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Abstract 

Exploring theoretically plausible alternative models for explaining the phenomenon under study is a 
crucial step in advancing scientific knowledge. This paper advocates model selection in information 
systems (IS) studies that use partial least squares path modeling (PLS) and suggests the use of model 
selection criteria derived from information theory for this purpose. These criteria allow researchers 
to compare alternative models and select a parsimonious yet well-fitting model. However, as our 
review of prior IS research practice shows, their use—while common in the econometrics field and 
in factor-based SEM—has not found its way into studies using PLS. Using a Monte Carlo study, we 
compare the performance of several model selection criteria in selecting the best model from a set 
of competing models under different model set-ups and various conditions of sample size, effect 
size, and loading patterns. Our results suggest that appropriate model selection cannot be achieved 
by relying on the PLS criteria (i.e., R2, Adjusted R2, GoF, and Q2), as is the current practice in 
academic research. Instead, model selection criteria—in particular, the Bayesian information 
criterion (BIC) and the Geweke-Meese criterion (GM)—should be used due to their high model 
selection accuracy and ease of use. To support researchers in the adoption of these criteria, we 
introduce a five-step procedure that delineates the roles of model selection and statistical inference 
and discuss misconceptions that may arise in their use. 

Keywords: Information Criteria, Partial Least Squares (PLS), Structural Equation Modeling (SEM), 
Model Selection, Model Selection Criteria, Monte Carlo Study 

Stacie Petter was the accepting senior editor. This research article was submitted on October 3, 2014, and went through 
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1 Introduction 
Sociotechnical systems within the purview of 
information systems (IS) research are inherently 
complex due to intricate underlying causal interactions 
and processes. Models are formal quantitative 
representations of theories and hypotheses that are 
devised to offer partial explanations of such complex 
systems (Lauenroth, 2003). Researchers build models 

that serve distinct goals in varied settings of interest to 
approximate these processes by abstracting away the 
details. This may result in the existence of multiple 
models reflecting varied theoretical lenses, levels of 
development, assumptions, interpretations, contexts, 
or even current fads. While this diversity enriches the 
literature, it also creates the threat of fragmentation of 
the field due to the individual researchers’ “parental 
affections” for particular models (Chamberlin, 1890; 
Grover, 2013). The role of the scientific process, and 
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model comparison in particular, is to overcome the 
human biases and sharpen our understanding over time 
by identifying and selecting the best approximating 
model(s) explaining a phenomenon, thereby bringing 
the field together (Purcell, 1992).  

Philosophers of science have long realized the 
importance of considering alternative explanations 
(i.e., models) when researching certain phenomena. 
For example, Popper (1959) argued that considering 
alternative explanations (or “possible causes”) is a 
crucial step prior to any attempt at the “falsification” 
of a theory. While pondering over the question of why 
some fields saw faster scientific advances than others, 
Platt (1964, p. 350) reasoned that,  

“The conflict and exclusion of alternatives 
that is necessary to sharp inductive 
inference has been all too often a conflict 
between men, each with his single Ruling 
Theory. But whenever each man begins to 
have multiple working hypotheses, it 
becomes purely a conflict between ideas”. 

More recently, Nuzzo (2015) warned against cognitive 
fallacies that may lead researchers to make serious 
scientific errors, such as collecting evidence to support 
a specific hypothesis, not looking for evidence against 
it, and ignoring alternative explanations. To counter 
this, she calls researchers to explicitly consider 
plausible (i.e., motivated by theory) alternative 
explanations that are not just strawmen, but span 
models that offer theoretically justified alternatives for 
explaining the phenomenon under study.1  

Alternative explanations can come in different forms 
and give rise to several models with different (or 
additional) antecedents and/or model relationships, all 
of which are plausible within the realm of the 
theoretical framework(s) under consideration. For 
example, researchers may derive alternative models 
from a single theory or multiple theories, such as 
Venkatesh, Morris, Davis, and Davis (2003) who 
relied on model comparison to benchmark the unified 
theory of acceptance and use of technology (UTAUT) 
model against alternatives. Similarly, Plouffe, Hulland, 
and Vandenbosch (2001) compared alternative models 
derived from the technology acceptance and the 
perceived characteristics of innovating frameworks to 
benchmark their explanatory power.  

Alternative models may also emerge when considering 
theories in new contexts with unique variables and 
effects. In this vein, Johns (2006) and Alvesson and 
Kärreman (2007) note that new contexts can result in 
important changes in theories, such as rendering 

                                                           
1  We emphasize plausible because the total number of 
alternative explanations, plausible plus implausible, can be 
exceedingly large (Dill, 2013). The role of theory is 

originally theorized relationships redundant or altering 
their magnitude, and/or creating new relationships by 
introducing new antecedents. For example, Venkatesh 
Thong, and Xu (2012) tailored the UTAUT to a 
consumer context by identifying additional constructs 
and relationships and compared their UTAUT2 model 
with the original model.  

Finally, alternative models may be created when 
researchers seek to build conceptual bridges across 
related streams of inquiry to provide a holistic 
understanding of the phenomenon. For example, Wixom 
and Todd (2005) note that the technology acceptance and 
user satisfaction literatures evolved in parallel and engage 
in model comparisons to integrate them.  

Thus, considering alternative models can facilitate the 
development of stronger theory by extending or 
challenging the assumptions of existing theory, 
integrating parallel streams of inquiry, or 
benchmarking against more accurate and generalizable 
alternatives (Grover, Lyytinen, Srinivasan, & Tan, 
2008). In line with these notions, IS theorists have long 
called for comparing alternative models, such as 
Roberts and Grover (2009, p. 89) who note that 
“specifying alternative models, is useful in theory 
building because it gives the researcher alternative 
perspectives concerning the focal phenomena.… We 
recommend that IS researchers compare alternate a 
priori models to discover the model that the 
observed data support best”.  

The need for considering alternative models has also 
been stressed in partial least squares path modeling 
(PLS) (Wold, 1980), a widely used regression-based 
technique in IS and other fields that estimates 
relationships in path models with latent and manifest 
variables (Hair, Hollingsworth, Randolph, & Chong, 
2017; Hair, Sarstedt, Ringle, & Mena, 2012; Khan et 
al. 2019; Lee, Petter, Fayard, & Robinson, 2011; 
Marcoulides & Saunders, 2006; Ringle, Sarstedt & 
Straub, 2012). For example, Rigdon, Sarstedt, and 
Ringle (2017, p. 13) recently stressed that “researchers 
should more routinely explore theoretically justified 
alternative models for explaining the phenomenon 
under study”. Similarly, Gefen, Rigdon, and Straub 
(2011) advise that PLS researchers should more 
frequently engage in model comparisons. These 
recommendations follow the principles of factor-based 
structural equation modeling where model 
comparisons have been routinely performed since the 
1980s (e.g., Anderson & Gerbing, 1988; Anderson, 
Gerbing, & Hunter, 1987; Gerbing & Anderson, 1988; 
Lin, Huang, & Wenig, 2017). In the same vein, 
Hermann Wold (1980, p. 70), the originator of PLS, 

paramount in judging whether such alternative explanations 
are plausible.  
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noted that model construction in PLS is an 
“evolutionary process”, which involves comparing 
alternative models, each grounded in theory (e.g., 
Wold, 1982, 1985). However, none of these authors 
offer any perspective on exactly how to empirically 
compare alternative models and select a model that is 
best supported by the data within the PLS framework.  

As we will show later, despite the central role played 
by alternative explanations in the scientific method, 
model selection is rarely performed in PLS-based 
studies. We will also show that PLS criteria (i.e., 
criteria used to assess the quality of the structural 
model—e.g., R2; Hair, Hult, Ringle, & Sarstedt, 2017) 
are largely uninformative in the context of model 
selection as they always improve with model 
complexity. Relying solely on them may lead 
researchers to select an overly complex model, which 
overfits the data by tapping spurious patterns in that 
specific sample (Myung, 2000). As a result, the model 
will generalize poorly to other samples and will have a 
limited possibility of being replicated by other 
researchers. In contrast, parsimonious yet well-fitting 
models are more likely to be scientifically replicable, 
explainable, and exhibit higher predictive abilities 
(Bentler & Mooijaart, 1989; Shmueli & Koppius, 
2011). Hence, empirical criteria used for selecting a 
model among alternatives must strike a balance 
between fit and parsimony (Myung, 2000), which none 
of the PLS criteria documented in textbooks (e.g., Hair, 
Hult, Ringle, & Sarstedt, 2017; Ramayah, Cheah, 
Chuah, & Memon, 2018), tutorial articles (e.g., Ali, 
Rasoolimanesh, Sarstedt, Ringle, & Ryu, 2018; 
Ringle, Sarstedt, Mitchell, & Gudergan, 2019), or 
recent research work on PLS (e.g., Franke & Sarstedt, 
2019; Sarstedt, Ringle, & Hair, 2017) are designed to 
do. In addition, the use of structural path statistical 
significance (p-values) allows drawing statistical 
inference for judging theoretical support in a 
selected model, but offers no objective basis for 
selecting a model from a set of alternative models 
within the PLS framework (Aho, Derryberry & 
Peterson, 2014; Burnham & Anderson, 2002; 
Johnson & Omland, 2004; Raftery, 1995). 

Addressing this critical gap in research, this study 
advocates empirically robust model selection practices 
by introducing criteria derived from information 
theory (e.g., Akaike, 1973) that allow identifying a 
parsimonious yet well-fitting model in a set of 
competing models within the PLS framework. These 
model selection criteria rely on the method of 
penalized-likelihood in which a term to penalize model 
complexity is added to the likelihood function (Sin & 

                                                           
2 A potential reason is that PLS estimation does not rely on 
maximum likelihood. Yet, as we describe later, these criteria 
have been successfully implemented in a variety of 
nonlikelihood contexts, including least squares settings 

White, 1996). While they have a solid theoretical 
standing and are routinely used in econometrics and 
factor-based structural equation modeling (e.g., Chin 
& Todd, 1995; Sin & White, 1996; Zellner, 
Keuzenkamp, & McAleer, 2001), model selection 
criteria have not been adopted in PLS to date.2  

In a series of three Monte Carlo studies, we compare 
and contrast the performance of model selection 
criteria with the PLS criteria under different scenarios 
that mimic the way prior literature has considered 
theoretically justified competing models, as evidenced 
in our review of empirical PLS studies published in a 
five-year period in four top IS journals. Our simulation 
results suggest that appropriate model selection cannot 
be achieved by relying on the PLS criteria (i.e., R2, 
Adjusted R2, GoF, and Q2), as is the current practice in 
academic research. Instead, model selection criteria, in 
particular the Bayesian information criterion (BIC) and 
the Geweke-Meese criterion (GM), should be used due 
to their high model selection accuracy and ease of use. 
To support researchers in the adoption of these criteria, 
we introduce a five-step procedure that delineates the 
roles of model selection and statistical inference and 
discuss potential misconceptions that may arise when 
using the criteria. Our overarching aim in this paper is 
to encourage the practice of model selection in IS 
research—and more specifically in PLS-based 
studies—to foster the creation of generalizable theories.  

2 Model Selection in PLS Studies: 
Current State of Affairs and 
Issues 

2.1 Review of Current PLS Model 
Selection Practices in IS Research 

To assess the degree to which IS researchers consider 
and compare theoretically motivated alternative 
models in their PLS analyses, we reviewed all articles 
published within a five-year period (April 2011-April 
2016) in four top journals in the field: Information 
Systems Research, Journal of the Association for 
Information Systems, Journal of Management 
Information Systems, and MIS Quarterly. We 
conducted a full text search in the EBSCO Business 
Source Premier database using the keywords “partial 
least squares” and “PLS” to identify papers that 
performed PLS analyses. We also searched the online 
websites of the journals. Searching across the database 
and websites using the same keywords allowed us to 
verify that we had captured an exhaustive set of recent 
PLS articles in these journals. Because of our interest 

where their calculation is fairly straightforward, and can be 
readily adapted for use in PLS.  
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in PLS-based model comparison, nonempirical papers 
such as editorials, conceptual articles, and simulation 
studies were not considered (e.g., Aguirre-Urreta & 
Marakas, 2012; Becker, Rai, Ringle, & Völckner, 
2013; Chin, Thatcher, & Wright, 2012).   

