New methods for high resolution 3D imaging with X-rays

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

im Fach Physik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultat
der Humboldt-Universitat zu Berlin
von

Christoph Pratsch

Prasidentin der Humboldt-Universitat zu Berlin

Prof. Dr.-Ing. Dr. Sabine Kunst
Dekan der Mathematisch-Naturwissenschaftlichen Fakultat

Prof. Dr. Elmar Kulke

Gutachter/innen: 1. Prof. Dr. Gerd Schneider

2. Prof. Dr. Giinter Schmahl
3. Prof. Dr. Christoph Koch

Tag der mundlichen Prifung: 22.09.2017






Contents

List of Figures
Abstract
Zusammenfassung
Nomenclature

1 Introduction

2 Current Status of 2D and 3D X-ray Imaging
2.1 Advantages of Soft X-ray Imaging . . . . .. ... ... ... .. ......
2.1.1 The Interaction Between Soft X-ray and Material . . . . . .. . ..
2.2 Lens-less Methods for 2D and 3D X-ray Imaging . .. ... ... ... ..
2.2.1 Coherent Diffraction Imaging (CDI) . .. ... ... .. ......
222 Piychography' « « o oo vov wosmm v v 2w o v 5 5 m 0w 5 8 0w 5
2.2.3 Holography . . . . . . . ..
2.3 Ten§Baged Methods = ¢ vvwo e v v wm e p v n s e o n i 58 o 8 a5 56 8 & w5
2.3.1 Scanning Transmission X-ray Microscope (STXM) . ... ... ..
2.3.2 Transmission X-ray Microscope (TXM) . . ... .. ........
2.4 Comparison of Lens-less and Lens Based Methods . . . .. ... ... ..

3 Numerical Methods for Soft X-ray Imaging
3.1 Simulating the Propagation of Soft X-rays in Free Space . . . . . ... ..
3.1.1 The Wide-angle Near and Far Field Approximation (NFFA) . . . .
3.1.2 Converging Waves and the Fresnel Approximation . .. ... ...
3.1.3 Propagation of Waves and Partial Derivatives in Different Planes .
3.2 Simulating the Propagation of Soft X-raysin a Medium .. ... ... ..

4 Simulation of 3D Soft X-ray Imaging by Tomography
4.1 A Cell-like Phantom for Tomography . ... ... ... .. ... .....
4.2 Transmission Soft X-ray Microscopy . . . . . .. . ... ... ...
421 Tneoherent TXM Simlabion : s s sss @ o s s s @ o s 88 @ 5 9 5 5 &
4.2.2 3D Imaging with Tomography . . . . . .. . ... .. ... ... ..

10

13

16

19

25
25
26
30
30
32
33
35
37
38
40

43
43
46
50



4 CONTENTS

4.2.3 Comparison of Experimental TXM Images and Incoherent Simulation 71

4.2.4 Partially Coherent TXM Simulation . ... ... ... ... .... 72

5 Confocal STXM for Direct 3D Imaging 79
5.1 The Incoherent Confocal Microscope . . . . . . . .. .. ... ... .... 79
5.1.1 The Mathematical Description . . . .. ... .. ... ... .... 81

5.2 The Coherent Confocal Microscope . . . .. . . . .o vv v oo oo 83
5.2.1 The Mathematical Description . . . .. ... .. ... .. ..... 85

5.2.2 Results of the Simulation . . ... ... ... ............ 88

6 3D Imaging by a FIB - SXM 91
61 Intradiction toEIB-SXM: o v o s v owom sem vow w50 8 o 8 % a6 8 w6 55 91
Oulide SOBLUTE o o oo w0 w0 v sovmme @ m  somie o e B R @ N R BT g6 SN B R B 3 B R o 92

6.2 Simulation . . . . . ... 93
63 SNRIorFIB-SXMad TXM :ssmussp@ussp sasap S0a5p &3 96
6.3.1 Signal to Noise Level for the FIB-SXM . . . . ... .. ... .. .. 96

6.3.2 Signal to Noise Ratio for the Transmission Mode . . . .. . .. .. 100

6.3.3 Signal to Noise Ratio for X-ray Diffraction Microscopy . . . . . . . 103

6.3.4 Comparison of the Signal to Noise Ratios . . . . . .. .. ... .. 104

7 Holography and Diffractive Optical Elements 109
7.1 Introduction to DOE Based Holography . .. .. .. .. ... ... .... 109
7.2 The CAD of DOEs for Holography . . . . .. .. .. ... .. ... ... 111
7.2.1 Least Square Approximation of the 2D Phase Unwrapping Problem 113

7.2.2 Creating DOEs with Substructure Width Resolution . . . . . . . . 115

7.3 Analysis of Experimental Data . . . . . ... .. .. ... ... ...... 117
Ted:l, Introdiction v s s p 0 s S BB ES E P D EP SRS EP SN E B 5 3 117

7.3.2 Experimental Data and its Analysis . . . .. ... .. ....... 117

7.3.3 Analysis of the Experimental Data . . . . .. ... .. ... .. .. 119

8 Impact of Random Positioning Errors on the Resolution of Fresnel Zone

Plates 127
8.1 The Focal Spot of an FZP Without Positioning Errors . . . . ... .. .. 128
8.2 Simulating Positioning Errors . . . . . .. .. ..o 130
8.3 The Impact of Different Errors . . . . . . .. .. o o000 133
9 Summary and Outlook 139
Acknowledgment 145
Selbststindigkeitserklirung 146

Bibliography 147



CONTENTS 5

A Propagators and Comments to the Programming 159
Al Propagators o oowoc ooz o ow oom o v 8% @ 6 % 5 % D E S 8 8w G e 159
A.l.1 Angular Spectrum Method Based Propagators . . . ... ... .. 159

A.1.2 Fresnel Approximation Based Propagators . . . .. ... ... .. 162

A.1.3 Near and Far Field Approximation Based Propagators . . . . . . . 166

A2 Seopeiofthe PTOPagatorsts « « e v v s 2 v o % 5o & 0w v 58 & 8 5 % 5 b 8 & o 173
A21 Angular Spectrum Method Based Propagators . . . .. . ... .. 174

A.2.2 Fresnel Approximation Based Propagators . . . . .. ... ... .. 174

A.2.3 Near and Far Field Approximation Based Propagators . . . . . .. 176

A4 Examples @ o socup s e o8 @it By N B UL B0 EE 50 180

B Simulation of TXM and CTXM 185
B.1 Theoretical Background of the Simulation . . .. . ... .. ... ... .. 186
B.1.1 Mathematical Formulation of the Simulation . ... ... ... .. 187

B2 Tmplementation = « o s s o np s e: 8 @i fs e Bif e @Idss BYasna 191
B.2.1 Implementation of the Confocal Microscopy Simulation. . . . . . . 191

B.2.2 Implementation of the Incoherent Microscopy Simulation . . . . . . 199

B.2.3 Implementation of the Partially Coherent Microscopy Simulation . 206

C Phase Unwrapping and DOEs 217
C.1 Phase Unwrapping . . . . . . . . o 0 o i it it e e e 217
C.2 Generating DOEs Using High Orders of Diffraction . . . . . ... ... .. 220
0.3 FIH Experimontiat S XBI v o oo somow o omos w oo o w0 oo 0w w0 o oo 222

D Potential Application of DOEs as Condensers for Transmission Mi-
Croscopy 229
D.1 DOE Based Zernike Phase Contrast Imaging . . . ... .. ... ... .. 229

D.1.1 Example for Zernike Phase Contrast . . . . ... .. ... ... .. 233
D.2 High Order DOEs for Dark Field TXM Imaging . ... .. ... ... .. 234
D2l SSFEIERIONS, s 5o w moae o s o 26 o e 0o oo O Fo 40 6 0 DNO B0 0 N 30 O R 4 D 237
D.3 A Condenser for TXM and In-line Holography . . ... .. ... ... .. 237
D.3.1 Construction of the Condenser . . . . ... ... .. ... ..... 239

E Additional Information and Programming 245
E.1 Generating a 3D Phantom . . . . . . .. .. ... 245
E.2 Properties of the Fourier Transform . . . . . ... ... .. ... .. ... 254

E.21 Fourier Transform . . . ... .. .. ... .. ... ... ... 254
E.2.2 Properties of the Convolution . . .. . ... ... .......... 256
E.3 Excerpt of Applied Theorems . . . . . . .. . .. . it o ... 25
E.3.1 Blackwell-Girshick Equation . . . . . . ... ... .. ... ..... 256
Hydi2 Wald SCHGatIon: o oo oo wow owooe o i e w0 06 5o 0 o 0 3w o 08 R a8 b S 25

E.3.3 Taylor Expansions for the Moments of Functions of Random Vari-
ABlER s o v s ns o w w n ns e W E GBI A N H K S R N G @ RGN DR E 256



CONTENTS



List of Figures

2.1
2.2
2.3
24
2.5
2.6

3.1
3.2
3.3
3.4

4.1
4.2
43
44
45
4.6
4.7
4.8
49
4.10
411

-
[
]

(2 By B B B
[ R

(o> xR o]
L B

Figure of used notation . . . . . .. . .. .. ... 29
Coherent diffraction imaging setup . . . . . . .. . ... ... 31
PtychOgraphy-getill - o v s oo om w s oser om0 s oiar 6w @ % 4 @ w0 @ 6 A @ @ s 32
Holography setups . . . . . . . . . . . . 34
Optical setup of a scanning transmission X-ray microscope . . . . . . . . . 37
Transmission X-ray microscopesetup . . . . . .. . .. ... 38
Notation for wave propagation . . . .. ... .. . ... .. ... ... .. 44
Comparison of the Fresnel approximation and the NFFA . . . . .. . .. 47
Example: Propagation of Gaussian beams . . . . . ... .. .. ... ... 51
Example: Lens illuminated by a plane wave . . . . .. . .. ... ... .. 52
Segmentation of a TXM based cell image . . . . . . ... .. ... .. ... 60
Discretization of a membrane for the TXM simulation . .. ... ... .. 61
Examples for phantom generating algorithms . . . . . . .. ... ... .. 63
Tomography with under sampled projections. . . . . . . .. ... ... .. 68
Tomography with missing cone artifacts . . . .. . ... .. ... .. ... 69
Example: Violation of the projection slice theorem . . . .. .. . ... .. 70
Simulated incoherent and experimental TXM images . . . . .. . .. . .. 71
Simulated incoherent and experimental 3D reconstruction . . . . .. . .. 72
Simulated partially coherent and experimental TXM images . . . . . . .. 75
Simulated partially coherent and experimental 3D reconstruction . . . . . 76
Comparison of finite depth of focus effects for 310 eV . . . . . . . ... .. 77
Comparison of finite depth of focus effects for 510 eV . . . . . . . ... .. 7T
Confocal light microscope setup . . . . . . . . .. . ... ... 80
Incoherent confocal point spread function . . . . . ... .. ... ... .. 82
X-ray optical setup of the confocal STXM . . .. . ... .. ... ... .. 85
Comparison of confocal and TXM image. . . .. . ... .. .. ... ... 88
Resolution estimates by linescan. . . . . . . . .. . ... ... ... 89
Optical setup of the dual beam FIB-SXM with electron detection . . . . . 93
Comparison of the image quality of FIB-SXM and TXM . . ... ... .. 94
Large version of figure 6.2 . . . . . . . . .. . .. ... e 95

-1



7.1
7.2
7.3
74
7.5
7.6
7.7
7.8

8.1
8.2
8.3
8.4
8.5

Al
A2
A3

B.1
B.2
B.3
B4
B.5
B.6

C.1
C2
C.3
C4
C.5
C.6
C7
C.8

D1
D.2
D.3
D4
D.5
D.6
D.7

LIST OF FIGURES

Photon density depending on resolution . . .. .. . ... .. ... .. .. 105
Photon density depending on resolution (enlarged). . . ... ... .. .. 106
Notmal FTHSeUD ¢ s ¢ o v s ¢ o @ 0 s s 6 S s 80 S0 6556 80885 o4 111
FTH setup based on a diffractive optical element . . . . . .. .. ... .. 112
Examples: 2D least-squares phase unwrapping . . . . . . . .. ... .. .. 115
Fxgmipless Higheriorder DOES & sow o v o v o v s no s o5 5oms e v w5 56 116
Comparison between predicted and measured spot produced by a DOE . . 118
LM image and FTH reconstruction of an extended test object . . . . . . . 122
Details from the FTH reconstruction . . . . . ... ... ... ... .... 123
FTH GUI for the semi-manual positioning and stitching . . . ... .. .. 124
Impact of the central stop on the focal spot pattern of an FZP . . . . . . 129
Mlustration of the different types of positioning errors . . . . . .. . .. .. 131
The impact of the substrate roughness on the focal pattern . . . . . . .. 134
Plots showing the mean MTF of some FZP . . . . . ... .. .. ... .. 135
Plots showing the MTF of FZP for different production parameters . . . . 136
Example: Numerical propagation of Gaussian beams . . . . . ... .. .. 181
Example: Back propagation of white squares . . . . ... .. ... .. .. 182
Notation and Comparison of Fresnel and NFFA Il . ... .. ... .. .. 183
Coordinates used for the TXM simulation. . . . .. ... .. .. ... .. 186
Simulation of a confocal microscope . . . . . . . ... ... 190
Simulation of a transmission microscope . . . . . .. ... 191
Comparison of TXM and confocal STXM images . . ... .. ... .. .. 192
Effects of sampling and defocus on the tomographic reconstruction. . . . . 214
Partially coherent simulation . . ... .. .. . ... ... ... ... ... 215
Example: 47 residues and phase unwrapping . . . . . . . .. .. ... .. 219
Example: Least-squares and Itot phase unwrapping algorithm . . . . . . . 220
Algorithm for the design of higher order DOEs . . . . . . .. ... .. .. 221
FTH setup based on a diffractive optical element . . . . . .. ... .. .. 223
Details of the sample for the FTH experiment . . . . .. . .. .. .. ... 224
Numerically predicted results of the FTH experiment . . . . . .. . .. .. 226
Regultyiorthe P TH EXPeTitieit,: « suw o v o s © v & 5o 6 o % 5 ms 8 ¢ % 5 556 s 227
Design of the XRL based FTH experiment . . . . . . .. ... ... .... 228
Concept of Zernike phase contrast . . . . .. . ... ... .. ... .. .. 231
Optical setups for Zernike phase contrast . . . . . . . ... .. .. ... .. 232
Simulated Zernike phase contrast images of a phase object . . . . . .. .. 233
Soft X-ray dark and bright field imaging setups . . . . . . .. .. ... .. 235
Soft X-ray dark and bright field simulation. . . . .. ... .. .. ... .. 236
Setup for a combined in-line hologram and TXM experiment . . . . . . . . 238

Sketch of the distances that define the pattern of the DOE . . . . . .. .. 239



LIST OF FIGURES 9

D.8 Example: Illumination in the sample area . . . . . ... .. ... .. ... 241
D.9 Example: Combined in-line holograms. . . . . .. . ... .. ... .. ... 242



10

Abstract

X-ray imaging offers a large penetration depth, good element contrast and short
wavelength. This unique combination enables imaging of thick samples at high
resolution, thus bridging the current gap between optical microscopy and electron
microscopy. As a result, X-ray imaging has become an extremely valuable tool for
many applications in life and materials sciences.

Among the X-ray imaging methods, 3D X-ray microscopy based on nanoscale
soft X-ray tomography has to date found the widest application, most notably in
the life sciences. However, the principles of tomographic reconstruction based on
linear projection are already violated for most biological cells, since their thickness
exceeds the depth of focus of current zone plate objectives. This problem only
worsens as the lateral resolution of zone plate objectives improve to 10 nm. To
understand the effect of the limited depth of focus on tomographic reconstructions,
we have investigated the imaging process in the X-ray microscope using a 3D cell
phantom. We find that only a sub-region of the phantom lying within the depth of
field is resolved at the resolution given by the X-ray objective, whereas phantom
structures outside of this region are increasingly blurred. Furthermore, consistent
with experimental observations of real specimens, we find that the obtainable 3D
resolution for soft X-ray tomography of biological specimens is limited to about 30
nm. For some applications this 3D resolution is insufficient, and moreover in many
cases specimen thickness exceeds the depth of focus thereby reducing the resolution
outside of the specimen’s central region. As a consequence, in this thesis we have
used the 3D phantom to investigate the performance of alternative 3D nanoscale
X-ray imaging methods in order to provide guidance for future developments in
X-ray microscopy.

In light microscopy, the confocal principle is an established method for 3D op-
tical sectioning. Here we have investigated the 3D resolution performance of its
X-ray counterpart, the confocal scanning transmission soft X-ray microscope. In
confocal light microscopy, image formation includes an incoherent process due to
fluorescent light emission from the specimen. As a result, the 3D resolution for an
infinitely small detector is given by the square of the point spread function of the
objective. In contrast, in confocal X-ray microscopy, the interaction of X-rays with
the object leads to an attenuation and phase shift of the incident wave. As a re-
sult, image formation in the X-ray confocal microscope must be based on the wave
propagation of coherent X-rays. Here we simulate the X-ray confocal microscope
assuming a zone plate objective with 10 nm lateral resolution. We show that this
confocal setup achieves a lateral resolution comparable to that obtained for the
transmission soft X-ray microscope. However, the depth resolution is significantly
worse vielding only 300 nm. Although this poorer depth resolution degrades the
overall 3D resolution performance of the confocal X-ray microscope, the confocal
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approach has the advantage that it is a direct imaging method without the need
for the complex computational algorithms currently required for the tomographic
reconstructions of the transmission X-ray microscope. Nevertheless, we conclude
that the confocal X-ray microscope is not superior to the current soft X-ray tomog-
raphy approach, at least with current X-ray objectives that yield only low depth
resolution.

In this thesis, we also investigate another completely new approach to 3D X-
ray imaging that is based on scanning X-ray microscopy combined with focused
ion beam milling, which we term FIB-SXM (Focused Ton Beam — Scanning X-
ray Microscopy). In FIB-SXM, a high resolution Fresnel zone plate generates
a nanoscale focal spot that is scanned over the surface of the object. At each
scanned spot, photoelectrons are emitted from the object in proportion to the
local absorption coefficients at that location. The surface scan therefore yields the
image of the top layer of the specimen to a depth corresponding to the escape
depth of the electrons. To generate 3D data, a focused ion beam is then used to
remove the surface layer, and then the spot scan is repeated at the new surface.
Iteration of milling and scanning therefore builds up a 3D image stack in the slice
and view mode. In this thesis, we have evaluated the 3D resolution performance of
FIB-SXM by simulating the image formation process. We show that FIB-SXM can
achieve an isotropic resolution of 10 nm due to the short escape length (< 10 nm)
of the emitted electrons and the small size of the focal spot. Surprisingly, we also
find that FIB-SXM, by virtue of its electron detection mode, can operate at a dose
three orders of magnitude lower than any transmission technique. Thus FIB-SXM
offers high isotropic resolution at significantly lower dose, and as such overcomes
severe limitations of all current transmission methods for 3D X-ray imaging.

Another limitation of current soft X-ray microscopy methods is time resolution.
Although free electron lasers (FELS) provide short X-ray pulses with femtosecond
resolution, imaging with these short coherent X-ray pulses is very challenging. In
this thesis, we propose a new holography approach based on Fourier transform
holography and novel diffractive optical elements. Our method differs from pre-
vious soft X-ray Fourier transform holography approaches by using a diffractive
optical element to generate the illumination of both the sample and the reference.
The main advantages of the new method are its fast imaging, extended field of
view and its decoupling of optics and sample. To investigate the resolution per-
formance of the new method we perform both theoretical calculations and proof
of concept experiments using synchrotron light from BESSY I1. Our experimental
and theoretical results reveal the potential of this holography method for future
imaging experiments at FELSs.

Finally, for all lens-based soft X-ray imaging experiments, it is critical to under-
stand the imaging performance of Fresnel zone plates. While effects of systematic
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zone positioning errors have been known for a long time, the effects of random
zone-positioning errors have remained unclear. Zone plates are mainly produced
by electron beam lithography and planar etching techniques. For hard X-rays,
an alternative zone plate fabrication approach is based on alternately coating a
micro-wire with two different materials. With this process, very thin zone layers
with very high aspect ratios can be deposited. However, depending on the fabri-
cation method, random zone positioning errors may introduce strong aberrations.
To understand these effects, we studied the effects of positioning errors on zone
plate resolution using different random fluctuations. We found that random er-
rors significantly decreased the contrast transfer of X-ray microscopes. We also
determined an upper bound for the mean acceptable variance of the zone-plate
deposition rate.

In summary, we have characterized the limitations of the most powerful and
widely used 3D X-ray imaging approach, transmission X-ray microscopy with to-
mographic reconstruction. We show that 3D resolution in this approach is limited
by the depth of field. To investigate alternatives, we perform simulations of a
confocal transmission X-ray microscope and a FIB-SXM. We show that FIB-SXM
is a very promising approach that could offer 3D isotropic resolution at 10 nm
with dramatically improved signal to noise. We also introduce a new holography
method that could prove beneficial for full field imaging with short coherent X-ray
pulses and yield new insights into ultrafast physics.
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Zusammenfassung

Die Vorteile der Rontgenmikroskopie bestehen darin, dass Rontgenlicht eine hohe
Eindringtiefe, einen guten Elementkontrast und eine kurze Wellenldnge aufweist.
Diese einzigartige Kombination erméglicht die Abbildung von dicken Proben mit
hoher Auflésung und iiberbriickt so die Liicke zwischen der optischen Mikroskopie
und der Elektronenmikroskopie. Damit haben sich rontgenbasierte Mikroskopie-
methoden zu einem dufkerst wertvollen Werkzeug fiir viele Anwendungen in den
Material- und Lebenswissenschaften entwickelt.

Unter den réntgenbasierten, bildgebenden Verfahren hat die 3D-Rontgenmikro-
skopie auf Basis der Rontgentomographie bislang, vor allem in der Biologie, die
breiteste Anwendung gefunden. Allerdings sind die Prinzipien der tomographischen
Rekonstruktion, die auf der linearen Projektion beruhen, bereits fiir die meisten
biologischen Zellen verletzt, da deren Dicke die Schirfentiefe der gegenwéirtigen Zo-
nenplatten iibersteigt. Dieses Problem verschérft sich, wenn man die laterale Auf-
l6sung der Zonenplattenobjektive auf 10 nm erhéht. Um den Effekt der begrenzten
Schirfentiefe auf die tomographischen Rekonstruktionen zu verstehen, haben wir
die Bildentstehung im Rontgenmikroskop auf Basis eines 3D-Zellphantoms unter-
sucht. Wir fanden, dass nur ein Teilbereich des Phantoms, welcher innerhalb der
Schirfentiefe liegt, mit der Auflosung des Rontgenobjektivs aufgelost wird. Mit
zunchmender Entfernung von diesem Bereich, werden die Phantomstrukturen zu-
nehmend verschwommener abgebildet. In Ubereinstimmung mit experimentellen
Beobachtungen an realen Proben haben wir weiterhin festgestellt, dass die erziel-
bare 3D-Auflésung fiir die weiche Rontgentomographie fiir biologischen Proben
auf etwa 30 nm begrenzt ist. Fiir manche Anwendungen ist diese 3D-Auflosung
unzureichend. Zusétzlich tibersteigt die Probendicke in vielen Féllen die Schirfen-
tiefe, wodurch die Auflésung aukerhalb des zentralen Bereichs der Probe zusétz-
lich verringert wird. Daher haben wir in dieser Arbeit das 3D-Phantom verwendet,
um die Leistung von alternativen réntgenbasierten, 3D-bildgebenden Verfahren zu
untersuchen. Diese Untersuchungen geben uns eine Orientierung fiir zukiinftige
Entwicklungen.

In der Lichtmikroskopie ist das konfokale Prinzip eine etablierte 3D-Bildge-
bungsmethode. In dieser Arbeit haben wir das rontgenbasierte Gegenstiick, die
konfokale Rastermikroskopie mit weicher Rontgenstrahlung, auf die erzielbare 3D-
Auflésung untersucht. Bei der konfokalen Lichtmikroskopie enthilt die Bildent-
stehung einen inkohérenten Prozess aufgrund der Fluoreszenz der Probe. Daraus
resultierend ergibt sich die 3D-Auflésung fiir einen unendlich kleinen Detektor
durch das Quadrat der Punktspreizfunktion des Objektivs. Im Gegensatz dazu
fithrt bei der konfokalen Réntgenmikroskopie die Wechselwirkung von Rontgen-
strahlen mit dem Objekt zu einer Ddmpfung und Phasenverschiebung der einfal-
lenden Welle. Folglich muss die Bildentstehung im konfokalen Réntgenmikroskop
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auf der Wellenausbreitung kohérenter Rontgenstrahlen basieren. Hier simulieren
wir das konfokale Rontgenmikroskop unter der Annahme eines Zonenplattenobjek-
tivs mit 10 nm lateraler Auflésung. Wir zeigen, dass dieser konfokale Aufbau eine
laterale Auflosung erreicht, die mit der des konventionellen transmissionsbasierten
Rontgenmikroskops vergleichbar ist. Allerdings betrigt die Tiefenauflosung ledig-
lich 300 nm. Obwohl diese schlechtere Tiefenauflosung die 3D-Auflésung des kon-
fokalen Rontgenmikroskops verschlechtert, hat der konfokale Ansatz den Vorteil,
dass es sich um ein direktes Abbildungsverfahren handelt, welches ohne komple-
xe Algorithmen auskommt. Tomographische Rekonstruktionen hingegen erfordern
einen hohen Rechenaufwand und eine komplexe Vorbereitung der Daten. Trotz-
dem ist das konfokale Rontgenmikroskop dem heutigen weichen réntgenbasierten
Tomographieansatz unterlegen, zumindest mit aktuellen Rontgenobjektiven, die
nur eine geringe Tiefenauflosung aufweisen.

In dieser Arbeit untersuchen wir auch einen weiteren, vollig neuen Ansatz
fiir ein réntgenbasiertes, bildgebendes Verfahren, der auf einer Kombination aus
Rasterrontgenmikroskopie und fokussiertem Ionenstrahlfrisen basiert. Dieser An-
satz wird hier als FIB-SXM (Focused Ton Beam Scanning X-ray Microscopy) be-
zeichnet. Bei der FIB-SXM erzeugt eine hochauflésende Fresnel-Zonenplatte einen
Brennfleck im Nanometerbereich, der iiber die Oberfliche des Objekts gescannt
wird. An jedem abgetasteten Punkt werden Photoelektronen vom Objekt in Ab-
hingigkeit von den lokalen Absorptionskoeffizienten an dieser Stelle emittiert. Die
Oberflichenabtastung ergibt daher das Bild der oberen Schicht der Probe bis zu
einer Tiefe, die der Austrittstiefe der Elektronen entspricht. Um 3D-Daten zu erhal-
ten, wird dann ein fokussierter Ionenstrahl verwendet, um die Oberflichenschicht
zu entfernen. Die neu entstandende Oberfliche wird erneut mit dem Brennfleck
abgescannt. Iterationen von Frisen und Scannen bauen so einen 3D-Bildstapel
im Slice- und View-Modus auf. In dieser Arbeit haben wir die erreichbare 3D-
Auflésung fiir FIB-SXM durch Simulation der an der Bildentstehung beteiligten
Prozesse simuliert. Wir zeigen, dass FIB-SXM aufgrund der kurzen Austrittslénge
(<10 nm) der emittierten Elektronen und der geringen Groéfe des Brennflecks so-
wie der hohen Prizision Friasvorgangs eine isotrope Auflésung von 10 nm erreichen
kann. Uberraschenderweise finden wir auch, dass FIB-SXM aufgrund seines Elek-
tronenerfassungsmodus bei einer drei Grofenordnungen niedrigeren Dosis arbeiten
kann als rontgenbasierte Transmissionsmethoden. Somit bietet FIB-SXM eine ho-
he isotrope Auflésung bei einer signifikant niedrigeren Dosis und iiberwindet so
eine der stirksten Beschrinkungen aller gingigen rontgenbasierten Transmissions-
verfahren fiir die 3D-Bildgebung.

Eine weitere Einschrinkung der derzeitigen Mikroskopieverfahren im weichen
Rontgenbereich ist die Zeitauflosung. Obwohl freie Elektronenlaser (FELs) kurze
Rontgenpulse mit Femtosekundenauflésung bieten, ist die Abbildung mit diesen



15

kurzen, kohérenten Pulsen eine grofe Herausforderung. In dieser Arbeit schlagen
wir einen neuen Holographieansatz vor, der auf der Basis der Fourier-Transforma-
tions-Holographie beruht. Unsere Methode unterscheidet sich von fritheren Holo-
graphieansitzen durch die Verwendung eines diffraktiven optischen Elements, um
die Beleuchtung sowohl der Probe als auch der Referenz zu erzeugen. Die Haupt-
vorteile der neuen Methode sind die schnelle Bildgebung, das erweiterte Sichtfeld
und die Entkopplung von Optik und Probe. Um die Auflésung der neuen Methode
zu untersuchen, fithrten wir sowohl theoretische Berechnungen als auch Experi-
mente mit Synchrotronstrahlung von BESSY II durch. Unsere experimentellen
und theoretischen Ergebnisse zeigen das Potential dieser Holographiemethode fiir
zukiinftige Experimente an FELs.

Fiir alle linsenbasierten, bildgebenden Experimente im Rontgenbereich ist es
entscheidend, die Abbildungseigenschaften von Fresnel-Zonenplatten zu verstehen.
Wiéhrend die Auswirkungen von systematischen Zonenpositionierungsfehlern seit
Langem bekannt sind, sind die Effekte von zufélligen Zonenpositionierungsfehlern
unklar geblieben. Zonenplatten werden hauptsichlich durch Elektronenstrahllitho-
graphie und planare Atztechniken hergestellt. Fiir harte Rontgenstrahlen beruht
ein alternativer Zonenplattenherstellungsansatz darauf, abwechselnd einen Mikro-
draht mit zwei verschiedenen Materialien zu beschichten. Mit diesem Verfahren
konnen sehr diinne Zonenschichten mit sehr hohen Aspektverhéltnissen abgeschie-
den werden. Abhéngig von dem Herstellungsverfahren kénnen jedoch zufillige Zo-
nenpositionierungsfehler zu starken Aberrationen fithren. Um diese Effekte zu ver-
stehen, untersuchten wir die Auswirkungen von Positionierungsfehlern auf das Auf-
losungsvermogen der Zonenplatten unter Verwendung unterschiedlicher zuféilliger
Fluktuationen. Wir fanden heraus, dass zuféllige Fehler zu einer deutlichen Reduk-
tion der Kontrastiibertragung fiihren kénnen. Wir haben auch eine obere Schranke
fiir die mittlere akzeptierbare Varianz der Zonenabscheidungsrate bestimmt.

In der Arbeit haben wir die Grenzen der weit verbreiteten tomographischen
Rekonstruktion von 3D-Proben mittels Transmissionsrontgenmikroskopie charak-
terisiert. Wir zeigen, dass die 3D-Auflosung mit diesem Ansatz durch die Schér-
fentiefe begrenzt ist. Zur Untersuchung von Alternativen fiihrten wir Simulationen
zur Bildentstehung in einem konfokalen Rontgenmikroskop und einem FIB-SXM
durch. Wir zeigen, dass FIB-SXM e¢in vielversprechender Ansatz ist, der eine iso-
trope 3D-Auflésung um die 10 nm erreichen kann und zusétzlich ein drastisch
verbessertes Signal-Rausch-Verhiltnis bieten kénnte. Wir stellen auch eine neue
Holographiemethode vor, die sich fiir Vollfeldabbildungen mit kurzen kohérenten
Rontgenpulsen als vorteilhaft erweisen und neue Einsichten in die ultraschnelle
Physik liefern kénnte.
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Notation

Throughout the thesis, parentheses (()) are either used to indicate a new symbol
without explicitly defining it, e. g. the electric field (E) or to group mathematical
expressions, e. g. 2- (14 1) = 4. Square brackets ([]) are used for arguments of
functions, for closed intervals and citations, e. g. exp[0] =1, 1 € [0,1] or [51].



Nomenclature

dry outermost zone width

CDI coherent diffraction imaging

CSTXM  confocal scanning transmission X-ray microscope
DOE diffractive optical element

DOF depth of focus

ePIE extended ptychography iterative engine
FEL free electron laser

FFT fast Fourier transform

FIB focused ion beam

FIB-SXM focused ion beam milling scanning X-ray microscope
FTH Fourier transform holography

FWHM  full width half maximum

FZpP Fresnel zone plate

MTF modulation transfer function

NA numerical aperture

NFFA wide-angle near and far field approximation
0OSA order sorting aperture

OTF optical transfer function

PSF (intensity,/ amplitude ) point spread function
rms root mean square

(5
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SNR signal to noise ratio
STXM scanning transmission X-ray microscope

TXM transmission X-ray microscope



Chapter 1

Introduction

Microscopes play an important role for industrial applications and natural science.
In particular, microscopy has found many applications in life science, for example
by studying diseases at the cellular level. In energy research, microscopy plays a
crucial role for the development of efficient energy storage devices.

The first light microscopes were developed in the Netherlands around 1620. In
1873, Abbe noted that light microscopes are diffraction limited by the wavelength.
Their best achievable resolution is about half of the wavelength of the light used.
In practice, conventional light microscopes can only resolve structures of about
a quarter micrometer. Although their resolution is limited, their easy usage and
versatility make them the most commonly used type of microscopes. They have
become valuable tools for biology, physics and materials science. This versatility
is partly due to the efforts made to develop different contrast mechanisms. These
variations of the light microscope enable the study of otherwise invisible samples.
The different contrast methods include dark field, Zernike phase contrast and
differential interference contrast microscopy.

Smaller structures than given by Abbe limit can be resolved by modern super-
resolution methods. Photoactivated localization microscopy (PALM) [4] and stochas-
tic optical reconstruction microscopy (STORM) [71] use statistic analysis of fluo-
rescence signals to overcome the diffraction limit. Other super resolution methods
such as stimulated emission depletion microscopy (STED) [37] and ground state
depletion microscopy (GSD) [36] use non-linear excitation of fluorophores to in-
crease the resolution. While in these super-resolution microscopes, the center of
the fluorophores is determined with up to a precision of a few nanometers, the
non-fluorescent cellular structures surrounding the fluorophores are not imaged.

In 1924, de Broglie published his hypothesis that matter exhibits a wave-like
behavior. The transmission electron microscope (TEM) [47] makes use of the sig-
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nificantly shorter de Broglie wavelength of electrons permitting atomic resolution.
However, due to the strong inelastic scattering of the electrons in the sample, the
resolution decreases with increased thickness of the sample. In practice, TEM ap-
plications are limited to sub-micrometer thin samples. Another form of electron
microscopy 18 scanning electron microscopy (SEM). In SEM, a focused electron
beam is raster scanned over the surface of a sample. The electron beam generates
secondary and back-scattered electrons which carry information about the sur-
face topology of the sample. Additionally, characteristic X-rays are also generated
which can be used to analyze the elemental composition of the sample.

Similar to electrons, X-rays have significantly shorter wavelengths than visible
light. Therefore, X-ray microscopes can potentially achieve very high resolution.
In addition, X-rays have the advantage that they can penetrate thicker objects
than electrons can. Furthermore, X-rays exhibit a stronger energy and material-
dependent element contrast. This contrast is due to atomic inner-shell transitions.
One energy range which is well suited for biological applications is the so-called
water window between the K-absorption of carbon (283 €V) and oxygen (531 €V).
Since cell structures mainly consist of carbon rich proteins embedded in water,
they exhibit a strong natural element contrast in the water window [107]. Due
to this contrast, cells can be studied at these energies without artificially staining
their structures [77].

Microscopy Method Resolutions 2D Object thickness Interaction / Contrast Limitation
LM = 200 nm absorption/ phase shift wavelength
S1 = 100 nm fluorescence wavelength
Super-resolution = 10 nm fluorescence SNR
TXM 10nm <10 pm absorption/ phase shift SNR/optics
TEM < 0.1nm <0. 5 pm inelastic / elastic scattering SNR
SEM < 1nm surface surface information sample
SNOM = 30nm surface surface information Lip

Table 1.1: Comparison of different microscopy methods. (Light microscopy (LM),
structured illumination (SI), super-resolution methods, transmission X-ray mi-
croscopy (TXM), transmission electron microscopy (TEM), scanning electron mi-
croscopy (SEM) and scanning near field optical microscopy (SNOM). ) Note that
X-ray imaging offers a unique combination of high resolution and large object
thickness.

In table 1.1, different microscopy methods are compared with regard to their
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resolution for typical biological samples. It is noteworthy that soft X-ray mi-
croscopy is almost ideally suited for studying the ultra-structure of cells since it
combines high penetration depth, high 3D resolution and photon energy dependent
object contrast. The combination of these three properties enables the imaging
of whole cells in their almost natural state. Both soft X-ray microscopy and light
microscopy can image whole cells. Therefore, X-ray imaging is also well suited
for correlative light and X-ray microscopy. The correlative microscopy approach
combines the information about the cellular ultra-structure obtained by soft X-
ray imaging with functional properties imaged by fluorescence light microscopy
[34, 82].

Over the last decades, various X-ray microscopy methods have been developed.
One class of X-ray imaging techniques makes use of X-ray lenses. These so-called
Fresnel zone plates were suggested for X-ray microscopy in the 1950s [58, 2] and
first experiments were conducted in the 70s [75]. This class contains full field
transmission soft X-ray microscopy (TXM) [77] and scanning soft X-ray transmis-
sion microscopy (STXM) [45, 60]. Both methods have found many applications in
life and materials sciences. Currently, full field transmission soft X-ray microscopy
generates the best images of whole cells. One of the main challenges in the de-
velopment of lens based soft X-ray microscopy was that for this photon energy
range (100 eV - 5 keV) the ratio between absorption and phase shift is too large
to manufacture efficient refractive lenses. Therefore, soft X-ray microscopes use
diffractive optics, the previously mentioned Fresnel zone plates. These optics are
technically challenging to manufacture with high apertures (see chapter 8). In
contrast to their refractive counterparts in light microscopy, Fresnel zone plates
generate several focal spots which correspond to different orders of diffraction and
the positions of these focal spots depends on the wavelength. In practice, Fresnel
zone plates have an efficiency of 5 - 35 percent [64, 103|, because the incident
intensity is distributed into many orders of diffraction but only one order is used
for imaging.

An alternative approach, namely lens-less X-ray imaging techniques, is based on
Fraunhofer diffraction theory. These techniques recover the image of a sample from
its far-field scattering signal [23, 20]. According to Fraunhofer diffraction theory,
the far-field scattering pattern of a complex scalar wave is proportional to the
Fourier transform of the wave. Since the scattering signal is directly detected, no
lens is needed and theoretically the resolution should only depend on the aperture
created by the propagation distance and the dimensions of the detector. However,
X-ray detectors are only sensitive to the incident intensity. Hence, the information
carried in the phase of the complex wave is lost. This phase is needed to deduce
the real space image of the sample from its reciprocal space scattering signal.
Therefore, the phase of the signal has to be recovered by auxiliary means. The
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recovery of the real space image is further complicated if the signal to noise ratio is
low. The signal to noise ratio depends on the strength of the scattering signal which
is typically low for non- crystalline, weak contrast samples, such as cells. The signal
to noise ratio can be increased by exposing the sample to higher doses but most
biological samples are damaged by large radiation doses. Due to these limitations,
high resolution imaging of such samples with lens-less methods is challenging.

Life science is one of the most important but also most difficult applications
for soft X-ray imaging. Cells are true 3D nanoscale objects and their internal
structure typically covers a wide range of dimensions. Currently, the most detailed
X-ray based 3D images of whole cells are achieved with soft X-ray transmission
microscopes. However, the 3D resolution is anisotropic and limited to about 30
nm which is still much coarser than most of the cellular structures [83, 34]. In
this thesis, we will analyze the fundamental limitations of TXM tomography by
numerical and theoretical means. Furthermore, new concepts for high resolution
soft X-ray imaging will be presented.

Currently, transmission X-ray microscopes operate at many electron storage
rings around the world, and have been used to solve biological and medical prob-
lems [12, 44, 34, 6]. For along time, the improvements in resolution were driven by
better optics which improved the lateral resolution. Nowadays, soft X-ray micro-
scopes have reached a point where improvements in the lateral resolution no longer
translate into better 3D resolution. This is mainly due to the decrease of the depth
of focus (DOF) with increased lateral resolution. The depth of focus limits the 3D
resolution since the reconstruction of the sample is done via tomography. For to-
mography, one takes a series of images under different rotation angles. One central
assumption in tomography is that the images are generated through a projection
along a ray. This assumption is violated as soon as the depth of focus is smaller
than the sample. In addition, the effects produced by a fixed partially coherent
illumination and by dose induced chemical breakdown also increase with higher
resolution. In order to study the different effects and analyze their impact on
the tomographic 3D reconstruction, incoherent and partially coherent simulation
methods for transmission X-ray microscopes are developed in chapter 4.

In this thesis, a new concept for direct 3D imaging with soft X-rays is also
analyzed. It is based on optical sectioning and raster-scanning of a sample. This
concept is also used by confocal light microscopy. In these microscopes, the image
is generated by scanning the sample through a common focal point of condenser
and objective and detecting the transmitted signal with a point-like detector. This
setup has the advantage that the signal originates from a small area around the
common focal point of the lenses. A 3D image is then directly generated by corre-
lating the positioning data with the detected signal strength. Since no additional
steps for alignment and 3D reconstruction are necessary, such methods directly
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generate a 3D image stack. The properties and capabilities of such a confocal
scanning transmission soft X-ray microscope (CSTXM) are analyzed in chapter 5.

A completely different 3D imaging approach compared to the previously men-
tioned transmission methods is based on combining high resolution surface imaging
by X-rays and high precision surface removal. An analogous approach is the com-
bination of scanning electron microscopy and focused ion beam milling (FIB-SEM)
to produce high resolution 3D images. This FIB-SEM method was originally de-
veloped for the semiconductor industry but has now also been successfully applied
to cryogenic biological samples |74]. In this thesis, a similar method is analysed
which is based on scanning soft X-ray microscopy and photoelectron detection
for surface imaging. In this FIB-SXM approach, a soft X-ray beam is focused
onto the surface of the sample. Photoelectrons are emitted from the illuminated
surface layer. Due to the relatively low photon energy of soft X-rays, the gener-
ated electrons also have relatively low energies. Therefore, the electrons can only
escape from a thin surface layer (<10 nm). Thus, the method has an excellent
depth resolution. Using X-rays instead of electrons has the additional advantage
of a significantly better element contrast for cells. In chapter 6, we introduce this
novel 3D imaging approach and investigate its potential performance by numerical
simulations.

New X-ray sources, like free electron lasers, now offer short-pulsed, coherent
X-ray beams and allow to tackle new scientific questions. In particular, imag-
ing with a single femtosecond-pulse enables the analysis of fast processes [65].
These new coherent sources also require novel approaches for X-ray imaging. In
chapter 7, a new approach to Fourier transform holography is introduced. It is
based on newly designed diffractive optical elements. The experimental results ob-
tained with these diffractive optical elements are presented. In addition, possible
applications for full field imaging with short pulses from free electron lasers are
discussed. Furthermore, lens based soft X-ray transmission microscopy methods
may also potentially profit from using specially designed diffractive optical ele-
ments. A new approach combines in-line holography and transmission soft X-ray
microscopy. The setup presented in appendix D allows the use of information from
in-line holograms without increasing the dose on the sample. In the same chapter,
a discussion is included of how diffractive optical elements can potentially improve
existing setups for soft X-ray Zernike and dark field contrast.

In summary, this thesis aims to improve our understanding of the soft X-ray
optical setups for high resolution 3D imaging. We investigate the imaging perfor-
mance of different setups by numerical simulations, which allows us to compare
different optical setups and to evaluate their potential performance.
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Chapter 2

Current Status of 2D and 3D X-ray
Imaging

In the following chapters, we investigate the properties of different soft X-ray
imaging methods. In this chapter, we introduce the required theory and present a
selection of the most common soft X-ray imaging methods.

2.1 Advantages of Soft X-ray Imaging

Soft X-rays offer a unique combination of large penetration depth, good element
contrast and short wavelength for microscopy. The short wavelength is a signif-
icant advantage in comparison to light microscopy since the diffraction limited
resolution improves according to the Abbe diffraction limit. For biological sam-
ples embedded in water, the penetration depth of soft X-rays is larger than most
cells. For comparison, the penetration depth of vacuum ultraviolet light is much
smaller so that only very thin samples or surfaces are accessible for imaging. *

Hard X-rays have a higher penetration depth but provide a significantly lower
natural contrast for biological samples leading to higher doses for the same signal
to noise ratio [81]. Both the penetration depth and the contrast depend on the
interaction between X-rays and the material of the sample. Therefore, the image
of a sample generated by the microscope depends on the interaction between X-
rays and sample. In order to understand the imaging process within a microscope,
we now first describe the interaction between soft X-rays and matter. Then, we
analyze the propagation of a scattering signal to the detector.

!Most biological samples are contained in water. The attenuation length (decrease of the
intensity to 1/e) for water at 520eV is = 9.lym. At 50eV it is only =~ 46nm. [CXRO
http:/ /henke.lbl.gov/|
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2.1.1 The Interaction Between Soft X-rays and Material >

Soft X-rays interact with a sample by elastic and inelastic scattering. In the soft
X-ray range between 100eV and 2keV, the dominating inelastic process is absorp-
tion while other effects like Thomson or Compton scattering are negligible. The
absorption process either generates a free photoelectron or lifts a bound electron
into an unoccupied energy state. The excited atom returns to a lower energy state
by filling the vacancy with an electron from an outer shell. The excess energy is
released either via the emission of a photon with a characteristic energy (fluores-
cence) or the emission of an outer shell electron (non-radiative Auger process). If
an electron is emitted, this electron can generate secondary electrons via inelastic
scattering.

The rate of absorption is material dependent. The difference in absorption
between materials is used as a contrast mechanism in soft X-ray imaging. Related
to the absorption is the deposition of energy within the sample which results in
fast, free electrons and finally in broken chemical bonds. Some samples, such as
cells, are relatively sensitive and should generally only be imaged under crvogenic
conditions [81]. Alternatively, short pulses (of a few femtoseconds) can be used.
During the pulse, the atoms cannot move significantly from their original position
although the chemical bonds might break [59]. Therefore, the image shows the
sample in its natural state.

For the elastic scattering process, the X-rays are viewed as electromagnetic
waves®. Hence, they produce a force on the bound electrons of the atoms in the
material. This force drives an oscillation of these electrons. Thus, the electrons
generate a secondary field which produces a phase shift of the incident field. The
amount of phase shift depends on the atomic composition of the material and is
described for each atom by the real part (f;) of the so-called atomic scattering
factor (f). The imaginary parts of the atomic scattering factors (f;) describe the
attenuation of the wave field due to absorption (see also [1]). On a macroscopic
scale, the interaction between material and X-rays is characterized by the complex
refractive index (n[A]). The refractive index is often written as

n=1-8[N+iB[\. (2.1)
Here, B describes the attenuation of the wave and ¢ is the phase shift in comparison

to the propagation in vacuum. If one neglects the interaction of neighboring atoms
on the inner atomic energy states, the refractive index of a material can also be

2The propagation of X-rays and their interaction with material is well described in literature.
Here, we follow [1] and [62].

3The theory that follows holds only for scalar, monochromatic and static fields. Nevertheless,
it is a sufficiently good approximation for the considered imaging methods.
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written as the weighted sum of the (forward) atomic scattering factors over the
type of atoms
2
rn'ar"ﬁe)"- (0) . p(0) 9 ¢
ﬂzl—Z?(l,a—E 2.a ) - (ZZ)
a

Here, n, is the number of atoms of type ”a” per unit volume, r, is the classical
electron radius (= 2.8-107' m) and A is the wavelength of the X-rays.

The inhomogeneous scalar Helmholtz equation (2.3) describes the propagation
of a scalar field (U) within an inhomogeneous medium.* In this formula, the re-
fractive index characterizes the interaction between the scalar field and the sample.

AU + k22U =0 (2.3)

The scalar field U is identified with the field of X-rays, A is the Laplacian and
ky = 27” is the wave number. It is common to rewrite the complex valued scalar
field U as the product of an amplitude A = /I and a phase term exp [i¢]. Here,
I is the intensity and takes non-negative values while ¢ takes values in the real
numbers.

