training

procedure. So as not to bias the results.
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3.2.5 Data set modelability estimation

Predictive performance of QSAR models highly depends upon different characteristics
(e.g., size, chemical diversity, activity distribution or presence of activity cliffs) of various
data sets [49, 50, 51]. It may not be always possible to build reliable QSAR models for
certain data sets. To identify difficult problems, recent studies have introduced the concept
of “data set modelability” meaning a prior estimate of the feasibility to obtain robust QSAR
models by using a given descriptor space for data set of molecules [52, 53, 54]. The key idea
behind this concept is based on the similarity principle that states that ‘similar compounds
typically exhibit similar activity’ [55]. However, For every compound in a given data set,
the nearest neighbors, i.e., compounds with the smallest distance from a given compound
should possess similar activity. If the target property values for highly similar compounds
are significantly different, then it means that the problem is probably hard to solve and most

approaches will not be able to model it.

In the presented workflow, we followed a well established k-nearest neighbors approach
based criteria, the modelability index (MODI) [53]. Golbraikh et al. [53] proposed sev-
eral statistical criteria for estimating the feasibility of classification (e.g., data set diversity
(MODI_DIV), activity cliff indices (MODI_ACI), correct classification rate (MODI_CCR))
and regression (similarity search coefficient of determination (M ODI _q* and MODI _ssR?)).
MODI is calculated as the Leave-One-Out (LOO) cross validation coefficient of determina-
tion of a simple k-Nearest Neighbours approach for data classification or regression over the
training set, where k is typically either 3 or 5. MODI is fast to compute and helps modelers
to quickly evaluate whether any given chemical compound data set can be modelled, giv-
ing an estimation of the predictability of the computed models before the actual modeling
takes place. Data sets with very low MODI index are not recommended for model building,

as a low MODI index informs the user that additional data processing and manual curation
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may be required. However, according to the suggested MODI score for regression problems
[53], in the automated QSAR modeling workflow, we suggest a MODI score to be >0.45 for
reaching a model with acceptable predictability (PVE > 0.60).

3.2.6 Feature selection

The goal of QSPR/QSAR models is to correlate the molecular structures with their
physiochemical/biological properties [20, 21, 22]. There are three main difficulties to achieve
this task: 1) how to quantify molecular structure; 2) identify which are the relevant structural
descriptors (or structure derived) that are the most adequate for the problem at hand; and 3)
how to actually map the descriptors selected to the property being modeled [56, 20, 57, 21,
22]. Molecular descriptors can approximate most structural properties and a huge corpus
of literature is extant on this subject [58]. Currently the number of chemical descriptors is
so large that one of the biggest problems is selecting the most adequate features for each
problem [58, 59]. Several issues typically need to be addressed in feature selection when the

number of available variables is very large [60, 61, 62]. Some of the typical problems are:

(a) Some descriptors appear highly correlated.

(b) In several biological contexts no hypothesis is available about target structure for

inferring binding activity.

(c) Having many descriptors many times just do not improve the model quality, as
the number of features advances, the number of spurious correlations increases
as well and adding redundant or irrelevant variables to the model do not increase

the model predictive abilities.

(d) Sometimes the given descriptors are not, by themselves, able to contribute to

modeling activity, but by combining them with other available descriptors, may
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sometimes increase the model prediction capabilities.

(e) The identification of a limited set of descriptors from the available list is many
times necessary to avoid over-fitting, allow the desired physicochemical prop-
erty to be adequately predicted by the constructed model and to have a better

understanding of the models and the factors involved.

For the purpose of feature selection, several statistical and non-linear machine learn-
ing methods have been employed in QSPR/QSAR modeling as filter techniques. Some
direct feature filtering approaches includes correlation matrix, Fisher’s weight, Principal
Components Analysis or Weighted Principal Components Analysis or Partial Least Squares
(PCA/WPCA/PLS) loadings, regression coefficients, variable importance in PLS projections
[VIP]) and Random Forest (RF). Some other are iterative methods for example, Ordered Pre-
dictor Selection-Partial Least Squares (OPS-PLS), Sequential Forward/Backward Selection,
randomized methods that combine PLS with Genetic Algorithms (GA) or Monte-Carlo al-
gorithms [45, 63, 64, 65, 66]. The direct filter methods are simpler and faster selecting
variables, since they require only a metric calculation (a coefficient or weight) and the ap-
plication of a cut-off value to determine the rejection of some variables due to the low im-
portance to the model construction. Iterative methods have high computational cost, since
most of them use filter methods in iterative ways or in combination with machine learning
techniques. However, to deal with high dimensional data, the best-optimized methodology is
always required to select the minimum subset of descriptors to predict a certain property with
a good performance, less computational/time cost and in a more robust way. The application
of non-linear machine learning algorithms to explore the non-linear relationships between
descriptors and biological activities is increasing within the QSAR community [67, 68]. For
feature selection in predictive models, we implemented a RFs voting procedure that can be
used for the variable rankings according to their importance in RFs models [69, 65, 45].

In this ensemble method, each variables importance score is calculated by several available
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variable importance’s (VI) measures . One of the widely used VI measure in the regression
problems is increase in mean of the error of a tree “Mean Squared Error (MSE)”, which
explains how much prediction error increases with the random permutation of given vari-
able while keeping all others unchanged in a node of a tree [70, 71, 69, 65]. Moreover, RF
provides two options to fetch the VI score, which includes scaled and unscaled importance
score. The scaled importance (also called z-score) is the default output of the randomForest

function, which is obtained by division of the raw/unscaled importance by its standard error.

Zj=—="" 3.1

However, some studies indicate that the unscaled importance VI (Xj) has better statistical

properties and recommended for regression problems [72, 72, 73].

ntree
ey 1O(
VI(X) = t_lntree

X5) (3.2)

The current workflow followed the best performing RF based feature selection method,
which is a hybrid approach [45]. The principle of this hybrid technique is to get: (1) possible
set of variables, most relevant to the property of interest by using the variable importance
(VD) function of RFs and (2) obtain the minimal set of features with a possibly best predict-
ive performance along with unfavorable ratio between the number of predictors and number
of observations. Practically, this approach counts variable importance by calculating the
average mean squared error (MSE) provided by RF from a series of runs as a tool to rank

the predictors. Hence, the VI based ranked variables can be feed to any machine learning
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algorithm to build the stepwise predictive models to find a better balance between the biolo-

gically relevant set of features and prediction error (RMSE).

3.2.7 Model building

3.2.7.1 Model without feature selection

To verify performance of the applied feature selection method, it is necessary to assess
model predictive behavior without any feature selection. Hence, developed QSAR modeling
workflow, build a model with whole set of descriptors to confirm that elimination of irrelevant

or non informative variables is improving predictive power of given model.

3.2.7.2 Model with feature selection

Automated QSAR modeling workflow follows a RF based feature selection method and
provide ranked order of variables without eliminating any variable. These ranked variables
are sequentially added to the learning algorithm to find the most relevant set of predictors

leading to the model of smallest error rates.

The most employed machine learning approaches used in in-silico drug design are artifi-
cial neural networks (ANN), support vector machines (SVM), decision trees (DT), random
forests (RF) and k-nearest neighbors (KNN) [63, 4]. Among the mentioned methods, the use
of SVM to build QSAR models has become very popular in the last years [74, 75, 76, 77].
Moreover, many studies also explain the suitability of RF for high dimensional QSAR/QSPR
datasets [70, 78, 45]. Hence, SVM [79] and RF [70], non-linear supervised learning meth-

ods are made available in the QSAR modeling workflow. This is mainly due to the fact that
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these methods are robust in finding good modeling approaches in complex situations where
the number of variables is very large and the number of instances is typically small. In such
situations, many other machine learning methods (decision trees, neural nets, or linear mod-
els) can easily over fit, producing models unable to generalize outside the training space.
Nonetheless, other algorithms can easily be used within KNIME, either through its custom-
ized nodes or by linking KNIME to R modules where most modeling approaches have been

implemented.

To evaluate models predictability, data is split into training and test set to generate and
validate stepwise estimation model by sequentially feeding ranked variables. The best fea-

tures based internally validated model is finally presented for external validation.

3.2.8 External validation and model applicability domain

It is crucial to define the applicability domains of developed models by a critical step of
external validation by using an IVS, which is not used in any part of the training process. In
the developed workflow, a stringent protocol [22] of model validation is followed to ensure
robustness and predictive power of the constructed models. The evaluation of the models’
fitness is performed by comparing the proportion of the variance explained (PVE) by the
predictive model, and the root mean squared error (RMSE) [80](see Eqs. 3.1 and 3.2).
Externally evaluated final models can be used as a tool for external prediction and virtual

screening.

PVE —1-— %‘1 (9: — ) (3.3)
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1
RMSE = N,Z (i — ;)2 (3.4)

In Egs. 3.3 and 3.4, y; and g; are the measured and predicted biologically associated
values for compound 7, respectively, and ¥ is the mean of all activities from the compounds

in the data set.

Nevertheless, in external predictions, the new data has molecules not present in the train-
ing set, therefore some predictions made with the model can be unreliable. This issue may be
addressed by training models with a larger size and increased diversity, which many times is
not an option in QSAR studies, or to circumscribe the model by defining its applicability do-
main (AD) in the chemical space [81, 82]. In the model AD, a similarity threshold between
the training and validation set is established to flag the newly encountered compounds for
which predictions may be unreliable. If the similarity between the training and validation set
or new chemical is beyond the defined similarity threshold, the new compound is accounted
to be outside the AD and the prediction is considered unreliable [81, 82]. In this QSAR mod-
eling workflow, a well-established method [82] is used to define the domain of applicability

of the built models based on the Euclidean distances among the training data and IVS.

3.2.9 Extensibility

The main modeling workflow is subdivided into several tasks. Each subtask is performed
by small workflows that are developed and encapsulated within meta-nodes to establish in-

dependent processing and analysis. The subdivision of the complete modeling process in
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QSAR modeling workflow architecture provides several advantages including a) it reduces
the complexity of modeling framework 2) improves the understanding of the implemented
machine learning procedure and c) increases the flexibility for future modification of the
workflow. Hence, users can easily modify and further extend the presented workflow by

domain-specific interests to add new features.

3.3 Results

3.3.1 Workflow implementation

Each task during drug designing from data preparation to model development and val-
idation is critical to the accuracy of the predictive power of QSAR models [22]. The first
stage of data preparation includes data collection, data cleaning by removing unwanted data,
and appropriate molecular representation of underlying chemical compounds. In the second
step the curated data is evaluated by data modelability criteria to check either given data
set is reasonable to generate a QSAR model with significant predictive power. The third
step includes extraction of more relevant biological features entitles as feature selection. Fi-
nally, model development and validations emphasize on a standardized process of internal
and external model validation. QSAR modeling workflow is developed especially focusing

on these mentioned major tasks to develop best-established methodology based framework.

3.3.1.1 Input data parameters

To run automated QSAR modeling workflow, simple settings of “Input Parameter” meta-
node (Figure 3.4), like the choice of the target protein (name and UniProt ID.), molecular fin-

gerprints, nfold value, working directory path and the type of activity measures are required
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to build the best possible predictive model in very short time. No parameter is required to get
RDAK:it descriptors for the given target; these are calculated by using the RDKit nodes embed-

ded inside “ChEMBL Database” meta-node. Optional parameters node “Machine learning

algo” provide the choice of machine learning algorithm (by default = SVM).
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Figure 3.4: Input parameters. Input configurations required before to run the workflow

3.3.1.2 Input data set options

Automated QSAR modeling workflow provides three options to take input data files
(Figure 3.3). The first option provides a “Fully Automated” mode, which directly accesses

data from ChEMBL database with a simple query of UniProt accession number of a target
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protein and associated bioactivity type. No deep understanding of data is required for the

first option.

There are two other alternatives for modelling within “Customized” mode, if the user
wants to work with personal data sets, and none of them requires ChEMBL data retrieval.
Within “Customized” mode, the two alternatives deal with different available structural and
descriptors-based information within the data sets, as the user is able to provide most of the
data. Users with preliminary knowledge of their understudy problems can choose option 1
of “Customized” mode to process the known list of curated molecules. In the case of a thor-
ough understanding of given modeling problem, where the user has previously computed the
necessary molecular representation (with chemical descriptors or other structural informa-
tion) the “Customized” mode option 2 bypasses all the descriptor computation phases and
proceeds directly to model building. Hence, by adding flexibility in the way the user is able
to provide input data, this constructed framework is able to cover some of the most common

needs of modelers.

3.3.1.3 Data set retrieval and data pre-processing

In the “Fully Automated” mode to fetch data from ChEMBL the “ChEMBL Database”
meta-node is developed in a given workflow (Figure 3.4). This meta-node can automatic-
ally prepare standard input data sets to explore a ChEMBLdb reported compounds-chosen

receptor interaction by quantification of bioactivity of molecules.

In ChEMBLdDb, different measures for binding affinities have been standardized, some
of them remain more used like the half-maximal effective concentration (ECs), the half-
maximal inhibitory concentration (/Csy) and the inhibitory constant (K;). ECs, value repres-
ents the molar concentration (M = mol/L) of an agonist that produces half of the maximal
possible effect of that agonist. The simple definition of ICs, is a molar concentration of an

antagonist that reduces the response to an agonist by 50%. Moreover, it can be explained as
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the molar concentration of an unlabeled agonist or antagonist that inhibits the binding of a
radio-ligand by 50%; or can be considered as the molar concentration of an inhibitory agon-
ist that reduces a response by 50% of the maximal attainable inhibition [83, 84]. K; value is
used to quantify a ligand-receptor interaction based on the equilibrium dissociation constant
(K). Hence, smaller the K; value is associated with higher ligand-receptor binding affinities

[68, 85].

In this machine leaning pipeline, the focus is to set a standard protocol of regression
problem based on any measure to predict the tendency of chemical molecules to either activ-
ate (K;, Ky, ACsy, or ECsp) or inhibit (e.g., those with ICs, values/K; values) a selected target.
The “ChEMBL Database” meta-node returns ChEMBL retrieved data (ChEMBL ID., refer-
ence, bioactivity type, assay description, activity value, and smiles strings), the calculated
descriptors, and fingerprints data sets. Both the data sets of descriptors and the fingerprints

can be used for further processing and modeling.

3.3.1.4 From data to validated models

Data pre-processing occupies a large time cost in QSAR modeling process. Many nodes
are available in KNIME for data manipulation including row/column filtration, merging,
splitting, concatenation and joining, type conversion and data transformation, row groping
and aggregation, and data table pivoting. Moreover, to process and handle large amount
of data on a standard computer, KNIME also provides efficient memory management ar-
chitecture. Hence, developed automated QSAR modeling workflow incorporates these all
advantages of data processing and handling. It automatically fetches and processes data in
an efficient way with the combinations of KNIME built in nodes with in this workflow. Data
processing time depends upon the size of problems, while hardly one minute is required for

small problems with less then 500 observations.

After data preparation, the next important task is fitting an appropriate machine learn-
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ing algorithm to build a predictive model. For this purpose KNIME contains model building
nodes for almost all options of machine learning and predictive models including most popu-
lar algorithms such as Bayes models, fuzzy rules, fuzzy c-means, k-means, neural networks,
decision tree models, hierarchical and the self-organizing tree algorithms, linear and polyno-

mial regression models, support vector machines, and supervised machine learning.

Nonetheless, along with simple statistical analysis and mathematical operations facilities,
nodes to perform cross validation and bagging are also available. In addition, to integrate
large number of statistical and graphical libraries, R [86] package is supported by KNIME

to cover advanced data manipulation and modeling.

Automated QSAR modeling workflow can easily be customized to embed any of the
mentioned algorithms. The implemented methodology in the current workflow combines
series of R nodes to read data (R Source node), to draw plots (R View node), to train and
build model (R Learner and R Predictor nodes) to perform additional tasks by personalized
code (R Snippet node). However, major tasks of feature selection by RF and model building
by SVM are performed with the help of inter-connected R nodes. Finally, the developed
models are saved by model writer node in the user defined directory that can easily be read

by model read node to make new predictions.

3.3.2 Real world cases

3.3.2.1 Data sets description

We tested the proposed QSAR modeling workflow on datasets of different members of
protein families. These proteins include glutamate [NMDA] receptor, sigma non-opioid in-
tracellular receptor (Sigma), beta-adrenergic receptor (ADRB), alpha-adrenergic receptor,

histamine receptor (HRH), Potassium voltage-gated channel subfamily H member, dopam-
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ine (DA-Rs) and serotonin (5-HT) receptors (Table 3.1).

The selection of these thirty different target proteins is independent of any hypothesis.
Here, our emphasis is to examine the performance of applied strategy of QSAR modeling to
solve diverse issues rather than to produce the best predictive model for each problem. To
run the workflow, an initial configuration of “Input Parameter”” meta-node is required to set
the values of given parameters including number of folds for cross-validation (nfold), target
protein name and UniProt accession number, working directory path, fingerprints and associ-
ated bioactivity. Hence, to prepare datasets for given problems “Input Parameter” meta-node
was configured by providing name and UniProt accession number (Homo sapiens specific)
of selected receptors, the associated bioactivity type (Table 3.1), Morgan fingerprints and

“nfold” value was specified to perform tenfold cross validation (nfold = 10).

3.3.2.2 Data preparation and variable scaling

A subset of any data set from ChEMBL Database is passed through the R Snippet node
(Data Transformation) (Figure 3.4). Variables scaling/transformation is important to stand-
ardize the range of independent feature to normalize the highly varying values in raw data for
proper functionality of many machine learning algorithms. Recently, ChEMBLdb introduced
pChEMBL value, which is an approach to standardize different activity types/values/units.
pChEMBL is defined as a negative logarithm of molar ICsy, XCsy, ECs9, ACs9, K;, K; or
Potency [42]. Some other methods to normalize widely varying ranges of activity values are
also reported in the literature. For example, pK; values are the negative logarithm to base
10 of the equilibrium dissociation constant, which allows an easier comparison of binding
affinities. Thus, standard deviations are symmetrical for pK; values but not for K; values

[84]. A generic formula was applied to convert values into scaled values (sp(Activity value))
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Table 3.1: Description of selected problems

Total Total
. Associated Number of Number of
Uniprot ID. Target Protein Name Bioa(c;:;;'ities Observations Observations
(N-retrieved) (N-Processed)

Q05586 Glutamate [NMDA] receptor 1C50 512 320
Q99720 Sigma non-opioid intracellular receptor 1 (SigmalR) IC50 1895 762
Q99720 Sigma non-opioid intracellular receptor 1 (SigmalR) Ki 2584 1465

CHEMBL613288

(Uniprot ID Sigma non-opioid intracellular receptor 2 (Sigma2R) Ki 553 497

NA)

P08588 Beta-1 adrenergic receptor (ADRB1) 1C50 1471 599
P07550 Beta-2 adrenergic receptor (ADRB2) IC50 1424 554
P13945 Beta-3 adrenergic receptor (ADRB3) EC50 1478 1227
P35348 Alpha-1A adrenergic receptor Ki 1650 1260
P35368 Alpha-1b adrenergic receptor Ki 1567 1260
P25100 Alpha-1D adrenergic receptor Ki 2076 1060
P35367 Histamine H1 receptor (HRH1) Ki 2239 1222
P25021 Histamine H2 receptor (HRH2) Ki 1218 385
QI9Y5NI1 Histamine H3 receptor (HRH3) Ki 3799 3101
QI9H3NS Histamine H4 receptor (HRH4) Ki 1486 1095
Q12809 Potassium voltage-gated( Ic{}gfr;r(l}e)l subfamily H member 2 Ki 2539 1481
P21728 D(1A) dopamine receptor (DRD1) Ki 2244 1087
P14416 D(2) dopamine receptor (DRD2) 1C50 1667 725
P35462 D(3) dopamine receptor (DRD3) 1C50 1174 326
P21917 D(4) dopamine receptor (DRD4) Ki 3409 1900
P21918 D(1B) dopamine receptor (DRDS5) Ki 529 341
P47898 5-hydroxytryptamine receptor SA Ki 382 302
P50406 5-hydroxytryptamine receptor 6 Ki 4084 2632
P46098 5-hydroxytryptamine receptor 3A Ki 517 432
P28222 5-hydroxytryptamine receptor 1B Ki 1129 938
P41595 5-hydroxytryptamine receptor 2B Ki 2034 1149
P28335 5-hydroxytryptamine receptor 2C Ki 3433 2157
P28221 5-hydroxytryptamine receptor 1D Ki 1153 973
P08908 5-hydroxytryptamine receptor 1A Ki 4008 3244
Q13639 5-hydroxytryptamine receptor 4 Ki 540 422
P34969 5-hydroxytryptamine receptor 7 Ki 1753 1438
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within “Data Transformation” node according to the following rules:

If Activity value > 10000, sp(Activity value) = 0

If 10000 > Activity value > 1,
(4 — log 10(Activity value))
4
If 1 > Activity value, sp(Activity value) = 1

(3.5)

sp(Activity value) =

Where sp(Activity value) represents the scaled activity value

Finally, after normalization of response variables (bioactivities) data is divided by ran-
dom sampling into 75% training set and 25% independent validation set that will not be used

in any training process (Figure 3.4).

3.3.2.3 Data set modelability measure

As stated, before the modeling phase of the thirty selected problems, the “modelability
index” (MODI) is calculated [53]. MODI requires that the activities of compounds in all data
sets and their distribution in the descriptor space (predictors) must range in the interval [0,1].
Biological activities were scaled according to Eq. 3.5, while descriptors were processed

using a simple [0,1] scaling (Eq. 3.6).

,  x—min(z)

T (3.6)

-~ max(z) — min(x)

where x is the original descriptor and 2’ is the scaled result of that variable.
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3.3.2.4 Feature ranking by Random Forest

Data sets of all descriptors (descriptors and fingerprints) was used to consider high di-
mensional data sets for unbiased implementation of developed workflow to build an robust

model based on best relevant features from highly redundant data.

This framework identify the most important features the ones that are responsible for the
relevant molecular activity. Feature selection is a crucial step to reduce computation time and
storage, improve model interpretability, understanding, performance, and remove irrelevant
features (noisy data) to avoid over fitting [87]. Hence, we followed a strong method of RF
based feature selection with a particular emphasis to generate more reliable, predictable, and
generalized QSAR models [45]. QSAR modeling workflow finds the ranked ordered list of
variables (descriptors and fingerprints) according to both scaled ((VI)1) and unscaled ((VI)2)

importance scores.

Due to the stochastic nature of the RF algorithm, nfold cross validation was performed
to fit RF models, and the importance of variables was recorded for each run. In the end,
variables were ranked by sorting average variable importance scores in descending order.
The process of features ranking is performed by two kinds of meta-nodes including “Model
Validation” and “mean(%MSE) Calculator”. Hence, the output of these two meta-nodes is
a processed input data rearranged by two kinds of variable rankings methods, first by scaled
variable importance based ranked order, and second by unscaled importance based variables

ranking.