This search resulted in 78 empirical articles that used 
PLS. In 34 of the 78 articles (43.59%), the authors 
considered multiple models in their PLS analyses. 
Appendix A presents more details about these 34 
papers. In the majority of the 34 cases (25; 73.53%; 
Table A1 in Appendix A), however, researchers did 
not explicitly compare theoretically justified 
alternative models with the aim of selecting the best 
model from the set. Instead, authors specified multiple 
models to test the stability of effects by either adding 
or removing antecedent constructs and/or control 
variables (e.g., Arazy & Gellatly, 2012; Johnson & 
Cooper, 2015; Zhang, Venkatesh, & Brown, 2011), by 
comparing the original model with a saturated one 
(e.g., Armstrong, Brooks, & Riemenschneider, 2015), 
or by using alternative construct operationalizations 
(e.g., Grgecic, Holten, & Rosenkranz, 2015; 
Karahanna & Preston, 2013; Ray, Kim, & Morris, 
2012). Several of these studies included moderator 
analyses (e.g., Sun, 2012; Venkatesh, Thong, & Xu, 
2012; Xu, Benbasat, & Cenfetelli, 2011), which 
involve testing multiple models with and without 
interaction term(s) to test hypotheses related to the 
main and moderation effects (Hair, Hult, Ringle, & 
Sarstedt, 2017). In only 9 of the 34 studies (11.54%; 
Table A2 in Appendix A), the authors engaged in 
model comparisons in terms of Nuzzo (2015) by testing 
theoretically justified alternative model set-ups for 
explaining the phenomenon under study (e.g., Chandra, 
Srivastava, & Theng, 2012; Dinger, Thatcher, 
Treadway, Stepina, & Breland, 2015; Sykes, 2015). 
However, none of the studies attempted to empirically 
achieve a balance between model fit and parsimony.  

2.2 Issues Related to Current PLS 
Model Selection Practices 

2.2.1 Model Selection Based on Measures of 
Fit 

Our literature review shows that researchers’ most 
frequent justification for considering alternative 
models is to test the stability of effects by modifying 
the proposed model slightly, rather than generating 
alternative theoretical explanations. In the rare cases 
when they explored alternative model set-ups, 
researchers primarily compared the models in terms of 
the change in the models’ R2 values (8 of 9 studies), 
sometimes supplemented by an assessment of the 
changes in effect size (f2). The justification for this 
choice may be that the model with the highest R2 value 
does a better job than its rivals in capturing the signal 
in the data. While this choice may appear intuitive (or 

even forced due to the lack of model selection criteria 
in PLS), it can be problematic because the R2, as a 
goodness-of-fit index, provides a single measure that 
includes both, (1) a fit to the signal, and (2) a fit to the 
noise. Thus, a model can produce high R2 values due 
to a good fit to the noise despite its bad fit to the signal. 
A model’s ability to fit the noise is closely correlated 
with its complexity and one can always improve the 
model’s goodness-of-fit by increasing its complexity, 
such as by increasing the number of parameters 
(Myung & Pitt, 2004). In PLS, model complexity can 
increase due to a greater number of constructs, 
structural paths, or both (Hair, Sarstedt, & Ringle, 
2019). Increased model complexity may give an 
impression of improved model fit, but it may come at 
the cost of its generalizability (Myung, 2000). For 
example, in the context of linear regression it is 
always possible to fit a complex n-degree polynomial 
through n data points exactly but that may not fit other 
data well (Forster, 2000). 

Within the context of PLS, prior research has shown 
that R2 and related statistics such as Tenenhaus, 
Amato, and Esposito Vinzi’s (2004) goodness-of-fit 
index (GoF) are unsuitable for model selection. 
Specifically, Henseler and Sarstedt (2013) found that 
neither the GoF nor the relative GoF (GoFrel) were able 
to separate valid models from invalid ones. The 
tendency of both R2 and GoF-based measures to 
improve with model complexity means that these 
indices will almost always favor complex models over 
parsimonious ones, thus resulting in overfitting. 
Similarly, Evermann and Tate’s (2010) simulation 
study shows that these and related criteria display a 
“bewildering range of behavior” (p. 16) while 
evaluating and assessing misspecified models. Rönkkö 
and Evermann (2013) report similar results.  

2.2.2 Model Selection Based on the Null 
Hypothesis Paradigm 

In one study in our review (Xue, Zhang, Ling, & Zhao, 
2013), the authors compared models solely based on 
an assessment of the path coefficients and their 
significance (p-values). However, this approach to 
model selection raises issues of its own. First, the null 
hypothesis testing paradigm is limited by and becomes 
“strained” due to its two critical requirements: (1) the 
models being compared must be nested, and (2) one of 
the competing models must be assumed to be the “true” 
model (Aho, Derryberry, & Peterson, 2014). In 
practice, models under consideration may be 
nonnested and approximations of reality (i.e., not 
“true”). Second, the null hypothesis paradigm is 
structured in such a way that the null hypothesis cannot 
be directly supported by evidence; one can only fail to 
reject it in a given data set. More importantly, the null 
hypothesis paradigm cannot offer valid support for the 
alternative hypothesis that researchers truly seek 
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(Cohen, 1994). Hence, the null hypothesis exists only 
in a state of “suspended disbelief” (Wagenmakers, 
2007). The American Statistical Association has 
recently cautioned that an overreliance on p-values, 
and especially the prevalent thresholds (e.g., 1%, 5% 
significance levels), may cause selective inference and 
lead researchers to “cherry-pick” promising findings, 
the so-called “p-value hacking” issue (Wasserstein & 
Lazar, 2016). This holds especially for PLS where 
statistical inference typically relies on bootstrapping, 
which requires researchers to choose specific settings 
(e.g., sign change options, bootstrap samples used). 
These choices, however, can have a significant bearing 
on the results (Rönkkö, McIntosh, & Antonakis, 2015). 
Third, the null hypothesis testing paradigm offers no 
guidance for uncovering well-fitting models that are 
also parsimonious, thereby ignoring the principle of 
Occam’s razor. Fourth, the dependence of p-values on 
sample sizes may itself introduce biases (Lin, Lucas, & 
Shmueli, 2013). Finally, because the null hypothesis 
paradigm is the primary method of drawing inference 
and reporting results in PLS studies, its use as a model 
comparison tool can potentially induce publication 
bias (Easterbook et al., 1991; Rosenthal, 1979). 
Instead, the method for selecting a model should be 
kept separate from the method used for model 
inference and reporting. Raftery (1995) discusses in 
detail the problems associated with the use of p-values 
in model selection, including the practice of inclusion 
and exclusion of control variables.  

Due to the reasons mentioned above, the practice of 
model selection based on R2 measures and path 
significances in PLS studies is troublesome (Sobel, 
2000). Instead, model selection should be driven not so 
much by the evaluation of particular hypotheses and 
maximized variance in a given setting (data), as is the 
current practice, but by a focus on the generalizability 
of the model by balancing model fit and complexity, 
also referred to as the “bias-variance tradeoff” (Wit, 
Heuvel, & Romeijn, 2012). A more complex model 
generalizes poorly to new data sets because it overfits the 
original data by absorbing random error (Myung 2000). In 
contrast, parsimonious models are likely to be 
generalizable and outperform complex models in their out-
of-sample predictive abilities (Shmueli & Koppius, 2011).   

Because generalizability cannot be estimated from a 
given sample, it is achieved by trading off model fit 
with complexity. In fact, generalizability is considered 
the “formal implementation of Occam’s razor” 
(Myung & Pitt, 2004). In addition to its empirical 
role in predictive relevance and generalizability, 
parsimony is also regarded by many social scientists 
as an important ingredient in theory development 
(e.g., Gregor, 2006; Simon, 2001), precisely 
because it “explains much by little” (Friedman, 
1994; p.153). Thus, generalizability-driven model 
selection has an integral role in the creation of 

“consilient theories”, that is, theories that unify and 
systematize a field by explaining the facts taken 
from several domains (Thagard, 1978).    

Model selection criteria strive to achieve the goal of 
maximizing generalizability by weighing goodness-of-
fit relative to model complexity and allow the 
consideration of both nested and nonnested models 
without necessarily requiring that any of the models be 
“true” (Aho et al., 2014; Myung & Pitt, 2004). The 
next section provides more details about these criteria.  

3 Model Selection Criteria 
The research on developing methods to select the best 
model among a set of competing models has a 
distinguished history in the regression literature. The 
simplest criterion that might be considered in PLS is 
the R2, which is calculated as: 

𝑅𝑅𝑘𝑘2 = 1 −  𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘)
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

  (1) 

where SSerror(k) is the sum of squared errors for the kth 
model in a set of models and SStotal is total sum of 
squares. However, given that R2 will increase as 
predictors are added to the model and hence will always 
select a more complex model, regression researchers 
have widely used the Adjusted R2, which attempts to 
correct for model complexity. It is given by: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑅𝑅𝑘𝑘2 = 1 −  � 𝑛𝑛−1
𝑛𝑛−𝑝𝑝𝑘𝑘

� �𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒(𝑘𝑘)
𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡

� (2) 

where pk is the number of coefficients (predictors plus 
intercept) in the kth model. Taking the number of 
coefficients into account leads to a conceptual 
improvement over the R2 because an effort is made to 
discount improvement in fit resulting solely from the 
model complexity. However, Berk (2008, p. 29) notes 
that “Adjusted R2 lacks much formal justification” as 
the criterion is not based on rigorous statistical theory. 

In the late 1960s and the early 1970s, model selection 
criteria that penalize model complexity in the interest 
of the principle of parsimony began to appear in the 
literature. These criteria were developed under the 
framework of information theory, a mathematical 
theory of communication, which studies the 
transmission, processing, extraction, and utilization of 
information (e.g., Akaike, 1973). McQuarrie and Tsai 
(1998) categorized the development of these criteria in 
two parallel streams of work. The first stream of model 
selection criteria seek to select a model that is closest 
to the unknown true model that generates the observed 
data and thereby defines the correlation patterns 
among the variables of interest. Relevant criteria in this 
stream include Akaike’s (1970) final prediction error 
(FPE), Mallow’s Cp (Mallows, 1973), Akaike’s (1973) 
information criterion (AIC), Sugiura’s (1978) 
corrected AIC (AICc), and McQuarrie and Tsai’s 
(1998) unbiased AIC (AICu). The earliest selection 
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criteria, FPE and Cp, both relied on the L2 norm as the 
basis of measuring the distance between the true model 
and a candidate model (McQuarrie & Tsai, 1998), 
which is defined as:  

∆𝐿𝐿2(𝑀𝑀𝑡𝑡 ,𝑀𝑀𝑎𝑎) =  �𝜇𝜇𝑀𝑀𝑡𝑡 −  𝜇𝜇𝑀𝑀𝑎𝑎�
2, (3) 

where 𝑀𝑀𝑡𝑡 is the true model with mean 𝜇𝜇𝑀𝑀𝑡𝑡, and  𝑀𝑀𝑎𝑎 
is the candidate model with mean 𝜇𝜇𝑀𝑀𝑎𝑎 . In contrast 
to FPE and Cp, AIC, AICc, and AICu are based on 
the information theoretic notion of the Kullback-
Leibler (KL) discrepancy to measure the distance, 
which is defined as: 

∆𝐾𝐾𝐾𝐾(𝑀𝑀𝑡𝑡 ,𝑀𝑀𝑎𝑎) =  𝐸𝐸𝐹𝐹𝑡𝑡 �log 𝑓𝑓𝑡𝑡(𝑥𝑥)
𝑓𝑓𝑎𝑎(𝑥𝑥)

�, (4) 

where  𝑀𝑀𝑡𝑡  is the true model with density 𝑓𝑓𝑡𝑡(𝑥𝑥)  and 
distribution 𝐹𝐹𝑡𝑡  and  𝑀𝑀𝑎𝑎  is the candidate model. The 
main advantage of the AIC-type criteria is that they can 
be used to measure the relative distances of competing 
models from the unknown true model, even when the 
absolute distance to the true model is unknown. This 
characteristic allows researchers to compare the 
relative distances of several competing models and 
select the model closest to the unknown true model. 
This is equivalent to selecting the model with the 
smallest value on these criteria. All the distance-based 
criteria discussed here—FPE, Cp, AIC, AICc and 
AICu—are asymptotically efficient (McQuarrie & 
Tsai, 1998), which means that they tend to select the 
model with the minimum mean squared error between 
the unknown true model and a candidate model as the 
sample size increases (Shibata, 1980). 

The goal of the second stream of model selection 
criteria is to provide an estimate of the posterior 
probability of a model being true and choose the model 
that maximizes this probability on a given data set. 
These model selection criteria are considered 
asymptotically consistent, which means that when the 
true model is included in the set of models being 
considered, the probability that the criteria will select 
it approaches unity with the increase in sample size 
(McQuarrie & Tsai, 1998; Hastie et al., 2009). 
Examples of such criteria include Schwarz’s (1978) 
Bayesian information criterion (BIC), Geweke and 
Meese’s (1981) criterion (GM), Hannan and 
Quinn’s (1979) criterion (HQ) and McQuarrie and 
Tsai’s (1998) corrected HQ criterion (HQc). 
Generally, researchers select a model with the 
smallest value on these criteria.   

