

Journal of
Information
Systems
Education

Volume 29

Issue 2
Spring 2018

Do Pair Programming Approaches Transcend
Coding? Measuring Agile Attitudes in Diverse

Information Systems Courses

Kuanchin Chen and Alan Rea

Recommended Citation: Chen, K. & Rea, A. (2018). Do Pair Programming Approaches
Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses. Journal
of Information Systems Education, 29(2), 53-64.

Article Link: http://jise.org/Volume29/n2/JISEv29n2p53.html

Initial Submission: 16 August 2017
Accepted: 30 January 2018
Abstract Posted Online: 21 March 2018
Published: 13 June 2018

Full terms and conditions of access and use, archived papers, submission instructions, a search tool,

and much more can be found on the JISE website: http://jise.org

ISSN: 2574-3872 (Online) 1055-3096 (Print)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301383072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://jise.org/Volume29/n2/JISEv29n2p53.html
http://jise.org/

Do Pair Programming Approaches Transcend Coding?

Measuring Agile Attitudes in Diverse Information Systems
Courses

Kuanchin Chen
Alan Rea

Department of Business Information Systems
Haworth College of Business
Western Michigan University
Kalamazoo, MI 49008, USA

kc.chen@wmich.edu, alan.rea@wmich.edu

ABSTRACT

Agile methods and approaches such as eXtreme programming (XP) have become the norm for successful organizations not only
in the software industry but also for businesses seeking to improve internal software processes. Pair programming in some form is
touted as a major functionality and productivity improvement. However, numerous studies show that simply placing two
programmers side by side in front of a single computer screen is not enough. We must look at other factors such as programmer
expertise, project preparation, and perceived solution quality to understand pair programming’s promises and pitfalls. In our study,
we apply tailored programming challenges to a multifaceted group of first-year through senior Information Systems (IS) and non-
IS majors to analyze how participant attitudes and perceived benefits of pair programming change from pre- to post-study, as well
as determine whether the quality and functionality of the solutions differ across education levels and disciplines. Our findings show
a strong interaction effect of gender and major composition (CIS vs. non-CIS majors) in all four dimensions of the ATMI attitude
scale. Findings also suggest that experience in problem solving and solution formation are more important than prior specific
domain knowledge. Finally, participants’ perceived ability, sense of accomplishment, and completion of the assigned work,
regardless of background or demographic, determined their performance outcome on the pair-programming tasks, which suggests
that not all forms of attitude and perceived benefits contribute to the performance outcome.

Keywords: Pair programming, Agile, Extreme programming, Student attitudes, Attitudes towards mathematics inventory (ATMI),
Productivity, Problem solving

1. INTRODUCTION

Agile methods have been accepted in many modern
organizations. Well-established traditional (e.g., finance), as
well as technology (e.g., software development), companies are
using eXtreme programming (XP) approaches to keep pace
with contemporary development cycles (Canfora et al., 2007;
Vanhanen and Mäntylä, 2013). In this paper, we focus on one
of the more common XP approaches, pair programming, and its
effect on attitude changes, functionality, and solution quality.
In its simplest form, pair programming has two programmers
sitting side by side in front of one computer system. The driver
sits at the keyboard and is responsible for inputting code,
deciding on logic structures, etc. The navigator sits next to the
driver and (to use a manufacturing metaphor) oversees
production by watching for syntax errors. Moreover, the
navigator makes sure the program meets client requirements
and deliverables. After some time, the programmers switch
roles and the process continues. Advocates of this method assert

that paired programmers catch and address more errors,
improve their programming approaches, produce better code
due to collaborative cognitive efforts, and are more satisfied
with the process (Flor, 1998; Nosek, 1998; Williams and
Kessler, 2000; Williams, Wiebe, and Yang, 2002).
 Many in academic and industry settings, as well as
programmers in general, accept all, or some, of these premises
as true. However, as with all methodologies, we find that this
one – sitting two programmers together to perform one task – is
not as straightforward as it may seem. Ever since collaborative
programming (Nosek, 1998) was advanced 20 years ago as a
software engineering method, researchers have examined
whether these assertions hold true across the myriad of contexts
in which pair programming is practiced. The focus of these
studies include professional programmers (Bryant, Romero,
and du Boulay, 2008; Nosek, 1998; Tingling and Saeed, 2007)
and students – both novice and experienced – (Sanders, 2002;
Williams and Kessler, 2001; Williams and Upchurch, 2001).
Research has occurred in both controlled lab situations (Bryant,

Journal of Information Systems Education, Vol. 29(2) Spring 2018

53

Romero, and du Boulay, 2008; Cockburn and Williams, 2001;
Domino, Collins, and Hevner, 2007; Lui and Chan, 2006) and
within more open approaches (Sherrell and Robertson, 2006).
All studies attempt to delineate constructs (Wray, 2010) that
spread the resulting analysis across a broad range, from
successful (Bryant, Romero, and du Boulay, 2008; Domino,
Collins, and Hevner, 2007; McDowell et al., 2002; Nagappan
et al., 2003; Williams et al., 2000), to mediocre (Dybå et al.,
2007), to abysmal (Nawrocki et al., 2005; Stephens and
Rosenberg, 2004).
 Regardless of this considerable research, there is scant
empirical evidence endorsing pair programming’s use outside
of software development notwithstanding the general
consensus that two heads together are better than one (e.g.,
Nosek, 1998). Dybå et al. (2007) cautioned that the benefits of
pair programming may be affected by a participant’s experience
and the task characteristics. Similarly, Koriat (2012) suggested
that confidence, communication, and other factors were the true
reasons for better results. Therefore, simply performing pair
programming cannot be the only reason for its touted benefits.
Dynamics among people, task, and methodology are keys to its
success. From this perspective, this research is designed to
accomplish the following objectives:

• To examine how participant attitudes and perceived
benefits of pair programming are related to the quality
of the solution, and

• To study whether the quality of the solution produced
via pair-programming varies across multiple
disciplines.

 In Section 2, we examine already published research
supporting our approach and our addition of attitude assessment
as a viable method for measuring programming’s technical
nature. We then outline our methodology in Section 3, followed
by a detailed findings analysis in Section 4. In Section 5, we
discuss how our results are relevant to the existing debate, plus
explain what worked and what did not concerning pair
programming and attitude adjustments. Moreover, we theorize
why these results concur with some historical research
constructs but do not support others. After noting our study’s
contributions and limitations, we conclude our research in
Section 6 and pose questions for further consideration.

