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KALMAN FILTERING WITH STATE CONSTRAINTS: A SURVEY OF LINEAR 
AND NONLINEAR ALGORITHMS 

D. Simon, Cleveland State Umversiry 

Department of Electrical and Computer Engineering, Cleveland State University, Stilwell Hall Room 332, 2121 Euclid Avenue, 
Cleveland, Ohio 44115, USA 
E-mail: d.j.simon@csuohio.edu 

Abstract 

The Kalman filter is the minimum-variance state estimator for linear dynamic systems with Gaussian 
noise. Even if the noise is non-Gaussian, the Kalman filter is the best linear estimator. For nonlinear systems it 
is not possible, in general, to derive the optimal state estimator in closed form, but various modifications of 
the Kalman filter can be used to estimate the state. These modifications include the extended Kalman filter, 
the unscented Kalman filter, and the particle filter. Although the Kalman filter and its modifications are 
powerful tools for state estimation, we might have information about a system that the Kalman filter does 
not incorporate. For example, we may know that the states satisfy equality or inequality constraints. In this 
case we can modify the Kalman filter to exploit this additional information and get better filtering 
performance than the Kalman filter provides. This paper provides an overview of various ways to incorporate 
state constraints in the Kalman filter and its nonlinear modifications. If both the system and state constraints 
are linear, then all of these different approaches result in the same state estimate, which is the optimal 
constrained linear state estimate. If either the system or constraints are nonlinear, then constrained filtering 
is, in general, not optimal, and different approaches give different results. 

Introduction 
The Kalman filter is the minimum-variance state estimator 
for linear dynamic systems with Gaussian noise [1]. In 
addition, the Kalman filter is the minimum-variance linear 
state estimator for linear dynamic systems with non-
Gaussian noise [2J . For nonlinear systems it is not possible, 
in general, to implement the optimal state estimator in 
closed form, but various modifications of the Kalman filter 
can be used to estimate the state. These modifications 
include the extended Kalman filter [2J , the unscented 
Kalman filter [3J , and the particle filter [4]. 

Although the Kalman filter and its modifications are 
powerful tools for state estimation, we might have 
infonnation about a system that the Kalman filter does not 
incorporate. For example, we may know that the states 
satisfY equality or inequality constraints. In this case we can 
modifY the Kalman filter to exploit this additional 
infonnation and get better filtering performance than the 
Kalman filter provides. 

An initial consideration leads us to believe that the 
incorporation of constraints cannot improve the 
performance of the Kalman filter. After all, since 
the Kalman filter is minimum variance, it should not be 
possible to improve it. However, there are two reasons that 
the Kalman filter can indeed be improved. First, if the 
system is nonlinear, the Kalman filter variations are only 
approximately minimum variance, so it is not surprising 
that improvements can be seen by incolJlOrating state 
constraints in the filter. Second, even if the system is linear, 
if there are additional constraints beyond those explicitly 
given in the system model, then the complete system 
description is different than that assumed by the standard 
Kalman filter equations, and a modification of the Kalman 
filter may result in improved performance. 

We see many examples of state-constrained systems in 
engineering applications. Some of these examples include 
camera tracking [5J , fault diagnosis [6J , chemical processes 
[7J , vision-based systems [8J , target tracking [9, 10J , 
biomedical systems [11J , robotics [12J , navigation [13J , and 

mailto:d.j.simon@csuohio.edu


2 

others [14]. This paper presents a survey of how state 
constraints can be incorporated into the Kalman filter and 
its nonlinear modifications. We discuss linear and 
nonlinear systems, linear and nonlinear state constraints, 
and equality and inequality state constraints. 

Section 2 considers linear systems and linear constraints. 
The various ways of enforcing linear constraints in the 
linear Kalman filter include model reduction [15], perfect 
measurements [8 - 10], estimate projection [13, 16], gain 
projection [17, 1S], probability density function (PDF) 
truncation [2, 19, 20], and system projection [21]. Under 
certain conditions, all these approaches result in the same 
state estimate. We also briefly discuss inequality constraints 
and soft constraints. We present an example illustrating the 
conditions under which these approaches are equivalent, 
and conditions under which these approaches differ. 

Section 3 considers systems that are nonlinear or that have 
nonlinear constraints. The approaches that can be used in 
these cases include second-order expansion of the 
constraints [22], the smoothly constrained Kalman filter 
[23], moving horizon estimation [24- 26], various 
modifications of the unscented Kalman filter [2, 3], interior 
point approaches [27], and particle filters [2, 2S]. We 
present an example showing that moving horizon 
estimation performs the best relative to estimation error, 
but this performance comes at a high computational expense. 

The Kalman filter 
Consider the system model 

(1) 

(2) 

where k is the time step, xk is the state'Yk is the measurement, 
W k and V k are the zero-mean process noise and measurement 
noise with covariances Qand R respectively, and Fand Hare 
the state transition and measurement matrices. The Kalman 
filter was independently invented in the 1950's by several 
different researchers and is named after Rudolph Kalman 
[29]. The Kalman filter equations are given as [2] 

P,- = FPt-,FT + Q, (3) 

K - P-HT(HP- HT + R)-lk - k k , (4) 

(5) 

(6) 

pi = (1 - K,H)P,-, (7) 

for k = 1,2, ... , where I is the identity matrix. is thexk 

a priori estimate of the state xk given measurements up to 
and including time k - 1. xt is the a posteriori estimate of 
the state xk given measurements up to and including time 

k. Kk is the Kalman gain, Pi is the covariance of the 
a priori estimation error xk - xi, and pi is the covariance 
of the a posteriori estimation error Xk - xt. The Kalman 
filter is initialised with 

xt = E(xo), (S) 

pt = E[(xo - xt)(xo - xt)T], (9) 

where E(·) is the expectation operator. 

When the noise sequences {wk } and {vk } are Gaussian, 
uncorrelated, and white, the Kalman filter is the minimum-
variance filter and minimises the trace of the estimation 
error covariance at each time step. When {wk } and {vk } are 
non-Gaussian, the Kalman filter is the minimum-variance 
linear filter, although there might be nonlinear filters that 
perform better [30]. When (w,) and (v,) are correlated or 
colored, (3)-(7) can be modified to obtain the minimum-
variance filter [2]. 