The model selection criteria from both the streams can 
be written as a function of the maximum value of the 
likelihood function. In models that are estimated using 
maximum likelihood (e.g., linear and logistic 
regression), the computation of the criteria is 

                                                           
3  While formal presentations of model selection criteria 
typically rely on maximum likelihood estimation, other 

straightforward, and there exists extensive literature 
regarding their performance in various scenarios and 
methodological contexts, such as mixtures of normal 
distributions (e.g., Biernacki, Celeux, & Govaert, 
2000; Bozdogan, 1994; Celeux & Soromenho, 1996), 
mixture regression models (e.g., Andrews & Currim, 
2003a; Becker, Ringle, Sarstedt, & Völckner, 2015; 
Hawkins, Allen, & Stromberg, 2001), and mixture 
logit models (e.g., Andrews & Currim, 2003b).  

Model comparison has also been proposed in the 
factor-based structural equation modeling context 
where “comparing the fit of alternative models has 
become a standard procedure” (Kumar & Sharma, 
1999, p. 171). However, these comparisons typically 
involve testing nested models (Anderson & Gerbing, 
1988) using the chi-squared difference test (Rust, Lee, 
& Valente, 1999). Comparing nonnested models is less 
common in factor-based structural equation modeling 
and requires different measures. Among these, the 
model selection criteria feature most prominently (e.g., 
Rust et al., 1999), and their performance has also been 
evaluated in several simulation studies. For example, 
Rust, Simester, Brodie, and Nilikant (1995) found that 
AIC and BIC perform better than computationally 
intensive jackknife or split sample-based criteria. 
Similarly, Homburg (1991) found these criteria to 
outperform simple cross-validation.  

In contrast to factor-based structural equation 
modeling, PLS estimation is not performed using 
maximum likelihood but rather relies on nonlinear 
estimation by iterative least squares. In this scenario, 
closed-form formulas for the different model selection 
criteria do not exist. However, when the error 
distribution is normal with a constant variance, the 
maximum likelihood-based formulas can be written as 
a function of the model residuals, and specifically the 
sum of squared residuals (SSError) (Burnham & 
Anderson, 2002, p. 63; see also McQuarrie & Tsai, 
1998). These least squares formulations using the 
model residuals are merely a special case of the 
equivalent likelihood estimation (Burnham & 
Anderson, 2002; Navarro & Myung, 2005). In fact, 
model selection criteria based on SSError are routinely 
computed in least squares settings (Anderson, Burnham, & 
Thompson, 2000; Burnham & Anderson, 2001; Burnham, 
Anderson, & Huyvaert, 2011; Johnson & Omland, 2004; 
Li, Morris, & Martin, 2002; Navarro & Myung, 2005; 
Symonds & Moussalli, 2010; Yamaoka, Nakagawa, & 
Uno, 1978), as well as in more general settings such as 
weighted least squares and even nonlinear models (e.g., 
Spiess & Neumeyer, 2010). In all these cases, the SSerror is 
used in place of the maximum likelihood value. We use 
these versions of the formulas in our study because SSError 
can be easily computed from PLS models.3   

general approaches outside the likelihood framework have 
also been developed (e.g., Konishi & Kitagawa, 1996; Pan, 
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Appendix B presents the details of all the criteria 
discussed in this section and explains their 
computation. As shown in the formulas in Table B1, 
each criterion can be written as a combination of two 
terms: the first term can be interpreted as a measure of 
lack of model fit, while the second term can be 
interpreted as the penalty for increasing model 
complexity (Burnham & Anderson, 2002). Therefore, 
these criteria try to achieve a trade-off between model 
fit and model complexity (Burnham & Anderson, 2001).   

4 Monte Carlo Study 
As the statistical properties of model selection criteria 
are largely beyond the reach of established asymptotic 
theory (e.g., Vrieze, 2012), Monte Carlo studies 
have become the norm for evaluating their 
performance (e.g., Andrews & Currim, 2002a, b; 
Becker et al., 2015; Hawkins et al., 2001). 
Following this standard practice, we conducted a 
Monte Carlo study under different model and data 
constellations. Specifically, our simulation study 
considers the following model selection criteria: 

• Asymptotically efficient criteria: AIC, AICc, 
AICu, Cp, and FPE 

• Asymptotically consistent criteria: BIC, GM, 
HQ, and HQc 

As several prior studies in top IS journals have relied 
on the PLS criteria for comparing competing models 
(e.g., Plouffe et al., 2001; Venkatesh, Brown, 
Maruping, & Bala, 2008; Venkatesh et al., 2003; 
Venkatesh et al., 2012; Wixom & Todd, 2005), we 
include the R2, Q2, and GoF in our study. In addition, 
we include the Adjusted R2 which is another PLS 
criterion that Sarstedt, Wilczynski, and Melewar 
(2013) brought forward in this context (Hair, Hult, 
Ringle, & Sarstedt, 2017). 

4.1 Study Design 
Drawing on the recommendations by Paxton, Curran, 
Bollen, Kirby, and Chen (2001), we utilize models of 
similar structure and complexity as those commonly 
encountered in IS research, such as the UTAUT model 
(Venkatesh et al., 2003; 2008) or other models of 
information systems success (e.g., Iyengar, Sweeney, 
& Montealegre, 2015; Park, Sharman, & Rao, 2015; 
Polites & Karahanna, 2012). Furthermore, the models 
are similar to those used in prior PLS-based simulation 
studies (e.g., Dijkstra & Henseler, 2015; Reinartz, 

                                                           
2001a; b; Yafune, Funatogawa, & Ishiguro, 2005). Model 
selection methods are now available for nonparametric 
regression, splines, kernel methods, martingales, generalized 
estimating equations (Burnham & Anderson, 2002), and 
even genetic algorithms (Pond, Posada, Gravenor, Woelk, & 
Frost, 2006).   

Haenlein, & Henseler, 2009; Ringle, Sarstedt, & 
Schlittgen, 2014). All competing structural models in 
our study have five reflectively measured latent 
variables, three of which are exogenous (ξ1, ξ2 and ξ3), 
while two are endogenous (η1 and η2).4 Each construct 
has four items. The focus of our investigation is the 
target endogenous construct η2.   

We created three separate simulation set-ups to mimic 
possible model selection scenarios, depending on the 
breadth of variables available and the set of competing 
models the researcher is able to theorize. A core 
assumption in the three situations we discuss below is 
that the researcher generates a number of competing 
models, all of which are not incorrect, and at least one 
of which is a consistent (with correctly specified paths) 
but parsimonious version of reality—and this version 
is included in the set of competing models. This is a 
reasonable assumption in exploratory settings where 
the researcher is likely to possess only a partial or 
incomplete knowledge of reality due to evolving 
theory and may not have access to the true model that 
generates the observations. Thus, the researcher is able 
to correctly specify a subset of theoretical linkages in 
at least one of the competing models. This approach is 
consistent with the way that several studies have 
examined competing models that are theoretically 
justified. For example, in an effort to “further test the 
robustness of the proposed model and examine if the 
proposed configuration does explain the maximum 
variance in the final dependent variable”, Chandra et 
al. (2012, p. 817) modified their originally 
hypothesized model by dropping two paths and 
comparing the resulting models’ R2 values with the 
original one. Similarly, Dinger et al. (2015) contrasted 
their original model against a reduced model, which 
only included those paths that the prior estimation 
rendered significant. Other studies have considered 
competing models by dropping constructs from the 
original model (e.g., Tan, Benbasat, & Cenfetelli, 2013) 
or including an additional construct (e.g., Sykes, 2015), 
which our final simulation set-up considers. In the 
following, we describe the three set-ups beginning with 
the least likely to occur in practice to the most likely: 

Case 1: The first case mimics the condition where the 
researcher has access to all latent variables that helped 
create the observed data. In addition, it assumes that 
the researcher has correctly theorized and included the 
true model (i.e., the data-generating model) that 
depicts the reality in its entirety in the competing 
model set-up. We note that this condition is very 

4 We focus on structural model comparisons for two reasons. 
First, the structural paths in a PLS model typically represent 
the theorized hypotheses under consideration, and second, 
the structure of the measurement model should be 
established prior to any analysis of the structural relations.  
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unlikely to occur in practice because exploratory 
research typically involves situations where 
researchers are unlikely to have access to or awareness 
of the complete set of variables and linkages that 
formed the observed reality. This is especially true in 
IS research where context-specific variables play 
significant roles in affecting reality (e.g., Addas, 2010; 
Moon & Kim, 2001; Raymond, 1985).   

This condition consists of a set of seven competing 
structural models (Figure 1), which may be thought of 
as representing a set of competing hypotheses that the 
researcher wants to explore. Here, Model 5 depicts the 
data generation process (i.e., the true model) and is 
included in the competing set. Models 1, 3, 4, and 6 are 
incorrectly specified; that is, they have incorrect 
linkages that are not theoretically consistent with the 
data generation process. Model 2 is a parsimonious and 
consistent version of the data generation process; that 
is, it includes only correctly specified paths, although 
not all. Finally, Model 7 is a fully saturated model with 
all possible paths explaining η2 that serves as the basis 
for assessing overall fit and represents the common 
situation in research where R2 acts as the sole basis for 
model comparisons. The goal of model selection in this 
set-up is to reject incorrect models on the basis that they 
represent incorrect theoretical linkages. Furthermore, 
the saturated model should also be rejected in the 
interest of parsimony (Occam’s razor) and due to the 
inclusion of incorrect linkages. Since the data generating 
process (Model 5) is included in the competing set-up, 
its selection represents the best-case scenario for the 
researcher. Failing that, the next best option is the 
selection of Model 2, which represents a parsimonious 
but consistent version of the data generation process.  

Case 2: This condition mimics the case where the 
researcher has access to all latent variables that helped 
create the observed data but fails to incorporate all 
relevant theoretical linkages among them; that is, the 
researcher does not include the data generating model 
in the competing model set-up. Thus, this condition is 

similar to Case 1 with one critical difference: there are 
six competing models and the researcher has failed to 
theorize and include the data-generating model in the 
competing set. That is, Model 5 has not been included 
(Figure 1). In this case, the ideal model selection 
criterion should choose Model 2, which is the 
parsimonious and consistent version of the data 
generation process, and rule out other models. We 
note that, similar to Case 1, this condition is also 
unlikely to occur in practice because researchers 
typically do not have access to the exhaustive set of 
constructs that generated the data.  

Case 3: The third, and more realistic, condition 
assumes the existence of a latent variable that is 
unavailable to the researcher at the time of data 
collection or otherwise unknown, but that affected the 
observed data. There are several reasons why a 
researcher may not possess certain latent variables that 
took part in the data generation process. These include, 
but are not limited to, lack of access to data or 
unavailability, weak or nascent theory, theory 
exploration, incorrect logic, or accidental neglect. As 
seen in Figure 2, the data-generating model (Model X) 
is not included in the competing set and has an 
extraneous variable (ξ4) that is not available to the 
researcher but that nevertheless took part in the data 
generation process. We think it is more likely that 
researchers will identify and collect variables with 
stronger effects based on logic and theory but may 
ignore variables with weaker effects. Thus, the 
extraneous variable (ξ4) has a weak direct effect (-0.1) 
on η2 that makes it more prone to omission. The goal 
of model selection in this context is to rule out 
incorrect and saturated model specifications, and 
select either Models 2 or 5, both of which now 
represent parsimonious but consistent explanations of 
the data generation process.  
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Figure 1. Simulation Models (Cases 1 and 2) 

Note: The effect size on 𝛾𝛾2  was 
one of the modified design factors 
with values 0.1, 0.2, 0.3, 0.4 and 
0.5. 
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Figure 2. Simulation Models (Case 3) 
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4.2 Experimental Conditions and Data 
Generation Method 

In each of the three cases outlined above, data were 
generated for the underlying data-generating model 
(i.e., Model 5 in Cases 1 and 2, Model X in Case 3) by 
manipulating the following experimental conditions: 

• Six conditions of sample size (50, 100, 150, 
200, 250, and 500);5 

• Five conditions of effect size on the path ξ1 → 
η2 (0.1, 0.2, 0.3, 0.4, and 0.5); 

• Three factor loading patterns with different 
levels of average variance extracted (AVE): 
o High AVE with loadings: (0.9, 0.9, 0.9, 

and 0.9), 
o Moderate AVE with loadings: (0.8, 0.8, 

0.8, and 0.8), and 
o Low AVE with loadings: (0.7, 0.7, 0.7, 

and 0.7).    