2. LITERATURE REVIEW

Asking a colleague to help collaboratively solve a complex
issue is nothing particularly innovative and occurs daily in
various organizational contexts. However, redefining a process
through which computer programmers can solve algorithm and
coding challenges as a team rather than individually is still
novel even though the concept was first expressed two decades
ago (Nosek, 1998). Nosek’s concept of “collaborative
programming” (1998, p. 106) advocated that programmers
working in two-person teams would produce more functional
solutions in less time with greater satisfaction and confidence.

2.1 Collaborative Programming
In his study, Nosek (1998) paired 10 of 15 experienced
programmers. The teams and the five individual programmers
(as a control group) all were tasked with solving a database

consistency check using the C programming language in 45
minutes. None previously had attempted this because the
company had always outsourced it. Nosek found that, on
average, independently-working programmers required at least
12 minutes more than pairs to complete the task. Pairs also
reported enjoying the process more than individuals and, in
some cases, produced better code than the company’s
outsourced, specialized consultants (Nosek, 1998, p. 107b).
Although a strong case for collaborative programming was
made, Nosek did observe that senior programmers’ results
exceeded novices’ regardless of them working alone or in pairs.

2.2 Pairing Dyads Importance
Nosek’s finding of programmer experience level suggests that
collaboration might be beneficial only if pairings are expert-
novice, rather than expert-expert; this parameter was integrated
into our study via an experience question on a pre-survey that
measured the participants’ familiarity with the topical
exercises. Other researchers have noted that partner pairing
selection is critical for successful pair programming (Lui,
Barnes, and Chan, 2010; Wray, 2010) and have proposed
pairing experts with novices for maximum educational benefits
(Domino, Collins, and Hevner, 2007, p. 305b).

2.3 Pair Programming Tenets
Williams and Kessler (2000) solidified many of the tenets of
what has become pair programming, such as share everything,
avoid preconceptions, and focus on the tasks. For many
implementing pair programming studies, reading Williams and
Kessler’s article is a prerequisite for study participants.
Although we did not require reading the article in our study, we
did borrow guidelines for the roles of driver and navigator as
well as encouraged participants to focus on the task at hand
(Williams, Wiebe, and Yang, 2002). Moreover, rather than
emphasizing efficiency and functionality alone (Nosek, 1998),
we instead took the more educational approach (Williams and
Kessler, 2001; Williams et al., 2000) knowing that many of our
study participants had only been recently exposed to logic
approaches as opposed to the few who had more than one
previous programming course.

2.4 Programmer Attitude Shifts
Most importantly, our study primarily investigated paired
programming’s influence on attitudes. Studies suggest
significantly increased confidence in program solutions
(Mcdowell et al., 2003) as well as satisfaction with the
programming process (Domino, Collins, and Hevner, 2007). In
addition to measuring changes in confidence and satisfaction
levels, we wanted to ascertain whether paired students –
particularly, novices – would experience less apprehension in
completing programming and other technical tasks.
 To measure potential attitude shifts in a challenging
technical subject (e.g., programming), we utilized the Attitudes
Towards Mathematics Inventory (ATMI) developed by Tapia
(1996) and further tested and refined in various studies (Majeed
et al., 2013; Sisson, 2011; Tapia and Marsh, 2004). In the
instrument, a collection of five-point Likert-scaled questions
measure the four subscales of Enjoyment, Motivation, Self
Confidence, and Value (Majeed et al., 2013, p. 126) that can be
briefly explained as:

Journal of Information Systems Education, Vol. 29(2) Spring 2018

54

• Measure of like or dislike toward the topic (Enjoyment)
• Tendency to engage or avoid the topic (Motivation)
• Belief that one is good or bad at the topic (Self

Confidence)
• Belief that the topic is useful or useless (Value)

 We also investigated whether participants’ attitudes varied
according to their assigned roles (“driver” or “navigator”) in the
study and how this shifted over the experiment. To accomplish
this, students were directed to switch roles for the second
experiment. As we approached this portion of the study we
wanted to address aspects of “cognitive offload,” which is the
ability for paired teams to solve complex challenges by
discussing and working collaboratively rather than attempting
solutions alone. Pairs are encouraged to verbalize problems as
a means to express thoughts and reasoning processes (Bryant,
Romero, and du Boulay, 2008) to determine their solutions
whether it be a programming structure or understating of client
requirements. In the following section, we discuss our
methodology.

3. METHODOLOGY

Our study took place during two weeks of a summer session
that permitted extended workshop time in class. During class
meetings, 76 students from 4 Information Systems (IS) classes
completed a pre-survey to measure their skills and attitudes,
then participated in 2 pair-programming exercises in class, and
afterward completed a post-survey. Two responses were
discarded due to inconsistencies and missing values.

3.1 Student Sample
For our study, we examined how students would approach
technical problems tailored to the subject of the particular class
(Table 1). Classes were comprised of students from eleven
majors, with the majority of non-IS majors in Class A. The
demographic profile of participants is shown in Table 2. Class
enrollments ranged from first-year to senior students.

Class Level Topics Primary Student Population
Class A:
Introduction to
Business
Computing

First-year course required for all
business majors. Can also be used
as a university general education
course.

Microsoft Office Suite
and Basic Web
Creation.

First-year business students and
various majors outside of the
business college using it as a
general education course.

Class B: Business
Application
Programming

Second-year course required of all
IS majors.

Java Programming IS majors.

Class C: Business
Analytics I

Second-year course required for all
business analytics (BA) majors and
minors. Elective for all IS majors
and minors.

Advanced Microsoft
Access and Excel.

BA majors/minors. IS
majors/minors.

Class D: Business
Data Mining

Senior-level course required for all
BA and IS majors/minors.

Data mining and
Analytics (descriptive,
predictive, and
prescriptive).

BA and IS majors/minors.

Table 1. Courses in the Study

 Frequency Percentage
Gender

 Female 17 23
 Male 57 77

Age
 18 – 24 57 77
 25 – 34 16 21.60
 >34 1 1.4

Computer Classes Taken (including high school)
 0 2 2.70
 1 13 17.60
 2 – 3 24 32.40
 4 – 6 22 29.70
 7 – 10 7 9.50
 More than 10 6 8.10