The inhomogeneous scalar Helmholtz equation holds in the absence of free cur-
rent and charge densities in a non-magnetic, slowly varying and weakly scattering
material and can be derived under these conditions from the Maxwell equations
[62, pp.70 (2.28)|. Generally, finding solutions of equation (2.3) is a challenging
problem but for some special cases an explicit solution has been obtained. We now
investigate one example which is essential for the simulations in later chapters.

The solution to the inhomogeneous Helmholtz equation for a plane wave trav-
eling along the z-axis through a homogeneous material with refractive index n =
1 —9+1if can be solved. Since the plane wave is constant for a fixed z, the Lapla-
cian in (2.3) reduces to a second derivative in z and the propagation is described
by

2

%U+k§n2U = 0.

For a constant refractive index, the solution of the differential equation is given
by®
U[2] = U [20] exp [ko (i (1 — 6) — B) (2 — 20)] - (2.4)

Here, U [z] is the value of the field in the zg—plane. According to equation (2.4),
the amplitude of the wave decreases by exp [—kofS (2 — 20)] and the phase changes

4We assume that U is monochromatic and static.
"Here, a choice of sign in the exponential is necessary. Here, it is chosen such that a plane
wave traveling in the positive z direction is given by U [z] = Upexp [i (k z — wt)] .
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relative to the one in vacuum by exp [—ikod (2 — zp)]. This result is strictly speak-
ing only valid for a plane wave and homogeneous material. Nevertheless, it is also
the key assumption of the projection approximation for forward propagating waves
in weakly scattering samples. The projection approximation is used in numerical
simulations during so-called multislice algorithms.

Another simplification is the first Born approximation which assumes that the
incident field is not significantly changed by the presence of the sample. Therefore,
the interaction of the sample with the incident field is well described without taking
into account the interaction of the field produced by the sample with the sample
itself. Both approximations will be discussed in detail in chapter 3.

The Propagation of X-rays in Vacuum
It is assumed that the X-rays are well described by a scalar field U. The free
space propagation of a wave is then described by the homogeneous Helmholtz
equation (2.5)

AU+ KU =0 (2.5)
which results from the imhomogeneous Helmholtz equation (2.3) for n = 1. An
outgoing spherical wave

exp [ikg |[r — ']

Uspherical [T’]

rf

=

is a Green function to the homogeneous Helmholtz equation. That is, it solves the
fundamental equation

(A + k2) [Uj?"m“] — Al lr—a] .

This fact is also used in the (first) Born approximation which approximates the in-
homogeneous Helmholtz equation (2.3) by an inhomogeneous homogeneous Helmholtz
equation

AU+ kU = f.

Here, f is a function which depends on n and on an approximation of U. For the

case of an incident plane wave, this equation implies that the far field pattern is
related to a spherical cut of the Fourier transform of f.

A slightly different Green function is used to solve the propagation in a homo-
geneous medium from an input plane at zp to an output plane at z;. The situation
is shown in figure 2.1. Here, we assume that the two planes are perpendicular to
the z-axis. Then, the Rayleigh-Sommerfeld diffraction integral of the first kind
describes the propagation by

1 21— 2pexplikm
U[mlayl;zl]:af f U [zo, Yo, 20] — %0 exp| m]dxodyo. (2.6)

To1 Tol



2.1. ADVANTAGES OF SOFT X-RAY IMAGING 29

zo-p!ane z -plane

Figure 2.1: Schematic illustration of the notation used. It is assumed that the
wave propagates from the zy plane to the z, plane.

Here, we use k = kon and define the function®

2 2 2
ro = 1/ (@1 — 20)? + (1 — 90)* + (21 — 20)°.
For a thin object and a sufficiently large distance between object and detector,

the diffracted field is approximated by the Fresnel diffraction integral

2z

/ Ulz',y,0] exp [@ (?+ 9’2)] exp l
R2 2Z

Ulz,y,z] = —M exp [% ( a yQ)] (2.7)

Zkﬂ ('z+y y)] dz’' dy’.

Here, it is assumed that U [z/, ¢/, 0] is the wave field at the exit face of the thin
sample. Typically for applications in diffraction microscopy, the sample is small

5This formula is usually deduced from the Helmholtz-Kirchhoff theorem by using the Green
function

pnsyy _ eliklr—rll _ epliklr—ri]

—a gl

Here, 7, is the mirror reflection of r’ with respect to the plane zg. The Helmholtz-Kirchhoff
theorem states [,, (G92ZU —UZG®)do = 47U [Q)] for any Green function G9 and can be
deduced from an application of the Helmholtz equation to the Gauss divergence theorem. See

[62] p.18fE.
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enough and the distance between sample and detector is sufficiently large such
that the Fraunhofer approximation is valid

U[xjy?z] ~ 22’

2wz

f Ulz',y, 0] exp l
R2

The far field is then proportional to the Fourier transform of the field U [z/,y',0].

Lens-less imaging methods try to invert either equation (2.7) or equation (2.8).
The aim is to recover the refractive index distribution of the object. Soft X-ray
detectors only detect the intensity of the incident X-rays. Therefore, the phase
information of the far field is lost. But the phase information is needed, in order
to use equation (2.7) or equation (2.8) to measure respectively the refractive index
or the field at the exit face. The main difference between the existing lens-less
methods is the way this phase information is recovered. We now give a short
overview of lens-less and lens based soft X-ray imaging methods for non-crystalline
samples that can be described by the scalar wave theory.

 Hepliki] l@ (« + 92)] 28

(Z'xz+y y)] dz’' dy’.

2.2 Lens-less Methods for 2D and 3D X-ray Imag-
ing

2.2.1 Coherent Diffraction Imaging (CDI)

The underlying physical concept of coherent diffraction imaging is that the diffrac-
tion pattern produced by a quasi monochromatic wave and a scattering sample
contains information about the three dimensional scattering process and thus also
about the structure of the sample. We first study the case of a thin sample illu-
minated by a plane wave. It is assumed that the conditions for the scalar wave
approximation are always fulfilled. Let us assume that the sample is thin in the
z-direction and has a constant refractive index along this direction

nlz,y] z2p—Az<2<2

Here, Az is the thickness of the sample. According to the projection approxima-
tion, the resulting field is
Ulz,y,20] = Uyexpliko(n[z,y,20] — 1) Az]

Q
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Figure 2.2: In figure 2.2a, a classical coherent diffraction imaging setup is shown
[55]. Tt consists of a sample and a detector. The sample is coherently illuminated
and the diffraction pattern is recorded on the detector. The reconstruction of the
image is done numerically, for example with the error reduction algorithm [24] as
illustrated in figure 2.2b.

In a classical CDI experiment, the distance between sample and detector is large
so that the Fraunhofer approximation is applicable. Let the detector be located
at zp. Then, equation (2.8) yields

iko exp [iko (2p — 20)] _ lz‘ko (z® + :aﬂ)]

27 (2p — 20) 2 (2p — =)
g ot o TE+Y
/ Ulz',y, 2] exp l—zkaiyy
R2 ZD — %0
ik exp [iko (2p — 20)] liko (2 + yg)]
exp | — =
27 (2p — 20) 2 (2p — =)

U [I;.y, 2,9] ==

] dz'dy’

' !
/ U (14 (26 — B) koAz) exp l—zkoiyy] dz'dy’.
R2 Zp — %o
With this equation, one can reconstruct U [z,y, zp] from U [z,y, zp] . But the de-
tectors only measure the intensity (I = .0l [a:,y,zp]) of a diffracted wave. As
previously mentioned, the phase information is lost. Hence, the reconstruction
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is only possible if additional a priori information is available. In particular, it is
assumed that the sample is isolated and ideally sparse or small. This recovery
problem is also known as the “phase problem”.

The first step to a solution was found in 1952. Sayre noticed that the Bragg
diffraction pattern can be oversampled relative to Shannon’s theorem [73]|. This
is also true if the sample has a restricted support instead of being crystalline. By
oversampling the diffraction pattern, the lost phase can be recovered. Iterative
solvers based on this principle have been used to solve the phase problem. First,
the Gerchberg Saxton algorithm [27] and later the faster converging hybrid in-
put output algorithm [24] have been developed, followed by the first successful
experiments in 1999 [55].

The setup of a CDI experiment is comparatively simple and good results have
been achieved with artificial test samples. However, this technique requires isolated
samples. Therefore, CDI has not gone beyvond the stage of imaging artificial objects
(see table 2.4).

2.2.2 Ptychography

sample detector
plane plane
(@) Schematic setup of a ptychography experiment (b) Scan pattern

Figure 2.3: In a ptychography setup as shown in figure 2.3a, a coherently illumi-
nated spot is scanned over the sample. For each position, the diffraction pattern is
recorded on the detector [39]. The reconstruction of the image is done numerically.
Ambiguities are eliminated due to an overlap of the illuminated patches, as shown
in figure 2.3b.

Ptychography is conceptually similar to CDI. However, instead of illuminating the
whole sample coherently with a plane wave, in ptychography one uses a coherent,
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focused beam. The beam is scanned over the sample in an overlapping pattern,
as shown in figure 2.3. The overlapping regions are used to generate the needed
oversampling to solve the phase problem. Therefore, the method allows to image
extended samples. The overlap also solves the ambiguity of the classical CDI setup.

This method was first introduced to solve the phase problem for electron diffrac-
tion |39] and generalized in 2004 [20] to other diffraction patterns. It is now also
applicable to X-ray imaging. In 2009, the first algorithm for the simultaneous re-
construction of the transmission function of the sample and the illuminating field
was proposed [50].

It has been shown that ptychography can achieve high resolution on strongly
scattering artificial samples. Tt is also used to image biological samples [14] but
the resolution achieved on those samples is still significantly lower (see table 2.4).

2.2.3 Holography

The idea of holography was developed by Gabor in the early 1940s [25]. Mainly
two approaches are useful for high resolution soft X-ray imaging. They are called
in-line holography and Fourier transform holography [106]. An in-line holography
setup consists of a focusing optic, a sample and a detector. The focus of the beam
lies a bit before or behind the sample. The defocused beam passes through the
sample and the resulting diffracted wave (Us) interferes with the non-diffracted
beam (Up) on the detector. Therefore, the signal on the detector is

Idetector — |U0 + US|2
UoUs + UgUs + UpU, + U, U,
UoUo + UoUs + UpUs.

Q

In the last line, we used the fact that the sample is typically weakly scattering
so that the point-wise product” of the scattered wave with itself is small. The
reconstruction is done by first multiplying this signal with Uy and back-propagating
the result to the plane of the sample

P—Zs [UOQFG o UDFOUS T Ugm ; (29)
Here, P_, is the back-propagator and z; is the distance between sample and detec-

tor. The underlined term generates the reconstruction of the sample. It is assumed
that the Fraunhofer approximation is valid and that the non-diffracted beam is a

"With the point-wise product, we mean the Hadamard product, ie. Vz : (UU) [z] =

U [z]U [z].
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sample detector focus sample detector
plane plane plane plane
(@) Fourier transform holography setup (b) In-line holography setup

Figure 2.4: The two classical setups for X-ray holography are shown [92, 106].

(a) The classical Fourier transform holography setup consists of an opaque screen, with a transparent,
small reference and a larger sample area. The interference between the light scattered by the reference
hole and the light scattered by the sample is detected in the far “eld. A simple Fourier transform produces

an image of the sample.
(b) The classical in-line holography setup uses a focused reference. The propagat-ing wave front
interacts with the sample and generates an in-line hologram on the detector.

parabolic wave.

2 .2
Uo [z,y] = exp [ﬁk%} .
Then, (2.9) is equal to
§ o B o8
B 5 [exp [dcﬂ] + U, + exp [zk&J 73]
22z T 2
2 .2 2 412
= [exp [zkxgﬂ” + P, [Ug] + P_,, [exp lzkﬂ] FS] :

s - Zs

Here, we used the fact that the back-propagator is linear which can be deduced
from equation (2.8). Therefore, the three terms in the preceding equation can
be considered separately. The first term produces a scaled version of the non-
diffracted beam and the last term generates the so-called twin image. The under-
lined term produces the wave field due to the sample in the z, plane. A major
problem is the presence of speckles. In addition, the twin image and the recon-
struction are not spatially separated, which reduces the achievable image quality.
The twin image problem is solved by Fourier transform holography.

A Fourier transform holography setup consists of a sample and a reference, as
shown in figure 2.4. Both have to be illuminated coherently so that the signal on the
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detector results from the interference of the light diffracted by either the reference
or the sample. As in the in-line holography case, the intensity on the detector
is given by Ilgetector = |Wreference + ’¢'sa.mp£e|2- Applying the same reconstruction
steps as before yields the same three terms. This time, the twin image is shifted
so that the reconstruction of the sample and the twin image is separated. As
a consequence, this method, unlike in-line holography, is not limited to weakly
scattering samples. For more details, see 7.3.

Current Fourier transform holography approaches use a separate reference and
sample field which have to be illuminated coherently. Therefore, this approach
requires a high degree of spatial coherence and uses only a small part of the incident
photons. X-ray holography has not visualized the ultra-structure of cells. However,
it has found applications for time resolved imaging of magnetic structures under
extreme conditions (|05]). In particular, time resolved imaging by holography using
short pulse free electron laser radiation offers new scientific studies. Therefore, in
chapter 7, a new approach to Fourier transform holography is introduced which
enables imaging of extended samples potentially with one short X-ray pulse.

2.3 Lens Based Methods

As their name suggests, lens based methods use lenses for the imaging of the
sample. Lenses are optical elements that change the phase of an incident wave.
Ordinary, collecting refractive lenses with focal length (f) create a phase shift of

iko (22 + 9?)
2f

Such lenses can be used to image a point source or to focus light into a small spot.
For soft X-ray imaging, refractive lenses are ill-suited since all materials have an
unfavorable ratio between absorption and phase shift. Hence, diffractive optics are
used, namely the so-called Fresnel zone-plates (FZP) which consist of concentric
rings [75]. They are characterized by their outermost zone width (dry) and their
(first order) focal length (f). In table 2.1, some typical examples for properties
of Fresnel zone-plates as used for soft X-ray imaging are given. The profile of a
binary Fresnel zone-plate can be expanded into a sine series

Tz, y] o< exp | —

L. 9 = 1 m
/4 = —+— E —sin |ko=7°
[r] ot =g sin OQfT

By using the decomposition of sine functions into exponential functions

sin [z] = 21 (exp [iz] — exp [—iz]),

1
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the transmission profile can be rewritten as

]. 2 1 k ’iko’f‘2

m=1,3... m

The underlined part is obviously similar to the transmission function of a collecting
lens with focal length f/m. The parameter m defines the order of diffraction. We
now show that the underlined part focuses a plane wave at f/m.

dry f @ DOF N 5

40nm 1.5mm 90pm 2.7pm 566 49 nm

25nm 095mm 90pm 1.0pm 911 31nm
10 nm 0.38mm 90 pm 0.17 pm 2271 12 nm

Table 2.1: Selected properties of Fresnel zone-plates (FZP) at a wavelength
of A = 2.4nm. Here, dry is the outermost zone width, f is the focal length
and O is the diameter of the FZP. From the data, one can derive the depth
of focus (DOF =~ 4dr%,/)), the number of zones (N) and the lateral resolution
(0 ~ 1.22dry).

According to the Fresnel approximation (2.7), a plane wave that illuminates a

disc Dg = {(z,y) |z® + y* < d} with the transmission function ;=% exp [— ;’;P/':Z]

generates at a distance f/m the field

iko exp [Zkof/m] ko (132 + y2) -1 ikor?
Sl ND o 3

UL [3773/] = —

exp [Qf]; (z?+y )] exp [%f: (z'z + y’y)] dz' dyf
__’Lko exp [Zkof/m] I [Zko (.'L'2 + yz)]

2 f /m ml’I_ 2f/m J

—ikyg .
exp {f T/l(:c x+yy)]dx dy’.

-1
2%mm

A Fresnel zone-plate has only a finite diameter (dpzp), therefore, the integration
has to be restricted to the area of the zone-plate. This yields

ko exp [ikof/m)] . [iko (2? + yz)] /
4n? f 1 2fn b

U%[a:,y]z [7(mx+yy) dz’dy’.

drzPp
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This integral yields the well known Airy pattern. Therefore, the m-th part of the
transmission function in equation (2.10) focuses the plane wave at a distance f/m
behind the zone-plate. Hence, Fresnel zone-plates can be used for imaging like
thin lenses but one has to suppress the contributions of other diffraction orders.

2.3.1 Scanning Transmission X-ray Microscope (STXM)

central
stop

order sorting
aperture

detector

Figure 2.5: X-ray optical setup of a scanning transmission X-ray microscope.
For a diffraction limited resolution, the focusing optic has to be coherently illumi-
nated. An order sorting aperture is required to block all unwanted orders. The
produced focal spot is raster scanned over the sample and the transmitted intensity
is detected |77, 45].

The optical setup of a scanning transmission X-ray microscope is shown in
figure 2.5. A focusing optic creates a diffraction imited spot. This spot is scanned
over the sample. The transmitted light is detected for each scanning position.
The change in transmission yields the image of the sample. Since the Fresnel
zone-plate has several diffraction orders, an order sorting aperture is needed to
block the unwanted orders. The achievable resolution of the microscope depends
on the size of the focal spot and the precision of the positioning.

Different contrast modes have been realized. By using an array detector with
spatial resolution, the implementation of differential phase-contrast and dark field
imaging is feasible [40]. This type of transmission microscope is also easily modified
for ptychography by equipping it with a pixel detector.
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The first scanning transmission X-ray microscopes were constructed during the
1980s |77, 45] with first development in the 1970s [41].

2.3.2 Transmission X-ray Microscope (TXM)

~_ central stop
sample
" rotation
AN
N
'/ 'I
|/
|\ /
4dr?
depthof focus: Az~ = zone plate

(@) X-ray optical setup of a soft X-ray transmission microscope

source condenser volume with Imaging detector
object lens
A Y, ,' A y‘.’:‘ A ya /A y,q A ys
J__:-:.._ e e _| J ..... g 2= 2 L —— = s /I s | s e i feu 14 \#} i
/ 2 ¥ | ¥ Z \ﬁ / #
X X,/ X3 %,/ Xs

(b) Coordinatesystems

Figure 2.6:Setup of a transmission X-ray microscope. In (a),the layout of the HZB
soft X-ray microscope is sketched [83, image by S. Werner]. It is basedon an elliptically
shaped glass capillary which acts as mirror condenser by totalrefiection. The second
key component is a high resolution Fresnel zone-plate objective. In (b), the
corresponding coordinates are shown. These coordinates are used in subsequent
chaptersfor simulations.

Fresnel zone-plate based transmission soft X-ray full-field microscopy startedin the
1970s |77, 60| and is now a well establishedtechnique for 3D high resolution imaging
of biologicalsamples[44|®. The general setupis shown in figure 2.6.

8The development of reflection based X-ray microscopes dates back to the 1950s [63]. However,
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Like a bright-field microscope in the visible spectrum, the main components of a
TXM are a light source, a condenser, a sample, an objective and a detector. The
condenser focuses the incident X-ray beam to illuminate the sample. The objective
collects the X-rays after they have been diffracted by the sample and generates an
image of the sample on the detector. The detector is usually a directly illuminated
charge-coupled device (CCD). For 3D reconstructions, the sample is placed on a
tilt stage and imaged through a series of tilt angles. Each image represents a 2D
projection of the 3D sample. From the series of projections, the 3D transmission
of the sample is reconstructed via tomography.

Our understanding of the imaging process in the TXM is based on the Fresnel
approximation (2.7). We now use the notation illustrated in figure 2.6. A field in
the z3 plane in front of the Fresnel zone-plate is imaged by the zone-plate to the 25
plane where the detector is located. We assume that 2z, = 0 is the position of the
zone-plate. It is assumed that the Fresnel zone-plate is used in the first order of
diffraction and we neglect all other orders. According to equation (2.10),? the first
diffraction order acts on the field by multiplying it with T' o< exp —M . Let
us also introduce the shorthand z;; := 2z; — z;. Then, one can apply equation (2.7)
for the propagation of the field from 23 to 24 and from z4 to zs.

= : . 2
i G [ vt
B2
J ! !

ik —ik,
exp [E—D (1:'2 - y’z)} exp [ " )} dz’ dy’
2245 Z45

and

7 xp |2k iko (373 + yf) £
Uz4 ~ _/,.2’-?} z34 eXp l 22’34 T [m‘d}‘y‘d] AQ UZS [:B 1y 10]

iko 2 2
exp [22134 (a: +y ) exp

—iko
Z34

(' za+ 9 ?J4)] dz’ dy’

We will here ignore the crossed-out terms since they result only in a constant
scaling of the final intensity Uzs Uzs- By rearranging and inserting T', one gets

iko (2 + ( 1 1 1) P kg
e = U T3, >0 ex E @
/]R2 /]Rﬂ [ 2 234 25 f = [22,93,0] exp 34

—ikg
(2 =5 + ¥ y5)} dz) dyj.

ko
exp [ (5 =y + y4 yﬂ} dzf dy; exp [

Z34 245

better images are in general produced by Fresnel zone-plate based TXM.
9Here, we neglected all other orders of diffraction of the Fresnel zone-plate. Due to the usually
geometry of the TXM experiments, this has no significantly impact on the imaging properties.
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Since the field of view is typically small, the argument in the crossed-out part
is small and the exponential can be approximated by one. Then, the resulting
integral is proportional to the Fourier transform of the Fourier transform of U,,,

as long as the thin lens formula (ﬁ + i = %) is satisfied. Due to the properties
of the Fourier transform, this is proportional to an upside down and left right
interchanged version of U,."" A detailed discussion of the 3D imaging properties
of the TXM is given in chapter 4. In the same chapter, the properties and limits
of a transmission X-ray microscope are numerically investigated and compared to

experimental data.

2.4 Comparison of Lens-less and Lens Based Meth-
ods

Table 2.4 shows an overview summarizing published experimental results for dif-
ferent X-ray imaging approaches.

A direct comparison of the different X-ray imaging methods is difficult since
resolution and quality of the image depend strongly on the sample. Generally
speaking, ptychography delivers good results for high contrast and highly ordered
objects. Typically, lens-less methods require strong scattering signals into high
diffraction angles.

Lens based methods like TXM and STXM, generally are superior for low con-
trast, non-periodic and weakly scattering samples, which are typical for life science.

10More accurately, one can use substitution and equation (E.2) to show that the absolute value
of the field U, is proportional to a scaled, upside down and left right interchanged version of
the absolute value of the field U,,.
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Chapter 3

Numerical Methods for Soft X-ray
Imaging

In the following chapters, we use numerical simulations to investigate the properties
of different soft X-ray imaging methods. In this chapter, we introduce the methods
laying the groundwork for subsequent chapters. Specifically, the description of the
propagation of X-rays in a homogeneous medium as presented in the previous
chapter is extended to a few special cases. These cases are later used in the
numerical simulations. The following chapter is based on [19] and [62].

3.1 Simulating the Propagation of Soft X-rays in
Free Space

For simulations of the imaging methods, we must compute the propagation in a
homogeneous medium from an input plane to an output plane. As in section 1
of the previous chapter, we assume that the propagation occurs in the absence of
free current and charge densities in a non-magnetic, slowly varying and weakly
scattering material. As shown, the Rayleigh-Sommerfeld diffraction integral of
the first kind describes the propagation between two planes perpendicular to the
optical axis in z; and 2. It is given by

21 — zoexp [t kroi]

1 o0 o0
Ulzi, 1,21 = ﬁ/ / U [zo, Yo, 20) = = dzodyo. (3.1)

Here, A is the wavelength of the monochromatic light and k = 2{ is the wave
number. The distance between two points (zg, Yo, 20) and (x1,y1,21) is denoted
by 791. A schematic of the coordinate system is shown in figure 3.1. Equation
(3.1) is not well suited for numerical simulations since the numerical integration

43
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z,-plane z,-plane

-' FodlXer Yoi X0 Vil

)

Figure 3.1: Schematic of the notation used. The red and blue spots correspond
to the extremal positions considered in figure 3.2.

is time consuming. Therefore, this expression has to be transformed into a more
convenient form. One such form results in the angular spectrum method (ASM).
In order to efficiently implement formula (3.1), the integral is expressed as

1 o0 OO0
U[xl;yh 2‘1] = a/ / U[fﬂmyo;zﬂ] (zl —ZG) (3-2)

'exp [?,k \/(zl — 20+ (21 — z0)* + (11 — yo)2]

(z1 — 20)* + (1 — 20)* + (1 — 30)*

dzodyo

Iy
= = U [2o, Yo, 20] - h [z1 — Zo,y1 — Yo, 21 — 20| dzodyo
] )\ R2
where h is defined by
exp [ik\/zZ 122 —|—y2]
hlz,y,z] := :

z2_|_$2_|_y2

By definition of the convolution f x g[t] == [; f[7] - g[t — 7] dr, the right side
of equation (3.2) is a convolution integral. This integral has to be discretized for
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computer based simulations. The discrete Fourier transform of a signal y of length
N is denoted by Y = FFT [y] . Using the circular convolution theorem on

N-1
EFET [(X¥]| | = eonat: Z Zy - (yN)n—t
=0
=8 =t yN)n )

the convolution can be computed with the aid of the fast Fourier transform (FFT)
with O (Nlog N) operations [13]. Here, (yy) is the periodic extension of y. For
large optical elements such as the ones typically used in soft X-ray microscopy, this
approach is superior to a direct evaluation of the integral since the latter needs
O (N?) computational operations.

In order to prevent artifacts caused by the circular convolution, the function
U has to have finite support in the 2z plane. Additionally, U has to be restricted
and h has to be padded with zeros so that the circular nature of the convolution
does not affect the result. Since a convolution operator is used, the resolutions
in the 2y and in the z; plane are equal. This can pose difficulties if either the
regions of interest or required resolutions differ significantly between the planes.
For example, for soft X-ray microscopy at 2.4nm, a typical Fresnel zone plate has
a diameter of about 100 pm while the focal spot has an FWHM on the order of a
few tens of nanometers.

Alternatively, equation (3.1) can be approximated by using the paraxial as-
sumption. This approximation assumes that the direction of propagation is essen-
tially along the optical axis and that the field is restricted to a tight neighborhood
of the optical axis.! With these requirements, the square root in the exponential
function is approximated by its Taylor expansion

2 N2 2 (s — Iu)z J-4i 90)2
(21 —20)" + (21 —20)" + (y1 — )" =~ (21—20)+ . (3.3)
2 (Z1 =, ZU)
We obtain the well known Fresnel approximation

exp[ik (21 — 20)] T4y e
' R k———— 3.4
[‘Tl}yhzl] E) (zl _ Z{}) exp | 9 (zl _ Z{]) o) (3 )

2 2
. [m ! M] - l_@- . w] A5
2 (21 — 20) (21 — 20)

The Fresnel approximation has the advantage that the integral can be computed by
using a two dimensional Fourier transform. This is especially helpful for numerical

IThroughout the thesis, we assume that the optical axis is located at (z;,y;) = 0.
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simulations since the two dimensional fast Fourier transform is much faster than
the numerical integration. A matlab implementation of the Fresnel approximation
is included in the supplementary part of this work in appendix A.

One disadvantage of the Fresnel approximation is that the paraxial assump-
tion must hold in both planes. For the simulation of the imaging performance of
lens based microscopes with high numerical apertures (NA > 0.1), the Fresnel
approximation is not applicable. Nevertheless, the region of the focal plane with
non-negligible intensity is tightly centered around the optical axis. Therefore, it is
possible to use a different Taylor approximation of the square root. This results in
the wide-angle near and far field approximation (NFFA) which we use for calcula-
tions of optics with numerical apertures larger than 0.1. The NFFA is described
in the following section.

3.1.1 The Wide-angle Near and Far Field Approximation
(NFFA)

The wide-angle near and far field approximation (NFFA) is best used for applica-
tions where either the input or the output plane is much larger than the other plane.
For example, this is the case for high NA optical elements, i.e. NA > 0.1. For
such applications, it is useful to utilize a different approximation in the Rayleigh-
Sommerfeld diffraction integral (equation (3.1)) for 7o, instead of equation (3.3).

The distance ro; [zg, Yo; 1, y1] as a function of the position of the points of
interest in the two planes is dominated by either the (zg, ) or the (zy,y;) values.
We now introduce a better suited approximation which takes the given geometry
into account.

Firstly, the case of a larger input plane is considered.
Here, we introduce the approximation

ron & 4/22+ g+ Yy V1it+h,
using z := 2z; — 2p. The function h is here given by:
i +y;  2(z1m0 + %1%po)
2ragty Pty
zi +yi _ 2(%120 +y1%)
P R N R R

&Q

For the following computations, it is convenient to introduce the abbreviation

m = V22+z2+y2,ne{0,1}.
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Figure 3.2: These graphs show the errors of the approximated distance (equa-
tion (3.3) and equation (3.5)) in units of the wavelength over the propagation
distance. The graphs correspond to the approximation used for the NFFA (near
dashed, far dot-dashed) and the Fresnel approximations (line). The dimension of
the output plane depends on the input plane since the numerical propagators link
the resolution, number of discretization points, plane dimensions and propagation
distance (as explained in the supplement in appendix A). The points (zo,vo) and
(z1,31) are chosen in such a way that they represent extremal cases for the ap-
proximations. These extremal cases correspond to positions marked with the red
and blue points in figure 3.1.

In this example, we assumed that the input plane is a square of 100 pm and is dis-
cretized by 2048 x 2048 points. The figure illustrates that under these conditions,
the outer parts of the FOV are no longer within the scope of application of the
approximations since the total approximation error lies above A/2.

With these notations and the Taylor expansion of

h?

~ 1+

b

O S| =



48 CHAPTER 3. NUMERICAL METHODS FOR SOFT X-RAY IMAGING
the distance rq; is approximated by

14 a? +yi _ T1%o + Y%
WA/ 2+ 2 +y2 2+ apt+ys

This approximation significantly improves the estimation of the distance between
the extreme points in the two planes if it is compared to the one used for the
Fresnel approximation. The approximation errors are shown in figure 3.2. Inserting
equation (3.5) into the Rayleigh-Sommerfeld diffraction integral (3.1) yields

(3.5)

Tolr = To

1
U[xl,yl,zl] ~ a[R? U [xo}y{],zo] T% (36)

0
27 x? - T

exp [i— [ /22 + 25+ 3 + 1P, ST Y dzodyo.
)t 2z 1Hz2—|—$g—|—y§

In order to efficiently solve this integral equation, the fast Fourier transform
has to be used. Hence, the same conditions have to be satisfied as in the case
of the Fresnel approximation. This implies that the discretization points (zg, o)
should be chosen in such a way that they satisfy the following equation

T1To + 1Y | T1Ts + Y1Ys

V2% + g + z

Here, z, and y, are the regular equidistant grid points used in the implementation
of the Fresnel approximation based propagator. A simple calculation shows that

. T siid . Ys
ZTo = 2y 0,2 yD o 2 2
1 5y ms+ys 1 a3 ms+ys
22 22

satisfy this condition. Since this choice of sampling points corresponds to a variable
transformation of the integration variable, the volume element changes according
to the theorem of integral transformation.

dest [ 39:-5370 [xsays] aysxﬂ [$3,y3] ] _ 2
- 2
Or, Yo [Zs, Ys| Oy. Yo 25, Y] (22 —z2 —92)

Using the transformation @ : (zg, ys) — Zs % = (o, Yo) and the

3
\/l—zgﬂ’g Jl_zg‘f'yg
zz zz
. - 4 . -
identity 7o := /22 + x2 + y2 = 4/ 73—z U [21, 31, 21] is approximated by
8 &
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1 2z + vy Ys
Ulxy,m, RS — L 2 / ,
[z1,91,21] Y exp [3 A 2z } \/1 s+y3 \/1 22442 zp
T2

R A %2_11' = = (2125 + y1s) dz.d
z2 —x2 —y? 2 I 22 — 22 — y?2 z Aol

The inverse formula is given by:

o z4 22 — z2

=~ exp [—i— ?Isf iAU 21,91, 21]
RE

AN 22 —22 42 2

U =4 ’ e » 20
z2+y2 zZ+y2
Vi-Td i

2 2
— [_ﬁ_w (rl +ui (mxrs+yzys))] o
A 2z z

Secondly, the case of a larger output plane is considered.

This case is needed for the propagation from a focal plane to a second lens. As in
the previous case, we approximate the distance by its Taylor approximation with
regard to the coordinates of the larger plane. Now, we use z? + y? < 2? which
results in the approximation

2 2
N g +ys (170 + Y1%0)
o~ nr (1 —|— 2z2 22 + ;’B% + ‘y% ¥

This vields again

1 Z .
Ulzy,y1,21] =~ aAQU[%,%;Zﬂ]; (3.7)
1
27 T3+ Y3 T T +
exp i~y 22+l yi+ 02 % _ 120 31%)2 dzodyp.
“ 24Tty

This time, the variables (z1,y;) are modified in the following way

I and h=

Ty Ys
/ 2 2 / 2 2
1 ey ms:;ys 1 - msz";.":"s

where (z,ys) are now the regular grid points of the Fresnel approximation in the
output plane. Since the variables of integration have not changed, the volume
element does not change either. Using this relation between zy,y; and z,, y, vields
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1 27
Ulzi,y1,21] =~ —exp|i—

=] (2=gy
: 5 _ g8 a2 3
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2 2 2
/2 U [:Ea,yo,zo] i lz_ﬂ' (mﬂ + Y5 _ ZsTo =i ’9’3’9‘0)] el il
R

A 2z z

This integral approximation can again be solved by a Fourier transform. Therefore,
the inverse approximation is given by:

2m 23 + y5

Ulzo,yo,20] =~ ilexp l_ET 2 l / U lz1[zs,ys| , 11 [2s,Ys) , 1]
Z R2

23
T B
Y

As previously stated, the wide-angle near and far field approximation is best
used for applications where either the input or the output plane is much larger
than the other. In most applications in this work, one gains little by using it
since for small numerical apertures, the Fresnel approximation is almost as good.
A typical case is shown in figure 3.3. However, in the case of large numerical
apertures (NA > 0.1) the NFFA should be used. This was for example the case
for the design of the diffractive optical element for the plasma based soft X-ray
laser Fourier transform holography experiment in chapter 7. The typically large
free space propagation distances between optic and focus also induce a second set
of problems which is now further analyzed.

3.1.2 Converging Waves and the Fresnel Approximation

A common example for wave propagation is the focal pattern of a lens. It is also
a good example to motivate the next set of approximations. For the focal pattern
of a lens with high numerical aperture, the previously described approximations
harbor some intrinsic problems.

The transmission function of a thin lens of focal length (f) and radius e, is

exp [—z’kﬂ;}yz] % LY T
T:Eens [.’B, y] = 2 2 2 .
0 B A

A simulation of the focal pattern resulting from a plane wave illuminating a lens
is shown in figure 3.4. The images in 3.4b reveal one of the fundamental problems
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0
m x107°

Figure 3.3: A comparison between the analytic propagation of Gaussian beams
(line) and the Fresnel (dots) and NFFA (dashed) based propagation.

The Gaussian beams have a waist of 60, 300 and 1000 nm. The parameters for
the simulation include a field of view of 2000x2000 pixels at 6 nm resolution. The
radius of the aperture is 100 pm and the distance between the focal plane and the
plane of the aperture is 0.5 mm. The wavelength is A = 2.4 nm.

of the previous approximations. If the phase of the wave oscillates rapidly in
comparison to the step size of the discretization, the undersampling of the wave
generates numerical artifacts, the so-called Moire patterns.

For this reason, in numerical simulations it is sometimes advisable to separate
one of the fields e.g. U [z,y, 2] or U [z, y, 21| into a simple fast oscillating function
combined with an arbitrary, slowly varying function. An example is a converging
wave front emerging from an optical element with focusing properties. In this
case, the fast oscillating function is a converging spherical wave and the properties
of the optical element are encoded in the slowly oscillating function (Uy) which
modulates the spherical wave. That is U [zo, yo, 20] 2. Ui [zo, Yo, 20] - €xp [—3'27“1"0].
In this case, the modified equation (3.6) becomes

1 z o2 [ %+ 2 T1Zo +
U[ﬂ?layhzl] = a/n Ud [xo,yo,zo];exp [3—( i ( 0 y1yo) dzodyp.
R 0

A\ 22 VP2+ai+y
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100 nm

(a) Focal pattern of a lens (b) Moire patterns of the phase

Figure 3.4: Simulation of the focal pattern of a lens illuminated by a planc
wave. The discretization in the plane of the lens was chosen to be coarser than
the fa. stestoscillations of the transmission function. Except for the radius of the
aperture, all parameters for the simulation are identical to the parameters from
figure 3.3. The radius of the aperture is 40 pm. In figure 3.4a, the focal pattern
is shown. The lens is illuminated by a plane wave and the pattern is computed
with the Fresnel approximation. In figure 3.4b, the discretized phase is shown and
the Moire patterns of the phase in the plane of the lens are obvious. This pattern
results from an undersampling in the code of the Fresnel propagator. The right
image shows the marked region enlarged so that the pixels are visible.

Similar calculations analogously to the NFFA case of a larger input plane yicld

1 T 2
Ulzy,y,z] = = g - ) 2 120 | —————
A R? \/1 _ x24y? /1 22492 e — Tl — Y2
P2 Vi= =zarE
2 2
. exp 22_7r /3171 + Y7 (331373 +y1ys)\-l dxsdys
A \ 2z z /J
and
2_ .2 .2
i it W8 | o & Eals / iU 21,31, 21] (3.8)
rZ+y? Ti+ys 4 R2
o EE
27 (af +y} (12 +y1ys) ) ]
. —l== d .
' [ ’ A ( 2z z /J z1du1

Equipped with these approximations, we can now simulate the free space propa-
gations in our microscope. Before we start to study the still missing propagation
through the sample, we describe how the partial derivatives of the field depend
on the propagation distance and how we can use them to recover the phase of the
field.
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name formula advantage disadvantage
Angular Spectrum convolution applicable to a wide range not directly invertible
Method {ASM) of distances and plane sizes  same resolution in both planes
Fresnel approximation Fourier transform fast only valid for a small range
directly invertible of distances and plane sizes

resolution in planes changes

NFFA Fourier transform fast only valid for a moderate range
directly invertible of distances and plane sizes
grid is not equidistant

resolution in planes changes

Table 3.1: Comparison of the scope and advantages of the scalar propagators. In
order to choose the best scalar propagator for a given task, one has to compare
their disadvantages and advantages. For example, the ASM is often a bad choice
for an iterative algorithm since it is not directly invertible.

3.1.3 Propagation of Waves and Partial Derivatives in Dif-
ferent Planes

Sometimes, it is convenient to write the slowly varying function Uy as

Uilz,y] = exp [i® [z, y]].

This is for example the case if higher orders of a FZP are considered. Usually,
® cannot be recovered from a discretised Uy due to ambiguities of the covering
t € R~ explit] € S* ¢ C. Nevertheless, due to the relationship between U
and Uy, the following steps lead to an explicit formula for ®. Firstly, the partial
derivatives of Uy are considered:

0:Us = Orexpli®]
exp [iP] i 9, P
1Ug 0,

o,U; = ---=1Uz0,9.

We can now deduce for any continuous ® and continuous path T : [0,1] > R?
which starts in (zg, yo) and ends in (z, y) that

dU; = iU;d®

[ UgdUg
[3: 1 y] 2 s UdUd s+ [1173, yO]
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Since dUy; and Uy can be computed independently from U, this expression resolves
the ambiguity of &.

We now deduce Uy in one plane using U from another plane. The following
calculation explicitly shows the relationship between Uy and U

(3.8) 2—g—y [ .
A CRRRTCNA) N (—y [ 20,
R

4
2 2
- exp —7,"2—71— :1:1 i yl — (-'L'I:L's €3 ylyS) d.’L’ldyl »
A 2z z

If U satisfies the conditions of the theorem of differentiation under the integral
sign, the partial differentiation follows from the product rule

(2% — 75 — y5)
Z
9 2 2
/112 e %U [z1, Y1, 21] exp {—d . /ml o ot ylys)] dz,dy,

b/\\ 2z % /J

61_.; Ud ===

AT
VA
. 2r (2?2 +y?  (T1Ts + Y1Ys)
A? iAU [z1,y1, 21) €xp [—ZT ( T . dz1dy.

Numerical simulations showed that the direct implementation of this formula is un-
stable and yvields the correct solution only for sufficiently small derivatives. Hence,
we primarily use it as an independent criterion to verify that a separation of a
wave into a fast and a slowly oscillating function is justified.

A better working approach for the iterative phase reconstruction of @ from U
is shown in section 7.2.1 where it is used for the design of binary diffractive optical
elements.

3.2 Simulating the Propagation of Soft X-rays in
a Medium

In the last section, we studied the free space propagation of scalar waves. In order
to include a sample into our microscopy simulations, we now study the propagation
in an inhomogencous medium. As mentioned in section §1, the inhomogeneous
scalar Helmholtz equation

AU + k2n2U =0 (3.9)
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describes the propagation of a scalar field U within an inhomogeneous but slowly
varyving and weakly scattering material. In general, this equation is challenging,
but some special cases are solved more easily and these solutions can be used to find
numeric approximations to complex propagation problems. For the simulations in
this thesis, we use the paraxial approximation, the (first) Born approximation and
the projection approximation, or modified versions of these approximations.

If the light propagates essentially along the optical axis, the paraxial approxi-
mation simplifies the computations. For the paraxial approximation, the wave-field
U is rewritten as the product of an enveloping function U and a plane wave propa-
gating along the optical axis (here z) U = U [z, y, z] exp [ikoz]. Since it is assumed
that the enveloping function is now slowly varying in z, the following inequality
holds: |2Y| « kg% . Substituting this into the Helmholtz equation yields:

822

(A +k2n?) U [z, y, 2] exp [ikoz] = O
(AJ} + 8,50 +2i ke 8,0 — K2U + k§n2f;’r) expikoz] = 0
~ (ALT +2iko 8,0 + K (n* = 1) U) exp[ikoz] = 0

~ (Alﬁ +2iko 8,0 + k2 (n? — 1) ﬁ) — 0 (3.10)

which is equivalent to

AU + 2iky (8,U — ikoU) + k2 (n2 — 1)U = 0
AU + 2ikgd,U + Kk (n* +1)U = 0.

This equation is vital for the simulations. In the simulations, it is numerically
approximated. One example is the first Born approximation.

The First Born Approximation

The first Born approximation assumes that the incident field is not significantly
changed due to the presence of the object. Therefore, the interaction of the object
with the incident field is well described without taking into account the interaction
of the field produced by the object with the object itself. For the first Born
approximation applied to the paraxial approximation of the Helmholtz equation,
the scalar wave-field U is separated into an incident field U, which satisfies the
paraxial homogeneous Helmholtz equation and a scattered field U,. Applying this
approach to equation (3.10) yields:
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AJ_ﬁg‘!‘?ikoazgo == 0
AU +2ikgd,U+ki(n*—1)U = 0

Ay (Uo+0,) +2ikod, (Uo+0,) + K (n2 = 1) (Do +U,) = o.
Using the decomposition, we obtain
AU, +2iked.Us + K (n = 1) (To+ 5 = 0.

Since the first Born approximation is used, the contribution of Ug to the last sum
is assumed to be negligible. Hence, the last equation can be approximated by

AU, + 2iked,Us =~ k2 (1 —n2) Us. (3.11)

The convolution kernel of the Fresnel propagator is a Green function (funda-
mental solution) to this equation. Therefore, the solution is given by

Uslo,y, 2] = [RS exp [ik(;iz — 2| exp |iko (z — 2;)(zt(j)— ) (3.12)

ks (n* —1) Uy [, v, /] dz’ dy 4=

The Projection Approximation

A second way to approximate equation (3.10) is to assume that the change of
the field orthogonal to the propagation direction is slow so that the A U part is
negligible. Then, the equation can directly be solved

2iko 0,0 ~ k2(1-n?)U

N B} R
= Ulz,y,2] ~ Ulz,y,z2exp lQ—:/ (1 —n?[z,y, z’D dz'|. (3.13)
20

The resulting formula is also called the projection approximation.

The Multislice Method

For our simulations, we usually use a version of the multislice method |21, 95].
In this approximation, the inhomogeneous medium is subdivided into slices per-
pendicular to the direction of the wave propagation. The main idea is to separate
the diffraction caused by the propagation through the slice and the phase and
amplitude shift caused by the inhomogeneous medium in the slice.
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If the slice starts at z and ends at z + Az, the field U [z,y, 2] is propagated
to z + Az by any wave propagator for a homogeneous medium. The effect of the
inhomogeneous medium is then taken into account by multiplying with

k(] z+Az ) ) )
exp | o (1—n®[z,y,7]) dz

as in the projection approximation. It should be highlighted that this approxima-
tion differs from the first Born approximation since it includes the attenuation of
the incident wave.

Classical implementations use Fourier transform based convolution in each
propagation step. It is well known that these numerical implementations pro-
duce artifacts along the border of the simulated field which propagate further into
the center for successive slices.? Since in our simulations, only X-rays passing
through the optics are important, we chose to ignore evanescent waves and use
a combination of Fresnel forward and backward propagation for the free propa-
gation step. The advantage of this method in comparison to the commonly used
direct layer to layer propagation is that we can pad the starting field in such a
way that the artifacts do not occur in the region of interest. A sufficiently large
padding protects the region of interest since the artifacts propagate inwards at
approximately the same angle as the aperture of the lens.

Summary

In this chapter, we have introduced the basics of all the numerical methods used in
this thesis. These numerical methods are used in the following chapters to simulate
and analyze different soft X-ray imaging methods. We start our analysis in the
next chapter with soft X-ray based tomography.

2These artifacts can be suppressed by including perfectly matched layers.
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Chapter 4

Simulation of 3D Soft X-ray
Imaging by Tomography

Soft X-ray 3D nanoscale imaging is a complex process. As discussed before, one
of the most successful approaches is based on tomography. Classical tomography
assumes that light travels through the object along straight, parallel beams without
any diffraction. Along these paths, the intensity decreases in accordance with the
Beer-Lambert law.

In a full-field soft X-ray transmission microscopy setup, X-ray lenses form an
enlarged image of the object. For soft X-rays, the optics are Fresnel zone plates
which are diffraction based and have a depth of focus similar or smaller than
the thickness of the sample. Therefore, the Beer-Lambert law based line integral
approach of classical tomography is not perfectly fulfilled.

4.1 A Cell-like Phantom for Tomography

In order to study the imaging properties of an optical system, it is essential to
define a well-suited 3D test object. Properties like the resolution, the depth of
focus, the field of view and the contrast transfer can be deduced by comparing
the image of the object with the original object. Our simulations will show that
some properties of the optical system are only apparent in images of extended 3D
objects.

In this thesis, different soft X-ray setups for 3D imaging of cryogenic biological
samples are investigated and compared. A good example for the 3D imaging
capabilities of a transmission soft X-ray microscope is shown in figure 4.1. For
the numerical investigations a cell like phantom is required. This phantom should
reflect the most important structures of cells. Our phantom contains long annular
objects which have similar optical properties to microtubules as well as filled
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Vesicles

Lysosomes
Mitochondria

Nuclear envelope
Endoplasmic reticulum

Figure 4.1: This volumetric rendering highlights the discernible components of
the cytoplasm as well as the nuclear envelope. The original TXM based tomogram
is shown in orange. A complete description of the method as well as the sample
and additional images are presented in [83|. Image was provided by the authors
of [83], and used with their permission.

cylinders which represent chromatin. Membranes are simulated by elliptical
surfaces with a thickness of a few nanometers. The phantom has to be larger than
the depth of focus in order to include the effects of image degeneration due to the
limited depth of focus.

The complex refractive index for each type of phantom structure incorporates
their known molecular composition. In addition, the complex refractive indices for
microtubules and chromatin take into account that these biological structures are
hydrated. In contrast, the inside of membranes are hydrophobic and thus contain
almost no additional water. The average empirical formulas for the components
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(a) Non-discretized version (b) Discretized version

Figure 4.2: Discretization of a biological membrane for the TXM simulation. The
black and transparent boxes represent voxels while the green surface respectively
dots represent a membrane.

are given in table 4.1

The creation of a 3D phantom seems simple. One could, for example, start
with an orthogonal 3D grid and identify the nodes of the grid with the surround-
ing volume. These voxels represent the structures of the phantom. The optical
properties of each voxel are defined by the optical properties of the phantom at
the center of the voxel, i.e. at the position of the node. Unfortunately, this ap-
proach is not feasible on a normal computer since the amount of memory needed
for the storage of the phantom would be quite large. For example, a volume of
1m? at a resolution of 2.5nm requires 1 GB of data storage. Additionally, the
computational time needed to rotate the phantom is also quite long. Even worse
is the effect that the sampling on the grid generates aliasing artifacts. This results
in an extremely small allowable discretization step size well below the resolution
and wavelength used for imaging (see also figure 4.3).