The data generation used in this study draws on a 
procedure similar to the one that Schlittgen (2015) 
presents in his SEGIRLS package for the R statistical 
software. The approach generates data from the 
covariance matrix of the indicators, followed by a 
Cholesky decomposition and multiplication with a 
sample of the sought data distribution.6 The simulation 
study considers the case of normally distributed data as 
recent research has shown that PLS estimates are 
consistent when estimating data from composite model 
populations (Sarstedt, Hair, Ringle et al., 2016; Hair, 
Hult, Ringle, Sarstedt, & Thiele, 2017)—as it is the 
case in our research.7 All simulations were run in the 
R computing cluster environment (R Development 
Core Team, 2014) using the sempls (Monecke, 2012) 
and the snowfall package for parallel computing 
(Knaus, 2013). Drawing on Reinartz et al. (2009), we 
ran 300 replications for each of the 90 simulation 
conditions, yielding a total of 27,000 cases. For each 
case, we used the corresponding data set as the input to 
estimate each of the models under consideration (e.g., 
Models 1-7 in Case 1). 

The dependent variable of interest was a binary vector 
with a value of 1 denoting the model selected by the 
criterion in that run, and 0 otherwise. In the case of the 

PLS criteria (R2, Adjusted R2, GoF, and Q2) a model 
was selected if the criterion achieved the highest value 
among the competing models. In contrast, in the case 
of asymptotically efficient and consistent model 
selection criteria, a model was selected if the criterion 
achieved the lowest value among the competing 
models (McQuarrie & Tsai, 1998).  

5 Analysis and Results 

5.1 Overall Model Selection Rates 
We first describe the overall model selection rates (i.e., 
the percentage of times the criteria selected each model 
in the set) across the three cases. Recall that Case 1 
represents the (unlikely) scenario in which both the full 
data generation (Model 5) and parsimonious but 
consistent (Model 2) models are included in the 
competing set. In this case, which has 7 competing 
models, a completely random choice would select each 
model 14.3% of the time, on average. Table 1A 
presents the overall model-specific selection rates across 
all experimental conditions for this case. For example, 
the first cell in Table 1A indicates that across all the 
simulation runs, AICc chose Model 1 in 7% of the cases. 

In the following, we use the term “success” to denote 
the choice of Model 2 or 5. Furthermore, we denote the 
R2, Adjusted R2, GoF, and Q2 as PLS criteria, as these 
criteria have previously been used in the PLS context.  

In terms of the PLS criteria, GoF performed the worst 
(overall success rate 4.07%) due to its overwhelming 
tendency to favor the saturated model. GoF selected 
Models 2 and 5 in only 0.07% and 4% of cases, 
respectively. R2 gave somewhat better performance 
(overall success rate 30.53%) but had a strong 
preference for the saturated model (69.13%). Q2 had a 
better success rate (50.66%) but it tended to select an 
incorrect model (Model 6) with some frequency 
(19.97%). Adjusted R2 performed better than other 
PLS criteria (overall success rate 69.31%), because 
of the penalty it applies for overfitting. However, 
it still selected the saturated model in 30.14% of 
the runs, suggesting that it did not sufficiently 
penalize overfitting. Overall, none of the PLS 
criteria performed satisfactorily.

   

  

                                                           
5 Note that sample sizes of 50 are generally unacceptable 
when using PLS. However, in line with prior PLS-based 
simulation studies (Aguirre-Urreta & Rönkkö, 2018; 
Goodhue, Lewis, & Thompson, 2012; Rönkkö & Evermann, 
2013), we considered this factor level to explore the criteria’s 
performance under such a boundary condition.  

 

6  For a more detailed explanation on the data generation 
approach, see Ringle et al. (2014). 
7 Nevertheless, we also tested the models using non-normal 
data (chi-squared distributed with df = 3, t-distributed with df 
= 5, and uniform). The results were highly stable across 
different data distributions.  
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Table 1A. Overall Model Selection Rates (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

Criteria 
Model # Success 

rate 1 2 3 4 5 6 7 

Asymptotically 
efficient 

AICc 0.07 69.23 0.02 0.64 15.03 0.09 14.93 84.26 

AICu 0.06 73.36 0.04 0.65 16.18 0.25 9.47 89.54 

AIC 0.06 67.93 0.02 0.6 14.67 0.04 16.68 82.61 

CP 0.07 73.01 0.03 0.63 16.09 0.08 10.11 89.09 

FPE 0.06 67.96 0.02 0.6 14.68 0.04 16.65 82.63 

Asymptotically 
consistent 

BIC 0.06 77.85 0.04 0.65 17.49 0.53 3.38 95.34 

GM 0.07 79.34 0.07 0.66 18.02 0.82 1.02 97.37 

HQc 0.06 74.93 0.03 0.66 16.64 0.3 7.38 91.57 

HQ 0.06 74.13 0.03 0.64 16.35 0.17 8.63 90.47 

PLS 

GoF 0.05 0.07 0.01 0.01 4 0.03 95.87 4.07 

R2 0.01 28.44 0 0.32 2.1 0.03 69.13 30.53 

Adj R2 0.04 57.5 0 0.5 11.81 0.02 30.14 69.31 

Q2 3.67 25.41 8.34 2.8 25.25 19.97 14.72 50.66 

Note: Success rate denotes the choice of Model 2 or 5. 

The set of asymptotically efficient criteria (AIC, AICc, 
AICu, FPE, and Cp) had significantly better model 
selection rates than the PLS criteria. AICu and Cp had 
success rates approaching 90%, followed by AICc 
(84.26%), FPE (82.63%), and AIC (82.61%). While 
these criteria soundly rejected incorrect model 
specifications, they had a fair tendency to select the 
saturated model (overall rates range from 9.47% to 
16.68%), suggesting that their penalty functions, while 
much better than Adjusted R2, still left some doubts 
about their utility. Finally, these criteria displayed 
stronger preference for Model 2 (67.93% to 73.36%) 
over Model 5 (14.67% to 16.18%). 

The asymptotically consistent criteria (BIC, GM, HQ, 
and HQc) performed the best among all criteria. In 
particular, BIC and GM had almost perfect success 
rates (95.34% and 97.37%, respectively) across all 
experimental conditions, followed by HQc and HQ 
(91.57% and 90.47%, respectively). The penalty 
functions employed by BIC and GM helped reject the 
saturated model in almost all the cases (Model 7 
selection rates: 3.38% and 1.02%, respectively). BIC 
and GM also displayed stronger preference for Model 
2 (77.85% and 79.34%, respectively) over Model 5 
(17.49% and 18.02%, respectively) due to the strong 
penalty functions. These results suggest that even in 

the unlikely scenario where the reality has been 
captured (as Model 5) and included in the competing 
set, researchers might not have a high chance of 
selecting it. However, they can be very confident that 
the use of these criteria, in particular BIC and GM, will 
lead them to select a consistent (but parsimonious) 
version of reality, which could mean the possibility 
of missing one or more paths but not having 
incorrect paths or paths that are irrelevant (as in the 
saturated model). This is a not an unreasonable 
compromise in exploratory research.  

Case 2 represents the scenario where the data- 
generating model (i.e., Model 5) was left out of the 
competing set even when all relevant variables were 
accessible to the researcher. This situation may occur 
due to theoretical oversight in exploratory research. In 
this case, which includes six competing models, a 
completely random choice would select each model 
16.7% of the time, on average. Table 1B presents the 
overall model selection rates across all experimental 
conditions for this case. The trends in the results are 
very similar to Case 1, and in the absence of Model 
5, all the criteria selected Model 2 with high 
regularity. BIC and GM again emerged as the best 
performing criteria with overall success rates of 
95.30% and 97.35%, respectively.
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Table 1B. Overall Model Selection Rates (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included 

Criteria 
Model # 

Success rate 
1 2 3 4 6 7 

Asymptotically efficient 

AICc 0.07 84.10 0.02 0.64 0.09 15.09 84.10 

AICu 0.06 89.47 0.04 0.65 0.25 9.54 89.47 

AIC 0.06 82.37 0.02 0.60 0.04 16.92 82.37 

CP 0.07 88.97 0.03 0.63 0.08 10.23 88.97 

FPE 0.06 82.40 0.02 0.60 0.04 16.89 82.40 

Asymptotically consistent 

BIC 0.06 95.30 0.04 0.65 0.54 3.42 95.30 

GM 0.07 97.35 0.07 0.66 0.82 1.04 97.35 

HQc 0.06 91.51 0.03 0.66 0.30 7.44 91.51 

HQ 0.06 90.40 0.03 0.64 0.17 8.70 90.40 

PLS 

GoF 0.06 0.21 0.03 0.01 0.03 99.71 0.21 

R2 0.01 29.76 0.00 0.32 0.03 69.91 29.76 

Adj R2 0.04 68.97 0.00 0.50 0.02 30.48 68.97 

Q2 3.67 49.01 8.35 2.85 20.01 16.25 49.01 

Note: Success rate denotes the choice of Model 2. 

The success rates for asymptotically efficient criteria 
ranged between 82.4% and 89.47%. In contrast, results 
for the PLS criteria largely parallel those from Case 1. 
GoF and R2 achieve low success rates and have a 
strong tendency to select the saturated model. Adjusted 
R2 and Q2 perform somewhat better than in Case 1 with 
success rates of 68.97% and 49.01%, respectively. Yet, 
both criteria have a pronounced tendency of selecting 
the saturated model. These results strongly suggest that 
the model selection criteria, in particular BIC and GM, 
can help researchers rule out incorrect specifications 
and select theoretically consistent models in contexts 
where theoretical oversight is likely. 

Case 3 represents the more likely and realistic scenario 
where some relevant variables are unavailable to the 
researcher and render the data-generating model out of 
reach. In this case, the best a researcher could hope for 
is the ability to select a consistent but parsimonious 
version of reality (i.e., either Model 2 or 5). In this 
case, which includes seven competing models, a 
completely random choice would select each model 
14.3% of the time, on average. Table 1C presents the 

overall model selection rates across all experimental 
conditions for this case.   

The results in Table 1C largely parallel those in 
previous cases. Again, GoF and R2 performed the 
worst (success rates of 3.79% and 30.48%, 
respectively) among all criteria and displayed 
significant tendencies to favor the saturated model. Q2 
and Adjusted R2 performed better but their 
performances were not satisfactory (50.27% and 
69.53%, respectively). The asymptotically consistent 
criteria performed the best, and BIC and GM, in 
particular, displayed near perfect success rates 
(95.22% and 97.35%, respectively), while the 
asymptotically efficient criteria plateaued around 82-
90%. Thus, the use of consistent criteria, such as BIC 
and GM, may allow selecting consistent but 
parsimonious versions of reality with near certainty, 
even in cases where reality consists of variables that 
are out of reach. Next, to gain deeper insights about 
how the experimental conditions affected the model 
selection rates, we present the analysis broken down 
by specific experimental conditions. 
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Table 1C. Overall Model Selection Rates (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included 

Criteria 
Model # Success 

rate 1 2 3 4 5 6 7 

Asymptotically 
efficient 

AICc 0.06 69.24 0.03 0.64 14.85 0.08 15.1 84.1 

AICu 0.06 73.29 0.05 0.64 16.01 0.19 9.76 89.3 

AIC 0.05 67.93 0.02 0.58 14.47 0.06 16.9 82.4 

CP 0.06 72.98 0.03 0.65 15.93 0.07 10.29 88.91 

FPE 0.05 67.95 0.02 0.58 14.47 0.06 16.87 82.43 

Asymptotically 
consistent 

BIC 0.06 78.06 0.06 0.63 17.17 0.5 3.52 95.22 

GM 0.07 79.76 0.09 0.68 17.58 0.79 1.03 97.35 

HQc 0.07 75.03 0.06 0.64 16.44 0.21 7.55 91.47 

HQ 0.06 74.03 0.04 0.64 16.2 0.12 8.91 90.23 

PLS 

GoF 0.03 0.05 0 0.01 3.74 0.01 96.17 3.79 

R2 0.01 28.27 0 0.35 2.21 0.01 69.16 30.48 

Adj 
R2 0.04 57.77 0.01 0.5 11.76 0.01 29.91 69.53 

Q2 3.3 25.63 8.14 2.93 24.64 20.45 15.11 50.27 

Note: Success rate denotes the choice of Model 2 or 5. 

5.2 Model Selection Rates by Sample 
Size 

Our simulation design considers six sample size 
conditions (50, 100, 150, 200, 250, and 500). We 
expected that, in general, model selection rates would 
improve with sample size due to a gain in statistical 
power. However, the results tell a more nuanced story 
where performances of some criteria improved more 
than others, while others remained stagnant, and in some 
cases deteriorated. Ideally, we would like to pinpoint 
criteria that not only provide good performance at 
smaller sample sizes, but that also show significant 
improvements with an increase in sample size. 