Table 2. Demographic Profile

Journal of Information Systems Education, Vol. 29(2) Spring 2018

55

3.2 Exercises
We tailored each exercise for the class as appropriate. In Class
A and Class C, we used identical exercises and software (Excel)
which required using Visual Basic for Applications (VBA) to
solve simple programming challenges. In Class B, we
introduced JFrame challenges to students who previously had
coded only for the command line interface (CLI) using the
Netbeans Integrated Development Environment (IDE). In Class
D, students were asked to use an analytics program (Knime)
unfamiliar to them to perform linear regression and
classification tree analyses with cross validation.
 Before forming pair programming dyads, we measured
students’ familiarity with the topics by asking questions
pertaining to each student’s skill level and familiarity. For
example, in Class B we asked students how many computing
courses previously taken and how many computer languages
previously studied. These two questions allowed us to take into
account not only established course work in a college setting
but also independent, self-motivated study. In Class A and
Class C, the pre-survey focused on advanced Microsoft Excel
techniques and asked students especially about their familiarity
with Microsoft Excel macros. Only one class (Class A) had
been exposed to macros via a single Macro Recorder lab. No
students had yet written a full VBA program. Finally, in Class
D, we recorded students’ familiarity with Knime and business
analytics. Although Knime was installed on lab computers, it
was not utilized in any course students had completed prior to
Class D.
 Having obtained a baseline of student experience, we
created pairs using novice-expert pairing and also randomly
assigned about 30% of each class to the control group
(individuals) without accounting for experience. Many
researchers have noted the benefits of pairing an expert with a
novice to increase learning for both; novices learn from experts,
and experts enhance their comprehension by tutoring novices
(Domino, Collins, and Hevner, 2007; Wray, 2010). In each
class, exercises were completed using the same tools or the
same technique that had been studied in class sessions
immediately prior to the experiment. This was to reduce the
likelihood of previous tool use or applied techniques affecting
the results (Lui, Barnes, and Chan, 2010).
 Students took a pre-survey about one week before
participating in the experiments. All experiments were
conducted during class times within a single 48-hour period.
Students were paired at one system per each team (or
individual) at the start of class and then introduced to the
concepts of pair-programming using background primarily
from the Williams and Kessler (2000) article. About 15 minutes
of the session was spent explaining how roles should function.
 For Exercise1, the novice student was assigned the
navigator role and the experienced student the driver role.
Exercise1 was less challenging than Exercise2, and we
expected it would be good pair programming practice. After
Exercise1 was completed, students submitted their results and
recorded start and end times (30-45 minutes total, depending on
the class) into our course management system. We then
discussed the code, the purpose, etc. in anticipation of
Exercise2, and especially to provide basic approaches and
concepts to any programming pairs or individuals who did not
complete Exercise1.

 Exercise2 reversed roles but followed the same procedures.
We intentionally designed Exercise2 to be more challenging to
measure confidence levels as well as pair jelling (Williams et
al., 2000). “Pair jelling” is the pair programming dyad’s ability
to effectively share the cognitive load of solving complex
problems via programming (Bryant, Romero, and du Boulay,
2008). After Exercise2 was completed and recorded, we again
discussed potential solutions and then immediately asked
students to complete the post-survey in class.
 We independently reviewed all exercise submissions and
scored each on a scale of 1-5 (with 5 being the highest). Scores
of 1 represented an attempt with 3 being an average score. We
also noted whether the exercise had been completed (yes/no)
and the time it required. If an exercise was not finished, the
highest score it could receive was a 4.

3.3 Construct Operationalization
Most of the constructs we used were adapted from existing
instruments. The ATMI instrument (Tapia, 1996; Tapia and
Marsh, 2004) – designed and implemented to study attitudes
toward logic and math subjects – was modified to accommodate
the four subject matters (computing, programming, analytics,
and data mining) studied in this research. Each question was
measured in a five-point Likert-like scale with 1 representing
Strongly Disagree and 5 Strongly Agree. Because course topics
require some math application and all classes are science,
technology, engineering and math (STEM) program
components, using ATMI for our purposes seemed reasonable.
 Frequently, pair programming is touted to generate certain
benefits. Through literature searches, we identified seven
outcome (or benefit) variables covering: 1) Skills
Enhancement, 2) Enhancement of Self-Esteem, 3) Improved
Learning, 4) Feeling Good, 5) Confidence in Subject Matter,
6) Improved Quality of Solution, and 7) Improved
Effectiveness in Reaching the Final Solution (e.g., Cockburn
and Williams, 2001; Dybå et al., 2007; Nosek, 1998; and
others). A question was developed for each of the above seven
outcomes. Each question begins, “I believe pairing me with
another classmate ____,” in which the blank is presented as
checkboxes for each of the above seven outcomes, which
allows for more than one response per question. As noted in the
prior section, completion time for each exercise was recorded,
and each solution was evaluated and scored (1-5) by the
professor teaching the class.
 In order to situate our study within existing research, we
utilized approaches from many previous studies, such as
providing pair programming background information and
approaches, assigning student pairs/dyads based on experience
level, monitoring progressively challenging tasks in a
classroom environment, and following with post-experiment
questions to measure students’ reactions to pair programming.
However, we added two new items to the research continuum:
1) a diverse set of Information Systems courses ranging from a
first-year, non-major course to a senior-level, required IS
course, and 2) an attitude measurement tested via a proven
instrument primarily used to measure attitude toward
mathematics (ATMI) (Majeed et al., 2013; Sisson, 2011; Tapia
and Marsh, 2004) that we revised to focus on the programmatic
or technical task for each course. Although we found support
for increased productivity, functionality, and satisfaction in
novice and expert students, we found less change than

Journal of Information Systems Education, Vol. 29(2) Spring 2018

56

anticipated in the sophomore-level, traditional programming
course. Support for our findings follows.

4. ANALYSIS AND RESULTS

Before performing exploratory factor analysis (EFA) on ATMI,
we first checked several assumptions. Kaiser-Meyer-Olkin
(KMO) calculated for the ATMI variables was 0.85, indicating
that the sample is adequate for EFA. Bartlett’s Test of
Sphericity (Chi Squared = 932.512, d.f. = 210, p < 0.001) also
shows that the correlation matrix of these variables is not an
identity matrix. Therefore, the data are appropriate for an EFA.
The subjects-to-variables ratio is calculated as 3.52 (74
subjects/21 variables), which is consistent with the literature
that suggests a ratio of 2-to-1 (Kline, 1979, p. 166) or 3-to-1
(Arrindell and van der Ende, 1985, p. 166). We then entered
these variables into an EFA with varimax rotation (see Table
3). The Chi Square test (Chi Square = 1136.9, d.f. = 132, p =
0.366) shows that four factors are sufficient for the model.

Items that were heavily cross-loaded in multiple factors were
then removed.
 The results of EFA presented four dimensions similar to the
original ATMI, but questions regarding the confidence
dimension clustered into two sub-dimensions. The first
confidence dimension, ‘Confidence – Visceral reaction,’ is for
questions related to inward feelings about the subject covered
in class. Questions in this dimension were reverse-coded. The
second confidence dimension includes questions about the
ability to learn, take on intellectual challenges, and other
activities. Therefore, it is named ‘Confidence – Perceived
Ability.’ The third dimension, named ‘Value,’ covers the
assessment on the value of the subject matter, and the last
dimension, ‘Motivation,’ encompasses questions regarding
respondents’ motivations to learn about the subject. Table 3
shows the modified ATMI questions and their factor loadings.
The four factors together explain 59.7% of the variance.
Construct reliability measured in Cronbach’s Alpha for the four
factors are 0.939, 0.864, 0.705, and 0.739, respectively.