3.3.2.5 Stepwise estimation models and feature selection

The produced ordered training data with more relevant to less important variables was

further processed by meta-node “Build Model by Adding Ranked Variables”, which firstly
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splits data into training and test set and introduces each ranked variable into a new SVMs
fitted models. Each new model is validated by test set, and the statistical results of these
stepwise estimation models are recorded to find the best set of features with minimum pre-
dictive error (RMSE). The results of the selected features based models (SF-models) of all
target proteins clearly indicate large reduction of the total number of features (F) into more
relevant features (SF) in all data sets. In the given problems, the maximum reduction of the
features 1s 1037 to 9 variables ranked by scaled importance approach and 1079 to 29 vari-
ables in the case of unscaled importance. Similarly, the minimum reduction is 1134 to 470
variables and 1132 to 432 variables by scaled and unscaled importance methods respectively.
Hence, on average applied methodology of feature selection performs adequate dimension-

ality reduction that is an important task to improve the quality of the predictive model.

3.3.2.6 Model results

After selecting the predictive model with best set of features (SF-model), the model’s
final assessment was performed using of the IVS. External validation is a critical step to
make sure unbiased evaluation of developed model [20, 22, 44]. The IVS considered for
external validation was never used in feature reduction and model training processes . On
average, the difference between predictive performance of internally and externally validated

SF-models is not large with optimally fitted models (Table 3.2).

SF-models of three receptors including SigmalR (bioactivity dataset of ICsy), 5S-HT2B
and 5-HT4 showed poor generalization due to over-fitting in both methods of feature selec-
tion. In the other cases some SF-models like SigmalR (bioactivity data set of K;), 5-HTI1A,
5-HT3A, 5-HTS5A, 5-HT1D, ADRB1, DRD4 and DRDS5 performed even better for external

predictions.

To validate the efficiency of the implemented methodology, a model was also developed

without feature selection (full-model). The external validation score of full-model is also

81



3. AN AUTOMATED FRAMEWORK FOR QSAR MODEL BUILDING

Table 3.2: QSAR models based on all descriptors (RDKit descriptors and Morgan finger-
prints) datasets.

Feature Selection By Scaled Variables Feature Selection By unscaled Variables

Tg‘:' Nun::er = N Tol:al £ Importance (VI)1 Importance (VI)2

Target Protein Name (N-:ret:::s:::) Fuen;m?re: Selected SF-Model Final Model Selected SF-Model Final Model

r Variable (testSef)  (SF-Model (IVS))| Variable (testSet)  (SF-Model (IVS))

Training Set VS (F) (SF) PVE RM SE PVE RMSE (SF) PVE RMSE PVE RMSE
Glutamate [NMDA] receptor 240 0 949 120 078 o012 069 017 120 079 012 073 016
Sigma ”””*’“zg;ﬁsf&!u‘ar receptor | 572 190 1079 20 068 0I5 047 019 29 062 016 040 020
Sigma "””“p"zgéﬁ'ﬂaﬂ“‘a’ receplor | 1099 366 117 11 064 017 060 018 116 05 017 061 017
Sigma ”0”“"2‘;::;3!”3( receptor 2 373 124 875 201 071 o1 057 014 234 066 013 061 014
Beta-1 adrenergic receptor (ADRB1) 450 149 1040 150 0.70 0.14 0.72 0.13 180 0.80 0.12 071 0.13
Beta-2 adrenergic receptor (ADRB2) 416 138 1032 13 0.76 0.13 0.70 0.16 76 0.75 0.13 0.69 0.16
Beta-3 adrenergic receptor (ADRB3) 921 206 1092 310 064 0I5 056 017 170 057 019 05 018
Alpha-1A adrenergic receptor 945 315 1108 206 0.69 0.16 0.67 0.18 170 073 0.16 0.66 0.18
Alpha-1b adrenergic receptor 915 315 1106 275 071 ois 065 015 115 060 015 062 016
Alpha-1D acrenergic receptor 795 265 1100 270 060 016 065 017 370 068 016 066 017
Histamine H1 receptor (HRH1) a17 205 1116 76 079 0I5 072 047 237 079 014 076 016
Histamine H2 receptor (HRH2) 229 % 1037 9 030 on 032 013 180 062 007 033 013
Histamine H3 receptor (HRH3) 2226 775 134 207 062 016 063 016 282 066 016 063 016
Histamine H4 receptor (HRH4) 822 73 1075 12 063 018 056 018 230 062 017 05 018
P;Jgf;ﬁ‘w o :feg;'bg::?(;gaggfl 111 370 132 120 068 012 054 015 160 064 012 05 015
D(1A) dopamine receptor (DRD1) 816 m 1118 118 073 0l 068 017 219 075 015 070 016
D(2) dopamine receptor (DRD2) 544 181 1092 a1 066 016 063 018 150 071 016 06 019
D2) dopamine receptor (DRDZ) 245 2 1054 3% 058 021 058 019 195 066 018 061 018
D(4) dopamine receptor (DRD4) 1425 475 1124 268 060 018 063 017 305 060 018 062 017
D(1B) dopamine receptor (DRD5) 256 5 957 135 068 018 076 015 142 075 017 077 015
5-hydroxytryptamine receptor 5A 27 75 980 140 082 o3 087 o012 33 08t 014 084 013
5-hydroxytryptamine receptor & 1974 658 132 220 072 ois 068 016 432 060 017 067 016
& hydroxytryptamine receptor 3A 324 108 1045 150 069 019 071 019 230 062 021 071 019
5-hydroxytryptamine receptor 1B 704 24 1103 255 079 0I5 075 016 145 079 015 076 015
S-hydroxytryptamine receptor 28 862 287 1130 101 0.51 0.18 0.37 0.19 110 0.57 0.15 0.39 0.19
5 hydroxytryptamine receptor 2C 1618 539 135 26 067 016 062 018 244 064 018 06 017
5 hydroxytryptamine receptor 1D 720 243 112 120 082  0Is 076 018 250 076 019 077 018
5 hydroxytryptamine receptor 1A 2433 811 1134 470 061 019 065 017 360 059 019 066 017
5-hydroxytryptamine receptor 4 317 105 948 208 0.80 0.16 0.66 0.22 280 083 0.15 071 0.20
& hydraxytryptarrine receptor 7 1079 359 122 210 065 016 059 018 290 066 016 061 017

calculated to compare the performance with final predictive model with selected features
(SF-model). The comparison of the performance of externally validated full model and ex-
ternally validated final SF-model clearly confirms the effectiveness of the feature selection
method. The results from all thirty different data sets show a significant increase in predict-
ive power (PVE) and reduction in prediction error (RMSE) by removing the noisy data and

considering the most relevant features (Table 3.3).

In the developed QSAR models of selected problems, the PVE score of the full-model
ranges 0.13-0.59 while in the SF-model PVE ranges between 0.32-0.87 and 0.33-0.84 from
scaled importance ((VI)1) and unscaled importance ((VI)2) methods respectively. However,
an average PVE increase in both methods, ((VI)1) and ((VI)2) is almost 49% of the PVE of

the full-model. The number of features in SF-models ranges between 0.0079%-16% of the
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Table 3.3: Comparison of performance of QSAR models (with and without feature selection)

PVE (IVS) RMSE (IVS)
Total Number of ) ]
SR Total Full Model Final Model Full Model Final Model
. Number of | without Feature with Feature without Feature with Feature
Target Protein Name Lesirissee Features Selection Selection Selection Selection
— ) SF-Model SF-Model SFModel SF-Model
Training Set VS full-Model V)1 w2 full-Model 1 V)2
Glutamate [NMDA] receptor 240 80 949 0.30 0.69 0.73 025 017 0.16
Sigma ”°”°p"z§ié”;r:f;g“‘ar receptor 1 572 190 1079 0.31 0.47 0.40 021 019 020
Sigma nonopltzglérn:r:fsgu\ar receptor 1 1099 %6 117 0.45 0.6 061 021 018 017
Sigma ”D”OD"?;;”;:;;!“‘” receptor 2 73 124 87 0.46 0.57 061 0.16 014 0.14
Beta-1 adrenergic receptor (ADRB1) 450 149 1040 04 0.72 071 019 013 013
Beta-2 adrenergic receptor (ADRB2) 416 138 1032 0.46 0.70 069 021 016 016
Beta-3 adrenergic receptor (ADRB3) 21 306 1093 0.37 0.5 0.55 021 017 0.18
Alpha-1A adrenengic receptor 045 315 1108 0.53 0.67 0.66 021 018 0.18
Alpha-1b adrenergic receptor 45 315 1106 0.48 0.65 0.62 0.18 0.15 0.16
Alpha-1D adrenergic receptor 795 265 1109 0.47 0.65 0.66 021 017 017
Histamine H1 receptor (HRH1) a7 305 1116 0.59 0.72 0.76 021 017 0.16
Histamine H2 receptor (HRH2) 289 96 1037 013 0.2 033 014 013 013
Histamine H3 receptor (HRH3) 2326 775 1134 0.46 0.63 063 019 016 0.16
Histamine H4 receptor (HRH4) 822 273 1075 0.34 0.5 0.55 022 0.18 018
Potassium voltage-gated channel
subfamily H member 2 (HERG) 111 370 1132 0.42 0.54 0.55 0.17 015 0.15
D(1A) dopamine receptor (DRD1) 816 271 1118 0.50 0.68 0.70 021 017 0.16
D(2) dopamine receptor (DRD2) 544 181 1092 0.51 0.63 062 021 0.18 019
D(3) dopamine receptor (DRD3) 245 81 1054 0.32 0.58 0.61 024 0.19 0.18
D(4) dopamine receptor (DRD4) 1425 475 1124 0.47 0.63 0.62 020 0.17 017
D(1B) dopamine receptor (DRD5) 756 25 957 0.56 0.76 0.77 020 0.15 0.15
S-hydroxytry ptamine receptor 5A 27 75 980 0.58 0.87 0.84 022 012 013
S-nydroxytryptamine rec eptor & 1974 658 1132 0.48 0.68 0.67 020 016 0.16
5-hydroxytryptamine receptor 3A 24 108 1045 041 0.71 071 027 0.19 019
5-hydroxytryptamine receptor 1B 704 234 1103 0.45 0.75 0.76 023 0.16 0.15
5-hydroxytryptamine receptor 2B 862 287 1130 0.31 0.37 0.39 020 0.19 0.19
5-hydroxytryptamine recepior 2C 1618 539 1135 0.48 0.62 0.62 021 0.18 017
5-hydroxytryptamine receptor 1D 730 243 1112 0.49 0.76 077 024 018 0.18
5-hydroxytryptamine receptor 1A 2433 &1 1134 0.43 0.65 0.66 021 017 017
S-hydroxytryptamine receptor 4 317 105 943 0.35 0.66 071 026 022 020
S-hydroxytryptamine receptor 7 1079 359 1122 0.43 0.59 061 021 0.18 017

total number of processed features considered in full models, which contain 1135 variables.

The average reduction in the number of features is 83% of the total number. Moreover, error

analysis of all predictive models shows an average RMSE of the full-model is 0.21 and in

the case of SF-model the average RMSE is 0.17 in both methods. Hence. an average error

decrease is 19% of the RMSE of the full-model. The large improvement of SF-models pre-

dictive performance and decrease in error rate exhibit the strength of unbiased methodology

followed in automated QSAR modeling workflow.

All intermediate results can be visualized by interactive tables and graphical outputs from
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data visualization layers. After completion of the QSAR model building workflow, outputs
of each task are saved in the user’s defined working directory. The availability of these
intermediate data in the end of each task is useful to restore historical predictions and the

given processed data with filtered features can further be used in any other application.

3.3.2.7 Model applicability domain analysis

For all thirty problems, feature selection and model development was carried out using
the training set; however, model applicability to external compounds depends on the struc-
tural similarity between the chemicals in the IVS and the training set molecules. Model
predictability is considered more reliable if the IVS chemicals fall within the AD. We used a
KNIME node “Domain-Similarity” [82, 88] to analyze the AD of the models developed by
the presented workflow. “Domain-Similarity” node uses similarity measurements to define
the AD using Euclidean distances among all training compounds and the test or IVS com-
pounds. The prediction may be unreliable if the distance of an external set compound to its

nearest neighbor in the training set is higher than defined AD (out of AD).

In majority of the thirty selected problems compounds within the IVS were inside the
AD, with the exception of six problems where some instances were outside the AD. These
are the D(1A) dopamine receptor (3 molecules outside the AD), D(2) dopamine receptor (2
molecules), D(3) dopamine receptor (2 molecules), Sigma non-opioid intracellular receptor
1 with activity K; (1 molecule), HRH2 (1 molecule), and 5-hydroxytryptamine receptor 1D
(1 molecule). As the IVS should be a data set not controlled by the modellers, this QSAR
modeling workflow does not remove these molecules and the decision is left to the users on

how to handle the more prediction-error prone instances of the IVS.
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3.3.2.8 Predictive performance comparison with published QSAR model

In the above analysis of the selected thirty problems, “Fully Automated” mode was tested
where all processes from data retrieval to model building are completely automated (Figure
3.3). We further used “Customized” mode, of the workflow (Figure 3.3), to demonstrate the
efficiency of implemented methodology in the developed automated QSAR model by com-
paring its performance to the published solutions of scientific problems. For this purpose,
we selected one very recent example on antiviral binding affinity data for non-nucleoside
analogue reverse-transcriptase inhibitors (NNRTIs) from the QsarDB repository [89]. The
same training (31 molecules) and external validation (8 molecules) datasets of chemical com-
pounds with their corresponding scaled bioactivity (pK;) were taken from the published work
[90] for model building in this workflow. The curated dataset of NNRTIs with the 39 ligands
in SMILES format and their computed pK; was submitted in “Customized” mode option 1
(Figure 3.3). As K; values were already scaled [90], so we skipped the “Data Transform-
ation” node and adjusted the data partitioning node for the simple division of reported 31
training and 8 IVS molecules (Figure 3.4). RDKit descriptors and fingerprints were com-
puted automatically for this given input dataset of NNRTIs. MODI scores for the first three
options of fingerprints (Morgan, FeatMorgan, AtomPair) in the “Input Parameter” meta-node
(Figure 3.4) were lower than the threshold (MODI >0.45). Thus, we skipped these 3 finger-
prints and continued the modeling process using RDKit descriptors and torsion fingerprints
for which MODI score was greater than the threshold (for K3, MODI = 0.46 and for K5,
MODI = 0.48).

Performance of automated QSAR modeling workflow based SF-models in antiviral bind-
ing affinity prediction on external validation set or IVS for NNRTIs was markedly bet-
ter in both options (scaled and unscaled variable importance) of feature selection than the

published [90] QSAR model. The PVE score of the SF-model((VI)1) is 0.81 and for SF-
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model((VI)2) is 0.82 while the published solution showed 0.725 scores of the squared coef-
ficient of correlation (R?) for the same IVS. In the same way, the RMSE score of the SF-
model((VI)1) is 0.34 and for SF-model((VI)2) is 0.33 while the published solution showed
0.2230 (RMSE= 0.47) score of squared standard error of the regression (S?) for the same
IVS. All the molecules of the IVS were found within the AD; thus predictions can be con-

sidered reliable.

3.4 Discussion

In the current work, an extendable platform was designed that can be used as a QSAR
modeling pipeline to get an optimized predictive model. The performance of the presented
automated QSAR modeling workflow was assessed for thirty different data sets of size ran-
ging from 300 to 3200 molecules and the features set of 1141 descriptors (RDKit descriptors
and fingerprints). We have further compared the results obtained from our workflow with a
published QSAR modeling problem and the results obtained were significantly better than

the original authors efforts, even though the approach followed was mostly unsupervised.

Comparison of all constructed full-models and SF-models revealed improved predict-
ive power with a small set of biologically relevant variables (Figure 3.5). Hence, feature
selection methodology was found efficient to deal with high dimensional data by select-
ing adequate features for each problem to predict a certain property with a good perform-
ance, less computational/time cost. For regression problems, compelling evidences exists for
the robustness of RF unscaled variable importance measure VI(Xj) because of its statistical
properties [72, 72, 73]. Consistent with literature, overall performance of selected sub-set
of variables by RF unscaled importance measure ((VI)2) was better than scaled importance

measure ((VI)1).

To explore the role of the training data sets size in determining the performance of pre-
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Models

DFull-Model
I:]SF-Model (Vi1
DSF-ModeI ((V)2)

0.00 025 0.50 0.75 1.00
Percentage of variance explained (PVE)

Figure 3.5: Comparison of models with and without feature selection. Pink color represents
the full-model without feature selection (with all variables (F)), green color is for SF-model
((VD1) contains predefined set of features (SF) identified by scaled permutation importance,
and blue color represents SF-model ((VI)2) having selected features (SF) by unscaled vari-
able importance measure.

dictive models, PVE for each model was compared with data set size (Figure 3.6). Models
trained with data sets less then 1500 molecules showed quite diverse predictive performance.
The dat set size of the best performing model of the receptor S-HTS5A with PVE value 0.87
is 302 molecules and least performing model of the receptor HRH2 with PVE value 0.32 has
385 molecules. The models performance was stable in larger data sized problems. Possible
reasons for these variations in performance is may be the complex nature of the problem and
the size limitations [44]. Hence, availability of more data may help to find real trends in data

with a satisfactory solution.

In regression modeling, one of the most critical problem is over-fitting of a model which

results into poor generalization and reduced performance on unseen data. One widely accep-
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Figure 3.6: Size of the problems and predictive power of fitted models. Blue dots represent
externally validated models with feature selection by scaled importance, and golden yel-
low color denotes externally validated models with feature selection by unscaled importance
measure.

ted measure for testing over-fitting is to observe performance over independent validation
data set [22, 4]. Hence, SF-model’s final assessment was performed using of the independ-
ent validation set (IVS). The internal (test set) and external (IVS) prediction results of the
SF-models were compared to identify the over-fitted models (Figure 3.7) in both methods
of feature selection like the scaled (Figure 3.7A) and unscaled importance (Figure 3.7B). In
both feature selection methods, none of both is completely superior to the other one. For
example, problem Histamine H2 receptor (HRH2) is a worst generalized model constructed
by unscaled importance based feature selection, but was optimally fitted by the scaled im-
portance based set of features. Hence, our focus was on the problems that were failed in
both feature selection methods. Out of thirty problems, three models were found over-fitted

in both methods.

Worst cases include 5-hydroxytryptamine receptor 2B (5-HT2B), 5-hydroxytryptamine

receptor 4 (5-HT4) and Sigma non-opioid intracellular receptor 1 (SigmalR) that are over-
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VS (VI)1)
VS (VI)2

Sigma1R

" Testset (Vi) : b ” ” Test Set ((VI)2)

Figure 3.7: Models over-fitting analysis. Models with a predefined set of features identified
by scaled variable importance (A) and unscaled variable importance (B).

fitted in both variable selection processes. Comparison of experimental and predicted activity
values was carried out to analyze poor prediction of particular activity value points. The
over-fitted models were unable to accurately predict the response variable at extreme values
and large errors were observed near the upper and lower extreme of the experimental range.
These mispredictions may result from data sets with very few measured instances with values
near the experimental range. However, insufficient patterns of predictors may reduce the

model coverage and lead to poor generalization [44].

In the end, PVE scores (QSAR_PVE(VS)) of full-models and final SF-models were
compared with their corresponding M ODI _ssR? scores (Figure 3.8). Results showed sig-
nificant correlation between the PVE for the IVS in SF-models and M ODI_ssR? (correla-
tion=0.76 for MODI _ssR? with K = 3 and correlation=0.78 for M ODI _ssR? with K = 5)
(Figure 3.8 A and B). This is consistent with the published work [53], which suggests that
the MODI_ssR? score should be > 0.46 for 3 nearest neighbors and > 0.47 for 5 nearest
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neighbors.The correlation between the full-models PVE and M ODI _ssR? was not as sig-
nificant. This weaker correlation was expected as full-models may contain irrelevant and
highly correlated variables which directly influence the models predictive power by causing
them to over fit the training sets. Hence, the implemented feature selection approach has an

efficient role for achieving robust models with reliable predictive performance.

A B
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Figure 3.8: MODI ssR? versus QSAR _PVE for 30 datasets. K is the number of nearest
neighbors. (A) K =3 and (B) K=5. QSAR_PVE(VS) is PVE score of externally valid-
ated models without feature selection (Full-model) and with selected features (SF-model).
High correlation with SF-models QSAR_PVE suggests M ODI _ssR? is good modelability
criteria. Weaker correlation between Full-model QSAR_PVE and M ODI _ssR? emphasize
the importance of feature selection to obtain actual and reliable predictive performance of
QSAR model.

3.5 Conclusion

The developed QSAR modeling workflow is a fully automated QSAR pipeline to as-

sist all users including those are not expert in machine learning and have less knowledge of
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available data. Creation of an optimal predictive model demands many critical and time-
consuming steps, including data collection and processing, appropriate data representation
(descriptors and fingerprints calculation), evaluation of the data set modelability, best pre-
dictors selection, machine learning models fitting and validation. QSAR modeling work-
flow completely automates the laborious and iterative process of modeling to tackle different

problems. Following are the key advantages of proposed QSAR modeling workflow:

e [t automatically fetches high-quality compounds data set from continuously improving
and growing curated databases (e.g. ChEMBL). Hence, the potential of direct access of
the online data sets enables to this fully automated framework a widely used platform

for QSAR model building.

e Important aspects of the data processing by selecting only the bioactivity type of in-
terest, dealing with duplicates, removing missing data and salt groups, descriptors cal-

culation, and data normalization are handled in a very flexible and consistent manner.

e Prior estimate of data set modelability can reduce modelers efforts by focusing in the
most promising problems or identifying the challenging ones that may require more

data, more descriptor variability or different strategies.

e Best practice feature selection and an exhaustive validation procedure are followed in
the presented workflow in order to ensure minimal bias in model development and
evaluation. The analysis of the obtained results of thirty different target-drug inter-
action predictive models concludes that the developed feature selection methodology
performs consistently well for high-dimensional data by removing 62% to 99% re-
dundant data. This large reduction of irrelevant variables minimizes the computation-
al/time cost, improves the predictive power of model and provides a better understand-
ing of the underlying relationship between the property of interest and the relevant

features.
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e The automated QSAR modeling framework is not a black-box prediction system,
rather it is an extensible and highly customizable tool to develop the robust predict-
ive models and provide the output of all modeling task for the diverse application and
reproduction of historical predictions. Moreover, it ensures that the same protocol is

used for updating models with new molecules as they become available.

e [t is worth mentioning that the generated workflow feeds the selected feature-matrix to
SVM models but these variables can be used as input for any other non-linear machine

learning method which can be easily implemented in the framework.