The overall trends in the results are very similar across 
Cases 1, 2, and 3. Tables 2A, 2B, and 2C present 
detailed model specific success rates broken down by 
sample size. In terms of the PLS criteria, the 

performances of GoF and R2 slightly deteriorate with 
an increase in sample size across all three cases. For 
example, the overall success rates of R2 decreases from 
32.58%, at sample size 50, to 27.76%, at sample size 
500, for the most likely scenario (Case 3, Table 2C). 
On closer inspection, this performance decrease can be 
attributed to an increase in the preference for the 
saturated model with increasing sample size. More 
precisely, R2 favored the saturated model (Model 7) 
65.38% times at sample size 50, but this increased to 
72.24% at sample size 500. In contrast, the Q2 success 
rate improved from 39.18% to 57.51% but was still 
low. This pattern persisted across all three cases. These 
results strongly suggest that in the case of PLS criteria, 
the narrative “the greater the sample size, the higher 
the accuracy” is incorrect as far as model selection is 
concerned. The very same holds for Adjusted R2, 
whose success rates show a similar development as 
those of GoF and R2 for varying sample sizes.
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Table 2A. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

Sample 
size Criteria 

Model # Success 
rate 1 2 3 4 5 6 7 

50 

AICc 0.40 68.49 0.13 3.36 15.92 0.53 11.21 84.40 

AICu 0.33 69.62 0.22 3.40 16.40 1.51 8.53 86.03 

AIC 0.36 65.53 0.11 3.18 15.00 0.22 15.64 80.54 

         

CP 0.38 70.32 0.16 3.33 16.50 0.47 8.87 86.82 

FPE 0.36 65.64 0.11 3.18 15.03 0.22 15.51 80.67 

BIC 0.33 70.51 0.22 3.38 16.85 3.13 5.59 87.36 

GM 0.36 71.97 0.40 3.45 17.52 4.74 1.58 89.49 

HQc 0.33 70.22 0.20 3.42 16.72 1.82 7.31 86.94 

HQ 0.31 68.84 0.20 3.33 15.94 1.04 10.36 84.78 

GoF 0.29 0.29 0.07 0.07 5.85 0.16 93.54 6.13 

R2 0.07 30.78 0.00 1.73 3.27 0.16 64.17 34.04 

Adj R2 0.24 57.51 0.02 2.67 12.09 0.11 27.43 69.60 

Q2 9.24 20.78 11.20 7.82 18.18 20.44 12.96 38.96 

100 

AICc 0.02 70.33 0.00 0.44 15.04 0.00 14.16 85.38 

AICu 0.02 74.36 0.00 0.49 16.16 0.00 8.98 90.51 

AIC 0.02 68.62 0.00 0.42 14.76 0.00 16.18 83.38 

CP 0.02 73.73 0.00 0.44 16.00 0.00 9.80 89.73 

FPE 0.02 68.62 0.00 0.42 14.76 0.00 16.18 83.38 

BIC 0.02 78.51 0.00 0.49 17.42 0.07 3.49 95.93 

GM 0.07 80.24 0.00 0.47 17.93 0.18 1.11 98.18 

HQc 0.02 75.62 0.00 0.49 16.53 0.00 7.33 92.16 

HQ 0.02 74.36 0.00 0.49 16.16 0.00 8.98 90.51 

GoF 0.00 0.07 0.00 0.00 4.36 0.00 95.58 4.42 

R2 0.02 28.91 0.00 0.18 2.38 0.00 68.51 31.29 

Adj R2 0.02 58.16 0.00 0.29 12.20 0.00 29.33 70.36 

Q2 5.73 23.93 10.02 4.11 23.67 19.07 13.73 47.60 

150 

AICc 0.00 72.02 0.00 0.00 14.56 0.00 13.42 86.58 

AICu 0.00 76.04 0.00 0.00 15.71 0.00 8.24 91.76 

AIC 0.00 70.84 0.00 0.00 14.22 0.00 14.93 85.07 

CP 0.00 75.58 0.00 0.00 15.67 0.00 8.76 91.24 

FPE 0.00 70.87 0.00 0.00 14.22 0.00 14.91 85.09 

BIC 0.00 80.16 0.00 0.00 16.82 0.00 3.02 96.98 

GM 0.00 81.67 0.00 0.02 17.13 0.00 1.18 98.80 

HQc 0.00 77.36 0.00 0.00 16.11 0.00 6.53 93.47 
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Table 2A. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

HQ 0.00 76.38 0.00 0.00 15.87 0.00 7.76 92.24 

GoF 0.00 0.04 0.00 0.00 3.20 0.00 96.76 3.24 

R2 0.00 29.13 0.00 0.00 2.20 0.00 68.67 31.33 

Adj R2 0.00 60.00 0.00 0.00 11.44 0.00 28.56 71.44 

Q2 3.02 27.22 8.38 2.20 24.38 21.11 13.69 51.60 

200 

AICc 0.00 69.02 0.00 0.02 15.42 0.00 15.53 84.44 

AICu 0.00 74.00 0.00 0.02 16.64 0.00 9.33 90.64 

AIC 0.00 68.33 0.00 0.02 15.18 0.00 16.47 83.51 

CP 0.00 73.42 0.00 0.02 16.69 0.00 9.87 90.11 

FPE 0.00 68.33 0.00 0.02 15.18 0.00 16.47 83.51 

BIC 0.00 78.76 0.00 0.02 18.02 0.00 3.20 96.78 

GM 0.00 80.47 0.00 0.02 18.62 0.00 0.89 99.09 

HQc 0.00 75.31 0.00 0.02 17.09 0.00 7.58 92.40 

HQ 0.00 74.71 0.00 0.02 16.87 0.00 8.40 91.58 

GoF 0.00 0.02 0.00 0.00 3.69 0.00 96.29 3.71 

R2 0.00 28.27 0.00 0.02 1.96 0.00 69.76 30.22 

Adj R2 0.00 57.16 0.00 0.02 12.24 0.00 30.58 69.40 

Q2 2.42 26.31 7.58 1.69 27.62 19.96 14.47 53.93 

250 

AICc 0.00 69.42 0.00 0.00 14.29 0.00 16.29 83.71 

AICu 0.00 74.27 0.00 0.00 15.67 0.00 10.07 89.93 

AIC 0.00 68.58 0.00 0.00 14.00 0.00 17.42 82.58 

CP 0.00 74.13 0.00 0.00 15.53 0.00 10.33 89.67 

FPE 0.00 68.58 0.00 0.00 14.00 0.00 17.42 82.58 

BIC 0.00 80.27 0.00 0.00 17.00 0.00 2.73 97.27 

GM 0.00 81.56 0.00 0.00 17.64 0.00 0.80 99.20 

HQc 0.00 76.38 0.00 0.00 16.16 0.00 7.47 92.53 

HQ 0.00 75.96 0.00 0.00 16.11 0.00 7.93 92.07 

GoF 0.00 0.00 0.00 0.00 3.98 0.00 96.02 3.98 

R2 0.00 28.22 0.00 0.00 1.71 0.00 70.07 29.93 

Adj R2 0.00 57.76 0.00 0.00 11.42 0.00 30.82 69.18 

Q2 1.20 27.56 7.02 0.78 27.36 20.60 15.49 54.91 

500 

AICc 0.00 66.07 0.00 0.00 14.98 0.00 18.96 81.04 

AICu 0.00 71.87 0.00 0.00 16.49 0.00 11.64 88.36 

AIC 0.00 65.69 0.00 0.00 14.89 0.00 19.42 80.58 

CP 0.00 70.84 0.00 0.00 16.13 0.00 13.02 86.98 

FPE 0.00 65.69 0.00 0.00 14.89 0.00 19.42 80.58 

BIC 0.00 78.89 0.00 0.00 18.84 0.00 2.27 97.73 
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Table 2A. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

GM 0.00 80.16 0.00 0.00 19.29 0.00 0.56 99.44 

HQc 0.00 74.69 0.00 0.00 17.22 0.00 8.09 91.91 

HQ 0.00 74.53 0.00 0.00 17.13 0.00 8.33 91.67 

GoF 0.00 0.00 0.00 0.00 2.96 0.00 97.04 2.96 

R2 0.00 25.31 0.00 0.00 1.07 0.00 73.62 26.38 

Adj R2 0.00 54.40 0.00 0.00 11.47 0.00 34.13 65.87 

Q2 0.38 26.64 5.84 0.22 30.29 18.62 18.00 56.93 

Note: Success rate denotes the choice of Model 2 or 5. 

Table 2B. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included. 

Sample 
size Criteria 

Model # 
Success rate 

1 2 3 4 6 7 

50 

AICc 0.40 84.13 0.13 3.36 0.56 11.45 84.13 

AICu 0.33 85.93 0.22 3.40 1.51 8.62 85.93 

AIC 0.36 80.20 0.11 3.18 0.22 15.98 80.20 

CP 0.38 86.64 0.16 3.33 0.47 9.05 86.64 

FPE 0.36 80.36 0.11 3.18 0.22 15.82 80.36 

BIC 0.33 87.27 0.22 3.38 3.16 5.66 87.27 

GM 0.36 89.46 0.40 3.45 4.74 1.60 89.46 

HQc 0.33 86.91 0.20 3.42 1.82 7.33 86.91 

HQ 0.31 84.60 0.20 3.33 1.04 10.54 84.60 

GoF 0.33 0.69 0.16 0.07 0.16 98.86 0.69 

R2 0.07 33.02 0.00 1.73 0.16 65.20 33.02 

Adj R2 0.24 69.24 0.02 2.67 0.11 27.78 69.24 

Q2 9.29 37.00 11.24 8.09 20.69 14.20 37.00 

100 

AICc 0.02 85.31 0.00 0.44 0.00 14.22 85.31 

AICu 0.02 90.51 0.00 0.49 0.00 8.98 90.51 

AIC 0.02 83.22 0.00 0.42 0.00 16.33 83.22 

CP 0.02 89.69 0.00 0.44 0.00 9.84 89.69 

FPE 0.02 83.22 0.00 0.42 0.00 16.33 83.22 

BIC 0.02 95.87 0.00 0.49 0.07 3.56 95.87 

GM 0.07 98.18 0.00 0.47 0.18 1.11 98.18 

HQc 0.02 92.07 0.00 0.49 0.00 7.42 92.07 

HQ 0.02 90.51 0.00 0.49 0.00 8.98 90.51 

GoF 0.00 0.20 0.00 0.00 0.00 99.80 0.20 

R2 0.02 30.51 0.00 0.18 0.00 69.29 30.51 
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Table 2B. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included. 

Adj R2 0.02 70.11 0.00 0.29 0.00 29.58 70.11 

Q2 5.73 46.07 10.02 4.11 19.07 15.27 46.07 

150 

AICc 0.00 86.38 0.00 0.00 0.00 13.62 86.38 

AICu 0.00 91.67 0.00 0.00 0.00 8.33 91.67 

AIC 0.00 84.69 0.00 0.00 0.00 15.31 84.69 

CP 0.00 91.07 0.00 0.00 0.00 8.93 91.07 

FPE 0.00 84.71 0.00 0.00 0.00 15.29 84.71 

BIC 0.00 96.96 0.00 0.00 0.00 3.04 96.96 

GM 0.00 98.78 0.00 0.02 0.00 1.20 98.78 

HQc 0.00 93.42 0.00 0.00 0.00 6.58 93.42 

HQ 0.00 92.16 0.00 0.00 0.00 7.84 92.16 

GoF 0.00 0.11 0.00 0.00 0.00 99.89 0.11 

R2 0.00 30.47 0.00 0.00 0.00 69.53 30.47 

Adj R2 0.00 71.18 0.00 0.00 0.00 28.82 71.18 

Q2 3.02 50.31 8.38 2.20 21.11 14.98 50.31 

200 

AICc 0.00 84.27 0.00 0.02 0.00 15.71 84.27 

AICu 0.00 90.56 0.00 0.02 0.00 9.42 90.56 

AIC 0.00 83.38 0.00 0.02 0.00 16.60 83.38 

CP 0.00 90.09 0.00 0.02 0.00 9.89 90.09 

FPE 0.00 83.38 0.00 0.02 0.00 16.60 83.38 

BIC 0.00 96.76 0.00 0.02 0.00 3.22 96.76 

GM 0.00 99.07 0.00 0.02 0.00 0.91 99.07 

HQc 0.00 92.29 0.00 0.02 0.00 7.69 92.29 

HQ 0.00 91.56 0.00 0.02 0.00 8.42 91.56 

GoF 0.00 0.11 0.00 0.00 0.00 99.89 0.11 

R2 0.00 29.44 0.00 0.02 0.00 70.53 29.44 

Adj R2 0.00 69.00 0.00 0.02 0.00 30.98 69.00 

Q2 2.42 52.11 7.58 1.69 19.96 16.29 52.11 

250 

AICc 0.00 83.56 0.00 0.00 0.00 16.44 83.56 

AICu 0.00 89.87 0.00 0.00 0.00 10.13 89.87 

AIC 0.00 82.29 0.00 0.00 0.00 17.71 82.29 

CP 0.00 89.51 0.00 0.00 0.00 10.49 89.51 

FPE 0.00 82.29 0.00 0.00 0.00 17.71 82.29 

BIC 0.00 97.27 0.00 0.00 0.00 2.73 97.27 

GM 0.00 99.18 0.00 0.00 0.00 0.82 99.18 

HQc 0.00 92.51 0.00 0.00 0.00 7.49 92.51 

HQ 0.00 92.00 0.00 0.00 0.00 8.00 92.00 
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Table 2B. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included. 