Modified ATMI Questions Component

Confidence –
Visceral reaction

Confidence –
Perceived Ability

Value Motivation

XXX is one of my most dreaded subjects 0.628 -0.307 -0.303
When I hear the words XXX, I have a feeling
of dislike.

0.771

My mind goes blank, and I am unable to think
clearly when working with XXX.

0.753

Studying XXX makes me feel nervous. 0.839
XXX makes me feel uncomfortable. 0.800
I am always under a terrible strain in a XXX
class.

0.787

It makes me nervous to even think about
having to do a XXX problem.

0.805

I am always confused in my XXX class. 0.782
I feel a sense of insecurity when attempting
XXX.

0.748

I am happier in a XXX class than in any other
class.

 0.534

I have a lot of self-confidence when it comes to
XXX.

 0.735

I am able to solve XXX problems without too
much difficulty.

-0.314 0.552

I expect to do fairly well in any XXX class I
take.

 0.809

I learn XXX easily. 0.797
I believe I am good at solving XXX problems. 0.702
I can think of many ways that I use XXX
outside of school.

 0.747

I plan to take as much XXX as I can during my
education.

 0.674

I am willing to take more than the required
amount of XXX.

 0.376 0.530

I want to develop my XXX skills. 0.308 0.574
XXX is important in everyday life. 0.672
I get a great deal of satisfaction out of solving a
XXX problem.

 0.637

Note: XXX refers to the major subject covered in each class. These subjects are programming, introduction to computing,
business analytics, and data mining.

Table 3. Exploratory Factor Analysis on ATMI

Journal of Information Systems Education, Vol. 29(2) Spring 2018

57

4.1 Demographic Difference on Attitude
We examined the effect of demographic difference on the
attitude toward pair programming through a multi-way
MANOVA (Table 4). The dependent variables are the four
ATMI dimensions. The independent variables include gender
pairs, number of computer classes taken, and CIS vs. non-CIS
majors. Gender pairs are a categorical variable that includes
gender dyads such as male-male, male-female (or female-
male), and solo on each team. ‘Number of computer classes
taken’ is discretized into two categories (‘many’ versus ‘few’)
due to smaller cell sizes for certain categories (e.g., ‘None’ = 2
and ‘More than 10’ = 6, as shown in Table 2). The cutoff was
2-3 classes or fewer for the ‘few’ category. The main effects of
the independent variables were not statistically significant, but
there was an interaction effect between gender pairs and CIS vs.
Non-CIS (p < 0.05). Another interaction effect occurred
involving all three independent variables (p < 0.01).

Because there was an interaction between gender pairs and
CIS vs. Non-CIS, Figure 1 illustrates the interaction plots on all

four ATMI dimensions individually. Figure 1a shows that non-
CIS majors in mixed gender (male-female and female-male)
teams had a higher confidence on visceral reaction than CIS
majors, thereby triggering the interaction effect. Non-CIS
majors working as solo or in male-male teams had the same or
slightly lower confidence in visceral reaction than CIS majors.
When looking at the perceived level of ability (Figure 1b), non-
CIS majors working alone were the only group of non-CIS that
had substantially less confidence in perceived ability compared
to their CIS counterparts. CIS majors working alone or in male-
male pair had a high level of perceived ability compared to
mixed gender teams. Non-CIS majors had a lower perceived
value when working alone, but CIS majors seemed to prefer
working alone (Figure 1c). Figure 1d shows a surprising
pattern, in which CIS majors working in male-male teams had
significantly less motivation than CIS majors in the other two
team configurations. Generally, non-CIS majors had less
motivation to learn the subject matter than CIS majors, with the
exception of CIS majors working in male-male teams.

Independent Variable Pillai df F Sig.
Gender pairs 0.080 2 0.628 0.753
Number of computer classes taken 0.112 1 1.856 0.130
CIS vs. Non-CIS 0.084 1 1.355 0.261
Gender Pairs * Computer Classes Taken 0.154 2 1.255 0.273
Gender Pairs * CIS vs. Non-CIS 0.278 2 2.425 0.018 *
Computer Classes Taken * CIS vs. Non-CIS 0.114 1 1.907 0.121
Gender Pairs * Computer Classes Taken * CIS vs. Non-CIS 0.328 2 2.940 0.005 **

* p < 0.05, ** p < 0.01
Table 4. Multi-way MANOVA to Assess the Effects of Demographics on ATMI Attitudes

(a) Confidence – Visceral Reaction

(b) Confidence – Perceived Ability

(c) Perceived Value

(d) Motivation

Figure 1. Interaction Plots – Effects of Demographics on ATMI Attitudes

Journal of Information Systems Education, Vol. 29(2) Spring 2018

58

4.2 Predictors of Solution Accuracy/Quality
A hierarchical linear regression analysis was performed to
predict the effect of XP. The dependent variable was the score
of the second exercise earned by each team or solo participant.
Navigators and drivers swapped their roles in this second
exercise, allowing navigators to apply what they had just
learned from Exercise1 and from the solution demonstration
after the first exercise. Results of the second exercise reflect
their performance as drivers.
 In the first block of hierarchical regression (Model 1 in
Table 5), demographic variables (i.e., gender pair and age) were
first entered into the equation. Gender pair is a categorical
variable dummy-coded into male-female, male-male, and solo
variables to study the dynamics of gender interaction in XP.
Although the male-male pair had a statistical significance
(p < 0.05), the predictors did not explain much of the variation
of the dependent variable (adjusted R2 = 0.05, p > 0.05). This
indicates that gender and age are not sufficient to explain the
variation in the exercise score.
 In the second block (Model 2 in Table 5), four categories of
variables were included: 1) the four ATMI attitude dimensions,
2) the dummy-coded class variables, 3) the factor analyzed
outcome variables for XP, and 4) other variables (such as
computer classes taken, completion of Exercise2, and score
difference between the two exercises). The seven outcomes of
XP were identified from the literature including 1. Skills
Enhancement, 2. Enhancement of Self-Esteem, 3. Improved
Learning, 4. Feeling Good, 5. Confidence in Subject Matter, 6.
Improved Quality of Solution, and 7. Improved Effectiveness
in Reaching the Final Solution. Students were asked to assess
their perception on each of these outcomes. Because meanings
of these seven outcomes may overlap (e.g., feeling good and
self-esteem), the resulting perceived outcomes were factor
analyzed with the varimax rotation, which resulted in two
factors. The overall factor model explains 61.375% of the
variance. The first factor concerns the enhancement of one’s
perceived expertise (i.e., enhanced perceived expertise), which
includes three out of the seven perceived outcomes previously
identified: enhances my skills, improves my learning, and
improves the effectiveness in reaching the final solution. The
second factor (i.e., enhanced sense of accomplishment)
measures the enhancement of one’s sense of accomplishment
resulting from pair programming, which includes three other
perceived outcomes: enhances my self-esteem, makes me feel
good, and improves the quality of the solution. The last
perceived outcome – improves my learning – heavily cross-
loaded in both factors and was dropped from the factor analysis.