Now suppose that our system satisfies the equality 
constraints 

(10) 

or the inequality constraints 

(11) 

where D is a known matrix and d is a known vector. In this 
case we might want to find a state estimate xk that satisfies the 
constraints 

(12) 

or 

Dx, ::: d. (13) 

In the following sections we discuss several ways to modifY 
the Kalman filter to incorporate these linear equality and 
inequality constraints. 

2.1 Model reduction 
Equality constraints in the form of (10) can be addressed by 
reducing the system model parameterization [15]. As an 
example, consider the system 

(14)
Xk+l = U!2 i]x, + w" 

y, = [2 4 5]x, + v,. (15) 

Suppose that we also have the constraint 

(16) 



If we make the substitution x,(3) = -x,(1) in (14) and 
(15), we obtain 

X'+l (1) = -2x,(1) + 2x,(2) + wu , (17) 

X'+l (2) = 2x,(1) + 2x,(2) + W 2" (18) 

y, = -3x,(1) + 4x,(2) + v,. (19) 

(17)-(19) can be written as 

-2 (20)xk+l = [ 2 

y, = [ -3 4]x, + v,. (21) 

This example shows how to reduce an equality-constrained 
filtering problem to an equivalent but unconstrained filtering 
problem. The Kahnan filter for this unconstrained system is 
the optimal linear estimator, and thus it is also the optimal 
linear estimator for the original constrained system. The 
dimension of the reduced model is lower than that of the 
original model, which reduces the computational effort of 
the Kalman filter. One disadvantage of this approach is 
that the physical meaning of the state variables may be lost. 
Also this approach cannot be directly used for inequality 
constraints in the form of (11). 

2.2 Perfect measurements 
State equality constraints can be treated as perfect 
measurements with zero measurement noise [8-10]. If 
the constraints are given by (10), where D is an s x n 
matrix with s < n, then we can augment (2) with s perfect 
measurements of the state. 

(22) 

The state equation (1) is not changed, but the 
measurement equation is augmented. The fact that the last 
s components of the measurement equation are noise free 
means that the a posteriori Kalman filter estimate of the 
state is consistent with these s measurements [31]. That is, 
the Kalman filter estimate satisfies Dxt = d. This 
approach is mathematically identical to the model reduction 
approach. 

Note that the new measurement noise covariance is 
singular. A singular noise covariance does not, in general, 
present theoretical problems [23]. However, in practice a 
singular noise covariance increases the possibility of 
numerical problems such as ill conditioning in the 
covariance of the error estimate [32, p. 249], [33, p. 365]. 
Also the use of perfect measurements is not directly 
applicable to inequality constraints in the form of (11). 

2.3 Estimate projection 
Another approach to constrained filtering is to project the 
unconstrained estimate xt of the Kalman filter onto the 
constraint surface [13, 16]. The constrained estimate can 
therefore be written as 

(23) 

such that 

Dx= d, (24) 

where Wis a positive-definite weighting matrix. The solution 
to this problem is 

If the process and measurement noises are Gaussian and 
we set W = (pn-' we obtain the maximum probability 
estimate of the state subject to state constraints. If we set 
W = I we obtain the least squares estimate of the state 
subject to state constraints. This approach is similar to that 
used in [34] for input signal estimation. See [2, p. 218] for 
a graphical interpretation of the projection approach to 
constrained filtering. 

It is shown in [13, 16] that the constrained state estimate 
of (25) is unbiased. That is, 

E(xj) = E(x,). (26) 

Setting W = (p,t)-l results in the minimum variance filter. 
That is, if W = Wt)-' then 

Cov(x, - xi> :0 Cov(x, - xj), (27) 

for all xt. Setting W= I results in a constrained estimate that 
is closer to the true state than the unconstrained estimate at 
each time step. That is, if W = I then 

(28) 

for all k. 

(25) was obtained for W = Wt)-' in [14] in a different 
form along with some additional properties and 
generalisations. It is assumed in [13, 16] that the 
constrained a priori estimate is based on the unconstrained 
estimate so that the constrained filter is 

xi = FxL, (29) 

xi = xi + K,(y, - Hxi), (30) 

xi = xi - PiDT(DPiDT)-'(DXi - d). (31) 

If the constrained a priori estimate is based on the 



constrained estimate [14] then the constrained filter is 

(32) 

xi = xi + K,(y, - Hxi), (33) 

xi = xi - PiDT(DPiDT)-'(DXi - d). (34) 

It can be inductively shown that (29)-(31) and (32)-(34) 
result in the same state estimates when Xb in (29) is equal 
to Xb in (32). It can also be shown that these constrained 
estimates are the same as those obtained with the perfect 
measurement approach [14, 35]. 

2.4 Estimate projection with inequality 
constraints 
The estimate projection approach to constrained filtering has 
the advantage that it can be extended to inequality constraints 
in the form of (13). If we have the constraints DXk :s d, then 
a constrained estimate can be obtained by modifYing 
(23)-(24) and solving the problem 

(35) 

such that 

Dx ::: d. (36) 

This problem is a quadratic programming problem 
[3 6, 37]. Various approaches can be used to solve 
quadratic programming problems, including interior 
point approaches and active set methods [38] . An active 
set method uses the fact that it is only those constraints 
that are active at the solution of the problem that are 
significant in the optimality conditions. Suppose that we 
have s inequality constraints, and q of the s inequality 
constraints are active at the solution of (35)-(36). 
Denote by iJ the q rows of D that correspond to the 
active constraints, and denote by d the q components of 
d that correspond to the active constraints. If the set 
of active constraints is known a priori then the solution 
of (35)- (36) is also a solution of the equality-constrained 
problem 

(37) 

such that 

Dx=d. (38) 

The inequality-constrained problem of (35)-(36) 
is equivalent to the equality-constrained problem of 
(37)-(38). Therefore all of the properties of the equality-
constrained state estimate also apply to the inequality-
constrained state estimate. 

2.5 Gain projection 
The standard Kalman filter can be derived by solving the 
problem [2] 

K, = argminKTrace[(I - KH)P,-(I - KH)T + KRK]. 