GoF 0.00 0.13 0.00 0.00 0.00 99.87 0.13 

R2 0.00 29.24 0.00 0.00 0.00 70.76 29.24 

Adj R2 0.00 68.80 0.00 0.00 0.00 31.20 68.80 

Q2 1.20 53.13 7.02 0.78 20.60 17.27 53.13 

500 

AICc 0.00 80.93 0.00 0.00 0.00 19.07 80.93 

AICu 0.00 88.27 0.00 0.00 0.00 11.73 88.27 

AIC 0.00 80.42 0.00 0.00 0.00 19.58 80.42 

CP 0.00 86.84 0.00 0.00 0.00 13.16 86.84 

FPE 0.00 80.42 0.00 0.00 0.00 19.58 80.42 

BIC 0.00 97.67 0.00 0.00 0.00 2.33 97.67 

GM 0.00 99.42 0.00 0.00 0.00 0.58 99.42 

HQc 0.00 91.87 0.00 0.00 0.00 8.13 91.87 

HQ 0.00 91.58 0.00 0.00 0.00 8.42 91.58 

GoF 0.00 0.02 0.00 0.00 0.00 99.98 0.02 

R2 0.00 25.84 0.00 0.00 0.00 74.16 25.84 

Adj R2 0.00 65.49 0.00 0.00 0.00 34.51 65.49 

Q2 0.38 55.42 5.84 0.22 18.62 19.51 55.42 

Note: Success rate denotes the choice of Model 2. 

Table 2C. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included. 

Sample 
size Criteria 

Model # Success 
rate 1 2 3 4 5 6 7 

50 

AICc 0.31 67.31 0.18 3.60 15.96 0.49 12.17 83.27 

AICu 0.36 68.89 0.31 3.58 16.51 1.11 9.25 85.40 

AIC 0.29 64.51 0.11 3.24 15.02 0.36 16.49 79.53 

CP 0.33 69.81 0.18 3.65 16.68 0.40 8.97 86.48 

FPE 0.29 64.56 0.11 3.27 15.02 0.36 16.42 79.58 

BIC 0.36 70.16 0.36 3.47 17.00 2.80 5.87 87.16 

GM 0.38 71.92 0.51 3.62 17.43 4.54 1.60 89.35 

HQc 0.38 70.11 0.38 3.60 16.80 1.24 7.50 86.91 

HQ 0.31 67.78 0.24 3.62 16.20 0.71 11.15 83.98 

GoF 0.20 0.22 0.02 0.04 6.13 0.04 93.44 6.36 

R2 0.07 29.09 0.02 1.96 3.49 0.07 65.38 32.58 

Adj R2 0.24 56.00 0.04 2.82 12.60 0.09 28.23 68.60 

Q2 8.38 21.58 12.24 7.18 17.60 19.69 14.22 39.18 

100 AICc 0.02 70.31 0.00 0.16 15.16 0.00 14.36 85.47 
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Table 2C. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included. 

AICu 0.02 73.98 0.00 0.16 16.20 0.02 9.62 90.18 

AIC 0.02 68.47 0.00 0.16 14.76 0.00 16.60 83.22 

CP 0.02 73.53 0.00 0.16 16.09 0.00 10.20 89.62 

FPE 0.02 68.56 0.00 0.16 14.76 0.00 16.51 83.31 

BIC 0.02 78.36 0.00 0.22 17.29 0.18 3.93 95.64 

GM 0.02 80.33 0.00 0.27 17.87 0.20 1.31 98.20 

HQc 0.02 75.33 0.00 0.18 16.60 0.02 7.84 91.93 

HQ 0.02 73.98 0.00 0.16 16.22 0.02 9.60 90.20 

GoF 0.00 0.04 0.00 0.00 3.78 0.00 96.18 3.82 

R2 0.00 29.18 0.00 0.11 2.73 0.00 67.98 31.91 

Adj R2 0.02 58.62 0.00 0.13 12.07 0.00 29.16 70.69 

Q2 5.02 25.27 9.62 4.20 21.33 20.87 13.93 46.60 

150 

AICc 0.00 69.62 0.00 0.07 15.56 0.00 14.76 85.18 

AICu 0.00 73.84 0.00 0.09 16.82 0.00 9.24 90.67 

AIC 0.00 68.82 0.00 0.07 15.20 0.00 15.91 84.02 

CP 0.00 73.53 0.00 0.09 16.76 0.00 9.62 90.29 

FPE 0.00 68.82 0.00 0.07 15.20 0.00 15.91 84.02 

BIC 0.00 78.76 0.00 0.11 17.84 0.02 3.27 96.60 

GM 0.00 80.58 0.00 0.18 18.33 0.00 0.91 98.91 

HQc 0.00 75.38 0.00 0.09 17.02 0.00 7.51 92.40 

HQ 0.00 74.53 0.00 0.09 16.91 0.00 8.47 91.44 

GoF 0.00 0.02 0.00 0.00 3.13 0.00 96.84 3.16 

R2 0.00 29.04 0.00 0.02 2.20 0.00 68.73 31.24 

Adj R2 0.00 58.60 0.00 0.02 12.40 0.00 28.98 71.00 

Q2 3.18 25.22 7.64 2.58 25.38 21.93 14.09 50.60 

200 

AICc 0.00 69.93 0.00 0.00 14.58 0.00 15.49 84.51 

AICu 0.00 74.67 0.00 0.00 15.69 0.00 9.64 90.36 

AIC 0.00 68.73 0.00 0.00 14.40 0.00 16.87 83.13 

CP 0.00 74.09 0.00 0.00 15.60 0.00 10.31 89.69 

FPE 0.00 68.73 0.00 0.00 14.40 0.00 16.87 83.13 

BIC 0.00 80.22 0.00 0.00 17.09 0.00 2.69 97.31 

GM 0.00 81.80 0.00 0.00 17.53 0.00 0.67 99.33 

HQc 0.00 76.51 0.00 0.00 16.13 0.00 7.36 92.64 

HQ 0.00 75.89 0.00 0.00 16.02 0.00 8.09 91.91 

GoF 0.00 0.00 0.00 0.00 2.96 0.00 97.04 2.96 

R2 0.00 28.13 0.00 0.00 1.76 0.00 70.11 29.89 

Adj R2 0.00 58.20 0.00 0.00 11.69 0.00 30.11 69.89 
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Table 2C. Model Selection Rates Broken Down by Sample Size (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included. 

Q2 1.78 26.42 7.13 1.89 26.29 21.09 15.40 52.71 

250 

AICc 0.00 70.69 0.00 0.00 13.80 0.00 15.51 84.49 

AICu 0.00 75.44 0.00 0.00 15.09 0.00 9.47 90.53 

AIC 0.00 69.76 0.00 0.00 13.49 0.00 16.76 83.24 

CP 0.00 74.58 0.00 0.00 14.93 0.00 10.49 89.51 

FPE 0.00 69.78 0.00 0.00 13.49 0.00 16.73 83.27 

BIC 0.00 80.71 0.00 0.00 16.44 0.00 2.84 97.16 

GM 0.00 82.27 0.00 0.00 16.71 0.00 1.02 98.98 

HQc 0.00 77.16 0.00 0.00 15.64 0.00 7.20 92.80 

HQ 0.00 76.69 0.00 0.00 15.51 0.00 7.80 92.20 

GoF 0.00 0.02 0.00 0.00 2.96 0.00 97.02 2.98 

R2 0.00 27.91 0.00 0.00 1.60 0.00 70.49 29.51 

Adj R2 0.00 58.98 0.00 0.00 10.78 0.00 30.24 69.76 

Q2 1.27 27.56 6.38 1.56 27.47 20.02 15.80 55.02 

500 

AICc 0.00 67.60 0.00 0.00 14.07 0.00 18.33 81.67 

AICu 0.00 72.93 0.00 0.00 15.76 0.00 11.31 88.69 

AIC 0.00 67.27 0.00 0.00 13.98 0.00 18.76 81.24 

CP 0.00 72.33 0.00 0.00 15.51 0.00 12.16 87.84 

FPE 0.00 67.27 0.00 0.00 13.98 0.00 18.76 81.24 

BIC 0.00 80.13 0.00 0.00 17.33 0.00 2.53 97.47 

GM 0.00 81.69 0.00 0.00 17.62 0.00 0.69 99.31 

HQc 0.00 75.67 0.00 0.00 16.44 0.00 7.89 92.11 

HQ 0.00 75.31 0.00 0.00 16.36 0.00 8.33 91.67 

GoF 0.00 0.00 0.00 0.00 3.49 0.00 96.51 3.49 

R2 0.00 26.24 0.00 0.00 1.51 0.00 72.24 27.76 

Adj R2 0.00 56.22 0.00 0.00 11.02 0.00 32.76 67.24 

Q2 0.18 27.73 5.82 0.18 29.78 19.09 17.22 57.51 

Note: Success rate denotes the choice of Model 2 or 5. 
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The asymptotically efficient criteria (AIC, AICc, 
AICu, Cp, and FPE) had more nuanced performances 
that peaked at sample size 150 and decreased thereafter 
across all three cases. For example, in Case 3, the 
performance of AIC at sample sizes 50, 150, and 500 
varied from 79.53% to 84.02% to 81.24%, 
respectively. Similar to R2, this decrease after sample 
size 150 was fueled by greater preference for the 
saturated model, again suggesting that the penalty 
functions employed by these criteria were not strong 
enough to counter the gain in explained variance with 
increasing sample size. This observation limits the 
utility of these criteria.  

Recall that criteria that correctly select the data- 
generating model with an increase in the sample size 
are considered asymptotically consistent (McQuarrie 
& Tsai, 1998). The performances of the consistent 
criteria (BIC, GM, HQ, and HQc) improved 
considerably with an increase in the sample size, 
suggesting that the penalty employed by these criteria 
guarded against the tendency to select the saturated 
model. BIC and GM, in particular, provided robust 
performances and improved their (Case 3) success 
rates from 87.16% and 89.35%, at sample size 50, to 
near perfect 97.47% and 99.31%, at sample size 500, 
respectively. In fact, their success rates crossed 95% 
and 98% at the relatively low sample size of 100, 
which points to their practical utility in exploratory 
research. Thus, PLS researchers can be very confident 
that utilizing these criteria can allow them to select 
consistent models with high probability.  

5.3 Model Selection Rates by Effect Size 
Based on our model set-ups for all three cases, we 
expected that all selection criteria would increasingly 
favor Model 5 over Model 2 as the ξ1 → η2 path 
strength increased. In general, the results corroborate 
this premise but with a few exceptions. Since the 
pattern of results was similar in all three cases (Tables 
3A, 3B, and 3C), we take Case 3 as the exemplar for 
our discussion (Table 3C).  

The overall success rates of the PLS criteria 
deteriorated significantly with an increase in the ξ1 → 
η2 path strength. For example, at effect size 0.1, R2, 
Adjusted R2, and Q2 had overall success rates of 
37.30%, 71.15%, and 67.39%, respectively. This 
reduced to 21.24%, 66.35%, and 30.48% at effect size 

0.5. The reduction in performance of R2 and Adjusted 
R2 can be directly attributed to their increased 
preference for the saturated model (Model 7). This 
means that while both R2 and Adjusted R2 reduced 
their preference for Model 2, the subsequent increase 
in their preference for Model 5 was small and 
overshadowed by their stronger predisposition for the 
saturated model. The Q2 success rate also dropped with 
an increase in effect size but mainly due to preference 
for an incorrect model (Model 6). Since Q2 is a 
predictive metric, it is difficult to judge whether the 
choice is correct or incorrect in terms of predictive 
power, because wrong models can sometimes predict 
better than correct ones (Shmueli, 2010). While 
Model 6 may have been a better predictive model at 
larger effect sizes, it was clearly not consistent with 
the data- generating model.  

The success rates of the efficient criteria (AIC, AICc, 
AICu, FPE, and Cp) also deteriorated, although to a 
lesser extent than those of the PLS criteria, due to their 
increased tendency to favor the saturated model with 
an increase in effect size. For example, at effect size 
0.1, AIC’s preference for Models 2, 5, and 7 was 
76.54%, 7.13%, and 15.74%, respectively. At effect 
size 0.5, this preference evolved to 55.43%, 24.91%, 
and 18.67%, respectively. Thus, while these criteria 
did increase their preference for Model 5 over 
Model 2 as we had expected, their performance still 
left a lot to be desired.  