As the final model in Table 5 illustrates, the effect of the
demographic variables from Model 1 changes as other relevant
predictors were added. Gender pair did not have a statistical
significance on the exercise score, but age did (p < 0.05). Of the
four ATMI dimensions, only ‘Confidence in Perceived Ability’
had statistical significance on the exercise score (p < 0.05).
Among the factor analyzed perceived outcomes, ‘Enhanced
Sense of Accomplishment’ had a negative but statistical
significance on the exercise score. Both completion of the
exercise and score difference had a positive effect on the
dependent variable. However, there was no statistically
significant effect of classes on the exercise score. The overall
adjusted R2 value was 0.680, a large improvement (∆R2 =
0.630) over the first model. Co-linearity analysis showed no
serious concern of multi-collinearity with tolerance values all
greater than 0.20.

4.3 Parameters' Influence
In order to determine whether there was a difference across
classes on the perceived outcomes of XP, the group means were
compared. Although the Levene’s Test for Homogeneity of
Variance (p > 0.05) showed that there was no significant issue
with this assumption, the normality assumption through
Shapiro-Wilk’s Normality Test (W = 0.96, p < 0.05) was
violated. Therefore, non-parametric Kruskal-Wallis’ tests are
appropriate. As Table 6 shows, there was a mean difference on
one’s sense of accomplishment among the four classes
involved. Post-hoc, pairwise comparison using Dunn’s Test is
reported in Table 7. Here there is a statistical difference in mean
values between the freshman introduction to computing class
(Class A) and the senior data mining class (Class D), with the
senior class rated higher on sense of accomplishment. There
was no statistical significance between Class D and the other
two classes (B and C).

Journal of Information Systems Education, Vol. 29(2) Spring 2018

59

Model Coefficients t Sig.

B Std. Error

1 (Intercept) 2.560 0.845 3.031 0.003 **

Gender Pair (Male-Male) 0.904 0.364 2.482 0.016 *

Gender Pair (Male-Female) 0.383 0.394 0.974 0.333

Age 0.114 0.323 0.353 0.725

F = 2.249, df = 3, R = 0.298, Adjusted R2 = 0.05, p = 0.09

2 (Intercept) 3.577 0.659 5.425 0.000 ***

Gender Pair (Male-Male) 0.331 0.244 1.357 0.180

Gender Pair (Male-Female) 0.241 0.258 0.935 0.354

Age -0.587 0.221 -2.652 0.010 *

ATMI – Confidence (Visceral Reaction) -0.034 0.091 -0.376 0.708

ATMI – Confidence (Perceived Ability) 0.214 0.095 2.251 0.028 *

ATMI - Value -0.168 0.103 -1.632 0.108

ATMI - Motivation 0.126 0.117 1.077 0.286

Enhanced Perceived Expertise 0.019 0.100 0.187 0.853

Enhanced Sense of Accomplishment -0.282 0.102 -2.769 0.008 **

Difference of completion time -0.029 0.017 -1.685 0.098

Computer classes taken 0.082 0.072 1.145 0.257

Completion of Exercise2 1.342 0.282 4.758 0.000 ***

Score difference between two exercises 0.437 0.072 6.082 0.000 ***

Class A -0.556 0.314 -1.774 0.082

Class B 0.309 0.296 1.045 0.301

Class C -0.040 0.311 -0.127 0.899

F statistic = 13.729, df = 16, R = 0.866, Adjusted R2 = 0.680 (∆ R2 = 0.630), p < 0.001
* p < 0.05, ** p < 0.01, *** p < 0.001

Table 5. Hierarchical Linear Regression

 Kruskal-Wallis χ2 df Sig.
Pair programming enhances perceived expertise 1.90 3 0.60
Pair programming enhances one’s sense of accomplishment 8.30 3 0.04 **
Table 6. Kruskal-Wallis’ Test on the Difference of Perceived Outcome across the Four Classes

Journal of Information Systems Education, Vol. 29(2) Spring 2018

60

(1) Enhanced Perceived Expertise
 Class A Class B Class C Class D
Class A -

Class B -0.782+
(0.434/0.651)++ -

Class C -0.903
(0.367/0.733)

-0.066
(0.947/0.947) -

Class D 0.191
(0.848/1.00)

0.994
(0.321/0.961)

1.138
(0.255/1.00) -

(2) Enhanced Sense of Accomplishment

 Class A Class B Class C Class D
Class A -

Class B -1.448
(0.147/0.442) -

Class C -1.373
(0.168/0.339)

0.149
(0.882/0.882) -

Class D -2.870
(0.004/0.024)

-1.029
(0.303/0.363)

-1.273
(0.203/0.305) -

+ Z statistic. ++ p values in this format: (unadjusted p-value / adjusted p-value).
P-values were adjusted with the Benjamini-Hochberg method.

Table 7. Post-hoc Pairwise Comparison – Dunn’s Test

5. DISCUSSION

Industry has implemented, and academia has tested, a
substantial number of Agile software development approaches
and techniques. From this corpus, we sought empirical evidence
for extending such a methodology beyond software
development. Although there is anecdotal support for the use of
Agile methodology in non-IT disciplines, empirical evidence is
lacking, particularly as related to the potential effect on
participants’ attitudes and project outcomes. Our study
therefore focuses on how a subset of Agile software
development called pair programming can be applied to
projects other than software development. In four university IT
classes covering introduction to computing, programming,
analytics, and data mining, we administered two Agile
exercises, with results as discussed below that should benefit
future Agile approaches and studies. We found interesting
distinctions among CIS and non-CIS mixed gender dyads in
terms of confidence levels and visceral reactions to the assigned
tasks with non-CIS students higher overall. However,
demographics and team mixtures alone do not specifically
account for perceived higher levels of performance and
outcome. Instead, we found that a sense of accomplishment and
completion of the work were more of an indication of increased
exercise performance.