(39) 

The solution to this problem gives the optimal Kalman gain 

s, = HP,-HT +R, (40) 

K - P-HTS-1 (41)k - k k ' 

and the state estimate measurement update is 

rk= Yk - Hxi, (42) 

xt = xi + Kkrk · (43) 

If the constraint Dxt = d is added to the problem, then the 
minimization problem of (39) can be written as 

K, = argminKTrace [(I - KH)P,-(I - KH)T + KRKJ, 
(44) 

such that 

DXi = d. (45) 

The solution to this constrained problem is [17] 

When this value for K, is used in place of K, in (43), the 
result is the constrained state estimate 

This estimate is the same as that given in (25) with W = I. 

Gain projection has been applied to inequality constraints 
in [18]. If the a priori estimate xi satisfies the constraints and 
the unconstrained a posteriori estimate xt does not satisfY 
them, then xi can be projected in the direction of xt until 
it reaches the constraint boundary. This effectively gives a 
modified Kalman gain Kim) = {3K" where {3 E (0, 1) and 
Kk is the standard unconstrained Kalman gain. 

2.6 Probability density function 
truncation 
In the PDF truncation approach, we take the PDF of the 
state estimate that is computed by the Kalman filter, 
assuming that it is Gaussian, and truncate the PDF at the 
constraint edges. The constrained state estimate is equal to 
the mean of the truncated PDF [2, 19, 20]' This approach 
is designed for inequality constraints on the state although 



it can also be applied to equality constraints with a simple 
modification. See [2, p. 222] for a graphical illustration of 
how this method works. 

This method is complicated when the state dimension is 
more than one. In that case the state estimate is normalized 
so that its components are statistically independent of each 
other. Then the normalized constraints are applied one at a 
time. After all the constraints are applied, the normalization 
process is reversed to obtain the constrained state estimate. 
Details of the algorithm are given in [2, 20]' 

2.7 System projection 
State constraints imply that the process noise is also 
constrained. This realisation leads to a modification of the 
initial estimation error covariance and the process noise 
covariance, after which the standard Kalman filter equations 
are implemented [21]. Given the constrained system 

(48) 

(49) 

it is reasonable to suppose that the noise-free system also 
satisfies the constraints. That is, DFxk = 0. But this result 
means that DWk = 0. If these equations are not satisfied, 
then the noise is correlated with the state xk , whichwk 

violates typical assumptions on the system characteristics. If 
Dw, = °then 

(50) 

E(Dw,w[DT) = 0, (51) 

DQDT = 0. (52) 

This equation means that Qmust be singular, assuming that D 
has full row rank. As a simple example consider the three-state 
system given in (14)-(15). From (14) we have 

Combining this equation with (16) gives 

(54) 

which means the covariance matrix Qmust be singular for this 
constrained system to be consistent. We must have DWk = 0, 
which in tum implies (52). 

If the process noise covariance Qdoes not satisfY (52) then 
it can be projected onto a modified covariance Qthat does 
satisfY the constraint to make the system consistent. Q then 
replaces Q in the Kalman filter. The formulation of Qis 
accomplished as follows [21]. First we find the singular 
value decomposition of DT. 

U2 ][s, O]VT, (55) 

where Sr is an r x r matrix, and r is the rank of D. Next we 
compute N = U2 U[, which is the orthogonal projector onto 
the null space ofD. Next we compute Q= NQN. This value 
for Qensures that 

and thus (52) is satisfied. Similarly the initial estimation error 
covariance can be modified as P~ = NPtN in order to be 
consistent with the state constraints. It is shown in [21] 
that the estimation error covariance obtained by this 
method is less than or equal to that obtained by the 
estimate projection method. The reason for this conclusion 
is that Q is assumed to be the true process noise 
covariance, so that the system projection method gives the 
optimal state estimate, just as the standard Kalman filter 
gives the optimal state estimate for an unconstrained 
system. But the standard Kalman filter, and estimate 
projection methods based on it, might use an incorrect 
covariance Q. However, if Q satisfies DQDT = °then the 
standard Kalman filter estimate satisfies the state constraint 
Dxt = 0, and the system projection filter, the estimate 
projection filter, and the standard Kalman filter are all 
identical. 

2.8 Soft constraints 
Soft constraints, as opposed to hard constraints, are 
constraints that are only required to be approximately 
satisfied rather than exactly satisfied. We might want to 
implement soft constraints in cases where the constraints 
are heuristic rather than rigorous, or in cases where the 
constraint function has some uncertainty or fuzziness. For 
example, suppose we have a vehicle navigation system with 
two states: x(l), which is north position, and x(2), which is 
east position. We know that the vehicle is on a straight 
road such that x(1) = mx(2) + b for known constants m 
and h. But the road also has an unknown nonzero width, 
so the state constraint can be written as x(l) ;::;;:; mx(2) + h. 
In this case we have an approximate equality constraint, 
which is referred to in the literature as a soft constraint. It 
can be argued that estimators for most practical engineering 
systems should be implemented with soft constraints rather 
than hard constraints. 

Soft constraints can be implemented in Kalman filters in 
various ways. First, the perfect measurement approach can 
be extended to soft constraints by adding small nonzero 
measurement noise to the perfect measurements [9, 10, 
39, 40]. Second, soft constraints can be implemented by 
adding a regularization term to the standard Kalman filter 
[6] . Third, soft constraints can be enforced by projecting 
the unconstrained estimates in the direction of the 
constraints rather than exactly onto the constraint surface 
[41]. 

Example 1: Consider a navigation problem. The first two 
state components are the north and east positions of a land 
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vehicle, and the last two components are the north and east 
velocities. The velocity of the vehicle is in the direction of 
8, an angle measured clockwise from due east. A position-
measuring device provides a noisy measurement of the 
vehicle's north and east positions. Equations for this system 
can be written as 

state equations. In particular it violates the DF = D condition 
of [14]. 

At this point we can take several approaches to state 
estimation. For example, we can use Q and pt to nul the 
standard unconstrained Kalman filter and ignore the 

r~ 0 T ~l r ~ l 
(57)1 0 

x,+r = l~ 0 1 oJx, + lT sin 8 j"' + w" 
0 0 1 Teas 8 

y, = [~ 0 
1 

0 
0 ~]x,+v" (58) 

where T is the discretisation step size and Uk is an acceleration 
input. The covariances of the process and measurement noise 
are Q = diag(4, 4, 1, 1) and R = diag(900, 9(0). 
The initial estimation error covariance is pt = diag(900, 
900,4, 4). If we know that the vehicle is on a road with a 
heading of 8 then we have 

tan 8 = x(1)/x(2) = x(3)/x(4). 