Another approach is more convenient for phantoms which mainly consist of
one medium and some sparse structures, the latter occupying only a small fraction
of the volume. For the subsequent simulations, it is necessary that the phantom
is discretized on a grid, with each node representing a small voxel. In contrast
to the previous approach, the optical parameters of the voxels are calculated by
averaging over randomly chosen sub sampling points. The random data set is
created by overlaying the volume of the particles with a cloud of randomly chosen
sampling points, as illustrated in figure 4.2. The optical properties of each sampling
point are set in accordance to the optical properties of the component that the
sampling point represents. In this way, the object is now described as a set of points
together with an optical point density. In order to obtain a good approximation,
the randomly chosen points have to be homogeneously distributed.! It should be

10One can achieve a homogeneous distribution by describing the component as embedded
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noted that this approach does not generate an exact copy of the object and that the
discretization still generates a small error. However, aliasing effects are reduced due
to the random nature of the underlying sampling points. A comparison between
the two approaches is shown in figure 4.3. Additionally, the latter approach has
the advantage that it reduces the computational effort to rotate and shift the

phantom.?
Cell component Chemical Volume Chemical Density d-value at [-value at
formula (111113) formula with (;’i—!) 2.4 nm 2.4 nm
HyO
Chromatin (-“:8151 H].QTQT 523 (-“:8151 HQQS(M_- 1.306 8.36E-4 1.57TE-4
Na791 O3240 Na791
Paga So4 011644 P2g2
So4
Microtubule (-:2186 H3365 536 (-:2186 H4_4_29 1.426 10.03E-4 2.37TE-4
N591 Ogg4 Ns91 O121
So5 So5
Membrane Cr4176 536 - 1.167 9.09E-4 2.12E-4
Hi13200
Naoe6
015424 P1120
Sa00
Cytoplasm - 1000 Co186 1.036 5.7E-4 0.37E-4
Hes651 N591
031827 So3
Water Ho (0] - - 1 5.3E-4 0.21E-4

Table 4.1: Empirical formulas and X-ray optical properties of some selected cell
components.

manifolds. By using a chart of the corresponding manifold, a density mapping can be deduced
from the fundamental determinant.

2The values for the complex index of refraction were estimated with the help of the
data listed in the Henke tables which can be found e.g. on the CXRO webpage:
http: //henke.lbl.gov /optical _constants/getdb2.html. They result from equation (2.2).
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Figure 4.3: Two orthogonal projections of a phantom consisting of a hollow sphere
and a filled cylinder for two construction algorithms. The resulting cylinder on
the left side looks flat and the sphere shows aliasing artifacts.

Left: Object discretised on an orthogonal grid. A voxel is filled if the center is
located inside the object’s borders.

Right: The object is approximated by a cloud of randomized points. The value
of a voxel is the weighted sum of all points of the cloud that lie within the voxel’s
border.

4.2 Transmission Soft X-ray Microscopy

In what follows, the performance of transmission soft X-ray microscopes for bi-
ological samples is studied. As described in chapter 2, an extended sample is
illuminated with a wide X-ray spot in the transmission X-ray microscope (TXM).
The X-ray optical setup is illustrated in figure 2.6a. The partial coherence factor

NAc
[ o m—
NAp
characterizes the degree of coherence introduced by the ratio of the numerical
aperture of the condenser (N A¢g) and objective (NAp). A value close to 0 corre-

sponds to a high degree of coherence, while for o > 1 the degree of coherence is
dominated by the coherence of the source.
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The illuminating photons are partly absorbed by the sample. The resulting
wave field is collected by a Fresnel zone plate which forms an image on the detector.
The description of the imaging process is especially simple if a fully incoherent
illumination is assumed. For incoherent illumination, the imaging process can be
described by the transmittance of the object and the 3D incoherent point spread
function of the FZP. This description is based on a lateral convolution. The 3D
incoherent point spread function of the FZP represents the image on the detector
of an on-axis point source at given distance in front of the FZP.

4.2.1 Incoherent TXM Simulation

If the illumination of the sample is to a good approximation incoherent, the 3D
incoherent point spread function of the FZP can be used to approximate the re-
sulting image of the sample. In this case, the sample is imaged based on absorption
conftrast.

For the simulation, we use the phantom described in section §4.1, which repre-
sents typical biological structures. In order to obtain a 3D image of the phantom,
a series of images under different tilt angles is simulated. Tomographic recon-
structions of the phantom are computed from this tilt series. The theory behind
tomography is explained in section 4.2.2.

An early implementation used an incoherent version of the first Born approxi-
mation. The first Born approximation and the algorithm work well for thin sam-
ples. The first Born approximation is also used to analyze the imaging process of
weakly scattering samples. Similar to the coherent case, the signal is divided into
an Incident field Iy and a scattered field I;. Since we assume that the scattered
field is much weaker than the incident field, its interaction with the sample is neg-
ligible. We assume that the imaging process is linear in intensities. By considering
the signal that a single point source at (z,y, z) generates on the detector, one gets
a function F': R?2 x R® — R. This function allows us to compute the resulting
image of a complicated intensity distribution I, : R® — R. Let S be the support
of the sample. The signal on the detector (at (Z,7)) is then given by

I[ft,@] ~ IO _Is
] f B3 .8, iz
S

If it is assumed that for a fixed z plane, the image of a point source near the
optical axis is similar to the one on the axis, the integration can be simplified.
Under these conditions, the image of an off-axis point source is the same as the
image of an on-axis source which is translated from the axis with a (z-dependent)
factor of magnification M. Therefore, the function F' depends only on the differ-
ence between (Z,y) and M - (z,y). From now on, the resulting function is called



4.2. TRANSMISSION SOFT X-RAY MICROSCOPY 65
the (IPSF). The signal on the detector is now given by
Iz,9] = 1o [z,9] — /IPSF[:?: — M 2]z, — M [z y, 2] Is [z, y, 2] dz dy d=.

In an abuse of notation, we now introduce a scaled version of IPSF' without
introducing a new name. The image of a z-slice (S;) of the phantom is then given
by

1, 1.
I~1,— 5 IPSF [Hx—m, Hy—y,z] I [z, y, 2] dz dyd=.

which can be computed by convolution. We started our investigations by imple-
menting this algorithm. It was later rejected because it produced in some cases
bad results, such as negative intensities. Since this approximation does not take
into account the depletion of the incident radiation, a scattering signal which is
stronger than the original signal can be produced.? In order to account for the
attenuation of the incident wave, we use an approach which is very similar to beam
propagation and the multislice method for waveguides and transmission electron
microscopy [95, 21]. We start by dividing the phantom into slices perpendicular
to the direction of the propagation. Let us assume that the thickness (Az) of such
a slice is significantly smaller than the depth of focus. Then, we can apply the
projection approximation (equation (3.13)) so that each slice is characterized by
the 2D transmission function

z+Az
T.[z,y] = exp [ f —2kB [z, y, 2] dz]
= exp [—2kB[z,y] Az].

Due to the discretization, the absorption coefficient B is averaged over the voxel.

The absorption in the slice reduces the signal on the detector in comparison to
the unperturbed beam. The quotient of obscured to unperturbed signal is called
the relative signal. Since the illumination is incoherent, the next slice modifies
the image on the detector again in the same way. According to this approach, the
resulting relative signal on the detector is the product of the relative signals of
each slice

IPSF [%:ﬁ -, ﬁg}r — 1, zi] Iz,y,z] Ty, [z, y] de dy
Jg2 IPSF [%ﬁ: —x, %g} — v,z I [z,y,2]dzdy

I&,9 ~ Ip o::,g]HfR2

Zi

(4.1)

SFor example, a 0.3pum thick layer of ice has at A = 2.4nm a transmission of ~ 0.9676
according to equation (3.13). But with the first Born approximation, the value would be =~
0.9673 for the case of incoherent absorption contrast. For a coherent system, the first Born

[Uo+Ua|?

approximation has already broken down since IR AL 1.14 in accordance with equation (3.11).
o
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Here, z; is the z coordinate of the face of each slice as used in the definition of T.,.
Iy is the intensity on the detector without the sample. A matlab implementation
of this approach is explained in section B.2.2.

4.2.2 3D Imaging with Tomography

As described in the previous section, the detectors of soft X-ray transmission mi-
croscopes usually only gather a two dimensional image. This image represents
a projection along the direction of the optical axis. Nevertheless, it is feasible
to recover the three dimensional structure of an investigated sample. One of the
most successful methods is soft X-ray tomography. In the following, a short in-
troduction is given which follows the explanations in [19]. Tt is assumed that the
three dimensional structure is represented by a function g : R®> — C. The Radon
transformation enables recovery of the function g from its projections.?

The main idea is to use a rotation of the reference frame. The transformation

is

% B cos[f] 0 sin[f] x

To: | v | — | ¢ = 0 1 0 Yy

z 2 —sin[f] 0 cos[f] z

The inverse transformation of this rotation is given by

-4 4 cos[f] 0 —sin]f] 4
T,V v | = |y = 0 1 0 Y
i z sin[f] 0 cos[6] 4

Let g : (z,y,2) € R — C be a function and pg : (2/,9') — C be a family of
projections defined by

polr’,y]: = /gng_l [z',y/, 2] d2’
R
= / gz’ cos|0] — 2’ sin[0],y, " sin [0] + 2" cos []] d='.
R
The projections are along the 2’ axis of the rotated reference frame. It is now

convenient to consider each y slice separately. We therefore now drop the y di-
mension.

4In soft X-ray tomography, one assumes that the function g is equal to the attenuation coeffi-
cient (u). According to the Beer-Lambert law, the change of measured intensity along a straight
line from pp to p; is equal to the exponential of the negative of the integral of the attenuation

coeflicient along the line, i.e I [p1] = Iy [po] exp [ imi:pa] —pi [su + po] ds] . Therefore, one

0 [P1—po|
Ilp] | _ plpr—pol —
has In [W@;]] =[5 SR ) [s Iii—isl —|—p0} ds.
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The projection slice theorem relates the one dimensional Fourier transform Fy
of pg and the two dimensional Fourier transform G of g along a corresponding

f-slice.
Bilf] = ‘/H;pg [z exp [—i27f - 2] dz’ (4.2)
= f g |z, 2| exp[—i2nf - 2’| d2'dz’
R2
= ,/R? glz'cos[0] — 2'sin [0] , 2" sin [0] + 2’ cos [f]] exp [—i 27 f - 2] dz'd?’
= ‘/ﬂ;ﬂ glx,z]exp[—i2nf - (zcos[f] + zsin [f])] dzdz
= G|[fcosld], fsin[d]].

With this relationship between Py and G, g can be reconstructed from Fj alone.

glod] = [ Glhu flesplizn (fiz+ £.2)dfs . 43)

= /O’T/I'RG[fcos[Q]}fSin[G]]exp[’i??rf(azcos[ﬂ]—|—ysin[9])]|f|dfd9

According to equation (4.2), the inner integral is given by:

| 61 cosle] fsin ) exp i2nf (wcos 8] + ysin 8] 1101
— [ sRfsienlNexpliznfa)df.
By the convolution theorem, the last integral is equal to
[ £Ro1) - sin f] exp ') o
_ ( A 7D, [l axp iz fed f) 2 ( fR s e [e2acf o) 4 f)

i 9 2] -
2T 5‘3:’p9 imx!
1 Oy |7 1
f P [2] 3.
R

272 ot = —zx

This finally leads to the recovery of g [z, z| from the projections pg by equation (4.3)
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(a) Phantom (b) -90° to 90" in 5° steps (c) -90° to 90" in 1° steps

Figure 4.4: The effect of the choice of tilt steps on the tomographic reconstruction
is visualized. The reconstructions are based on ray projections.

(a) Projection of the phantom

(b) Reconstruction based on projections from -90° to 90° at 5° steps

(¢) Reconstruction based on projections from -90° to 90° at 1° steps

Opglz] 1 .
glz,2] = f QWQ/ Po ]x_idxdﬂ

B (?pg [:E] 1
N _/0- 271'2/]1% 0z xcos[f] + ysin[f] _mdxdﬂ

We now reintroduce the previously dropped dimension y and finally get

. " 5P9$y] 1 A
g[m,y,z]—/(; 271_2/ xf_idmd&

Intrinsically, this approach has some experimentally and theoretically challenging
features. Typically, the sample is rotated and a certain number of projections are
taken. In practice, it is often not possible to rotate the sample by 4+90°. For a
perfect reconstruction of g, theoretically all projections in the f-values from 0 to
7 are needed. The fact that only a finite number of them are taken reduces the
sampling in Fourier space. Therefore, only a band limited approximation of g is
recovered. Tilt steps that are too large result in artifacts, as shown in figure 4.4.
Furthermore, if the f-values are limited to less than the full 180°, the reconstruction
includes missing cone artifacts. The “missing cone” refers to the missing cone of
projections and, therefore, to the missing cone in the coverage of Fourier space.
The effect on the reconstruction is shown in figure 4.5.
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(g) Phantom (h) -65° to 65° (i) -90° to 90°

Figure 4.5: Missing cone artifacts due to the limited range of tilt of the projec-
tions. The reconstructions are based on classical tomography assumptions. The
resulting 3D tomographic reconstruction is then projected along one direction. In
each row, a different projection direction is shown. (a-c) projection along the
optical axis; (d-f) projection along the rotational axis; (g-i) projection perpen-
dicular to the optical and rotational axis. In the first column, projections of the
phantom are shown, while in the second column projections of the tomographic
reconstruction for a data set of -65° to 65° with a 1° step size are shown. In the
last column, projections of the tomographic reconstruction for a data set of -90°
to 90° with a 1° step size are shown.
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Figure 4.6: The violation of the projection slice theorem due to the limited
depth of focus causes additional artifacts in the tomographic reconstruction. The
3D tomographic reconstruction is again projected as in the previous figure but now
the effect of the limited depth of focus on the reconstruction is included.

In the upper row (a-c), the projection along the optical axis is shown. In the
lower row, the projection is along the direction of the rotational axis. The first
column shows the phantom, while the second and third columns show tomographic
reconstructions from data sets with angles from -65° to 65° (b,e) and -90° to 90°
(c.f) in 1° steps. The simulations were performed for a Fresnel zone plate with
outermost zone width of dry = 10 nm.

Additionally, the imaging properties of high resolution Fresnel zone plates vi-
olate the assumptions used in the projection slice theorem (4.2). The soft X-ray
beam spreads out due to the wave nature of the light. Therefore, the projection
assumption of the projection slice theorem is not perfectly fulfilled. Instead, the
images on the detector are described by the integral given in equation (4.1). This
integral is essentially a convolution with the point-spread function of the zone
plate. The resulting effect on the reconstruction is shown in figure 4.6. Parts of
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the sample which are outside the depth of focus appear blurred. Only within the
depth of focus, the line integral is a good approximation.

4.2.3 Comparison of Experimental TXM Images and Inco-
herent Simulation

In this section, we compare experimental data with a simulation for the case of
an incoherent illumination. In an abuse of notation we will call the simulation
incoherent. The sample consists of Au spheres with a polymer core with a diameter
of 270 nm on a carbon-foil with 2.4 pum holes. The sample was imaged under tilt
angles from -70° to 70° in 1° steps. The final 3D reconstruction was performed
with the weighted back-propagation algorithm as implemented in TomoJ [54].

A comparison between an experimental image and the result of an incoherent
simulation is shown in figure 4.7. The comparison shows that the depth of focus
is similar, but some features of the experimental data are not explained by this
model. These features include halos around the holes, as well as an increased
contrast at their edges. The experimental data exhibits an asymmetric blurring

(b) Incoherent TXM simulation

Figure 4.7: Comparison of real TXM and simulated incoherent images. The tilt
is 70° and the FZP has a dry = 40 nm.

(a) An image of 270 nm hollow Au spheres on a carbon foil with 2.4 pm holes is
shown. The image was taken with the TXM at the U41-FSGM beamline at the
Helmbholtz Zentrum Berlin.

(b) An incoherent simulation of a similar object as in figure 4.7a is shown.
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of the nanoparticles in regard to the distance to the focal plane. This effect is not
observed in the simulation.

A comparison between the 3D tomographic reconstruction from experimental
data and the corresponding reconstruction from a series of incoherent simulations
is presented in figure 4.8. We show selected slices from these reconstructions. One
slice is perpendicular to the optical axis while the other slice is perpendicular to
the tilt axis. The reconstructions show a higher degree of similarity.

°
°
oo
°
(a) Reconstruction experiment (b) Reconstruction incoherent

Figure 4.8: Comparison of real TXM and simulated incoherent tomograms. The
xy-slice is orthogonal to the optical axis. The xz-slice is orthogonal to the rotation
axis and shows the effect of the missing cone artifacts.

(a) Tomographic reconstruction of the experimental data from figure 4.7a.

(b) Tomographic reconstruction of the simulated data from figure 4.7b.

4.2.4 Partially Coherent TXM Simulation

The assumption of an incoherent illumination does not perfectly describe the imag-
ing process in our TXM. This is due to a mismatch between the numerical aperture
of the condenser and the imaging Fresnel zone plate which results in a partially
coherent illumination of the sample. Therefore, a simulation of a partially coherent
TXM was developed and implemented. In other works, finite difference methods
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(FDM) were used to solve the 3D propagation through the sample [85]. Since
FDM are known to produce artifacts and are relatively slow, a different approach
is used. In addition, the imaging properties of the condenser are included.

The simulation steps are:

1. construction of a phantom
2. calculation of the set of inbound illuminating fields

3. description of the propagation through the phantom for each field according
to a modified multislice approach as described in section 3.2

(a) propagation through a single layer
(b) free space propagation to the second optic
(¢) free space back-propagation to the next layer

4. propagation to the detector

5. integration of the results on the detector

The details of the proposed workflow are now explained. The algorithm for the con-
struction of the phantom is very similar to the one described earlier in section §4.1.
The only difference is that planes perpendicular to the optical axis differ in the
step size of their discretization. For the second step of the simulation, the partially
coherent illumination is separated into fully coherent components. Due to the ex-
perimental setup, the partially coherent illumination can be approximated by a
finite number of (fully coherent) source points which are mutually incoherent. For
cach coherent source, the propagation through the TXM is well described by the
coherent propagators described in chapter 3. The resulting intensity distributions
are integrated on the detector over all sources.

For step 3, we use explicitly invertible propagators. This leads to different
transverse resolutions for z-slices along the optical axis. For details about the
implementation, see also section B.2.3. Each point source illuminates mainly a
small part of the phantom. This property is used implicitly on several occasions.
It allows the separation of the resulting field in the plane of the second optic into the
product of a fast oscillating spherical wave and a much slower oscillating function.
This approximation is essential in order to use a reasonably large discretization in
the planes of the optics.®

We now explain the details of a single propagation step and start with intro-
ducing a few notations:

®Remark: For large numerical apertures, another propagator has to be used which is no longer
equidistant in the plane of the second optic. The difference in transverse resolution and distance
to the lens introduces additional errors.
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Uy is the scalar field of the current layer.

1 — 0+ iB is the mean complex index of refraction of the voxel.
Az is the thickness along the z-direction.

k is the wavenumber.

z is the distance to the objective lens.

P,. [U] is the free space propagator for the distance z*.

P;' [U] is the inverse of the free space propagator.

z

Then, the scalar field (Upezt) at the next z-layer is estimated from the scalar field
(Uast) at the previous layer by

Upert =~ Pz__lAz [P, [Ulast]] - exp [dc (—3 + z@ Az} .

In the propagation and back-propagation step, one has to take into account the
separation into spherical wave and slowly oscillating function. This results in an
additional multiplication of the slowly varying part with another slowly oscillating
function.

2z
Ulast [7’] = Ustmu,tast [T] €Xp lik;_z] = [T]

: e
Une.’ct — Ustmu,nemt exp [Ekm‘l

3
- Ustmu,nemt = Uslow,last exXp [EkL]
2(z — Az)z
A propagation step leads to a small change in resolution. This change depends
on the original resolution, the propagation distance, the size (N) of the discretised
field and the wavelength (A) of the light. If the resolution in the first plane is Az,,,
the resolution in the plane of the optic is given by:

A (zopt — 21)

Az, N

szopt =
Since the resolution in the plane of the optic has to be kept constant, the new
resolution in the next layer is

(Zopt — 21 — A2)

(zom — 2)

B iws — Az,
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Hence, the physical sizes of the planes decrease as they come closer to the optic.
This indicates already one of the main restrictions of the algorithm. If the illu-
mination has a significant intensity close to the borders of the field of view, the
algorithm’s results are not well suited for the simulation. Under these conditions,
one gets significant artifacts along the borders. This is a well known problem of
similar algorithms like the split step method. Methods exist to reduce the result-
ing numerical artifacts for those algorithms. For example, perfectly matched layers
can be used to reduce the effect of reflection at the borders. In this method, the
field of view is padded with an absorbing outer layer.

Once the last layer is reached, the resulting field is again propagated to the sec-
ond optic. The resulting field is modified by the transmission function of the optic.
Subsequently, the field is propagated to the detector. As previously mentioned,
partial coherence is included by integrating the resulting intensity distribution of
different source points in the plane of the detector.

g

(a) Experimental TXM image (b) Partially coherent TXM simulation

Figure 4.9: Comparison of experimental TXM and simulated partially coherent
data.

(a) Hollow Au spheres with a diameter of 270 nm on a carbon foil with 2.4 pm
holes were imaged in the TXM.

(b) A partially coherent simulation of a similar object as in figure 4.9a. The tilt
is 70° and the FZP has a dry = 40 nm.

SHere, we assume that the optic acts as a thin lens with focal length f, and therefore, the
transmission function is: T [r] = Xy, . [1] - exp [—ikg] ,
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(a) Reconstruction experiment (b) Reconstruction partially coherent

Figure 4.10: Comparison of experimental TXM and simulated partially coherent
based tomograms.

(a) Tomographic reconstruction of the experimental data from figure 4.9a.

(b) Tomographic reconstruction of the simulated data from figure 4.9b.

Discussion of the Numerical Results

In figure 4.9, a comparison between an experimental image and the result of a
partially coherent simulation is shown. The images show that the depth of focus
is similar and most features of the experimental data, such as contrast inversion,
are better reproduced by this model than by the incoherent one.

In figure 4.10, a comparison is shown between a tomogram from experimental
images and the corresponding tomogram from a series of partially coherent simu-
lations. The images in the experimental and simulated series are now more alike,
and also the tomograms are more alike. For example, the effects along the edges
of the holes in the foil are reproduced. Nevertheless, the impact of the partial
coherence on the tomogram seems to be rather minor.

One approach to decrease the impact of the depth of focus on the tomographic
3D reconstruction is based on deconvolution [61]. This approach is based on equa-
tion (4.1). Theoretically a deconvolution can be used to recover the 3D information
from a series of defocused images. This information could be used to extend the
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(c) Comparison of the on-axis intensity. (c) Comparison of the on-axis intensity.

Figure 4.11: Comparison of finite Figure 4.12:  Comparison of finite
depth of focus effects for 310 eV and an depth of focus effects for 510 eV and
FZP with dry =25nm. A 60 nm Au an FZP with dry = 25nm. A detailed
nanosphere is imaged. Due to partially analysis of the results is given in [53].
coherent illumination. an asymmetry is

observed along the optical axis (verti-

cal).

region for which the projection approximation of tomography is fulfilled. For
this deconvolution approach, the point spread function (PSF) of the imaging sys-
tem must be well known. We measured the PSF along the optical axis by moving a
60 nm gold nanoparticle. The experimental data in figure 4.11 and figure 4.12 show
that the resulting axial intensity profile is asymmetrical. Our simulations showed
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that a purely absorbing particle generates a symmetric pattern. Therefore, the
image of such a small particle in the TXM is already strongly dependent on its
complex refractive index. For the numerical simulation, we used a similar, par-
tially coherent algorithm as for the presented partially coherent TXM simulations.
More details are published in [53].

Summary

We showed that the imaging properties of high resolution Fresnel zone plates vio-
late the assumptions used in the projection slice theorem (4.2). For samples with
the dimensions of a typical cell, the soft X-ray beam spreads out due to the wave
nature of the light and therefore, the projection assumption of the projection slice
theorem is not perfectly fulfilled. Instead, the image on the detector is even for
the incoherent case described by the result of the integral given in equation (4.1),
which is essentially a convolution with the point-spread function of the zone plate.
For partially coherent TXM setups, similar effects occur, as observed in figure 4.9.
Therefore, parts of the sample that are outside the depth of focus are blurred for
some tilts in the image series, and the quality of the tomographic reconstruction is
thereby reduced. Additionally, artifacts are observed for tomographic reconstruc-
tions based on limited tilt series, e.g. series with tilts well below 4+90° or with
step sizes that are too large.

To circumvent these problems, one either can restrict the sample thickness or
use higher photon energies. The latter leads to an increase of the depth of focus but
decreases the contrast which increases the dose on the sample. The dose problem
can be compensated by using phase contrast based imaging methods [76]. For some
samples, like thick tissue, neither solution is feasible. Although, several groups
world wide are working on improving soft X-ray tomography, no breakthroughs
have yet been achieved [46, 61, 85|. Hence, alternative reconstruction algorithms
or imaging methods are required. In the following chapters, the performance of
novel, soft X-ray based 3D imaging approaches are investigated.



Chapter 5

Confocal Scanning Transmission
Microscopy for Direct 3D Imaging

In the previous chapter, it was shown that the tomographic approach has severe
limitations for 3D imaging on the nanoscale due to the limited depth of focus of
high resolution, soft X-ray objectives. However, the limited depth of focus can also
be used to directly image 3D objects. This is used for example in confocal light
microscopy, which is an established method for 3D imaging in light microscopy. In
this chapter, we investigate whether this method can be transferred to soft X-ray
imaging. The concept of confocal light microscopy was developed in the 1950s and
patented by Marvin Minsky in 1957 [56].

Several optical setups for confocal light microscopy exist and one of them is
diagrammed in figure 5.1. The success of confocal light microscopy is based on
the fact that it allows direct acquisition of image slices within thick samples. This
feature is also known as optical sectioning. By stacking adjacent slices, one obtains
a 3D stack which represents the 3D structure of the sample.

In the following, the basic concept of confocal light microscopy and the related
concept of optical sectioning are explained. Afterwards, we discuss how these
concepts can be transferred to soft X-ray imaging.

5.1 The Incoherent Confocal Microscope

The optical setup of a confocal light microscope is diagrammed in figure 5.1. The
setup consists of a light source, a condenser, a sample, an objective and a point like
detector. In a confocal setup, the position of condenser and objective are chosen
such that the image of the light source and the pre-image of the point detector
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Figure 5.1: Optical setup of a confocal light microscope. Lens 1 acts as condenser
while lens 2 acts as objective. In the case of a confocal light microscope with a
fluorescent sample, a filter can be used to separate the fluorescence signal.

The red (out of focus), the brown (off-axis) and black (on-axis, in focus) ray
paths show that out of focus components are suppressed by the aperture detector
combination.

coincide (see figure 5.1'). The ray optical paths shown in figure 5.1 suggest that
such a setup suppresses background light and out of focus contributions.

The majority of confocal light microscopes use the incoherent imaging mode,
which is usually based on fluorescence. In this mode, a diffraction limited spot
generates a secondary signal (at a different wavelength) which is collected by the
objective and detected with a point-like detector. It is assumed that the strength
of the induced secondary signal is proportional to the local intensity of the focal
spot. Furthermore, one assumes that the secondary signal is fully incoherent. The
fact that the objective images the secondary signal onto a point-like detector leads
to the increase in lateral and depth resolution in comparison to a transmission
microscope with equivalent numerical aperture.

In the next section, we will explain this resolution increase. A preliminary
explanation is based on geometric optics. As shown in figure 5.1, background light
and out of focus contribution are suppressed for well chosen distances between the
focusing optic, the second collecting optic and the aperture and detector combi-
nation. This allows 3D imaging of thick samples by optical sectioning.

In confocal light microscopy, reflection based setups also exist which we will not consider
here since soft X-rays exhibit only weak reflection.
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5.1.1 The Mathematical Description of the Incoherent Con-
focal Microscope

In order to deduce a wave optical description of the imaging process, the intensity
of the exciting light in the focal spot of the condenser has to be determined. For
simplicity, a point-like source at sq is assumed.? Under this condition, the first
lens generates a diffraction limited spot in the area of the sample. Therefore, the
resulting intensity ([3) at a point r in the region of the sample is given by

2

Bl — ‘/5[3—30] PSF, [s,7] s

= |PSF, [so,7]|?
IPSF} [SQ,T’]. (51)

Here, PSF) [s,r] is the amplitude point spread function of the first optic and
IPSF [s,r] is the intensity point spread function. The index in I3 is used to
illustrate that this is the intensity in the z3 region without sample interaction.

We now determine the strength of the secondary signal. Since this signal is
usually produced by fluorescence, we call it from now on the fluorescence signal.
Furthermore, it is assumed that the resulting fluorescence signal is linearly depen-
dent on the intensity in the focal spot®. The total strength of the fluorescence signal
is, therefore, proportional to [gs I3 [r] a[r] dr. Here, a [r] represents the likelihood
of an excitation of the fluorescence. Furthermore, we assume that the attenuation
of the exciting light and the fluorescence is negligible.

We now study the image of a single fluorophore which is situated in ry. Let its
value be a[r] := ag - § [r — ro] . This spot now is imaged by the second optic. On
the detector, it generates at the point rg., the signal

I [raed] = / Llrlal] IPSE [ raddr (5.2)
R
= 13 [?"0] C}.’()I_PSFQ [TD; Tdet] i
Here, the incoherent point spread function I PSF; [r, rge:| has to be used since it is

assumed that the fluorescence signal is emitted fully incoherently. The index in I3
is used to illustrate that this is the intensity in the detector region which results

2A slightly more general description assumes a source which can be separated into a finite
sum of fully coherent but mutually incoherent distributions og [s]. Then, the intensity results
from Is[r] =) "¢ |fs€503 [s] PSF; [s,7] ds|2.

3For fluorescence, this assumption holds if saturation effects can be neglected and the mean
time between two consecutive absorptions of a photon is larger than the time needed for the
emission of the fluorescence photon.
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Figure 5.2: Comparison of the in-
coherent point spread function of a
Fresnel zone plate with dry = 10 nm
(left) and the intensity point spread
function for the incoherent confo-
cal microscope with a point detector
(right). The increased localization of
the PSF of the confocal microscope
results in an increased resolution.

from the fluorescence of the sample. If the spot is now moved by Ar, the resulting
signal at the same position on the detector is

I [raed] = / Iyl aodlr — (ro-+ Ar)] IPSF [r, rae] ar (5.3)
R
= I3[ro + Ar] apI PSF; [ro + Ar, r4e) -

To compute the intensity on the detector for an arbitrary distribution of fluo-
rophores, we use the fact that the integral is linear and that the fluorescence based
emission signals are mutually incoherent. The resulting signal of multiple fluores-
cent spots is, therefore, simply the sum (or integral for a continuous distribution)
of the signals. Therefore, it suffices to compute the signal produced by a single
fluorescent spot. The resulting image of an intricate distribution of fluorescent
particles is given by the convolution of the single spot signal and the particle
distribution.
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Equation (5.3) can be further simplified by applying equation (5.1)
I5 [r4er] = IPSF [sg,70 + Ar] - IPSF, [rg + AT, rger] o

The image of an intricate distribution of fluorescent particles (a) is therefore given
by

I, [r'] = (IPSF [so,7] - IPSEy[r,7']) xa]r].

Hence, the effective point spread function of the incoherent confocal microscope
is under these conditions the product of the incoherent point spread functions of
the two lenses. This leads to an increased resolution as visualized in figure 5.2 in
comparison to a transmission microscope with equivalent numerical aperture.

In the soft X-ray region, fluorescence is weak for light elements and additionally
only a relatively small part of the fluorescence signal can be collected due to the
small numerical aperture.? Therefore, a fluorescence based confocal scanning X-
ray microscope requires a large dose which is most likely above the destruction
threshold of biological samples. Hence, for high resolution imaging of the cellular
ultra-structure, a transmission system as shown in figure 5.3 is preferred. For such
a system, the previous description of image formation is not valid. Instead, such
an optical setup has to be described in a coherent setting.

5.2 The Coherent Confocal Microscope

The presented confocal soft X-ray scanning microscopy setup is based on Fresnel
zone plates instead of refractive lenses (see figure 5.3,[90]). Zone plates produce
several focal spots each at a different focal length. Therefore, an order sorting
aperture is necessary to block unwanted diffraction orders and select only one
order for image formation. As known from confocal light microscopy, the con-
focal setup of the second objective in conjunction with the pinhole is supposed
to remove light that originates from planes outside the depth of focus. In light
microscopy, the lateral resolution and the depth of focus (DOF) are within the
same range due to high numerical aperture objectives. For X-ray optics, the depth

4For higher atomic numbers, a setup with crossed Fresnel lenses is sometimes used for X-ray
fluorescence (XRF') microscopy. Although this setup is not strictly speaking a confocal setup, it
nevertheless uses a similar concept to achieve an increased lateral and depth resolution and to
mitigate the problems generated by a long depth of focus for 3D imaging. For XRF, the DOF is
significantly longer than for the confocal STXM since the X-ray fluorescence of heavier elements
is at higher energies (e.g. Fe @ 6.4 keV) [98, 43|. In the soft X-ray region, such an instrument
is unlikely to work with biological samples since the dominating path of decay of core vacancies
for low atomic numbers is the non-radiative Auger process [1]. Therefore, the required dose for
imaging is well above the destruction threshold of such samples.
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(FWHM) Conventional LM Confocal LM Confocal LM
1 AU <R R<0.25 AU
0.88) 2 (yVanr\? X
not definable (7‘3”‘) + ( 2""R) _ 0.64%
Optical slice thickness n—y/nZ—NA2 NA n—y/n2—NAZ2
(410nm) (213nm)
1.67 A 0.88Aezc  NA<O05 1.67na.,, 064X  NA<O5 198n%
Axial resolution naz n—y/n?-NAZ NA® n—y/n2—NAZ Az
(278 nm) (292nm = 278 nm) (212nm = 213nm)
0.512em 0.51Aeqe 0.37A
Lateral resolution it s i
(10.2nm) (10.2 nm) (7.4nm)

Table 5.1: Rule of thumb formulas for confocal light microscopy (LM) [104].
Two cases are considered depending on the radius (R) of the detector. The lower
numbers represent the hypothetical results for Aep, & Aeze = 2.4nm, NA = 0.12
(dry =~ 10nm) and n =~ 1.

(AU: airy unit, A := \/ﬁ)\emkemc/ VAL, + A2 Aeper excitation wavelength, Agp:

emission wavelength)

of focus is significantly larger than the lateral resolution since only relatively low
numerical aperture (NA) optics are available due to difficulties in the manufac-
turing of high resolution X-ray objectives. For example, a state of the art Fresnel
zone plate with an outermost zone width of dry = 10 nm has at 0.5 keV photon
energy a numerical aperture of NA=0.12. Since the proposed transmission system
uses only one wavelength and the signal propagates coherently, the analysis of a
confocal transmission microscope is more challenging than in the incoherent case.
It has been studied in |29] for light microscopy with the help of coherent transfer
functions and 3D transmission cross-coefficients. Since the computational load of
this approach exceeded our available resources, a different approach was used to
predict the expected performance of such a system. Pivotal for the simulation
is that the setup of a confocal transmission microscope shares similarities with a
transmission microscope. The main difference is that the initial illumination is
fully coherent, the detector is point-like and the image is generated by scanning
the sample. Therefore, virtually the same simulation as for the partially coherent
TXM can be used to simulate the confocal microscope. An implementation is
described in detail in the supplement in section B.2.1°.

®One should be aware that the convolution with a point spread function is a bad approximation
for this imaging mode since the detected signal is not a sum of point like sources as in the case
of a fluorescence confocal setup.
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X
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Figure 5.3: X-ray optical setup of the confocal STXM. The partially coherent

photons are focused by a zone plate onto the object plane. An order sorting
aperture in combination with a central stop blocks zero order light and higher

orders of the zone plate. A second zone plate collects the light that is transmitted

by the sample and images it onto a pinhole in front of the detector plane. The pinhole
suppresses light scatteredrom out of focus planes. It also reduces offaxis light from

the focal plane. By rasterscanning the object,its 3D image is formed. Image provided by
S.Werner

5.2.1 The Mathematical Description of the Coherent

Confocal Microscope
Inorder to study t he coherent, confocal system, the first Born approximationis
commonly used (see [29] ),which is validfor thinor sparse objects.

Analysis of the Confocal System Usingthe First Born Approximation

Thefrst Born approximationassumes thatt he incident feld is not signiftantlychanged
due to the presence of the object.Therefore, the interactionof the object with the
incident feld is well described without t akinginto account the interactionof t he field
produced byt he object witht he object itself. The notationused f or t he difrent partsof
the systemis shown in figure 5.3.
Since the focal spot issupposed to be diffaction | imited, it is assumed that the
source is fully coherent. Let it generate the feld Uf. Then, the illumination which is

incident on the sampleis given b,

'\7
= / U, [s] PSF, [s,7]ds.
seSource

Without the sample, the illumination is simply imaged by the second objective
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lens onto the detector. The resulting field in the plane of the detector is given by

Us [v] = f PSF,[r,v] U, [s] PSF; [s,r]dsdr.
reR seSource
Here, R is a plane orthogonal to the optical axis. The signal (S) on the detector
results from the integrated intensity over the area of the detector

S:f U [o] | do.
ve Detector

In the presence of a sample, the incident field U; is perturbed. Since the first
Born approximation is used, this generates just another field Ug;3 and does not
change the field U;s. We now have to propagate the field generated by the object
to the detector.

In the plane of the second lens, the field generated by the object is according
to equation (3.12)

(21— ') + (va—y)"
2(z4 —2")

exp |ikg

exp |tko (z4 — 2/
Uobj,4 [3?419’4?/‘54] = / [ ( )]
(z'y',z')eSample iA

-k§ (n2 [;t:",y",z’] — 1) Us [::c’,y’,z"] dz’ dy’ d2’.

This field is first modified by the transmission function of the optic, and the
result has to be propagated to the detector. Since the coherent point spread
function PSF; already includes both the transmission properties of the optic and
the propagation from the region of the sample to the second optic, it can be used
directly to compute the contribution of the sample to the signal. This approach
leads to the following equation for the contribution of the sample to the field on
the detector

Usgs o] = / PSE, [r,v] K2 (n?[r] — 1) Us [r] dr.
reSample
Since the incident field depends only on the source, this is equivalent to
Ugs[t] = / PSEy[r,v] K (n*[r] — 1)
reSample
f U, [s] PSFi [s,r]dsdr.
seSource

Finally, the signal (S) on the detector results now from the interference of the two
propagated fields

o / |U5 ['U] % Uobj,& [U]|2 dv.
veDetector
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The signal is therefore,

s - f 1Us [o] + Unys o]l dv
ve Detector
f PSFs[r,v] (6[rs] + K2 (n® [r] — 1))
reSample

L.EDetect,or
2

/ U, [s] PSFi [s,r]dsdr| dv.
seSource

The delta distribution in the last equation describes the field without sample.

If the source is not fully coherent, the focal spot is not diffraction limited. In
this case, the source has to be separated into series of mutually incoherent fields
Ul(j ). Each of these fields is propagated through the system and the resulting
incoherent sum yields the signal on the detector.

Analysis of the Confocal System Without the First Born Approximation

In X-ray microscopy, thick samples are often used. For thick samples, the first Born
approximation is no longer perfectly fulfilled. Instead, a multislice approach is used
to simulate the resulting images. A comparison of the experimental setups shows
that the confocal and the transmission soft X-ray microscope share similarities.
Hence, an almost identical algorithm to the one presented in section 4.2.4 is used to
calculate the distribution on the intensity detector for each scanned position. The
algorithm for the creation of the phantom is identical to the one in section 4.2.4.

Essentially, the confocal simulation is for each position of the scan a fully
coherent TXM simulation with a point source. At each position of the scan, the
following steps are undertaken:

1. The phantom is translated to the scan position.

2. For the condenser facing first face of the phantom, the scalar field of an
on-axis point-like source imaged by the condenser is computed.

3. This scalar field is propagated through the (translated) phantom by the same
multislice algorithm as in section 4.2.4.

4. The resulting field at the exit face of the phantom is propagated through the
objective to the detector.

5. The intensity in the area corresponding to the point-like detector is inte-
grated. This value represents the signal at the scanned position.
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5.2.2 Results of the Simulation

The performance of a confocal transmission setup was analyzed numerically with
the multislice based simulation. As samples, we used four spheres which have a

Comparison of the imag-
ing performance of a con-
focal STXM and a par-
tially coherent TXM. The
images show four spheres.
Each sphere has a diam-
eter of 300 nm and simu-
lates a 4 nm thick cellu-
lar membrane. They are
separated in depth by 300
.

The limited depth resolu-
' tion is obvious (c).

| Two 10 nm FZP were
used for the confocal sim-
ulation (a,c), while for
the TXM simulation a
- 10 nm FZP objective in
combination with a con-
denser which is equiva-
lent to a 40 nm FZP was
~ used (b). Scale bars are
100 nm.

(c) Confocal scanning image xz-slice

Figure 5.4: Comparison of confocal and TXM 3D imaging performance.

(a) The confocal image of the xy-slice focused on the center of the left sphere.
(b) The same slice as a TXM image. (c) The confocal image of the xz-slice
through the center of the spheres.
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Figure 5.5: To estimate the resolution of a confocal STXM, the image of a thin
line-like object was simulated. The FZPs used have a dry of 10 nm. The red
line represents an object with pure absorption contrast, while the blue line re-
flects phase shift and absorption similar to a cellular membrane. (a) The lateral
resolution is about 9.6 nm (FWHM). (b) The depth resolution is about 350 nm
(FWHM), which is lower than the DOF for TXM imaging (170 nm). Note, that
the image is phase sensitive.

diameter of 300 nm and are separated in depth by 300 nm. They represent 4
nm thick cellular membranes. We compared the resulting confocal images to TXM
images with equivalent objectives. Our results are shown in 5.4. From these results,
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we conclude that a confocal STXM produces a 3D image but the resolution is
anisotropic. A comparison of the xy-views of the confocal STXM and the partially
coherent TXM image shows that the latter exhibits significant coherence induced
artifacts which are not present in the confocal image. The investigated confocal
STXM shows no such artifacts. The reason is that the imaging process of two
scanning points is independent in time and the numerical aperture of both optics
match. From the xz-view of the spheres, one can conclude that the depth resolution
for the confocal STXM is in this setup about 350 nm (FWHM) (see 5.5b), while
the depth of focus of a TXM is about 170 nm at the same dry. See also table 2.1.

Summary

In this chapter, we have theoretically analyzed the performance of a confocal scan-
ning X-ray microscope for 3D nanoscale imaging. In contrast to confocal mi-
croscopes in the optical regime which operate under incoherent conditions, the
confocal X-ray microscope operates under either coherent or partially coherent
conditions. In the optical regime, the lateral resolution of a confocal microscope
improves by “60% compared to the single objective. In addition, defocused planes
are removed by the confocal setup with pinhole detector. The axial resolution in
the optical confocal microscope is only 2 to 3 times worse than the lateral resolu-
tion.

In this thesis, we showed that the confocal X-ray microscope requires a more
complex description with coherent wave propagation through the object that in-
corporates both attenuation and phase shift. We find that the lateral resolution
does not improve significantly over the single X-ray objective. Furthermore, the
relatively low numerical aperture of zone plates in the soft X-ray regime yields
a depth resolution that is 30-fold larger than the lateral resolution. Therefore,
the 3D resolution in the X-ray confocal microscope is highly anisotropic, which
significantly reduces its applicability for 3D analysis of biological specimens. Nev-
ertheless, the well-defined focal spot of the X-ray confocal microscope might trigger
other applications, for example when coupled with ultrashort pulses emitted from
X-ray lasers.



Chapter 6

Novel 3D Imaging by a Combined
FIB and SXM with Photoelectron
Detection

Nanoscale soft X-ray imaging has yielded unprecedented views into native and
synthetic structures, but as the investigations in the previous chapters showed, it
is also subject to limitations for 3D imaging. A new imaging approach is presented
in this chapter, which potentially can overcome some of the main limitations. The
new approach is studied by mumerical simulations. In addition, its performance
concerning the signal to noise ratio is analytically investigated.

6.1 Introduction to FIB-SXM

The new imaging approach is based on the detection of emitted photoelectrons gen-
erated by a scanned nanoscale X-ray beam [84]. This strategy naturally achieves
a depth resolution of less than 10 nm due to the short escape length of photoelec-
trons. Those emitted at depths beyond 10 nm are rapidly absorbed before they
escape the specimen. A 3D image is generated by removing the surface layer with
milling by a focused ion beam (FIB). FIB is now widely used to remove surface
layers at a resolution of 10 nm or less with minimal impact on the specimens [74].
Note that by raster scanning the sample as shown in figure 6.1, the 3D image is ob-
tained directly without computational processing. In the following, we will analyze
theoretically and numerically the 3D imaging performance of the focused ion beam

91
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milling based scanning X-ray microscopy by photoelectron detection (FIB-SXM)
setup.

6.1.1 Setup

The general setup for FIB-SXM is shown in figure 6.1. The setup consists of a
focused ion beam column, a channeltron with an in-lens objective and a translation
stage for the sample. The in-lens objective consists of a high-resolution Fresnel
zone plate (FZP) with a central stop and an order sorting aperture (OSA). The
OSA is matched to the central stop and selects one order of diffraction.

The concept uses a focused ion beam column to prepare a flat surface. The
surface is then raster scanned with the focal spot of the Fresnel zone plate. For soft
X-rays and light elements, the absorbed photons generate mainly photoelectrons.
They are detected by the channeltron. We assume that the detected signal is
proportional to the absorption of the surface layer!. Two different types of signal
can be detected.

Firstly, one can choose to detect only Auger electrons. For this mode, the
analysis of the signal to noise ratio is relatively straight forward and will be done
in section §6.3. Secondly, one can detect all secondary electrons. These electrons
include low energy electrons produced by the interaction of the Auger electrons
with the atoms of the sample. To predict the exact local and energetic distribution
of these secondary electrons is challenging. We therefore skip this analysis. Intu-
itively, the expected amount of secondary electrons should correspond to the local
absorption coefficient since the latter determines the energy which is deposited
into the surface area.

Both methods are expected to generate good contrast in biological samples.
The intrinsic resolution is given by the lateral dimensions of the focal spot and the
escape depth of the electrons. The escape depth of electrons at these energies is
small so that a very good depth resolution is expected. To generate 3D images, the
specimen is fixed on a sample holder with three degrees of freedom in translation.
The sample is imaged layer by layer. One starts with the raster scan of the first
layer. Then, the second layer is produced by removing the first layer by FIB
milling. For biological samples, cryo-fixation is used to suppress artifacts due to
radiation damage. For cryogenic samples, surface layers of about 10 nm have
already been removed by FIB [74]. In these experiments, the embedding of ions
proved to be no problem.

This assumption will lead to an improved contrast in FIB-SXM in comparison to other soft
X-ray transmission methods for biological samples since the signal is oc 1 — exp [—pAz] = pAz (
FIB-SXM), respectively o exp [—pAz] &~ 1 — pAz (transmission).
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channeltron with
in-lens objective

order sorting
aperture

3D stack of image

X-rays I
zone plate with
central stop | 4
FIB cryd z,
column sample

Figure 6.1: Optical setup of the dual beam FIB-SXM (focused ion beam scanning

X-ray microscope) with photoelectron detection. Soft X-ray light (orange arrows)

is focused by a zone plate to a diffraction limited 10 nm spot on a cryo-preserved

specimen. The photoelectrons (green arrow), emitted from the specimen, emerge

only from a thin surface layer of the specimen and are detected by a channeltron

surrounding the zone plate. The 10 nm X-ray spot is scanned to produce a 2D

image of the specimen’s surface (z1), and then FIB is used to remove a 10 nm —

thick layer from the surface. Thus, an iteration of SXM followed by FIB milling

vields images of successive surface layers (z2, z3 ,z4 ) finally generating a 3D image
stackof the specimen at isotropic resolution. Image provided by S.Werner

6.2 Simulation

We begin our investigation of the imaging capabilities of the new FIB-SXM method
by comparing the FIB-SXM and the TXM images of a phantom since the latter
is in my opinion currently the best soft X-ray method for imaging of whole cells.
The phantom simulates a typical eukaryotic cell and includes filaments with the
optical properties of cellular microtubules and spherical vesicles with the optical
properties of cellular membranes.