5.1 Attitude Impact
The ATMI instrument was adopted to assess attitudes toward
pair programming and was administered to the participants two
times, one approximately one week before the experiment (t1)
and one immediately after (t2) to track any changes. The
difference of ATMI between t1 and t2 was factor analyzed
resulting in the following four key dimensions: 1) Confidence
about Visceral Reaction, 2) Confidence about One’s Own
Ability, 3) Value of the Agile Approach, and 4) Motivation to

Deepen Adoption or Learning. As the multi-way MANOVA in
Table 4 shows, the interaction effect between gender dyads
(male-male, mixed gender, and solo) and participants’ majors
was statistically significant.
 Further analysis through the interaction plots reveals
several interesting patterns. First, the CIS mixed gender teams
appear to have a lower level of confidence on visceral reaction
than non-CIS counterparts with the same team composition.
The mixed gender teams of non-CIS majors had the highest
level of visceral reaction among all non-CIS teams; by contrast,
this same team composition among CIS majors had the lowest
level of visceral reaction. Second, mixed gender teams had a
similar level of perceived ability regardless of their majors (CIS
or non-CIS). Third, non-CIS participants working alone had the
lowest level of perceived ability. Consequently, this group also
had the lowest level of perceived values of pair programming.
Fourth, the male-male group of non-CIS majors interestingly
had a higher level of motivation to learn than their CIS
counterparts.

 Existing studies on gender dynamics in the team setting are
mixed, with studies showing male-male teams having greater
self-efficacy on technical subjects (Hartzel, 2003), no
significant difference in performance for mixed gender teams
(Kaufman and Felder, 2000), and better performance observed
for mixed gender teams than teams dominated by either gender
(Hoogendoorn, Oosterbeek, and van Praag, 2013). Our work
provides a possible insight into these mixed findings of gender
dyads by looking at attitudes (measured by ATMI), which is a
construct confirmed in existing information systems theories
(e.g., research on technology acceptance model and theory of
planned behavior) as the antecedent of behavior. Our four types
of ATMI-based attitudes are reasons for the dynamics of
behavioral results or performance. As all four sub-figures in
Figure 1 show consistent lower levels of attitude for non-CIS

Journal of Information Systems Education, Vol. 29(2) Spring 2018

61

majors working alone, pair programming was helpful for non-
CIS majors. Compared to CIS majors, non-CIS majors had a
higher confidence on visceral reaction within mixed gender
teams and a higher motivation to learn in male-male teams. As
for CIS majors, findings are somewhat mixed. Working alone
seems to generate a higher perceived level of ability, value, and
motivation, yet the same level is observed for mixed gender
groups on motivation to learn and for male-male groups on
perceived ability. As a result, mixing genders within a team
may be associated with a higher level of intention to learn for
CIS majors, but a higher level of confidence in visceral reaction
for non-CIS students.

5.2 Predictors of Performance
The hierarchical linear regression results also were interesting.
Demographics as the only independent variables did not
reliably predict the variance of the dependent variable. The
resulting equation in Model 1 (Table 5) did not fit the data well
(adjusted R2 = 0.05), and only the male-male gender pair had
an effect on the dependent variable. As a result, these
demographic aspects alone did not seem to explain the variance.
After adding variables, including ATMI attitudes, perceived
outcomes of pair programming, classes, completion time, and
pre-existing knowledge of the subject matter, the R2 value in
Model 2 (Table 5) jumped to 0.680, representing an increase of
0.630. Although pair programming has been associated with
higher levels of performance and outcome (e.g., Domino,
Collins, and Hevner, 2007), our work shows that this
heightened performance is because of higher perceived ability,
a sense of accomplishment, and completion of work. Gender
compositions of teams did not show a statistical difference on
performance.
 Interestingly, no class dummy variables influenced
performance. Traditionally, pair programming has been applied
to software development or related IT projects. Because classes
in our experiment covered four different subjects, with only one
being programming, this finding indicates that subject matter
does not greatly affect performance, and thus provides a
rationale for using pair programming in non-hardcore, IT
classes. Coupled with our previous finding on perceived ability,
sense of accomplishment, and completion of work, our work
parallels existing studies (Merisalo-Rantanen, Tuunanen, and
Rossi, 2005) in that experience and expertise are keys to success
in XP. Therefore, class subjects alone do not determine
performance in pair programming; rather, the ability in
mastering the subject is what matters. It is important to point
out that ability to perform had a statistical significance in the
present study, but perceived expertise did not. As a result,
practitioners are recommended to first target ability cultivation
when applying pair programming. Even if participants have not
attained mastery in skills, the perceived level of enhanced
ability matters more.

5.3 Confidence Impact
Of the two perceived outcome factors, the second (pair
programming enhances one’s sense of accomplishment) had a
high, but negative, influence on performance. This is
unexpected; typically, the correlation would be positive.
However, variables that measure accomplishment more broadly
include enhanced self-esteem and satisfaction. A possible
interpretation is that students derived accomplishment not only

from results but also from intangibles, such as the opportunity
to learn new concepts and work with new tools. Future
researchers may want to more closely examine sources of
accomplishment (e.g., accomplishment from immersion in the
process versus accomplishment from achieving the best result).

5.4 Study Contributions
This study contributes to the literature in several ways. First,
influences of one’s attitude has generally received little
attention in Agile literature. Our work indicates that pair
programming is not necessarily a standalone catalyst for
attitude change. Our data shows a direct statistical effect of one
ATMI attitude dimension (perceived ability) on performance.
This provides a new direction for research into the role of pair
programming, especially for those who see little or no attitude
shift with this methodology. Although we uncovered some
beginning understanding of attitudes on performance, future
researchers may want to study triggers of attitude change in the
Agile methodology.
 Second, we found that pair programming does not improve
all types of outcomes. In the present study, seven outcome
variables derived from prior research (e.g., Cockburn and
Williams, 2001; Dybå et al., 2007; Nosek, 1998) were factor
analyzed showing two distinctive factors (enhancement of
perceived expertise and enhancement of one’s sense of
accomplishment). Our findings indicate that only enhancement
of one’s sense of accomplishment was a key predictor of
performance or solution quality, but enhancement of one’s
expertise was not. Our approach in examining outcome
variables together with attitudes for their effect on solution
quality is helpful because prior research either primarily
focused on limited number of outcomes or paid little attention
on how perceived outcomes together with attitudes affect
performance.
 Third, subject matter is less significant to solution quality
improvement than participation in pair programming. This is
demonstrated by the lack of statistical significance in all
dummy-coded class variables. As our participants represented
different academic majors and different levels of academic
preparation, our findings support that the programming course
was no different from other non-hardcore, IS courses on
exercise performance. As a result, one does not have to be in a
software development course to enjoy the benefits of pair
programming.
 Finally, perceptions of outcomes vary across levels of
academic preparation. Our series of Kruskal-Wallis non-
parametric tests (Table 6) and the post-hoc analysis (Table 7)
show that Class A (an introduction to computing class typically
taken by freshmen) was distinctively lower than Class D
(primarily comprised of seniors) in their sense of
accomplishment through pair programming. One explanation is
that less academic preparation could limit participants’ abilities
or options for techniques to craft a solution. Therefore,
experience in formulating a solution also matters. Compared to
prior studies that focus primarily on domain specific
experience, this finding also contributes to the body of
knowledge in that experience in problem and solution
formulation could help, especially when domain specific
knowledge is lacking. Future research could offer further
insights in this direction.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