In conclusion, with the above mentioned adopted features of the presented open source
automated QSAR modeling framework, it is hoped to guarantee that the most important
aspects of QSAR modeling are addressed and consistently applied. This framework has
been tested against thirty data sets, some very difficult, and generally as produced robust
results; this has been achieved without any need of users thorough understanding of data,
computer programming and/or machine-learning knowledge and complex parameterization

to customize the complex modeling algorithms and procedures.
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Analysis and comparison of vector space

and metric space representations in

QSAR modeling

SAMINA KAUSAR AND ANDRE O FALCAO

Abstract

The performance of quantitative structure-activity relationship (QSAR) models largely
depends on the relevance of the selected molecular representation, used as input data matrices.
This work presents a thorough comparative analysis of two main categories of molecular rep-
resentations (vector-space and metric-space) for fitting robust machine learning models in
QSAR problems. For the assessment of these methods, seven different molecular represent-

ations that included RDKit descriptors, five different fingerprints types (MACCS, PubChem,
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FP2-based, Atom Pair and ECFP4) and a graph matching approach (Non-contiguous atom
matching structure similarity; NAMS) in both vector space and metric space, were subjec-
ted to state-of-art machine learning methods that included different dimensionality reduction
methods (feature selection and linear dimensionality reduction). Five distinct QSAR data
sets were used for direct assessment and analysis. Results show that, in general, metric-space
and vector-space representations are able to produce equivalent models, but there are signific-
ant differences between individual approaches. The NAMS-based similarity approach con-
sistently outperformed most fingerprint representations in model quality closely followed by
AtomPair fingerprints. To further verify these findings the metric-space based models were
fitted to the same data sets with the closest neighbors removed. These latter results further
strengthened the above conclusions, metric space graph-based approach appeared signific-

antly superior to the other representations, albeit at a significant computational cost.
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4.1 Introduction

In the past 50 years, quantitative structure-activity relationship (QSAR) has become a
powerful tool for drug design and discovery. The underlying principle in QSAR model-
ing is the assumption that molecular structure information is sufficient to model and predict
biological or pharmacological activity. Hence, in QSAR studies, different molecular repres-
entations have been used to describe the information encoded in molecular structures so as
to predict the quantitative relationships between biological activity (response-variable) and

structural information (predictors) [1, 2, 3, 4, 5].

The performance of QSAR models for accurate characterization of biological molecular
properties largely depends on the relevance of the selected molecular representation. Such
representations can be divided into two broad categories of methods, namely, vector space
and metric space representations [0]. A vector space or linear space representation occurs
when the set of modeling instances is represented as a vector, with its characteristics meas-
ured relative to some reference frame and thus have a notion of magnitude and direction from
the origin. In most QSAR modeling studies, vector space is the most common representation
used, where each chemical structure is translated using a set of molecular descriptors. This
is generally referred as the ‘chemical feature space’, which represents different structural
characteristics/properties [5, 7, 8]. Nevertheless, vector space based QSAR modeling has
two major modeling issues: Firstly, it is the determination of the set of features capable of
structural representation and, secondly, the identification of the subset of features that more
significantly are able to predict the desired property [9, 10, 11, 12, 13]. Metric space repres-
entation, on the other hand, is built on the principle of measured distances between a set of
instances that we want to model. As sometimes it is difficult to identify specific features of a
real world entity as a molecule, many times it is easier to quantify its distance or similarity to
other instances. A typical case for using metric space representations is in protein functional

annotation; while it is quite hard to define a set of features that characterize a protein, the
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similarity between proteins (whether structural or sequence based) is commonly used to as-
sign its function as it is known that, above a given similarity threshold, proteins maintain its
function [14, 15]. In in silico screening the similarity principle leads to the simplest database
screening methods, if a seed molecule has been determined experimentally as active, the first
approach to find other actives is to identify similar molecules, as the probability of finding
other actives increases with the proximity to the base molecule [16, 17]. QSAR metric space
modeling is hampered also by two different issues. In the first place we need to determine
how to measure similarity between molecules - for which there are currently several and con-
flicting approaches - and secondly, it is necessary to compute the distance of each molecule
to all the molecules in the training sets, which may entail difficult computational problems.
Distance matrices as they are quadratic to the number of instances of the data set add dif-
ficulties to the modeling effort and do not scale well, even with increased computational
power available today. Any vector space is a metric space, as it is possible to compute the
distances between instances using any common distance metric as the Euclidean distance.
On the other hand, there are some data sets for which no vector representation is known (e.g.
proteins), while on the other hand, it is possible to compute their distance. Thus, all vector

spaces are metric spaces, but the reverse is not true (Figure 4.1).

4.1.1 Molecular similarity and metric space representation

Molecular similarity largely depends upon an appropriate combination of two basic com-
ponents including (a) a molecular structural representation to find the overlapped or similar
features and (b) similarity function/coefficient to quantify the similarity between them [18,
19, 20, 21, 22, 23, 24, 25, 26]. By far, the most commonly used structural representation
for comparing molecules is the use of two-dimensional (2D) molecular fingerprints. Finger-
prints are a sort of binary fragment descriptors, where each bit represents the hashing product

of the possible chemical fragments of a molecule. There are currently several widely used
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Metric spaces

Vector spaces

Figure 4.1: Vector space vs metric space

fingerprints that differ on the form that a molecule is decomposed, the size of the repres-
entation and the hashing algorithm [27]. Some other descriptor independent methods are
also available for molecular similarity comparisons, which include molecular graph match-
ing approaches[28, 29, 30, 31]. To quantify molecular similarity, the most common method
used is the Tanimoto (Jaccard) similarity coefficient [32, 33], however, there are many other
similarity/distance methods [20, 25, 34, 33, 26]. Also, the one-complement D of the Tan-
imoto/Jaccard coefficient, where D = 1 — J, has been proven to be a real metric, satisfying
all the known properties of distance measures [35]. Comparatively to vector space based
methods there is limited research work reported in the literature to explore the quantitative
relationship between computed molecular similarity-activity in QSAR/QSPR modeling [36,
37, 38, 39, 40,41, 7, 19, 42, 43, 16, 44, 45].
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4.1.2 Metric spaces vs vector spaces

With all the aforementioned concerns the main question that we want to address in this
study is to know if either a metric space or a vector space modeling approach outperforms
the other in QSAR regression problems. Therefore, in this work, we have carried out a com-
parative analysis of molecular structural representation using some of the most commonly
used vector and metric space based methodologies and compare its results. Overall we seek

to answer the following four questions:

(a) Is metric space representation as good as the most common vector space based

approaches?

(b) Which similarity representation carries the maximum chemical/structural inform-
ation content to establish the best relationship between structural similarity and

activity?

(c) How effective is the use of reduced dimensionality of the feature space with prin-
cipal components, by replacing explicit descriptors/fingerprints in QSAR model-

ing?

(d) Is there any molecular structures representations method that is generally better

than the others?

To accomplish these goals the following work was performed: Five distinct data sets
with distinct modelability characteristics were selected and curated from ChEMBL23. Then
several modeling efforts were applied systematically to all selected data sets, namely i) a
typical vector space representation of molecules was performed by using an extensive set
of chemical descriptors then used for model fitting in a QSAR optimization framework that
includes automated data processing, descriptors/fingerprints computation and feature selec-

tion; ii) similarity matrices were computed for all data sets using a variety of methods (five
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fingerprint-based and one graph-based), these similarity matrices were then used for mod-
eling by using their principal components as model components; iii) the fingerprint-based
representations, as they actually also represent molecular features, have been further used in
a vector-based model, using the same linear dimensionality reduction method. For all these
three different modeling choices, the number of features (or principal components) used on
each model was selected by using 5-fold cross validation, and, each final model was assessed
against an independent validation set randomly selected from the initial data set, which was

never used in any step of the model fitting phase.

4.2 Methodology

4.2.1 Overview of the methodology

We collected and curated the molecular data for each biological target from ChEMBL23
[46], then all molecules of each data set were represented using different fingerprint models
and molecular descriptors and separated into different modeling problems. To perform all
the analyses, initially each data set was randomly split into training and independent valida-
tion sets (IVS), the former used for training and model selection, and the latter for the final
evaluation of the model. A state-of-the-art QSAR modeling approach [47] was performed
to build a predictive model using an optimized feature selection procedure. The other mod-
els for the same data sets required first the computation of five different fingerprint sets,
these were used for additional vector space modeling and for the computation of similarity
matrices between all molecules of each data set. Additionally one graph based structural
similarity approach (NAMS) was used for making one further similarity matrix for metric-
space modeling. PCA was applied to both the similarity matrices and the bare fingerprints
so as to create and evaluate models by iteratively increasing the number of principal com-

ponents. The predictive performance of all data representations was assessed using the IVS,
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which was never used during feature/PC selection (Figure 4.2). The details of each step of

the followed methodology are covered in the following sections.
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Figure 4.2: QSAR modeling approaches

4.2.2 Vector space representation

In a vector space, each molecule is represented by using a feature vector that contains
several molecular properties (descriptors) or structural features represented using a binary

array of fixed size (fingerprints) [48, 27].

4.2.2.1 Descriptor based representations

Molecular descriptors aim to selectively describe the information encoded in the structure

[48]. Some molecular descriptors are derived with mathematical formulae obtained from
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Chemical Graph Theory, Information Theory, Quantum Mechanics among other methods
that directly illustrate some relevant features of the molecules [49, 48]. Molecular descriptors
can be divided into 4 broader categories: constitutional (1D), topological (2D), geometrical
(3D) and physico-chemical properties-based (4D) descriptors [50, 48]. 2D descriptors are

the most commonly used types of descriptors.

4.2.2.2 Fingerprint based representations

Another well-known molecular representation is molecular fingerprints, which are fixed-
length bit-strings where each bit encoding a fragment or characteristic of a given molecule
[27]. Molecular fingerprints are often very different in length and their complexity ranging
from 2D/simple representations of relevant structural features to 3D/complicated pharmaco-
phore arrangements. Thus, many types of fingerprints have been generated with different
settings (generation method, length, size of patterns and number of bits activated by each
pattern etc.) and are further deployed as descriptors for predictive modeling to estimate the

biological activities [51, 27, 52, 12, 53, 54].

In principle, 3D representation should have higher information content than 2D, but sur-
prisingly, higher complexity is often more error-prone and less robust in performance [55,
56, 57, 58, 26]. 2D fingerprints can encode different structural information. For example,
molecular fragments and structural patterns, topological pathways through compounds, or
topological atom environments either as bit strings or feature sets. Numerous software pack-
ages have been developed to generate several types of fingerprint for drug discovery applic-
ations [54]. Moreover, the basic principle of fingerprints generating algorithms and their
comparative performance in a variety of problems has been extensively studied in many re-
ported works[59, 8, 26, 54]. The preferred molecular fingerprints can be grouped into the

following three classes:

(a) Topological/path-based fingerprints (e.g., Daylight like RDkit[27, 60], Atom Pairs[61])
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capture the paths between atom types by describing their different combinations
and always assign same bits position to same substructures within the compared
molecules that sometimes results into bit collisions but also useful for clustering

compounds.

(b) Circular fingerprints (e.g., ECFP[62]) record circular atom environments that
grow radially from the central atom connections. In topological and circular

fingerprints individual bit has no definite meaning.

(c) Structural keys fingerprints (e.g., MACCS [63], PubChem [64]) each specific
bit position represent the presences (1) or absence (0) of predefined functional

groups, substructure motifs, or fragments.

2D fingerprints can be easily be calculated by specialized, open-source, and readily avail-
able software packages (e.g. OpenBabel [65] or RDKkit [60]). 2D fingerprint-based similarity
analysis is most widely used methodology in ligand-based virtual screening, clustering and

diversity analysis [66, 59, 24, 26, 59, 67].

4.2.3 Metric space representation

A molecule in metric space is defined only as its relation (distance or similarity) to all
other molecules in the data set. Technically a metric space is computed using distances
between all the elements of a data set creating a distance matrix which can then be used in a
variety of modeling techniques, as hierarchical agglomerative clustering or k-Nearest Neigh-
bours models [68, 69]. There is a variety of ways to transform similarities into distances [ 16,
541, however as all the methodologies for comparing molecules produce similarity matrices,
it was deemed unnecessary to transform the similarities into distances and use similarity
matrices directly for modeling, as this extra transformation would introduce one further step

in the data preparation procedure with no clear advantage.
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In descriptors-independent methods, graph matching approaches have been used. In
these methods graph theory is used to represent molecules as labelled graphs whose vertices
correspond to the atoms and edges correspond to the covalent bonds. Several techniques
with some advantages and limitations are available to compare labelled graphs[29]. In the
descriptor-independent methods, many advancements have been introduced to improve the
sensitivity of graph matching methodology to find consistent and reliable molecular simil-
arity results. One of these methods is the non-contiguous atom matching structural simil-
arity (NAMS) , which has shown modeling advantages over other structural methods[28],

although the computational cost of its application can be high.

4.2.3.1 Fingerprint-based similarity

Many types of 2D and 3D molecular fingerprints have been generated to code chem-
ical structures/properties into bit string representations [20, 70, 71]. Molecular fingerprints
representation allows for easy comparison of molecules by identifying and quantifying the
amount of overlapped elements between them. The applications of molecular fingerprints
has been broadly reviewed and used in the literature [72, 54, 70, 22]. There is a large variety
of similarity and distance functions that have been introduced and return a molecular simil-
arity score [59, 54]. In cheminformatics the prevalent approach is the use of the Tanimoto
coefficient Tc over molecular fingerprints [26, 33].In the case of 2D fingerprints comparison,

for binary vectors of fingerprint representing two molecules A and B, Tc is defined as:

TC(A,B)—AQB— c

_ _ (4.1)
AUB a+b-—c

In Eq. 4.1, a corresponds to the number of bits set to 1 in molecule A, b is the number of

bits set to 1 in molecule B, while c is the number of common set bits in both molecules. As
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referred above, 1 — 7 is an actual distance measure, encompassing all 4 for properties od

distance measures.

4.2.3.2 NAMS-based similarity

NAMS is a graph matching algorithm, which uses a new atom alignment method to
quantify the structural similarity between compared molecules[28]. NAMS breaks complex
molecular structures into simpler parts to reduce molecule to atom-bond-atom structures and
calculates global structural similarity score from the best optimal alignment between the
atoms of compared molecules. This algorithm has shown an higher discriminant power for
biological activity than other structural or graph matching approaches. One of the reasons
is that the applied atom matching methodology is able to consider important characteristics
of atoms and bonds such as chirality and double bond stereo-isomerism that are many times

ignored in other approaches.

Given the structural representation of any two molecules, NAMS is able to compute
its similarity score. NAMS can be fine tuned with several parameters that allow users fo
increase the importance of any specific molecular characteristics (atom or bond similarities,
and atomic characteristics like atom stereo isomerism or double bond cis-trans isomerisms).
Changing the parameters will change the resulting molecular similarities, but the overall
results of comparing large and diverse data sets are not very much changed. For the current

work, only the parameters were used.

4.2.4 Model building

In QSAR Modelling, the most well-known machine learning approaches include neural
networks (ANN), support vector machines (SVM), decision trees, random forests (RF) and

k-Nearest Neighbours [73, 74]. Since the last few years, RF [75] and SVM [76], two non-
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linear supervised learning methods, have become the most prevalent algorithms in QSAR
studies [77, 75, 78, 79, 80, 81, 82]. One of the biggest advantages of SVM is its ability to
deal high dimensional and duplicated data with lower risk of model over fitting [79, 80, &1,
82], while, on the other hand, RF are considered specially robust in complex situations of
high dimensional QSAR/QSPR data sets [77, 75, 78]. Hence, RF and SVM are the basic

algorithms used in the learning phase of the current work.

As stated, one of the most prevalent issues in QSAR modeling approaches is variable
redundancy or colinearity with complex correlation patterns between descriptors or the pres-
ence of irrelevant features in the data set,a and the present of irrelevant features that may
reduce the quality of the produced models. These are consequences of the high dimension-
ality of such problems. Such issues are aggravated by the fact that in QSAR studies there are
many times much more predictors than the number of actual instances to fit. [12, 10, 13, 11,
9], which will make more difficult to find adequate fitted models. Several approaches have
been followed in the literature to solve the descriptor selection problem in QSAR modeling
[73, 83, 84,77, 85]. These approaches can be roughly divided into different categories: fea-
ture reduction and feature selection. In feature reduction the main purpose is to algebraically
combine sets of features into statistically independent new components. There are several
methods that purport to accomplish these goals, among which is principal component ana-
lysis (PCA), singular value decomposition or kernel PCA[86]. PCA is by far the most used
method in feature reduction while Kernel based PCA is beginning to get some traction in
the literature[87]. Feature selection, on the other hand, is a more complex problem, and in
essence can be resumed to find and select the smallest set of features that are capable of pro-
ducing the best model. Methods to address this problem include the identification of linear
correlations between all variables, bootstrapping methods capable of voting which variables
have the highest impact on model quality, or the use of optimization meta-heuristics like

genetic algorithms [73, 83, 84, 77, 85].

In this work, we used two of the most common methods for feature reduction. PCA
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was used in the metric space data produced from the similarity matrices and fingerprint data,
while random forests were used to identify the most relevant features capable of producing

the highest scoring models.

4.2.4.1 Feature reduction with PCA

Principal Component Analysis (PCA) is a linear reduction method to calculate the most
meaningful basis to re-express high dimensional data into a reduced space. However, PCA
is a useful tool in QSAR modeling for dealing with the problem of data high dimensional-
ity and collinearity [68, 4]. In typical QSAR studies, PCA is used to analyze original the
data matrix in which molecules are represented by several types of predictors variables (mo-
lecular descriptors/fingerprints). PCA performs dimensionality reduction by transforming
original descriptors space into linear orthogonal combinations of original variables named as
principal components (PCs). The generated PCs are uncorrelated and always ranked accord-
ing to the decreasing data variance of the original variables [68]. As the first components
contain the highest amount of data variance, models can be fit to data by gradually incre-
menting the components in the model. One first model will use only the first component, a
second model will use the first two components, and so on, checking which of these models
with reduced dimensions is capable of producing the least amount of error in k-fold cross
validation. Since each PC is an independent source of the original data variance, PCs have
been used as a model input mainly when data high dimensionality is a big issue and most
models are sensitive to the number of variables to use [68]. Several studies are reported in
the literature where PCA 1is applied for dimensionality reduction in QSPR/QSAR problems
[88, 89, 90, 4].

In this study, we performed PCA in both vector space representations (descriptors and
fingerprints data matrices) and metric space representations (fingerprint-based similarity data

matrices and NAMS-based similarity data metric). The generated PCs were used to build
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QSAR models with dimensionality reduction (DR). We compared the predictive performance
of QSAR models generated by the reduced dimensionality of metric space with typical PCA-

based QSAR models where vector space is reduced by PCA.

4.2.4.2 Feature selection with Random Forests

A Random Forest (RF) is an ensemble supervised nonlinear machine learning algorithm
for classification or regression [75]. This algorithm generates a set of weakly independent
Decision Trees that are built using randomly selected subsets of the data. Each generated
tree is produced by randomly selecting a set of predictors from the full set and by sampling
with replacement instances from the same data pool. This will create a set of randomly
generated trees (a forest) each one created from different data and variable partitions. The
RF algorithm then uses a consensus voting procedure to combine the predictions from all
randomly generated weak models to make more robust predictions. One of the consequences
of this bootstrap procedure is that it is possible to assess the power that each variable has
in the final predictions. The trees that include such variables will typically have higher
prediction power, and as such it is possible to rank each variable in terms of its overall
importance to the model quality. Many studies showed that RFs voting procedure can be
used for feature selection by ranking and selecting each variable according to its importance
in RFs models [91, 85, 77]. In this ensemble method, each variable’s importance score is
calculated by several variable importance (VI) measures. In regression problems, an increase
in the mean squared error of a tree is one of the widely used VI measures, which explains
how much prediction error increases with the random permutation of any given variable
while keeping all others unchanged in a node of a tree [75, 91, 85, 92]. In this work, we
followed the Random Forest (RF) based feature selection method [77] to rank features in
high dimensional vector space according to their importance score that are later used in the

feedforward feature selection procedure (Figure 4.2).
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4.2.4.3 Support Vector Machine

An SVM [76] is a supervised machine learning algorithm that has been widely used for
classification and regression-based data analysis in many fields, including QSAR studies [79,
80, 81, 82, 77]. For a given set of data instances, a discriminative SVM algorithm focuses
on the identification of support vectors (data instances) to draw a decision hyperplane in a
high dimensional space that best separate data instances with maximum margins. SVM uses
different kernel functions for data transformation in a new hyperplane; these can be linear,
radial basis functions, sigmoid or polynomial, which are generally considered good choices
for a majority of problems. The discovery of support vectors highly depends on the selec-
ted kernel function. Differently from other methodologies where there is a learning phase
that heuristically searches thorough the multidimensional feature space, in SVM learning
this search procedure is a mathematical optimization procedure and it is guaranteed that an
optimal solution can be found in polynomial time. This also implies that, as no random
component, is involved, the same solution model will be produced for each model. In this
work, we used SVM in the process of feedforward feature selection where PCs from vector/-
metric reduced dimensionality space and RF importance score based ranked variables from
features/vector space were stepwise subjected to the SVM, and final QSAR models were
developed with an optimized set of selected dimensions (Figure 4.2). For the current work,

for all problems, the radial basis function was selected.

4.2.4.4 Model evaluation and external validation

N-fold cross-validation or model internal validation is the simplest approach, where the
training data set is randomly divided into N parts (folds), and each part is used as an ex-
ternal set for the validation of the predictive model, which was fitted by using the remaining
compounds in the other N-1 partitions. Cross-validation is essential to optimize modeling

parameters, variable selection and to verify the internal predictive power and robustness of
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the QSAR model [89]. In our analysis, we performed N-fold cross-validation to find an op-
timized number of most relevant variables (variable/PCs selection). For this purpose, a feed
forward approach was used to generate estimation models by sequentially adding the RF im-
portance score based ranked variables (more relevant to least significant) and PCs extracted
from vector space and metric spaces an input in SVM algorithm. The internal predictive per-
formance of each model was assessed by computing the score of the Percentage of Variance
Explained (PVE) and Root Mean Squared Error (RMSE) of each predictive model in cross-
validation [93]. As the cross-validation may result into a different number of best performing
variables for different folds, an average of the PVE score was recorded across all folds each
time. Finally, the set of dimensions that lead to the smallest average score of predictive er-
ror in all folds was considered as the selected number of descriptors/fingerprints/PCs. After
performing all this feature optimization, the whole training data set was reused to develop a
model with the selected features to perform a blind external prediction using the independent

validation set.

4.3 Data

We tested the proposed QSAR modeling methodology on five data sets for common hu-
man biological targets, retrieved from ChEMBL23[46]. These were selected independently
of any previous hypothesis (Table 4.1). We used an automated QSAR modeling workflow
[47] to collect and curate data for each selected target. The bioactivity data of the selected

problems was retrieved using the UniProt accession number (Table 4.1).