The FIB-SXM simulation includes the point spread function of the Fresnel
zone plate and the depth dependent escape probability of the Auger electrons.
For the simulation, it is assumed that the number of Auger electrons is directly
proportional to the absorption coefficient. They are emitted in any direction with
equal likelihood and the probability to escape the sample decreases exponentially
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Figure 6.2: This simulation compares the FIB-SXM and the TXM imaging modes.
Imaged is a phantom that corresponds to a biological sample. The phantom object
consists of hollow spheres with a 4 nm thick shell composed of membrane lipids
and proteins, and 25 nm diameter rods of microtubule protein (a, d and i).

The X-ray optical setup of the TXM (b) and the FIB-SXM (c) are also illus-
trated. In the TXM, the entire sample is illuminated by X-rays (vellow). The
light transmitted by the object is then imaged by the zone plate objective onto
the detector, generating a 2D projection image. To image the 3D structure of the
sample, a series of images at different angles is taken. A volume rendering of the
resulting reconstructions is shown for a 10 nm zone plate in (e) and a 25 nm zone
plate in (f). In the third row, an xz slice of the phantom (i) is compared to the
same slice from the TXM reconstruction with a 10 nm (j) or 25 nm zone plate
(k).

In the FIB-SXM, the X-rays (yellow) are focused to a diffraction limited spot on
the sample. The photoelectrons produced are detected, and a 2D image is obtained
by scanning the spot over the surface. To recover the 3D information, the surface
laver is successively removed by FIB milling (blue arrows). A volume rendering of
the resulting reconstructions is shown for a 10 nm zone plate in (g) and a 25 nm
zone plate in (h). In the third row, an xz slice of the phantom (i) is compared to
the same slice from the FIB-SXM reconstruction with a 10 nm (1) or 25 nm zone
plate (m).

The FIB-SXM images are faithful renderings of the phantom, subject only to blur-
ring produced by the zone plate objective. In contrast, the TXM images show a
more distorted phantom with artifacts created by the reconstruction process.
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with the length of the path to the surface. The probability of the electrons to
escape the sample is based on the electron effective attenuation lengths in ice [66].

For the TXM simulation, we use the incoherent algorithm described in chap-
ter 4. The 3D image is generated by tomography. This simulation includes the
effects of defocus due to the incoherent 3D intensity point spread function and the
missing wedge artifacts.

The results are shown in figure 6.2 and figure 6.3. From a direct comparison
of figures d to h, one notices the improved image quality of the FIB-SXM in
comparison to the tomographic reconstructions. FIB-SXM does not suffer from
the same depth of focus restrictions as seen in figure j and 1. Since the FIB-SXM
image is directly generated in 3D, no artifacts occur due to the 3D reconstruction
algorithm.

6.3 Signal to Noise Ratio for FIB-SXM and TXM

As previously mentioned, soft biological samples are damaged by large X-ray doses.
Hence, the achievable resolution of any X-ray imaging method depends not only on
the resolution of the imaging system, but also on the signal to noise level achievable
with a prescribed dose. The aim of the following calculations is to approximate
the required dose for a prescribed contrast, resolution and signal to noise level for
FIB-SXM.

According to the Rose criterion, a signal to noise ratio (SNR) of at least 5 is
needed to reliably distinguish features. The SNR is here defined as the quotient

of the expected signal to the standard variation of the signal, i.e. SNR := %

where E [S] and SD [S] are the mean and standard variation of the signal (5).

6.3.1 Signal to Noise Level for the FIB-SXM

We now consider the FIB-SXM signals produced by two cuboids which differ only
in the material. Due to the difference in the material, both cuboids generate
a different number of detected photoelectrons (Y;). The signal is the difference
between the two detected electron counts S =Y; — Y.

The electron signal produced by a cuboid results from two random processes.
Firstly, we have the number of incoming photons N;. This number is usually
described by a Poisson distribution. In an abuse of notation, we will call the
distribution and the expected value N;. Secondly, each of these photons has a
certain (independently identically distributed) probability to be absorbed in the
cuboid. For soft X-ray absorption, fluorescence is negligible so each absorbed
photon produces one or two Auger electrons. Since the end results are similar,
we assume here that both materials produce only one electron in the detectable
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energy range.? The amount of produced electrons is hence Y; = Ef\il Z;; where
the distribution of Z;; is given by a Bernoulli distribution with parameter p; ~
1 — exp[—pAz] =~ p;Az. Here, p; and Az are the absorption coefficient and
thickness of the cuboid respectively. Since both cuboids have the same dimensions,
the expected number of incident photons is the same, i.e E[N;] = N.

From this, plus the Wald equation and the Blackwell-Girshick equation (see
E.3.1), a straightforward calculation produces the SNR. We start with the defini-
tion of the signal to noise ratio

E[9]

VVar[S]

The expected value of the signal S follows from

SNR: =

E[S] = EM-Y,
B IN] pAz — E[No] paAz
— N (;U’l S #2) Az:

and the variance of S

Var[S] = Var[Y: —Y,]
Var[Y1] + Var[Yy] — 2Cov [Y1, Y5
Var[Y1] + Var[Y,]

N (p1 + p2) Az.

[=+1
b

In the calculation of the variance, we use the fact that the variance of each
Y;,i = 1,2, follows from the Blackwell-Girshick equation

VarlVi] "2* E[Nj|Var[Zii] +E[Zi1]* Var [Ni] (6.1)
=  NpwAz(1—pAz) + (uA2)> N
= Nz,

Therefore, the signal to noise ratio is

28ee later calculation for the case of two electrons.
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E[S]
VVar[S]
N (p1 — p2) Az
VN (p1 + p2) Az
VNAZ (1 — pa)

- (p1+p2) 62)

SNR

Adding the Detection Probability of Electrons The previous calculation of
the SNR ignored the fact that electrons produced in different depths of the cuboid
differ in their probability to escape from the material. Furthermore, the final elec-
tron counts result from the detection efficiency 7 of the detector. This introduces
an additional source of noise. Here, we assume the detector to have a constant
quantum efficiency (7). We assume that the probability for an electron produced
in a depth z to escape is to a good approximation exponentially decaying with a
constant Cegeape < 0. Any escaped electron is then detected with a probability of
n. This yields a detection probability of p; (2) = 1 exp [¢; escapez]. The SNR can be
deduced by applying the Wald equation, the Blackwell-Girshick equation and the
linearity of mean and variance. Again, we start from the definition of the SNR

E[S]

v Var|S]

fDAz S [z]dz

\/ Var [ 35 [2] d2]

For the deduction of the SNR formula, we divide the distance Az into M pieces
of thickness §z ({(0,02),(62,262),...,(M —1)dz, M6z = Az)}). The number of
detected electrons originating from the m-th layer of material i is called X, . It
is related to the number of emitted photoelectrons by

SNR[S] =

Yi[(m—1)dz,mdz]

Xz',m ~ E Wi,z:m&z,a-

a=0

Here, W; ., is the distribution related to the escape probability. In our case,
it is Bernoulli distributed with parameter p; (z). Y;[(m — 1) 0z, mdz| is defined as
above, but with dz instead of Az. The expected integrated signal results from the
sum of all expected signals produced in the slices.
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:

(X1m [62] — Xom [5z])]

E[S] =

=

I
=

M=il]=

1

S
[

(E [Wimesz) E[Y1[(m — 1) 0z, mdz]] — E [Wams:] E[Ya[(m — 1) 62, mdz]])

(nexp [€1 escapemdz] E [N1] 102 — 1 exp [c2 escapemdz] E [Ny pad 2)

M= il=,

1
M

= qN Z (exp [€1,escape™02] 102 — €XP [€2 escape™I 2] p2d2)

m=1

3
[

As M goes to infinity, the following formula for the expected signal results.

Az
IE [S] == TIN\/ (E'.'Xp [cl,esmpez] H1 — €Xp [CZ,esoapez] P”Z) CIZ
0

Similarly, the integrated variance can be determined by using the linearity of the

:

variance.

Var[S] = Var

M=il]=

= Var (X1m [02] — Xom [52’])]
= Z Var [X; m [5»3] = X2,m [‘5z]]

o
w

Y (Var [Xym [62]] + Var [Xom [62]])

1

3
[

[E<
NE

Nn (exp [Cl,esmpem(sz] f-“’laz 4= exp [CQ,esmpem§z] ,U’Q'fsz)
1

3
[

Letting M go to infinity, the following formula for the standard variance of
signal results.
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Az
Var[S] = N?}'/ €XD [€1 escape?] 1 + €XP [€2 escape?] padz
0

These auxiliary equations were used:

Var [Xim[02] — Xam[02]] = Var[Xim[02]] + Var [Xom[62]] (6.3)
—2Cov [X1m [02] , Xo.m [02]]
= Var[Xim[0z]] + Var [Xom [02]]

Var [Xim[62] P2* E[Y;[(m — 1) 62,m82]) Var [Wimss.1] (6.4)
+E [Wi,m&,I]Q Var|Y;[(m — 1) 6z, méz]|

Npibznexp [ escapemd2] (1 — 7 €XP [€i escape™d 2])

+ (n exp [Ciescapemdz])® Npidz

= Npi6znexp [ escapemd 2]

o
-

Finally, the signal to noise ratio including the detection efficiency 7 and the depth
dependent escape probability is given by

fDAz S[z] dz

\/ Var [ A% 2] dz]

A
?}'N fo ? (E'.'Xp [Cl,escapez] M1 — €Xp [02,33mp€Z] fJQ) dz

SNR =

A
\/NT? fﬂ # exXp [Cl,esc&pez] H1 it exp [CZ,esmpez] pﬂdz

Az
W Jo (exp [c1,escapez] 1 — €XP [€2,escape] p2) dz. (6.5)

A
\/fo : exp [Cl,esmpez] H1 + exp [02,escapez] P‘Jde

Therefore, we now have an equation that relates the SNR, the number of inci-
dent photons and the feature size for FIB-SXM imaging.

6.3.2 Signal to Noise Ratio for the Transmission Mode

Now, we compare the signal to noise ratio result for FIB-SXM with the one for
TXM imaging which is currently the most commonly used soft X-ray imaging
method for cells. The exact SNR in the transmission X-ray microscope depends
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on the contrast mechanism and the experimental setup. Here, we study a best case
scenario. We assume that the microscope generates a perfect image of the sample,
and the only noise present results from the probabilistic nature of the photon
sample interaction. In a real system, this is not achievable since only a fraction
of photons are collected and the detector introduces additional noise. Absorption
contrast and phase contrast imaging are now separately studied in this scenario.

Absorption Contrast in TXM

As previously stated, the SNR is defined as the quotient of the expected signal to
the standard variation of the signal, i.e. SNR := S]EJ:E[;?:]S] where E [S] and SD [S] are
the mean and standard variation of the signal (S). We now consider the signals
produced by two cuboids which differ only in the material. Due to the different
X-ray optical properties of the materials, both cuboids absorb a different number
of the arriving photons. The photons which are transmitted by the cuboid photons
then generate the detected signal (Y;) . The signal is the difference between the
two detected photon counts S =Y, — Y5.

We start again with the number of incoming photons N;. As before, this
number is usually described by a Poisson distribution. Secondly, each of these
photons has a certain (independently identically distributed) probability to be
absorbed in the cuboid. The probability for a photon to be transmitted depends
only on the thickness and optical properties of the cuboid. It is given by p; =
exp [—uiAz]. Where p; and Az are the absorption coefficient and thickness of the
cuboid. The amount of transmitted photons is hence Y; = 221 Ziy, with Zi; a
Bernoulli distribution with parameter p,.

The variance of the signal is therefore

Var[S] =Var Y1 — Y.

Var [S] = E[N1] (2 (exp [—p1A%] + exp [—p2A2]) — (exp [-2p1Az] + exp [-2p,A2])) .
while the expected value is
E[S] = E[N](exp[—p1Az] —exp[—p2Az]).

Therefore, the signal to noise ratio equals

E[S]
E [N1] (exp [-p1Az] — exp [—p2Az2])

VEIN.] 2 (exp 152 + oxp [2B2]) — (exp (21 A7 + oxp [2112A7]))
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In order to simplify this expression, the square root is approximated by its Taylor
series

- E [NV1] (exp [—111A2] — exp [—p2A2])
VEINI] @ (exp [ A7] + oxp [ 2A7]) — (exp [~ 2 A7] + oxp [ 20,A4]))
VE [N ((—p + p2) Az + (] — 413) A" +...)

(G5 +3 0+ @ar+...)

VN % (=p +p2) Az (6.6)

Zernike Phase Contrast in TXM

Zernike phase contrast was developed for light microscopy in the early 1930°s
by Zernike [109] and later adapted to X-ray microscopy [78]. The key idea behind
Zernike phase contrast is to impose a bias onto the detected field. Therefore, the
signal generated by a cuboid is

SNRIS]

Q

Q

Y; = |Asexp [iAy;] + Bexp [ig]|?
Here, Bexp [ipp] is the bias, Ap; and A; are the phase difference and amplitude
generated by the cuboid. The bias Bexp [ipp] € C is usually generated through a
phase shifting element in a conjugate plane to the condenser of the objective. The
phase shifting element is adapted to the Fourier components of the illumination
created by the condenser. For the sake of simplicity, we assume that the bias is
not influenced by the cuboid.

We are again interested in differentiating between two cubes of material 1 and
material 2. Let the signal be the difference between the two detected photon counts
S =Y; — Y, The expected signal is

E[S] = EY1-Y
= EYi] -E[Y?].
The expected signal generated by one cube is
E[Y]] = E[A?+ A;B (expi (Aw; — @B)] + exp[i (p5 — Apy)]) + B?]
= E[A%] +E[AiB (exp [i (Ap: — p5)] + exp[i (o5 — L)) + E [B?]
1
= Nyexp[—pAz] + B>+ 2B -/ Nyexp [—ﬁuiAz] cos [(Ap; — ¢B)].

The difference in the phase shift Ag; depends on the material and the thickness.
We use a macroscopic model and therefore, it is assumed that this difference is a
deterministic function of the sample thickness.
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We assume that the number of detected photons Y; is again Poisson distributed.
Then, the variance of Y; is

Var[Y;] = Nyexp|—u;Az]+ B?*+2B -1/ Nyexp l—%,u,iAz] cos [(Ap; — pB)] -

Therefore, the SNR of the signal S is approximately
EY, - Y)]

Vv Var[Y; - Y]

No (e7#182 — e=H282) 4 9B . /N (e_%“lé‘z cos[Ap; —pg]l —e” FH282 oog [Aps — ch])

SNRI[S] =

\/N(] (e~H18z 4 e—p282) 4 9B2 4 9B . /Ny (e_%‘“é‘z cos[Ayp1 — pB] + e~ ZH2A2 o5 [Ap2 — (pB])

L s * 100 v froo a1 Hora ‘ ‘ 3 — ‘ — n
A common (..1101(:(, f()r. th(,lf%“(,(.. parameters B and gp are B = y/Np and pp = £3.
Then, the equation simplifies to

ElY: — V5]
V4 Var [Y]_ = Y2]
V/No (exp [-p1A2] — exp [—ppAz] + exp [~ 3p1Az] (Esin [(Ap1)]) — exp [~ FpaAz] (£sin [(Aps)]))
\/exp [—p1A2] + exp [-p2Az] + 2 + 2 (exp [~ 3p1A2] (Esin [(Ap1)]) + exp [—Fu2Az] (+sin [(Ap2)]))

SNRI[S] =

6.3.3 Signal to Noise Ratio for X-ray Diffraction Microscopy

An analysis of both the signal to noise ratio and the damage threshold for biological
samples for CDI and X-ray diffraction microscopy can be found in [42|. Tt is based
on the diffraction pattern of a single voxel and produces the same general scaling
of the dose as in the TXM case. Specifically, the dose scales with the inverse of
the fourth power of the resolution ([42] eq. 3)

P
Ng — e ——— T
R
Here, Np is the number of incident X-rays per unit area, d is the size of the voxel,
re is the classical electron radius, g, the relative electron density (which takes into
account the reduced contrast between water and protein) and P is the number of
scattered photons that are detected.
The same paper contains an approximation of the maximal tolerable dose. For
a cryogenic biological sample, the dose (D) should be less than ([42] eq. 5)

D £ 10°Gy - resolution [nm].
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In this paper, it is assumed that the relationship between the dose D near the
surface and the mumber of incident photons per unit area is given by

_ pNohv
=—

D

Here, € is the density, p is the absorption coefficient, v is the frequency of the

photons and h is the Plank constant. For water at 2.4 nm (¢ =~ 1-Z;, u =~
CIT

%pm_l), one gray corresponds to one hundred photons per square micrometer

hot , .
(1 Gy =~ 100 p;’T‘m) , while one gray corresponds for cellular membranes under the

" : hot
same conditions to twelve photons per square micrometer (1 Gy ~ 12 %@) (see

table 4.1). For 30 nm resolution, the results are compatible with [81].

6.3.4 Comparison of the Signal to Noise Ratios

The following example shows that the different scaling laws for the signal to noise
ratio favor the FIB-SXM for high resolution imaging.

Example: Protein Cube in Water As an example, the SNR of a cube of
proteins (chromatin) and a cube of water (ice) are compared. The following pa-
rameters are used

(5: /B)Chrmnatin ~ (836 ‘ 10_4: 1.57 - 10_4)
0, B)waser = (5.3107%,0.21-1074) .

In figure 6.4, we plot the required photon density over the size of a cube for an
SNR of five and compare it to the damage threshold. The optical properties of the
materials are given in table 4.1. Equation (6.2), equation (6.5) and equation (6.6)
yield the following results for the required incident flux (p) in photons per square
micrometer. For the simplest case that all photoelectrons are detected, the SNR
of the FIB-SXM is

SNR 5:2 VNAz(ﬂ'l_ﬂ'Z)

(p1 + pa)

Therefore, the photon density (pphoton) for a prescribed SNR is

SNR? (s + 1)
(11 — ) A

Pphoton
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If the detection probability of photoelectrons is included, the photon density results
from the changed SNR

A
SNR &5 \/?}'T?V fo : exp [C1,escape?] 1 — €XP [C2,escape?] pi2 dz
G — = i
\/fg ‘ exp [CI,EBC&pEz] 251 + exp [CQ,escapez] Ha dz

1012

FIB-SXM
- TXM absorption

Photons per ym?
<

— TXM absorption exact
— TXM phase contrast

10

— Threshold membrane

— Threshold ice

H1|0'9 I IIH H1|0‘5 I B IH1IO'? I B IH1|0"5
Resolution [m]

Figure 6.4: Plot of the required photon density over the size of the protein /
water cube for an SNR of five at A = 2.4nm. An enlarged plot of the interesting
region between 1 nm and 30 nm is shown in figure 6.5.

Therefore, the photon density (pphoton) for a prescribed SNR is under these
conditions

A
SNR2 fo ? exp [Cl,escapez] M1 + exp [CQ,escapez] H2 dz

Pphoton Rz 5
?}Az2 (f[) exp [Cl,ESCﬂPEz] H1 — €Xp [02,escapez] Ha dz)

In both cases, the photon density increases roughly inversely to the third power
of the size of the detected object. As the following example shows, the photon
density increases faster for the transmission microscope, namely roughly inversely
to the fourth power of the size of the feature.
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For pure absorption contrast imaging, the SNR in the transmission microscope
is

1
SNR % \/Nﬁ (—p1 + p2) Az.

| FIB-SXM
- TXM absorption
— TXM absorption exact
10" T TXM pFiase contrast
L
. R
E G
E I S
a L
-210% i
L T
5 g = W
& \ q_h\_hh"““-—-__.__‘_‘__-_‘_h‘_
\ ERR“——_ “_H_h-‘_h‘__—‘_‘__h—‘_‘—_‘_‘_‘_'_'_‘_‘—'—-—-_
—'——__\____H—____—_ 4
\ B ——_.___________\_
107
_‘_\_\_\_‘_‘_\_‘_‘_‘—‘—-—\_
—\_\_‘_‘_\_“_‘——-—._.
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Figure 6.5: Detailed plot of the required photon density over the size of the cube
of chromatin for an SNR of five at A\ = 2.4nm. One should be aware that the
plot assumes an optic with 100% efficiency. In practice, high resolution FZPs have
efficiencies of about 10 % [103].

This results in a photon density of

(abisor) 2 SN R?

pphoton - ("_L]_ o ”2)2 Azd "

According to these calculations, FIB-SXM solves a fundamental problem of
soft X-ray transmission imaging of biological samples. As the plot in figure 6.4
shows, FIB-SXM drastically decreases the dose that is required for a prescribed
resolution and signal to noise ratio. Therefore, this method allows higher resolution
than other soft X-ray transmission methods.
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Summary

In this chapter, we have discussed the new soft X-ray imaging method FIB-SXM.
The numerical simulations revealed an increased image quality for cell imaging
in comparison to the current standard TXM. It was also shown, that FIB-SXM
significantly reduces the required dose. This is a significant advantage, since the
dose is currently often a limiting factor for high resolution soft X-ray imaging.
Since FIB-SXM uses only a small X-ray spot, this method potentially suppresses
the charging problems which occur in photoemission electron microscopy (PEEM).
Additionally, the lateral resolution in the FIB-SXM is already provided by the size
of the scanned X-ray spot. Therefore, in principle all emitted electrons originating
from the spot can contribute to the photoelectron signal. For comparison, in the
high resolution mode of the PEEM only a small fraction of the emitted electrons
are collected by the electron column [79]. Therefore, the required dose for FIB-
SXM might also be significantly lower compared to high resolution PEEM.
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Chapter 7

Holography with Beam Shaping
Optical Elements

The soft X-ray imaging methods studied in the previous chapters aim for high
resolution 3D imaging. However, all these X-ray optical setups are not suited
for ultra-fast imaging with spatially coherent femtosecond pulses. Modern free
electron lasers (FEL) emit fs-pulses with very high brilliance and high photon
numbers. Time resolved imaging on the length scale of a few nm with ultra-short
time resolution would give new insight into fast dynamic processes, for example
in magnetism [18]. For this purpose, novel X-ray imaging methods have to be
developed which make use of the high coherent photon flux and permit full-field
imaging.

In the visible light region, holography - originally invented by Gabor in 1948
[25] - became a routine method with the introduction of lasers in the visible light
range. In this chapter, we will investigate the potential performance of a novel
X-ray holography setup employing advanced diffractive optical elements (DOE).

7.1 Introduction to DOE Based Holography

Holography as an X-ray imaging method was already proposed in 1964 [92, 106]
and the first experiments were conducted a year later [93]. For X-ray imaging,
in-line and Fourier transform holography (FTH) are mainly used.

The optical setup for soft X-ray in-line holography was already described in
chapter 2 and is shown in figure 2.4b. A typical in-line holography setup consists
of a focusing optic, a sample and a detector. The focus of the beam lies a bit in
front of or behind the sample. The defocused beam passes through the sample
and the resulting diffracted wave (Uy) interferes with the non-diffracted beam (Up)
on the detector. The divergence of the non-diffracted beam defines the numerical

109
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aperture and therefore the resolution. However, the image quality of the resulting
in-line holograms suffer due to the so-called twin image problem, which is caused
by an overlap of the virtual and the real image. This problem is suppressed in
Fourier transform holography by separating both images (see also [62| chapter 4.3
or equation (7.2)).

In general, the setup for Fourier transform holography consists of a reference
pinhole and a sample area (see figure 7.1, [18]). As described in section 2.2.3, the
interference signal between light scattered from the sample and light scattered from
the reference is detected in the far field. The reconstruction is done via Fourier
transform. The resulting image can be split into four components including two
components that are essentially convolutions between the image of the reference
and the sample. Therefore, the size of the pinhole defines also the resolution. In
most experiments, the reference is created by milling small, well defined pinholes
into an opaque membrane which also contains a transparent area for the sample.
A decreased pinhole diameter increases the resolution, but reduces at the same
time the amount of photons in the reference wave, which increases the required
exposure times'. This problem can be slightly reduced by setups with multiple
pinholes [51] or extended reference |32]. However, these types of references scatter
the light inhomogeneously, resulting in a bright central spot and a fast declining
signal for high spatial frequencies.

To address both the problem of the decreased photon numbers in the reference
wave with the decreased pinhole size and the fast decline of the reference wave for
high spatial frequencies at the same time, we propose to use a single diffractive op-
tical element (DOE) which generates simultaneously a homogeneous illumination
profile for the sample area and a diffraction imited reference. This X-ray optical
setup is shown in figure 7.2.

The DOE based setup has several advantages in comparison to standard Fourier
transform holography. The DOE generates the required reference spot and homo-
geneous illumination of the sample at the same time. The focal length of the DOE
depends on its diameter, its outermost zone width, the order of diffraction and
the wavelength. By choosing these parameters, one can achieve a significant dis-
tance between sample and DOE. Therefore, the sample no longer has to be close
to an opaque screen. The DOE based setup allows to use cryogenic samples and
allows to image larger samples via raster scanning and stitching of the resulting
images. The scanning process also reduces the effect of speckles. The intensity
distributions in the sample and reference area are a free design parameter and can
be optimized for a strong signal?. Additionally, a larger part of the incident X-rays

!The signal to noise ratio also depends on the ratio between the number of photons in the
reference wave and sample wave. To maximize the signal used in Fourier transform holography,
both photon numbers should be similar. See also equation (7.2).

2The image of the hologram results from the interference between reference and sample. To
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2

sample detector
plane plane

Figure 7.1: Fourier transform holography setup. The diffracted light from the
reference and sample interfere in the far field and generate the hologram.

is used. The diffractive optical element can be relatively large, which allows to use
a widened FEL beam and reduces damage to the DOE due to heating. Therefore,
the DOE can endure the exposure to pulses of an FEL and potentially allows for
single shot imaging at FELs. In this type of FTH-setup, the light is more homoge-
neously distributed over the detector, which reduces the required dynamic range
of the detector.

7.2 The Computer Aided Design of Diffractive Op-
tical Elements for Holography

For the imaging quality of DOE based FTH, it is essential to design a DOE which
creates a well suited illumination profile. Here,we describe an algorithm for the
design of binary masks for such DOEs. For simplicity, the algorithm is divided into

maximize the corresponding signal the photons should have equal probability to originate from
the reference or from the sample area.

2
Lietector [I: y] — |T}Dref8rence + "'}{Jsamp!e| [I: y]
= ¢ref¢re_f e 'ﬂbsam'ﬁbref e T}{Jrefwsam + 71f).5m'.ﬁ'n.71f).=_etj'.ﬁ'1’a.-
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illumination
of sample

combined DOE
central stop OSA

Figure 7.2: Fourier transform holography setup based on a diffractive optical
element. The illumination of the sample and the reference are generated by the
DOE. The test sample consist of four structured arrays and a Fresnel zone plate
in the center of the waver. The FZP was used to verify the created illumination.
The window in the wafer of the sample in combination with the central stop on
the DOE selects the order of diffraction used for imaging.

three main steps. Firstly, a continuous complex transmission function that trans-
forms the inbound illumination into an optimal profile for the FTH experiment is
determined. This transmission function has to fulfill some additional constraints.
For example, we choose that it has to be purely phase shifting. Secondly, the
transmission function is approximated by a binary mask. The binary mask is later
used as pattern of the DOE. Finally, the DOE pattern has to be verified since the
first steps include approximations (Fresnel approximation respectively wide-angle
near and far field approximation NFFA) which could result in numerical artifacts.
The verification is done by first modifying the inbound wave with the transmission
function of the DOE. The modified wave is then propagated into the focal plane
of the DOE by a convolution based propagator (see also equation (2.6)). Exper-
imentally, the designed DOE pattern is written into an e-beam resist by electron
beam lithography. Planar nanotechnology is used to create the final DOE.
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For the approximation of the DOE’s transmission function by a binary mask,
the phase of the inbound illumination and the field that generates the profile for
the FTH experiment have to be compared. In order to compare the phases of both
fields, a function (¢) that approximates the phase of the fields has to be determined.
This leads naturally to the two dimensional phase unwrapping problem, which will
be discussed in the following.

7.2.1 Least Square Approximation of the 2D Phase Un-
wrapping Problem by the Fourier Transform

In many applications (e.g. synthetic aperture radar (SAR)/ magnetic resonance
imaging (MRI)), the function of interest ¢ : R*> — R is not directly measurable
but instead a wrapped version @ : R? — (—m, 7] is measured. The relationship
between the two functions is given by

explid] = exp[iv)]. (7.1)

This equation includes already the main problems. The lifting of the function
1 is not unique. If ¢ is continuous, it is unique up to a constant. For an overview of
the 2 dimensional phase unwrapping problem see [28]. The subsequent calculations
are also based on [28].

In most applications, ¢ is not necessarily a continuous function and, therefore,
additional information is needed to deduce the correct ¢ from 7. One example in
polar coordinates for a non-continuous function ¢ is produced by the function 1@

~

Y:(r,0) e Rx (—m 7] — 0.

A general problem for discretised versions of this equation is that the slope between
two adjacent points z; and x5 is only defined up to a multiple of .

expi (¢[z1] —@[za])] = expli (¢[z1] — @ [zo] + 27 - m)]
= expli (Y [z1] — ¢ [zq])]

Therefore, the discretised version of equation (7.1) is in general not even well posed
for smooth functions ¢.

If ¢ is smooth and its first derivatives are bounded, one solution is to use
a finer discretization so that the maximal difference of the value of ¢ between
neighboring points is smaller than . Unfortunately, this approach is not feasible
for many applications, including the design of the diffractive optical elements used
for our experiments. Nevertheless, for some applications, it is enough to find a
sufficiently good approximation QAﬁ to ¢ which satisfies the condition that QAﬁ has
small first derivatives.
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A good approximation should minimize the distance between the wrapped ver-
sion ¢ and the projected approximation ¢ and should minimize the difference of
the slopes

o arg;ninzz ‘¢¢‘+1J — @ij — Af’jf +ZE |¢5i,j+1 g — NS 2
i y | r 5

The discretised slopes are here only defined up to a multiple of 27 due to A, :=

arg [exp [i (Yip15 — i )]] and A} := arglexp[i (¥ 41 — i;)]]. The solution to
this problem is a discrete version of Poisson’s equation (see for example chapter 5

[28]).
From the continuous version Ba—;gb [z,y] + %qﬁ [z,y] = p, a discrete one can be
defined as

(Piv15 — 20i5 + di-15) + (Dijr1 — 205 + dij1) = pij-
Therefore, the solution to the problem is given by the following set of equations

pij = (Af Af 13) (Af A?,;,- 1)
Pij = (Piyrj—2¢i;+ bi1j) + (Dijr1 — 205+ bij1).

One way of finding a solution is based on the Fourier transform and extends the
functions p, ¢ and ¥ to periodic functions p, ¢ and .
If the functions p, ¢ and 1 are defined on an N +1 x M +1 grid, the extension
is done by mirror reflection. The mirror reflection is defined in the following way:
@:{0...N} x{0...M} 5 Rand ¢ {0...N} x{0... M} — (—m,m]
Vij 0<i<M,0<j<N
Yon—ij M<i<2M,0<j<N
YiaN—j 0<i<M,N<j<2N
’lf)gjp[_;',QN_j Meie QM} N < _} 2N

Pij =
Afj ;= arg [exp[ (&(z—i—l,j)—dm)(i,j))“
Ry, = arglexp|i (90,5 +1) —¥d))]]

pig = (B —Ary) + (B4 - AY,,).

By applying the two dimensional Fourier transform on the extended equation

(ng,j — 2 + in—l,j) + (ﬁgi,j—i—l — 26, + ¢~5i,j—1) = Pijs
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(@) Original image (b) Apmaz =157 (€) Apazr =27 (d) Ajaz =31 (€) Apaz =87

Figure 7.3: Different examples for reconstructed ¢ from wrapped data. The
Fourier transform based method was used. The maximal difference between neigh-
boring pixels is in (a) original (b) 1.57, in (¢) 2x, in (d) 3w and in (e) 8. For
high Amae values, the over smoothing of this operation is reflected in the color bar
and is obvious from visual inspection of the images.

a relationship between the Fourier transforms P = FFT [p] and & = FFT [qz;] of

p and gg follows. From the resulting equation

B m,n

B = 2 cos [rm/M] + 2cos [tn/N| — 4’

the estimate for ¢ is obtained by applying an inverse Fourier transform on ®.

This method is not suitable for discontinuous functions ¢ or step sizes with
discrete jumps above 7 as the examples in figure 7.3 emphasize. In the next
section, this approximate solution to the phase unwrapping problem is used to
design (higher order) diffractive optical elements.

7.2.2 Creating Diffractive Optical Elements with Substruc-
ture Width Resolution

In the Fourier transform holography setup, the numerical aperture of the DOE
determines the achievable resolution. In practice, the numerical aperture of the
DOE is limited by the precision of the nano-production method. The dependency
of the resolution of a DOE and of a Fresenel zone plate are similar. For Fresnel
zone plates, the Rayleigh resolution is given by A = % dry. Here, dry is the
outermost zone width and an essential parameter of the fabrication technique. In
chapter 8, positioning errors in the manufacturing process of Fresnel zone plates
are further discussed. The parameter m is the order of diffraction that is used for
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(@) Focus iterative optimizer (continuous) (b) Focus binary DOE

Figure 7.4: Examples for the described algorithms for the generation of higher
order DOEs. (In the print version, the color scale is nonlinear.)

(a) Focus as predicted by the iterative optimizer. This focal pattern is generated
by a purely phase shifting continuous DOE.

(b) Focal pattern for the generated third order, binary DOE. The computation
uses the convolution based algorithm as described in chapter 3.

the imaging process. Therefore, with a prescribed outermost zone width, an
image with higher resolution can be achieved by using a higher diffraction order.
However, the efficiency of higher orders decreases for thin Fresnel zone plates
proportionally to # Since, for full-field microscopy, the Fresnel zone plate is
situated between object and detector, the efficiency directly influences the dose
needed for a given resolution. The use of a higher order also requires an increased
stability of the zone thickness and exactness of the position.

Similarly, diffractive optical elements can be designed to use higher orders of
diffraction to increase the resolution at the cost of a decreased efficiency. An
algorithm for the design of such optics will now be presented. It is based on the
propagators described in chapter 3 and the phase unwrapping algorithm presented
in the previous section. The main steps are:

1. Defining the target intensity distribution in the focal plane of the DOE
2. Computing a holographic first estimate of the field in the plane of the DOE

3. Finding a least squares estimate for a continuous lift of the phase in the
plane of the DOE
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4. Propagating the resulting field into the focal plane of the DOE

on

. Adapting the computed amplitudes to amplitudes that fit better the target
intensity

6. Back propagation to the plane of the DOE
7. Restarting at 3. until a good approximation is found

A test of this algorithm is shown in figure 7.4. Note that this algorithm has
several other applications aside from holography. Therefore several other methods
for the design of diffractive optical elements exist, but those use the first order of
diffraction [102, 108, 49]. Examples for such applications could be the design of
condensers for improved dark and bright field soft X-ray full-field microscopes, as
presented in appendix D.

7.3 Analysis of Experimental Data

7.3.1 Introduction

In the following, two proof of concept holography experiments are described. These
experiments were conducted respectively at the U41 TXM beamline located at the
Helmholtz Zentrum Berlin and at a plasma based soft X-ray laser (XRL [91])
located at the Max Born Institute.

7.3.2 Experimental Data and its Analysis

The holography experiment was conducted at the U41 TXM beamline at BESSY
I1. The optical setup of the experiment is diagrammed in figure 7.2. Parts of the
TXM setup were modified for the experiment. The previously described algorithm
was used to design the binary diffractive optical element (DOE) for the experiment.
The DOE has a diameter of 250 pm and a central stop of 150 pm. It has an
outermost zone width of 50 nm and a focal length of 5.2 mm at a wavelength of
A = 3.84nm. The DOE and a test sample were fabricated in an electron beam
based lithography process at the Helmholtz Zentrum Berlin.

Experiments showed that the condenser stage of the TXM is not sufficiently
vibration-free for aligning the DOE. Therefore, we designed an adapter which was
directly mounted to the TXM chamber. This direct mounting removed vibrations.
However, the position and tilt of the DOE could no longer be changed. As test
sample, we used 120 nm high gold structures on a SizN, membrane. As described
before, the sample consists of four square areas which include a pattern of ,,T* in
various orientations. Each area also includes four Siemens stars which have spikes
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(a) predicted reference (b) measured reference

Figure 7.5: A comparison between the numerical prediction and the measured
reference spot produced by the DOE shows a good agreement.

between 20 nm and 100 nm width. In the center of the sample, a high resolution
FZP with 201 zones and an outermost zone width of 39.1 nm is included. This
zone plate was later used to image the focal pattern of the DOE. Due to the
space constraints in the TXM, we did not include a separate pinhole for the order
sorting aperture (OSA). Instead, the window of the DOE wafer and the central
stop of the DOE were matched so that the 100 nm width of the wafer formed an
order sorting aperture. As detector, we used the thinned, backside illuminated
CCD from the TXM (Roper Scientific, PT SX1300). The distance between the
focal plane of the DOE and the CCD was approximately 32 cm. Under these
conditions, the numerical aperture is NA =~ 0.04. Therefore, the best achievable
resolution is theoretically about 50 nm.

During the experiment, we first tested the performance of the DOE by imaging
the light distribution in the focal plane of the DOE with a high resolution FZP. A
visual comparison between the mumerically predicted and the measured focal spot
shows a good agreement as seen in figure 7.5.

In a second step, the test sample was introduced. The Fresnel zone plate on
the test sample was then used to image the light distribution in the focal pattern
of the DOE again. This step was used to estimate the positioning between DOE
and test sample. Afterwards, we shifted the sample into the focal plane of the
DOE and raster scanned one of the square test areas. The scanned area is 40 x
40 pm at a step width of 2 pm. Since the thinned wafer window also acted as
order sorting aperture (OSA), we could not remove the sample. Therefore, it was
not possible to acquire flat field images, that is images without sample. These flat
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field images are usually required for normalizing the holograms. Therefore, the
underlying illumination profile has to be interpolated from the experimental data.
The fact that we used pre-existing components of the TXM simplified the design
and reduced the costs and amount of time required to assemble the experiments,
but some parameters of the setup were not available with the precision required for
the evaluation of the experiment. Therefore, these parameters have to be inferred
from the experimental data. These parameters include the exact distances between
sample and detector as well as the positions of the sample during the scan. These
two parameters are essential for the reconstruction of an extended field of view.

7.3.3 Analysis of the Experimental Data

During the evaluation of the experimental data, one challenge was that some of the
necessary parameters had to be inferred from the data before any reconstruction
could be attempted. Some of those parameters are intrinsically well known, e.g.
the photon energy is given by the monochromator and is recorded during the
experiment. Other parameters have to be estimated from prior knowledge, e.g.
the distance between DOE and CCD can be recovered from the used wavelength,
the knowledge about the focal length of the DOE and the experimental images.

The first step of the evaluation consists of estimating the illumination without
the sample. In analogy to photography, we will call this illumination and its
resulting distribution in the plane of the detector the .flat field®. As previously
stated, it was not possible to directly measure the flat field in the experiment.
Therefore, an algorithm was implemented which estimates the flat field from an
image series. A naive estimate of the flat field is the mean of the image series. A
better estimator is the median. Due to the large amount of data, the computation
of the median is not viable. Instead, an online algorithm for variance, skewness
and mean is used to estimate the median for the absolute intensity as well as the
real and imaginary part of the Fourier transform holographic reconstruction. The
estimated median is then used as estimator for the flat field.

In the second step, the illumination created by the DOE is numerically inter-
polated from the experimental data and the prior knowledge of the focal pattern
of the DOE. For this, the mean wavelength of the used radiation is needed. We
use that the photon energy is recorded in the log files of the experiment and is
for all practical purposes constant (see table 7.1). Then, we use the equation
E = he/). Here, E is the energy in [eV], A is the wavelength, h is Planck’s con-
stant ~ 4.1 -1071%eV - 5 and c is the speed of light. With this mean wavelength,
the resulting focal light distribution is calculated for the fully coherent case. This
calculation is based on the prior knowledge of the DOE.
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value standard deviation
mean E 322.9997¢V 0.0027eV
mean A 3,8385nm 0.032pm
distance to CCD  0.3196m ~ 0.002m

Table 7.1: Parameters from the experiment at the U41 TXM beamline.

This predicted light distribution is then used to calculate the intensity on the
detector for various distances. The previously computed estimation of the flat
field from the experimental image series and the new theoretical estimator are
compared. From this comparison, the position and orientation of the focal plane
in relation to the detector are estimated. The distance between detector and focal
plane relates the size and resolution of the detector to the pixel size and number in
the holographic reconstruction. The exact relationship d(})ends on the numerical

. . Z . .
Fresnel propagator used. Here, it is assumed to be Ay = Allj’\?, in accordance with

appendix A. A, is the resolution in the i** plane, 2z 2 is the distance between first
and second plane and N is the number of pixels along the considered dimension.

Now, two different reconstruction techniques can be applied. One can either
reconstruct an approximation of the complex transmission function of the object
by using a ptychographic reconstruction. This approach was tried but proved
difficult due to the uncertainties in the relative, lateral positioning of the sample
between images. However, a new algorithm is currently in development and the
first results are promising. The algorithm is based on the extended ptychography
iterative engine (ePIE [50, 20]) and includes an alignment step which is based on
the diffraction pattern.

For the second reconstruction technique, the inverse Fourier transform of the
measured intensity is used. The theoretical background for this approach is that
the far field pattern is in the Fraunhofer approximation proportional to the Fourier
transform of the original field. In a Fourier transform holography experiment, the
intensity on the detector results from an interference between the reference and
the scattered field lgetector = |¥reference + wsampge|2 . The following calculation shows
that a Fourier transform leads to a reconstruction of the sample. First, we expand
the expression for the intensity

Idetector [3:: y] — |"1b-re ference &5 wsampleﬁ [37, y] (72)
(("L'Mf + YPsam) * (Yrer + wsam)) [z, 9]

— wre f qubf‘e f + ¢sam¢-re T + wre i wsam + wsamwsam-
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Here, the field is partitioned into the reference (i) and sample signal (¢eam)
on the detector. Now, we show how an estimator of the field of the sample is
computed from this expansion by an inverse Fourier transform. Let 2o be the
plane containing the reference and the sample. Let z; be the plane of the detector.
We introduce the reference (Uyes) and sample signal (Usem) in the 2o plane. Then,
according to equation (2.8)

. texplik(z1 — 2) ik (2% +yi)

le [3"1: Y1, Z]] = X ex PN Sa—

(Zl — 20) 2 (Zl = 20)

—ik
U [z, Yo, %0] exp | ——— (Zo Z1 + Yo y1) | dZo d¥o.
R2 (21 — 20)

A simple substitution ( 2’ = o - m and ¥y = yo - m ) shows that this is

equivalent to

exp [ik (21 — 2p)] [zk (z2 + y%)]
A3 (zl - 29)3 2 (zl — 2:0)
FUA (21 —20)2', A (21 — 20) ¥, 20]] -

’lﬂ' [xl;ylr zl] ~

Applying the last equation to equation (7.2) yields

I = 'd)ref'f»bre f & wsamwre if + wre o "vbsam + %bsam%bsam
1

/\6 (Zl == Zo)ﬁ

(.7“' [Ures [A (21 — 20) 2', A (21 — 20) ¥, 20| | F [Urey [A (21 — 20) &', A (21 — 20) ¥/, 0]+

~

F [Usam [A(z1 — z0) 2', A (21 — 20) ¥, 20] | F [Usam [A (21 — 20) @', A (z1 — 20) ¥/, Zﬂ]]) :
We use an inverse Fourier transform and apply the convolution theorem (E.6).
Omitting the argument of the functions, we get:

1
AS (Zl — 20)6

F [ F Wneg) FlUres] + F [Usan) F 0]

kil [Uref] m i [Usam] F [Usam]:l
1
A6 (21 — 2)°
(F Wl F7 [FOresl] + F 7 (F Usarl) # F~* [ F Vres]]

+F 7 F Whesll # F ™ [FUraml| + F ™ [F Wsaml) % F~* [ F Vram] ) -

FI =
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N B
)\6 (Zl — Zo)ﬁ

+Uref * (Usam o _Id) + Usa,m K (Usam o _Id)) %

Fp = (U,.Ef % (Urey 0 —Id) + Usgm * (Upey 0 —Id)

For the last step, we used properties of the Fourier transform (see equation (E.4)).
The two underlined terms in the last equation are the FTH reconstructions of
the sample. Obviously, these reconstructions are blurred by the shape of the
reference. Therefore, a small and well defined reference is essential. For an optimal
holography signal, the underlined terms should be large in comparison to the
non-underlined terms. This can be achieved during the design of the DOE by
optimizing the illumination profile which the DOE generates.

-

=

EHT = 5.00 kW Signal A = InLens Date -25 Nov 2014
Wo= 8.3 mm Mag= 319KX  Time 10:41:18

(a) Reconstruction (b) SEM image of a processed wafer with sample.

Figure 7.6: The sample consists of various gold structures on a thin SizN; mem-
brane. In the center of the thinned wafer, an FZP is visible. The FZP was used
to measure the intensity in the focal plane of the DOE.

(a) Full view of the reconstruction from stitched holograms.

(b) SEM image of the sample.

In the next step, the extended test sample is reconstructed. This is done by
stitching together FTH reconstructions which were taken at different, lateral po-
sitions. The stitching process includes a weighted averaging which reduces the
deterioration of the resolution by speckles. The quality and resolution of the re-
sulting image is restricted by the precision of the positioning used for the stitching.
Since the logged positions are not sufficiently precise for the reconstruction, they
are only used for a rough first alignment and are sequentially improved by a semi-
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(a) Detail showing two Siemens stars. (b) Overview.

(c) Detail using ePIE. (d) Overview using ePIE.

Figure 7.7: Details from the FTH reconstruction shown in figure 7.6a.

(a) Detail from the reconstruction, showing two Siemens stars with a diameter of
6.5 pm and outermost spikes of 100 nm (not resolved).

(b) Detail from the reconstruction, the orientation of the strongly absorbing lines
seems bent which is an alignment artifact.

(c) and (d) Preliminary results from a modified ePIE based reconstruction. The
same region as in (a) and (b) is shown. A significant increase in contrast and
resolution was achieved.
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Figure 7.8: GUI for the semi-manual positioning and stitching. Several positions
on the sample were scanned during the experiment. In a semi-manual post process,
the exact positions of the scan are estimated.

automatic alignment algorithm. Different alignment methods were tested. Due
to the strong speckle noise in the single images, the supplied image-registration
routines in Matlab did not work reliably. The most successful approach was based
on normalized cross-correlation. The position was found by picking the maximum
of the correlation in a neighborhood of the logged position. It was necessary to
preprocess the experimental images to take into account the inhomogeneous illu-
mination. A GUI for the semi-automatic positioning was developed. It is shown
in figure 7.8. The corrected positioning data was then used to generate an image
of the test sample. The reconstruction is shown in figure 7.6a and figure 77. This
reconstruction takes into account the effects introduced by the photon statistics.
An SEM image of the test structure is shown in figure 7.6b. The structure width
of the ;T is 100 nm, 200 nm and 300 nm respectively.
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Conclusion and Outlook

From our experiments, we can conclude that the method basically works, although
it is hard to make any conclusive statements on the achievable resolution or con-
trast transfer. This is mainly due to the strong speckle background in the single
images and the imprecisely known stitching positions. We saw that some images in
the series look sharper than others. It is known that an incoherent summation of
holograms leads to a reduction of the speckles which are present in the reconstruc-
tion [52]. Therefore, it seems likely that the method could achieve the predicted
resolution of about 80 nm. Since the DOE has an outermost zone width of 50 nm,
this resolution is worse than the one of a TXM with a similar optic. The use of a
DOE working in a higher order of diffraction could improve the resolution at the
cost of lower efficiency. In contrast to other optic based full-field methods, the use
of a higher diffraction order does not increase the dose on the sample since the
DOE is situated in front of the sample.

An interesting effect is that not only the brightly illuminated sample field was
recovered but also the surrounding area, as seen in figure 7.6a. Some images in the
raster series were unusable since the reference was blocked by a highly absorbing
structure. In the next experiment at a plasma based X-ray laser (XRL), we tried to
circumvent this problem by splitting the reference into three spots. Unfortunately,
the experiment showed a flaw in the design, and no reconstruction was feasible (see
also the description and analysis of the experiment in the supplement section §C.3).
Nevertheless, from the experimental data and the theoretical analysis, it can be
concluded that the concept should also work with XRLs.