The consistent criteria (BIC, GM, HQ, and HQc) again 
performed best among all criteria. BIC and GM hardly 
showed any deterioration in performance with a 
change in effect size. At effect size 0.1, BIC’s 
preference for Models 2, 5, and 7 was 87.15%, 8.35%, 
and 3.44%, respectively, with an overall success rate 
(i.e., preference for Model 2 or 5) of 95.50%; GM’s 
preferences were 88.94%, 8.56%, and 1.20% with an 
overall success rate of 97.50%. At effect size 0.5, this 
evolved for BIC to 65.31%, 29.50%, and 3.56%, 
respectively, with an overall success rate of 94.81%; 
For GM, this evolved to 66.88%, 30.13%, and 1.04%, 
respectively, with an overall success rate of 97.02%. 
This means that as the effect size on the ξ1 → η2 path 
increased, BIC and GM improved their preference for 
Model 5 over Model 2 as expected, while strongly 
avoiding their tendency to select the saturated model.

.
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Table 3A. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

Effect 
size Criteria 

Model # Success 
rate 1 2 3 4 5 6 7 

0.1 

AICc 0.04 78.72 0.04 0.44 7.39 0.04 13.34 86.11 

AICu 0.04 82.87 0.06 0.43 7.81 0.19 8.61 90.69 

AIC 0.04 77.46 0.02 0.44 7.26 0.02 14.76 84.72 

CP 0.04 82.22 0.04 0.43 7.69 0.06 9.54 89.90 

FPE 0.04 77.50 0.02 0.44 7.26 0.02 14.72 84.76 

BIC 0.04 87.59 0.04 0.46 8.41 0.39 3.08 96.00 

GM 0.06 89.00 0.06 0.48 8.63 0.65 1.13 97.63 

HQc 0.04 84.39 0.06 0.44 8.02 0.20 6.85 92.41 

HQ 0.04 83.44 0.06 0.44 7.91 0.11 8.00 91.35 

GoF 0.00 0.02 0.00 0.00 4.26 0.00 95.74 4.28 

R2 0.00 36.70 0.00 0.19 0.98 0.00 62.14 37.69 

Adj R2 0.04 66.48 0.00 0.33 5.69 0.00 27.47 72.17 

Q2 1.48 32.52 3.54 1.65 35.24 6.26 19.35 67.76 

0.2 

AICc 0.09 76.44 0.02 0.72 8.93 0.11 13.69 85.37 

AICu 0.07 80.85 0.02 0.76 9.70 0.20 8.39 90.56 

AIC 0.07 75.13 0.02 0.69 8.69 0.06 15.35 83.81 

CP 0.07 80.46 0.02 0.74 9.56 0.09 9.06 90.02 

FPE 0.07 75.17 0.02 0.69 8.69 0.06 15.32 83.85 

BIC 0.07 85.19 0.02 0.72 10.57 0.37 3.06 95.76 

GM 0.07 86.80 0.06 0.59 10.93 0.59 0.96 97.72 

HQc 0.07 82.63 0.00 0.76 9.96 0.26 6.32 92.59 

HQ 0.07 81.67 0.04 0.76 9.72 0.17 7.58 91.39 

GoF 0.02 0.00 0.04 0.00 4.30 0.02 95.65 4.30 

R2 0.04 34.35 0.00 0.33 1.19 0.00 64.10 35.54 

Adj R2 0.04 64.06 0.00 0.50 6.93 0.02 28.47 70.98 

Q2 2.04 30.43 5.89 1.61 30.56 12.15 17.44 60.98 

0.3 

AICc 0.04 70.06 0.02 0.48 13.80 0.11 15.50 83.86 

AICu 0.06 74.59 0.02 0.50 14.86 0.26 9.72 89.45 

AIC 0.04 68.63 0.02 0.43 13.43 0.02 17.45 82.06 

CP 0.04 74.44 0.02 0.44 14.97 0.02 10.08 89.41 

FPE 0.04 68.67 0.02 0.43 13.43 0.02 17.41 82.10 

BIC 0.06 79.46 0.02 0.52 16.02 0.61 3.32 95.49 

GM 0.06 80.91 0.00 0.57 16.58 1.00 0.89 97.49 

HQc 0.06 76.17 0.02 0.50 15.34 0.31 7.61 91.50 

HQ 0.04 75.35 0.02 0.46 15.10 0.20 8.84 90.45 



Journal of the Association for Information Systems 
 

369 

 

Table 3A. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

GoF 0.02 0.04 0.00 0.02 3.96 0.00 95.98 4.00 

R2 0.00 29.89 0.00 0.22 1.57 0.00 68.33 31.46 

Adj R2 0.04 57.91 0.02 0.33 10.87 0.00 30.84 68.78 

Q2 3.06 25.78 8.52 2.50 25.96 18.59 15.78 51.74 

0.4 

AICc 0.13 64.80 0.00 0.65 18.93 0.09 15.42 83.72 

AICu 0.09 69.02 0.02 0.70 20.33 0.31 9.53 89.35 

AIC 0.13 63.57 0.00 0.65 18.57 0.04 17.05 82.15 

CP 0.13 68.88 0.02 0.67 20.30 0.11 9.90 89.18 

FPE 0.13 63.57 0.00 0.65 18.59 0.04 17.03 82.17 

BIC 0.09 73.20 0.02 0.67 21.76 0.67 3.60 94.96 

GM 0.11 75.01 0.07 0.70 22.37 0.83 0.89 97.39 

HQc 0.09 70.35 0.02 0.69 20.83 0.39 7.64 91.19 

HQ 0.09 69.78 0.02 0.65 20.52 0.19 8.77 90.30 

GoF 0.07 0.15 0.02 0.02 3.85 0.06 95.92 4.00 

R2 0.02 23.17 0.00 0.39 2.83 0.07 73.58 26.00 

Adj R2 0.09 53.46 0.00 0.61 14.96 0.04 30.86 68.43 

Q2 4.83 21.59 10.63 3.33 20.02 27.80 11.98 41.61 

0.5 

AICc 0.06 56.11 0.04 0.89 26.13 0.09 16.69 82.24 

AICu 0.04 59.46 0.07 0.87 28.19 0.30 11.08 87.65 

AIC 0.04 54.87 0.04 0.81 25.43 0.06 18.77 80.30 

CP 0.06 59.02 0.04 0.89 27.93 0.11 11.97 86.94 

FPE 0.04 54.87 0.04 0.81 25.43 0.06 18.77 80.30 

BIC 0.04 63.80 0.09 0.87 30.70 0.63 3.87 94.50 

GM 0.06 65.00 0.15 0.94 31.61 1.02 1.22 96.61 

HQc 0.04 61.11 0.07 0.89 29.04 0.35 8.51 90.15 

HQ 0.04 60.41 0.04 0.89 28.48 0.20 9.95 88.89 

GoF 0.13 0.15 0.00 0.02 3.65 0.06 96.07 3.80 

R2 0.02 18.07 0.00 0.48 3.91 0.06 77.51 21.98 

Adj R2 0.02 45.57 0.00 0.70 20.61 0.04 33.07 66.19 

Q2 6.93 16.72 13.13 4.93 14.46 35.04 9.06 31.19 

Note: Success rate denotes the choice of Model 2 or 5. 
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Table 3B. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included 

Effect size Criteria 
Model # 

Success rate 
1 2 3 4 6 7 

0.1 

AICc 0.04 86.02 0.04 0.44 0.04 13.43 86.02 

AICu 0.04 90.63 0.06 0.43 0.19 8.67 90.63 

AIC 0.04 84.56 0.02 0.44 0.02 14.93 84.56 

CP 0.04 89.85 0.04 0.43 0.06 9.59 89.85 

FPE 0.04 84.59 0.02 0.44 0.02 14.89 84.59 

BIC 0.04 96.00 0.04 0.46 0.39 3.08 96.00 

GM 0.06 97.63 0.06 0.48 0.65 1.13 97.63 

HQc 0.04 92.39 0.06 0.44 0.20 6.87 92.39 

HQ 0.04 91.30 0.06 0.44 0.11 8.06 91.30 

GoF 0.00 0.02 0.02 0.00 0.00 99.98 0.02 

R2 0.00 37.35 0.00 0.19 0.00 62.47 37.35 

Adj R2 0.04 71.94 0.00 0.33 0.00 27.69 71.94 

Q2 1.48 65.81 3.54 1.67 6.28 21.26 65.81 

0.2 

AICc 0.09 85.22 0.02 0.72 0.11 13.83 85.22 

AICu 0.07 90.52 0.02 0.76 0.20 8.43 90.52 

AIC 0.07 83.61 0.02 0.69 0.06 15.56 83.61 

CP 0.07 89.96 0.02 0.74 0.09 9.11 89.96 

FPE 0.07 83.65 0.02 0.69 0.06 15.52 83.65 

BIC 0.07 95.70 0.02 0.72 0.37 3.11 95.70 

GM 0.07 97.69 0.06 0.59 0.59 1.00 97.69 

HQc 0.07 92.56 0.00 0.76 0.26 6.35 92.56 

HQ 0.07 91.35 0.04 0.76 0.17 7.61 91.35 

GoF 0.02 0.02 0.04 0.00 0.02 99.93 0.02 

R2 0.04 35.02 0.00 0.33 0.00 64.62 35.02 

Adj R2 0.04 70.80 0.00 0.50 0.02 28.65 70.80 

Q2 2.04 58.94 5.91 1.61 12.19 19.41 58.94 

0.3 

AICc 0.04 83.69 0.02 0.48 0.11 15.67 83.69 

AICu 0.06 89.37 0.02 0.50 0.26 9.80 89.37 

AIC 0.04 81.85 0.02 0.43 0.02 17.65 81.85 

CP 0.04 89.24 0.02 0.44 0.02 10.24 89.24 

FPE 0.04 81.89 0.02 0.43 0.02 17.61 81.89 

BIC 0.06 95.46 0.02 0.52 0.61 3.33 95.46 

GM 0.06 97.46 0.00 0.57 1.00 0.91 97.46 

HQc 0.06 91.46 0.02 0.50 0.31 7.65 91.46 

HQ 0.04 90.43 0.02 0.46 0.20 8.85 90.43 
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Table 3B. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included 

GoF 0.04 0.07 0.00 0.02 0.00 99.89 0.07 

R2 0.00 30.74 0.00 0.22 0.00 69.05 30.74 

Adj R2 0.04 68.43 0.02 0.33 0.00 31.19 68.43 

Q2 3.06 49.93 8.52 2.54 18.65 17.50 49.93 

0.4 

AICc 0.13 83.56 0.00 0.65 0.11 15.57 83.56 

AICu 0.09 89.28 0.02 0.70 0.31 9.60 89.28 

AIC 0.13 81.78 0.00 0.65 0.04 17.42 81.78 

CP 0.13 89.09 0.02 0.67 0.11 9.99 89.09 

FPE 0.13 81.80 0.00 0.65 0.04 17.40 81.80 

BIC 0.09 94.91 0.02 0.67 0.67 3.65 94.91 

GM 0.11 97.37 0.07 0.70 0.83 0.91 97.37 

HQc 0.09 91.09 0.02 0.69 0.39 7.73 91.09 

HQ 0.09 90.19 0.02 0.65 0.19 8.88 90.19 

GoF 0.07 0.30 0.07 0.02 0.06 99.57 0.30 

R2 0.02 25.06 0.00 0.39 0.07 74.53 25.06 

Adj R2 0.09 68.07 0.00 0.61 0.04 31.21 68.07 

Q2 4.85 40.31 10.63 3.41 27.83 13.11 40.31 

0.5 

AICc 0.06 82.00 0.04 0.89 0.09 16.93 82.00 

AICu 0.04 87.54 0.07 0.87 0.30 11.19 87.54 

AIC 0.04 80.04 0.04 0.81 0.06 19.03 80.04 

CP 0.06 86.72 0.04 0.89 0.11 12.19 86.72 

FPE 0.04 80.06 0.04 0.81 0.06 19.01 80.06 

BIC 0.04 94.41 0.09 0.87 0.65 3.95 94.41 

GM 0.06 96.59 0.15 0.94 1.02 1.24 96.59 

HQc 0.04 90.06 0.07 0.89 0.35 8.60 90.06 

HQ 0.04 88.74 0.04 0.89 0.20 10.10 88.74 

GoF 0.15 0.65 0.00 0.02 0.06 99.20 0.65 

R2 0.02 20.61 0.00 0.48 0.06 78.88 20.61 

Adj R2 0.02 65.61 0.00 0.70 0.04 33.65 65.61 

Q2 6.94 30.04 13.15 5.02 35.09 9.98 30.04 

Note: Success rate denotes the choice of Model 2 
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Table 3C. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included 