We can write these constraints in the form DjXk = 
one of t\vo D j matrices. 

-tan 8 0 
Dr = [~ o 1 

D,=[O 0 1 -tan8J. 

(59) 

0 using 

(60) 

(61) 

Dl directly constrains both velocity and position. D2 relies on 
the fact that velocity determines position, which means that a 
velocity constraint implicitly constrains position. Note that we 
cannot use D = [1 -tan 8 0 0]. Ifwe did then position 
would be constrained but velocity would not be constrained. 
But it is velocity that determines position through the system 
equations, therefore this value of D is not consistent with the 

Table 1 Filter results for the linear vehicle navigation problem 

constraints, or run the perfect measurement filter, or project 
the unconstrained estimate onto the constraint surface, or 
use the PDF truncation method, or use constrained moving 
horizon estimation (MHE). MHE is discussed later in this 
paper since it is a general nonlinear estimator. Alternatively 

- -+ we can use the projected Q and Po and then run the 
standard Kalman filter. Since Qand P~ are consistent with 
the constraints, the state estimate satisfies the constraints 
for all time if the initial estimate Xb satisfies the 
constraints. This approach is the system projection 
approach. Note that neither the perfect measurement filter, 
the estimate projection filter, the PDF truncation filter, nor 
MHE, changes the estimate in this case, since the 
unconstrained estimate is implicitly constrained by means 
of system projection. In addition to all these options, we 
can choose to use either the Dr or D, matrix of (60)-(61) 
to constrain the system. 

MATLAB® software was written to implement these 
constrained filtering algorithms on a 150-s simulation 
with a 3-s simulation step size [42]. We used the 
initial state Xo = [0 0 10 tan 8 10 r and perfect 
initial state estimates. T able 1 shows the R1v1S state 
estimation errors averaged for the two position states, and 
the R1v1S constraint error. Each R1v1S value shown is 
averaged over 100 Monte Carlo simulations. T able 1 shows 
that all of the constrained filters have constraint errors that 
are exactly zero. All of the constrained filters perform 
identically when Dl is used as the constraint matrix. 
However, when D2 is used as the constraint matrix, then 
the perfect measurement and system projection methods 
perform the best. 

Filter type 

unconstrained 

perfect measurement 

estimate projection 

MHE, horizon size 2 

MHE, horizon size 4 

system projection 

PDF truncation 

RMS estimation error (Dr, 0,)  

23.7, 23.7  

17.3, 19.2  

17.3, 21.4  

17.3, 20.3  

17.3, 19.4  

17.3, 19.2  

17.3, 21.4  

Two numbers in each cell indicate the errors that are obtained using the 0 1 and O2 

shown are RMS errors averaged over 100 Monte Carlo simulations 

RMS constraint error (Dr, 0,) 

31.7, 2.1 

0, ° 
0, ° 
0, ° 
0, ° 
0, ° 
0, ° 

constraints respectively. The numbers 



3 Nonlinear constraints 
Sometimes state constraints are nonlinear. Instead of 
DXk = d we have 

g(x,) = h. (62) 

We can perform a Taylor series expansion of the constraint 
equation around xi to obtain 

(63) 

where s is the dimension ofg(x), ej is the the ith natural basis 
vector in n s

, and the entry in the pth row and qth column of 
the n x n matrix g;' (x) is given by 

[g"()] = a'gi(X) (64)
IXpq axax' 

p q 

Neglecting the second-order term gives [8,9, 13, 31] 

g(xi)x, = h - g(xi) + g(xi)xi. (65) 

This equation is equivalent to the linear constraint 
Dx, = d if 

D = g(xi), (66) 

d = h - g(xi) + g(xi)xi· (67) 

Therefore all of the methods presented in Section 2 can 
be used with nonlinear constraints after the constraints 
are linearized. Sometimes, though, we can do better 
than simple linearization, as discussed in the following 
sections. 

3.1 Second-order expansion 

Ifwe keep the second-order term in (63) then the constrained 
estimation problem can be approximately written as 

(68) 

such that 

xTMiX + 2m;x + JLi = 0 (i = 1, ... , s), (69) 

where W is a weighting matrix, and M i, mi, and JLi are 
obtained from (63) as 

Mi = i'(xi)/2, (70) 

(71) 

(72) 

This idea is similar to the way that the extended Kalman 
filter (EKF), which relies on linearization of the system and 
measurement equations, can be improved by retaining 
second-order terms to obtain the second-order EKF [2]. 
The optimization problem given in (68)-(69) can be solved 
with a numerical method. A Lagrange multiplier method 
for solving this problem is given in [22] for s = 1 and M 
positive definite. 

3.2 The smoothly constrained 
Kalman filter 
Another approach to handling nonlinear equality constraints 
is the smoothly constrained Kalman filter (SCKF) [23]. This 
approach starts with the idea that nonlinear constraints can be 
handled by linearizing them and then implementing them as 
perfect measurements. However, the resulting estimate only 
approximately satisfies the nonlinear constraint. If the 
constraint linearization is instead applied multiple times at 
each measurement time then the resulting estimate is 
expected to get closer to constraint satisfaction with each 
iteration. This idea is similar to the iterated Kalman filter 
for unconstrained estimation [2]. In the iterated Kalman 
filter the nonlinear system is repeatedly linearized at each 
measurement time. In the SCKF the nonlinear constraints 
are linearized at each time step and are repeatedly applied 
as measurements with increasing degrees of certainty. This 
idea is motivated by realizing that, for example, 
incorporating a measurement with a variance of 1 is 
equivalent to incorporating that same measurement 10 
times, each with a variance of 10. Application of a scalar 
nonlinear constraint g{x) = h by means of the SCKF is 
performed by the following algorithm, which is executed 
after each measurement update. 

1. Initialize i, the number of constraint applications, to 
1. Initialize x to xt, and P to pi. 
2. Set R; = aGPGT 

, where the 1 x n Jacobian G = g(x). 
R~ is the initial variance with which the constraint is 
incorporated into the state estimate as a measurement. 
Note that GPGT is the approximate linearized variance of 
g(x), therefore R~ is the fraction of this variance that is 
used to incorporate the constraint as a measurement. a is a 
tuning parameter, typically between 0.01 and 0.1. 