62

5.5 Study Limitations
This study offers only a brief appraisal of the Agile effect on
attitude and performance. Our focused, in-class exercises were
not designed to address the “learning effect,” in which
participants learn to cooperate over time. However, mixed
gender dyads did result in higher levels of intention to learn for
CIS majors, but less in non-CIS majors, so this needs to be
explored further. Future research might consider what type of
training should be implemented to minimize this difference
before participants engage in Agile methodology. Many studies
attribute learning and problem solving to the novice/expert
experience gap, but this conclusion may be too simplistic as
mixed dyads in non-CIS students demonstrated higher levels of
confidence in visceral reactions to the process and more
perceived satisfaction overall.
 Second, because our work focuses on IT education using
students, we cannot generalize the findings to other settings
(such as the work environment). However, using four subject
matters and participants from eleven academic majors does
offer a greater potential for generalizability than using a single
subject or discipline. Finally, because the experiment was
conducted in a computer lab in a face-to-face setting, extending
our finding to other settings, such as virtual environments,
demands caution.

6. CONCLUSION

Pair programming, or its relative, Agile development,
originates from IS. Several decades of interest and study have
expanded our understanding of what both techniques can
contribute to industry or education. Our research adds to this
scholarship as it relates to IS education. First, the concept of
pair programming may be applied even in IS classes that do not
require programming. Our findings show improved levels of
confidence and interaction in non-CIS students, indicating that
Agile approaches are compatible with active learning
pedagogies. Even in traditional IS curricula, not all courses are
about or require software development; examples include
networking, analytics, IS strategy, and project management.
Our work offers beginning empirical evidence endorsing the
application of pair programming in non-programming classes.
 Second, our work affirms the merits of providing adequate
dynamics for task-related knowledge. We recommend the
consideration of effective team combinations – to include
gender dyad formation – especially for active learning
opportunities or work assignments for which the students
formerly have not had direct domain knowledge.
 Finally, confidence has been identified as key for the
success of pair programming (Koriat, 2012); however, our
findings suggest that not all types of confidence have an effect
on performance. Therefore, we recommend that pair
programming research focus on multiple forms of attributes
(such as ATMI dimensions reported in the present study) in
addition to outcome variables to better document the benefits of
pair programming and make a stronger case for overall
learning.
 Although we fully support and promote pair programming
and Agile techniques, we would caution that these are not a
panacea to learning. More should be done to explore the various
facets that will help all students – IS or otherwise – learn to
function in an increasingly technical world.

7. REFERENCES

Arrindell, W. A. & van der Ende. J. (1985). An Empirical Test
of the Utility of the Observations-to-Variables Ratio in
Factor and Components Analysis. Applied Psychological
Measurement, 9, 165-178.

Bryant, S., Romero, P., & du Boulay, B. (2008). Pair
Programming and the Mysterious Role of the Navigator.
International Journal of Human Computer Studies, 66(7),
519-529.

Canfora, G., Cimitile, A., Garcia, F., Piattini, M., & Visaggio,
C. A. (2007). Evaluating Performances of Pair Designing in
Industry. Journal of Systems and Software, 80(8), 1317-
1327.

Cockburn, A. & Williams, L. (2001). The Costs and Benefits of
Pair Programming. eXtreme Programming and Flexible
Processes in Software Engineering XP2000, 223-243.

Domino, M. A., Collins, R. W., & Hevner, A. R. (2007).
Controlled Experimentation on Adaptations of Pair
Programming. Information Technology and Management,
8(4), 297-312.

Dybå, T., Arisholm, E., Sjøberg, D. I. K., Hannay, J. E., &
Shull, F. (2007). Are Two Heads Better than One? On the
Effectiveness of Pair Programming. IEEE Software, 24(6),
12-15.

Flor, N. (1998). Side-by-Side Collaboration: A Case Study.
International Journal of Human-Computer Studies, 49(3),
201-222.

Hartzel, K. (2003). How Self-Efficacy and Gender Issues
Affect Software Adoption and Use. Communications of the
ACM, 46(9), 167-171.

Hoogendoorn, S., Oosterbeek, H. & Praag, M. V. (2013). The
Impact of Gender Diversity on the Performance of Business
Teams: Evidence from a Field Experiment. Management
Science, 59(7), 1514-1528.

Kaufman, D. B. & Felder, R. M. (2000). Accounting for
Individual Effort in Cooperative Learning Teams. Journal of
Engineering Education, 89(2), 133-140.

Kline, P. (1979). Psychometrics and Psychology. London:
Academic Press.

Koriat, A. (2012). When are Two Heads Better than One and
Why? Science, 336(6079), 360-362.

Lui, K. M., Barnes, K. A., & Chan, K. C. C. (2010). Pair
Programming: Issues and Challenges. Agile Software
Development, 143-163.

Lui, K. M. & Chan, K. C. C. (2006). Pair Programming
Productivity: Novice-Novice vs. Expert-Expert.
International Journal of Human Computer Studies, 64(9),
915-925.

Majeed, A. A., Gusti, I., Darmawan, N., & Lynch, P. (2013). A
Confirmatory Factor Analysis of Attitudes Toward
Mathematics Inventory (ATMI). The Mathematics Educator,
15(1), 121-135.

Mcdowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2003).
The Impact of Pair Programming on Student Performance,
Perception and Persistence. Proceedings of the 25th
International Conference on Software Engineering, 602-607.

McDowell, C., Werner, L., Bullock, H. E., & Fernald, J. (2002).
The Effects of Pair-Programming on Performance in an
Introductory Programming Course. ACM SIGCSE Bulletin,
34(1), 38.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

63

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M. (2005). Is
Extreme Programming Just Old Wine in New Bottles: A
Comparison of Two Cases. Journal of Database
Management, 16(4), 41-61.