Moreover, missing data, salt groups, mixtures (e.g., in unconnected molecules smaller
fragments were excluded) were removed. In duplicated data, if more than one record was
present for the same compound, the one kept would be its most recent measurement, accord-
ing to the publication year. All data sets feature K as the bioactivity measure. However,

the logarithm of Ki is more tipically used for modeling and makes more biological sense.
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Table 4.1: Data set description

. . Total Number of
Uniprot  oe Name Target Protein Name . ASS(.)C.I ated Observations

ID. Bioactivities (Y)

(N-Processed)
P35367 HRHI Histamine H1 receptor Ki 1222
Q99720 SIGMARI . Sigma non-opioid Ki 296
intracellular receptor 1
Potassium voltage-gated
Q12809 HERG channel subfamily H member Ki 1481
2
P35462 DRD3 D(3) dopamine receptor Ki 2902
P28223  HTR2A 5-hydroxytryptamine Ki 2088
receptor 2A

Also, to encompass several problems of the more extreme values, it was decided to clamp

the values between an interval, so that very weak or possibly inactive molecules receive the

same low score, while it is many times unnecessary to discriminate results with K7 < 1nM,

as these are very active molecules. Thus the following expression (Eq. 4.2) was used for all

data sets to transform K2 into spKi (scaled and clamped pKi):

(

spli = q 22loa0lED e 1 N < K < 10,000 n M,

\

0, if Ki > 10,000 nM,

1, if Ki < 1nM

(4.2)

spKi values are thus clamped between 0 and 1, the most active compounds having the

values closer or equal to 1, and the lesser actives or inactives will have values of zero. This

clamping assumes that Kz values below 1 nM are considered extremely active compounds,

while molecules with K values above 10,000 nM will be considered as very weak or inact-

ives.
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4.3.1 Data preparation for vector and metric space representations

For each problem, molecules were represented in metric and in vector spaces by using
3 different approaches: a) common vector space methods, using molecular descriptors or
fingerprints named as vector space with FS (feature selection); b) Principal components over
the similarity matrices categorized as PCA on metric space; and c¢) principal components
over molecular descriptors and fingerprints placed in vector space with DR (PCA) (Figure

4.2).

For vector space representation, we used 1348 descriptors (2D and 3D) calculated for
each selected problem with RDKit [60]toolkit. Separate modeling efforts were performed
by testing separately five different types of fingerprints, which include ECFP6 (Circular),
PubChem (Substructure keys) computed using CDK [94] toolkit and MACCS (Substruc-
ture keys), RDkit (Path-based) and, Atom Pairs (Path-based) generated by using RDKit[60].
The data preparation for principal components over metric space representation involved the
computation of the similarity matrices between all elements of the training set and computing
the distances of the IVS to those of the training set. Similarity matrices using the Tanimoto
index were obtained for each of the five fingerprints adding the NAMS graph based mo-
lecular matching algorithm. Models generated using dimensionality reduction of metric and
vector spaces were named ‘optimized number of PC models’ (OPC), as the procedure em-
phasizes selecting the best number of PCs, capable of producing the more reliable models.
Predictive models built using vector space with FS were named as SF-Model (model having

selected number of features) (Figure 4.2).

Thus, a total of eighteen different molecular representations were used in this study, and
served as input data to machine learning algorithm for the generation of ninety regression

models for five selected problems.
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4.4 Results

4.4.1 Implementation of analysis

All molecular descriptors and fingerprints used in this study were calculated using CDK[94]
and RDK:it[60] built in nodes of an open source data-mining framework KNIME (version
3.2)[95]. All analysis was performed using R (version 3.4.4) [96] on a desktop worksta-
tion powered by a 6th-generation Core 17 Processor (3.41 GHz) with 16 GB RAM. Package
el071 [97] was used for SVM algorithm and an R library RandomForest (RF) [98] for RF.
Both SVM and RF algorithms were implemented with the default parameters. R Package
factoextra was used for dimension reduction using PCA[99]. This is noteworthy that in the
PCA based QSAR modeling, orthogonal projections/PCs for test sets in N-fold CV and IVS

were calculated by using R’s PCA predict () function.

4.4.2 Results of generated models

OPC-Models and SF-Models were fitted with the whole training data sets of all selected
targets. For all data sets, the training data was used to evaluate and select the model that was
able to produce the smallest RMSE or PVE (ratio of the variance explained). Typically this
involved selecting models with a reduced number of features or PCs. The final models after

feature selection were validated using the same I'VS for each problem set.

The first aspect that stands out from these results is that the most relevant factor for
explaining model quality is the nature of the data itself. Predictive performance of QSAR
models highly depends upon different characteristics of the data set (e.g., size, chemical
diversity, and presence of activity cliffs) [100, 101, 102, 103, 104, 105, 106]. As an example
the HERG data set can be easily seen as a difficult problem independently of the approach
followed to model it (Figure 4.3), on the other hand, the human Histidine Receptor 1 (HRH1)

124



4.4 Results

appears as generally more easily modelable, while the remaining three problems (SIGMARI,
DRD3 and HTR2A) show intermediate modelability characteristics. Secondly, with some
relevant cases noted afterwards, no single method appears uniformly above the others, and

each method’s performance seems to be heavily dependent upon the data set characteristics.

To have a more encompassing view of the the produced results we performed a Friedman
ranked test [107] ; this is a non-parametric test used to assess different treatments applied to
different test situations, as is the current case. In the present situation a modeling approach is
considered a treatment which is evaluated by its results for the different data sets. Each model
is then ranked according to its performance, where the best models have a lower rank and
vice-versa. The Friedman test is able then to evaluate each performance according to its rank
in all data sets thus effectively providing a performance value for each modeling approach.
Another advantage of the Friedman test is that it allows for a post-hoc analysis that is able to
better qualify the differences verified between treatments, for instance by grouping similar
models with similar performance values. For each modeling data set, the rank in PVE of
each modeling approach was calculated in R’s agricolae package (Figure 4.4)[108]. The test
results showed that there were significant differences between treatments with a Chi -squared
test of 38.44 with 17 degrees of freedom, giving a p-value of 2.2 x 10~% which strongly
suggests that there are statistically significant differences between the different modeling

approaches.

The post-hoc analysis of the Friedman test allows groupings of statistically indistinct
treatments under the same grouping [107]. A treatment can belong to several groups. In
Figure 4.4, it is highlighted to which groups each model belongs. The discriminating alpha
used was 0.05. It can clearly be seen the the only elements that belong to group e - the one
with model rankings consistently lower (thus indicating higher quality modeling approaches)
are NAMS metric space PCA and Atom Pairs fingerprints with classical feature selection; on
the other hand the use of RDKkit fingerprints both with metric space representation and PCA

dimensionality reduction appear consistently in the highest positions (worst models).
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Figure 4.3: Comparisons of QSAR models’s predictive performance using IVS. PVE - Per-
centage of Variance Explained by the model

We further dissected these individualized results according to the four major questions
that were the main objectives of our analysis. These questions are addressed one by one in

the following sections.

4.4.2.1 Is metric space representation as good as the most common vector space based

approaches?

To answer this question, the results of all three different approaches (simple feature se-
lection, PCA dimensionality reduction in both vector spaces and metric spaces) was ana-
lyzed. A comparison of OPC-Models generated using PCA on metric and vector spaces and
SF-Models built using vector spaces with FS showed that the predictive performance of each
QSAR model was influenced by the selected type of molecular structural representation (Fig-
ure 4.5), which was expected and consistent with the literature [50, 109, 103]. We performed

a similar analysis using the Friedman test over the ranks of the median values of each data
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Figure 4.4: Friedman’s test results and interquartile ranges of tested models
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modeling approach from the explained variance (PVE) of the fitted models each respective

IVS (Figure 4.5)

A B Groups and Interquartile range
Boxplots of different data modeling approaches for the five data sets of tested models
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Figure 4.5: (A) Boxplots of the three modeling approaches grouped by the different data
sets; (B) Groups and interquartile ranges of the medians of tested models from Friedman’s
test post-hoc analysis

Feature selection over vector spaces has proven to be globally the most reliably mod-
eling approach and appears to be significantly better relatively to the use of PCA over the
same data. Metric Space PCA, appears as somewhere in between, closer to the feature se-
lection approach. The Friedman test for this data yield a Chi-squared value of 6.0, which
corresponded to a p-value of 0.049, just below the 0.05 threshold. With such results it is fair
to conclude that the usage of metric space data may compromise the quality of the models
produced when comparing results to traditional vector-space feature selection models, yet
it clearly outperforms vector space PCA based approaches. It is nonetheless striking that
the highest ranking method from the overall assessment is NAMS, a Metric space based

approach, which may allow us to suggest that possibly the other methods for calculating
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molecular similarities may be the culprit for this decreased performance, and may not be
as adequate to compute molecular distances, being nonetheless quite effective as descriptor

producers for modeling.

4.4.2.2 Which similarity representation carries the maximum chemical/structural in-
formation content to establish the best relationship between local similarities

and activity?

To analyze which similarity representation contributed more significantly to reliable pre-
dictive modeling the overall performance of generated OPC-Models using six similarity data
matrices (NAMS, ECFP6, RDkit, Atom Pairs, MACCS, and PubChem based similarities)
was evaluated again using Friedman test (Figure 4.6). The ranking of each metric space
based approach was assessed for each data set and the overall quality of each model quan-
tified from the use of the Friedman test and respective post-hoc analysis. For the present
case NAMS appears clearly as the best approach followed closely by Atom Pairs and ECFP6
fingerprints, the former appearing in the same group as NAMS. The Chi-squared test for
the metric-space based approaches ranked comparison was 15.2, with 5 degrees of freedom,
which corresponds to a p-value of 9.5 x 1073, Thus, test results again suggest that NAMS
molecular similarity is able to more reliably capture important structural information, which
eventually generates a better quantitative relationship between the local similarities and com-

pound activity.

4.4.2.3 How effective is using a reduced dimensionality of the metric/vector space with
Principal Components, replacing explicit descriptors/fingerprints in QSAR

modeling?

This question can actually be answered by observing the previous results. It seems clear

that when directly comparing PCA over direct feature selection (Figure 4.5), the latter pro-
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Figure 4.6: Overall performance of similarity representation using PCA on metric space
based QSAR modeling approach

duces markedly better results, which strongly suggests that the dimensionality reduction
achieved with PCA is a poor proxy for a better structured search for the most relevant
descriptors in a modeling problem. Nonetheless, using PCs from the similarity matrix allows
us to capture the same information available from vector space modeling. Thees results also
highlight the capability of fingerprints for producing high quality models, without the need
for other chemical descriptors. Furthermore, the fingerprint generating method appears crit-
ical for producing the most reliable models. As it is patent from the above results, Atom Pairs
and ECFP6 fingerprints appear as the best fingerprint-based similarity approaches, while the
RDkit and PubChem fingerprints appear consistently lagging behind all other models.

4.4.2.4 Is there any solution that is globally better on a variety of difficult problems?

From the above results it is clear that there is not a single best approach for dealing

with complex QSAR problems. Although metric-space based NAMS and Atom Pairs come
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most of the times on the top places, they are not consistent for all data sets. For instance,
Atom Pairs fingerprint representation perform poorly for the HTR2A model, while NAMS
does not appear on top for the DRD3 data set. Similarly, as referred above, there does not
appear any intrinsic advantage in changing from a fingerprint vector-space based approach to
similarity based metric-space modeling. The most consistent result was that the use of PCA
with descriptor data was generally a poor modeling approach. PCA can be used nonetheless

with distance matrices being able to capture reliable information for modeling.

4.5 Discussion

Many studies have demonstrated that the selection of different types of molecular struc-
tural representation has a larger impact on the predictability of QSAR models than the choice
of model optimization methods [109, 110, 59, 8, 26, 54, 67]. Our results confirm these find-
ings further suggesting that reduced metric space representation using NAMS-based simil-
arity and Atom Pairs fingerprints with feature selection were the methods that more consist-

ently address a variety of modeling problems.

Nonetheless one further concern over such studies is how much novel information is ac-
tually being discovered from those models as it is a known fact that similar molecules tend
to have similar biological properties. Therefore, a distinct possibility is that the usage of
similarity matrices for inference may be able to make reliable predictions only when very
similar molecules to the training data set are present. Thus, one further test for these mod-
eling approaches is to understand how reliable are these methods for making models where
all very similar molecules have been removed, and no molecule, either in the training set or
the IVS, has a high similarity to any other. This would allow to evaluate the capability of
each approach for making inference when very diverse compounds are fed into the model.
Therefore, to check the robustness of the tested methodologies, the five data sets were ma-

nipulated by converting them into harder problems with only structurally diverse molecules,
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making certain that no molecules within a given similarity threshold are present in each data
set. Accordingly, five new data sets were created based on the initial ones but where no
molecule would be present if it was similar within a given threshold, to the others already
present. As different similarity methods produce different scores for the same molecules,
the thresholds were adjusted for each similarity methods, to make sure that model would be
trained with a similar number of instances (4.2). This complementary analysis relates ob-
viously only to metric-space modeling, as such the following results will only focus on this

modeling approach.

Table 4.2: Data size before and after removing nearest neighbours - Thr - Similarity
threshold; N - New data set size

Data size without NAMS | ECFP6 | RDkit | Atom Pairs | MACCS | Pubchem
Target Protein Name | Femoving near est

neighbours Thr N [Thr N |Thr N |Thr N |Thr N |Thr N
Histamine H1 receptor 1222 0.80 379|055 378 |0.80 371 |0.67 376 |0.84 379 |0.87 391
(HRH1)
Sigma non-opioid intracel- 226 0.87 312 |0.61 310]0.89 305|075 309 | 092 311 |0.94 321
lular receptor 1 (SigmalR)
Potassium  voltage-gated 1481 0.80 397|054 3941 0.82 392|069 395 | 083 395 0.86 403
channel subfamily H
member 2 (HERG)
D(3) dopamine receptor 2902 0.80 478 | 0.52 481 | 0.77 470 | 0.67 480 | 0.87 484 | 0.86 484
(DRD3)
5-hydroxytryptamine 2088 0.80 432|047 432 ]0.78 424 | 0.63 426 | 0.83 429 | 0.85 437
receptor 2A

After removing the nearest neighbours, all data sets were again randomly split into train-
ing and independent validation sets and the same data processing procedures were repeated
for these new more challenging data sets. Also the same modeling principles were repeated
by training the models with the training set, while simultaneously selecting the best feature
set, and finally validating the best model with the corresponding IVS. The overall perform-
ance of the same models over these new data sets was assessed, nonetheless because the
number of instances present in all new problems are different, both RMSE and PVE were

used to adequately assess each model’s performance (Figure 4.7).
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A Comparisons of QSAR models’s (removing nearest B Groups and Interquartile range of
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Figure 4.7: Overall performance of metric space representation after removing nearest neigh-
bours in PCA on metric space based QSAR modeling approach
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As it can be seen, with such hampered data the performance of QSAR models has natur-
ally dropped, with a decrease in PVE ranging from 0.15 to 0.52 (Figure 4.7A). This finding
is consistent with the literature[8], in that similar molecules present in models tend to inflate
results statistics. It can also now be promptly evaluated that the differences between the dif-
ferent models are now amplified, being clearly easier to visually identify which approaches
distinguish themselves from all others. Nonetheless the overall model ranking was not sig-
nificantly changed. Thus NAMS similarity representation was, for these data sets, clearly
the highest performing model, achieving for all cases the lowest RMSE scores. Using the
Friedman’s interquartile range graph (Figure 4.7B) using grouped together with Atom Pairs
or ECPF6, depending on using PVE or RMSE as the performance score. All other finger-
print approaches were not up to the referred methods in these more difficult challenges. The

Friedman test for the PVE had a Chi-squared value of 21.1 p-value 7.8 x 10719,

4.5.1 Computation time

The execution time of QSAR models built from reduced dimensionality of metric space
ranged between 60.61 to 48.88 minutes and for vector space 52.53 to 15.34 minutes while
vector space with FS computational time ranges between 860 minutes (DRD?3) to 17 minutes
(SigmalR). Comparative analysis of computational time showed that reduced dimensionality
significantly reduced the complexity of the problem in hands and then eventually computa-

tional time cost is also decreased.

The computation time is an important issue when comparing different modeling ap-
proaches, especially when the use of metric space methods is being evaluated as the use
of a full similarity matrix is required for each data set. Furthermore, metric space modeling
requires that one of the steps for inference is that for each new molecule it distance to all of
the molecules in the training set is assessed. This is not typically a problem for academic

studies but may put a large computational burden for actual screening efforts when several
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millions of molecules are being evaluated. This problem is aggravated in the case of the
specific non-fingerprint approach we tested (NAMS). Although apparently able to produce
a more accurate distance that translates into better prediction models overall, it does so at a
much higher computational cost. With the current common hardware, the average computa-
tional cost to compute the similarity of two molecules is 12 ms, which for many problems
may be too high. As an example, for computing the similarity of one new molecule to a
training set of 1000 molecules it will require 12 Secs. Such computational costs (although
the problem is trivially parallelizable), for very large data sets, may collocate unacceptable

computational costs.

4.6 Conclusions

In this study we compared different molecular representation approaches for input into
QSAR machine learning methods. These approaches were divided into vector-space and
metric-space based, the former, where each molecule is represented as a vector of different
characteristics and the latter where a molecule is represented with its distance or similarity
to others of known activity. We have tested 5 different fingerprint types (RDKit-FP2-based,
MACCS, PubChem, Atom Pairs and Morgan’s ECFP6) both as vectors of descriptors and,
in metric space approaches, with Tanimoto scores computed for similarity. One exclusively
vector-space approach was also tested, where common chemical descriptors were computed
and used in vector-space modeling as well as a pure metric-space method with a molecu-
lar graph-based similarity (NAMS). We also tested whether it was more adequate to use
dimensionality reduction methods (as with PCA) or a more computer-intensive feature se-
lection procedure. These representation and dimensionality reduction methods were tested
over five different data sets of different modelabilitie, and analyzed through Friedman’s test
for ranking models. Results showed that, the choice of molecular representations to compute

molecular similarity is more important than the modeling approach followed, thus certain
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methods produced consistently better results. ECFP6 and Atom Pairs fingerprints were the
clear best approaches for modeling in vector spaces, surpassing all other methods. Classic
molecular descriptors do not show any advantage for any of the data sets in this study. Re-
garding dimensionality reduction methods, the use of principal components appeared to be
inferior to the use of random forest-based feature selection. The former method, albeit faster

to process, produced in general results not on par to the latter.

In his study, metric-space modeling by itself, did not appear clearly superior to a vector-
space based approach and, for the same representation, using Fingerprints as descriptors
tended to produce better results than using molecular distances from those same fingerprints.
However when using metric-space representations it becomes even more clear the differences
between similarity methods, where NAMS and Atom Pairs fingerprints appear objectively
better than all other representations. Finally to verify whether metric-space based repres-
entations can be used for more remote inference, where the chemical space is evaluated in
regions distant from from the training data, the above conclusions regarding metric-space
modeling appear amplified with a larger distance between similarity methods, where NAMS

and Atom Pairs fingerprints appear clearly separated from the others.

Finally, metric-space based methods are more computationally expensive, requiring, for
each new molecule, the computation of molecular similarities to each instance of the training
set. This is a particularly severe cost for the graph-based similarity algorithm used (NAMS),
where the computation cost is a serious factor that may hamper its applicability in a real
world virtual screening approach, despite being overall the method that is more consistently

capable of producing high quality QSAR models.
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A visual approach for analysis and

inference of molecular activity spaces

SAMINA KAUSAR AND ANDRE O FALCAO

Abstract

Background: Molecular space visualization can help to explore the diversity of large
heterogeneous chemical data, which ultimately may increase the understanding of structure-
activity relationships (SAR) in drug discovery projects. Visual SAR analysis can therefore
be useful for library design, chemical classification for their biological evaluation and virtual
screening for the selection of compounds for synthesis or in vitro testing. As such, com-
putational approaches for molecular space visualization have become an important issue in
cheminformatics research. The proposed approach uses molecular similarity as the sole input

for computing a probabilistic surface of molecular activity (PSMA). This similarity matrix
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is transformed in 2D using different dimension reduction algorithms (Principal Coordinates
Analysis ( PCooA), Kruskal multidimensional scaling, Sammon mapping and t-SNE). From
this projection, a kernel density function is applied to compute the probability of activity for

each coordinate in the new projected space.

Results: This methodology was tested over four different quantitative structure-activity
relationship (QSAR) binary classification data sets and the PSMAs were computed for each.
The generated maps showed internal consistency with active molecules grouped together for
all data sets and all dimensionality reduction algorithms. To validate the quality of the gen-
erated maps, the 2D coordinates of test molecules were computed into the new reference
space using a data transformation matrix. In total sixteen PSMAs were built, and their per-
formance was assessed using the Area Under Curve (AUC) and the Matthews Coefficient
Correlation (MCC). For the best projections for each data set, AUC testing results ranged
from 0.87 to 0.98 and the MCC scores ranged from 0.33 to 0.77, suggesting this methodo-
logy can validly capture the complexities of the molecular activity space. All four mapping
functions provided generally good results yet the overall performance of PCooA and t-SNE

was slightly better than Sammon mapping and Kruskal multidimensional scaling.

Conclusions: Our result showed that by using an appropriate combination of metric
space representation and dimensionality reduction applied over metric spaces it is possible
to produce a visual PSMA for which its consistency has been validated by using this map as
a classification model. The produced maps can be used as prediction tools as it is simple to
project any molecule into this new reference space as long as the similarities to the molecules

used to compute the initial similarity matrix can be computed.

Keywords: Structure Activity Relationship (SAR; Molecular/chemical space; Two di-
mensional kernel density estimation; Noncontiguous Atom Matching Structural Similarity

Function (NAMS; t-SNE; PCooA; non-metric MDS; Sammon mapping
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5.1 Introduction

Chemical/molecular space reflects high dimensional conceptual spaces that describe the
structural diversity of all possible potential pharmacologically active molecules. The size of
molecular space is not well defined, yet a fraction of it ranging from thousands to millions
of compounds is stored in small molecule databases. Consequently, a part of the huge mo-
lecular space is mainly focused to explore the complexity of a relevant small set of chemical
structures in many different problems during drug design [1, 2, 3]. Nonetheless, molecular
space interactive analysis and visualization can serve as a strong tool to explore the diversity
of millions of compounds stored in public databases and can increase the performance of
drug discovery process. For example, nearest neighbour searches in various defined property
regions in molecular space (activity space map) can identify interesting similar molecules

(potent analogues) with similar properties [1, 2, 4, 5].

Molecular space visualization methods require that molecules are projected into a re-
duced set of dimensions (most of the times, two or three) in such a way that the relative
distances between molecules are better preserved in this new projected space. As distances
should be preserved, molecules with similar activity profiles should appear clustered to-
gether. [1, 6]. Thus, molecular space visual analysis combines the concept of molecular
structure and activity similarity [7, 6]. Since molecular dis/similarity is defined through pair-
wise distances between projected molecules in reference space, an appropriate choice of a
molecular metric space (spatial) representation is crucial for reliable application of molecu-
lar spacial analysis. A molecule in metric space is defined as a set of distances computed
from the similarity between that molecule to all the other molecules in a given chemical data
set. For this purpose, many methods are available in literature to compute dis/similarity. A
variety of methods uses either molecular descriptors or fingerprints, which represent differ-
ent physico-chemical or structural characteristics [8, 9, 10, 11, 12, 13, 14, 15, 16]. These

approaches entail that each molecule is initially reduced into a vector space by computing
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a set of attributes, that can be used to infer distance, yet this is not always required as other
independent approaches like molecular graph matching approaches can also be used for a

direct assessment of structural similarity [17, 18, 19, 20].