3. Set R; = Ko exp(-i). This equation is used to gradually 
decrease the measurement variance that is used to apply the 
constraint. 

4. Set Si = maxj (Gj Pjj 0)/(GPGT 
). Si is a normalized 

version of the information that is associated with the 
constraint. When Sj exceeds the threshold Sm'JX then 
the iteration is terminated. A typical value of Sm'JX is 100. 
The iteration can also be terminated after a predetermined 
number of constraint applications im'JX' since a convergence 
proof for the SCKF does not yet exist. Mter the iteration 
terminates, set xt = xand pi = P. 



5. Incorporate the constraint as a measurement using 

K = PGT (GPGT + R',)-" (73) 

x = x+ K(h - g(x», (74) 

P= P(I -KG). (75) 

These equations are the standard Kalman filter equations for 
a measurement update, but the measurement that we are 
incorporating is the not-quite-perfect measurement of the 
constraint. 

6. Compute the updated Jacobian G = g(x). Increment iby 
one and go to step 3 to continue the iteration. 

The above algorithm executes once for each inequality 
constraint at each time step. 

3.3 Moving horizon estimation 
Moving horiwn estimation (MHE), first suggested in [43], 
is based on the fact that the Kalman filter solves the 
optimization problem 

N 

(xtl = argmin(x,)llxo - Xo 11;0+ + LIlY, - Hx,II~_, 
k=1 

N-l 

+ L Ilx'+l - Fx,II~_', (76) 
k=O 

where N is the number of measurements that are available 
[24 - 26]. {xt} is the sequence of estimates Xb,···, xiv, 
and lei = (Pei)-l (76) is a quadratic programming 
problem. The (xtl sequence that solves this problem gives 
the optimal smoothed estimate of the state given the 
measurements Yv ... , YN· 

The above discussion motivates a similar method for 
general nonlinear constrained estimation [25, 26,44] . Given 

X'+l = j(x,) + w" (77) 

y, = h(x,) + v" (7S) 

g(x,) = 0, (79) 

solve the optimization problem 

(SO) 

such that 

g((x,}) = 0, (Sl) 

where by an abuse of notation we use g((x,)) to mean g(x,) 
for k = 1, ... , N. This constrained nonlinear optimization 

problem can be solved by various methods [36, 45, 46], 
therefore all of the theol)' that applies to the particular 
optimization algorithm that is used also applies to 
constrained MHE. The difficulty is the fact that the 
dimension of the problem increases with time. With each 
measurement that is obtained, the number of independent 
variables increases by n, where n is the number of state 
variables. 

MHE therefore limits the time span of the problem to 
decrease the computational effort. The MHE problem can 
be written as 

N 

minllxM - xi;, 11;+ + Lily, - h(x,)II~_, 
(x;J M k=M+l 

N-l 

+ L Ilx'+l - j(x,)II~', (S2) 
k=M 

such that 

g((x,)) = 0, (S3) 

where (x,) is the set (XM,"" XN), and N - M + 1 is the 
horizon size. The dimension of this problem is 
n(N - M + 1). The horizon size is chosen to give a 
tradeoff between estimation accuracy and computational 
effort. The information matrix It is the inverse of pt. 
The approximate estimation error covariance pt is 
obtained from the standard EKF recursion [2]. 

(S4) 

(S5) 

(S6) 

(S7) 

pi = (I - K,H,)P,-. (SS) 

Some stability results related to MHE are given in [47]. 
MHE is attractive in the generality of its formulation, but 
this generality results in large computational effort 
compared to the various constrained EFKs and unscented 
Kalman filters (UKFs), even for small horizons. 

Another difficulty with MHE is its assumption of an 
invertible pei in (76) and (SO), and an invertible Pi;, in 
(82). The estimation error covariance for a constrained 
system is usually singular [13]. We can get around this by 
using the covariance of the unconstrained filter as shown in 
(SS), but this makes MHE suboptimal even for linear 
systems. 



Another way to deal with this is to use the singular 
constrained covariance shown in [13] and reduce it to a 
diagonal fonn [48, pp. 30-31]. This results in a 
corresponding transformation of the state estimate. Some 
of the transformed state estimates will have a zero variance, 
which means that those estimates will not change from one 
time step to the next in (82). This gives a more optimal 
implementation of MHE, but at the cost of additional 
complexity. 

Recursive nonlinear dynamic data reconciliation and 
combined predictor-corrector optimization [7] are other 
approaches to constrained state estimation that are similar 
to MHE. These methods are essentially MHE with a 
horizon size of one. However the ultimate goal of these 
methods is data reconciliation (that is, output estimation) 
rather than state estimation, and they also include 
parameter estimation. 

3.4 Unscented Kalman filtering 

The unscented Kalman filter (UKF) is a filter for nonlinear 
systems that is based on two fundamental principles [2, 3]. 
First, although it is difficult to perform a nonlinear 
transformation of a PDF, it is easy to perform a nonlinear 
transformation of a vector. Second, it is not difficult to find 
a set of vectors in state space whose sample PDF 
approximates a given PDF. The UKF operates by 
producing a set of vectors called sigma points. The UKF 
uses between n + 1 and 2n + 1 sigma points, where n is 
the dimension of the state. The sigma points are 
transformed and combined in a special way in order to 
obtain an estimate of the state and an estimate of the 
covariance of the state estimation error. Constraints can be 
incorporated into the UKF by treating the constraints as 
perfect measurements, which can be done in various ways 
as discussed below. 

One possibility is to base the a priori state estimate on the 
unconstrained UKF a posteriori state estimate from the 
previous time step [14, 49]. In this case the standard 
unconstrained UKF runs independently of the constrained 
UKF. At each measurement time the state estimate of the 
unconstrained UKF is combined with the constraints, 
which are treated as perfect measurements, to obtain a 
constrained a posteriori UKF estimate. This filter is referred 
to as the projected UKF (PUKF) and is analogous to (29)-
(31) for linear systems and constraints. Note that nonlinear 
constraints can be incorporated as perfect measurements in 
various ways, such as linearization, second-order expansion 
[22], unscented transformation [5], or the SCKF, which is 
an open research problem. 