Summary

In this chapter, we introduced a new holography method. The method is based
on Fourier transform holography. It requires a diffractive optical element and
is aimed for fs imaging at free electron lasers. This approach removes some of
the restrictions of classical Fourier transform holography setups. A new method
for the design of the required diffractive optical element was developed. As far
as we know, this design method has the unique feature that it can also be used
to generate diffractive elements that use higher order diffraction. The proof of
concept experiments revealed that the method works, but further experiments are
needed to establish the exact performance.



126CHAPTER 7. HOLOGRAPHY AND DIFFRACTIVE OPTICAL ELEMENTS



Chapter 8

Impact of Random Positioning
Errors on the Resolution of Fresnel
Zone Plates

The previous chapters showed that diffractive optical elements, in particular Fres-
nel zone plates are the key optical elements for high resolution imaging. Hence,
improvements in nano-fabrication leads directly to improvements in the imaging
system. This chapter is based on a paper [67] in which we analyzed the impact of
random positioning errors on the resolution of Fresnel zone plates. Let us recall
that for soft X-rays, the refractive index is close to unity with similar magnitudes
for the real and imaginary part. Due to the small phase shift and the high ab-
sorption, classical refractive lenses are very inefficient in the photon energy range
between 0.1 - 5 keV. For hard X-rays, the absorption is sufficiently small to utilize
refractive lenses but several such lenses have to be stacked to form a compound
refractive lens (CRL) [89]. The main properties of Fresnel zone plates are already
described in chapter 2. Their imaging performance is mainly characterized by two
parameters: the numerical aperture and the diffraction efficiency. As diffractive
optics, they have many diffraction orders but only one selected order can be used
for imaging while all other orders must be blocked. With increased photon en-
ergy, the ratio between the height of a zone and its width (aspect ratio) has to be
increased to efficiently focus X-rays.

Today’s most successful fabrication method for FZP is electron beam lithog-
raphy followed by planar etching techniques |68, 97, 8. However, the smallest
outermost zone period which determines the zone plate resolution is limited by the
minimum electron beam diameter, electron scattering effects and the generation
of secondary electrons in the electron beam resist during electron beam lithogra-
phy. The achievable aspect ratio is limited by the dry etching process since the
etching process is not fully anisotropic when constructing narrow nanostructures

127
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[64, 22, 48|. To overcome these limitations, so-called sputtered sliced or jelly roll
FZP’s have been developed |70, 16].

These FZP’s are produced by alternately coating a micro-wire with two dif-
ferent materials according to the required zone plate pattern. In principal, the
width of the coated zone layers can be as small as a few atomic diameters. In
addition, there is no limitation on the achievable aspect ratio. As the outermost
zone width determines the achievable resolution with FZP’s, this manufacturing
method is potentially suited to develop X-ray optics providing sub-10 nm resolu-
tion. However, the theoretical resolution limit given by the outermost zone width
might be unattainable due to aberrations introduced by zone positioning errors
influencing the focal spot. Several different types of systematic positioning errors
were previously studied and tolerable upper bounds were given [99]. However, the
manufacturing process for a sputtered sliced FZP is likely to introduce random
zone positioning errors. The effect of such errors on the achievable resolution of
zone plate optics has not been described.

Here, we use scalar wave theory to determine the effect of random positioning
errors by simulating the propagation of an incidental plane X-ray wave onto an
erroneous FZP. The algorithms that we use are based on a numerical evaluation
of the Rayleigh-Sommerfeld diffraction integral and will be further explained in
section 8.2.

8.1 The Focal Spot of an FZP Without Positioning
Errors

The numerical aperture (NA) of a lens defines the maximal resolution that can
be achieved. According to the Rayleigh criterion, it is 0.61A/NA. The NA of a
Fresnel zone plate depends on its smallest zone period and the order of diffraction.
It is equal to the angle of diffraction of a transmission grating of this periodicity.
Therefore, the spatial resolution in the first order of diffraction provided by a full
FZP without central stop is given by 0.61 times the outermost zone period. The
fact that Fresnel zone plates produce for each diffraction order a focus, requires
the use of an order selecting mechanism for imaging. In scanning transmission
microscopy (STXM), this is a central stop in combination with an order sorting
aperture. As known in microscopy, blocking the inner parts of a lens reduces the
full width half maximum (FWHM) of the central peak and increases the intensity
of the side lobes of the focal spot pattern [88]. For X-ray microscopy, low-dose
imaging is essential. The radiation dose required to detect an object detail is
proportional to (Cop; - MTF )_2 where C,p; denotes the object contrast and the
modulation transfer function (MTF) describes how strongly a spatial frequency of
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Figure 8.1: (a) Impact of the central stop on the focal spot pattern of an FZP.
Four different central stop diameters are considered: 0 (brown), 25 (green), 50
(purple) and 75% (blue). (b) Corresponding MTF for the focal spot pattern in
(a). The calculations were performed for an FZP with 5 nm outermost zone width
and a focal length of 50 pm at A=0.157 nm.

an object is transferred into the image plane [83]. Therefore, the MTF needs
to be optimized to ensure optimal X-ray imaging conditions.

The MTF is the real part of the optical transfer function (OTF). For linear,
shift invariant systems, the OTF can be approximated by the Fourier transform
of the image of a point source. An experimental realization of such a system is
the scanning transmission X-ray microscope (see figure 2.5). The STXM works by
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scanning a sample through a focused X-ray beam and detecting the local change
in transmission. In good approximation, the image formation in the STXM can
be described by the convolution of the object transmission with the FZP focal
intensity distribution.

In our theoretical analysis of the FZP performance, the focal spot is calculated
by discretizing the FZP on an adapted polar grid and numerically evaluating the
Rayleigh-Sommerfeld diffraction integral using an adapted algorithm described
in [5]. From the intensity distribution of the focal spot, the MTF is computed
using a Matlab implementation of the Hankel transform [33]. Figure 8.1(a) shows
the resulting focal intensity distributions for different central stop diameters. As
expected, the side lobes increase while the FWHM of the central peak decreases
with increasing central stop size. Figure 8.1(b) shows the effect of the central stop
on the MTF. Note that the MTF significantly decreases in the spatial frequency
range of 0 — 0.13nm ™! with increasing central stop size.

The shape of the focal spot and its resultant MTF determines the imaging
performance of an STXM. Since the Fresnel zone plate with central stop forms a
focal spot with large side lobes, the convolution of the object transmission and the
intensity of the focal spot creates a halo around each point. As a result, the imaging
process is no longer linear in intensities and requires a careful interpretation of
the images. For example, structures which are smaller than the distance between
central peak and the first maximum of the side lobes are effectively doubled by this
halo. For lenses without a central stop, the MTF drops continuously as a function
of the spatial frequency. However, with increasing central stop size the MTF rises
again and reaches its maximum value close to the cutoff frequency. Note that this
increase is a consequence of the halo and does not necessarily help to improve the
visibility of the object structures. For FZP with random positioning errors, the
situation is even more complex.

8.2 Simulating Positioning Errors

Depending on the FZP mamufacturing method, the zone positions might deviate
from their set points. It is known that errors in the positioning of the zones
reduce the efficiency and the imaging properties [99, 103]. In the following, we will
describe the dominating positioning errors occurring in e-beam lithography and in
the production of sputtered sliced FZP’s. The main sources of positioning errors
in e-beam lithography are thermal drift, beam position drift due to charging, non-
linearities in the deflection unit and write field calibration errors. In state-of-the-
art e-beam systems, the positioning error is expected to be less than 5 nm for FZP’s
with diameters below 250 pm. The nano-structuring process, which is required to
transfer the zone plate pattern into a suitable material, could potentially cause
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additional positioning errors. For example, a local shift of the zone structures
due to insufficient adhesion of the zones to the underlying material layer could
be introduced in very narrow zone structures with high aspect ratios during the
development or electroplating processes. This error depends on the chosen process,
the material parameters and the zone width. However, in state-of-the-art FZP’s
generated by electron beam lithography, this error is significantly less than half of
the outermost zone width (see for example SEM micrographs in [7]).

Figure 8.2: [llustration of the different types of positioning errors which are
considered in this thesis. a) Random fluctuations in the deposited zone width.
b) Systematic shift of the zones due to an elliptical wire substrate. ¢) Random
positioning errors caused by the roughness of the substrate. The erroneous FZP
pattern is shown in color. The zone positions for the ideal FZP pattern are also
indicated (cross-hatched).

The main sources of positioning errors for sputtered sliced FZP’s are the sub-
strate and the deposition process. The accuracy of the FZP starts with the rough-
ness and roundness of the micro-wire substrate that is used. The deposition process
with its probabilistic nature leads to uncertainties in thickness and position of the
deposited materials. In contrast to the errors occurring in e-beam lithography,
these errors propagate within the FZP layer system. We simulate the influence of
these errors on the imaging performance of an STXM.

For the simulations, we discretize the FZP with its possible errors and propa-
gate into the focal spot by numerically solving the Rayleigh-Sommerfeld diffraction
integral. For this numerical solution, it is important that errors introduced by the
discretization are negligible compared to the amplitude of the positioning errors.
Figure 8.2 shows an overview of the different errors which are considered in this
work. If the zones are perfectly centered rings with varying width, a discretization
on a polar grid is advisable (see figure 8.2). We use this type of discretization to
study the influence on the MTF of an erroneous deposition rate combined with
an additional surface error. We assume that the fluctuations are independent and
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identically distributed so that we can simulate them by normal distributions. For
this type of computation, the same algorithm that we used to compute the effect
of the central stop is also suitable.

However, we also consider effects that are better suited for discretization on
an orthogonal grid, for example, the effects of non-perfect wire substrates (see
figure 8.2(b)-(c)). The deviation of the substrate from its perfect circular shape
can be divided into a slowly varying elliptical (figure 8.2(b)) and a fast oscillating
roughness (figure 8.2(c)) part. We assume that the position of the n-th zone
is shifted proportional to the deviation of the micro-wire substrate due to its
roughness. Furthermore, we include a damping of this error proportionally to the
inverse of the mean radius of the n-th zone. This damping simulates a smoothing
by the deposited material as claimed in [15]. The roughness of the sputtering base
is simulated by a realization of a random function of the angular position which is
based on a random walk and includes some smoothing.

On an orthogonal grid, a different algorithm is required and so we adapted
an algorithm described in [87]. It assumes that a monochromatic plane wave is
incident on the FZP. Since the FZP consists of zones with different refractive
indices, the incident wave is partially absorbed and phase shifted. The algorithm
assumes that the FZP is a 2D pattern without extension of the zones along the
optical axis. This approximation is valid for most currently used FZP’s. For thick
FZP’s with very high aspect ratio zone structures, the scalar wave equation has
to be solved taking volume diffraction effects into account [103, 80]. In this case,
the diffraction behavior of FZP’s is much more complex and cannot be described
by the presented methods.

The wave field and the effect of the FZP are discretized on an orthogonal grid.
At each vertex, a complex number represents the value of the field at that point.
If a vertex lies in an opaque zone of the FZP, we modify the complex number at
that vertex to allow for the absorption and phase shifting induced by the zone. All
examples presented here are based on totally opaque-and-transparent zone plates.
Finally, the modified wave is propagated into the focal plane by using a Fresnel
diffraction based algorithm [87].

For the Fresnel diffraction based propagation of the wave field U [z, y, 2] from
the plane z = 2 to the plane 2’ = 2, the following equation has to be solved: (see
also equation (3.4) )

exp ik (21 — 20)]
1)\ (21 = zo)

oo oo o 2 . 2
,/ / Y [%a Yo, Zﬂ] exp |1k (xl :EO) L (yl ’yo) dzodyp.
- - 2 (21 — 20)
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Again, A denotes the wavelength and k = 277’ the wave number. Note that this
equation is a convolution of the wave in the zp plane with the (paraxial) impulse
response of free space propagation. Since both planes need to be resolved with sub
diffraction limited accuracy, a convolution based solution is used.

The MTF of FZP’s with positioning errors is calculated from the resulting
focal spot intensity distribution by fast Fourier transform (FFT) and finally by
averaging over circular rings in the spatial frequency domain.

8.3 The Impact of Different Errors

We already studied the impact of the central stop as shown in figure 8.1. With
increased diameter, the central stop suppresses certain spatial frequencies; this
corresponds to the plateau seen in the MTF. Structures of these dimensions will
appear blurry in the image. Hence, the diameter of the central stop should be less
than 50% of the total diameter of the FZP.

The micro-wire substrate of a sputtered sliced FZP might deviate from the
perfect circular shape. The impact of the roughness of the substrate on the focal
pattern is shown for different rms values in figure 8.3. The increase of the side
lobes in the focal pattern translates into a decreased image quality (see figure 8.3,
middle row). The resulting MTF’s are shown in figure 8.4. As expected, the MTF
decreases with increasing roughness of the substrate. It also shows that the rms
roughness of the substrate should be significantly smaller than dry /2 to avoid a
degradation of the MTF for high spatial frequencies. Furthermore, an elliptical
substrate also introduces a systematic shift in the zones and hence results in an
FZP with an additional astigmatism (figure 8.2(b), see also [99] ).

In the following, FZP’s with production errors are investigated. We divide
the FZP’s into two types according to their manufacturing process: deposited
FZP’s (d-FZP’s) with their micro-wire substrate and e-beam lithography FZP’s
(e-FZP’s). In d-FZP’s, errors propagate over the zone plate layer system while
the positioning errors from the different zones in e-FZP’s are independent. Hence,
for e-FZP’s, the acceptable error is largely independent of the diameter while the
acceptable errors of d-FZP’s strongly depend on the diameter of the optic.

The impact of the variation of the zone width is shown in 8.5. For d-FZP’s,
two effects are included in the simulation. First, the deposition of material is a
random process. Hence, each zone width is produced with an inherent variation.
Since each zone consists of many atomic layers independently deposited onto each
other, the resulting zone width error is approximately normally distributed with
a standard deviation equal to the square root of the numbers of layers times the
standard deviation (og) of the thickness of a single layer.

Second, due to the change of material at each zone interface, an additional
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Figure 8.3: Simulated images showing the impact of the substrate roughness
(right column, see also figure 8.2(c)) on the focal pattern (left column) and hence
the resolution (middle column) of the STXM. The simulation was performed for
FZP’s with an outermost zone width of dry = 5 nm and a diameter of 1.594 pm
at a wavelength of 0.157 nm (see also [15] ). Panel (a) shows the results for a
perfect FZP without central stop. Panels (b) — (e) show the results for FZP’s
with central stop of 0.9 pm and different rms-values of 0 nm, 3 nm, 6 nm and 10
nm, respectively.
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Figure 8.4: Plots showing the mean MTF of the same FZP as shown in fig-
ure 8.3(a)-(e). With increasing rms-values of the micro-wire substrate, the MTF’s
already decrease strongly at moderate spatial frequencies. Note the increasing
standard deviation (shaded) with increasing rms-values which is caused by the
angular dependency of the MTF of non-circular FZP’s.

error is produced. For simplicity, this interface error is also assumed to be nor-
mally distributed with a standard deviation on. As long as the expected deviation
of the position of the outermost zone is smaller than dry /2, an average d-FZP will
produce an Airy pattern as focal spot. If this condition is not satisfied, some of
the outermost zones most likely no longer satisfy the necessary condition for con-
structive interference. This idea leads to the following “rule of thumb™ Given the
width (dry) of the outermost zone, the number (N) of zones and the radius (R)
as well as the standard deviations of a single zone boarder oy (in nm per layer)
and the standard deviation og (in nm per AR) for a deposited distance (AR), the
following inequality should be satisfied:

dT'N R

For e-FZP’s, it is included that the position of each interface is normally

!The following equation is probably more convenient for practical applications. From R =

4
VvNfAand f = %, the mequality can be approximated by ?—f e Ung . Here, o4y 1
the standard deviation for a layer thicknesss equal to the outermost zone width.
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Figure 8.5: Plots showing the MTF of d-FZP’s and e-FZP'’s for different produc-
tion parameters. The FZP’s are assumed to consist of perfectly circular, concen-
tric rings that are alternately opaque and transparent. All FZP’s have a diameter
of 50 pm. The border of each ring is perturbed as described in the text. The
percentage of the FZP area obscured by the micro-wire substrate is denoted by
A. In the left plot (a), the standard deviation of the positioning error varied
between 0.02 and 0.05 nm per each nm deposited. In this case, the condition
d'”TN > \/J?Q% = 0.05nm - 86.6 ~ 4.33 nm is not satisfied for op =0.05 nm (violet
graph). In the green graph, the standard deviation is or =0.02 nm satisfving the
condition drTN = 1}0’%% = 0.02nm - 86.6 ~ 1.73 nm. The brown line corresponds
to a perfect FZP. The right plot (b) shows the MTF of an e-FZP and two d-FZP’s.
The FZP-parameters for the FZP 4) and 5) are identical, but the simulated posi-
tioning errors correspond to a d-FZP in 4) and an e-FZP in 5). The fact that the
d-FZP 6) does not satisfy the above given condition and has additionally a large
central wire reduces the MTF below the level of the FZP 4) and 5) for a large part
of the frequency range.

distributed around its prescribed position. As long as the standard deviation of
the positioning error (o) is smaller than the outermost zone width dry, most of the
outermost zones most likely satisfy the condition for constructive interference. For
relatively small d-FZP’s such as the one used to simulate the effect of the roughness,
the aberrations due to oy and og are negligible. Our simulation shows that under
these conditions, the main errors arise from the deviation of the substrate from a
perfect cylindrical geometry. In our simulations, this deviation had to be smaller
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than the width of the outermost zone in order to produce a focal spot close to an
Airy pattern.

For practical applications in X-ray microscopy, the working distance of the FZP
X-ray objectives plays an important role. For example, tomographic applications
require tilting of the sample in the X-ray beam. To minimize the missing wedge
effects in the reconstruction, tilt angles > 60° are required. Therefore, in practice,
the focal length of the FZP should be at least 0.5 mm. Assuming FZP’s with
dry =5 nm containing a micro-wire with half the diameter of the FZP diameter,
operating at 1, 4 or 8 keV photon energy, the required number of deposited zones
are 4700, 1164 and 582, respectively. The resulting deposition standard deviations
op are 0.014, 0.028 and 0.040 nm. In other words, the required deposition accu-
racies for an inner zone of 9 nm width are 0.042, 0.084 and 0.12 nm at 1, 4 and 8
keV, respectively.

Even for d-FZP’s which are ideally manufactured, their utility for applications
depends heavily on the photon energy used. For example, in the soft X-ray re-
gion, the efficiency of d-FZP’s is significantly lowered by the smaller difference
in the absorption and phase shift of the two alternating zone materials compared
to e-FZP’s with their vacuum against zone material contrast. Additionally, high
efficiency soft X-ray optics with dry < 10nm require tilted zone structures with
radially increasing tilt angles (see [103, 80]). So far, no approach exists to manu-
facture such d-FZP optics.

For hard X-rays, efficient FZP’s require very high aspect ratios, but zone tilting
is less important due to the significantly lower numerical apertures. Furthermore,
the absorption within the FZP is much lower than for soft X-rays and so, phase
shift is dominant. However, for most applications, the focal length of currently
produced d-FZP’s is still too short. For high resolution d-FZP’s with significantly
larger working distances, many more zones are required which makes the posi-
tion accuracy progressively worse. Nevertheless, d-FZP’s are ideal candidates for
nanoscale hard X-ray imaging but only if either the deposition accuracy can be
extremely well controlled or the actual zone plate diameter can be measured and
corrected during the fabrication process.

Summary

Our theoretical analysis of zone plates mamufactured by deposition techniques
shows the impact of the micro-wire substrate quality and the deposition accuracy
on the achievable imaging performance. The substrate should be exactly circular
and very smooth, which is nearly fulfilled for glass wire substrates [16]. The diam-
eter of the wire substrate should be smaller than 50% of the FZP diameter to avoid
negative effects on the MTF. We also studied the influence of the deposition accu-
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racy on the focal spot. We find that the deposition accuracy for FZP with useful
focal lengths for practical applications is a major challenge. This challenge could
be overcome by in-situ measurements of the deposited layer thickness during the
manufacturing process. In this case, the zone thickness can be corrected during the
fabrication process which helps to suppress the propagating positioning error and
relaxes the deposition rate accuracy. However, the accuracy of the measurement of
the zone plate layer thickness needs to be at least half the outermost zone width.
In [17] it was demonstrated that the in-situ measurements of the layer thickness
an be performed indirectly by measuring the thickness on a plain substrate.

The analysis of the e-beam based manufacturing process showed that compared
to sputtering-based zone-plate manufacture, a larger standard deviation in the
local zone thickness is tolerable for e-beam manufacture of zone plates, since the
local zone width errors do not propagate from layer to layer. However, the local
precision of each zone has to be better than half the outermost zone width. For
Fresnel zone plates with central stop which are used for imaging, the diameter of
the central stop should be less than 50% of the FZP diameter. A unique feature
of e-beam lithography is that one can also manufacture general diffractive optical
elements.



Chapter 9

Summary and Outlook

Nanoscale X-ray imaging provides unprecedented views into matter. For many sci-
entific areas, such as life and materials science, 3D views into complex structures
are essential. The aim of this thesis was the understanding of the 3D nanoscale
image formation with soft X-rays. Real space imaging methods like the transmis-
sion soft X-ray microscope or the scanning transmission microscope directly form
the image of a sample, while reciprocal space methods like coherent diffraction
imaging, ptychography and holography require mimerical methods to generate the
image.

Full-field soft X-ray transmission microscopy in combination with tomography
is currently the most successful soft X-ray based approach for 3D imaging of bi-
ological cells. This approach is based on the assumption that the TXM images
represent magnified projections of the sample for each tilt angle. The 3D imaging
mode by tomography is based on the inverse Radon transform. For this approach,
it is assumed that the TXM images represent at each tilt angle the integrated
local absorption coefficient along the direction of projection. Experimental data
shows that this assumption is no longer valid for high resolution soft X-ray optics.
Ideally, the tilt range in tomography has to cover half a rotation (180°). How-
ever, in practice, experimental constraints often limit the maximal tilt to values of
+60°- £70°. Soft X-ray microscopes, such as the BESSY II microscope, work in a
partially coherent regime which also has a strong influence on the image formation
process. In this thesis, numerical descriptions of the TXM at the electron storage
ring BESSY II were developed to study all these effects which potentially arise from
violations of the assumptions of tomography. Simulations taking into account the
partially coherent object illumination, the depth of focus and the limited tilt range
were compared to experimental data. The comparison of the images computed by
simulations based on partially coherent and incoherent image formation showed
that the partial coherence of the object illumination has to be taken into account
to correctly simulate the TXM images. In addition, we studied the limiting effects
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for soft X-ray transmission microscopy using an extended cell-like 3D phantom.
As expected, we observed that an increased lateral resolution of the Fresnel zone
plate decreases the fraction of the phantom that is imaged without blurring, re-
flecting the reduction of the depth of focus with increased numerical aperture of
the objective. This also affects the tomographic 3D reconstruction. We found that
only a cylinder around the rotational axis is resolved with the resolution provided
by the Fresnel zone plate. The diameter of the cylinder is of the same order as the
depth of focus. For samples that are larger than the depth of focus, we observed
that the resolution degrades and severe artifacts appear with increased distance
from the rotational axis. In addition, the partially coherent illumination leads to
a violation of the assumption of a purely absorption contrast based image forma-
tion. In practice, all these artifacts are mixed with the missing wedge artifacts.
The latter results from a limitation of the tilt angle. From the observed effects, we
conclude that new tomography approaches are necessary to achieve an isotropic
resolution close to 10 nm for extended biological samples. Potential solutions can
be divided into two categories.

The first category contains approaches that extend the depth of focus either by
developing new advanced algorithms for tomography, for example by using focal
series and deconvolution to increase numerically the depth of focus, or the use
of higher photon energies. The latter approach solves the problems related to the
limited depth of focus, because the depth of focus increases linearly with the photon
energy. Unfortunately, the absorption contrast between water and organic material
is extremely weak for photon energies above the water window, which leads to a
significant increase of the dose required for imaging of biological material. For high
resolution imaging this poses a severe problem since the dose rises far beyond the
dose induced damage threshold of such samples. Phase contrast imaging mainly
overcomes these contrast related problems. Zernike phase contrast has been shown
to work well for X-rays. However, such images no longer represent the linear local
absorption coefficient. Instead the image represents a phase dependent signal.
Current experimental setups use a phase ring in the focal plane of the objective
to generate Zernike phase contrast. This ring is relatively large which results in
a spatial frequency dependent mix of Zernike phase and absorption contrast. In
this thesis, a new diffractive optical element (DOE) based condenser setup was
proposed which has the potential to significantly reduce the spatial frequency
dependency of the contrast. In addition, it permits use of a significantly larger
fraction of the incident X-rays for the image formation.

Solutions in the second category consist of novel soft X-ray imaging methods
which overcome the previously mentioned limitations. In this thesis, one approach
for such a solution, which is inspired by confocal light microscopy was investigated.
Confocal transmission soft X-ray microscopy is an approach for direct 3D imag-
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ing by optical sectioning. The performance of this novel sort of X-ray microscopy
setup was studied by theoretical and numerical means. In light microscopy, the
confocal microscope is based on fluorescent dyes. Since individual dye molecules
emit the fluorescent light independently, the image formation process is incoherent.
However, confocal soft X-ray microscopy cannot be based on fluorescence due to
dose considerations. The image formation in the confocal scanning transmission
soft X-ray microscope is based on diffraction, which does not introduce an inco-
herent step during image formation. We showed that the image formation in the
confocal transmission soft X-ray microscope requires a coherent description. We
found that the resolution of the confocal soft X-ray microscope is anisotropic for
both the incoherent as well as the coherent case. In comparison to the incoherent
case, the depth resolution decreases even further in the coherent confocal scanning
soft X-ray microscope. We also compared the predicted images of a confocal and a
full-field transmission soft X-ray microscope. From the results, it is concluded that
the confocal system does not exhibit significant advantages over TXM imaging for
extended biological samples.

All previously studied X-ray imaging methods have fundamental restrictions
in their achievable 3D resolution. In the search for an X-ray based microscopy
method that can provide isotropic nanoscale 3D resolution, we studied a novel
combination based on scanning soft X-ray microscopy (SXM) with photoelectron
detection and high precision surface removal by focused ion beam (FIB) milling.
In this so-called slice and view method, a nanoscale soft X-ray focal spot is scanned
over the surface of the sample and the locally emitted electrons are detected. In
the soft X-ray photon energy range photoelectrons are mainly generated by the
X-ray absorption process. Due to the relatively low photon energy, the generated
photoelectrons escape from a thin surface layer of 3 - 8 nm. Therefore, this method
provides an excellent depth resolution given by the escape depth of the electrons.
The lateral resolution depends only on the resolution of the Fresnel zone plate
objective and the coherence of the illumination. In practice, current Fresnel zone
plates provide focal spots of 10 nm. Therefore, the new FIB-SXM 3D imaging
method potentially provides a resolution of at least 10 nm in all directions.

Organic material is very radiation sensitive, therefore, we also investigated the
required dose for imaging of biological material in the FIB-SXM mode. As a
result, we found that this microscope has the potential to reduce the dose by three
orders of magnitude compared to both the transmission mode in the TXM and
lens-less methods. The dose reduction is mainly due to the fact that the contrast
of the photoelectron signal represents the relatively large difference in the local
absorption coefficient, while the transmission based soft X-ray imaging methods
detect the very small differences in the local transmission of water and the organic
cellular structures. The numerical simulations revealed that FIB-SXM improves
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significantly the 3D image quality for biological cells in comparison to the currently
used TXM based tomography. It potentially achieves an isotropic 3D resolution
below 10 nm at a signal to noise level above the Rose criterion. Therefore, this
method potentially solves a fundamental 3D resolution problem in X-ray imaging.

Aside from high resolution 3D imaging, in this thesis new setups for high res-
olution 2D imaging with ultra-short X-ray pulses were investigated. Today free
electron lasers provide spatially coherent, high photon flux pulses with femtosec-
ond duration. Such pulses potentially allow imaging ultra-fast processes in com-
plex samples with nanoscale resolution. However, high resolution full-field imaging
with short pulses is still an unsolved problem. As a solution, we propose a novel
approach based on Fourier transform holography, which is based on diffractive
optical elements. In this approach, the diffractive optical element illuminates the
sample and simultaneously generates the reference wave. In first proof of con-
cept experiments at the electron storage ring BESSY II, we showed that Fourier
transform holography based on the novel DOE nearly accomplishes the expected
imaging performance. It can even be used to image large sample areas by stitch-
ing of overlapping images. Although, the resolution in holography is still signif-
icantly lower than the resolution achievable with a TXM, it does permit use of
short X-ray pulses for time-resolved imaging. In the future, the recently developed
algorithm proposed in this thesis could be applied to design diffractive optical
elements optimized for higher orders of diffraction, which increase the effective
numerical aperture leading to higher resolution. Since the outermost zone width
is currently the limiting factor for the fabrication of diffractive optical elements by
e-beam lithography, the use of higher orders of diffraction based diffractive opti-
cal elements significantly improves the images. Potentially this holography setup
generates time-resolved images with single shots at spatial resolutions similar to
current X-ray microscopes at electron storage ring with their exposure times in
the second range.

In summary, in this thesis different X-ray optical setups for high resolution
3D imaging were investigated. From all the investigated methods, the novel FIB-
SXM approach is the most promising candidate for nanoscale 3D imaging. FIB-
SXM imaging promises to provide higher resolution 3D images than other X-
ray methods. In addition, artifacts that are currently limiting other tomography
based soft X-ray methods are removed. Nevertheless, improvements of the various
TXM imaging modes is also important, since FIB-SXM can only be applied to
relatively small samples regions since it is a raster scanning method. Therefore,
a workflow that includes a lower resolution preliminary study of 3D samples by
TXM tomography is advisable to locate the regions of interest. For the preliminary
studies of whole cells in the TXM, the new setups for Zernike phase contrast and
dark field imaging might provide a further improvement step. In general, X-
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ray imaging offers a large penetration depth, good element contrast and short
wavelength for microscopy. In addition, soft X-ray microscopy bridges the gap in
resolution and permitted sample thickness between optical microscopy and electron
microscopy. This unique combination make X-ray imaging in general a valuable
tool for many applications in life and materials sciences.



144 CHAPTER 9. SUMMARY AND OUTLOOK



Acknowledgment

I wish to thank all my coworkers who always supported me, endured all my ques-
tions and always found the time to discuss ideas with me. Dr. Stefan Rehbein,
Dr. Stephan Werner, Dr. Peter Guttmann, Dr. James McNalley and Dr. Sergey
Kapishnikov made the time that I work with them at the Helmholtz Zentrum
Berlin not only an educational one, but also enjoyable. In Prof. Gerd Schneider I
found a great supervisor. He helped me a lot by being at the same time supportive
but also sufficiently critical.

Although our experiments were in the end not as successful as we hoped, I
was glad to have the good fortune to work with Dr. Holger Stiel, Dr. Johannes
Timmler and Dr. Robert Jung as well as Klaus Follmer from the Max Born
Institut.

I thank Prof. Giinter Schmahl and Prof. Stefan Kowarik for valuable discus-

sions.

Finally, I thank my girlfriend Stephanie and my family for their patience and
support.

145



146

Selbststandigkeitserklarung

Hiermit erklire ich, die Dissertation selbststindig und nur unter Verwendung der
angegebenen Hilfen und Hilfsmittel angefertigt zu haben. Ich hab mich anderwérts
nicht um einen Doktorgrad beworben und besitze einen entsprechenden Doktor-
grad nicht. Ich erklire die Kenntnisnahme der dem Verfahren zugrunde liegen-
den Promotionsordnung der Mathematisch-Naturwissenschaftlichen Fakultit der
Humboldt-Universitéit zu Berlin vom 18.11.2014.

Berlin, den 27.02.2017 Christoph Pratsch



Bibliography

1]

2l

Bl

4]

[5]

[6]

D. Attwood. Soft X-Rays and Ezxtreme Ultraviolet Radiation: Principles and
Applications. Cambridge University Press, 2007. ISBN 9781139643429.

A. V. Baez. A study in diffraction microscopy with special reference to x-
rays. Journal of the Optical Society of America, 42(10):756-762, Oct 1952.
doi: 10.1364/JOSA.42.000756.

S. Baumbach, B. Kanngiesser, W. Malzer, H. Stiel, and T. Wilhein. A lab-
oratory 8 keV transmission full-field X-ray microscope with a polycapillary
as condenser for bright and dark field imaging. Review of Scientific Instru-

ments, 86(8), AUG 2015. ISSN 0034-6748. doi: 10.1063/1.4929602.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S.
Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess. Imag-
ing intracellular fluorescent proteins at nanometer resolution. Science, 313

(5793):1642-1645, SEP 2006. ISSN 0036-8075. doi: 10.1126/science.1127344.

Q. Cao and J. Jahns. Comprehensive focusing analysis of various fresnel
zone plates. Journal of The Optical Society of America A-Optics Image
Science and Vision, 21(4):561-571, APR 2004. ISSN 1084-7529. doi: 10.
1364 /JOSAA.21.000561.

J. L. Carrascosa, F. Javier Chichon, E. Pereiro, M. Josefa Rodriguez, J. Je-
sus Fernandez, M. Esteban, S. Heim, P. Guttmann, and G. Schneider. Cryo-
X-ray tomography of vaccinia virus membranes and inner compartments.
Journal of Structural Biology, 168(2):234-239, NOV 2009. ISSN 1047-8477.
doi: 10.1016/j.jsb.2009.07.009.

W. Chao, J. Kim, S. Rekawa, P. Fischer, and E. H. Anderson. Demonstration
of 12 nm resolution fresnel zone plate lens based soft X-ray microscopy.
Optics Express, 17(20):17669-17677, SEP 2009. ISSN 1094-4087. doi: 10.
1364/0OE.17.017669.

147



148

18]

19]

[10]

[11]

[12]

[13]

[14]

BIBLIOGRAPHY

W. Chao, P. Fischer, T. Tyliszczak, S. Rekawa, E. Anderson, and P. Naul-
leau. Real space soft x-ray imaging at 10 nm spatial resolution. Optics

Ezxpress, 20(9), APR 2012. ISSN 1094-4087. doi: 10.1364/0E.20.009777.

H. Chapman, C. Jacobsen, and S. Williams. A characterisation of dark-field
imaging of colloidal gold labels in a scanning transmission X-ray microscope.
Ultramicroscopy, 62(3):191-213, FEB 1996. ISSN 0304-3991. doi: 10.1016/
0304-3991(96)00003-4.

H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-
Riege, S. Marchesini, B. W. Woods, S. Bajt, H. Benner, R. A. London,
E. Ploenjes, M. Kuhlmann, R. Treusch, S. Duesterer, T. Tschentscher, J. R.
Schneider, E. Spiller, T. Moeller, C. Bostedt, M. Hoener, D. A. Shapiro,
K. O. Hodgson, D. Van der Spoel, F. Burmeister, M. Bergh, C. Caleman,
G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szoeke, N. Tim-
neanu, and J. Hajdu. Femtosecond diffractive imaging with a soft-X-ray
free-electron laser. Nature Physics, 2(12):839-843, DEC 2006. ISSN 1745-
2473. doi: 10.1038 /nphys461.

H. N. Chapman, A. Barty, S. Marchesini, A. Noy, S. R. Hau-Riege, C. Cui,
M. R. Howells, R. Rosen, H. He, J. C. H. Spence, U. Weierstall, T. Beetz,
C. Jacobsen, and D. Shapiro. High-resolution ab initio three-dimensional
x-ray diffraction microscopy. Journal of the Optical Society of America A-
Optics Image Science and Vision, 23(5):1179-1200, may 2006. doi: 10.1364/
JOSAA.23.001179.

H.-Y. Chen, D. M.-L. Chiang, Z.-J. Lin, C.-C. Hsieh, G.-C. Yin, [.-C. Weng,
P. Guttmann, S. Werner, K. Henzler, G. Schneider, L.-J. Lai, and F.-T. Liu.
Nanoimaging granule dynamics and subcellular structures in activated mast
cells using soft x-ray tomography. Scientific Reports, 6, OCT 2016. ISSN
2045-2322. doi: 10.1038 /srep34879.

J. Cooley and J. Tukey. An algorithm for machine calculation of complex
Fourier series. Mathematics of Computation, 19(90):297-&, 1965. ISSN
0025-5718. doi: 10.2307/2003354.

J. Deng, D. J. Vine, S. Chen, Y. S. G. Nashed, Q. Jin, N. W. Phillips,
T. Peterka, R. Rossc, S. Vogt, and C. J. Jacobsen. Simultaneous cryo X-ray
ptychographic and fluorescence microscopy of green algae. Proceedings of
the National Academy of Sciences of the United States of America, 112(8):
2314-2319, FEB 2015. ISSN 0027-8424. doi: 10.1073/pnas.1413003112.



BIBLIOGRAPHY 149

[15]

[16]

[18]

[19]

[20]

[21]

[22]

[23]

[24

F. Doering, A. L. Robisch, C. Eberl, M. Osterhoff, A. Ruhlandt, T. Liese,
F. Schlenkrich, S. Hoffmann, M. Bartels, T. Salditt, and H. U. Krebs. Sub-
5 nm hard X-ray point focusing by a combined kirkpatrick-baez mirror and
multilayer zone plate. Optics Ezpress, 21(16):19311-19323, AUG 2013. ISSN
1094-4087. doi: 10.1364/0E.21.019311.

A. Duvel, D. Rudolph, and G. Schmahl. Fabrication of thick zone plates
for multi-kilovolt X-rays. In Meyerllse, W and Warwick, T and Attwood,
D, editor, X-Ray Microscopy, Proceedings, volume 507 of AIP Conference
Proceedings, pages 607-614, 2000. ISBN 1-56396-926-2.

C. Eberl, F. Doring, T. Liese, F. Schlenkrich, B. Roos, M. Hahn, T. Hoinkes,
A. Rauschenbeutel, M. Osterhoff, T. Salditt, and H.-U. Krebs. Fabrication
of laser deposited high-quality multilayer zone plates for hard x-ray nanofo-
cusing. Applied Surface Science, 307:638—-644, JUL 15 2014. ISSN 0169-4332.
doi: 10.1016/j.apsusc.2014.04.089.

S. Eisebitt, J. Luning, W. Schlotter, M. Lorgen, O. Hellwig, W. Eberhardt,
and J. Stohr. Lensless imaging of magnetic nanostructures by X-ray spectro-
holography. Nature, 432(7019):885-888, DEC 2004. ISSN 0028-0836. doi:
10.1038 /nature03139.

O. Ersoy. Diffraction, Fourier Optics and Imaging. Wiley Series in Pure and

Applied Optics. Wiley, 2006. ISBN 9780470084991.

H. Faulkner and J. Rodenburg. Movable aperture lensless transmission mi-
croscopy: A novel phase retrieval algorithm. Physical Review Letters, 93(2),

JUL 2004. ISSN 0031-9007. doi: 10.1103/PhysRevLett.93.023903.

M. Feit and J. Fleck. Light-propagation in graded-index optical fibers. Ap-
plied Optics, 17(24):3990-3998, 1978. ISSN 0003-6935. doi: 10.1364/A0.17.
003990.

Y. Feng, M. Feser, A. Lyon, S. Rishton, X. Zeng, S. Chen, S. Sassolini, and
W. Yun. Nanofabrication of high aspect ratio 24 nm x-ray zone plates for
X-ray imaging applications. Journal of Vacuum Science € Technology B, 25

(6):2004-2007, NOV 2007. ISSN 1071-1023. doi: 10.1116/1.2789447.

J. Fienup. Reconstruction of an object from modulus of its Fourier-
transform.  Optics Letters, 3(1):27-29, 1978. ISSN 0146-9592. doi:
10.1364,/0L.3.000027.

J. R. Fienup. Phase retrieval algorithms: a comparison. Applied Optics, 21
(15):2758-2769, aug 1982. doi: 10.1364/A0.21.002758.



150

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

BIBLIOGRAPHY

D. Gabor. A new microscopic principle. Nature, 161(4098):777-778, 1948.
ISSN 0028-0836. doi: 10.1038/161777a0.

J. Geilhufe, B. Pfau, M. Schneider, F. Buettner, C. M. Guenther, S. Werner,
S. Schaffert, E. Guehrs, S. Froemmel, M. Klaeui, and S. Eisebitt. Monolithic
focused reference beam X-ray holography. Nature Communications, 5, JAN

2014. TSSN 2041-1723. doi: 10.1038/ncomms4008.

R. Gerchberg and W. Saxton. Practical algorithm for determination of phase
from image and diffraction plane pictures. Optik, 35(2):237+, 1972. ISSN
0030-4026.

D. Ghiglia and M. Pritt. Two-dimensional phase unwrapping: theory, al-
gorithms, and software. Wiley-Interscience publication. Wiley, 1998. ISBN
9780471249351.

M. Gu. Principles of Three Dimensional Imaging in Confocal Microscopes.

World Scientific, 1996. ISBN 9789810225506.

M. Gu. Advanced Optical Imaging Theory. Springer Series in Optical Sci-
ences. Springer, 2000. ISBN 9783540662624.

E. Guehrs, A. M. Stadler, S. Flewett, S. Froemmel, J. Geilhufe, B. Pfau,
T. Rander, S. Schaffert, G. Bueldt, and S. Eisebitt. Soft X-ray tomo-
holography. New Journal of Physics, 14, JAN 2012. ISSN 1367-2630. doi:
10.1088,/1367-2630/14/1/013022.

M. Guizar-Sicairos and J. R. Fienup. Holography with extended reference by
autocorrelation linear differential operation. Optics Ezpress, 15(26):17592—
17612, DEC 2007. ISSN 1094-4087. doi: 10.1364/OE.15.017592.

M. Guizar-Sicairos and J. Gutierrez-Vega. Computation of quasi-discrete
Hankel transforms of integer order for propagating optical wave fields. Jour-
nal of The Optical Society of America A-Optics Image Science and Vision,

21(1):53-58, JAN 2004. ISSN 1084-7529. doi: 10.1364/JOSAA.21.000053.

C. Hagen, P. Guttmann, B. Klupp, S. Werner, S. Rehbein, T. C. Met-
tenleiter, G. Schneider, and K. Gruenewald. Correlative vis-fluorescence
and soft X-ray cryo-microscopy/tomography of adherent cells. Journal
of Structural Biology, 177(2):193-201, FEB 2012. ISSN 1047-8477. doi:
10.1016/j.jsb.2011.12.012.

R. Hegerl and W. Hoppe. Influence of electron noise on 3-Dimensional image-
reconstruction. Zeitschrift fiir Naturforschung Section A-A Journal of Phys-
ical Sciences, 31(12):1717-1721, 1976. ISSN 0932-0784.



BIBLIOGRAPHY 151

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

S. Hell and M. Kroug. Ground-state-depletion fluorescence microscopy -
a concept for breaking the diffraction resolution Limit. Applied Physics B-
Lasers And Optics, 60(5):495-497, MAY 1995. ISSN 0946-2171. doi: 10.
1007/BF01081333.

S. Hell and J. Wichmann. Breaking the diffraction resolution limit by
stimulated-emission - stimulated-emission-depletion fluorescence microscopy.
Optics Letters, 19(11):780-782, JUN 1 1994. ISSN 0146-9592. doi: 10.1364/
OL.19.000780.

M. Holler, A. Diaz, M. Guizar-Sicairos, P. Karvinen, E. Farm, E. Harkonen,
M. Ritala, A. Menzel, J. Raabe, and O. Bunk. X-ray ptychographic com-
puted tomography at 16 nm isotropic 3D resolution. Secientific Reports, 4,
JAN 24 2014. ISSN 2045-2322. doi: 10.1038/srep03857.

W. Hoppe. Diffraction in inhomogeneous primary wave fields. 1. principle
of phase determination from electron diffraction interference. Acta Crys-
tallographica Section A-Crystal Physics Diffraction Theoretical and Gen-
eral Crystallography, A 25(4):495-&, 1969. ISSN 0567-7394. doi: 10.1107/
S0567739469001045.

B. Hornberger, M. Feser, and C. Jacobsen. Quantitative amplitude and
phase contrast imaging in a scanning transmission X-ray microscope. Ul-
tramicroscopy, 107(8):644-655, AUG 2007. ISSN 0304-3991. doi: 10.1016/j.
ultramic.2006.12.006.

P. Horowitz and J. A. Howell. A scanning x-ray microscope using synchrotron
radiation. Science, 178(4061):608-611, 1972. ISSN 0036-8075. doi: 10.1126/
science.178.4061.608.

M. Howells, T. Beetz, H. Chapman, C. Cui, J. Holton, C. Jacobsen, J. Kirz,
E. Lima, S. Marchesini, H. Miao, D. Sayre, D. Shapiro, J. Spence, and
D. Starodub. An assessment of the resolution limitation due to radiation-
damage in X-ray diffraction microscopy. Journal of Electron Spectroscopy
and Related Phenomena, 170(1 - 3):4-12, 2009. ISSN 0368-2048. doi: 10.
1016/j.elspec.2008.10.008.

B. Kanngiesser, W. Malzer, and I. Reiche. A new 3D micro X-ray fluorescence
analysis set-up - first archaecometric applications. Nuclear Instruments €
Methods In Physics Research Section B-Beam Interactions With Materials
and Atoms, 211(2):259-264, OCT 2003. ISSN 0168-583X. doi: 10.1016/
S0168-583X(03)01321-1.



152

44

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

BIBLIOGRAPHY

S. Kapishnikov, A. Weiner, E. Shimoni, P. Guttmann, G. Schneider,
N. Dahan-Pasternak, R. Dzikowski, L. Leiserowitz, and M. Elbaum. Oriented
nucleation of hemozoin at the digestive vacuole membrane in plasmodium
falciparum. Proceedings of the National Academy of Sciences of the United
States of America, 109(28):11188-11193, JUL 10 2012. ISSN 0027-8424. doi:
10.1073 /pnas.1118120109.

J. Kenney, J. Kirz, H. Rarback, R. Feder, D. Sayre, and M. Howells. Scan-
ning soft-X-ray-ray microscopy with a Fresnel zoneplate at the national syn-
chrotron light-source. Proceedings Of The Society Of Photo-Optical Instru-
mentation Engineers, 447:158-163, 1984. ISSN 0361-0748.

C. Knochel. Anwendung und Anpassung tomographischer Verfahren in der
Réntgenmikroskopie. PhD thesis, Georg-August-Universitit zu Gottingen,
2005.

M. Knoll and E. Ruska. Das Elektronenmikroskop. Zeitschrift fuer Physik,
78(5-6):318-339, MAY 1932. ISSN 0044-3328. doi: 10.1007/BF01342199.

M. Lindblom, J. Reinspach, O. von Hofsten, M. Bertilson, H. M. Hertz,
and A. Holmberg. High-aspect-ratio germanium zone plates fabricated by
reactive ion etching in chlorine. Journal of Vacuum Science € Technology

B, 27(2):L1-L3, MAR-APR 2009. ISSN 1071-1023. doi: 10.1116/1.3089371.

A. W. Lohmann and D. P. Paris. Binary fraunhofer holograms generated by
computer. Applied Optics, 6(10):1739-&, 1967. doi: 10.1364/A0.6.001739.

A. M. Maiden and J. M. Rodenburg. An improved ptychographical phase
retrieval algorithm for diffractive imaging. Ultramicroscopy, 109(10):1256—
1262, SEP 2009. ISSN 0304-3991. doi: 10.1016/j.ultramic.2009.05.012.

S. Marchesini, S. Boutet, A. E. Sakdinawat, M. J. Bogan, S. Bajt, A. Barty,
H. N. Chapman, M. Frank, S. P. Hau-Riege, A. Szocke, C. Cui, D. A.
Shapiro, M. R. Howells, J. C. H. Spence, J. W. Shaevitz, J. Y. Lee, J. Hajdu,
and M. M. Seibert. Massively parallel X-ray holography. Nature Photonics,
2(9):560-563, SEP 2008. ISSN 1749-4885. doi: 10.1038 /nphoton.2008.154.

W. Martienssen and S. Spiller. Holographic reconstruction without gran-
ulation. Physics Letters A, A 24(2):126+, 1967. ISSN 0375-9601. doi:
10.1016 /0375-9601(67)90517-8.

J. G. McNally, S. Rehbein, C. Pratsch, S. Werner, P. Guttmann, and
G. Schneider. 3D psf measurement for a soft X-ray microscope and compar-
ison to theory. In Imaging and Applied Optics 2016, page CM3D.4. Optical
Society of America, 2016. doi: 10.1364/COSI.2016.CM3D.4.