In metric space representation, a set of A/ molecules is represented in M dimensions,
as the distance to all the other elements of the set (including itself) must be present. As
such, the visualization of this M/ -dimensional metric space in reduced spatial dimensionality
is a challenge in data diversity analysis [7, 21, 22]. To address this issue many linear and
non-linear approaches have been developed to reduce the dimensionality and complexity of
molecular space [1, 21, 6, 23]. In all dimension reduction (DR) methods, the most important
characteristic is the optimization of the criterion that guides dimensionality reduction. Since
the concept of DR is mainly based on data geometrical representation where data is inter-
preted as discrete points/objects, the main objective to explore or analyze such geometrical
spaces is to discover the relationships between the points within this complex structure of
data (manifold) [22]. The main criterion that needs to be optimized in DR algorithms for
metric space data is the approximation of the original intermolecular distances (proximity
relationships) in the new projection space; DR approaches that are based on optimization of
this dimensionality reduction criterion in a linear/non-linear way are collectively referred as
distance-preserving approaches [22]. Principal component analysis (PCA) [24], is by far the
most common method[1, 25, 26] used in DR, yet it does not fall into this category, as the main
purpose of PCA is to represent in less dimensions the linear components that maximize the
data variance, not necessarily preserving the distances between data. On the other hand Prin-
cipal Coordinates Analysis (PCooA) [27, 28], Sammon mapping [29], self-organizing maps
[30], stochastic neighbor embedding [31] or stochastic proximity embedding [32], to name
but a few are distance-preserving DR algorithms and been used in cheminformatics [23, 33].
Most of the times, non-linear methods are usually preferred because linear algorithms may
be limited to linear projection functions and therefore may not adequately handle complex

associations that may be present in such problems [22].
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Distance preserving DR methods can then make it possible to project molecules into a 2D
reduced molecular space while preserving the original proximity (distances) of molecules as
best as possible, assuming that there is always going to be a loss of information as the original
molecular space should have a much higher dimensionality. To establish a structure-activity
relationship, molecular activity surface maps mostly referred as “activity landscapes” are
generated from 2D projected space (reference space) of molecules by adding a property of
each molecule as a third dimension[6, 34, 23]. In such projections, the activity of molecules
added as third dimension in the projected molecular space is the basis for fitting a generated
surface that represents the activity magnitude. Since data is largely scattered in projected
space, an interpolation algorithm [35, 33] is required to make a coherent surface onto this
2D projected map. Ideally, structurally similar molecules should appear grouped together in
well-separated clusters and each group should have similar properties. This property may
not always hold, and that is the case of "activity cliffs”, projected regions that exhibit similar
molecules with largely varying activity very close together[35, 36, 9, 16]. Despite these
challenges, such analysis may provide a global picture of the spatial characteristics of a

given data set.

The descriptive and predictive accuracy of molecular space visualization approaches
largely depends upon three main issues, including a) a choice of a molecular space represent-
ation, b) the accuracy of DR methods and c) the performance of the interpolation algorithm
to generate well estimated activity surface from sparsely projected molecules. To this end,
in our approach for visual characterization of molecules in conceptual spaces, a reliable
pipeline is generated that can efficiently be used to build a probabilistic surface of molecular
activity (PSMA), which can help to understand SAR in different situations. We have thus
integrated the advantages of the following different methods in the proposed molecular space

mapping approach:

e Choice of molecular space representation: Molecular pairwise similarity was quanti-
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fied using a graph matching algorithm: The Non-contiguous Atom Matching Struc-
tural similarity (NAMS) [17]. This algorithm has a high discriminative power for very
similar molecules over other structural or graph matching approaches. However, any

other similarity computation method can be used.

e DR methods: We applied four non-linear DR methods including Principal Coordinates
Analysis (PCooA) [27], Kruskal Multidimensional Scaling (KMDS) [28], Sammon
mapping (SM),[29] and t-Distributed Stochastic Neighbor Embedding (t-SNE) [37].

e PSMA: Non-parametric 2D kernel density estimation (KDE) function [38] created
within a Bayesian framework was used to map the most likely activity regions (activity

surfaces) from sparsely distributed active and inactive compounds.

This approach is, to our knowledge, new and allows building a non-parametric model out
of raw similarity data, which is useful for visualization and has clear predictive properties.
Furthermore, t-SNE applications in molecular space diversity analysis are not a common
practice in cheminformatics. A survey of recent literature showed only one work to visualize
molecular space using this algorithm [39]. However, under this particular domain, this is
a first effort to build activity spatial classification model using this algorithm by comparing
its performance with other commonly used tools. Another novel point the present approach
tried to address was the use of 2 dimensional KDE for model making. KDE is considered
a powerful tool in statistics for truthful assessment of data actual distribution/characteristics
[38]. In cheminformatics literature KDE has been used as a robust method to define applic-
ability domains of quantitative structure-activity relationship (QSAR) predictive models [40,
41, 42]. Applicability domains are used to define a boundaries in molecular space within
which new predictions of QSAR models are considered reliable [43]. We extended the same
concept to computing probability density function for active and inactive molecules within
2D projected space and surface was generated from the 2D map containing high promising

regions of active molecules. In the presented methodology, integration of KDE in SAR spa-

156



5.2 Methodology

tial visualization is a new addition in the efforts of molecular space analysis. It must be made
clear that, despite the fact that we are using a Bayesian approach to compute the PSMA, our
method has no relation to any naive-Bayes implementation, as we are computing the full 2D
probability map and not the individual probability distribution functions of each coordin-
ate axes as is the case in the naive-Bayes algorithm. The complexity of the resulting maps

clearly show that a naive-Bayes approach would be inadequate for this type of modeling.

5.2 Methodology

5.2.1 Overview of the methodology

The basic idea of this study is to capture the measured molecular distances according
to any proven method and try to represent those molecules in a reduced reference space for
analysis and visualization. Many dimensionality reduction methods are extant, [21, 22] and
some of the more popular are PCooA, KMDS, SM, and t-SNE [39, 23]. The procedure
to create a PSMA can summarily be described in the following steps. First, a full similar-
ity matrix of a molecular data set is computed. Secondly, similarities are transformed into
distances and projected into a 2-Dimensional (2D) space using one of the above mapping
functions. Finally, the probabilities of this reduced space are computed using a 2D KDE
function within a Bayesian perspective [44] to produce a probability map of a projected mo-
lecule for all classes. The generated 2D probability map should show the density distribution
of training data by mapping the locations of the most likely activity regions of the projected
molecular space. Such interactive class probability topographical map (PSMA) can serve as
classification model. To project new molecules into the new reference space, a data trans-
formation matrix can be used for embedding test molecules in the reference activity space.

To classify each new projected molecule the generated PSMA is used to calculate their prob-
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ability of belonging to either class. Models performance was assessed using test molecules

predictions (Figure 5.1).
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Figure 5.1: Overview of the methodology.

5.2.2 Molecular dis/similarity quantification

Chemical space analysis based on nearest neighbour searches in which molecular sim-
ilarity analysis is a central task that is based on Similar Property Principle [7]. According

to this similarity principle, globally similar compounds should have similar properties [9].
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Since intermolecular distances between projected molecules are a measure of their molecu-
lar similarity or dissimilarity, its quantification must be robust for meaningful spatial/metric
space representations, so that they may be able to map similar compounds in contiguous

regions, a fundamental aspect for reliable property prediction [7, 6].

For similarity quantification, molecules are translated into numeric data using various
molecular representations including structural descriptors and molecular fingerprints[45, 46,
47]. Molecular descriptors contain information of structural relevant features of molecules
at different levels including constitutional (1D), topological (2D), geometrical (3D) and
physico-chemical properties-based (4D) [45, 46]. Molecular fingerprints encode molecular
structural information in a bit-string where each bit represents the presence (1) or absence (0)
of a structural feature (e.g., chemical substructure, sub-graph, or 2D or 3D pharmacophore).
2D fingerprints are commonly used molecular representations for dis/similarity quantifica-

tion because comparing bit-string is fast and easy [48, 49, 14, 16, 49, 50].

There are some conventional distance metrics like Euclidean, Hamming, Manhattan dis-
tance that measure the distance between compounds represented by using descriptors/finger-
prints [7, 51]. Some other similarity coefficients are available for binary data (e.g. Tan-
imoto, Sorensen-Dice, cosine or Tversky) [52, 53]. Of those, the Tanimoto coefficient (Tc)
is extensively applied in literature to compute similarity between molecules using molecu-
lar fingerprints [54, 51]. Tc compares two fingerprints and counts the number of on-bits
(1) common in both with respect to the total number of on-bits (1) in each fingerprint.
There are several other approaches that assess similarity using different algorithms based
on superposition, molecular graph representations [55] histogram comparisons [56, 57] and
Brownian processing of molecules[58]. In this study, we used for molecular similarity as-
sessement a graph matching algorithm, the Non-contiguous Atom Matching Structural sim-
ilarity (NAMS) [17]. This algorithm uses an atom alignment method to adequately quantify
the structural similarity and has a high discriminative power for very similar molecules over

other structural or graph matching approaches. NAMS breaks complex molecular structures
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into simpler parts to reduce molecule to atoms and calculates global structural similarity
score from the best alignment between the atoms of compared molecules. NAMS follows an
atom matching methodology, which is able to consider the important characteristics of the
atoms and bonds such as the chirality and the double bond stereoisomerism. These features

are usually ignored in other approaches.

5.2.3 From similarity to distance

As stated above, since molecular similarity is measured by a distance between a pair
of molecules in the chosen reference space, a distance function known as metric is mainly
required to calculate distances between molecules in metric space representation. A dissim-
ilarity function or a distance function d(x, y) between tho instances = and y must satisfy the

following three basic properties:
(Property 1) d(z,z) =0
(Property 2) d(z,y) >0
(Property 3) d(z,z) < d(z,y) + d(y, 2)

Which essentially state that a distance between an instance and itself should always be
zero, any distance between any instances should never be negative and that the distance
between 2 points should respect the triangle inequality. A function that transforms similarity
into distance should accordingly be monotonically decreasing and intersect the X-axis pre-
cisely at z = 1. Using these principles similarities and distances can be inter-converted i.e.
every similarity metric correspond to a distance metric and vice versa. If similarity function
s(x, y) is normalized 0 < s(x, y) < 1 and s(x, x) = 1 for all x, y € X then similarity matrix

can be transform into distance matrix with a simple distance functions (see Eq. 5.1 [59] and
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5.2 [60])

1 1
s(x,y) = Trdey) d(z,y) = o) 1 (5.2)

Other complying transformations can also be applied like the negative of the natural

logarithm (Eq. 5.2)[33].

d(z,y) = —In(s(z,y)) (5.3)

These last two eqs. show the property that similarity values of zero imply an infinite
distance, so, for those extreme values, some clamping to a maximum distance may be neces-

sary.

Within the molecular space a distance function should be modulated to set a particular
meaning out of similarity measures. It can be radily observed that the last two functions
appear concave (Figure 5.2), meaning that near the regions that have the lowest similarity,
the impact on the resulting distance is the highest, which is counter-intuitive, as typically the
conservation of activity for similar molecules is only verified at the highest levels of struc-

tural similarity. Such transformation functions may further increase the projection distortion,
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as most algorithms will tend to minimize the error between the projected distances and the
actual distances. A convex curve may solve this problem, by inflating the distances of very
similar molecules but, on the other hand, if two molecules are very unrelated, the impact on
the transformed distance will appear small. As such we propose the use of the following

transformation which uses a parameter £ that controls the convexity.

kx s(x,y)

d(z,y) =1—
(ZE,y) 1—|—/€—S(l’,y)

(5.4)

In Eq. 5.4, small positive values of £ entail extremely convex functions, while on the
other hand, very high values approach d(x,y) = 1 — s(x,y) (Figure 5.2). Empirically and
visually we have determined that values of k ranging from 0.3 to 0.5 provide not too abrupt
transitions, and a value of 0.382 was used in all problems (0.382 ~ ¢ — 1, where ¢ is the

Golden Ratio)

5.2.4 Dimensionality reduction

As stated, the visualization of metric space data is a difficult challenge in many different
domains of data analysis, as it demands efficient and robust techniques to adequately repres-
ent in 2 or 3 dimensions the data variability present in an intrinsic multidimensional problem
[21, 22]. The objective of metric space visualization is to generate a topographical map,
which should be able to present a visual characterization of molecules by grouping them
together on the basis of their structural similarity. As referred, a metric space is an M x M
dimensional distance matrix where M compounds are represented each by M intermolecular
distances. However, it is not trivial to graph the diversity of such high dimensional metric

space. As referred, the main objective of dimensionality reduction (DR) in metric spaces is
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Similarity to distance tranformations
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Figure 5.2: Distance functions for similarity to distance transformations.

the distance-preservation in original high dimensional space to reduce dimensions. These
transformations can be linear or non-linear. The distance-preservation criteria is that any
manifold complex geometrical structure of data can be projected into reduced number of di-
mensions, and the quality of such transformation can be measured by the difference between
the original and the projected distances in the new space. A large number of nonlinear DR
approaches are available that aim to preserve the local structure of data [21, 22]. In this work
we used four of the most widely used DR distance-preserving techniques, namely, Prin-

cipal Coordinates Analysis (PCooA), Kruskal Multidimensional Scaling (KMDS), Sammon
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mapping (SM), and t-Distributed Stochastic Neighbor Embedding (t-SNE), for reducing the
molecules’ distance matrix in 2D and allow the visualization of the data. After DR, the newly
projected instances were divided according to their activity class and a probability function

assigned by using a kernel density function to each element of each class.

5.2.4.1 Principal Coordinates Analysis (PCo0A)

Principal Coordinates Analysis (PCooA) [27] also known as metric multidimensional
scaling (MDS). PCooA relies on a simple generative model possessing all the advantages and
drawbacks of Principal components analysis, although its goal is to preserve distances, while
PCA aims at preserving the data variance. However, differently from PCA which generally is
performed by computing the eigenstructure of the covariance matrix of the data, in PCooA,
the basic input is the distance matrix. To the squared of the distance matrix, each element
is double centered and, to the resulting matrix, an eigendecomposition is performed. The
eigenscaled coordinates of the first /V eigenvectors are the projected coordinates resulting
from this transformation. There are no tuning parameters for PCooA, however, results may
vary depending on the distance function used for data metric space representation. It is
important to notice that many implementations of KMDS or SM use the results of PCooA

transformation as a starting point

5.2.4.2 Kruskal Multidimensional Scaling (KMDS)

Non-metric multidimensional scaling was developed by Kruskal [28] for resolving prob-
lems related to the linear multidimensional scaling algorithms, like PCooA. The KMDS is
based on numerical optimization methods. This method uses ordinal information (i.e., prox-
imity ranks) and then calculates the scaled proximities using monotonic transformation to

determine the high-dimensional structure of data set. Finally, to visualize data in low di-
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mensional features space, KMDS finds the best possible projections with minimum squared
differences between the initial distances and the scaled ranking of the distances. Thus, in
contrast to PCooA, KMDS does not attempt to directly preserve distances between the data
points in the initial space but rather its order, or ranking, of the distances between objects
[22]. KMDS optimizes the following stress function or error function (Eq. 5.5) to estimate

the preservation of the pairwise distances (goodness of fit).

i,7)?
Kruskal’s stress = § 7 (5.5)

~

where d(i, j) are the collected proximities and d(i, ) is the distance measured between the

i™ and j™ objects in low-dimensional representations

5.2.4.3 Sammon mapping

In 1969 Sammon [29] developed a non-linear variant of MDS, which is referred as Sam-
mon mapping, Sammon’s nonlinear mapping and NLM (Non-Linear Mapping). The word
“mapping” used to represent the main objective of the method, which was to establish a map-
ping between a high-dimensional metric space and a lower-dimensional feature space. But,
to some extent the "'mapping’ word is misleading as it does not exactly generate a continuous
mapping between these two spatial representations. The main goal of Sammon’s algorithm
is a dimensionality reduction of a finite set of objects/points by following the same basic
principle of MDS algorithm. The main modification is its efficient optimization technique to
minimize the Sammon’s stress function (Eq. 5.6) by calculating its normalized value by the

initial space distances. Sammon’s algorithm does not require any parameter optimization,
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but results may vary depending on the chosen different dissimilarity measures.

Sammon’s stress =

L (d(i,4) — d(i
2 i<y d(i. ) ; d(i, j) (5.6)

where d(i, j) are orignal distances and &\(z, j) are distances between the i and 5™ objects in

reduced space

5.2.4.4 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-Distributed Stochastic Neighbor Embedding (t-SNE) [37] is a variant of Stochastic
Neighbor Embedding (SNE) and was developed to solve two basic problems of the SNE al-
gorithm including difficult optimization of a cost function and a problem referred as “crowding
problem”. The main objective of both methods SNE and t-SNE is similar to MDS to pro-
jected objects in reduced space, such that the pairwise distances between projected objects
reflect the original distances between objects as good as possible; although this distance pre-
servation is achieved in a non-linear way. t-SNE algorithm focuses on local data structures,
to generate well-separated clusters. One of the key characteristics of this method is that the
new distances of objects in the reduced feature space are determined probabilistically with
close objects having a much higher probability of staying together in the new space than
distant objects. In contrast to SNE, t-SNE does not compute Gaussian “induced” probabil-
ities between each pair of points in embedded space instead it uses a heavy-tailed Student’s
t-distribution for the same purpose to avoid projection of points at the same place (crowding
effect). This method consequently allows efficient visualization of moderate distances in the
initial space by larger distances in graphical configuration of projected space. Differently
from the other methods, t-SNE is a probabilistic approach, thus different runs may produce

different maps

166



5.2 Methodology

5.2.5 Probabilities density estimation

The probability density function (PDF) is an informal way to explore and analyse the
properties of any given quantitative variable. The PDF gives a natural description of the dis-
tribution of any random variable by specifying its probability for all values of its range. Since
robust estimation of the probability density can be used to solve regression and classification

problems, PDF is a fundamental concept in data analysis [38, 44]

The PDF for any given variable can be estimated using either parametric methods that
assume the density function has a standard distribution function. As an example, if we
assume a continuous variable has a normal distribution, then it is possible to compute the
full PDF of this variable if the mean and the variance of the data are known and confidently
mirror that of the original population. Non-parametric methods, on the other hand, are free of
any assumptions and estimate probability density solely from data. One of the most common
methods in one dimensional variables is to use a gaussian kernel function applied to each
observation, and using the scaled sum of each kernel for each point within the defined range
of the data. Non-parametric PDF estimation is an extensive research area in field of data
exploration[38, 44]. Most of the existing techniques focus on low dimensional densities
estimation (1 to 3D) because uni/bivariate PDF is relatively easy; however investigating
PDF of data in higher dimensions (multivariate) is difficult and computational expensive. In
lower dimensions histograms can be constructed that generate a non smooth representation
of the PDF. But for smooth PDF estimation, the usage of kernel density estimation (KDE)
is a common method, used in visual data exploraration [38, 44]. The multivariate KDE
algorithm has been introduced to deal with high dimensional data with improved accuracy
and speed [61, 44]. In our analysis we have used a bivariate KDE applied to the chemical

data projected in 2D.
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5.2.5.1 2D kernel density estimation

A kernel density estimation function generates an actual distribution of the data by cal-
culating the probability of each data point in the given data without using any reference
point [40] or prior assumptions. Kernel probability density function computes the PDF of
the projected 2D space by summing up M-dimensional kernels placed on every projected

coordinate. The basic kernel estimator can be expressed as

n

~ 1 T — X
fla)=— ; - (5.7)
where K is a fixed kernel and £ is the calculated bandwidth for sample z4, ..., z,. Com-

monly available kernel functions are Gaussian (normal), uniform, cosine, triangle, Epanech-
nikov, quartic (biweight), and tricube (triweight). The bandwidth, 5, is a smoothing para-
meter that influences the width of PDF estimates. Choosing a bandwidth is a compromise
between very smooth estimates (large h values) to remove insignificant bumps and wiggly
estimates to find out real peaks (small & values). In this study, we applied a two-dimensional
KDE with a Gaussian kernel [44] to calculate densities in the two-dimensional reduced space.

It is defined as

oo o () (5.8)

[z, y) = nhohy
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For determining the bandwidth (h,,), we used Silverman’s heuristic approach [38] (h,,)

for the Gaussian kernel function (Eq. 5.6) [44].

R 1
Ll i <A, _)M;g 59
h 06 min (o T34 (5.9)

where o is the standard deviation of the reference coordinate, R, the difference between

the 2nd and 3rd quartile and M the number of projected points.

In QSAR modelling, KDE is usually explored as an interpolation method to define the
applicability domain of generated classification models [43]. Among the most widely used
multivariate (high dimensional metric space) interpolation approaches (e.g., range-based,
distance-based, geometrical), KDE is considered as one of the more advanced and accur-
ate methods for calculating the applicability domain [40, 41, 42]. However, to the best of
our knowledge, KDE is not used for visualization nor data classification over 2D activity

landscapes.

5.2.6 Defining active probability regions

In the available literature, several other methods have been used for data visualization of
the molecular space. Yet, in all cases each projected point is associated with its measured
activity value and surfaces are generated according to the activity magnitude of each mo-
lecule or colour codes are used to differentiate different activities [35, 1, 23, 6]. In all these
approaches, along with all referred issues in data visualizing methods most implemented

interpolation methods are not adequate as classification tools.

To clearly identify the spatial regions where is a higher probability of finding active
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compounds, to the 2D projected molecules, training data was divided into two classes of
active and inactive molecules according to a predefined activity threshold. For both partitions
a kernel density map (KDM) is computed, using a common bandwidth, previously computed
with all the data. Each KDM can be seen as a measure of the likelihood of a molecule being
a negative or a positive depending on its position on the 2D space, as each KDM is an actual
probability function, with an integral summing to one. To compute the posteriors of both
KDMs it is necessary to accommodate the data priors. Following Bayes’ theorem [62], the
posterior probability density (likelithood/probability of a randomly projected new molecule to
be in positive class) can be calculated by normalizing the product of the conditional density
probability (projected KDM) with the prior probability density of the given partition (positive
or negative). Thus to identify whether or not a molecule in (z, y) coordinates being active it

is necessary to evaluate each of both Eqs.(5.10 and 5.11)

P((z,y) | My)P(M,)

P(M, | (z,y)) = P((z,y))

(5.10)

(5.11)

where M, and M_, stand for active (positive) and non-active (negative) molecules.
P((z,y) | M, ) is the actual value of the KDM of positive molecules (the likelihood of being
positive) and P(M.,) the prior probability of the molecule being active. This illustrates that
in the end it should be possible to compute the posterior probability P(M, | (z,y)). The
corresponding meanings stand for Eq. 5.11 that quantify the likelihood, prior and posterior

probabilities for the inactive molecules
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These observations show that it is possible to compute an activity probability surface
using the 2D coordinates of the projected molecules. This surface can therefore be visual-
ized and it should be able to capture the more promising activity regions in the chemical
landscape. Furthermore as this surface corresponds to an actual activity posterior map, this

visualization tool could be used as a classifier, an actual spatial classification model.

5.2.7 Test set embedding and model validation

The creation of 2D surfaces from the original data will necessarily cause some loss of
information. It is thus required to verify if the activity maps constructed are valid in the face
of new observations. Therefore to assess model quality, each data set was randomly split into
training and test sets. The training set was used to create the model surface and the test set
molecules were later embedded, using a linear projection function. A distance transformation
matrix (Eq. 5.13) was calculated to transform pairwise distances (m X m) between test set
molecules and the training set, into projected coordinates to the given reference molecular
space (an N x 2 matrix). If we assume that the original distance matrix is D, to transform
each molecule to a new reference coordinates C', we would require a linear transformation

T, thus

D-T=C (5.12)

As D is extant, and C' is the result of the dimensionality reduction procedure into a new
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reference coordinates, we can solve it for 7'

T=D1.0C (5.13)

Where D! is the inverse of the Distance matrix. 7" will then be a projection matrix that
given the distances of any new molecule to each molecule of the training set, will project it

into the new reduced space.