Nagappan, N., Williams, L., Ferzli, M., Wiebe, E., Yang, K.,
Miller, C., & Balik, S. (2003). Improving the CS1
Experience with Pair Programming. ACM SIGCSE Bulletin,
35(1), 359.

Nawrocki, J. R., Jasinski, M., Olek, L., & Lange, B. (2005). Pair
Programming vs. Side-by-Side Programming. Lecture Notes
in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics)
(Vol. 3792 LNCS, 28-38).

Nosek, J. T. (1998). The Case for Collaborative Programming.
Communications of the ACM, 41(3), 105-108.

Sanders, D. (2002). Student Perceptions of the Suitability of
Extreme and Pair Programming. Extreme Programming
Perspectives, 168-174.

Sherrell, L. B. & Robertson, J. J. (2006). Pair Programming and
Agile Software Development: Experiences in a College
Setting. Journal of Computing in Small Colleges, 22(2), 145-
153.

Sisson, L. H. (2011). Examining the Attitudes and Outcomes of
Students Enrolled in a Developmental Mathematics Course
at a Central Florida Community College. ProQuest
Dissertations and Theses, 206-n/a.

Stephens, M. & Rosenberg, D. (2004). The Irony of Extreme
Programming. Dr. Dobb’s Journal, 29(5), 44-47.

Tapia, M. (1996). The Attitudes toward Mathematics
Instrument. Paper presented at the Annual Meeting of the
Mid-South Educational Research Association, 1-19,
Tuscaloosa, AL.

Tapia, M. & Marsh, G. E. (2004). An Instrument to Measure
Mathematics Attitudes. Academic Exchange Quarterly.

Tingling, P. & Saeed, A. (2007). Extreme Programming in
Action: A Longitudinal Case Study. Human-Computer
Interaction. Interaction Design and Usability, 242-251.

Vanhanen, J. & Mäntylä, M. V. (2013). A Systematic Mapping
Study of Empirical Studies on the Use of Pair Programming
in Industry. International Journal of Software Engineering
and Knowledge Engineering, 23(9), 1221-1267.

Williams, L. A. & Kessler, R. R. (2000). All I Really Need to
Know about Pair Programming I Learned in Kindergarten.
Communications of the ACM, 43(5), 108-114.

Williams, L. A. & Kessler, R. R. (2001). Experiments with
Industry's “Pair-Programming” Model in the Computer
Science Classroom. Computer Science Education, 11(1), 7-
20.

Williams, L., Kessler, R. R., Cunningham, W., & Jeffries, R.
(2000). Strengthening the Case for Pair Programming. IEEE
Software, 17(4), 19-25.

Williams, L. & Upchurch, R. L. (2001). In Support of Student
Pair-Programming. SIGCSE Bulletin, 33(1), 327-331.

Williams, L., Wiebe, E., & Yang, K. (2002). In Support of Pair
Programming in the Introductory Computer Science Course.
Computer Science Education, 3(12), 197-212.

Wray, S. (2010). How Pair Programming Really Works. IEEE
Software, 27(1), 50-55.

AUTHOR BIOGRAPHIES

Dr. Kuanchin Chen is a Professor of Computer Information

Systems and John W. Snyder
Faculty Fellow at Western
Michigan University. His research
interests include electronic
business, Big Data, social
networking, project management,
privacy & security, online
behavioral issues, business
analytics, data mining, and human
computer interactions. He has
published in journals including

Information Systems Journal, Decision Support Systems,
Information & Management, Journal of Database
Management, Internet Research, Communications of the
Association for Information Systems, Electronic Commerce
Research and Applications, Journal of Global Information
Management, DATA BASE for Advances in Information
Systems, IEEE Transactions on Education, Decision Sciences
Journal of Innovative Education, Journal of Computer
Information Systems and many others. He is a member of
several journal editorial or advisory boards. Dr. Chen is also a
recipient of several research and teaching awards, including
awards given by scholarly journals & conferences, department,
college, university, and U.S. Fulbright program. Dr. Chen has
frequently been invited to give research talks at universities,
government agencies, and other institutions.

Dr. Alan Rea is a Professor of Computer Information Systems

in the Department of Business
Information Systems at the Haworth
College of Business, Western
Michigan University. Teaching
courses in information security and
object-oriented programming, Dr.
Rea integrates free and open source
software and whenever possible,
Agile approaches, to accommodate
the dynamic environment within
information systems. His research

concentrates on secure application and system development as
well as organizational information assurance and risk
management approaches. In particular, he has examined
security and privacy implications associated with developing,
deploying, and managing web and mobile applications as well
as Internet of Things devices. Dr. Rea also co-leads a cross-
disciplinary, grant-funded initiative to develop a mobile
application assisting in concussion recovery and education,
particularly for sports-related injuries among young adults. His
research has been published in the Journal of Information
Systems Education, International Journal of Electronic
Healthcare, Journal of Information Systems Security, Journal
of Information Privacy and Security, Journal of Computer
Information Systems, Communications of the ACM, and Journal
of Digital Forensics, Security and Law. Currently he co-directs
a cross-disciplinary M.S. and Graduate Certificate in
Information Security.

Journal of Information Systems Education, Vol. 29(2) Spring 2018

64

Information Systems & Computing

Academic Professionals

STATEMENT OF PEER REVIEW INTEGRITY

All papers published in the Journal of Information Systems Education have undergone rigorous peer review. This includes an
initial editor screening and double-blind refereeing by three or more expert referees.

Copyright ©2018 by the Information Systems & Computing Academic Professionals, Inc. (ISCAP). Permission to make digital
or hard copies of all or part of this journal for personal or classroom use is granted without fee provided that copies are not made
or distributed for profit or commercial use. All copies must bear this notice and full citation. Permission from the Editor is
required to post to servers, redistribute to lists, or utilize in a for-profit or commercial use. Permission requests should be sent to
the Editor-in-Chief, Journal of Information Systems Education, editor@jise.org.

ISSN 2574-3872

	Do Pair Programming Approaches Transcend Coding? Measuring Agile Attitudes in Diverse Information Systems Courses
	Abstract
	1. Introduction
	2. Literature Review
	2.1 Collaborative Programming
	2.2 Pairing Dyads Importance
	2.3 Pair Programming Tenets
	2.4 Programmer Attitude Shifts

	3. Methodology
	3.1 Student Sample
	3.2 Exercises
	3.3 Construct Operationalization

	4. Analysis and Results
	4.1 Demographic Difference on Attitude
	4.2 Predictors of Solution Accuracy/Quality
	4.3 Parameters' Influence

	5. Discussion
	5.1 Attitude Impact
	5.2 Predictors of Performance
	5.3 Confidence Impact
	5.4 Study Contributions
	5.5 Study Limitations

	6. Conclusion
	7. References