BIBLIOGRAPHY 153

[54]

[55]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

C. Messaoudil, T. Boudier, C. Oscar Sanchez Sorzano, and S. Marco. Tomoj:
tomography software for three-dimensional reconstruction in transmission
electron microscopy. BMC Bioinformatics, 8, AUG 6 2007. ISSN 1471-2105.
doi: 10.1186/1471-2105-8-288.

J. Miao, P. Charalambous, J. Kirz, and D. Sayre. Extending the methodology
of X-ray crystallography to allow imaging of micrometre-sized non-crystalline
specimens. Nature, 400(6742):342-344, JUL 22 1999. ISSN 0028-0836. doi:
10.1038,/22498.

M. Minsky. Microscopy apparatus, Dec. 19 1961. US Patent 3,013,467.

G. Morrison. Phase-contrast and dark-field imaging in x-ray microscopy. In
Jacobsen, CJ and Trebes, JE, editor, Proc. SPIE Soft X-ray microscopy, vol-
ume 1741 of PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL
INSTRUMENTATION ENGINEERS (SPIE), pages 186-193. SOC PHOTO
OPT INSTRUMENTAT ENGINEERS, 1993. ISBN 0-8194-0914-6. doi:
10.1117/12.138730.

O. Myers. Studies of transmission zone plates. American Journal Of Physics,

19(6):359-365, 1951. ISSN 0002-9505. doi: 10.1119/1.1932827.

R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu. Potential
for biomolecular imaging with femtosecond X-ray pulses. Nature, 406(6797):

752-757, AUG 17 2000. ISSN 0028-0836. doi: 10.1038/35021099.

B. Niemann, D. Rudolph, and G. Schmahl. X-ray microscopy with syn-
chrotron radiation. Applied Optics, 15(8):1883-1884, 1976. ISSN 0003-6935.
doi: 10.1364/A0.15.001883.

J. Oton, E. Pereiro, A. J. Pérez-Berna, L. Millach, C. O. S. Sorzano, R. Mara-
bini, and J. M. Carazo. Characterization of transfer function, resolution and
depth of field of a soft X-ray microscope applied to tomography enhancement
by Wiener deconvolution. Biomedical Optics Ezpress, 7(12):5092-5103, DEC
1 2016. ISSN 2156-7085. doi: 10.1364/BOE.7.005092.

D. Paganin. Coherent X-Ray Optics. Oxford Science Publications. OUP
Oxford, 2006. ISBN 9780198567288.

H. Pattee. The Compound Reflection X-ray Microscope. Department of
Physics, Stanford University., 1953.

M. Peuker. High-efficiency nickel phase zone plates with 20 nm minimum
outermost zone width. Applied Physics Letters, 78(15):2208-2210, APR 9
2001. ISSN 0003-6951. doi: 10.1063/1.1361285.



154

|65]

|66]

|67]

|68

|69]

[70]

|71

72|

73]

[74]

BIBLIOGRAPHY

B. Pfau, S. Schaffert, L. Miiller, C. Gutt, A. Al-Shemmary, F. Biittner,
R. Delaunay, S. Diisterer, S. Flewett, R. Fromter, et al. Ultrafast optical de-
magnetization manipulates nanoscale spin structure in domain walls. Nature
commaunications, 3:1100, 2012.

C. J. Powell and A. Jablonski. NIST Electron Effective-Attenuation-Length
Database - Version 1.3. National Institute of Standards and Technology,
Gaithersburg, MD, 2011.

C. Pratsch, S. Rehbein, S. Werner, and G. Schneider. Influence of random
zone positioning errors on the resolving power of fresnel zone plates. Optics
Ezpress, 22(25):30482-30491, DEC 15 2014. ISSN 1094-4087. doi: 10.1364/
OE.22.030482.

S. Rehbein, S. Heim, P. Guttmann, S. Werner, and G. Schneider. Ultrahigh-
resolution soft-x-ray microscopy with zone plates in high orders of diffraction.
Physical Review Letters, 103(11), SEP 11 2009. ISSN 0031-9007. doi: 10.
1103 /PhysRevLett.103.110801.

S. Rehbein, P. Guttmann, S. Werner, and G. Schneider. Characterization
of the resolving power and contrast transfer function of a transmission X-
ray microscope with partially coherent illumination. Optics Express, 20(6):

5830-5839, MAR 12 2012. ISSN 1094-4087. doi: 10.1364/0E.20.005830.

D. Rudolph, B. Niemann, and G. Schmahl. Status of the sputtered sliced
zone plates for X-ray microscopy. Proceedings of the Society of Photo-Optical
Instrumentation Engineers, 316:103-105, 1981. ISSN 0361-0748.

M. J. Rust, M. Bates, and X. Zhuang. Sub-diffraction-limit imaging by
stochastic optical reconstruction microscopy (storm). Nature Methods, 3

(10):793-795, OCT 2006. ISSN 1548-7091. doi: 10.1038/nmeth929.

A. Sakdinawat and Y. Liu. Phase contrast soft X-ray microscopy using
zernike zone plates. Optics Express, 16(3):1559-1564, FEB 4 2008. ISSN
1094-4087. doi: 10.1364/OE.16.001559.

D. Sayre. Some implications of a theorem due to Shannon. Acta Crystallo-

graphica, 5(6):843, 1952. ISSN 0108-7673. doi: 10.1107/S0365110X52002276.

A. Schertel, N. Snaidero, H.-M. Han, T. Ruhwedel, M. Laue, M. Graben-
bauer, and W. Mo6bius. Cryo FIB-SEM: Volume imaging of cellular ultra-
structure in native frozen specimens. Journal of Structural Biology, 184(2):
355-360, 2013. ISSN 1047-8477. doi: 10.1016/j.jsb.2013.09.024.



BIBLIOGRAPHY 155

[75]

7]

[77]

78]

[79]

[80]

[81]

[82]

[83]

[84]

G. Schmahl and D. Rudolph. High power zone plates as image forming
systems for soft X-rays. Optik, 29(6):577-&, 1969. ISSN 0030-4026.

G. Schmahl and D. Rudolph. Proposal for a Phase Contrast X-ray Micro-
scope, pages 231-238. Springer Berlin Heidelberg, Berlin, Heidelberg, 1987.
ISBN 978-3-642-72881-5. doi: 10.1007/978-3-642-72881-5 16.

G. Schmahl, D. Rudolph, B. Niemann, and O. Christ. Zone-plate X-ray
microscopy. Quarterly Reviews of Biophysics, 13(3):297-315, 1980. ISSN
0033-5835.

G. Schmahl, D. Rudolph, G. Schneider, P. Guttmann, and B. Niemann.
Phase-contrast X-ray microscopy studies. Optik, 97(4):181-182, OCT 1994.
ISSN 0030-4026.

T. Schmidt, U. Groh, R. Fink, E. Umbach, O. Schaff, W. Engel, B. Richter,
H. Kuhlenbeck, R. Schlogl, H.-J. Freund, A. M. Bradshaw, D. Preikszas,
P. Hartel, R. Spehr, H. Rose, G. Lilienkamp, E. Bauer, and G. Benner.
XPEEM with energy-filtering: advantages and first results from the SMART
project. Surface Review and Letters, 09(01):223-232, 2002. doi: 10.1142/
50218625X02001811.

G. Schneider. Zone plates with high efficiency in high orders of diffraction
described by dynamical theory. Applied Physics Letters, T1(16):2242-2244.,
OCT 20 1997. ISSN 0003-6951. doi: 10.1063/1.120069.

G. Schneider. Cryo X-ray microscopy with high spatial resolution in ampli-
tude and phase contrast. Ultramicroscopy, 75(2):85-104, NOV 1998. ISSN
0304-3991. doi: 10.1016,/S0304-3991(98)00054-0.

G. Schneider, S. Heim, P. Guttmann, S. Rehbein, and B. Niemann. Novel
X-ray microscopes for 3-d and fs-imaging at BESSY. In Proceedings 8th
International Conference X-ray Microscopy, volume 7, pages 349-52, 2006.

G. Schneider, P. Guttmann, S. Heim, S. Rehbein, F. Mueller, K. Nagashima,
J. B. Heymann, W. G. Mueller, and J. G. McNally. Three-dimensional
cellular ultrastructure resolved by X-ray microscopy. Nature Methods, T(12):

985-U116, DEC 2010. ISSN 1548-7091. doi: 10.1038/NMETH.1533.

G. Schneider, P. Guttmann, S. Rehbein, S. Werner, and R. Follath. Cryo
X-ray microscope with flat sample geometry for correlative fluorescence and
nanoscale tomographic imaging. Journal of Structural Biology, 177(2):212—
223, FEB 2012. ISSN 1047-8477. doi: 10.1016/j.jsb.2011.12.023.



156

[85]

[86]

87]

|88

[89]

[90]

[91]

[92]

93]

BIBLIOGRAPHY

M. Selin, E. Fogelqvist, A. Holmberg, P. Guttmann, U. Vogt, and H. M.
Hertz. 3D simulation of the image formation in soft X-ray microscopes.
Optics Ezpress, 22(25):30756-30768, DEC 15 2014. ISSN 1094-4087. doi:
10.1364/OE.22.030756.

D. A. Shapiro, Y.-S. Yu, T. Tyliszczak, J. Cabana, R. Celestre, W. Chao,
K. Kaznatcheev, A. L. D. Kilcoyne, F. Maia, S. Marchesini, Y. S. Meng,
T. Warwick, L. L. Yang, and H. A. Padmore. Chemical composition mapping
with nanometre resolution by soft X-ray microscopy. Nature Photonics, 8
(10):765-769, OCT 2014. ISSN 1749-4885. doi: 10.1038/NPHOTON.2014.
207.

T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada,
A. Shiraki, N. Masuda, and T. Ito. Computational wave optics library for C
plus plus: CWo plus plus library. Computer Physics Communications, 183

(5):1124-1138, MAY 2012. ISSN 0010-4655. doi: 10.1016/j.cpc.2011.12.027.

M. Simpson and A. Michette. Imaging properties of modified fresnel zone
plates. Optica Acta, 31(4):403-413, 1984. ISSN 0030-3909.

A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler. A compound refractive
lens for focusing high-energy X-rays. Nature, 384(6604):49-51, NOV 7 1996.
ISSN 0028-0836. doi: 10.1038/384049a0.

A. Spith, J. Raabe, and R. H. Fink. Confocal soft X-ray scanning trans-
mission microscopy: setup, alignment procedure and limitations. Jour-
nal of Synchrotron Radiation, 22(1):113-118, Jan 2015. doi: 10.1107/
S1600577514022322.

H. Stiel, A. Dehlinger, K. A. Janulewicz, R. Jung, H. Legall, C. Pratsch,
C. Seim, and J. Tuemmler. Nanoscale imaging using coherent and incoherent
laboratory based soft x-ray sources. In Rocca, J and Menoni, C and Marconi,
M, editor, X-RAY LASERS 201/, volume 169 of Springer Proceedings in
Physics, pages 267-273, 2016. ISBN 978-3-319-19521-6; 978-3-319-19520-9.
doi: 10.1007/978-3-319-19521-6" _35.

G. Stroke and D. Falconer. Attainment of high resolutions in wavefront-
reconstruction imaging. Physics Letters, 13(4):306-309, 1964. doi: 10.1016/
0031-9163(64)90022-8.

G. W. Stroke. Lensless Fourier-transform method for optical holography.
Applied Physics Letters, 6(10):201-&, 1965. ISSN 0003-6951. doi: 10.1063/
1.1754131.



BIBLIOGRAPHY 157

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

J. Tuemmler, R. Jung, H. Stiel, P. V. Nickles, and W. Sandner. High-
repetition-rate chirped-pulse-amplification thin-disk laser system with joule-
level pulse energy. Optics Letters, 34(9):1378-1380, MAY 1 2009. ISSN
0146-9592.

J. Vanroey, J. Vanderdonk, and P. Lagasse. Beam-propagation method -
analysis and assessment. Journal of the Optical Society of America, T1(7):

803-810, 1981. ISSN 0030-3941. doi: 10.1364/JOSA.71.000803.

I. Vartiainen, C. Holzner, I. Mohacsi, P. Karvinen, A. Diaz, G. Pigino, and
C. David. Artifact characterization and reduction in scanning X-ray Zernike
phase contrast microscopy. Optics Express, 23(10):13278-13293, MAY 18
2015. ISSN 1094-4087. doi: 10.1364/0E.23.013278.

J. Vila-Comamala, K. Jefimovs, J. Raabe, T. Pilvi, R. H. Fink, M. Senoner,
A. Maassdorf, M. Ritala, and C. David. Advanced thin film technology for
ultrahigh resolution X-ray microscopy. Ultramicroscopy, 109(11):1360-1364,
OCT 2009. ISSN 0304-3991. doi: 10.1016/j.ultramic.2009.07.005.

L. Vincze, B. Vekemans, F. Brenker, G. Falkenberg, K. Rickers, A. Somo-
gvi, M. Kersten, and F. Adams. Three-dimensional trace element analysis
by confocal X-ray microfluorescence imaging. Analytical Chemistry, 76(22):

6786-6791, NOV 15 2004. ISSN 0003-2700. doi: 10.1021/ac0492741.

Y. Vladimirsky and H. Koops. Moire method and zone plate pattern in-
accuracies. Journal of Vacuum Science & Technology B, 6(6):2142-2146,
NOV-DEC 1988. ISSN 1071-1023. doi: 10.1116,/1.584103.

S. Vogt, H. Chapman, C. Jacobsen, and R. Medenwaldt. Dark field X-ray
microscopy: the effects of (:()ndenscr_;"detcctor aperture. Ultramicroscopy, 87

(1-2):25-44, MAR 2001. ISSN 0304-3991.

O. von Hofsten, M. Bertilson, M. Lindblom, A. Holmberg, and U. Vogt.
Compact Zernike phase contrast X-ray microscopy using a single-element

optic. Optics Letters, 33(9):932-934, May 2008. doi: 10.1364/0OL.33.000932.

E. H. Waller and G. von Freymann. Multi foci with diffraction limited
resolution. Opt. Erpress, 21(18):21708-21713, Sep 2013. doi: 10.1364/OE.
21.021708.

S. Werner, S. Rehbein, P. Guttmann, and G. Schneider. Three-dimensional
structured on-chip stacked zone plates for nanoscale X-ray imaging with high
efficiency. Nano Research, 7(4):528-535, APR 2014. ISSN 1998-0124. doi:
10.1007/s12274-014-0419-x.



158

[104]

[105]

[106]

[107]

[108]

[109]

BIBLIOGRAPHY

S. Wilhelm, B. Grébler, M. Gluch, and H. Heinz. Confocal Laser Scanning
Microscopy. Zeiss Jena, 2006.

G. J. Williams, E. Hanssen, A. G. Peele, M. A. Pfeifer, J. Clark, B. Abbey,
G. Cadenazzi, M. D. de Jonge, S. Vogt, L. Tilley, and K. A. Nugent. High-
resolution X-ray imaging of plasmodium falciparum-infected red blood cells.
Cytometry Part A, T3A(10):949-957, OCT 2008. ISSN 1552-4922. doi: 10.
1002 /cyto.a.20616.

J. Winthrop and C. Worthington. X-ray microscopy by successive Fourier
transformation.  Physics Letters, 15(2):124+, 1965.  doi: 10.1016/
0375-9601(65)90211-2.

H. Wolter. Spiegelsysteme streifenden Einfalls als abbildende Optiken fiir
Rontgenstrahlen. Annalen der Physik, 445(1-2):94-114, 1952. ISSN 1521-
3889. doi: 10.1002/andp.19524450108.

F. Wyrowski and O. Bryngdahl. Iterative fourier-transform algorithm ap-
plied to computer holography. Journal of the Optical Society of Amer-
ica A-optics Image Science and Vision, 5(7):1058-1065, July 1988. doi:
10.1364/JOSAA.5.001058.

F. Zernike. Das Phasenkontrastverfahren bei der mikroskopischen Beobach-
tung. Zeitschrift fiir Technische Physik, 16:454-457, 1935.



Appendix A

Propagators and Comments to the
Programming

A.1 Propagators

The different approximations presented in chapter 4 naturally lead to different im-
plementations. Here, some of the most often used implementations are introduced
and commented.

A.1.1 Angular Spectrum Method Based Propagators

The angular spectrum method is quite slow and awkward to use. But it does not
suffer from the paraxial approximation. It was therefore used to verify the results
of the other implementations.

For example, the iterations for the optimization of the diffractive optical el-
ements for the FTH-experiments use a propagator from the near and far field
approximation. The final binary mask was tested using the angular spectrum
method. Due to the size of a few hundred micrometers and the outermost struc-
ture width of fifty nanometers, this is already a challenging computation for a
desktop computer.

Commented Program

The matlab program on page 161 implements equation 3.2.
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1 OO0 (s ]
Ulzy, 91,2 = J/ / U [zo, Yo, %0
: 2 2 2
exp [’ﬁ-k \/(31 —20)" + (21 —20)” + (¥1 — o)

(21— 20)* + (21 — 20)* + (31 — %0)*

The following notations are used in the program.

(z1 - zo) : dzodyo

U1 is the discretised version of U [z, y, z1].
U0 is the discretised version of U [z, yo, 20]-
dx are the resolutions in both planes.
lambda is the wavelength.

d is the distance between both planes.

FOV_min is the minimal field of view which should be visible in the output
plane.

Line 1 contains the function header.

Line 2 defines the global variables scalfaktor, lambda and k .

Lines 3 to 6 initialize some constants.

Lines 7 and 9 compute the parameters for the partition of the input field, so that

the field of view has the correct size.

Line 10 defines the convolution kernel which corresponds to the red part

exp [3’ k \/(zl —20)> + (z1 — 20)* + (41 — 0)*

(Zl — 20)2 + ($1 — 180)2 + ('yl — ’9‘0)2

(21 — 20) -

Lines 11 and 12 initialize some constants and variables.

Lines 13 and 14 start the iteration over all sub-partitions of the input field.

Line 15 prints the current position onto the screen.

Line 16 uses a sub-routine to compute the current positions in the sub-partition.
Lines 17 to 19 determine the current sub-partition of the convolution kernel.
Line 20 cuts out the correct sub-partition of the transmission function.

Line 21 computes the resulting output field of the sub-partition by convolving the
product of the inbound illumination with the transmission function and using a
subroutine to compute the convolution of the result with the current propagation
kernel.

Line 22 updates the resulting output field.



A.l. PROPAGATORS 161

Implementation of the propagator for the angular spectrum
1. function [U1]=C20160102_Distributed_fft_ASM(U0,dx,d,lambdal,FOV_min)
2. global scalfaktor lambda k
3. lambda=lambdal;
4. k=2*pi/lambda;
D. scalfaktor=dx;
6. L=size(U0,1);
. W=ceil(((FOV_min)/dx));
8. N=2"round(log2(L/W));
9. W=L/N;

10. prop= @(ix,d) squeeze(d./(d.~2+ix(1,:,:).”2+ix(2,:,:).72).*...
exp(lixk*(sqrt(d. 2+ix(1,:,:) .7 2+ix(2,:,:).72))));

11. Ul=zeros(W);

12. 22=0;0ffset=0;

13. for VN=1:N

14. for VM=1:N

15. [vn,vv]

16. Out=(Ind2Kord((1-W):(2*W), (1-W) : (2%W) ,VN,VM,L, N, W));
17. Out(1,:,:)=rot90(squeeze(Out(l,:,:)),2);
18. Dut(2,:,:)=rot90(squeeze(0ut(2,:,:)),2);
19. propagat=(prop(Out,d));

20. Z2= UO(WH(VN-1)+(1:W) , Wk (VM-1)+(1:W));
21. Z1=Falter((Z2,propagat);

22. U1=(U1+Z1);

23. end

24. end

25. end
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Sub-functions for the propagator for the angular spectrum method.

1. function Out=Ind2Kord(IX,IY,IN,IM,L, N, W)

N

global scalfaktor lambda k

Out(1,:,:)=scalfaktor*(-(L+1)/2+(IN-1)*W+IX) ’*ones(1,size(IY,2));

p= oo

Out (2, :,:)=scalfaktor*ones(size(IX,2),1)*(-(L+1)/2+(IM-1)*W+IY);

end

(&1 ]

1. function K=Falter(A,B)

o

as=size(A);

bs=size(B);

i o

al=zeros((as+bs));

bil=zeros((as+bs));

(&2}

6. a1(1:as(1),1:as(2))=A;

~I

b1(1:bs(1),1:bs(2))=B;

8. al=ifft2(ifftshift(fftshift(££t2(b1)).*fftshift(£ft2(a1))))/. ..
((as(1)+bs(1))*(as(2)+bs(2)));

9. K=a1((floor(bs(1)/2)+1):(floor(bs(1)/2)+as(1)),...
(floor(bs(2)/2)+1) : (floor(bs(2)/2)+as(2)));

10. end

A.1.2 Fresnel Approximation Based Propagators
Commented Program

The program on the next page implements the equation (3.4).

explikz . x5+
Ulzi, 3,21 = %exp [zk 11_y;0 ]/ / U [z, Yo, 20]

2

) T5 + Yo ., T1ZTo + ylyoJ

exp |1k ——"<|exp |—-ik ———— | dzodyo.
p[ Q(Zl—zO)] p|: (21 — 20) °

The following notations are used in the program.
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Uz is the discretised version of U [z1, v, 21).
dz1/dz2 are the resolutions in the z; plane.
U0 is the discretised version of U [zg, Yo, 20)-
d1/d2 are the resolutions in the zg plane.
lambda is the wavelength.

z is the distance between the two planes.

Lines 1 to 4 contain the function name and a small explanation of the variable
names used.

Line 5 defines k as the wave number.

Lines 6 and 7 determine the dimensions (N1, N2) of the input field (Uz) along
direction one and two.

Lines 8 and 9 compute the resulting resolution of the output field. These resolu-
tions result from the definition of the fast Fourier transform.

Lines 10 to 16 generate two arrays which contain the index along direction one
and two. -

Line 17 implements the red part (U [Z0, Yo, 20]exp [i k %]) of the Fresnel ap-
proximation.

Line 18 computes first the Fourier transform of the red part and then multiplies the

s Vel 1 =1 - ‘ M 1 7;?%—'—?’:% 3 3 aval Al o« 1 at1
result with the blue part ( g XD [’sk 2 (eimz0) of the Fresnel approximation.

Implementation of the propagator for the Fresnel approximation.

1. function [Uz,dz1,dz2]=C20131217_FFTFresnel(U0,z,lambda,d1,d?2)

2. %FFT Fresnel propagator

3. % UO=input field, z=propagation distance, lambda=wavelength ,

4. % di= resolution along direction 1, d2=resolution along direction 2
5. k=2%pi/lambda;

6. Ni=size(U0,1);

. N2=size(U0,2);
8. dzi=lambda*z/(d1*N1);
9. dz2=lambda*z/(d2*N2);

10. UN1=-(ceil(N1/2+0.5)-1);
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11. ON1=(floor(N1/2+0.5)-1);

12. UN2=-(ceil(N2/2+0.5)-1);

13. 0ON2=(floor(N2/2+0.5)-1);

14. v1=(UN1:0N1);

15. v2=(unN2:0N2) ;

16. [Mesh1,Mesh2]=meshgrid(V1,V2);

17. U0=U0.*exp(1i*k/(2*z) .*((d1*Mesh1’) .~ 2+(d2*Mesh2’)."2));

18. Uz=exp(1i*k*z)/(li*lambda*z) .*exp(1lixk/(2%z)*. ..
((dz1*Mesh1’) .~2+(dz2*Mesh2’).~2) ) *d1*#d2.*. . .

fftshift (ft2(£ftshift(U0)));

19. end

Changes for Essentially Converging Fields

In the case that the input field produces an output field with much smaller ex-

tensions, it is more convenient to include a converging wave factor into the pro-

_zo g
2(z1—2p)

oscillating field which allows a coarser sampling of the input. For this field, equa-
tion (3.4) changes to

gramming. Setting Ud [z, Yo, 20] := U [z0o, Yo, 20| - €xp [i, k ] creates a slower

explikz ] 2 4 92
Ulzy,y1,z1] = LBXP [1k217@'1]

Tz (21 — 20)

/ / Ud [z, Yo, 20] €Xp [ i + ylyo] dzodyp.

(21 — 20)

This formula is implemented in the program on this page which is identical to the
program on the previous page except for the removal of line 17 and that

g
2(z1—20)

U0 is the discretised version of Ud [zo, Yo, 20] = U [0, Yo, 20] - exp [dc

Program for the Fresnel approximation for essentially converging fields.

function [Uz,dz1,dz2]=C20131217_FFTFresnel_slow(U0,z,lambda,d1l,d2)

[

%FFT Fresnel propagator for big input and small output

% UO=input field, z=propagation distance, lambda=wavelength ,

% di= resolution along direction 1, d2=resolution along direction 2
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o

k=2%pi/lambda;

o

Ni=size(U0,1);

|

N2=size (U0,2);
8. dzi=lambda*z/(d1%N1);
9. dz2=lambda*z/(d2*N2);
10. UN1=-(ceil(N1/2+0.5)-1);
11. ON1=(floor(N1/2+0.5)-1);
12. UN2=-(ceil(N2/2+0.5)-1);
13. ON2=(floor(N2/2+0.5)-1);
14. v1=(UN1:0N1);
15. v2=(UN2:0N2);
16. [Mesh1,Mesh2]=meshgrid(V1,V2);

17. Uz=exp(1ixk*z)/(li*lambda*z) .*exp(lixk/(2*z)*. ..
((dz1#*Mesh1?)."2+(dz2*Mesh2’).~2))*d1*d2.*. ..
fftshift (fft2(£ftshift(U0)));

18. end

Changes for Essentially Diverging Fields

In the case that the input field produces an output field with much larger dimen-
sions, it is more convenient to include a diverging wave factor into the program-
iy
2(z1—2p)
slower oscillating field which allows a coarser sampling of the output. For this

field, equation (3.4) changes to

[i k
Udlzi,n,z1] = eXI,Z;z z]f / U [zo, Yo, 2o]

exp l?; k Ml exp [_i k w] dzedyo.
2 (21 — 20) (21 — 20)

This formula is implemented in the program on the following page which is identical
to the program on page 163 except for a change in line 18 and that

ming. Setting Ud [z1,y1,21] = U[zy,y1,21] - exp[ ik ] creates a much

_zityf
2(21—=20)

Uz is the discretised version of Ud [z1,y1,21] = U [z1, 41, 21] - exp [ 1k
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12.
13.
14.
. V2=(UN2:0N2);
16.
17.
18.
19.
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Program for the Fresnel approximation for essentially diverging fields.

. function [Uz,dz1,dz2]=C20131217_FFTFresnel_slow_small_source(U0,z,lambda,d1,d2)

#/FFT Fresnel propagator for small input and a large output field
% UO=input field, z=propagation distance, lambda=wavelength |,

% dl= resolution along direction 1, d2=resolution along direction 2
k=2%pi/lambda;

Ni=size(U0,1);

[. N2=size(U0,2);

. dzl=lambda*z/(d1*N1) ;

. dz2=lambdax*z/(d2*N2) ;

. UN1=-(ceil(N1/2+0.5)-1);
11.

ON1=(floor (N1/2+0.5)-1);
UN2=-(ceil(N2/2+0.5)-1);
ON2=(floor (N2/2+0.5)-1);

V1=(UN1:0N1);

[Mesh1,Mesh2]=meshgrid(V1,V2);
U0=UO0.*exp(1i*k/(2*z) .*((d1*Mesh1’) .~2+(d2*Mesh2’) .72));
Uz=exp(1ixk*z)/(li*lambda*z)*d1*d2.*fftshift (fft2(£ftshift(U0)));

end

A.1.3 Near and Far Field Approximation Based Propaga-
tors

These propagators take the different dimensions of the input and the output field
into account. The resulting approximation of equation (2.6)

1 [® [* —zoexplikT
U [xlayl)zl] — J/ / U[Q:O’yO,zO] 4 4 p[ 01] dxodyo (:\1)

To1 To1

is therefore better suited for high numerical aperture optics, such as high resolution
soft X-ray Fresncl zone plates.

Since the formulas for the propagation differ depending on whether the input
or the output plane is larger, the implementations differ, too.
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First, the case that the input plane is much larger is considered.
The algorithm on the following page implements the formula

1 Cx? 4P
Ulzi,th,21] = aexp lzlezyl]

[

Tg Ys

] u = > 20| 3 7 7
R? \/1 _ 22 \/1 _ 2293 25— x5 — Y

i [_?; kw] g,
=

Here, z; and y, are the regular equidistant grid points used in the Fresnel propa-

gator.
The inverse formula is given by:

4 2 2 2
s Ys . z 25 —F; —Yg .
U , 32 = exp|—ik AU [z1,y1,2
\/1_ z2+y2 \/1_ z2+y2 0] p[ 22 — 72 —y2 z fnz o1, y1,21]
ZZ zz
2 2
T T T
i [_ﬂc( 12+y1 (= s+y]ys))]d$1dy].
z z

The following notations are used in the program on the next page.
Uz is the discretised version of U [z1,y1, 21].

dz1/dz2 are the resolutions in the z; plane.

UO is the discretised version of U [z = ——Z—,yo = ——%£—, 29
[1_x3+v2 [1_z2+u2
1—Zs1Us 1—Zs5tus

z z

Ud is a variable that stores an intermediate result.

d1/d2 are the resolutions in the 2o plane of the equidistant grid attached to
and ys.

lambda is the wavelength.
z is the distance between the two planes.

Lines 1 to 5 contain the function name and a small explanation of the variable
names used.

Line 6 defines k as the wave number.

Lines 7 and 8 determine the dimensions (N1, N2) of the mput field (Uz) along
directions one and two.
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Lines 9 and 10 compute the resulting resolutions of the output field. These reso-
lutions result from the definition of the fast Fourier transform.

Lines 11 to 17 generate two arrays which contain the index along directions one
and two.

: . o FEpTE T = 5 Ar
Line 18 defines the function myr := 5~ 5 vy exp [z k »z—-;__;g_y:;].
Line 19 implements the red part

Ys z - .
Z ~exp |ik

U [—=
) y <0 2 2
Ji-dgd fiodpd | # ooy
z z

of the approximation.
Line 20 computes at first the Fourier transform of the red part and then multiplies

2 2
the result hy the blue part (Zi/\ exp [z kx‘—;;y—l]) of the near field approximation.

Program for the near field approximation.

. function [Uz,dz1,dz2]=NFFA_Taylor (UO,z,lambda,dl,d2)

. % NFFA FFT Fresnel Propagator size of U0 >>Uz

% UO=Field in z0 ,z=Propagation distance ,lambda=wavelength ,

. % d1= resolution in z0 plane first direction ,d2=resolution in z0 plane second

direction

. % '!1The Sampling of U0 is no longer equidistant!! !
k=2xpi/lambda;

. Ni=size(U0,1);
N2=size(U0,2);
dzl=lambda*z/(d1#N1) ;
dz2=1ambdax*z/(d2*N2) ;
UN1=-(ceil(N1/2+0.5)-1);
ON1=(floor(N1/2+0.5)-1);
UN2=-(ceil(N2/2+0.5)-1);
ON2=(floor (N2/2+0.5)-1);
V1=(UN1:0N1);

V2=(UN2:0N2) ;



A.1. PROPAGATORS 169

17. [Mesh1,Mesh2]=meshgrid(V1,V2);

18. myr=e(x,y,z)...
(z./(z.72-x.72-y.72)) .xexp(1ixk.*sqrt ((z.74./(2.72-x.72-y."2))));

19. Ud=U0.*myr (d1*Mesh1’,d2*Mesh2’,z);

20. Uz=1/(1i*lambda) .*exp(1i*k*(dz1*Meshl’ . 2+dz2*Mesh2’.72)./(2%z))...
*d1*d2. *fftshift (fft2(fftshift(Ud)));

21. end

Changes for Essentially Converging Fields

For the near field approximation, only the case of an essentially converging field
is needed. The field is again separated into a fast oscillating converging field and
a slowly varying modification

Ud [zo, Yo, 20] = U [0, Yo, 20] - exp [ﬁk \/(21 — 2‘0)2 g '9‘3] :
From /22 + 22 + 42 = 1/%, 1t follows

-4
Ud [130;@‘0:2‘0] =U [539;’9'0} zo] - eXp [3 k —] .

2 __ 2 o2
z €Ty s

Therefore, in the new program A.1.3 in line 19, the red part is reduced to

vd |——= LI :

: 3 3 <)
e - 2 _ p2 42
¢1 _ Tg';y.g J]. o -Tﬁ-;’.f,@ z mg ys

Program for the near field approximation for an essentially converging
field.

1. function [Uz,dz1,dz2]=NFFA_Taylor slow(U0,z,lambda,d1,d2)

g

% NFFA FFT Fresnel Propagator size of U0 >>Uz

% UO0=Field in z0 ,z=Propagation distance ,lambda=wavelength ,

% d1= resolution in z0 plane first direction ,d2=resolution in z0 plane second direction

9. % The Sampling of U0 is no longer equidistant!!!

o

k=2%pi/lambda;
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7. N1=size(U0,1);

2

N2=size(U0,2);

<o

. dzl=lambda*z/(d1*N1);

10. dz2=lambda*z/(d2*N2);

11. UN1=(ceil(N1/240.5)-1);

12. ON1=(floor(N1/2+0.5)-1);

13. UN2=-(ceil(N2/240.5)-1);

14. ON2=(floor(N2/2+0.5)-1);

15. V1=(UN1:0N1);

16. V2=(UN2:0N2);

17. [Mesh1,Mesh2]=meshgrid(V1,V2);
18. myr=@(xy.2) (z./(z." 2-x."2-y."2));
19. Ud=U0.*myr(d1*Mesh1’,d2* Mesh?2' z);

20. Uz=1/(1li*lambda).*exp(li*k*(dz1*Mesh1'.”2+dz2*Mesh2'.2)./(2*z))...
*d1#d2. *ffishift(ffe2(fFeshift(Ud))):

21. end

The case that the input plane is much smaller than the output plane is
considered.
The algorithm on the facing page implements the formula

U [z [zs,Ys) , 41 [@s, ¥s) , 21)

1 24 22 —x2 — 2
o ik s s
xor [ 2 —al- y3] ( 23 )
x2 + 92 TeTo +
/R U [z, 4o, 20)] exp [z LOTZ%] exp {—z’ k"fyy"] dzodye.

Here, zg and y, are the regular equidistant grid points used in the Fresnel propa-
gator.
The inverse formula is given by:

. 2m i + Y3
U [‘TO) Yo, ZO)] = A exp [_ZTWCE_OT:U_O] / U [:Bl [.’L's, ys] ¥ [‘TS, ys] ) 21]
p4 R2

g 2T TsTo + YsYo Z
————— | exp ’LT — > dz.dys.

2 _ p2 __ g2 2 _ p2
< Ts Ys < < o Ys
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The following notations are used in program on the current page.

Uz is the discretised versionof U |z = —%—, 9 = —& .
/ T3 gD | T
1_-"-‘s+ys Yo Ts+Us

z F-4

dz1/dz2 are the resolutions in the z; plane of the equidistant grid attached to z
respectively ys.

U0 is the discretised version of U [zg, yo, 20].
d1/d2 are the resolutions in the zy plane.
lambda is the wavelength.

Lines 1 to 5 contain the function name and a small explanation of the variable
names.

Line 6 defines k as the wave number.

Lines 7 and 8 determine the dimensions (N1, N2) of the input field (Uz) along
directions one and two.

Lines 9 and 10 compute the resulting resolutions of the output field. These reso-
lutions result from the definition of the fast Fourier transform.

Lines 11 to 17 generate two arrays which contain the index along directions one
and two.

Line 18 defines the function myr := exp [?, k = (zz_mg_yg )

z2—z?—y2 | z3

Line 19 implements the red part

o2 27
(U [0, Yo, 20)] exp lik%Tm )

of the approximation.
Line 20 computes at first the Fourier transform of the red part and then multiplies

the result by the blue part (1 exp [’sk z4_y2 (32_mg_yg)) of the far field

i 222 z3

approximation.

Program for the far field approximation.

1. function [Uz,dz1,dz2]=NFFA_Taylor small input(U0,z,lambda,d1,d2)

o

% NFFA FFT Fresnel Propagator size of U0 << Uz

% UO=Field in z0 ,z=Propagation distance ,lambda=wavelength ,

% d1= resolution in z0 plane first direction ,d2=resolution in z0 plane second direction
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9. % WThe Sampling of Uz is no longer equidistant!!!

6. k=2*pi/lambda;

=I

N1=size(U0,1);

8. N2=size(U0,2);

=)

. dzi=lambda*z/(d1*N1);

10. dz2=lambda*z/(d2*N2);

11. UN1=-(ceil(N1/2+0.5)-1);

12. ON1=(floor(N1/2+0.5)-1);

13. UN2=-(ceil(N2/2+0.5)-1);

14. ON2=(floor(N2/2+0.5)-1);

15. V1=(UNL:ON1);

16. V2=(UN2:0N2);

17. [Mesh1,Mesh2]=meshgrid(V1,V2);

18. myr=0(xy.z) ...
((z.72-x."2-y."2)./(z." 3)) . *exp(Li*k-*sqrt((z. " 4./(z." 2-x. " 2-y."2))));

19. Ud=U0 *exp(Li*k*((d1*Mesh1'). "2+ (d2*Mesh2'). ~2/(2*2)));

20. Uz=1/(li*lambda) *myr(dz1*Mesh1',Mesh2' 2*z)* ..
d1*d2. *fftshift(FFe2(fshift (Ud))):

21. end

Changes for Essentially Diverging Fields
For the far field approximation, only the case of an essentially diverging field is
needed.
The ficld is again separated into a fast oscillating conv erging field and a slow l\

varying modification Ud [z1, Y1, 21] = U [z1,y1, 21]-exp { —ik \/ (21 — 20)% 22 + 92

From \/z2 +z?+y? = \/zz_ﬁ;s_—yz, it follows Ud[z1,%,21] = U [z1, 1, 2] -
d 4
exp |:—'L k\/r;g_—yg
Therefore, in the new program A.1.3 in lines 18 and 20, the blue part is reduced
to
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12°—a5—y;
i\ 23
Program for the far field approximation for a diverging field.

1. function [Uz,dz1,dz2]=NFFA_Taylor small input_slow(U0,z,lambda,d1,d2)

o

%% NFFA FFT Fresnel Propagator size of U0 << Uz

% UO=Field in z0 ,z=Propagation distance ,lambda=wavelength ,

% d1= resolution in z0 plane first direction ,d2=resolution in z0 plane second direction
9. % WThe Sampling of Uz is no longer equidistant!!!

6. k=2*pi/lambda;

7. Nl=size(U0,1);

8. N2=size(U0,2);

9. dzl=lambda*z/(d1*N1);

10. dz2=lambda*z/(d2*N2);

11. UN1=-(ceil(N1/2+0.5)-1);

12. ON1=(floor(N1/2+0.5)-1);

13. UN2=-(ceil(N2/2+0.5)-1);

14. ON2=(floor(N2/2+0.5)-1);

15. V1=(UN1:ON1);

16. V2=(UN2:0N2);

17. [Meshl ,Mesh2]=meshgrid(V1,V2);

18. myr=0(x,y,z) ((z."2-x."2-y."2)./(z."3));

19. Ud=U0.*exp(1i*k*((d1*Meshl')."2+(d2*Mesh2').~2/(2*z)));

20. Uz=1/(li*lambda).*myr(dz1*Mesh1l' Mesh2'2*z)...
*d1*d2 *ffeshift(ffe2(fftshift(Ud)));

21. end

A.2 Scope of the Propagators

The above described propagators all include some approximations. Therefore, it
is essential to be aware of the innate limits of each propagator.
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A.2.1 Angular Spectrum Method Based Propagators

The angular spectrum method based propagator uses the scalar wave approxima-
tion and the approximation that the field is well described by a single value per
pixel.

Thercfore, if cither the polarization of the wave is important or the dimensions
of a pixel is chosen to be too large, the propagator fails to approximate the real
field.

Three significant drawbacks make this propagator unsuited for most of the
computations done in this work. Firstly, it is not directly invertible. This is
a scrious problem for algorithms, that have to iterate between an input and an
output plane. Secondly, the discretization has to be chosen equal in both the
input and the output plane. Thirdly, the computation time and memory usage
scale faster with the size of the problem than it does for other propagators.

A.2.2 Fresnel Approximation Based Propagators

These propagators use the scalar wave approximation assuming that the field is well
described by a single value per pixel and that the field is essentially concentrated
in a small region around the optical axis.

As with the angular spectrum method, if either the polarization of the wave is
important or the dimensions of a pixel is chosen to be too large, the propagators
fail to approximate the real field. Additionally, there is now a limit on the axial
spread of the field and the minimal distance between input and output plancs.
This limits the use of this type of propagators to low numerical apertures.

Nevertheless, the discretization in the input and output plane is no longer
cqual but related by an equation to the resolution, dimensions and distance of the
other plane. In some cases, it is possible to increase the discretization of one of
the planes by using an advantagcous geometry such as essentially converging or
diverging fields.

The Fresnel approximation is a good approximation if the following conditions
arc true.

e Polarization is not important, for example, for unpolarized light sources and
homogeneous isotropic non-attenuating mediums of propagation.

e The distance (701) between two points in the input and output planes in
cquation A.l

1 Jrs = 21 — zpexplikr
U ["Elayl, Zl] = J/ / U [1,‘0, Yo, Zo] ! Usd! [ 01] dil?odyo
—00 —00

To1 To1
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is well approximated by the second order Taylor approximation of the square
root. This condition is deduced from the third term of the fourth order Taylor
approximation of the square root

(z, — 270)2 + (h — 90)2 . ((371 - 370)2 + (. — 90)2)2

2 (21 — 20) 8(z — 29)3

Tor =~ (Z] — 20) +

The first two orders are already sufficiently good if

((371 — 370)2 + (ph — 90)2)2

_ak 1
exp |—1i 8 (o1 — 70’
2
B 1 ((z1 — z0)” + (1 3— yo)Q) &
8 (21 — 20)
Li + L)
(RS
and
2
(2 — 20) - (@1 — z0)” + (1 — 50)* - ((x1 — 20)? + (31 — %)?)
1 2 (31 = Zo) 8 (31 o zD)S

—> (21 —20) > (L1+ Lo) > |z1 — zo| + |y1 — w0l

Here, L, and Lo are the maximal, radial distances to the optical axis in the
input and output planes respectively.

The errors due to the discretization also produce small artifacts.

For simplicity, a quadratic grid is assumed.

Let Azg and Az, be the discretization step sizes in the input and output
planes respectively, and N the number of pixels along one dimension, then
the following conditions arise:

— The discretization in either the input or output plane introduces a dis-
cretization in the other plane due to the properties of the fast Fourier
transform. Therefore, one obtains

%
AzoN = A—z.

I

— Since L; = Az;N/2 and Ly = AxyN/2, the minimal distance z = z;—2zg

also depends on the discretization.
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Starting with the discretization Az; of either the input or the output
field, one gets

k(Ll +Lo)* " N* (Azy + Axo)*
8 o 128
4
=k = % 2P
128

Expanding the fourth exponent of this expression vields the following
conditions that must also be true:

4
. k(2 T 128\ (Az;)?
* 1o ( Azi) < 5 which implies z <« 5> ( = ) :

3
* (;) % (Z/la:{) 2Az;N < 2* which implies

32 Az}

N<<21t/\2.

2
. (4 k N 7] A2 %) R I ‘o 12mAN? vl
x (5) (Ari) z° (Az;N)” <« z° which implies “557— & z or equiv-

alently
8 =z
N < __i
VB VA
. N Bl ] . (Az; N 4
x* The last condition is k ( 1w23 ) <Lz

A.2.3 Near and Far Field Approximation Based Propaga-
tors

The near and far field approximation based propagators rely on three conditions,
namely that the scalar wave approximation holds, that the field is well described
by a single value per pixel and that the fields are essentially concentrated in either
the input or output plane to a small region around the optical axis.

As in the previous methods, if either the polarization of the wave is important
or the dimensions of a pixel is chosen to be too large, the propagators fail to
approximate the real field. Again, there is a limit on the minimal distance between
the input and output planes.

Nevertheless, the discretizations in the input and output planes are no longer
equal but instead related by an equation involving the resolution, dimensions and
distance to the other plane. In some cases, it is possible to increase the discretiza-
tion of one of the planes by using an advantageous geometry such as essentially
converging or diverging fields. These propagators are not limited to low numerical
apertures!
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These approximations are good approximations if the following conditions are
true.

For the near field approximation:

e The distance (rg;) between two points in the input and output planes in
equation A.1

21 — 2o exp [i kTo1)

1 (s 4] (s o]
U[mlayhzl] = J/- / U [370)3}0,»30] ror Tor dzydyy

is well approximated by the near field approximation of the square root
(7‘01 ~/2+ V1 + h). The function h is given by:

z2 + 92 B 2 (z120 + ¥1%0)
2+zp+yd 2+ Te+yl
(sf+1d<=") 22442 2(z120 +1 %0)

~ S

2 2
P R

h =

The condition for this is deduced from the third term of the fourth order
Taylor approximation of the square root of /1 + h. The Taylor expansion

of v/1+ h yields

h h?
1+h = 14+—-— —— ...
+ +2 3

h
~ 1+ —.
+2

The first order is already sufficiently good if

5
exp[—zkg\zﬁi—mg-l-yg]
—ik (224 v2 — 2(x129 — 2
— exp 3 (21 39‘12 (21 022y1y0)) \zz2+x§+y§ ~ L
(22 + x5 + y5)

Which is valid if

k (23 + 97 — 2 (2120 — ylyﬂ))2
8y/(22 + 23 + 13)°
5 )

9 (2 L% —4 L1L0)4 LISSLU

64

< 1

k

k24 (LiLo)* < (2% +2L2)°.
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e The errors due to the discretization also produce small artifacts.
For simplicity, a quadratic grid is assumed.
Let Az and Az, be the discretization step sizes of the regular grid in the
input and output planes respectively, and N be the number of pixels along
one dimension. Then the following conditions arise.
Since the grid in the input plane is no longer equidistant but rather de-

termined by xo = ——=— and yo = Ys _ the conditions for the dis-
’ T T st
l_zs‘Hls 1—Z54Ys
Zi Zz
cretization are a bit more complicated.

— The regular discretization in either the input or output plane introduces
a regular discretization in the other plane due to the properties of the
fast Fourier transform. Therefore, one obtains:

Az
AzgN = —.
0 A.’L‘l
— Since Ly = Az;N/2 and Ly = LN , the minimal dis-

1- (A'QN/Q)QE(A!«) N/2)2
z

tance z = 27 — 2o also depends on the discretization.
Starting with the output discretization Azy, one obtains

4 4
ki:</\—z> /128 <« 23

8 Azo
= z K 128(A/\$40)4
and
4 (L L) <« (+202)°
— i < 2

64 1+2%;)_2), (1 — 9 (ng)?)z

- Azxy

For the far field approximation:

e The distance (rp;) between two points in the input and output plane in
equation A.l

1L i e 2 —zpexplikr
U [(El,yl, Zl] — —/ / U [mO) Yo, ZO] 1 0 p [ 01] dxodyo
—00

A J_o To1 To1
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is well approximated by the far field approximation of the square root
(?”31 422+ 22+ yivV1+ h) .

The function h is here given by:

:B{Q] + yg B 2 (3313:0 @ ylyo)
Z+zityl Ao+l
(m%+gi<(z?) :Bg + ‘yg B 2 ($1${] -+ ylyﬂ)

™l
2 Piaty

h =

The condition for this is deduced from the third term of the fourth order
Taylor approximation of the square root of /1 + h. The Taylor expansion

of v1+ h yields

h h?
1+h = 14+—-— — ...
+ +2 3

h
~ 1+ —.
+2

The first order is already sufficiently good if
h2
exp [—ikg\/zQ + 22 + yf]
. k 2 2 9 . 2
— exp 1k (75 + % (2120 291'9‘0)) \/ 22+ Z2+12| = 1.
. (22 +af +97)

This results in the following conditions

(23 + y3 — 2 (z120 — Y130))’

k < 1
8y/(2 + 22 +2)°
L4
— kgo < 2°
Q2. A GiFlo)
k2( 0 64 1 D) Long k24 (L1L0)4 < (,2,2 S 2L§)3 ‘

e The errors due to the discretization also produce small artifacts.
For simplicity, a quadratic grid is assumed.
Let Azg and Az; be the discretization step sizes of the regular grid in the
input and output planes respectively, and N be the number of pixels along
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one dimension. Then the following conditions arise:
Since the grid in the input plane is no longer cquidistant but rather de-
termined by 1 = —f—and y; = —, the conditions for the dis-

1—Z5tVs 1—Zstvs
22 22

cretization are a bit more complicated.