Another approach is to base the a priori state estimate on 
the constrained UKF a posteriori state estimate from the 
previous time step [14]. At each measurement time the 
state estimate of the unconstrained UKF is combined with 
the constraints, which are treated as perfect measurements, 

to obtain a constrained a posteriori UKF estimate. This 
constrained a posteriori estimate is then used as the initial 
condition for the next time update. This filter is referred to 
as the equality constrained UKF (ECUKF) and is also 
identical to the measurement-augmentation UKF in [14]. 
The ECUKF is analogous to (32)-(34) for linear systems 
and constraints. A similar filter is explored in [5], where it 
is argued that the covariance of the constrained estimate is 
expected to be larger than that of the unconstrained 
estimate since the unconstrained estimate approximates the 
minimum variance estimate. 

The two-step UKF (2UKF) [5] projects each a posteriori 

sigma point onto the constraint surface to obtain 
constrained sigma points. The state estimate is obtained by 
taking the weighted mean of the sigma points in the usual 
way, and the resulting estimate is then projected onto the 
constraint surface. Note that the mean of constrained sigma 
points does not itself necessarily satisfY a nonlinear 
constraint. 2UKF is unique in that the estimation error 
covariance increases after the constraints are applied. The 
argument for this increase is that the unconstrained 
estimate is the minimum variance estimate, so changing the 
estimate by applying constraints should increase the 
covariance. Furthermore, if the covariance decreases with 
the application of constraints (for example, using the 
algorithms in [13, 49]) then the covariance might become 
singular, which might lead to numerical problems with 
the matrix square root algorithm of the unscented 
transformation. 

Unscented recursive nonlinear dynamic data reconciliation 
(URNDDR) [50] is similar to 2UKF. URNDDR projects 
the a posteriori sigma points onto the constraint surface, 
and modifies their weights based on their distances from 
the a posteriori state estimate. The modified a posteriori 
sigma points are passed through the dynamic system in the 
usual way to obtain the a priori sigma points at the next 
time step. The next set of a posteriori sigma points is 
obtained using a nonlinear constrained MHE with a 
horizon size of 1. This approach requires the solution of a 
nonlinear constrained optimization problem for each sigma 
point. The a posteriori state estimate and covariance are 
obtained by combining the sigma points in the normal way. 
The constraints are thus used in two different ways for the 
a posteriori estimates and covariances. URNDDR is called 
the sigma point interval UKF in [49]. A simplified version 
ofURNDDR is presented in [51]. 

The constrained UKF (CUKF) is identical to the standard 
UKF, except a nonlinear constrained MHE with a horiwn 
size of 1 is used to obtain the a posteriori estimate [49]. 
Sigma points are not projected onto the constraint 
surface, and constraint information is not used to modifY 
covariances. 

The constrained interval UKF (CIUKF) combines 
the sigma point constraints of URNDDR with the 



measurement update of the CUKF [49]. That is, the 
CIUKF is the same as URNDDR except instead of using 
MHE to constrain the a posteriori sigma points, the 
unconstrained sigma points are combined to fonn an 
unconstrained estimate, and then MHE is used to 
constrain the estimate. 

The intelVal UKF (IUKF) combines the post-
measurement projection step of URNDDR with the 
measurement update of the standard unconstrained UKF 
[49]. That is, the IUKF is the same as URNDDR except 
that it skips the MHE-based constraint of the a posteriori 

sigma points. Equivalently, IUKF is also the same as 
CIUKF except that it skips the MHE-based constraint of 
the a posteriori state estimate. 

The truncated UKF (TUKF) combines the PDF 
truncation approach described earlier in this paper with the 
UKF [49]. After each measurement update of the UKF, 
the PDF truncation approach is used to generated a 
constrained state estimate and covariance. The constrained 
estimate is used as the initial condition for the following 
time update. 

The truncated intelVal UKF (TIUKF) adds the PDF 
truncation step to the a posteriori update of the IUKF [49]. 
As with the TUKF, the constrained estimate is used as the 
initial condition for the following time update. 

In [52], the UKF is combined with MHE for constrained 
estimation. This is done by using a constrained UKF to 
estimate the first term on the right side of (76). 

3.5 Interior point approaches 
A new approach to inequality-constrained state estimation is 
called interior point likelihood maximization (IPLM) [27]. 
This approach is based on interior point methods, which 
are fundamentally different from active set methods for 
constraint enforcement. Active set methods for inequality 
constraints, as discussed earlier in this paper, proceed by 
solving equality-constrained subproblems and then 
checking if the constraints of the original problem are 
satisfied. One difficulty with active set methods is that 
computational effort grows exponentially with the number 
of constraints. Interior point approaches solve inequality-
constrained problems by iterating using a Newton's method 
that is applied to a certain subproblem. The approach in 
[27] relies on linearization. It also has the disadvantage that 
the problem grows linearly with the number of time steps. 
However, this difficulty could possibly be addressed by 
limiting the horizon size, similar to MHE. 

3.6 Particle filters 
Particle filters operate by propagating many state estimates, 
called particles, that are distributed according to the PDF 
of the true state [2, 28]. A UKF can loosely be considered 

as a type of particle filter, but UKFs and particle filters 
differ in several fundamental ways. First, the time update of 
a particle filter includes randomly generated noise that is 
distributed according to the known process noise PDF, 
while the UKF time update is deterministic. Second, the 
UKF has a specific number of sigma points, commonly 
chosen to be n + 1 or 2n or 2n + 1, where n is the 
dimension of the state. The number of particles in a 
particle filter has no upper bound but typically increases 
exponentially with n. Third, the UKF estimates the mean 
and covariance of the state to third-order accuracy. The 
particle filter does not directly estimate the mean and 
covariance, but rather estimates the PDF of the state, and 
the PDF estimate converges to the true PDF as the 
number of particles approaches infinity [53]. Just as the 
UKF can be considered as a generalization of the EKF, 
the particle filter can be considered as a generalization of 
the UKF. Given enough particles, a particle filter always 
performs better than a UKF, but this might be at the 
expense of unacceptable computational requirements. 