As the projected coordinates of each molecule into the new reference space, it should be
easy to compute its activity probability (Eqs. 5.10 and 5.11). As the result is a probability
function, the model’s performance was assessed using AUC, which measures the entire two-
dimensional area underneath the entire receiver operating characteristic (ROC) curve created
by plotting the sensitivity/recall/true positive rate (TPR) against the false positive rate (FPR).
(Egs. 5.14 and 5.15).

TP

TN
FPR =1 — Specificity =1 — ———— 5.15
R pecificity TN 1 FP ( )

where, for both egs., TP are the true positives, TN, the true negatives, FP the false pos-

itives and FN, the false negatives. For AUC computation, the positive accepting threshold
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is changed, and thus the values of these quantities will change accordingly. and provide the

data for building the ROC curve.

A second, more stringent criterion is the use of the Matthews Correlation Criterion
(MCC) [63], which encompasses the quantities defined above into one statistic that has been
widely used for assessing the quality of binary classification models (Eq. 5.16). Differently

from the AUC, the MCC will consider as positives only the instances where P(M,. | (z,y) >
P(M_ | (z,y)))

TP xTN —FPxFN
MCC = (5.16)
/(TP + FP)(TP+ FN)(TN + FP)(TN + FN)

5.3 Data

The designed methodology was tested over four human protein targets (Table 5.1), re-
trieved from ChEMBL23 [64]. We have looked for data sets for which biological activity
was measured as K; as it quantifies a ligand-receptor interaction based on the equilibrium
dissociation constant (/') where smaller value corresponds higher ligand-receptor binding
affinities and vice versa [65]. The selected data sets were curated using an automated QSAR
modelling workflow [66] and divided into two classes using a cut-off activity value (K;) to
separate highly active molecules (K; < 10.0) as positives and less active and non-active mo-
lecules (K; > 10.0) as negatives. This resulted in unbalanced data sets with a much larger

number of negatives than positives, which is a known characteristic of most problem sets in
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Table 5.1: Data set description
Training set Test set
Target Protein Name Uniprot ID
Positives | Negatives | Positives | Negatives
Sigma non-opioid intracellular receptor 1 (SIGMARI) Q99720 46 135 10 35
Histamine H1 receptor (HRH1) P35367 184 783 46 195
Potassium voltage-gated channel subfamily H member 2 (HERG) | Q12809 39 1142 12 283
D(1B) dopamine receptor (DRDS5) P21918 41 231 5 62
QSAR modeling.

5.4 Implementation

All analysis was implemented using R software (version 3.4.4) [67] on a PC desktop with
a Core 17 Processor (3.41 GHz) and 16 GB RAM. Data sets of all selected problems were di-
vided into a training set and test set using a random partition with (20/80)% ratio. Similarity
matrices (M x M matrix containing intermolecular similarities) of all data sets were com-
puted using NAMS [17] that allows for the computation of pairwise similarities between all
molecules within a database. All the other NAMS parameters were left as default. Similarity
matrices were converted into dissimilarity matrices (metric space representation) using eq.
4, with k£ = 0.382 for all data sets. For the DR processes, R cmdscale function [68] was
used for PCooA, two functions from R package MASS [44] including 1 soMDS and sammon
was used for KMDS and SM respectively. We used the t-SNE implementation from R library
Rt sne [37]. Finally, for computing the kernel desnity map in 2D, the kde 2d function from
R package MASS [44] was used. The bandwidths for the positive and negative maps were

calculated beforehand using the bandwidth.nrd function (see Eq. 5.9).

174



5.5 Results and discussion

5.5 Results and discussion

We generated the activity (/;) probability maps (PSMA) for four different problems
(SIGMARI, HRHI, HERG, and DRDS5) using 4 different DR methods: PCooa, KMDS, SM,
and t-SNE. For each we have produced the probability of activity surface maps. These
PSMAs typically show consistency, and the regions with the highest probability of activity
appear most of the times well differentiated from the negative regions. Figure 5.3 shows the
results of PCooA projection for the 4 data sets, computed solely from the 80% training data.
In these probability maps, surface height mirrors the kernel density distribution of active
molecules (positive class) and the colour represents higher probability locations (most likely

activity regions).

To check the quality of the produced probability surface maps, the test set molecules were
projected into the new reference plane. The performance of all sixteen generated PSMAs
was assessed using AUC and MCC. AUC testing results range from 0.77 to 0.98 and MCC
score ranges between 0.18 to 0.77 (Table 5.2). In two data sets (SIGMARI and DRDS),
PCooA performance was better than the other DR methods while for HRHI and HERG t-
SNE outperformed the others. All DR approaches provided generally good AUC results.
The overall performance of PCooA and t-SNE was roughly the same (average AUC = 0.86)
in all four problems with a slightly (and not statistically significant) more positive outcome

for PCooA with the MCC score.

The test set projections over the best PSMAs for each data set shows ground truth active
molecules (as red circles) typically within the highest probability of activity regions (Figure
5.4). In the present analysis is several cases, the MCC was low, albeit always showing clear

discriminant power. On the other hand, the AUC score was consistently high.

Since dimensionality reduction is one of the important task in data visualization where
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Test set projection over map surface with PCooA

SigmalR

IR
A
1

Figure 5.3: Test set projection over map surface (PSMA) with PCooA. Surfaces represents
higher probability locations. red — circles are ground truth positives, white are ground truth
negatives.
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Sigma1R test set projection over 3D map surface (PCooA) HRH1 test set projection over 3D map surface (t-SNE)

e

HERG test set projection over 3D map surface ({-SNE) DRDS5 test set projection over 3D map surface (PCooA)

5 N “\“‘
W

Figure 5.4: Test set projection over map surface of selected PSMAs with highest perform-
ance. Surfaces represents higher probability locations. red — circles are ground truth posit-
ives, white are ground truth negatives.
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Table 5.2: Results on validation set ((*) — best model). Abbreviations: Principal Co-ordinates
Analysis (PCooA), Kruskal Multidimensional Scaling (KMDS), Sammon mapping (SM),
and t-Distributed Stochastic Neighbor Embedding (t-SNE)

PCooA KMDS SM t-SNE
Target Protein Name

AUC ‘ MCC | AUC ‘ MCC | AUC ‘ MCC | AUC ‘ MCC

Sigma non-opioid intracellular receptor 1 (SigmalR) 0.87(*) | 0.63 | 0.80 | 0.60 | 0.79 | 0.55 0.79 0.47

Histamine H1 receptor (HRH1) 0.80 045 | 0.83 | 043 | 0.78 | 0.36 | 0.87(*) | 0.54

Potassium voltage-gated channel subfamily H member 2 (HERG) | 0.80 0.18 | 0.77 | 0.24 | 0.80 | 0.25 | 0.89(*) | 0.33

D(1B) dopamine receptor (DRDS) 0.98(*) | 0.77 | 0.86 | 0.32 | 0.80 | 0.42 0.90 0.41

Overall performance (average score) 0.86 0.51 | 0.82 | 0.40 | 0.79 | 0.40 0.86 0.44

it is really necessary to capture the maximum original data information in the new reduced
space, Shepard plots [44] were generated to analyze how much molecular initial proxim-
ity relationship remained intact. In Shepard plots the original distances are plotted against
the projected distances and, ideally, the points (both distances) should lie on a straight line,
which would indicate zero distortion in the projection function. The Shepard plot for the
hERG data set, for all projection functions is shown (Figure 5.5). The 2D projections, for all
approaches, showed a similar pattern, in which it can be seen that many large distances in
the initial space fail to maintain that separation in the projected space, however, in all cases,
very close molecules will always appear close, which shows that locality factors were pre-
served in all projections, which contributes to explain the quality of the classification models.
Nonetheless, the projection of dissimilar molecules in the vicinity of similar molecules can
generate noise in visualization of the real pattern of the data distribution. This is probably

the cause for having low MCC scores in some data sets.

To verify whether the quality of the projection influences the classification results, the
R? coefficient that measures how the projected distances measure against the original dis-
tances was calculated (Figure 5.5). It is apparent that KMDS shows the highest scores while
Sammon mapping features the lowest values for all 4 test cases. It is therefore striking that

KMDS although always able to produce consistently good models was never the projection
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Projected Distance(PCooA)
3
Projected Distance(KMDS)

Original Dissimilarity Original Dissimilarity

Projected Distance(Sammon)
Projected Distance(t-SNE)
3

0.0 02 04 06 08 10 0.0 02 04 06 08 10

Original Dissimilarity Original Dissimilarity

Figure 5.5: HERG Shepard plot for PCooA, KMDS, SM and t-SNE

that yielded the best results. This may suggest that, on this reduced dimension space, other
factors rather than stricter distance preservation may be relevant for accurate model building,
and the nonlinear optimization performed by KMDS actually hampers the projection quality

for classification purposes.

To have a more detailed appraisal of the quality of the test set projections, the 2D mo-
lecular structures of top 6 test molecules with higher probability of being actives (predicted
positives) are shown within the 2D probability map of the best 2D projections for each data
set (Table 5.2), along with their ChEMBL IDs (Figure 5.6). It can be seen that, with only one
exception, in all 4 data sets, all molecules were strong actives, although some not within the
strict activity criterion (/; < 10). For the Sigma 1 Receptor, there were 3 correctly predicted

positives, and the three negatives incorrectly predicted had in fact very low K values, all of
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them below 30 nM. For the Histamine 1 receptor, the 5 more likely molecules to be active
were all correctly predicted as positives, which is striking as this data set is one of the hard-
est, with low classification results. The only miss is one molecule (CHEMBL1767152) with
a K; = 31.62, therefore with strong activity as well. The humean hERG is the hardest prob-
lem, as the number of negative molecules largely outnumbers the positives, nonetheless for
the 6 molecules with highest probability, 4 were correctly predicted only two were misses.
As in the previous cases, both molecules (CHEMBL1086480 and CHEMBL1085091) are
also strong actives, with K; < 50nM. The last test set (Dopamine 5 receptor), is the one
with the more striking situation, as this was the data set that had the highest classification
performance. The two misses, the first molecule had a K; = 10.4, thus clearly a borderline
molecule. The compound CHEMBL595720, was the only one that on ChEMBL was a clear
inactive with a measured K; > 10,000. It can be pointed out that, on this specific prob-
lem, that molecule is outside the most active region which appears clearly marked on the
upper region of the map, with an activity cliff crossing the full surface, identifying the most

promising region for finding very active molecules.

5.6 Conclusion

This study aimed initially at presenting a visualization method that is able to capture the
highest probability regions for molecules being active. To reach this goal, the molecular
spaces of four data sets, captured as similarity matrices, were reduced into two a new ref-
erence space in 2D using four different algorithms. The X, Y coordinates generated from
each DR methods were used by a 2D kernel density function to generate their correspond-
ing activity probability maps (PSMAs). These PSMAs were able to depict the most likely
activity regions, and appear consistent, with active molecules clearly grouping together. The

analysis of the produced PSMAs from the 4 data sets showed the reliability of the proposed
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Sigma1R test set projection over 2D probability map (PCooA) HRH1 test set projection over 2D probability map (t-SNE)

SigmalR

Rank CHEMBL ID Ki
CHEMBL3409378 0.60
CHEMBL3360558 28
CHEMBL3360565 18
CHEMBL3360566 11

CHEMBL365754 4.5
CHEMBL3360554 4.3

A AW N -

HRH1
Rank CHEMBL ID Ki
1 CHEMBL1767154 0.32
2 CHEMBL1767145 0.50
3 CHEMBL2146806 0.40
4 CHEMBL2146807 0.63
5 CHEMBL2146810 0.63
6 CHEMBL1767152 31.62

HERG
Rank CHEMBL ID Ki
1 CHEMBL1204061 7.9
2 CHEMBL1086524 4.3
3 CHEMBL1086506 9
4 CHEMBL1086480 11
5 CHEMBL1085091 46
6 CHEMBL1083302 1.8

DRD5

Rank CHEMBL ID Ki

1 CHEMBL598515 83
CHEMBL604316 33
CHEMBL245570  0.39
CHEMBL203689  10.4
CHEMBL595720 10000
CHEMBL201170 15

AN AW

Figure 5.6: Test set projection over 2D probability map of selected models with highest
performance. Contour lines represent 2D kernel density distribution of active molecules
(positive class) and the colour other than green represents higher probability locations. red
— circles are ground truth positives, white are ground truth negatives. ChEMBL IDs. in red
color text (2D structures within red lined box) are true positives and other are false positives

(2D structures within white lined box).
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methodology as it can efficiently produce visual cues as to where the more promising regions
of the molecular space are located. The presented approach allows for the projection of new
molecules into the new projected space, thus allowing for model assessment with external
data. Accordingly, to validate the quality of this 2D representation as a classification model,
independent validation sets were projected over the generated PSMAs, and the results were
consistently good with AUC values, for the highest scoring projections, ranging from 0.87
to 0.98 and MCC scores ranging from 0.33 to 0.77. Although the followed approach did not
aim at optimizing models for getting high classification accuracies, these results are strongly
suggestive that it actually is capturing a large part of the modelable aspects of these SAR
problems. This approach therefore uses only the 2D structural similarity between molecules
to produce a non-parametric model that is both visually informative and shows demonstrable

quality as a classification model.

The predictability of the presented spatial classification model (PSMA) is thus an attract-
ive feature for virtual screening using only structural similarity of molecules. The applic-
ability domain of such visual approaches can be vastly increased using larger data sets for
any single or multiple targets. Comparatively to traditional QSAR models with a limited
applicability domain, this activity space visualization directly uses structural similarity and

thus may enhance SAR visualization within large activity spaces.
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Comparative analysis of QSAR modeling
and molecular docking: a rational

approach in polypharmacology

SAMINA KAUSAR, RITA C. GUEDES AND ANDRE O FALCAO

6.1 Introduction

Drug discovery is a laborious and an interdisciplinary endeavour that relies on the ad-
vancement of multi-disciplinary (quantum physics and chemistry, molecular biology, bioin-
formatics and information technologies etc.) high-tech investigations. Given a validated
target, drug discovery cycle starts with hit and lead identification, followed by lead optimiz-
ation and in-vitro and in-vivo analysis (pre-clinical trials) for validating the desired activity

profiles before entering into clinical trials [ 1, 2, 3]. In the recent years, the increasing number
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of publications showing the current trends in modern drug discovery methodology has shifted
from the traditional single target (‘magic bullets’) towards multi-targeting drug designing or
polypharmacology (‘magic shotguns’) [4, 5]. Formally, polypharmacology approaches pre-
dict the promiscuous (single drug molecule activity toward multiple targets) behaviour of
drugs in a single or multiple disease pathways. In the case of complex multifactorial disease
mechanisms, such as central nervous system (CNS) disorders or cancers, polypharmacology
is the preferred protocol that involve a trade-off between the compound’s activity toward re-
quired therapeutic targets (specificity) and nontherapeutic targets (promiscuity) to achieve a
molecule with desired activity profiles related to the efficacy, safety, and adverse toxic effects
[6, 7]. Today, sufficient amount of data of small molecules, validated targets and drug-target
interactions is available; however, using this prior knowledge of biological information a
large range of in-silico approaches have been developed for addressing both therapeutic and
adverse aspects of polypharmacology [8, 9, 10]. These computational methodologies refer to
unique virtual screening (VS) strategies that are adapted for polypharmacology applications.

VS strategies can be broadly categorized as structure-based and ligand-based methods [11].

Structure-based VS depends on the availability of a 3D structure of the target protein as
their underlying hypothesis is that structurally similar proteins (specifically similar binding
pockets) are likely to exhibit similar functions/activity and thus, can bind to similar com-
pounds. Structure-based approaches for polypharmacology depend on algorithms that either
assess similarity between the binding pockets of different targets [12] or uses molecular
docking for automatic evaluation of multi-targeting drugs [13]. Molecular (protein-ligand)
docking has become a mainstream structure-based VS method searching for small molecules
that mimic the binding interaction of ligands into the active site and rank them according to
decreasing predicted binding affinity (scoring) [14, 15]. The continuous development in re-
finements and optimization of the docking algorithms has significantly improved the success
rate in hits identification and has become one of the major sources of finding novel lead mo-

lecules (scaffold) that are used as a starting point in the drug discovery process [7, 16, 15,
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17,18, 19, 3].

Ligand-based methods such as e.g., similarity searching [20, 21, 22], pharmacophore
mapping [23] and quantitative structure-activity relationships (QSAR) modeling are alternat-
ive options in the absence of a 3D structural model of target protein [9, 24, 25]. Ligand-based
VS largely depends on the availability of the activity profiles among molecules (known act-
ives and inactives) and targets. These approaches incorporate different chemical information
(chemical and biological properties, structure, shape, and bioactivity etc.) and have been act-
ively used for analysing large molecular databases to identify ligands likely to have similar
properties to the known actives [21, 26, 27, 28, 29]. Among the Ligand-based VS methods,
QSAR modeling is the most powerful tool due to its high and fast computational efficiency
and a good hit rate [24]. In QSAR modeling, machine learning methods are used that rely
on quantitative properties and bioactivity profiles of known actives and inactives for deriv-
ing correlations between molecular structural/property features and pharmacological activity
[9, 24, 25]. Thus, ligand-based approaches are data-driven and largely depend on quality
and the amount of prior knowledge of compounds’ activity [30, 31, 32, 33, 34]. Polyphar-
macological applications of these methods are often limited to targets whose ligands have

well-documented activity profiles [7].

VS is a computational analogue of biological high-throughput screening (HTS), an auto-
mated plate based experimental assays technique for rapid identification of best hits (com-
pounds with desired activity) by screening a large collection (10°-~10°) of chemical mo-
lecules [35, 24, 36]. VS has emerged as a reliable, fast and cost-effective technique for in-
silico screening of large small-molecule databases for the discovery of lead compounds (drug
candidates) [37, 1, 35, 3, 2, 19, 24]. Moreover, in the several comparative studies [36, 38, 39]
of hit identification performance (true positive hit rate) of HTS and VS methods including
docking and QSAR-based screening, hits rate from HTS was found 0.021% comparatively to
docking hits rate 34.8% [39], while QSAR and HTS comparative studies showed HTS had
hits rate ranges between 0.2-0.94% and QSAR had 3.6-28.2% [36, 38, 40]. However, the
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overall reported observed range of hits rate from a validated VS methods is between 1-40%
while for the HTS is 0.01-0.1% [36, 38, 40, 39, 41, 42]. Therefore, VS campaigns enrich
the hits rate due to a higher rate of actives with desired activity and consequently, reduce the
drug discovery cost that is much lower than HTS. Polypharmacology-based VS is a prom-
ising tool for finding drugs with a multi-target activity profile against complex diseases like
CNS disorders [43, 44, 45,7, 13]. But the advancement of multi-targeting VS is still required
to deal with large amounts of chemical data for the screening or identification of chemical

structures with direct binding and inhibitory activity against multiple targets [46, 44].

Aiming to find a rigorous method for VS with highest hits rate in polypharmacology,
comparative analysis of both molecular docking and QSAR modeling approaches was per-
formed. The objective of this study is twofold, firstly to provide a comparative view of pre-
dictability/hits rate of each method and secondly, development of a rational polypharmacology-
based drug designing methodology by integrating the knowledge of molecular docking and
QSAR modeling approaches. Integration of both strategies was an effort to combine their
corresponding advantages to find novel therapeutic molecules using all available data of pro-

teins crystallographic structures and their binders (ligand) structural and biological activity.

The developed pipeline was used to identify dual-targeting hits (inhibitors) of catechol-
O-methyltransferase (COMT) and glycogen synthase kinase-3 beta (GSK3 /) against Parkin-

son’s disease (PD) chosen as a case study.

6.2 Targets selection for Parkinson’s disease

PD is the second-most common progressive neurodegenerative condition, including stri-
atal dopamine deficiency due to dopaminergic neurons loss in specific areas of the substantia
nigra and widespread accumulation Lewy bodies, aggregates of intraneuronal protein (a-

synuclein) [47, 48, 49]. In the last 200 years, efforts and progress in PD research revealed
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that PD underlying neuropathology and progression involves multiple pathways including «
synuclein proteostasis, mitochondrial function, oxidative stress, calcium homeostasis, axonal
transport and neuroinflammation [47, 49]. Striatal dopamine reduction leads to the disorder
of movement with different motor symptoms including a) slower movements (bradykinesia),
b) partial or complete loss of body movements (hypokinesia), ¢) loss of voluntary muscles

movement (akinesia), and d) muscles stiffness/rigidity and tremors [50].

Currently, none of any available anti-Parkinson drugs can prevent the progressive de-
generation of dopaminergic neurons and only provide symptomatic treatment. In dopamin-
ergic therapies, most of the drugs substitute striatal dopamine deficiency by a) stimulating
dopamine receptors (i.e., dopamine agonists), b) increasing the dopamine biosynthesis (i.e.,
L — 3,4 — Dihydroxyphenylalanine (L-DOPA) administration), and c) decreasing dopam-
ine degradation or metabolism (i.e., COMT or Monoamine oxidase B (MAO-B) inhibitors)
[51, 52]. Systemic administration of L-DOPA, dopamine precursor amino acid is considered
the most effective treatment for managing motor symptoms in all PD patients [53, 54]. But,
prolong administration of L-DOPA can be neurotoxic and may cause L-DOPA-induced dys-
kinesia (LID). Although, the LID underlying mechanism is still incompletely understood but
many studies suggested that two interacting factors like striatal dopaminergic denervation
and pulsatile L-DOPA treatment possibly generate maladaptive neuronal responses [55] in-
cluding dysregulation of dopamine transmission, and striatal neurons intracellular signalling

cascades abnormalities, altered gene expression, and corticostriatal synaptic plasticity [56].

It is well demonstrated that dysregulation of the enzyme GSK34, regulate the glycogen
synthesis being associated with diverse cellular processes related to cell survival and ap-
optosis and being involved in neurodegenerative diseases [57, 58, 59] including L-DOPA
neurotoxicity in PD pathogenesis [60, 61]. However, considering the consensus finding of
several research efforts, GSK3/ can be a potential target and development of new therapeutic
inhibitors can be a promising strategy for preventing L-DOPA neurotoxicity and LID in PD
[59, 61].
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6.2.1 Dual-targeting of COMT and GSK3B

All available knowledge of promising and validated therapeutic targets of PD [47, 48, 49]
was used to select a pair of targets (COMT and GSK3/). Then the followed drug design-
ing methodology was tested to identify target-specific and also dual-targeting inhibitors for
COMT (inhibition increases the half-life of L-DOPA) and GSK3/ (inhibition prevents L-
DOPA neurotoxicity and LID)(Figure 6.1).

However, the objective is to find the novel promising inhibitors that should be able to
effectively block the multiple pathways for improving the motor functions of PD patients
by enhancing the bioavailability of dopamine and avoiding the reported side effects of long

exposure of L-DOPA [61, 59, 47].