— The regular discretization in either the input or output plane introduces
a regular discretization in the other plane due to the properties of the
fast Fourier transform. Therefore, one obtains

Az
AzgN = —.
. A.’L‘l
— Since Ly = Az N/2 and Lo = AzgN/2, the minimal and

1 (Az1N/2)2+(Av1 N/2)2
T

maximal allowable distance z = z; — 2p also depends on the discretiza-
tion.
Starting with the output discretization Azg, one obtains

L Xz \* %

A 4
—% G 128%

and

K4 (L Le)* <« (2 +213)°
k2N .

3 e < 2%
1 _ A
- (1 v (4)) (1 2 () )

A.2.4 Examples

The following examples were used to verify that the approximations were working.
They also show some of the weaknesses of the algorithms (A.2).
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(a) Cut through the peak

Figure A.1:
algorithms.
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(b) Cut through the peak

Gaussian beams are propagated to their waist by the presented
Cuts of the resulting intensities through the peak for a waist of

20nm, 100 nm and 1 pum are compared. The parameters of the propagation are
A = 2.4nm, distance between planes z = 0.5m, discretization in focal plane
Ax = 6nm and a field of view edge length of 2000 pzl = 12 ym. For the simula-
tion in (b), a partition into a slowly oscillating function and a converging wave

was used.

In both cases the algorithms yield almost identical results to the theoretical pre-

diction.



182APPENDIX A. PROPAGATORS AND COMMENTS TO THE PROGRAMMING

(@) Intensity of the reconstruction
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(b) Phase of the slowly varying function

Figure A.2: For the left image in (a), a homogeneous white square on a black
background was back-propagated with the Fresnel propagator and the resulting
field forward propagated with the angular spectrum method.

For the right image, the same white square was back-propagated with the NFFA
propagator and the resulting field was again forward propagated with the angular
spectrum method.

Since in both cases, the version of the code that eliminates the fast oscillating con-
verging parts of the wave were used, an additional interpolation step interpolates
the data on a finer grid and includes the fast oscillating term before the ASM is
applied.

The left image in (b) is the phase of the slowly varying function created by the
back-propagation with the Fresnel propagator and the right image is the phase
produced by the NFFA propagator.
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Figure A.3: Panel (a) shows the dependency of the distance ro; [zo, Yo; 1, v1] on
the position of the points of interested in the two planes. The blue (dashed) and
red dots mark the positions used for estimating the maximal positioning errors. If
the field of view is in one plane much larger than in the other, then the larger plane
dominates the approximation errors of the distance in the Fresnel approximation.
Panel (b) shows a comparison of the approximation error plotted over the distance
between the two planes in units of the bigger plane. The smaller plane is here fifty
times smaller than the bigger one. Both graphs show the quotient of the error of
the Fresnel approximation divided by the error of the NFFA. The points (xg, yo)
and (zy,y;) are chosen in such a way that they represent extremal cases for both
approximations. The graphs in (¢) and (d) show the errors of the approximated
distance (equation (3.3) and equation (3.5)) in units of the wavelength over the
propagation distance (compare also figure 3.2). In (c¢) the size of the input plane
is a square of 100 pm and is discretized by 512 x 512 points. In (d) the size of the
input plane is 400 pm at the same discretization.
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Appendix B

Simulation of the Transmission and
Confocal Microscope

Here, the basis for the numerical analysis of the optical system is the Rayleigh-
Sommerfeld diffraction formula for the propagation of monochromatic waves in a
homogeneous medium. With this formula the propagation between two planes is
given by equation (3.1)

—zpexplikr
U[zl,yl,zl] = /\/ / U[zmymzo] - p[ 01] dzodyyo.

To1

As previously deduced, the Fresnel approximation (3.4) can be used for faster
computation in the case of small numerical apertures

exp [tk (21 — 20)] . 1Z (B.1)
Ulz o~ exp |[th ————| - :
[ lyylazl] 'l,)\ (21 . Zo) P 2 Z1 _ ZO
(o] o0
+ . %1%0 +
/ / U [zo, Yo, 20] exp ik 1:0 o 1 ol gt dzodyo.
_ z1 - 20 1 — ZO

This formula can be nested and also generalized to approximate the propagation
in an inhomogencous medium.

These two features allow the analysis of the transmission X-ray microscope
and the confocal transmission X-ray microscope. The numerical analysis for both
systems uscs similar ideas since the gencral setup of both is similar. Both use
two lenses of which the first one produces the illumination for the sample and the
second one images the sample. See also figure B.1. Next, we deal with the details
of the imaging process.

185
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Figure B.1: Coordinates used for the simulation. The second row shows the
simplifications.

B.1 Theoretical Background of the Simulation

In this section, the imaging process in an X-ray transmission microscope (TXM)
is studied. The assumptions include again the paraxial approximation. Like a
confocal microscope, the TXM contains a condenser which focuses the incoming
radiation onto the sample and the imaging Fresnel zone plate. Although the exact
setup in the experiment varies, we assume here that the condenser is essentially
an annular lens with relatively low numerical aperture. The imaging Fresnel zone
plate is simulated by an ordinary lens. These approximations are sufficiently good
for a comparison between TXM and confocal XM. This is due to the fact that
the condenser usually produces a hollow cone illumination. All but one order of
diffraction of the Fresnel zone plate is therefore suppressed on the detector since
the detector is located in the geometric shadow of those orders. Starting again
from equation (B.1), the two optics are studied separately.

Firstly, the condenser is considered. Its shape and size in combination with
the features of the source of radiation introduce a certain degree of coherence into
the imaging process. For the following considerations, the source is assumed to
consist of a finite amount of independent point sources. This approximation can
be applied to radiation from synchrotrons or plasma based X-ray sources.

Secondly, the imaging Fresnel zone plate is considered. Due to the geometry of
most X-ray microscopes, it suffices to assume its imaging properties to be identical
to those of an ordinary (refractive) thin lens. The objects studied in an X-ray
microscope are typically weakly scattering so that the first Born approximation is
usable.

The propagation through the optical system is here split into three segments.
The propagation from the source through the condenser to the start face of the
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sample and the propagation from the end face of the sample through the imaging
lens to the detector can be described by a nesting of free space propagations
and modifications by transmission functions that are restricted to a thin plane.
Therefore, the Rayleigh-Sommerfeld diffraction integral can be directly applied to
these segments. The problematic segment is the propagation through the sample
since equation (B.1) is only valid for a homogeneous medium. Since the field
propagates essentially in the forward direction, the method presented in the next
paragraph is a good approximation.

For this method, the sample is separated into z-slices. The propagation through
a slice is separated into a propagation through a homogeneous medium and a
perturbation due to the inhomogeneity of the slice. The propagation is done by
taking the field at the position before the slice and propagating it in free space to
the plane of the second optic. From there, it is back propagated to the end of the
slice. The inhomogeneities are assumed to create a perturbation of the resulting
field similar to the one a plane wave would experience.

B.1.1 Mathematical Formulation of the Simulation

. . min m
Let the sample have a z dimension from zg ) to zg

into z-slices of thickness Az;. A point in the starting face of the n
therefore the form

%) The sample is separated
th slice has

(xg,yg,zémm) +(n—1) Azg) :
The end face of the n' slice contains points of the form

(min

(xg,yg, 2 ) + nAzg,) )

The ansatz for the homogeneous propagation is to do a forward propagation to
the lens in the plane z; = 0 followed by a back-propagation to the plane zémm) +
nlAzz. The distance between the planes 23 = 0 and z4 = 0 is day.

The resulting perturbations by the inhomogeneities are approximated by

Tzémin)+nAzg [z3,y3] = exp [?, k (—5 [273,3;3, zémm) + nAzg]

+EE [$3: Ys, z.‘gmm} + rn'Az3:|) AzS] 3

where 6 and S are the averaged & and B values of a voxel.

For the numerical implementations, all variables have to be discrete. Let N, x N,
be the size of the discrete field U. The discrete FFT based propagators correlate
the resolution (Azy, Ay,) in the z4 plane to the resolution (Axén)? Aygn)) in the

zéﬂ') - zémm) + nAzz plane via
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A (24 — zgn))

Aad®
3 Az;- N,
A (24 — zémm) — nAz;;,)
- Az N,
and .
- A (z4 — 2™ nAzS)
Ay’ =

Ay4 L Ny

Thercfore, the resolution along the z axis in the sample changes.
Also, the forward propagators used for the simulation factorize the ficld U-[z4, Y4, 24]
into a fast oscillating diverging wave and a slowly varying rest.

2 2

- = 3 Ty t+y

A [334,3/4124] — USZJ) [$4ay4,z4]'exp ik : h
9 ( _ (n—l))

24 23

The back-propagation step is a bit shorter. Therefore, the slowly oscillating part
has to be modified by

UG, (w4, v, 24] (B.2)

" . 1 1 :1:2 B 2
Us(Z:ywl) [%4,Y4, 24] - exp lzk ( v (n)) 4 : Yi
24 — ZS Z4 p— 23

The resulting back-propagated field is modified by sz) to approximately include
the perturbation due to the inhomogeneity in the optical properties of the slice.
The computation of ng.) from a phantom is also quite intensive on the com-
putational side.
The phantom consists in our case of a sct of five tuples. The first three entries
contain the position of a dot while the fourth and fifth entry contain the delta and
beta values for 510eV respectively 310eV.

phantom [n] = (2,7, 2, 0s10ev + iBs10ev, I310ev + 1B310eV)

Each five tuple represents a small randomly chosen sub volume of the structure of

the sample. Let 23 be so that the sub-tuple (z = 0, y = 0, 2 = 0) of the phantom is

(n—1) (n

located in (23 =0, y3 =0, 23 = 23). The z-slice from 23 t0 23 Jincludes then all
(n—-1)

tuples in the phantom which have a third entry between 23 7 —23 < 2 < zén) 2
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. : - ; 1 :
For the confocal microscope, the minimal value for zé ) depends on the scanning
T _ . o oo (min) (maz)
range. Let Zgegn = (—m : n) - Azgeqn be the scanning range and D naiconas Zsitinn
be respectively the minimal and maximal z component of the phantom. Then,

(1) * (min) : 4 T o r (mazx) o s

23" = =M Azsean + 23 + Zppaniom a0d the maximal value for 23 results from
(maz) * (max)

23 =n AzSCﬂm + Z3 i zphantom‘

(mu,z)_ (1)
The number (N,) of z-slices is then % rounded up.
(1,

(maz)

For the transmission microscope, the limits 23 * and 23 depend only on the
parameters of the phantom.
1 * (min)
23 = 23 + zphamom
(maz) * (maz)
23 = 23 P zpha.mom

For sparse objects, it can be convenient to group propagations of empty slices
together to reduce the number of Fourier transforms and lighten the computational
load.

These 7z dimensions also influence the minimal size of the discrete field in the
plane zgl). Due to the numerical aperture (NA) of the lens, the borders of the field
contain some erroneous data after the back propagation. To reduce this effect, a
sufficiently large padding is included. To estimate the size of the padding, it is
assumed that the errors propagate with the same angular spread as the opening
angle of the lens. The minimal dimension is

dg'™ = NAx2 (z:(,,mm) — zémm) +(n+m+1)- Azmﬂ) + FOV. (B.3)

For faster computations, it is good to change the way the phantom is stored.
If the step sizes Azgqn and Az are chosen such that Az divides Azgean, the
phantom can conveniently be stored as a structured array. The indexing of the
structured array corresponds then to a Azsz binning. This saves computational
time since the points for each slice are already in one bin. This is also true for the
TXM simulation.

For the confocal system, the use of a structured array allows using the index
of the array as a loop controlling variable.

Here, two different types of illumination in the TXM are considered. The
former U41 beamline at the Helmholtz Zentrum Berlin used a moving condenser
to illuminate the full sample. The direct image of the source is in this setup small
in relation to the field of view.

Another example is the TXM at the TU-Berlin (BLIX) which uses a relatively
large incoherent source.

In order to approximate the illumination for the second case, a series of illumi-
nation profiles is computed from a series of random source profiles. Each resulting



190 APPENDIX B. SIMULATION OF TXM AND CTXM

(a) natural contrast, xz-slice (b) only absorption contrast (c) only phase contrast 8 = 0,
6 = 0, xz-slice xz-slice

(e) only absorption contrast

& = 0, xy-slice (f) only phase contrast g =0,

xy-slice

(d) natural contrast, xy-slice

Figure B.2: The upper row (a-c) of images shows confocal images at A = 2.4nm
of some 10nm spheres with the density of cellular membranes. The effects of
absorption and phase shift are quite different, and are shown in (b) and (c). Due
to the asymmetry in the resolution, the images are squeezed in the direction of the
optical axis by a factor of three. The field of view is 400 nm high and 1.8 pm long.
In the second row (d-f), images of 3nm spheres are shown. The field of view
is 400nm x 400nm. The central row of dots are in the focal plane, while in
the upper and lower row the dots are situated in planes 10 nm, 20 nm, 40 nm and
80 nm away from the focal plane.

In both cases, the two lenses have matching numerical apertures of NA ~ 0.21.

illumination is propagated through the sample and the resulting intensities are
accumulated in the plane of the detector.

In order to approximate the illumination for the first case, a series of illumi-
nation profiles is computed from a series of random condenser positions. Each
resulting illumination is propagated through the sample and the resulting intensi-
ties are accumulated in the plane of the detector.

Again, the fact that the first two propagation distances do not satisfy the lens
law leads to a multiplicative factor.

The random condenser positions are simulated by propagating an off-axis Gaus-
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(a) xy cut (b) xy cut (c) xy cut
natural contrast only absorption contrast § = 0 only phase contrast 8 =0

Figure B.3: TXM based tomographic reconstruction of a similar phantom as in
B.2 a-c. The phantom consists of some 10nm spheres. The lens has a numerical
aperture of NA =~ 0.21. The effects of absorption and phase shift are quite different
and are shown in (b) and (c).

sian beam profile through the lens which contains also a small shift, i.e., if the
Gaussian beam in plane 2z; is centered at z1 = Z, y1» = ¥, then the condenser is
also centered at z2 = x, y» = y. Also, the image is centered at 3 = z, y3 = .
Therefore, the resulting pattern can be approximated by a laterally shifted image
of a centered source at (zy,y;) = (0,0). Again, multiple sources can be put into
one run and different runs change the position of the sources and their relative
phase.

B.2 Implementation

B.2.1 Implementation of the Confocal Microscopy Simula-
tion

The following matlab code was used to generate the raw data for the image in

figure B.2. The implementation follows the theoretical description in section §B.1.

Some of the sub routines used are not included but have already been presented

in appendix A.

Commented Program

The following parameters are used.

lambda, the wavelength, here 2.4nm.
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(a) Confocal STXM image xy (b) Partially coherent TXM image xy

Figure B.4: Comparison of the imaging performance of a confocal STXM and
a partially coherent TXM. The images show four spheres. Each sphere has a
diameter of 300 nm and simulates a 4 nm thick cellular membrane. They are
separated in depth by 300 nm. (See also figure 5.4)

For the confocal simulation (a) and for the TXM simulation (b), a 10 nm FZP
objective in combination with a 40 nm FZP condenser was used.

Vol per dot is a parameter for the generation of the phantom. It defines the
volume that is represented by one point of the phantom.

dol do2 do3 do4 are the distances respectively between the source, condenser,
in focus plane, FZP objective and the detector.

r12_mi11 r12 max r34_min r34 max are the outer and inner radii of the
optics.

xs ys zs are arrays that define the points that are scanned.

dxs dys dzs are the distances between neighboring points.
For Example zs=-30:30 and dzs=30e-9 yields a z scanning range of -900nm
to 900 nm in 30 nm steps.

dz is the z resolution used for the full coherent propagation through the sample.
The following variables are used.

scanedImage is used to store the intensities for each position of the scan. Thus
it represents the confocal image of the sample.

Raw Phantom is the randomized representation of the phantom. The first
three entries contain the position and the fourth and fifth the optical density
of each “dot”.

Lines 1 to 2 contain the function name and a small explanation of the aim of the
program.
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Lines 3 to 31 contain definitions of parameters and initialization of deduced con-
stants or variables.

Lines 32 to 33 and lines 114 to 141 initialize the phantom.

Lines 34 to 38 initialize deduced constants or variables.

Lines 39 to 48 sort the phantom into bins for faster numerical evaluation in the
propagation loop.

Lines 49 to 70 initialize the parameters for the field of view. This includes a
padding which reduces the artifacts introduced at the border as described in equa-
tion (B.3).

Lines 71 to 74 control the loop over all points in the confocal image.

Lines 75 to 82 generate the inbound coherent illumination

Lines 83 and 103 control the propagation loop for one point in the confocal image.
Lines 84 to 93 propagate the current scalar field to the end of the current slice. For
computational efficiency, empty slices are grouped together. It is the discretized
version of equation (B.2).

Lines 94 to 102 compute the optical density of the phantom and allow for the
modification of the field introduced by the phantom.

Line 104 propagates the field to the second optic.

Lines 105 to 107 modify the field by the transmission function of the second optic.
Line 108 propagates the field to the detector.

Line 109 stores the resulting signal in the array “scanedlmage”.

1. function Confocl_microscope

b2

% simulates the confocal microscope

‘W Parameters

lambda=2.4e-9; % wavelength

o

% parameters of the phantom
Vol_per_dot=8e-27; % Volume per dot
% parameters of the optics:

do1=9.67522;

= g W oo

% Distance to focus [m]

10. do2=371E-6/2;

11. % Diameter of first optic [m]
12. r12_min=40E-6/4;

13. ri12_max=40E-6;
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% Distance second optic to CCD (do4) [m] and focal length

. £2=370E-6/2; % focal length

do4=1.9;

% Diameter of second optic [m]
r34_min=0;%40E-6/2;
r34_max=40E-6;

% scanning range of the confocal microscope
(a constant step size is assumed!)

xs=-20:20;
ys=0:0;

zs=-30:30;

4. dxs=10e-9;
. dys=20e-9;
). dzs=30e-9;

. % scanning resolution in the simulation along the z direction

(Attention, other resolutions follow from the other parameters!)
dz=dzs/4;

%% Initializing

k=2xpi/lambda;
scanedImage=zeros(size(xs,2),size(ys,2),size(zs,2));

%% Initializing the phantom
[Raw_Phantom,Vol_per_dot]=DOTGENERATOR_V2(Vol_per_dot);

zmin=min(Raw_Phantom(3,:));

. zmax=max (Raw_Phantom(3,:));

36.

%% Changing it to an adapted struc-array:
mycount=0;
DOTS.DOTS=[]

for my_z=floor(zmin/dz):floor(zmax/dz) % Sorting the dots into fitting bins
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mycount=mycount+1;

. DOTS(mycount) .DOTS=...Raw_Phantom(...

: ,find (and (Raw_Phantom(3, : )>=dz*my_z ,Raw_Phantom(3, : ) <(dz* (my_z)+dz)))) ;

. DOTS(mycount) .z=my_z*dz;

3. if isempty( DOTS(mycount) .DOTS)

DOTS(mycount) .isfull=0;
else

DOTS(mycount) .isfull=1;

. end

. end

. %% Initializing the FOV

. fl=dol*do2/(do1+do2);

. do3=do4x*f2/(dod-£2);

. % Computing the minimal size of U that can be used for the simulation

. NA_max=max(r12_max/do2,r34_max/do3); % Maximum of the two numerical apertures

4. min_dim=NA_max*2*(zmax-zmin+(zs(end)-zs(1))*dzs)+...

max ((xs(end) -xs(1))*dxs, (ys(end) -ys(1))*dys); %Minimal dimensions of the starting
field

. myz_start=do2+zmin+dzs*min(zs) ;

. d2=lambda*myz_start/(min_dim) ;

N=2*ceil ((1.2*r12_max/d2));

. % resulting resolution in plane 3

. d3=lambda*myz_start/(d2*N) ;

. d2_1=d42;
. d2_2=d2;
. UN1=-(ceil(N1/2+0.5)-1);

. ON1=(floor(N1/2+0.5)-1);
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UN2=- (ceil (N2/2+0.5)-1);

ON2=(floor (N2/2+0.5)-1) ;

. V1=(UN1:0N1);

. V2=(UN2:0N2) ;

[Mesh1,Mesh2]=meshgrid (V1,V2);

. %% Propagation through the sliced medium

. for my_ind_z=1:size(zs,2)

3. for my_ind_x=1:size(xs,2)

. for my_ind_y=1:size(ys,2)

. % propagation from start to start of phantom

). U=exp(-1i*k*((d2_1*Mesh1’)."2+(d2_2*Mesh2’)."2)...

L*+(1/(2%(do2)) -1/ (2*myz_start)));

. U(((d2_1*Mesh1’)."2+(d2_2*Mesh2’) .~ 2)<r12_min~2)=0;

. U(((d2_1*Mesh1?)."2+(d2_2*Mesh2’) .~2)>r12_max~2)=0;

[U,d3_1,d3_2]=C20131217_FFTFresnel_slow(U,do2+do3-myz_start,lambda,d2_1,d2_2);

. z_last=myz_start;

. % Header: (converging)

% [Uz,dz1,dz2]=C20131217_FFTFresnel_slow(U0,z,lambda,d1,d2)
for my_z_ind=1:size(DOTS,2)

% computing the current slice

. if DOTS(my_z_ind) .isfull==

80.

[(U,d4_1,d4_2]=C20131217_FFTFresnel_slow_small_source(...
U,do2+do3-z_last,lambda,d3_1,d3_2);

% Header: (diverging)
% [Uz,dz1,dz2]=C20131217_FFTFresnel_slow_small_source(U0,z,lambda,d1,d2)

U=U. *exp (1i*k*((d4_1*Mesh1’).~2+(d4_2*Mesh2’).~2).*(1/(2*(do2+do3-z_last)) ...
-1/ (2% (do2+do3- (do2+zs(my_ind_z) *dzs+DOTS(my_z_ind) .2)))));

z_last=do2+zs(my_ind_z)*dzs+DOTS(my_z_ind) .z;
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91. [U,d3_1,d3_2]=C20131217_IFFTFresnel_slow_small_source(. ..
U,do2+do3- (do2+zs (my_ind_z)*dzs+D0TS(my_z_ind) .z) ,lambda,d4_1,d4_2);
92. % Header:
93. % [U0,d1,d2]=C20131217_IFFTFresnel_slow_small_source(Uz,z,lambda,dzl,dz2)
94. zwDOTS=DOTS(my_z_ind) .DOTS;
95. % Removing the points outside the FQV

96. zwDOTS=zwDOTS(: ,and (round((zwDOTS(1, :)+xs(my_ind_x)*dxs)/d3_1+N1/2+1)>0...
sround( (zwDOTS (1, : )+xs (my_ind_x)*dxs) /d3_1)<N1/2));

97. zwDOTS=zwDOTS(: ,and (round ((zwDOTS(2, :)+ys(my_ind_y)*dys) /d3_2+N2/2+1)>0. ..
;round((zwDOTS (2, : ) +ys(my_ind_y) *dys) /d3_2)<N2/2)) ;

98. T=accumarray(. ..
{[1 N1 (round((zwDOTS(1,:)+xs(my_ind_x)*dxs)/d3_1)+N1/2+1)],...
[1 N2 round((zwDOTS(2,:)+ys(my_ind_y)*dys)/d3_2)+N2/2+1]1},...
[0 0 zwDOTS(4,:)1);
99. Tvol=accumarray(...
{[1 N1 (round((zwDOTS(1,:)+xs(my_ind_x)*dxs)/d3_1)+N1/2+1)],...
[1 N2 round((zwDOTS(2,:)+ys(my_ind_y)=*dys)/d3_2)+N2/2+1]1},. ..
[0 0 ones(size(zwDOTS(4,:)))]1);
100. T=(Vol_per_dot/(d3_1*d3_2%dz))*T./(max(1,Vol_per_dot*Tvol/(d3_1*d3_2*dz)));
101. U=U.*exp(1i*k*T*dz) ;
102. end

103. end
104. [U,d4_1,d4_2]=C20131217_FFTFresnel_slow_small_source(...
U,do2+do3-z_last,lambda,d3_1,d3_2);

105. U=U.*exp(1i*k*((d4_1%Mesh1?’) .~2+(d4_2+Mesh2’)."2)...
.*(1/(2*(do2+do3-z_last))-1/(2*do3))) ;

106. U(((d4_1*Meshl’).~2+(d4_2+*Mesh2’).~2)<r34_min~2)=0;
107. U(((d4_1*Meshl?’) . 2+(d4_2*Mesh2’).~2)>r34_max~2)=0;
108. [U5,d5_1,d5_2]1=C20131217_FFIFresnel_slow(U,do4,lambda,d4_1,d4_2);

109. scanedImage(my_ind_x,my_ind_y,my_ind_z)=
sum(sum(abs (U5 (end/2+1+(-2:2) ,end/2+1+(-2:2))).72));

110. end
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end

end

end

function [DOTS,Vdis]=DOTGENERATOR_V2(Vdis)

% Generates Point object (DOTS) [size(DOTS)=b5xN] 1=x,2=y,3=z,4=optical
% properties at 520eV b=optical properties at 310eV
Vdis=Vdis;%dx*dy*dz/16; %"Volume" of one dot

DOTS=[];

%% Generating a sphere of radius rz and with middle hsmx,hsmy,hsmz
Tt T o o olo o o oo o oo oo ot oot o

% Sets of hollow spheres ¥

ToltsTo o o oto o o oo oo oot oot o

% Center

hsmx=[0 100e-9 0 -100e-9 -100e-9 ];

hsmy=[ 0 0 15e-9 0 0];

hsmz=[-500e-9 500e-9 500e-9 200e-9 -200e-9];

%outer Radius

hsrco=[10 10 10 10 10]*10°-9;

%inner Radius

hsrci=0*hsrco;% optional

% optical density (membranes)

hsdoc=(-0.000909493479+ 1i*0.000211989463) *ones (size(hsrco));
hsdoc310=(-0.00186587463+ 1i*0.00114491396)*ones (size(hsrco));
Ndis=ceil(4/3*pi*(hsrco. 3-hsrci.”3)./Vdis);
mysphere=0(r,vphi,vpsi,hsmx,hsmy,hsmz,hsdoc,hsdoc310) [...
r.*cos(vphi) . *cos(vpsi)+hsmx;. ..

r.*(sin(vphi) .*cos(vpsi))+hsmy;. ..

r.*(sin(vpsi))+hsmz; hsdoc*ones(size(vphi));hsdoc310*ones(size(vphi))];

% adding the sphere to the dots:
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137. for myi=1:size(hsmx,2)

138. DOTS=[DOTS mysphere(...
(((hsrco(myi)~3-hsrci(myi)~3).*rand(1,Ndis(myi)))+hsrci(myi)~3).~(1/3),...
2*pi*rand(1,Ndis(myi)),asin(2*rand(1,Ndis(myi))-1),...
hsmx (myi) ,hsmy (myi) ,hsmz(myi) ,hsdoc(myi) ,hsdoc310(myi))];

139. end
140. end

B.2.2 Implementation of the Incoherent Microscopy Simu-
lation

The following matlab code was used to generate the raw data for the incoherent
examples. The implementation is based on the incoherent point spread function
of a regular refractive lens. This approximation is reasonable, since the number of
zones of the Fresnel zone plate is large (=100). A numerical comparison between
the focal spot of the Fresnel zone plate and its refractive counterpart showed very
little difference. The comparison was done by evaluating a formula given in [5]
and a formula given in [30].
The main steps of the program have already been described in section 4.2.1.

Algorithm

1. function Incoherent_TXM

o

%% Initializing Phantom:
% x ray

z=620;% length

y=620;% height

o

x=620;% width

=1

% Resolution [m]
8. % x-ray

9. dz=5%10"-9;

10. dy=5%10"-9;

11. dx=5%10~-9;

12. Vol_per_dot=8e-27;
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. lambdal=2.4%10."-9;% wavelength x-ray
. k1=2*pi ./lambdai;

. % Tomogram properties

. myangle=-90:90;

. %% Start PSF1

. k=ki;

. lambda=lambdal;

. f=370E-6;

. dod4=1.9;

. do3=do4*f/(do4-1);

. raussen=(44.391)*10."-6;

. rinnen=0;

myInt=@(r,z,x1,y1,x3,y3) exp(-1./2.*1i.*k.*r."2.*z./(do3.*(d03-2))) .*2.*pi.*r.

*besselj (0, ...
(k.*r.*sqrt ((-x1-(x3%(do3-2z))/do4) .2 +(-y1-(y3*(do3-2z))/dod)."2 )./(do3-2)));

. [X3,Y3]=meshgrid((-100:1:100)*dy, (-100:1:100) *dx) ;

. figure(2)

PSF1=[]

. for myzdist=-floor(z/2):1:ceil(z/2)
. disp(myzdist)
. %subplot(9,1,5+myzdist)

. g=integral(@(r) myInt(r,myzdist*dz,0,0,X3.*(do4/(do3-myzdist*dz)),...

Y3.*(do4/(do3-myzdist*dz))) ,rinnen,raussen,’ArrayValued’,true) ;%

. % Plot(X3(101,:),abs(q(101,:))."2,’color’, [(ceil(z/(2))+myzdist)/(2*ceil(z/(2)))

(ceil(z/(2))-myzdist)/(2xceil(z/(2))) 0.5])

. % title(num2str (myzdist))
. % drawnow
. if max(size(PSF1))<1

. PSFl=zeros(1,size(q,1),size(q,2));
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PSF1(1,:,:)=abs(q)."2;
myind=1;

else

myind=myind+1;
PSF1(myind,:,:)=abs(q)."2;
end

end
PSF1=PSF1/sum(sum(sum(PSF1)));

[DOTS,~]1=DOTGENERATOR(Vol_per_dot) ;

. DOTS(1,:)=DOTS(1, :)+x*dx/2;

. DOTS(2, :)=DOTS(2, :)+y*dy/2;

. DOTS(3, :)=DOTS(3, : ) +z*dz/2;

. for myang=1:size(myangle,2)}, start tomographic projections
. disp(myangle(myang))

. projA=zeros(x,y);

%% Rotationsmatrix+Translation x=> y=A*x+t und dx=> dy=Ax*dy

. % al bl cl1 t1

. % a2 b2 c2 t2

% a3 b3 c3 t3

%0001

. Rot=@(phi,psi,t1,t2,t3) [cos(phi),sin(phi) O O;-sin(phi),cos(phi) 0 O ;...

0010; 000 1]x[1,0 0 0;0,cos(psi),sin(psi), 0 ;0 -sin(psi) cos(psi) 0; O

0 O e

*[1 0 0t1;0 10 t2;00 1 t3;0 0 0 1];

centerofrot=[0.5; 0.5; 0.5; 0].*[x; y; z; 0]; %(defines the center of rotation)
translationv=[0 0 0];% (in [nm])

rotscaler=[dx; dy; dz; 1];

rotationv=[0 2*pi*myangle(myang)/360 ]1; % in [rad]
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4. fixpM=((Rot(rotationv(1l),rotationv(2),translationv(l),translationv(2),...

translationv(3))*(-centerofrot.*rotscaler)))+centerofrot.*rotscaler;

. vDOTS=DQOTS;

. vex=DOTS(1,:);

. vey=DOTS(2,:);

. vcz=DOTS(3,:);

. ve= [vex;vey;vez;ones(size(vez))];

. ve=((Rot(rotationv(l) ,rotationv(2),translationv(1l),translationv(2),...

translationv(3))*vc)+fixpM*ones(1l,size(vc,2)));
vDOTS(1:3,:)=vc(1:3,:);
vDOTS (1, :)=ceil (vDOTS(1,:)/dx);

vDOTS(2, :)=ceil (vDOTS(2,:)/dy) ;

74. vDOTS(3, :)=ceil (vDOTS(3,:)/dz);

~I ~I
o o

=~
=~

zD0TS=find (and (vDOTS(1,:)>0,vDOTS(1,:)<(x+1)));

vDOTS=vDOTS(:,zDOTS) ;

. zDOTS=find (and (vDOTS(2, :)>0,vDOTS(2, :)<(y+1)));

bvDOTS=vDOTS(:,zDOTS) ;

o AT T T T T Tt oo o T T To To o o o o o T T To o 1o o oo T T Yo 1 o

. % SIMULATING THE ABSORPTION IMAGE OF THE ROTATED OBJECT

o Tt T T T ToTo oo o oo e T To To o o o o o o T To 1o o oo o T T o 1 o

. for my_big_z=1:100:z %coarse z-steps

3. zDOTS=find (and (bvDOTS(3, :)>my_big_z-1,bvDOTS(3, :)<my_big_z+100));
4. vDOTS=bvDOTS(:,zDOTS) ;

. for myz=my_big z:min(z,my_big_z+99)% start fine steps

. try

. mySlice=ones(size(projA));

. zDOTS=£find (vDOTS(3, : )==myz) ;

. mySlice=mySlice+(accumarray({[1 y vDOTS(2,zD0TS)],[1 x vDOTS(1,zDOTS)]},...

[0 0 vDOTS(4,zD0TS)]))/(Vol_per_dot/(dx*dy*dz)) ;
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. projA=projA+mySlice;

. catch err

. Yerror’

. rethrow(err);

. end

N YN AN YN YNNI YA A

). % DO IMAGING IN TXM MODE %

AN Y Y YN N YN A NN SYYY AN AA

. if or(any (zDOTS"=0) ,or (myz=2z,myz==1))
. try

. if myz=1

. Bild=zeros(size(mySlice));

. multBild=ones(size(Bild));

3. NBild=Bild; % Stores flatimage
. mumean=mean (mean(mySlice));

. Bild=Bild+Falter(-1+real(exp((1i*2*pi*dz/lambdal)*1i*imag(mySlice)))."2,...

abs(squeeze(PSF1(myz,:,:))));
mygrSlice=mumean*ones(size(mySlice)+size(squeeze(PSF1(myz,:,:))));

mygrSlice(floor(size(PSF1,2)/2)+(1:size(mySlice,1)),...
floor(size(PSF1,3)/2)+(1:size(mySlice,1)))=mySlice;

mygrSlice=Falter(real (exp((1i*2*pi*dz/lambdal)*1i*imag(mygrSlice)))."2,...
(size(PSF1,2)+size(mygrSlice,1))*(size(PSF1,3)+size(mygrSlice,2))*...
abs(squeeze(PSF1(myz,:,:)))/(sum(sum(abs(squeeze (PSF1(myz,:,:)))))));

multBild=multBild...

.*mygrSlice(floor(size(PSF1,2)/2)+(1:size(mySlice,1)),...
floor(size(PSF1,3)/2)+(1:size(mySlice,1)));

NBild=NBild+Falter (ones(size(NBild)) ,abs(squeeze(PSF1(myz,:,:))))/size(PSF1,1);

else

mygrSlice(floor(size(PSF1,2)/2)+(1:size(mySlice,1)),...
floor(size(PSF1,3)/2)+(1:size(mySlice,1)))=mySlice;
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113. Bild=Bild+Falter(-1+real(exp((1i*2%pi*dz/lambdal)*1i*imag(mySlice)))."2,. ..
abs (squeeze (PSF1(myz,:,:))));
114. mygrSlice=Falter(real (exp((1i*2%pi*dz/lambdal)*1i*imag(mygrSlice)))."2,...
(size(PSF1,2)+size(mygrSlice,1))*(size(PSF1,3)+size(mygrSlice,2)) *. ..
abs (squeeze (PSF1(myz,:,:)))/(sum(sum(abs (squeeze (PSF1(myz,:,:)))))));

115. multBild=multBild.*mygrSlice(floor(size(PSF1,2)/2)+(1:size(mySlice,1)),...
floor(size(PSF1,3)/2)+(1:size(mySlice,1)));

116. NBild=NBild+Falter(ones(size(NBild)) ,abs(squeeze(PSF1(myz,:,:))))/size(PSF1,1);
117. end

118. if myz==z

119. if myang==1

120. %initializing

121. Bildser=zeros(size(mySlice,1),size(mySlice,2),size(myangle,2));
122. Bildser2=Bildser;

123. Bildsermult=Bildser;

124. Bildproj=Bildser;

125. end

126. Bildser(:,:,myang)=(NBild+Bild)./NBild;

127. Bildsermult(:,:,myang)=multBild;

128. Bildproj(:,:,myang)=real (exp((1i*2%pi*dz/lambdal)*1i*imag(projA))). 2;
129. end

130. catch err

131. ’error’

132. rethrow(err)

133. end

134. end

135. end % singel z-step

136. end Y% coarse z-steps

137. end
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138. %% Results:
139. Result_of_additive_approach=(Bildser/(max(Bildser(:))));
140. Result_of_multiplicative_approach=single(Bildsermult/(max(Bildsermult(:))));

141. Result_of_projection=single( Bildproj/(max( Bildproj(:))));

142. end

143. function K=Falter(A,B)

144. ¥, fft-convolution operator of size: size(A)
145. as=size(A);

146. if size(B,1)>2*size(4,1)

147. mycut=floor((size(B,1)-2*size(A,1))/2);
148. B=B((mycut+1): (end-mycut),:);

149. end

150. if size(B,2)>2*size(A,2)

151. mycut=floor((size(B,2)-2*size(A,2))/2);
152. B=B(:,(mycut+1) : (end-mycut)) ;

153. end

154. bs=size(B);

155. ail=zeros((as+bs));

156. bi=zeros((as+bs));

157. a1(1:as(1),1:as(2))=A;

158. b1(1:bs(1),1:bs(2))=B;

159. al=ifft2(ifftshift(fftshift(£fft2(b1)) . .*fftshift(fft2(a1))))/...
((as(1)+bs(1))*(as(2)+bs(2)));

160. K=a1((floor(bs(1)/2)+1): (floor(bs(1)/2)+as(1)),...
(floor(bs(2)/2)+1) : (floor(bs(2) /2)+as(2)));

161. end
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Examples

In figure B.5 the effect of under sampling and defocus on the tomographic recon-
struction is studied. Figure 4.7 shows that the incoherent simulation matches key
features of the experimental data but ignores some effects like the asymmetry of
the defocusing effects.

B.2.3 Implementation of the Partially Coherent Microscopy
Simulation

The following matlab code was used to generate the raw data for the image in

figure B.3. The implementation is similar to the one for the confocal microscope.

It follows the theoretical description in section §B.1. Again, some of the sub

routines used are not included but have already been presented in appendix A or
are identical to the ones in section B.2.1.

Algorithm

1. function partial_coheren_TXM

o

% simulates the transmission microscope

W Parameters

lambda=2.4e-9; % wavelength

% dimensions of the phantom

> o

Vol_per_dot=8e-27; % Volume per dot
/. , parameters of the optics:
8. r12_min=40E-6/8;
9. r12_max=40E-6/2;
10. £1=370E-6/2; % used to be f
11. doi=(1.85)*f1;
12. do2=3*f1;
13. % Diameter of first optic [m]
14. r12_min=40E-6/4;
15. r12_max=40E-6;

16. % Distance to second optic (do3) and second optic to CCD (do4) [m]
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£2=370E-6/2; % used to be f

do4=1.9;

% Diameter of second optic [m]
r34_min=0;%40E-6/2;

r34_max=40E-6;

% FOV of the transmission microscope
x_FOV=1600e-9;

y_FOV=1600e-9;

dz=(30e-9) /4;

% covered angles

myangle=-90:90;

%% Initalizing

k=2%pi/lambda;

%% Initializing the phantom
[Raw_Phantom,Vol_per_dot]=DOTGENERATOR_V2(Vol_per_dot);
H20doc=(-0.000511537655+1i*2.0818954E-05) ;
for myang=1:size(myangle,2)

New_Phantom=Raw_Phantom;

. disp(myangle (myang))
36.
37.

%% Rotating the phantom

Rot=@(phi,psi,t1,t2,t3) [cos(phi),sin(phi) 0 0;-sin(phi),cos(phi) 0 0 ;0 0 1
0; 000 1]...

*[1,0 0 0;0,cos(psi),sin(psi), 0 ;0 -sin(psi) cos(psi) 0; 0 0 0 1]1*[1 0 0 t1;0
10t2;001 t3;00 0 1];

centerofrot=[0; 0; 0; 0];

translationv=[0 0 0];% (in [nm])

rotscaler=[1;1;1;1];%[dx; dy; dz; 1];

rotationv=[0 2*pi*myangle(myang)/360 ]1; % in [rad]
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42. fixpM=((Rot(rotationv(1l),rotationv(2),translationv(1),translationv(2),...
translationv(3))*(-centerofrot.*rotscaler)))+centerofrot.*rotscaler;

43. vcx=New_Phantom(1,:);
44. vcy=New_Phantom(2,:);
45. vcz=New_Phantom(3,:);
46. vc= [vex;vey;vez;ones(size(vez))];

47. ve=((Rot(rotationv(l) ,rotationv(2),translationv(1),translationv(2),...
translationv(3))*vc)+fixpM*ones(1l,size(vc,2)));

48. New_Phantom(1:3,:)=vc(1:3,:);

49. %% Changing it to an adapted struc array:
50. zmin=min(New_Phantom(3,:));

51. zmax=max (New_Phantom(3,:));

52. mycount=0;

53. try

94. clear (’DOTS’)

55. catch

56. end

57. DOTS.DOTS=[];

58. for my_z=floor(zmin/dz):floor(zmax/dz) % Sorting the DOTS into fitting bins
59. mycount=mycount+1;

60. DOTS(mycount) .DOTS=New_Phantom(: ,find(and(New_Phantom(3,:)>=dz+my_z, ...
New_Phantom(3, :)<(dz*(my_z)+dz))));

61. DOTS(mycount) .z=my_z*dz;

62. if isempty( DOTS(mycount) .DOTS)
63. DOTS(mycount) .isfull=0;

64. else

65. DOTS(mycount) .isfull=1;

66. end

67. end
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68. if myang==1

69. %% Initializing the illumination

70. f1=dol1*do2/(do1+do2);

71. do3=do4x£2/(do4-£2) ;

72. % Computing the minimal size of U that can be used for the simulation

73. NA_max=max(ri2_max/do2,r34_max/do3); % Maximum of the two numerical apertures

74. min_dim=NA_max*2% (zmax-zmin)+max (x_FOV,y_FOV); %Minimal dimensions of the starting
field

D. myz_start=do2+zmin;

=1
o

d2=lambda*myz_start/(min_dim) ;

. N=2%ceil ((2*r12_max/d2));

78. % resulting resolution in the planes 3 and 1
79. di=lambda*doil/(N*d2);

80. d1_1=d1;

81. d1_2=d1;

82. d3=lambda*myz_start/(d2x*N) ;

83. % Generating the inbound wavefront
84. W1=N;

85. N2=N;

86. d2_1=d2;

87. d2_2=d2;

88. UN1=-(ceil(N1/2+0.5)-1);

89. ON1=(floor(N1/2+0.5)-1);

90. UN2=-(ceil(N2/2+0.5)-1);

91. ON2=(floor(N2/2+0.5)-1);

92. Vv1=(UN1:0N1);

93. v2=(UN2:0N2);

94. [Mesh1,Mesh2]=meshgrid(V1,V2);
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100.
101.
102.
103.
104.
105.
106.
107.
108.
109.

110.
111.
112.
113.
114.
115.
116.
117.
118.

119.

120.

95. end

96. Image_on_ccd=[];

97. Image_on_ccd_sans_obj=[];

98. %% Propagation through the sliced medium

99. tic
Ubar=0;
U=exp(-((d1_1*Mesh1’).~2+(d1_2*Mesh2’)."2) .*(1/(do1/do2*(x_FOV/2*y_FOV/2))));
projA=ones(size(U));
tic
for my_num_of_illum=1:1000
U=exp(-((d1_1*Mesh1’) .~ 2+(d1_2*Mesh2’)."2) .*(1/(do1/do2*(x_FOV/2*xy_FOV/2))));
U=(U/8>rand (size(U))) .*exp(1i*pi*2*rand(size(U)));
Ubar=U+Ubar;
[U,d2_1,d2_2]1=C20131217_FFTFresnel_slow_small_source(U,dol,lambda,d1_1,d1_2);

U=U.*exp(-1i*xk*((d2_1*Mesh1’)."2+(d2_2*Mesh2’).72).*...
(1/(2%(do2)) -1/ (2*myz_start)));

U(((d2_1*Mesh1’).~2+(d2_2*Mesh2’) .~2)<r12_min~2)=0;

U(((d2_1*Mesh1’) ."2+(d2_2*Mesh2’) .~2)>r12_max~2)=0;
[U,d3_1,d3_2]1=C20131217_FFTFresnel_slow(U,myz_start,lambda,d2_1,d2_2);
% Header: (converging)

z_last=myz_start;

for my_z_ind=1:size(DOTS,2)

if my_z_ind==

% normalizes the illumination

[Un,d4_1,d4_2]1=C20131217_FFTFresnel_slow_small_source(U,...
do2+do3-z_last,lambda,d3_1,d3_2);

Un=Un.*exp(1ixk*((d4_1*Mesh1’) .~ 2+(d4_2+*Mesh2’).72) .*. ..
(1/ (2% (do2+do3-z_last) )-1/(2*do3)));

Un(((d4_1*Mesh1’) .~ 2+(d4_2*Mesh2’)."2)<r34_min"2)=0;
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. Un(((d4_1x*Meshl1’) .~ 2+(d4_2*Mesh2’)."2)>r34_max~2)=0;

[Un,d5_1,d5_2]1=C20131217_FFTFresnel_slow(Un,do4,lambda,d4_1,d4_2);

. end
4. % computing the current slice

. if or(DOTS(my_z_ind).isfull==1,D0TS(min(size(DOTS,2) ,my_z_ind+1)).isfull==1)

[U,d4_1,d4_2]=C20131217_FFTFresnel_slow_small_source(U,...
do2+do3-z_last,lambda,d3_1,d3_2);

% Header: (diverging)
% [Uz,dz1,dz2]=C20131217_FFTFresnel_slow_small_source(U0,z,lambda,dl,d2)

U=U.*exp(1ixk*((d4_1*Meshl’) .~ 2+(d4_2*Mesh2’).72)...
.*(1/(2%(do2+do3-z_last))-1/(2*(do2+do3-(do2+D0TS (my_z_ind) .z)))));

z_last=do2+D0TS (my_z_ind) .z;

[U,d3_1,d3_2]=C20131217_IFFTFresnel_slow_small_source(U,...
do2+do3-(do2+D0TS (my_z_ind) .z) ,lambda,d4_1,d4_2);

% Header:

% [U0,d1,d2]=C20131217_IFFTFresnel_slow_small_source(Uz,z,lambda,dzl,d=z2)
zwDOTS=DOTS (my_z_ind) .DOTS;

% Removing the points outside the FOV

zwD0TS=zwDOTS( : , and (round ( (zwDOTS(1,:))/d3_1+N1/2+1)>0,...
round ((zwDOTS(1,:))/d3_1)<N1/2));

zwD0TS=zwDOTS( : , and (round ( (zwDOTS(2, :)) /d3_2+N2/2+1)>0, ...
round((zwDOTS(2,:))/d3_2)<N2/2));

try

T=accumarray(. . .

{[1 N1 (round((zwDOTS(1,:))/d3_1)+N1/2+1)],...
[1 N2 round((zwDOTS(2,:))/d3_2)+N2/2+1]},...
[0 0 zwDOTS(4,:)1);

Tvol=accumarray(. ..

{[1 N1 (round((zwDOTS(1,:))/d3_1)+Ni/2+1)],...
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[1 N2 round((zwDOTS(2,:))/d3_2)+N2/2+11},. ..

[0 0 ones(size(zwDOTS(4,:)))1);
T=(Vol_per_dot/(d3_1*d3_2+dz))*T./(max(1,Vol_per_dot*Tvol/(d3_1*d3_2xdz)));
catch

’error’

end

. U=U.*exp(1ixk*T*dz) ;

. projA=real (projA.*abs(exp(1i*k*Txdz)));
. end

4. end

. [U,d4_1,d4_2]=...

C20131217_FFTFresnel_slow_small_source(U,do2+do3-z_last,lambda,d3_1,d3_2);

. U=U.xexp(li*k*...