State-constrained particle filtering has been solved by 
various methods. Some of these approaches can be used 
with Kalman filtering, such as reparameterizing the 
problem [54]. Other approaches are specific to particle 
filtering, such as modifYing the particles' likelihood 
functions based on their level of constraint satisfaction 
[55, 56] or generating process noise which ensures that the 
propagated particles satisty the constraints [57]. Also, many 
of the methods discussed in this paper can potentially be 
applied to constrained particle filtering, such as projection, 
PDF truncation, or the SCKF. These methods could be 
applied to individual particles or they could be applied only 
to the state estimate at each time, giving rise to a large 
family of constrained particle filters. 

Example 2: This example is taken from [1 4]. A discretized 
model of a pendulum can be written as 

(89) 

Wk+l = w, - (TgiL) sin 8" (90) 

(91)y, = [ ~:] + v" 

where (J is angular position, w is angular velocity, T is the 
discretization step size, g is the acceleration due to gravity, 
and L is the pendulum length. By conservation of energy 
we have 

(92) 

where C is some constant. This equation is a nonlinear 
constraint on the states (Jk and Wk. We use L = 1, 
trapezoidal integration with step size T = 0.05, g = 9.81, 
m = 1, and Xo = [7T/4 7T/50]T. The covariance of the 
measurement noise is R = diag(O.Ol, 0.01), and the 
initial estimation error covariance is pt = diag(l, 1). 

http:diag(O.Ol


We do not use process noise in the system simulation, but in The results of MATLAB software that implements these 
the Kalman filters we use Q= diag( 0.0072 , 0.0072 ) constrained filtering algorithms [42] are shown in T able 2. 
to help with convergence. The table shows the R1v1S state estimation errors averaged for 

the two states and the R1v1S constraint error. Each R1v1S value 
At this point we can take one of several approaches to the shown is averaged over 100 Monte Carlo simulations. T able 2 

filtering problem. shows that MHE performs the best relative to estimation error. 
However this performance comes at a high com~tational 
expense. The Mathworks' Optimization Toolbox has a1. Run the standard unconstrained EKF and ignore the 
constrained nonlinear optimization routine called FMINCONconstraints. 
that can be used for MHE, but for this example we use 
SolvOpt [58, 59]. If computational expense is a consideration 2. Linearize the constraint and run the perfect measurement 
then the equality constrained UKF performs the next best. EKF, or project the unconstrained EKF estimate onto the 
However UKF implementations can also be expensive because constraint surface, or use the PDF truncation method on 
of the sigma point calculations that are required. Table 2 shows the EKF estimate. 
that several of the estimators result in constraint errors that are 
essentially zero. The constraint errors and estimation errors are 3. Use a second-order expansion of the constraint to project 
positively correlated, but small constraint errors do notthe EKF estimate onto the constraint surface. 
guarantee that the estimation errors are small. 

4. Use the constrained nonlinear MHE. 

3.7 Summary5. Use the SCKF. 
For nonlinear systems and nonlinear constraints, our 

6. Use the UKF and either ignore the constraint, or project simulation results indicate that of all the algorithms we 
the a posteriori estimate onto the constraint surface using a investigated, MHE results in the smallest estimation error. 
linearized expansion of the constraint, or use the However, this performance comes at the expense of 
constrained a posteriori estimate to obtain the a priori programming effort and computational effort that is orders 
estimate at the next time step. of magnitude higher than other methods. Given this 

caveat, it is not obvious what the "best" constrained 
- -+7. Use the two-step UKF. Note that the corrected Qand Po, estimation algorithm is, and it generally depends on the 

obtained using first order linearization and system projection, application. The possible approaches to constrained state 
can also be used with these filtering approaches. estimation can be delineated by following a flowchart that 

Table 2 Filter results for the nonlinear pendulum example 

Filter type RMS estimation error (Q, Q) RMS constraint error (Q, Q) 

unconstrained 0.0411, 0.0253 0.1167,0.0417 

perfect measurement 0.0316, 0.0905 0.0660, 0.0658 

estimate projection 0.0288, 0.0207 0.0035, 0.0003 

MHE, horizon size 2 Om05, 0.0067 0.0033, 0.0008 

MHE, horizon size 4 0.0089, 0.0067 0.0044, 0.0007 

system projection N/A,0.0250 N/A,0.0241 

PDF truncation 0.0288, 0.0207 0.0035, 0.0003 

2nd order constraint 0.0288, 0.0204 0.0001, 0.0000 

SCKF 0.0270, 0.0235 0.0000, 0.0000 

unconstrained UKF 0.0400, 0.0237 0.1147, 0.0377 

projected UKF 0.0280, 0.0192 0.0046, 0.0007 

equality constrained UKF 0.0261, 0.0173 0.0033, 0.0004 

two-step UKF 0.0286, 0.0199 0.0005, 0.0000 

Two numbers in each cell indicate the errors that are obtained when Q and Q respectively are used in the filter. The numbers 
shown are RMS errors averaged over 100 Monte Carlo simulations 



asks questions about the system type and the constraint type 
as shown in Figure 1. The acronyms used in the flowchart are 
given below, and the reference numbers show where the 
relevant equations can be found. 

2E 

2UKF 

CIUKF 
CUKF 
ECUKF 
EKF 
EP 
GP 
IPLM 
IUKF 

second-order expansion ofnonlinear constraints 
[22J 
ruro-step UKF [5J 

constrained IUKF [49J 

constrained UKF [4 9J 

equality constrained EKF [14J 

extended Kalman filter [2J 

estimate projection [2J 

gain projection [17J 

interior point likelihood maximization [27J 

interval UKF [49J 

Start 

Linear No Linear 
system? constraints? 

Ye, No 

MHE 
MR 
PDIT 
PF 
PM 
PUKF 
SCKF 
SP 
TIUKF 
TUKF 
UKF 

moving horiwn estimation [25, 47J 

model reduction [2J 

probability density function truncation [2J 

particle filter [2J 

perfect measurement [2J 

projected UKF [49J 

smoothly constrained Kalman filter [23J 

system projection [21J 

truncated IUKF [4 9J 

truncated UKF [49J 

unscented Kalman filter [2, 3J 

URNDDR 	 unscented recursive nonlinear dynamic data 
reconciliation [50J 

Note that some of the acronyms refer only to filter 
methods, some refer only to constraint incorporation 

Yo. 