6.2.1.1 Catechol-O-methyltransferase

Catechol-O-methyltransferase (COMT) is an important magnesium and S-adenosylmethionine
(SAM) dependent enzyme, catalyzes the transfer of the methyl group of SAM to the hydroxyl
group of both endogenous and exogenous catechols substrate (dopamine, norepinephrine,
and epinephrine etc.) [51, 62]. COMT gene encodes two isoforms including a soluble form
“S-COMT” (consists of 221 residues), and a membrane-bound form “MB-COMT”, con-
tains an extended 50 residues at the N-terminus in human [63]. COMT has a single domain
structure consisting of 8 « helices that are disposed around a central /3 sheet and its active
site contains one S-COMT catalytic site with a conserved M ¢?*, important for the catalytic

activity and a co-factor SAM binding site (similar to a Rossmann fold) [64].

Several studies have reported the role of COMT as a major catabolic regulator of cat-
echolamine neurotransmitters in brain and coadministration of COMT inhibitors with L-
DOPA for increasing L-DOPA half-life has become effective treatment in PD [51, 47, 65,

66]. Clinical studies have shown that COMT inhibition reduces synthesis of L-DOPA meta-
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Figure 6.1: Pathway model of dual-targeting of COMT and GSK3/ in Parkinson’s dis-
ease. Catechol-O-methyltransferase (COMT) inhibitors prevent peripheral metabolism of
L-DOPA and enhance its availability, absorption and transport across blood—brain barrier
(dashed red coloured line) in the presynaptic neuron. Increased level of L-DOPA promotes
the synthesis of dopamine (DA) and thus, contributes in the enhanced availability of DA
in synaptic cleft for post-synaptic neuron. Moreover, COMT inhibitors also reduce the de-
gradation of DA, reabsorbed from the synaptic cleft through dopamine transporter (DAT).
In post-synaptic neuron, DA receptor D2 activation leads to Akt inactivation in Akt/ GSK3/
signaling pathway that is dysregulated in stress conditions and L-DOPA treatment. Prolong
administration of L-DOPA linked with neurotoxicity, where one possible reported factor is
dysregulation of a multifunctional kinase enzyme Glycogen synthase kinase-3 beta (GSK3.)
(increased activity) due to imbalance/altered expression (decreased activity) of protein kinase
B (Akt), negatively regulates GSK3/5 by phosphorylation. Inactivation of GSK32 regulates
expression of different transcription factors that are involved in cell survival and activated
GSK34 can cause apoptosis (neuronal cell death). However, GSK3/ inhibitors may play im-
portant role to control neurotoxicity. L-DOPA treatment increase the release of a neurotoxin
6-hydroxydopamine (6-OHDA) that damage substantia nigra (SN) cells and oxidized form
of 6-OHDA generates toxic reactive oxygen species (ROS) under oxidative stress. Green
upward arrow: increased activity and green downward arrow: decreased activity, Protein
phosphatase 2A (PP2A); -arrestin-2 (SArrIl)
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bolite 3-O-methyldopa (3-OMD) and prolong L-DOPA availability that contributes to a bet-
ter absorption and blood brain barrier (BBB) transfer [51, 65, 66](Figure 6.1). However, over
the last 50 years, COMT is considered as an attractive target for the development of new fast-
acting anti-PD drugs to improve PD patients by delaying and preventing motor symptoms
like motor fluctuations and dyskinesia [67, 65]. Tolcapone (C14H11 NOs) and entacapone
(C14H15N505) are two potent COMT inhibitors reported for significant anti-PD effects. Al-
though tolcapone is more efficacious/potent than entacapone, tolcapone is also linked with
hepatotoxic side effects [68, 69]. Nonetheless, long-term follow-up studies are necessary for

monitoring the non-neurological side effects of COMT inhibitors.

6.2.1.2 Glycogen synthase kinase-3B

Glycogen synthase kinase-3 (GSK3) is a multifunctional kinase enzyme responsible for
the phosphorylation of glycogen synthase and regulates glycogen synthesis in glucose meta-
bolism [70, 71]. GSK3 plays an important regulatory role in several cellular functions in-
cluding signal transduction [72], division [73], differentiation, proliferation and growth [74,
75] and apoptosis [76]. GSK3 has two closely related serine/threonine (Ser/Thr) kinase iso-
forms GSK3« and GSK3/3 that are encoded by different genes. Both isoforms are negatively
regulated by protein kinase B (Akt) mediated phosphorylation [77]. Experimental evidences
have shown the role of GSK3 different process of neural development including receptors
trafficking, neurogenesis, proliferation, neural differentiation, and synaptic plasticity [78,
79]. More importantly dysregulated GSK3/ is mainly considered a principal pathogenic
enzyme due to its association with several neurodegenerative diseases such as Alzheimer’s
disease (AD), Amyotrophic lateral sclerosis (ALS), stroke, L-DOPA-induced dyskinesia and

neurotoxicity in PD [61].

In PD, striatal dopamine deficiency stimulates the neuronal cells adaptive mechanisms for

stabilizing the stress conditions by decreasing dopamine inactivation and increasing L-DOPA
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uptake, conversion to dopamine and releasing it into synaptic cleft [80]. Thus, depletion of
dopaminergic neurons in PD largely disrupt the presynaptic control of dopamine release and
clearance; also, L-DOPA dosing cycles generate large fluctuations in the extracellular con-
centration of dopamine [56]. Moreover, the sensitivity of post-synaptic dopamine receptors
and their downstream signal transduction is also affected due to dopamine denervation and
L-DOPA treatment, an important determinant for inducing striatal Akt/GSK3/ signalling
imbalance that may lead to LID and neurotoxicity (Figure 6.1) [61]. Dopamine D2 receptor
inhibits Akt by mediating a signaling complex formation consisting of protein phosphatase
2A (PP2A), [S-arrestin-2 and Akt where PP2A dephosphorylate Akt during complex form-
ation [81]. D2 mediated Akt inhibition causes activation of GSK30 signaling. Akt/GSK3/
signaling pathways is one of the most critical pathways under dopamine impairment [81]. L-
DOPA treatment or increased bioavailability of dopamine, result into a decreased activity of
Akt and increased activation of GSK3/ in the striatum (causal relationship). This impaired
regulation of Akt/GSK3[ signaling is aggravated under stress conditions such as increased
release of a neurotoxin 6-hydroxydopamine (6-OHDA) and reactive oxygen species (ROS)
formed from oxidised 6-OHDA. Stimulation of GSK3{ signaling alters the expression of its
downstream substrates (transcription factors) that can induce neuronal cell apoptosis. How-
ever, GSK3/ inhibitors may be effective anti-PD drugs for controlling L-DOPA neurotox-
icity [60, 61, 59].

GSK3/3 contains three domains including (1) the N-terminal domain of 23—133 residues
consisting of an incomplete S-barrel structure with seven antiparallel 3-strands, (2) the a-
helical C-terminal domain of 137-343 amino acids length, and (3) a small extra-domain
subsequent to the C-terminal domain is made of 344-388 residues. GSK3/ has an ATP-
binding site, magnesium-binding site and substrate-binding site [82]. ATP-binding site is
the main active centre where Acceptor—Donor—Acceptor motif of Asp133—Vall35 is critical
for the identification of novel ATP-mimetic inhibitors possessing a complementary motif

Donor—Acceptor-Donor (D-A-D) for prober inactivation of GSK33 . In addition, Lys85
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side chain and conserved structural water (near to back pocket) are important to make a key

hydrogen bond with ligands [82, 83, 84].

6.3 Overview of virtual screening methodology

The main objective of this work is a comparative study and integration of existing VS
methods to develop a robust and re-usable polypharmacology-based approach for the iden-
tification of the most promising multi-targeting hits by predicting the biological activity of
millions of molecules against targets of interest. An overview of the standard VS protocol for
automatic evaluation of multi-targeting drugs using QSAR modeling and molecular docking

is shown in figure 6.2. The full process is divided into two sub-workflows including:

e QSAR modeling: QSAR-based VS workflow consists of multiple steps such as chem-
ical data collection and curation, molecular descriptors calculation for decoding mo-
lecular structural information into a proper input data format required for the machine
learning algorithm, feature selection to identify non-redundant and biologically signi-
ficant set of variables using feed-forward variable selection which encompass testing
of stepwise predictive models by feeding increasing set of variables. Finally, in model
learning and validation phase, the optimised set of important features (predictors) is
used to train final QSAR model by following an unbiased protocol of internal and

external validation for model quality assessment.

e Molecular docking: Docking-based VS protocol implemented in the proposed drug
design pipeline includes the assessment of two main steps that are critical for docking
performance and success. The first step is the target structure analysis that is required
to select a good quality structure, which is important for a robust predictive perform-
ance of docking studies. Target structure analysis depends on different parameters/cri-

teria that deal with structure quality assessment, structural data pre-processing and
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cleaning, protonation states, coordinating water molecules, metal ions and co-factors,
conformational states, and binding pocket analysis and selection. Second most crit-
ical docking parameter is a selection of the best scoring function that was optimised
by comparing docked and X-ray ligand poses and evaluating the correlation between

docking scores and biological activity.

Knowledge of both selected approaches was integrated to establish a rational drug design-
ing methodology that was used for the screening of large compounds libraries (Figure 6.2).
Resultant hits from molecular docking and QSAR were ranked and categorised into three
groups: a) best-docked hits b) consensus predictions, and ¢) QSAR best hits. Top-ranked
hits from each group was selected for further in-vitro validation. Each step of both docking

and QSAR-based VS protocols is explained in the following sections.

6.3.1 QSAR-based virtual screening

In past 50 years, QSAR modeling [85] has been adopted as an efficient ligand-based drug
designing method for predicting the biological activity/properties of new molecules. QSAR
is as an application of machine learning approaches applied to derive a mathematical model,
which attempts to finding an optimized correlation between molecular structure (predictors)
and activity (response), which can be continuous (e.g., pI Csg, pECs, K;) in regression mod-
eling or categorical/binary (e.g., active, inactive, toxic, nontoxic) in classification problems
[31, 86, 87, 88, 89]. Various machine learning algorithms including random forest (RF),
support vector machines (SVM), decision trees (DT), k-nearest neighbour, naive Bayesian
models, and artificial neural networks [9, 24, 25] has been developed for classification or
regression problems. Since QSAR models quantitatively link the variations of the biological
activity of molecules to their structural variations, these models are widely used in an initial
and crucial step of lead identification and optimization. Nowadays, QSAR modeling has be-

come a state-of-the-art method for accurate and fast VS of huge data repositories of diverse
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chemical structures [31, 24, 9, 90, 91].

The general process of QSAR modeling consists of several steps involving cheminform-
atics and machine learning techniques [92]. The systematized and crucial steps of QSAR

model building protocol (Figure 6.2) are described as follow:

Data curation/pre-processing:

A preliminary step of data curation is a crucial task to enable reliable and rigorous QSAR
model development [31, 93, 32, 92]. Several elements are considered to curate, clean and
standardize chemical data including a) removing mixtures (handling of unconnected mo-
lecules) and missing data, b) splitting and eliminating salt groups, ¢) handling of duplicates
(same experimental records: same structure and two experimental records: same structure)
d) geometric optimization of the collected molecules and e) molecular structural normaliza-

tion [32].

Molecular decoding/representation:

The performance of QSAR models largely depends on the relevance of the selected mo-
lecular representation (descriptors/fingerprints), describe the information (chemical features
and properties) encoded in the given structures [31, 27, 92, 94, 95]. These derived struc-
tural features are used as input data (predictors) to the machine learning algorithms. For
this study, a combined input dataset containing RDKit molecular descriptors and the ECF6,

circular fingerprints were used for COMT and GSK3/ binary model building.

Feature selection:

Many machine learning approaches are applied to identify the most relevant structural

features, responsible for the relevant pharmacological activity. This step also reduces the
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dimensionality of the feature vector and reduce the chances of model overfitting [96, 97, 98,

99, 100, 33, 92].

Model learning:

In this step interpretable model is fitted/trained (optimal mapping between the input
selected features and the activity responses) applying one or several machine learning ap-
proaches [33, 9, 101, 102, 103, 104]. Model learning phase includes model’s performance
internal assessment using N-fold cross-validation (CV) where dataset is randomly divided
into N-parts (folds), and each part is used as a test set to verify the internal predictive power
of the generated model and the remaining N-1 partitions are used as training data [92, 105].
Nonetheless, model training phase deal with the optimization of all modeling parameters
and model internal validation [92]. The internal predictive performance of each model is
assessed by computing the score of the Percentage of Variance Explained (PVE) and Root
Mean Squared Error (RMSE) in regression modeling [106]. While classification models
are evaluated using area-under-curve (AUC) [107], F-score [108] and Matthews Correlation

Criterion (MCC) [109] measures.

Model validation:

This is usually the last phase of QSAR modeling process which includes a strict protocol
of model validation [92]. After performing all this feature optimization in model learning
phase, a final model is generated re-using the whole training data set and presented for final
external validation. Model external validation is a blind prediction of the properties of unseen
compounds in the external set or independent validation set (IVS) that should not be used in
the process of model training. Thus, the whole data set is split into training and IVS before
entering model training process in which only training data is used for model learning and

internal validation. This stringent step of model external validation is helpful for evaluating
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the robustness of the generated QSAR model [92].

Accuracy or mistakes in each of these steps may affect the subsequent modeling process
and thus, may cause a decrease in the overall performance of final QSAR model [92]. In this
work, COMT and GSK3/ binary classification models were built by using a freely available
automated QSAR modeling workflow [33], which is an extendable and highly customizable
framework that follows an unbiased standard protocol to develop reliable QSAR models.
Automated QSAR modeling framework [33] is only for regression problems, therefore, its

several nodes were customised for classification problems in this study.

6.3.2 Molecular docking-based virtual screening

Molecular docking is an underlying and extensively studied method of structure-based
VS technique. Docking is also called an in-silico HTS as it is a complementary tool to HTS
and used to virtually placing (docking) and predicting best fitting confirmation of millions
of compounds into the active/binding site of the 3D structure of a protein (intermolecular
complex) [14]. All the solutions per docked molecule are evaluated based on a specified
scoring scheme that measures the tightness of the fit (binding affinity) and returns the top-
ranked solutions. The overall docking protocol is very straightforward, but some parameters

may customise according to specific applications or interests.

The crucial factors necessary for implementing and validating molecular docking-based

hit identification protocol are described as follow:

Target structure analysis:

The first main requirement of docking-based VS is the 3D structures of the target pro-
teins [110, 111]. All the experimentally resolved structures (Nuclear magnetic resonance

(NMR) or X-ray crystallography) are stored in Protein Databank (PDB: www.rcsb.org),
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a primary 3D structural database where each 3D model has unique PDB ID. Since these
3D structures are static snapshots and have no dynamic behaviour, thus, their quality should
be carefully evaluated for identifying true positive hits in the VS campaign. Following pre-
processing and analytic criteria are mainly evaluated for selecting a crystallographic structure

of targets before performing docking [110, 111].

Structure quality assessment: 3D structures that are produced using X-ray crystal-
lography method, low residual factor (R-factor) and high resolution are used as indicators
of overall good quality structures. R-factor has no detailed information of specific regions
[111]. Another measure, B-factor (or temperature factor, or Debye-Waller factor), provides
the more accurate information about the static/dynamic behaviour of each single atoms or
groups of atoms and shows the erroneous regions in the structure. Lower the value of the B

factor reflects more certain atomic positions and good quality model [17, 112].

Structural data pre-processing and cleaning: Structures should be carefully assessed
for the several artifacts including overall conformation of the side chains and backbone, and
inappropriate bond angles and lengths. Moreover, prior to docking different pre-processing
steps are required to clean some elements (salts, molecules from buffer solutions, or crys-
tallization compounds) that are often present in crystallographic structures. Also, hydrogen
atoms must be added before running docking because hydrogens are not present in crystal
structures. Special considerations are required for selecting target structures wild-type or
mutated forms [17]. Wild-type protein 3D model is different from mutated forms where pro-
tein sequence modifications are applied for analysing the influence of sequence variations

under different objectives [17, 16]

Protonation states: Protonation states and tautomers in the target structure play an

important role for screening different inhibitors or binders that prefer different states [113,
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114]. Thus, if more than one key amino acids can be present in multiple states, protomer and

tautomer ensembles are preferred over using only the most probable state for docking [17].

Coordinating water molecules, metal ions and co-factors: Crystal structures many
times have structural features including structurally conserved water molecules, catalytic
metal ions and co-factors. In common docking protocols “dry” model is used where all wa-
ters are removed from the structure. But if information is available about the possible role
of water in ligand binding or in the mechanism of action of the enzyme, dry-model docking
is not an optimal choice. Thus, in this case, docking programs that explicitly handle water
molecules should be preferred [17, 16, 15, 2]. In the same way metals and co-factors are
important for enzyme’s activity e.g., for metalloenzyme in which metal ions play a catalytic
role, so these must be considered using docking programs that have been validated for the
modeling of ligand-metal coordination [115, 116, 117]. Co-factor is a non-protein chem-
ical compound (“helper molecules™) that can be bound to some receptors for assisting in
biochemical transformations. Nonetheless, co-factors should be conserved with structure
because their removal leaves some favourable cavities exposed for ligands, therefore, may

add a bias towards docking results [17, 16, 118, 119].

Conformational states: Biological targets in solution are dynamic in nature or can
adopt many conformational states including a) discrete active/inactive states, associated with
proteins (kinases [120, 121], and GPCRs [122, 123] etc.) functions, b) some complicated
dynamic transitions between states due to energetic components [ 124], ¢) induced fit models
(holo structures) involves ligands, which induce conformational changes (stabilization of
existing structures or small re-arrangements in active site) [125]. Experimental methods that
are used to resolve a structure just return snapshots, a biased representation which is lacking
dynamic behaviour. However, conformational variability must be considered depending on

understudy goals that may be either a study of the most conserved structural regions [126]
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or the analysis of some specific conformation [121, 17, 16]

Binding pocket analysis and selection: Binding site selection is a crucial step, which
is necessary to define and limit the size of search space, a required parameter of the search
algorithm in docking programs. Size of search space is critical as bigger searching boundar-
ies not only increase the computational cost of the searching algorithm but may reduce the
accuracy (high false positive rates) [17, 16, 15, 2]. In the crystal structure of ligand-receptor
complex, the area occupied by small molecule represents binding pocket. However, search
boundaries to run dockings encompass the region around the known binders. Blind dock-
ing (search space includes whole structure) is an alternative solution when no information
of binding site is available and known structures are without bound ligand (apo-structures).
Also, many binding pocket prediction tools have been developed for locating energetically

favourable sites for ligand interactions [127].

Selection of best scoring function:

Docking algorithms have two basic components like search algorithm and scoring func-
tion [128, 129, 130]. Search algorithms generate “poses” (protein-ligand geometries) of the
ligand within a user-defined search space (Explained earlier). While scoring function estim-
ates binding affinity on the basis of the best position, conformation and orientation of ligand.
Highest scoring hits are the ligands that are most tightly fit into the active site at minimum
energy (most stable binding). Different docking software (Gold, Glide, Dock, AutoDock,
FlexX, Fred, etc.) use different scoring functions to rank the most likely ligands in docking-
based VS [129, 11,2, 110, 111, 16, 17, 3, 18, 19]. Several comparative analysis of docking
programs have shown that no software is the absolute best choice across all protein structures
[128, 129, 130]. For any software, the following basic criteria can help to optimise scoring

function and to validate the docking protocol:

210



6.3 Overview of virtual screening methodology

Comparison of docked and X-ray ligand poses: One of the good criteria for evalu-
ating and ensure the robustness of VS protocol before screening the huge libraries of com-
pounds is testing the implemented method using known binders (ligands with experimental
coordinates). The idea behind is to assess if the implemented methodology is able to repro-
duce the experimental poses of known molecules. For this purpose, it is suggested to replace
generalized scoring functions with target-specific models to be considered in the screen-
ing for validating the search parameters and best target 3D model, likely to produce better
results [131]. Docking results of known molecules-target interactions serve as reference
score (threshold) for ranking and evaluating the best hits [16, 17, 3, 18]. RMSD (Root-
mean square deviation), a measure that quantify the similarity between an experimental and

a docked poses is computed to find the best poses (RMSD <2 A).

Correlation between docking scores and biological activity: Correlation between
predicted affinity (docking score) and the experimental bioactivities (/Cyg, K;, K4, AC5q, or
ECj etc.) is commonly used criterion for evaluating the optimal choice of scoring function
against each tested protein model [130, 132, 133]. Generally, Person’s correlation [134] is
calculated using normalized values of both experimentally determined activity e.g., negative
log of inhibition or activation constants and ligand efficiency metric [135] computed from
docking scores that remove bias towards larger molecules are considered for correlation

analysis [136, 137].

In this work, all docking analysis were performed using GOLD 5.2 program [ 138], which
uses a genetic algorithm for finding optimal conformations of ligand-protein interaction and
evaluates poses with four available options of fitness function (ASP, ChemPLP, ChemScore
and GoldScore). All the crystallographically determined protein-ligand complex structures
for COMT (10 complexes: resolution between 1.3-2.8 A) and GSK373 (76 complexes: resol-
ution ranges between 1.6-3.2 A) were retrieved from PDB. Structures with resolution <2.5

Awere tested to optimise searching parameters. Binding pocket was analysed using Molecu-
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lar Operating Environment (MOE) tool [139] . Also, all information of the experimentally
validated important ligand-protein interaction residues and other structural features (water
molecules, metal ion and co-factor) for COMT [62] and GSK3/ [83] was included in dock-
ing studies. The choices for each of the above discussed docking-based VS requirements for
target structure analysis and selection of best scoring function were made carefully according

to the standard protocol to make the hit identification as efficient and accurate as possible.

6.3.3 Ligands database preparation for screening

Ligand database preparation for selecting the most appropriate compounds in the lib-
rary to be screened is the most essential step for a successful finding of potential ligand.
Nonetheless, depending on the objective of the VS several critical filters can be applied for
eliminating compounds with undesirable physicochemical properties or unlikely to be act-
ive. These filters include a) sets of empirical rules (e.g., Lipinski’s rule of five (RO-5) [140]
and quantitative estimate of drug-likeness (QED) [141]) to define drug-like space, b) elimin-
ating bigger compounds, inappropriate for small binding pockets and unattractive leads for
optimization, c) using Pan Assay Interference Compounds (PAINS) [142] filters for remov-
ing promiscuous compounds, containing structural elements linked with toxicity or that can
interfere with the pharmacological assay, d) chemical similarity cut-off for removing known
actives or their highly similar molecules, and e) chemical feasibility and/or purchasability
[143, 3, 17]. As ligands are treated as flexible molecules in docking programs, chemical
libraries must be pre-processed for preparing correct physical states (e.g., the protomers,
tautomers, and enantiomers) or for 3D geometries of ligands. Several softwares are freely

available for generating conformations and other structural optimizations [ 144].

Publicly available National Cancer Institute (NCI) (~ 275,000 compounds) library of
the Developmental Therapeutics Program NCI/NIH (http://dtp.nci.nih.gov) was
prepared for docking- and QSAR-based VS in this study. MOE energy minimization was
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applied on full-atom ligand structures and protonated at a pH value of 7.4.