((d4_1*Meshl1’) . 2+(d4_2*Mesh2’) ."2) .*(1/(2%(do2+do3-z_last))-1/(2%do3))) ;

7. U(((d4_1*Meshl’) . 2+(d4_2*Mesh2’) ."2)<r34_min~2)=0;

. U(((d4_1#*Meshl’) . 2+(d4_2+*Mesh2’) ."2)>r34_max~2)=0;

[U5,d5_1,d5_2]=C20131217_FFTFresnel_slow(U,do4,lambda,d4_1,d4_2);
if isempty(Image_on_ccd)

Image_on_ccd=abs(U5.72);
Image_on_ccd_sans_obj=abs(Un."2);

else

Image_on_ccd=Image_on_ccd+abs(U5.72);
Image_on_ccd_sans_obj=Image_on_ccd_sans_obj+abs(Un.~2);
end

end

toc

if myang==1

Image_series(:,:,myang)=Image_on_ccd;
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Image_proj(:,:,myang)=proji;
Image_series_I(:,:,myang)=Image_on_ccd_sans_obj;
else

Image_series(:,:,myang)=Image_on_ccd;
Image_proj(:,:,myang)=projA;

Image_series_I(:,:,myang)=Image_on_ccd_sans_obj;

. end

. end

). T tototoToTolofodoToloTo oo o o o o to o o o
180.
181.
182.
183.

% STORES THE TOMOGRAM Y%
Tl oo oo To o ToToToTo ToToTo To To Fo T Fo o
Result_as_is=single(Image_series/(max(Image_series(:))));

Result_normalized_by_flatfield=Image_series./(Image_series_I+
(Image_series_I==0));

4. Result_projection=single(Image_proj/(max(Image_proj(:))));

. toc

end

Examples

In figure B.6, the effect of the partial coherence on a tomographic reconstruction
is studied. A comparison of figure 4.9 and figure 4.7 shows that the simulation
with partial coherence matches the experimental data better than the incoherent
simulation.
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O
@]
(a) xy-slice, linear projection based, tilts: - (b) xzslice, linear projection based, tilts: -
90°:1°:90° 90°:1°:90°
-
- - . -
.9
@
(c) xy-slice, linear projection based, tilts: - (d) xzslice, linear projection based, tilts: -
90°:67:90° 90°:6°:90°
A\ . ' ¥
- O r
£\

(e) xy-slice, incoherent FZP with dry = 10nm  (f) xz-slice, incoherent FZP with dry = 10nm
based, tilts: -90°:1°:90° based, tilts: -90°:1°:90°

Figure B.5: Comparison of under sampling and defocus on the tomographic
reconstruction. The field of view is 3.1 um.
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(a) Phantom at a tilt of 90° (b) Partially coherent image (c) Normalized partially co-
of the phantom (at 90°) herent image of the phatom
(at 90°)

(d) Phantom at a tilt of 40° (e) Partially coherent image (f) Normalized partially co-
of the phantom (at a tilt of herent image of the phantom
40°) (at a tilt of 40°)

(g) Slice (XZ) of the tomo- (h) Slice (XZ) of the tomo- (i) Slice (XZ) of the tomo-
graphic reconstruction of the graphic reconstruction of the graphic reconstruction from

phantom phantom from a -90°:1°:90° a -90°:1°:90° normalized par-
partially coherent image se- tially coherent iimage series.
ries.

Figure B.6: These examples show that the partial coherence leads to significant
changes in the image of a sample in comparison to the incoherent approximation.
The interpretation of the images is problematic due to contrast inversion. Sur-
prisingly, the reconstruction works also for the unnormalized images although the
object is almost invisible in the images of the tilt series. The most likely expla-
nation is that the noise in the partially coherent image series is uncorrelated and
hence its impact on the reconstruction is reduced.

The partial coherence was taken into account hy averaging over random sonrce dis-
tributions. The normalized images were divided by the intensity pattern generated
without sample.
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Appendix C

Phase Unwrapping and Generating
DOESs

C.1 Phase Unwrapping

Program C.1 implements the unweighted least-squares phase unwrapping algo-
rithm presented on page 111. Due to the use of Matlab®, the discrete versions
of ¢ and 1 now start at 1 instead of 0. They also end respectively at N + 1 and
M +1instead of N and M. They are hence defined as pMeteb . {12 ... N + 1} x
{1,2,...,M +1} - Rand pyM®e® {1, 2, ..., N +1}x{1,2,...,M + 1} — (—m, 7]
with arg [exp [zqﬁM “‘”“bﬂ = ¢pMatlab  The mirror reflection has to change accord-
ingly. For example, the mirror reflection of % is

Vig 1<i<M+1,1<j<N+1
T — Vam+2-i5 M+1<i<2M+1,1<j<N+1
" YiaN+2—j 1<i<M+1, N+1<j<2N +1

Yomya—ignt2—j M+1<i<2M+1, N+1<j<2N+1
The following notations are used in the program.
psi is the discrete version of .
psi_ big is the discrete version of the extension by mirror reflection of .
rho is the discretised version of p.
PHI FT is the discrete least-squares approximation of ¢.

Line 1 is the function header.
Line 2 defines the extension by mirror reflection of .

217
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Line 3 initializes rho, which is a discrete version of p.
Line 4 defines rho. There are different discrete versions of the bhase equation
A¢ = p. A five point star version is

ﬁi,j = (Az] = f—l,j) + (Azj - A?,j—l) :

The corresponding implementation is:
rho=(mod ((psi_big(:,[2:end 1 ])-psi_big)+pi,2*pi)-pi...
-mod((psi_big-psi_big(:,[end 1:end-1]))+pi,2*pi)+pi...
+mod((psi_big([2:end 1],:)-psi_big)+pi,2*pi)-pi...
-mod((psi_big-psi_big([end 1:end-1],:))+pi,2*pi)+pi)
A nine point version of the same equation is used in the implementation shown
here.
Line 5 computes the fast Fourier transform of p.
Line 6 uses the symmetry of rho to eliminate some numerical artifacts by restriction
to the real part of P.
Line 7 computes ®,, , =
Line 8 sets ®[1,1] = 0.
Line 9 computes the inverse Fourier transform of .
Line 10 restricts the result to the original format.

Pm,n

2 cos[mm/M)+2 cos[rn/N|—4"

Fast Fourier transform based unweighted least-squares phase unwrap-
ping.

1. function PHI_FT=fft_unwrap (psi)

2. psi_big=...
[psi,psi(:,(end-1):-1:2);psi((end-1):-1:2,:),psi((end-1):-1:2,(end-1):-1:2)];

3. rho=zeros(size(psi_big));

4. rho=(mod((psi_big(:,[2:end 1 ])-psi_big)+pi,2*pi)-pi...

-mod((psi_big-psi_big(:,[end 1:end-1]))+pi,2*pi)+pi...
+mod ((psi_big([2:end 1],:)-psi_big)+pi,2*pi)-pi...
-mod((psi_big-psi_big([end 1:end-1],:))+pi,2*pi)+pi)/2 ...
+(mod ((psi_big([2:end 1 ],[2:end 1 ])-psi_big)+pi,2*pi)-pi...
-mod((psi_big-psi_big([end 1:end-1],[end 1:end-1]))+pi,2*pi)+pi...
+mod ((psi_big([2:end 1], [end 1:end-1])-psi_big)+pi,2*pi)-pi...
-mod((psi_big-psi_big([end 1:end-1],[2:end 1]))+pi,2*pi)+pi)/4;

[$2]

. P=f£ft2((rho));

6. P=real(P);
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7. P=P./...
(2*cos(2*pi*((0:size(P,1)-1)/(size(P,1))) **ones(1,size(P,2)))...
+2*cos(2*pi* (ones(size(P,1),1)*(0:size(P,2)-1)/(size(P,2))))-4);

8. P(1,1)=0;
9. PHI_FT=ifft2((P));
10. PHI_FT=real (PHI_FT(1:size(psi,1),1:size(psi,2)));

11. end

Scope of the Algorithm

This algorithm is useful to find least-squares approximations to the phase problem,
as long as the correct field only contains regular points. That is, each path around
all points results in a vanishing integrated phase. If this condition is not satisfied,
the algorithm computes a field that has minimal wrapped mean square distance.
One example for such an irregular point is shown in figure C.1.

If the phase contains some points with a high difference in the phase but the
image contains no residues, the Fourier least-squares phase unwrapping algorithm
yields locally good results but might not find a solution which is a globally close
match to the image. One example is shown in figure C.2. The Itoh algorithm fails
under those conditions. In fact, it is a good feature for the design of DOEs that
the Fourier least-squares phase unwrapping algorithm removes any residues from
the phase.

(a) original phase (b) recovered phase with the (€) recovered phase with the
Itoh algorithm Fourier least-squares phase un-
wrapping algorithm

Figure C.1: The effect of residues on the Itoh and the Fourier least-squares phase
unwrapping algorithm.
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(a) Respectively original image, recovered image with least-squares and Itoh method Aqpgr = 1.57

R 1 |

(b) recoverced image (c) Itoh method (d) recovered image
Amoz =21 Amaz =27 Amaz = 3T

Figure C.2: Different examples for reconstructed-¢ from wrapped -data. - The
Fouricer transform based method and the Itoh method have been used.. The max-.

imal difference between neighboring pixels-is in (a) 1.57, in (b) and (c) 2w, and
in (d) 3.

C.2 Generating DOEs Using High Orders of Diffrac-
tion
The main steps for the design of a DOE are (see also figure C.3):
1. Defining the target intensity in the focal plane of the DOE

2. Computing a holographic first estimate of the field in the plane of the DOE
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Figure C.3: Algorithm for the design of higher order DOEs.

3. Finding a least-squares estimate for a continuous lift of the phase in the
plane of the DOE

-

Propagating the resulting field into the focal plane of the DOE

5. Adapting the computed amplitudes to amplitudes that fit better the target
intensity

6. Back propagation to the plane of the DOE
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7. Restarting at 3. untill a good approximation is found

The least-squares phase unwrapping algorithm is applied in the third step of this
algorithm.

C.3 FTH Experiment at an XRL

An experiment at a soft X-ray laser (XRL) was conducted at the Max Born Insti-
tut (see figure C.4). The XRL was operated in grazing incidence pump (GRIP)
geometry and produced coherent X-rays at 19.8 nm. It was pumped by two pulses
of a high repetition rate 100 Hz thin disk laser (TDL) chirped pulse amplification
(CPA) system [94]. The TDL system consisted of a front-end with a Yb:KGW
oscillator, stretcher and Yb:KGW regenerative amplifier followed by two regen-
erative amplifiers and one multipass amplifier. The output of the front-end was
divided into two pulses. Each of them was amplified in a regenerative amplifier to
a level of about 100 mJ. Whereas the pulse from the first regenerative amplifier was
compressed to a duration of about 200 ps using a grating compressor, the output
of the second regenerative amplifier was given to a thin disk multipass amplifier
which amplified the pulses to an energy of up to 400 mJ and compressed them
in the grating compressor to about 2 ps pulse duration at an energy of 270 mJ.
The long pulse (150 ps, E 70 mJ) was focused by a cylindrical and a spherical
lens onto the target at normal incidence. The generated plasma column was then
heated by the short pulse focused by a spherical mirror into the preformed plasma.
We have found for our Mo slab target (50 mm length, 5 mm width) an optimum
GRIP angle of about 24 degree. The target was attached to a motorized stage
with four degrees of freedom allowing the adjustment along three axes as well as
the continuous renewal of the target surface. The latter was important for our
experiments, since we used a multi shot approach to maximize the signal to noise
ratio.

The setup of the FTH experiment had to be adapted to the changed wavelength.
Since we wanted to keep an outermost zone width of 50 nm, the longer wavelength
of 18.9 nm resulted in a higher NA. Therefore, the focal length was drastically
reduced. This was partially countered by using an 1.8 mm DOE with a focal
length of 6.8 mm. Nevertheless, the distances between DOE, object and order
sorting aperture are rather small. Therefore, a compact mechanical setup was
needed. We solved this problem by attaching the DOE and the OSA to a common
support. This support consists of a one inch Al cylinder which has recesses for
the DOE, sample and OSA forming pinhole. The sample is mounted on a movable
arm which allows for 3D positioning of the sample in relation to the DOE. The Al
cylinder has five degrees of freedom so that we can align it with the XRL beam.
The setup was designed with AutoDesk Inventor. The key components are shown
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ilumination
of sample

combined DOE . pinhole
central stop sample . (GS8A)

Figure C.4: Fourier transform holography setup based on a diffractive optical el-
ement which generates three references. In this experiment, we included a pinhole
between the sample and the CCD. In combination with the central stop on the
DOE, this selected the order of diffraction used for imaging. We used three refer-
ences to minimize and correct effects introduced by partially obscured references.

in figure C.8. Due to the shorter wavelength, the DOE has a significantly larger
NA and, therefore, we had to use the NFFA during the design process.

For this kind of experiment, we use the holders shown in figure C.5 which we
also use in the TXM at the Hemlholtz Zentrum Berlin. On the holder, the sample
is fixed to a thin carbon foil. The foil is between 13 and 20 nm thick and contains
holes of approximately 2 pm in a 4 pm grid. Hence, it produces a small absorption
(<10%) but good phase contrast signal at the wavelength of 19.8 nm. Numerical
simulations predicted that it would be nearly impossible to see the foil in amplitude
contrast. The low amplitude contrast of the foil is a desirable design parameter
since it allows to image strongly absorbing objects by simply fixing them onto the
foil.

For the first run of the experiment, the pure carbon foil was used as sample.
Therefore, we had to find a way to get a phase contrast based imaging signal.

Again, numerical simulations were used to predict the properties of different
imaging contrasts (see also figure C.6).
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Figure C.5: Holder for the sample and detailed view of the carbon foil. (Images
taken with a light microscope.) The brighter dot is the region that was exposed
to a higher X-ray dose during the experiment.

Since the experimental setup contained no measurement of the position of the
sample relative to the DOE, a method for finding the focal position had to be
developed.

We used the fact that the thin carbon foil is situated on top of a coarser Au
grid. The grid bars are strongly absorbing and can generate shadows on the CCD.
The main idea was to look at the shadow of a bar at different defocused positions.
By measuring the thickness of the shadow and applying the interception theorem,
the correct focal distance can be estimated. A small correction has to be made
due to the finite dimension of the image of the DOE.

In a first experiment, we saw that the nano-positioner produced so much in-
frared light that the X-ray signal was lost. Therefore, the nano-positioners had to
be shut down during the measurements. Since the interruption of the current lead
to the loss of the exact position, only a few single images were taken. One example
is shown in figure C.7. In order to test the results and differentiate between nu-
merical artifacts and real signal, the sample had to be moved in a well defined way.
In a second session, we were therefore forced to include optical shielding into the
experiment. Now, the positioning units could be left on during the data acquisi-
tion. Although we managed to block the infrared light produced by the attocubes,
the nano-positioners did not perform with the shielding as expected. The exact
problem is not known since the shielding and the moving parts of the experiment
had no contact. Hence, a mechanical fault is unlikely. But we observed that with
the shielding, the positioning units got very hot. This might have prevented their
correct performance and also produced thermal expansion within the setup.
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Conclusion

From these experiences, we deduce that the concept should in principle also work
with XRLs. In order to prevent similar problems with alignment and positioning
of the sample, future setups should contain some additional means to verify the
correct positioning of all parts, e.g. a movable, low resolution Fresnel zone plate
for direct X-ray imaging.
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x e ()

Figure C.6: Numerically predicted images of the foil (image is in the blue square).
(a) Direct imaging (absorption contrast).

(b) Direct image divided by ,flat field“ (absorption contrast).

(c) Phase sensitive image type I: absolute difference between direct image and
Jat field”.

(d) Phase sensitive image type II: difference between argument of direct image
and ,fat field"”.



C.3. FTH EXPERIMENT AT AN XRL 207

(b)

© | @)

Figure C.7: Experimental images of the foil.

(a) Direct imaging (absorption contrast) .

(b) Direct image divided by ,flat field* (absorption contrast).

(c) Phase sensitive image type I: absolute difference between direct image and
Jfat field”.

(d) Phase sensitive image type II: difference between argument of direct image
and ,flat field"“.
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(b) 3D-rendering of selected parts of the XRL- FTH setup.

Figure C.8: Design of the XRL based FTH experiment. The right image in figure
b shows the compact combination of DOE, sample and pinhole.



Appendix D

Potential Application of DOEs as
Condensers for Transmission
Microscopy

In this chapter, we present three novel, untested setups for soft X-ray imaging.
Two of them potentially could improve existing contrast mechanisms and the last
combines in-line holography and bright field TXM imaging. None of these setups
have been implemented vet.

D.1 DOE Based Zernike Phase Contrast Imaging

Zernike phase contrast was developed for light microscopy in the early 1930’s
by Zernike [109]. The key idea behind Zernike phase contrast is diagrammed in
figure D.1. A shift of the phase of the incident light after the light has been
diffracted by the sample allows visualization of sample induced phase shifts. Its
earliest implementation in soft X-ray microscopy used an annular ring condenser
and a matching phase-shifting annular ring in the back-focal plane [78]. The X-
ray optical setup is shown in figure D.2. New alternatives use specially designed
objective Fresnel zone plates which essentially include the phase ring [101, 72|.
The latter approach reduces the FOV and is therefore often not well suited for
imaging extended samples.

The use of an annular ring condenser limits the light that reaches the sample
and prevents the matching of the NA of condenser and objective. The opening
angle of the condenser has to be relatively small since it directly correlates to the
angular dimensions of the phase shifting ring. From a theoretical point of view,
the limited NA of the condenser results in partially coherent image formation in
this optical system, which results in artifacts due to partial coherence. Indeed,

229
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such artifacts have been observed and partially characterized [96].

Therefore, we developed a new setup which is shown in figure D.2 (b). The
key idea is to use a condenser that generates a ring shaped focus in front of the
sample. This ring is then reproduced by the objective in a plane that satisfies the
thin lens law. In this plane, a matching, phase shifting annular ring can be used to
shift the undiffracted light with respect to the light diffracted by the sample. This
ring can be significantly smaller with our approach than in the classical soft X-ray
setup, thereby reducing the unwanted filtering of diffracted light. Additionally,
the condenser can now be matched to the objective which reduces the impact of
partial coherence effects on image formation (see also figure D.3). Therefore, this
new setup minimizes artifacts present in the conventional soft X-ray Zernike phase
methods.

The Construction of the Condenser for Zernike Phase Contrast.

We now show how such an annular ring condenser can be constructed. The con-
struction is very similar to the one used for conventional Fresnel zone plates. We
therefore recall the construction law for FZPs. The construction uses the rota-
tional invariance of the system around the optical axis. One starts by calculating
the optical path length between the focal point and the FZP. The path length (1) is
directly related to the phase difference (Ayp) incurred due to the larger propagation
distance

exp [iAp] = exp [12;3] .
Hard clipping the path length to [0, %] modulo A yields the opaque zones of the
Fresnel zone plate. The hard clipping is equivalent to selecting one half of the
phase space.

The construction of the ring condenser follows a similar idea. The rotational
invariance is again used. Instead of calculating the optical path length between
two points, this time we use a weighted, path length based phase integral. The
result is then hard clipped to R > 0 to generate the pattern of the condenser.

The path length (I) from a point (p;) in the 2; plane to a point (p2) in the 2z

plane (z; < 2) is
Lpi,pol i = |p1 —po| = V i —P2|2'

This distance results in a relative phase change of exp [—27% lp1 — p2|] . Now, it
is assumed that the point ps is part of the ring which the condenser generates.
Let us assume that this ring has a diameter of r5. We define for any circle (C,,)
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in the z; plane with radius r; > 0 which is centered around the optical axis, the
integrated, weighted phase contribution as

a exp [—i2%1 [p; [s], po] s
Bp, [11] = fr L[p1[s],p2] ‘

or €XP [_271’5\/(2‘2 — 21)2 +72+4+71r2 —2ry- 7 cos [r,o]:|

1

r1de

/'; \/(zg—zl)g—l—rg—krf—Qrg-rlcos[(p]

Hard clipping ® to R > 0 generates a pattern of a condenser that produces a ring
of radius ry at a focal length of z5 — z;. Using this condenser, the proposed Zernike
contrast setup is readily implemented.

(b) Zernike phase contrast

(a) Absorption contrast

Figure D.1: Visualization of the concept of Zernike phase contrast and comparison
to absorption contrast. The total detected signal (colored arrows) is decomposed
into the signal produced by the illumination (black arrow) and the signal generated
by the sample (dashed arrows). The radius of the circles represents the detected
amplitude. In (a), the mechanism for absorption contrast is shown. Both samples
generate the same amplitude (smaller circle). The samples are therefore indistin-
guishable in absorption contrast. In (b), the concept of Zernike phase contrast
is shown. The previously indistinguishable signals are now clearly separated (ma-
genta and orange circle). This is achieved by shifting the phase of the incident
illumination with respect to the signal generated by the sample.
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(b) Zernike phase contrast with DOE condenser

Figure D.2: Optical setups for Zernike phase contrast.

(a) In the classical soft X-ray implementation of Zernike phase contrast, the sample
is illuminated by a ring shaped condenser zone plate. Since the distance between
sample and condenser is relativelv large, the ring aperture of the condenser also
defines the Fourier components of the illumination as indicated by the red wave
vectors. In the focal plane of the Fresnel zone plate objective, the light which was
not diffracted by the sample is therefore located within the red area. A phase
ring can then generate the phase shift required for Zernike phase contrast, but
certain frequencies of the diffracted signal are also shifted. Alternatively, the zone
positions in the red area of the objective can be switched to generate the phase
shift.

(b) In this new approach, the condenser refocuses the light into a ring in front of
the sample. This ring is imaged by the Fresnel zone plate. Now, a significantly
smaller phase ring can be used to generate the phase shift of the non-diffracted
light and the condenser can be matched to the NA of the objective eliminating
effects generated hy partial coherence.
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D.1.1 Example for Zernike Phase Contrast

The TXM simulation presented in section B.2.3 was extended to include a phase
ring. Due to the significant differences in the dimensions and resolution of the
objective and its focal plane, it was not possible to use this algorithm to simulate
the “classical” phase ring approach. However, for the DOE based approach, the
distance between objective and phase ring is significantly larger and the difference
in resolution between the plane of the phase ring and the objective is smaller. the
simulation showed therefore some results, although the numerical propagators are
outside their range of validity. The classical Zernike approach was here approxi-
mated by introducing the phase shift in the plane of the objective. A flat, purely
phase shifting, Siemens star like object was introduced in the focal plane.

From the result, one can deduce that the method has some potential to over-
come the problem of the frequency dependency of the contrast in classical Zernike

phase contrast X-ray imaging.

Figure D.3: Simulated Zernike phase contrast images of a phase object. The
frequency dependence of the contrast in the “classical” approach shows in the
large spikes (left). Strong numerical artifacts prevent a clear interpretation of the
results of the new approach (right).
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D.2 High Order DOEs for Dark Field TXM Imag-

Ing

Dark field imaging has proven to be a very effective tool for weakly scattering
samples in light microscopy. Naturally, one would like to have this option avail-
able for full field soft X-ray microscopy. Although there have already been some
implementations of dark field soft X-ray microscopy |9, 3|, most of them yielded
sub-optimal results. We propose here a new approach based on diffractive opti-
cal elements (DOE). This approach has the advantage of minimizing the dose on
the sample and is except for the fabrication and computation of the DOE easily
implemented or can easily be integrated into an existing TXM by changing the con-
denser. Theoretically, one could also use a capillary or Fresnel zone plate condenser
with very high numerical aperture and large central stop. But these alternatives
can only be used together with relatively large spatially incoherent sources or have
to be moved during the exposure to generate a homogeneous illumination.

The Construction of the Condenser

The two most common ways to generate a soft X-ray dark field image are based on
blocking the illumination after it has passed through the sample. This can either
be done by inserting an absorbing ring into the focal plane of the objective, similar
to the Zernike phase contrast setup (see figure D.2 (a)) or by blocking certain parts
of the condenser as shown in figure D.4 (a).

These approaches also block certain parts of the light diffracted by the object
which high pass filters the dark field image. The usual experimental implemen-
tation achieves the blocking of the illumination by restricting the illumination to
a hollow cone. A problem with these approaches is that the numerical aperture
of the illumination is smaller than the aperture of the objective. This leads au-
tomatically to a partially coherent imaging system. Such a system always shows
artifacts which limits its usefulness. Omne could use a higher order FZP with a
central stop and locate an objective FZP of similar outermost zone width in the
core shadow of the central stop. But a classical high order, high NA condenser
generates a very small focal spot. In order to use such a condenser for full field
imaging, a homogeneous illumination has to be generated. This can either be ac-
complished by using a large incoherent source or by moving the condenser during
the exposure. The latter option has to be used for undulator based sources which
leads to an inhomogeneous and random illumination. Diffractive optical elements
can solve this problem at the cost of lower efficiency. A setup for such a solution
is presented in figure D.4.
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setup

In these sketches, the light
scattered by the object
is shown in blue. Grey
dashed lines show the ray
optical paths.

In (a), the condenser and
objective use the same
diffraction order. The dark
field image is produced by
restricting the illumination
to a hollow cone and block-
ing the corresponding parts
in the objective FZP. This
also removes certain fre-
quencies from the final im-
age.

In (b), the sample is illu-
minated by using the third
order of the DOE while the
objective uses the first or-
der. Therefore, all frequen-
cies that fit into the NA of
the objective are kept.

In (¢), a typical TXM
bright field setup is shown.

Figure D.4: Soft X-ray dark and bright field imaging setups. (a) Dark field
imaging based on blocked illumination, (b) dark field imaging based on a DOE
and (c) bright field imaging with a capillary condenser.
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ring-like illumination
leads to a blurrier dark
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most zone width (25
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simulations.
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Figure D.5: Simulation of soft X-ray based dark and bright field imaging.
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D.2.1 Simulation

For this simulation, we designed a binary DOE for the third order of diffraction.
The pattern is generated as described in section 7.2. The aim is to generate as
closely as possible a homogeneous, circular illumination. The central stop of the
DOE is chosen to be large enough so that the objective Fresnel zone plate is located
inside its core shadow. A pinhole between sample and DOE acts as order sorting
aperture (OSA).

In this system, the condenser has a significantly larger numerical aperture than
the objective zone plate. Therefore, the degree of coherence of this optical system
depends mainly on the coherence of the source. The resolution should also be
slightly better than in a TXM with matched NAs due to the higher numerical
aperture of the condenser.

A comparison (see figure D.5) with the approach of [100] shows that the DOE
based dark field generates significantly better images. The contrast also differs
significantly from the one observed in a partially coherent soft X-ray transmission
microscope. This method is therefore well suited as a means to differentiate objects
with similar bright field images, e.g. one can use it to detect the positions of
strongly scattering particles of subdiffraction limited size within a cell.

D.3 Using the Zeroth Order Transmitted Light of
a FZP in TXM Imaging for In-line Holography

Currently, there are no good approaches for FEL based soft X-ray TXM imaging.
We propose a setup with a novel condenser design which could be used at an FEL
beamline. In addition, the limited efficiency of Fresnel zone plates, which poses
a problem for Fresnel zone plate based transmission microscopy, is addressed. In
transmission soft X-ray microscopy, the image is usually formed by the first diffrac-
tive order of the zone plate. This order contains only a small part (usually less than
10%) of the photons that illuminated the sample. Most photons (approximately
50%) stay in the zeroth order of diffraction. Since the radiation dose usually limits
the resolution for biological samples, using these photons to increase the quality of
the image is desirable. While the following approach cannot achieve this directly,
it could potentially be used to improve the alignment of a tomographic series.
According to the dose-fractionation theorem [35] this could also lead to a dose
reduction.

The following setup combines a transmission soft X-ray microscope with a
lens-less method to use a larger part of the incident photons. In this method, the
condenser optic is a patchwork of squares. Each square contains a part of a
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Figure D.6: Setup for a combined in-line hologram and TXM experiment. The
first order diffration of the FZP generates a regular TXM image while the non-
diffracted part of the beam generates in-line holograms. Here, squares are shown
alternately in red or green. These squares differ in their focal length. Due to the
construction of the condenser, the sample area is almost homogeneously illumi-
nated.

Fresnel zone plate. The size of each FZP part is a little larger than the area that
is coherently illuminated. The FZP parts alternately generate a focal point well
before or behind the sample. As shown in figure D.6, the location of the focal point
is chosen in such a way that the sample is fully illuminated by the beam. Since the
beam patterns of the FZPs are mutually incoherent, the generated illumination
is homogeneous and almost incoherent. Hence, it is well suited as illumination
for transmission soft X-ray microscopy. Due to the construction, each square of
the condenser generates an in-line hologram of the sample. This in-line hologram
passes through the imaging high resolution FZP and can be detected in the zeroth
order of the high resolution FZP. During the recording of any TXM image, several
in-line holograms of the same area are generated. The zeroth order is not used
in the usual TXM setup, therefore these additional holograms do not increase
the dose. Since the holograms are all generated from the same area, it should
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be possible to combine them to get a holographic image with slightly increased
resolution.

Holographic images contain some 3D information. Therefore, the holograms
could also be used in combination with fiducial markers to improve the alignment
for tomographic reconstructions of the high resolution TXM data. This probably
would help to make efficient use of the dose-fractionation theorem.

D.3.1 Construction of the Condenser

We now design such a condenser that consists of squares. We assume that the
central area is opaque. This central stop forms an order sorting aperture in com-
bination with a pinhole in front of the sample. We assume that the condenser
homogeneously illuminates a square of width b and that each square of the con-
denser has an edge length of w. Let f be the distance between condenser and
illuminated field. Then, the interception theorem yields two possible distances
between the condenser and the focal spot, as shown in figure D.7

)

~ ‘.\.\
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Figure D.7: Sketch of the distances that define the pattern of the DOE.
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Here, f, is a focus between the condenser and the illuminated field while f, is a
focus on the other side of the illuminated field. In order to illuminate the field
homogeneously, each focus has to be off-axis. The exact position follows again
from the interception theorem. Using the notation of figure D.7, the position is
given by

Example: A 3 x 3 Condenser

At the Helmholtz Zentrum Berlin, Fresnel zone plates with an outermost zone
width down to dry = 25nm are routinely used for TXM tomography. The FZP
has a focal length of about 0.95 mm (see also table 2.1). We will now construct
a matched condenser for a wavelength of A = 24nm. At the position of the
condenser, the lateral coherence length is approximately [, = 200 pm. Therefore,
we set the width of each sub condenser part to w = 300 um. The field of view of
the microscope is b = 10pm. We get the following values for our condenser:

Diameter:
Beon = 3 -300pm = 0.9 mm.

Focal length:

o 2 Ladel} __ 0.9mm .
fw’" L7 fFZP = 0.09mm " 0.95mm = 9.5mm.

The sub-condensers have a focal length of f, = fmﬁ ~ 9.2mm respectively
= fcmﬁ ~ 9.8 mm.

Figure D.8 shows, that such a condenser can be realized for typical parameters of
a TXM and that it generates a relatively homogeneous intensity distribution in
the plane of the object. However, the simulations showed that this design leads to
modulations along the edges of the illuminated square. Therefore a design which
uses only the plane between the DOE and the object for all eight intermediate foci
seems more favorable for TXM applications.
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Figure D.8: Predicted illumination in the sample area and resulting images of a
Simens star based on 3x.3 condensers under partially coherent conditions.

(a, ¢) using two planes as shown in figure D.7

(b, d) using only one plane (f,) for the intermediate foci.
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Figure D.9: Predicted holograms based on 3x 3 condensers under partially coher-
ent conditions.

(a) using two planes and in (¢) a normalization

(b) using only one plane (f,) for the intermediate foci and in (d) a normalization
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Summary

In this chapter, we have introduced three new concepts for soft X-ray imaging
setups. The aim of the first two is to improve existing setups for Zernike phase
contrast and dark field microscopy. The third setup is based on a new condenser for
full field, soft X-ray transmission microscopy. This latter setup has potentially two
advantages. The condenser should improve the homogeneity of the illumination in
comparison to a capillary condenser (at the cost of lower efficiency). It also allows
combining TXM imaging and (low resolution) in-line holography. The holograms
could be used for 3D alignment purposes. The improved alignment allows to use
the dose-fractionation theorem to its full potential and could potentially reduce
the dose for TXM tomography.
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Appendix E

Additional Information and
Programming

E.1 Generating a 3D Phantom

Code for the Simulation of the Two Phantoms

The following code produces the phantoms shown in chapter 4.

T

function Vergl_Phantome

2. % This function shows different phantoms in projection
3.
4

4. x=b00;

% line + sphere

y=500;
z=500;
dx=3e-9;
dy=3e-9;

dz=3e-9;

. tic

. [DOTS]=DOTGENERATORwithVOLUME(x,y,z,dx,dy,d=z) ;
. Phantom_D0TS=zeros(x,y,z);

. Phantom_Voxel=zeros(x,y,z) ;

o ot T T tote oo ToTo oot to oo o o To o
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15.
16.
L
18.
19.
20.
27,
23,
25.
26.
27.
28.
29.
30.
31.
32.
33.
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% Generating the Phantom_DOTS

T To oo o oo o oo oo oo oo o o

vDOTS=DOTS ;

vDOTS(1,:)= ceil(DOTS(1,:)/dx);

vDOTS(2,:)= ceil(DOTS(2,:)/dy);

vDOTS(3,:)=ceil (DOTS(3,:)/dz);

zD0TS=find (and (vDOTS(1,:)>0,vDOTS(1,:)<(x+1)));
vDOTS=vDOTS(:,=zDOTS) ;

zDO0TS=find (and (vDOTS(2, : )>0,vDOTS(2,:)<(y+1)));
bvDOTS=vDOTS(: ,2ZDATS) ;

for my_big_z=1:100:z %coarse z-steps

zDOTS=find (and (bvDOTS(3, : ) >my_big_=z-1,bvDOTS(3, : )<my_big_z+100));
vDOTS=bvDOTS(: ,zDATS) ;

for myz=my_big_z:min(z,my_big z+99)% start fine steps
try

zDOTS=£find (vDOTS(3, : )==myz) ;
mypreSlice=accumarray(. ..

{[1 y vDOTS(2,zD0TS)],...

[1 x vDOTS(1,zDOTS)]1},...

[0 0 vDOTS(4,zDOTS)]);

. myvolSlice=accumarray(. ..
36.
37.
38.
39.
40.
41.

{[1 y vDOTS(2,zDOTS)],...

[1 x vDOTS(1,zDOTS)]1},...

[0 0 vDOTS(6,zDOTS)]) ;

myprevolSlice=myvolSlice/(dx*dy*dz) ;
mySlice(myvolSlice>1)=mypreSlice(myvolSlice>1)./myvolSlice(myvolSlice>1);

myvolSlice(myvolSlice>1)=1;
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. try
. mySlice(myz,:,:)=mypreSlice;

. catch err

4. !ups!

46. rethrow(err);

. end

catch err

!ups!

. rethrow(err);

. end

. if or(any(zDOTS"=0) ,or (myz==z,myz==1))
. end

. end % singel z-step

end ) coarse z-steps
Phantom_DOTS=mySlice;
toc

projA=squeeze(sum(mySlice,1));

. figure(2)

. imagesc(imag(projA))

. drawnow

20 WIIATII T T Tl To T T b e

. % Generating the Phantom_DOTS
Ao WTTT St oo s T T Tt o oo

. % Generating a full cylinder
. % Starting Point

o I D DT T o oo o o o T

. #Initialization:
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69. % Starting Point
70. fcx=dx*x*[0.3 ];
71. fcy=dy*y*[0.5 1;
72. fcz=dz*zx[0.5 ];
73. %direction (in real space)
74. fdex=[1 1;
75. fdcy=[0 1;
76. fdcz=[1 1;
77. fds=sqrt(fdcz. 2+fdcy. 2+fdcx."2);
8. fdcz=fdcz./fds;
79. fdcy=fdcy./fds;
80. fdcx=fdcx./fds;
81. %Radius [nm]
82. frc=[10 ]*10°-9;
83. % Length start
84. flcs=[-100 1¥10°-9;
85. % Length end
86. £1c=[300 ]*10"-9;
87. % optical density (Chromatin)
88. fdoc=(-0.000836149149+ 1i*0.000156815062)*ones (size(f1lc));
89. fdoc310=(- 0.00229999027+ 1i*0.00062734884)*ones(size(flc));
90. [X,Y)=meshgrid(1:y,1:x);
91. for vz=1:z
92. TL=((dx.*X-fcx) .*fdcx+(dy.*Y-fcy) .*fdcy+(dz.*vz-fcz) .*fdcz)<flc;
93. TL(TL)=((dx.*X(TL)-fcx) .*fdcx+. ..
94. (dy.*Y(TL)-fcy) .*fdcy+(dz.*vz-fcz) .*fdcz)>flcs;

95. STL=((dx.*X(TL)-fcx) .*fdcx+(dy.*Y(TL)-fcy) .*fdcy+(dz.*vz-fcz) .*xfdcz) ;
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96.

97,

98.

94,
100.
101.
102.
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104.
105.
106.
107.
108.
109.
110.
T
112
113.
114.
115.
116.
LLE.
118.
119.
120.
121
122,
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TL(TL)=((dx.*X(TL) -STL.*fdcx-fcx). 2+ (dy.*Y(TL)-STL. *fdcy-fcy) .~ 2. ..
+(dz.*vz-STL.*fdcz-fcz) . ~2)<frc"2;

myzwPhantom=squeeze (Phantom_Voxel(:,:,vz));

myzwPhantom(TL) =myzwPhantom(TL)+fdoc;
Phantom_Voxel(:,:,vz)=myzwPhantom;

end

% Generating a hollow spheres %

% Center

hsmx=dx*x*[0.5] ;

hsmx=hsmx+[0.5 ]*10~-9;

hsmy=dy*y*0.5%ones (size(hsmx)) ;
hsmz=dz*z*0.3*ones (size (hsmx) ) ;

hsmz=hsmz+[0 ]*10"-9;

hsmz(1)=dz*z*0.5;

Jiouter Radius

hsrco=[100 ]1*10~-9;

%inner Radius

hsrci=hsrco-4%10"-9;

% optical density (membranes)

hsdoc=(-0.000909493479+ 1i%0.000211989463)*ones(size(hsrco));
hsdoc310=(-0.00186587463+ 1i%0.00114491396)*ones (size(hsrco));
for vz=1:z
TL=((dx.*X-hsmx) . “2+(dy.*Y-hsmy) .~ 2+(dz.*vz-fcz) . "2) <hsrco~2;
TL(TL)=((dx.*X(TL) -hsmx) . ~2+(dy.*Y (TL) -hsmy) . ~2+(dz.*vz-fcz) .~ 2) >hsrci~2;
myzwPhantom=squeeze (Phantom_Voxel(:,:,vz));

myzwPhantom(TL) =myzwPhantom(TL)+hsdoc;

Phantom_Voxel(:,:,vz)=myzwPhantom;
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123. end

124. toc

125. projA2=squeeze(sum(Phantom_Voxel,1));

126. projA=squeeze (sum(Phantom_DOTS,2));

127. figure(1)

128. imagesc(imag([((projA2(100:400,100:400))).%,projA(100:400,100:400)]1));
129. colormap gray;axis off

130. figure(2)

131. projB2=squeeze(sum(Phantom_Voxel,3));

132. projB=squeeze (sum(Phantom_DOTS,1));

133. imagesc(imag([projA2(100:400,100:400).°,projA(100:400,100:400);...
134. projB2(100:400,100:400) ,projB(100:400,100:400)1));

135. colormap gray;axis off;axis image

136. drawnow

137. end

138. function [DOTS]=DOTGENERATORwithVOLUME(x,y,z,dx,dy,dz)
139. 9% Generates point object (DOTS)

140. %

141. pors=[];

142. vDOTS=DOTS;

143. %% Generating a sphere of radius rz and with center hsmx,hsmy,hsmz
LA4. TRRIBIADADIAD DTN D DD DD DD Db

145. 9% Sets of hollow spheres %

LAG. BRI AIADBDD DD DD DD DD DD DD Db

147. ¥ Center

148. hsmx=dx*x*[0.5];

149. hsmx=hsmx+[0.5 1*10~-9;
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. hsmy=dy*y*0.5*ones(size(hsmx)) ;

. hsmz=dz*2z*0.3*ones(size(hsmx)) ;

. hsmz=hsmz+[0 ]1*10~-9;

3. hsmz(1)=dz*z*0.5;

4. %houter Radius

. hsrco=[100 ]*10~-9;

. hinner Radius

. hsrci=hsrco-4%10"-9;

. % optical densety (membranes)

. hsdoc=(-0.000909493479+ 1i*0.000211989463) *ones(size(hsrco));
. hsdoc310=(-0.00186587463+ 1i*0.00114491396) *ones(size(hsrco));
. Vdis=(1)*10"-27; %'"Volume" of one dot

. Ndis=ceil(4/3*pi*(hsrco."3-hsrci.”3)./Vdis);

. mysphere=Q(r,vphi,vpsi,hsmx,hsmy,hsmz,hsdoc,hsdoc310)

4. [xr.*cos(vphi).*cos(vpsi)+hsmx; ...

. r.*(sin(vphi).*cos(vpsi))+hsmy;. ..

. r.*(sin(vpsi))+hsmz; hsdoc*ones(size(vphi)) ;hsdoc310*ones(size(vphi))]
. /% adding the sphere to the dots:

. for myi=1:size(hsmx,2)

. SA=mysphere ((((hsrco(myi) ~3-hsrci(myi) ~3) .*rand(1,Ndis(myi)))+...

hsrci(myi)~3).~(1/3),...

. 2%pi*rand(1,Ndis(myi)),asin(2*rand(1,Ndis(myi))-1),...

. hsmx(myi) ,hsmy(myi) ,hsmz(myi), ((Vdis)/(dx*dy*dz))*hsdoc(myi), ...
. ((Vdis)/(dx*dy*dz))*hsdoc310(myi)) ;

. DOTS=[DOTS [SA; Vdis*ones(1,size(SA,2))]];

4. end

o WRRIIIITT T T T T T ToToTo o To o o o o o o

. % Sets of full cylinders % (Chromatin)

2

3

1
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198.
199.
200.
201.
202.
203.
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o T T T Tt o ToTo oo o o oo o oo o o o
. %Initialization:

. % Starting Point

. fex=dx*x*[0.3 ];

. fcy=dy*y*[0.5 ];

. fcz=dz*z*[0.5 ];

. %#direction (in real space)
4. fdcx=[1 1;

9. fdey=[0 ];

186.

fdcz=[1 1;

. fds=sqrt(fdcz. 2+fdcy."2+fdcx."2);
188.
189.
190.
191.
192.
193.
194.

fdcz=fdcz./fds;

fdcy=fdcy./fds;

fdcx=fdcx./fds;

%Radius [nm]

frc=[10 ]1%10~-9;

% Length start

flcs=[-100 ]*10"-9;

% Length end

£1lc=[300 ]*10"-9;

% optical density (Chromatin)

fdoc=(-0.000836149149+ 1i*0.000156815062) *ones(size(flc));
fdoc310=(- 0.00229999027+ 1i*0.00062734884)*ones (size(flc));
% volume leads to number of points:
Ndis=ceil(2*pi*(frc.~2.*(flc-flcs))./Vdis);
focx=(fdcy+((fdcy. 2+fdcx.~2)==0))./...

(sqrt(fdcy. 2+fdcx. 2)+((fdcy."2+fdcx."2)==0)) ;



220.
227.
228.
229.
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4. focy=(-fdcx) ./ (sqrt(fdcy. 2+fdcx. 2)+((fdcy. 2+fdcx."2)==0));

. focz=zeros(size(focy));

. fobx=focy.*fdcz-focz.*fdcy;

. foby=focz.*fdcx-focx.*fdcz;

. fobz=focx.*fdcy-focy.*fdcx;

. for a=1:size(fobz,2)

. % Checks for orthonormal frame!

. FG=[fdcx(a) fobx(a) focx(a);fdcy(a) foby(a) focy(a);fdcz(a) fobz(a) focz(a)l;
. disp(a)

. disp( FG*FG’)

4. end

. mycylinder=@(focx,focy,focz,fobx,foby,fobz,fcx,fcy,fcz,fdcx,fdcy,fdcz,...
. fls,fdoc,fdoc310,vphi,vr)

. [vr.*(sin(vphi)*focx+cos(vphi)*fobx)+fcx+fls*fdcx;. ..

. vr.*(sin(vphi)*focy+cos(vphi)*foby)+fcy+fls*fdcy;. ..

. vr.*(sin(vphi)*focz+cos(vphi)*fobz)+fcz+fls*fdcz;. ..

. fdoc*ones(size(vphi)) ;fdoc310*ones(size(vphi))];

. for myi=1:size(fcx,2)

. SA=mycylinder (focx(myi) ,focy(myi) ,focz(myi) ,fobx(myi),foby(myi) ,fobz(myi),...
. fex(myi) ,fey(myi) ,fez(myi) ,fdex(myi) ,fdcy(myi),. ..

4. fdcz(myi) , (flc(myi)-flcs(myi))*rand(1,Ndis(myi))+flcs(myi),...

. ((Vdis)/(dx*dy*dz))*fdoc(myi), ((Vdis)/(dx*dy*dz))*fdoc310(myi),

2xpi*rand(1,Ndis(myi)), ...

sqrt (frc(myi) ~2*rand (1,Ndis(myi))));
DOTS=[DOTS [SA; Vdis*ones(1,size(SA,2))]1];
end

end
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E.2 Properties of the Fourier Transform

E.2.1 Fourier Transform

Definition (2D):

F [9al] v, w] := /RZg[m,y] exp [—2mi (zv + yw)] dz dy (E.1)
F 1 Guw] [z,y] = / G [v,w]exp 277 (zv + yw)]dvdw
R2
Properties
1. Symmetry: (E.2)
F [F 9] [z, 9] = g [-=, -] (E.2)
2. Asymmetry with conjugation:
& [g[a:,y]] [6] =F [g[z,y]] [_f] (E3)
and
-7:_1 [a[v,w]] [E] = -F_l [G['u,w]] [_5] (E"L)
Proof:
F [g[a:,y]] [v,w]: = Azg [z,y]exp [—27i (zv + yw)] dz dy

use W — —U; W = —W = / glz,ylexp2mi (20 + yw)] dz dy
Rr2

= / glz,ylexp[—27i (z0 + y)|dz dy
R2

= / glz,ylexp[—2ni (z0 + yw)|dz dy
R2

= }_[ﬁ[m,y]] [—v, —w]
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Proof:

F ' Cpu] [z,y] = Az G [v,w]|exp [2mi (zv + yw)] dv dw

= / G [v,w]exp [-27 i (zv + yw)] dvdw
R2

use :z —> —I; Yy = —Y = / G [v,w]exp 271 (Zv + gw)] dv dw
R2

- F (G o

3. Conjugation due to inversion:

F [goai © —Idipy] [€] = F [Gay] [€] (E.5)

Proof:

F [g[x,y] o —Id] sl = f g[—z,—ylexp [-27i (zv + yw)] dzdy
R2

luse :z —» —Z;y - -9y = /ﬂ;zg[sﬁ,g}] exp 271 (Zv + gw)|dz dy

_ f 9[5, 9] exp 23 Gv T Fw)lds dj
Rz

= f gz, 9] exp [-2mi (2v + gw)] dZ dy
B2

= F [g[m,y]} [U:w]

4. Convolution theorem: (also holds for F~! instead of F)

F 9z - bet] = Flgl * F[h] (E.6)
F 9y * bey] = Flgl- Fh]

therefore,

F ' 9a - hew] = F ' lgl*xF ' [A]
F7! [9ea) * hizy)] F g - FH A
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E.2.2 Properties of the Convolution

Commutative fxg=gx* f

Associative fx(gxh)=(f*g)*h

Distributive f*(g+h)=f*xg+ f*xh

Associative with scalar multiplication a (f * g) = (af) * g

Conjugation f+xg=f*g

E.3 Excerpt of Applied Theorems

E.3.1 Blackwell-Girshick Equation

Let N be a random variable with values in N and let (X;),_,, be a family of ran-
dom variables which are independently, identically distributed. Furthermore, let
the variances of X, and N be finite. Under these conditions the Blackwell-Girshick
equation can be used to calculate the variance of Y := Zﬁi 1 Xi. The variance is
then:

Var[Y] = Var[N] E[X,]*> + E[N]Var[X,].

E.3.2 Wald’s Equation

Let N be a random variable with values in N and let (X;),_,, be a family of
random variables which are independently, identically distributed. Then Wald’s
equation can be used to calculate the expected value of Y = Ef;l Xi. The ex-
pected value is then:

E[Y] = E[N]E[X].

E.3.3 Taylor Expansions for the Moments of Functions of
Random Variables

Let X be a random variable which has finite moments. Let f be a function of X.
Furthermore let f be sufficiently differentiable. Then the first moment of f [X] is
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approximated by
EIX] ~ E|fEX]+f EX] (X ~E[X) + 5/ [EX] (X ~E[X]
= FEIX]] + 3" [EIX]] Var [X].

With the same assumptions the variance of f[X] can be approximated by

Var[f[X]] ~ (f'[E[X])*Var[X].
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