Equality 
nstraints? 

No 

Equality 
constraints? 

MR(2) 
PM 

SCKF 
PF 

Notes: 

EKF 
Equality No MHE 

constraints? UKF 
PF 

Yo. 

MR(2) 
PM 
2E 

MHE 
URNDDR 

CUKF 
CIUKF 
IUKF 

No 2UKF 

2E 
MHE 
PF 

(1) EP and PDFT include TUKF, TIUKF, PUKF, 
and ECUKF if the system is nonlinear 
(2) MR mayor may not be an option with 
nonlinear systems and nonlinear constraints, 
depending on the form of the nonlinearity 

Figure 1 Possible filter and constraint-handling choices for various combinations of system types and constraint types 

Note that some of the acronyms refer only to filter options, some refer only to constraint incorporation options, and some refer to a 
combination filter/constraint incorporation algorithm 
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methods, and some refer to a combination filter/constraint 
incorporation algorithm. In addition, sometimes the same 
acronym can refer to both a filter without constraints, and 
also a filter/constraint handling combination. For example, 
MHE can be used as an unconstrained state estimator, and 
then the MHE estimate can be modified by incorporating 
constraints using EP; or, MHE can be used as a 
constrained state estimator by incorporating the constraints 
into the MHE cost function. 

Conclusion 
The number of algorithms for constrained state estimation 
can be overwhelming. The reason for the proliferation of 
algorithms is that the problem can be viewed from many 
different perspectives. A linear relationship between states 
implies a reduction of the state dimension, hence the 
model reduction approach. State constraints can be viewed 
as perfect measurements, hence the perfect measurement 
approach. Constrained Kalman filtering can be viewed as a 
constrained likelihood maxImIzation problem or a 
constrained least squares problem, hence the projection 
approaches. If we start with the unconstrained estimate and 
then incorporate the constraints to adjust the estimate we 
get the general projection approach and PDF truncation. If 
we realize that state constraints affect the relationships 
between the process noise terms we get the system 
projection approach. 

Nonlinear systems and constraints have all the possibilities 
of nonlinear estimation, combined with all the possibilities 
for solving general nonlinear equations. Nonlinear systems 
give rise to the EKF, the UKF, MHE, and particle 
filtering for estimation. These estimators can be combined 
with various approaches for handling constraints, including 
first order linearization (which includes the SCKF). If first 
order linearization is used then any of the approaches 
discussed above for handling linear constraints can be used. 
In addition, since state estimation incorporates multiple 
steps (the a priori step and the a posteriori step), we can use 
one approach at one step and another approach at another 
step. The total number of possible constrained estimators 
seems to grow exponentially with the number of nonlinear 
estimation approaches and with the number of constraint 
handling options. 

Theoretical and simulation results indicate that all of the 
constrained filters for linear systems and linear constraints 
perform identically, if the constraints are complete. 
Therefore in spite of the numerous approaches to the 
problem, we have a pleasingly parsimonious unification. 
However, if the constraints are not complete, then the 
perfect measurement and system projection methods 
perform best in our particular simulation example. 

For nonlinear systems and nonlinear constraints, MHE 
resulted in the smallest estimation error in our simulation 
results. However, this improved performance required 

programming and computational effort many times higher 
than the other methods. The "best" constrained estimation 
algorithm depends on the application. 

Constrained state estimation is becoming well established 
but we see interesting possibilities for future work. For 
instance, in Example 2 we see that the linearly constrained 
filters perform identically for the Dl constraint, but 
differently for the D2 constraint. Some of these 
equivalences are already proven, but conditions under 
which the various approaches are identical are not yet 
completely established. In addition, the numerical 
properties of the various algorithms have yet to be explored. 

The second-order constraint approximation is developed 
in [22] and implemented in this paper in combination with 
the estimate projection filter. The second-order constraint 
approximation can also be combined with other filters, such 
as MHE, the UKF, and the SCKF. Algorithms for solving 
the second-order constraint approach can be developed and 
investigated for the case of multiple constraints. 

More theoretical results related to convergence and 
stability are needed for nonlinear constrained filters such as 
the SCKF, MHE, and the UKF. MHE can be modified to 
use the optimal (singular) estimation error covariance 
obtained using system projection in its cost function. 
Second-order or iterated Kalman filtering can be combined 
with MHE to get a more accurate approximation of the 
estimation error covariance. 

Various combinations of the approaches discussed in this 
paper can be explored. For example, PDF truncation can 
be combined with MHE, or the SCKF can be combined 
with the UKF. Conditions that are amenable to the 
combination of these approaches can be delineated. 

The system projection approach for the nonlinear system 
of Example 2 uses a first-order approximation to obtain Q 
and P~, but a second-order approximation might give 
better results. In general, the extension of system projection 
to nonlinear systems might be a worthwhile study. 

Particle filtering is a state estimation approach that is 
outside the scope of this paper, but it has obvious 
applications to constrained estimation. The theory and 
implementation of constrained particle filters is a topic with 
much room for future work. 

The development of interior point methods for 
constrained state estimation has just begun. Further work 
in this area can include higher order expansion of nonlinear 
system and constraint equations in interior point methods, 
moving horizon interior point methods, the use of 
additional interior point theory and algorithms beyond 
those used in [27], and generalization of the convergence 
results. 
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It is difficult to give general guidelines for constrained 
filtering because each individual problem is unique. 
However, it appears that for either linear or nonlinear 
systems, the projection approaches of Sections 2.3 and 2.4 
provide a good tradeoff between ease of implementation, 
low computational cost, and flexibility (by using different 
projection matrices). For soft constraints, the approaches of 
Section 2.8 can usually be tuned to give good performance. 

For nonlinear constraints, recommended options can be 
listed in order of improving performance, which corresponds 
to greater complexity and greater computational cost. The 
projection approaches (Section 3) are the simplest to code 
and the least expensive computationally, but often provide 
the worst performance. These are followed in tum by the 
various UKF approaches (Section 3.4), MHE (Section 3.3), 
and finally particle filtering (Section 3.6), which can usually 
be expected to provide the best performance but at the 
highest computational cost. 

The results presented in this paper can be reproduced by 
downloading MATLAB source code from [42]. 
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