6.4 Preliminary results and discussion

6.4.1 QSAR binary classification models

GSK3/ and COMT binary classification models were build using molecules inhibitory
activity (IC’5) classification data (compounds binding at < 10 uM were labelled as active),
collected from ExXCAPE-DB [145], a repository of an integrated large-scale chemical dataset
from publicly available databases (PubChem and ChEMBL) and comprises over 70 million
molecules. The dataset used for COMT contains 191 molecules (146 actives and 45 inact-
ives) and for GSK3/ collected data has 303,520 molecules (3334 actives and 300,186 inact-
ives). COMT classification model was built using automated QSAR modelling framework
[33] that includes data curation, descriptors calculation (RDKit descriptors and ECFP6 fin-
gerprints), RF-based feature selection using 5-fold CV and final model building using SVM
algorithm and external validation (Figure 6.2). Since GSK3/ is a complex problem having
quite big data, therefore feature selection step was skipped due to high computational cost
and model parameters were optimised using 5-fold CV in SVM algorithm and final model

was generated using whole dataset (303,520 molecules).

The predictive performance of both QSAR classification models of COMT (IVS valida-
tion) and GSK34 (average score of 5-fold CV) was evaluated using MCC score [109] with
other well-known metrics of performance measure including recall, precision, sensitivity,
specificity, and F-score [108] (Table 6.1). Both classification models were independently

used for VS to predict the activity of NCI selected molecules.
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Table 6.1: COMT and GSK35 QSAR binary classification models results. MCC: Matthews
Correlation Criterion

. - P P MCC (overall
Target protein Class Recall | Precision | Sensitivity | Specificity | F-score e
Catechol-O- Active 0.94 0.94 0.94 0.82 0.94 0.76
methyltransferase
Glycogen synthase |, ;oo 0.74 0.94 0.74 1.00 0.83 0.83
kinase-3 beta

6.4.2 Molecular docking models

To optimize the docking protocol two GOLD 5.2 scoring functions (ChemPLP and Chem-
Score) were tested using the X-ray structures 3BWY and 4XUE for COMT and 1Q41, 4PTE
and 5F94 for GSK3/3. After several docking efforts, a combination of GOLD scoring func-
tion ChemPLP with crystallographic structure PDB entries 3BWY for COMT and 1Q41 for
GSK3/ were found to be able to reproduce their corresponding experimental poses (Figure
6.3). Moreover, maximum correlation, 0.61 and 0.65 between predicted affinity (ChemPLP
score) and experimental bioactivities (log (/C5y)) was observed with COMT:3BWY and
GSK3p :1Q41 docking models respectively. As COMT active site contains a catalytic site
with one conserved M g** and a co-factor SAM in the binding site [64], final docking model
(PDB: 3BWY) performed best with these structural elements present and without water mo-
lecules. The binding pocket of COMT (PDB: 3BWY) was defined using about 15 Acentred
from Lys144 atom “NZ” (2227). GSK3p final docking model (PDB: 1Q41) performed well
with two structurally important water molecules (positions HOH515 and HOH630 near to
back pocket) using a binding pocket of about 15 Acentred from Asp133 atom “O” (1601).
Both COMT:3BWY and GSK3/ :1Q41 models were independently used for predicting the

binding affinities of NCI molecules.
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Figure 6.3: Superposition of docked (red) and experimental poses (green) of (A) GSK34
protein complex (PDB:1Q41) and (B) COMT protein complex (PDB:3BWY)
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6.4.3 NCI database screening and hit selection

The information of the most significant features ranked using RF-based feature selec-
tion process in QSAR modeling and other standard principles of ligand database prepara-
tion (explained in methodology) were used for defining drug-like space in NCI database.
For COMT, NCI compounds were minimally filtered applying molecular descriptors ranges
between 150-650 Da for molecular mass, 0-12 for peoe_VSA10, 0-30 for peoe _VSA12, 5-40
for smr_VSA9, and 0-6 for slogP and a total 184927 molecules were selected for VS. For
GSK3p drug-like space was defined using molecular descriptors filters including molecu-
lar mass ranges between 200-650 Da, peoe_VSA2 < 28, slogp-VSA8 < 38, TPSA ranges
between 23-140, and 1-6 cut-off for slogP and a total 105851 molecules were included in
VS.

QSAR- and docking-based prediction results were processed for the final ranking and se-
lection of the best hits. This type of processing of results is known as post-processing/filtering
of VS results that was enabled using a data-pipelining facility of KoNstanz Information
MinEr (KNIME) [146]. KNIME is an open source data-mining framework that provides all
facilities for chemical data analysis and manipulation. In the generated VS-post-processing
workflow (Figure 6.4), docking results files were processed by applying QSAR model pre-
dictions and similarity scores between NCI screened molecules and training data was calcu-
lated and merged with the final output files. Similarities between molecules were calculated
using Non-contiguous atom matching structure similarity (NAMS), a graph-based molecular

matching algorithm [147].

Comparative analysis of QSAR modeling and molecular docking showed that both ap-
proaches, having totally different basic principles, were able to identify quite similar pre-
dicted actives. It can be seen in the presented density plots (Figure 6.5) that when a molecule
predicted as active by QSAR models there is higher likelihood to have higher ChemPLP

score. A majority of QSAR-based predicted actives were observed > 70 ChemPLP score.
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Figure 6.4: Virtual screening results post-processing workflow

Molecular docking predictions also suggested quite different hits from QSAR-based predic-
tions; however, their combination may be helpful for identifying novel molecules (Figure

6.5).

In the case of molecular docking, predicted molecules were ranked according to their
ChemPLP scores. All the molecules with a score > 70 and establishing key interactions
with the residues in the binding pockets were selected as best docked hits. While in the case
of QSAR, molecules predicted as “actives” were further sorted and ranked as best molecules
that have probability > 90, computed using SVM prediction function from R package e1071
[148]. But for common hits or dual-targeting compounds of both targets COMT and GSK3
only 16 compounds were found where none of them passed the best ranking score criteria of
both methods (Table 6.2) collectively. Some molecules were satisfying only docking cut-off
while other were good in QSAR predictions. Thus, scoring criteria was compromised in the
selection of dual-targeting compounds. Common hits sharing > 0.50 NAMS similarity with
the nearest neighbour in their corresponding targets training data were chosen for in-vitro
testing (Table 6.2). In the top 16 dual-targeting compounds, the mode of the interaction

of one compound NCI ID: 7434146 with both targets is shown in figure 6.6. Moreover,
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Figure 6.5: Comparative analysis of QSAR and molecular docking based predicted hits. NCI
database screening results using QSAR classification and molecular docking models of (A)
GSK3 and (B) COMT

for comparing the success rate of both methods, the predicted hits specific for both targets

were ranked/sorted according to three criteria including a) best-docked hits, b) consensus

predictions, and ¢) QSAR best hits. 20 molecules from best-docked hits and QSAR top hits

(ten for each) and 20 molecules from the consensus predictions were selected, however, a

total 80 molecules for both targets were purchased for further testing in in-vitro assays.
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Table 6.2: Dual-targeting compounds of COMT and GSK3/53. Red text: QSAR best hits,

Green text: Best docked hits

COMT: COMT: COMT: GSK3B: GSK3B: CSK3B:
At S Similarity with ' : Similarity with
NCIIDs. Molecules Prob.  ChemPLP Aty W prob.  ChemPLP tfartly Wit
. nearest neighbhour in . nearest neighhour in
(Actives) Score L. (Actives) Score .
training data training data
717816 081 50.84 0.53 088 77.69 0.95
702373 098 4785 0.53 0380 7249 0.95
86929 095 61.53 0.55 086 83.93 0.84
717201 2 096 59.6 0.52 0580 69.72 0.76
S
= i
291813 AN 097 49.15 0.62 1.00 61.39 0.69
Y.Qr_,-ﬁ\_
Py
679037 :I'v’a-.«-;w:]l:" 075 58.88 0.65 077 67.14 0.69
AN
724552 082 54.01 0.62 087 7091 0.68
720029 095 59 46 0.57 077 77.84 0.68
720028 096 54.57 0.62 098 72.58 0.67
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Table 6.2: Continue...

COMT: COMT COMT: GSK3B: GSK3B GSKIB:
' : Similarity with ' ’ : Similarity with

NCI IDs. Molecules Prob. ChemPLP L . Prob. Che mPLP L .

Actives) Score nearest ne ighhour in (Actives) Score neare st neigbhour in

(¢ ’ ’ training data ; | training data
735424 0.78 73.24 0.54 0.98 76 0.67
743414 0.76 89.72 047 1.00 85.5 0.67

n 1 \"
731012 *f/‘/ 2\);( 0.82 53.82 0.60 0.93 70.55 0.66
athdl
et
‘¢Lf===:{
736798 ' f’“ b 0.84 56.62 0.55 0.86 61.82 0.63
731011 0.95 58.01 0.55 0.95 72.25 0.63
678932 AL X 0.87 60.49 0.46 0.95 79.26 0.62
XX N
T H
ﬁ
667710 NJ\: 0.91 53.95 0.49 0.81 62.68 0.60
o "I \N

6.4.4 In-vitro validation results of COMT specific inhibitors

Thirty-six COMT specific hits were purchased initially for in-vitro or prospective val-

idation. Out of thirty-six compounds eleven were selected from best-docked hits, ten from

QSAR best hits and fifteen from consensus predictions (Figure 6.7). Six compounds were

found actives in in-vitro drug assay. A graphical abstract view of the results is shown in the

figure 6.7. In the identified actives, four compounds were from consensus predictions, one
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Figure 6.6: Mode of the interaction of a ligand (NCI ID: 7434146) (A) GSK3/ protein
complex (PDB:1Q41) and (B) COMT protein complex (PDB:3BWY)
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from best-docked hits and one from QSAR best hits. According to these results, integration
of both QSAR modeling and molecular docking was a better approach for hits identification

(Figure 6.7).

6.4.5 Future perspectives

Experimental validations would be completed in future for the rest of the selected hits in-
cluding GSK3 selective and dual-targeting compounds. Concerning comparative research
of predictive performance of QSAR- and docking-based VS, a freely available larger molecu-
lar database such as ZINC [115] that contains approximately 35M high-quality ligand struc-
tures will also be screened to find more common hits. Experimental validations would be
completed for all the selected hits including target selective and dual-targeting compounds.
Expectedly the confirmed experimental hits will present new dual-targeting chemical scaf-
folds against GSK33 and COMT targets and could be promising multi-targeting starting
points for the development of new anti-PD drugs. Additionally, the comparative viewpoint
of QSAR modeling and molecular docking hits rate would be a valuable support for optim-
ising a rational drug designing pipeline. This proposed methodology can serve as enhanced
polypharmacology approach to identify drug-target/s interactions with a promising potential

to facilitate the process of drug discovery, drug side-effect prediction, and drug re-purposing.
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Figure 6.7: In-vitro validation results of COMT specific inhibitors. Green dots represent
positive hits and gray dots represent negative hits
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General discussion and conclusions

7.1 Contribution

Polypharmacology-based approaches are very powerful tools in which systems biology-
based knowledge of the potential targets is integrated in drug discovery for the identification
of the most promising drug candidate with broader activity profiles. Selection of the right
multi-targeting molecules is important to further successfully elucidate drug action mech-
anism in systems pharmacology studies of complex diseases. Each study conducted under
this project contributed to the advancement of computational approaches to virtual screen-
ing(VS), which are adopted in polypharmacology. Such efforts can enhance the performance
of multi-target drug designing. The main contributions of this work are summarized in the

following sections.
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7.1.1 Automation of quantitative structure-activity relationship

A complete automated pipeline to build quantitative structure-activity relationship (QSAR)
models using state-of-the-art machine learning approaches for fast mining of chemical data-
bases was developed in the first phase of this project. The whole process of model building
involves several critical tasks including data collection and processing, appropriate data rep-
resentation (descriptors and fingerprints calculation), high dimensional data handling and
selection of the best predictors sufficient to predict the desired biochemical property, ma-
chine learning models fitting and unbiased validation. All these most important aspects of
QSAR modeling were addressed and consistently applied in the generated automated QSAR

modelling framework (Chapter 3).

The advantages of automation of repetitive tasks in the drug discovery process are nu-
merous and include increased research quality by reducing error along with significant time
saving, boosted up productivity and capacity, to name a few. Indeed, an open source custom-
izable QSAR modeling platform to automate the laborious tasks in the QSAR modelling life
cycle, is an important addition to the QSAR community, especially to researchers without
extensive knowledge of modeling methodology. Following are the most distinct features and

advantages of the developed QSAR modeling workflow:

e Data access: “Fully automated” mode automatically accesses up to date data from on-
line molecules database and a “Customized” mode deals with different input data sets
options. However, availability of a flexible handing of input data enables automated

QSAR modeling pipeline a widely used platform.

e Data curation: The constructed framework covers many common needs of modelers
by providing a reliable and consistent data processing method for preparing a good

quality QSAR modeling data sets.

e Prior estimate of data set modelability: To identify difficult problems the workflow

246



7.1 Contribution

calculates a prior estimate of the feasibility to obtain robust QSAR models by using
a given data set of molecules. A prior estimation of data modelability is calculated to
inform users/modelers if there is any need of additional data processing and manual
curation to address different data problems. However, data quality check helps to avoid

time-consuming modeling trials.

Feature selection and validation: A novel feature of automated QSAR modeling
workflow is automated procedure for variable selection coupled with a stringent model

validation methodology.

Interactive prediction system: QSAR modeling framework have a high level of auto-
mation and with default options, a reliable model can easily be build. Nonetheless,
it is not a black-box prediction system as it allows modellers to control all parts of
the modeling process and everything is accessible to users. Thus, it is an extensible
and highly customizable tool, which provides the output of all modeling task for the
diverse application, reproduction of historical predictions and updating models with

new molecules as they become available.

Workflow performance assessment: The performance of implemented methodology
of QSAR modeling was tested on thirty datasets of different CNS therapeutic targets.
The analysis of the obtained results showed that the developed variable selection pro-
cedure in automated QSAR modeling workflow was able to remove 62-99% redundant
data and performed consistently with high dimensional data sets. Comparison of per-
formance of QSAR models with and without features selection revealed that the large
reduction of irrelevant variables contributed in improving model predictability and in
better understanding the underlying relationship between the property of interest and

the relevant features.

Moreover, automated QSAR modeling framework was also evaluated by comparing

its performance to the published QSAR model. The performance of QSAR model
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generated using fully automated procedure was significantly better than the authors

QSAR modeling efforts.

In conclusion automated QSAR modeling framework was able to generate robust QSAR
models without any expert interventions and advanced parameterization for the customiza-

tion of complex modeling algorithms and procedures.

7.1.2 Molecular structural representation

QSAR models based on the assumption that molecular structures are mainly responsible
for molecular properties, therefore, molecular structural information is considered critical
to accurately predict biological activity [1, 2, 3, 4, 5]. The selection of the best molecular
representation for efficiently decoding information from molecular structures into computer-
readable formats is still a challenging task in cheminformatics. New numeric representation
of structures is used as input data matrices to model and understand quantitative relationships

between structures and biological activity in QSAR modeling.

To verify how well each molecular representation type is capable to capture the more
relevant structural elements, a thorough comparative analysis of the vector and metrics space
representations was conducted (Chapter 4). For a fair assessment of these methods, both
vector and metric space data modeling approaches were subjected to state-of-art machine
learning methods that included different dimensionality reduction methods, both from fea-
ture selection and linear dimensionality reduction, as these typically produce more robust
and higher quality models. Significance of each modeling approach was estimated and res-
ults showed that, in general, there is no general gain in using metric-space based approaches
for modeling, as the results are similar to using individual vectorized descriptors. Secondly,
molecular fragments (fingerprint based) alone produce models that are superior to the use
of specialized descriptors, yet different fingerprint models are more prone to produce bet-

ter models than others; Thirdly, the graph matching similarity (NAMS) most of the times
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surpassed fingerprints in model quality and this finding was further tested using challenging
QSAR data sets of highly diverse and sparsely distributed compounds in molecular space

(remote chemical space regions).

7.1.3 Chemical space visualization

The findings of the comparative study of molecular structural representation further as-
sisted to extend this study for the implementation and evaluation of dimension reduction
methods to represent molecular high dimensional metric spaces into reduced dimensionality
for visual characterization and diversity analysis of chemical activity spaces. The aim of this
work was to design a methodology to capture the highest probability regions for molecules

being active within reduced metric spaces.

Under this study, a novel and reliable methodology was developed that can efficiently be
used to build probabilistic surfaces of molecular activity (PSMAs) for visual characteriza-
tion of molecules in molecular activity spaces (Chapter 5). The basic principle of molecular
space mapping approaches based on the concept of molecular structure and activity simil-
arity, therefore in molecular activity maps, molecules are represented into reduced metric
spaces (2D projected space) where small distances between molecules represent high activ-
ity similarity. Property of each molecule in 2D activity maps is added as property of each

molecule as a third dimension that generates a surface on maps

Main challenges including a) Choice of a molecular space representation, b) accuracy of
dimensionality reduction (DR) methods and c) performance of the interpolation algorithm
were addressed for achieving descriptive and predictive accuracy of chemical space visual-
ization tool. The proposed molecular space mapping methodology integrates the advantages

of the following state-of-the-art methods in each domain of data visual analysis:

e Molecular representation: In the presented methodology, NAMS-based similarity

249



7. GENERAL DISCUSSION AND CONCLUSIONS

was used to represent understudy data sets into metrics spaces (distance matrices).
NAMS, a graph-based approach has a high discriminative power for very similar mo-
lecules over other structural or graph matching approaches. NAMS was concluded the
most robust molecular representation method in the comparative analysis of molecular

structural representation, a study conducted under the second objective of this thesis.

e DR methods: Four non-linear DR methods were tested. t-SNE applications in mo-
lecular space diversity analysis is a first effort to build activity spatial classification
model using this algorithm by comparing its performance with other commonly used

tools.

e PSMA: A Non-parametric 2D KDE function was applied for mapping the most likely
activity regions (activity probability maps (PSMAs)) from sparsely distributed active
and inactive compounds. Integration of KDE in molecular activities space visualiz-
ation approach to compute probability density function for active and inactive mo-
lecules within 2D projected space and to generate surfaces (3D map) is a totally novel

approach to build a non-parametric model with predictive properties.

The obtained results showed the reliability of the proposed methodology as all the pro-
duced PSMAs from the four data sets appeared consistent and were able to characterize
active and inactive molecules in clear separate groupings. Thus, PSMAs can be served as a
classification model as well as a chemical space visualization tool that can significantly con-
tribute for the understanding of structure-activity relationships (SARs), which is important

for library design, chemical classification and virtual screening in drug designing projects.

7.1.4 Polypharmacology based virtual screening

Today, one of the main interest in the modern drug discovery process is the development

of fast and robust approaches for VS to predict compounds with large therapeutic profiles
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(multi-targeting activity) [0, 7, 8, 9]. Thus, the aim of this study was to design a rational
and re-usable polypharmacology-based VS pipeline by integrating different chemical and
biological information for improving the success rate in hits identification and to find novel
ligands (scaffold) that are used as a promising starting point in the drug discovery process.
For this purpose, the state-of-the-art QSAR modeling methodology (designed in the first
phase of this project) was further complemented with molecular docking, the most widely
used structure-based VS method. Parkinson’s disease (PD), a multifactorial neurodegener-
ative disease that involves dopaminergic degenerative process was chosen as a case study

(Chapter 6).

In many previous studies, dual-targeting ligands designing has been focused as a prom-
ising tool against a complex disease like cancer for efficient targeting of tumor signalling
pathways affected by abnormal mutations [10]. However, existing knowledge of PD under-
lying neuro-pathomechanism was thoroughly studied to derive a dual-targeting drug design-
ing model of PD for implementing and validating the designed polypharmacolgy-based ap-
proach. In one of the base-line PD treatments, dopamine biosynthesis and its synaptic avail-
ability is increased for improving the motor symptoms by administrating dopamine precursor
L-DOPA with COMT inhibitors, a major catabolic regulator directly involved in L-DOPA
metabolism [11, 12, 13, 14]. COMT inhibitors prolong L-DOPA half-life by reducing its
degradation, but long exposure of L-DOPA is reported as the main cause of neurotoxicity
and L-DOPA-induced dyskinesia. Other studies of neurotoxicity in PD have shown that a
kinase enzyme GSK3[> plays a main regulatory role in several processes of neural devel-
opment (neurogenesis, proliferation, neural differentiation, and synaptic plasticity); thus,
its dysregulation (increased activity) has been suggested as a principal pathogenic cause in
neurodegenerative diseases including L-DOPA-induced dyskinesia and neurotoxicity in PD.

Identification of GSK3[3 inhibitors may play an important role to control neurotoxicity [15].

However, a pair of targets including COMT and GSK3[3 selected to build QSAR and

docking models to perform NCI database screening and to predicted novel dual-targeting
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inhibitors. The newly identified inhibitors may provide promising scaffolds to improve the
motor functions of PD patients by enhancing the bioavailability of dopamine and avoiding
neurotoxicity. All the top-ranked hits from both approaches were categorized into three
groups: a) best-docked hits b) consensus predictions, and ¢) QSAR best hits. Top-ranked
hits from each group were selected to perform experimental validation for the final assess-
ment and comparison of hits rates of molecular docking and QSAR-based VS. The presented
comparative analysis of QSAR modeling and molecular docking can be an important contri-
bution for optimizing and enhancing the predictive performance of polypharmacology-based
VS and can provide a rational and re-usable drug designing pipeline. Moreover, the designed
pipeline can easily be further adapted for a more complex network of several targets and
anti/off-targets to achieve increased efficacy and reduced toxicity in multi-factorial diseases

such as CNS disorders and cancer.

7.2 Limitations and future work

The results presented in this thesis demonstrated the contribution of each objective for the
advancement of different VS approaches. Nonetheless, this work can be further developed

in a number of ways:

e Automated QSAR modeling framework was only developed for QSAR regression
problems. Although this framework is highly customisable and easily extendable,
it would be further helpful to add automated facility to build it for QSAR classific-
ation data sets for the users lacking knowledge in machine learning. Moreover, the
performance of generated framework was tested only for QSAR data sets, it would be

interesting to validate its performance and customize it for other modeling datasets.

e In the second objective, an extensive analysis of molecular representation methods

was conducted to assess different data analysis and modeling approaches. From this
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comparative study, the best performing molecular representation NAMS was further
selected to develop a new chemical space visualization approach. The main limitation
of NAMS is large computational cost to calculate structural similarity between mil-
lions of molecules for actual visualization of big chemical spaces and virtual screening
efforts. Thus, future efforts are required to improve NAMS execution time that may

be achieved by parallelizing the calculations.

Moreover, the developed molecular space mapping method was validated using single-
target activity space, which represent a tiny part of known activity spaces. In future
work, the applicability domain of this activity space visualization method would be
vastly increased using larger data sets of multiple-targets to develop a chemical data

spatial characterization tool for VS using only structural similarity of molecules.

e One further objective concerns the comparative analysis and integration of QSAR
modeling and molecular docking to develop a polypharmacology approach. Only com-
putational part of this work is presented in this document. Experimental validations of
all the selected hits including target selective and dual-targeting compounds would be
completed for the final assessment of the implemented polypharmacology-based VS

pipeline.
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