Effect 
size Criteria 

Model # Success 
Rate 1 2 3 4 5 6 7 

0.1 

AICc 0.02 77.94 0.00 0.56 7.28 0.07 14.13 85.22 

AICu 0.02 82.31 0.00 0.56 7.80 0.15 9.17 90.11 

AIC 0.02 76.54 0.00 0.54 7.13 0.04 15.74 83.67 

CP 0.02 81.63 0.00 0.56 7.63 0.02 10.15 89.26 

FPE 0.02 76.59 0.00 0.54 7.13 0.04 15.69 83.72 

BIC 0.00 87.15 0.02 0.54 8.35 0.50 3.44 95.50 

GM 0.00 88.94 0.04 0.61 8.56 0.65 1.20 97.50 

HQc 0.02 84.09 0.04 0.57 8.02 0.15 7.11 92.11 

HQ 0.02 82.89 0.00 0.56 7.85 0.13 8.56 90.74 

GoF 0.00 0.00 0.00 0.00 4.48 0.00 95.52 4.48 

R2 0.02 36.28 0.00 0.28 1.02 0.00 62.41 37.30 

Adj R2 0.02 65.57 0.00 0.43 5.57 0.00 28.41 71.15 

Q2 1.65 32.98 3.31 1.59 34.41 6.78 19.50 67.39 

0.2 

AICc 0.04 76.09 0.02 0.37 9.72 0.07 13.69 85.81 

AICu 0.06 79.63 0.04 0.37 10.46 0.19 9.26 90.09 

AIC 0.04 74.83 0.00 0.33 9.44 0.06 15.30 84.28 

CP 0.04 79.48 0.02 0.41 10.37 0.07 9.61 89.85 

FPE 0.04 74.83 0.00 0.33 9.44 0.06 15.30 84.28 

BIC 0.06 84.31 0.04 0.37 11.04 0.54 3.65 95.35 

GM 0.06 86.26 0.06 0.41 11.35 0.78 1.09 97.61 

HQc 0.06 81.52 0.04 0.35 10.65 0.22 7.17 92.17 

HQ 0.04 80.59 0.04 0.37 10.50 0.13 8.33 91.09 

GoF 0.02 0.00 0.00 0.00 3.94 0.02 96.04 3.94 

R2 0.02 33.72 0.00 0.26 1.59 0.02 64.40 35.31 

Adj R2 0.04 63.70 0.00 0.30 7.81 0.02 28.13 71.52 

Q2 2.06 30.07 5.74 2.02 31.46 11.59 17.24 61.54 

0.3 

AICc 0.09 70.61 0.04 0.67 13.56 0.09 14.95 84.17 

AICu 0.09 74.41 0.07 0.67 14.74 0.20 9.82 89.15 

AIC 0.09 69.09 0.04 0.59 13.22 0.07 16.90 82.31 

CP 0.09 74.40 0.06 0.69 14.85 0.09 9.82 89.26 

FPE 0.09 69.11 0.04 0.61 13.22 0.07 16.86 82.33 

BIC 0.11 79.43 0.07 0.63 16.09 0.44 3.22 95.52 

GM 0.11 80.88 0.13 0.61 16.37 0.95 0.95 97.26 

HQc 0.11 76.15 0.07 0.67 15.26 0.22 7.52 91.41 

HQ 0.09 75.20 0.06 0.67 14.89 0.11 8.99 90.09 
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Table 3C. Model Selection Rates Broken Down by Effect Size (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included 

GoF 0.04 0.02 0.02 0.02 3.89 0.00 96.05 3.91 

R2 0.02 29.61 0.00 0.37 2.37 0.02 67.63 31.98 

Adj R2 0.07 59.11 0.02 0.52 11.00 0.04 29.25 70.11 

Q2 2.74 26.20 8.65 2.33 25.06 20.31 14.91 51.26 

0.4 

AICc 0.06 65.06 0.04 0.67 18.15 0.07 15.96 83.20 

AICu 0.07 69.24 0.06 0.69 19.52 0.20 10.22 88.76 

AIC 0.04 63.74 0.02 0.61 17.67 0.06 17.87 81.41 

CP 0.06 69.07 0.04 0.70 19.39 0.06 10.69 88.46 

FPE 0.04 63.78 0.02 0.61 17.67 0.06 17.83 81.44 

BIC 0.07 74.07 0.06 0.69 20.85 0.52 3.74 94.93 

GM 0.09 75.85 0.06 0.72 21.50 0.89 0.89 97.35 

HQc 0.07 71.06 0.06 0.72 20.07 0.24 7.78 91.13 

HQ 0.06 69.91 0.06 0.69 19.81 0.11 9.37 89.72 

GoF 0.00 0.13 0.00 0.00 3.24 0.00 96.63 3.37 

R2 0.00 24.20 0.00 0.39 2.37 0.00 73.04 26.57 

Adj R2 0.02 54.28 0.00 0.54 14.24 0.00 30.93 68.52 

Q2 3.89 21.91 10.59 3.43 18.78 28.59 13.09 40.69 

0.5 

AICc 0.07 56.52 0.06 0.93 25.56 0.09 16.78 82.07 

AICu 0.07 60.87 0.09 0.91 27.54 0.20 10.32 88.41 

AIC 0.07 55.43 0.04 0.81 24.91 0.07 18.67 80.33 

CP 0.09 60.31 0.04 0.89 27.39 0.09 11.19 87.70 

FPE 0.07 55.44 0.04 0.81 24.91 0.07 18.65 80.35 

BIC 0.07 65.31 0.11 0.94 29.50 0.50 3.56 94.81 

GM 0.07 66.88 0.15 1.04 30.13 0.69 1.04 97.02 

HQc 0.07 62.31 0.11 0.91 28.20 0.22 8.17 90.52 

HQ 0.07 61.56 0.06 0.94 27.96 0.13 9.28 89.52 

GoF 0.11 0.11 0.00 0.02 3.15 0.02 96.63 3.26 

R2 0.00 17.52 0.02 0.44 3.72 0.02 78.30 21.24 

Adj R2 0.07 46.19 0.02 0.70 20.17 0.02 32.84 66.35 

Q2 6.17 16.98 12.41 5.28 13.50 34.96 10.81 30.48 

Note: Success rate denotes the choice of Model 2 or 5. 
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5.4 Model Selection Rates by Loading 
Condition (AVE) 

Each construct in our set-up had four items whose 
loadings were all set to either 0.7 (low AVE condition), 
0.8 (moderate), or 0.9 (high AVE condition). We 
expected that an increase in item loadings and the 
resulting increase in AVE would allow for higher 
success rates for all criteria. Again, the pattern of 
results was similar across all three cases (Tables 4A, 
4B, and 4C) and we use Case 3 (Table 4C) as the 
exemplar for subsequent discussion.  

Contrary to our expectation, the overall success rate of 
R2 significantly deteriorated with an increase in item 
loadings (36.94% for low AVE to 20.87% in high 
AVE). This decrease can again be attributed to R2’s 
tendency to favor the saturated model. The overall 
success rate and model preferences of Adjusted R2 did 
not change appreciably. At the same time, we noticed 
a dramatic improvement in the success rate of Q2, 
which increased from 34.69% in low AVE condition to 
69.50% in high AVE, but was still not competitive with 
the efficient and consistent model selection criteria. In 
the low AVE condition, Q2 selected incorrect models 
with fair frequency (e.g., Models 3 and 6 were selected 
11.34% and 31.76% times, respectively). However, 

this improved appreciably in the high AVE condition 
(3.66% and 5.99%, respectively). 

The performance of the asymptotically efficient 
criteria (AIC, AICc, AICu, FPE, and Cp) saw marginal 
improvements at higher AVE levels. This 
improvement was partly due to a reduction in the 
selection rate of Model 7. For example, the overall 
success rate of AIC increased marginally from 81.74% 
(low AVE) to 83.27% (high AVE) as its preference for 
the saturated model reduced from 17.12% to 16.59%.   

The consistent criteria (BIC, GM, HQ, and HQc) also 
showed similar small improvements in their success 
rates at higher AVE levels. However, as compared to 
the efficient criteria, the performance of the consistent 
criteria started at a much higher base level. For 
example, GM’s success rate improved from 96.17% 
(low AVE) to a near perfect 99.02% (high AVE), while 
BIC’s success rate improved from 94.19% to 96.63%. 
Overall, the change in loading conditions had a small 
but positive impact on overall success rates of 
consistent criteria. This result underlines the utility of 
consistent criteria, in particular of BIC and GM, in 
exploratory research where the measurement models 
may be underdeveloped or evolving.

 

Table 4A.  Model Selection Rates Broken Down by Loading (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

Loading 
condition Criteria 

Model # Success 
rate 1 2 3 4 5 6 7 

0.7 

AICc 0.12 70.10 0.04 1.17 12.71 0.13 15.73 82.81 

AICu 0.09 74.38 0.07 1.20 13.86 0.42 10.00 88.23 

AIC 0.10 68.84 0.03 1.14 12.42 0.04 17.42 81.27 

CP 0.11 73.16 0.04 1.18 13.51 0.11 11.89 86.68 

FPE 0.10 68.86 0.03 1.14 12.42 0.04 17.41 81.28 

BIC 0.09 78.79 0.07 1.19 15.10 0.93 3.84 93.89 

GM 0.12 80.32 0.09 1.18 15.73 1.30 1.26 96.05 

HQc 0.09 75.74 0.06 1.21 14.31 0.53 8.06 90.06 

HQ 0.09 75.16 0.07 1.19 14.04 0.30 9.16 89.20 

GoF 0.09 0.11 0.03 0.02 5.42 0.04 94.35 5.53 

R2 0.02 34.03 0.00 0.64 2.32 0.06 62.97 36.36 

Adj R2 0.07 58.92 0.01 0.96 9.88 0.03 30.15 68.80 

Q2 7.10 17.09 11.83 5.24 17.28 30.56 11.01 34.37 

0.8 

AICc 0.04 69.21 0.02 0.64 15.21 0.10 14.77 84.42 

AICu 0.04 73.07 0.04 0.63 16.36 0.27 9.59 89.42 

AIC 0.04 68.02 0.02 0.60 14.72 0.06 16.54 82.74 

CP 0.04 72.52 0.03 0.63 16.15 0.10 10.52 88.67 
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Table 4A.  Model Selection Rates Broken Down by Loading (Percentages) 
Case 1: All Variables Included; Data-Generating Model Included 

FPE 0.04 68.03 0.02 0.60 14.73 0.06 16.51 82.77 

BIC 0.04 77.42 0.04 0.61 17.76 0.53 3.59 95.18 

GM 0.04 78.95 0.08 0.63 18.25 0.82 1.22 97.20 

HQc 0.04 74.68 0.04 0.63 16.80 0.29 7.51 91.48 

HQ 0.03 73.84 0.03 0.64 16.50 0.17 8.78 90.34 

GoF 0.06 0.09 0.00 0.00 4.57 0.01 95.30 4.66 

R2 0.02 31.10 0.00 0.31 2.31 0.00 66.27 33.41 

Adj R2 0.03 58.18 0.00 0.49 11.93 0.01 29.36 70.11 

Q2 3.20 23.74 9.41 2.43 23.76 23.68 13.92 47.50 

0.9 

AICc 0.04 68.37 0.00 0.10 17.18 0.03 14.28 85.55 

AICu 0.04 72.63 0.00 0.12 18.32 0.07 8.81 90.96 

AIC 0.04 66.93 0.00 0.07 16.88 0.01 16.07 83.81 

CP 0.04 73.33 0.00 0.09 18.60 0.02 7.91 91.94 

FPE 0.04 66.98 0.00 0.07 16.88 0.01 16.03 83.86 

BIC 0.04 77.33 0.00 0.14 19.62 0.13 2.72 96.96 

GM 0.04 78.76 0.03 0.17 20.09 0.33 0.58 98.85 

HQc 0.04 74.37 0.00 0.12 18.80 0.09 6.58 93.17 

HQ 0.04 73.39 0.00 0.09 18.49 0.06 7.94 91.88 

GoF 0.00 0.01 0.00 0.01 2.02 0.02 97.97 2.03 

R2 0.00 20.18 0.00 0.01 1.66 0.02 78.16 21.83 

Adj R2 0.03 55.39 0.00 0.04 13.62 0.01 30.91 69.01 

Q2 0.70 35.39 3.78 0.73 34.71 5.67 19.23 70.10 

Note: Success rate denotes the choice of Model 2 or 5. 

Table 4B. Model Selection Rates Broken Down by Loading (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included 

Loading 
condition Criteria 

Model # 
Success rate 

1 2 3 4 6 7 

0.7 

AICc 0.12 82.60 0.04 1.17 0.13 15.94 82.60 

AICu 0.09 88.13 0.07 1.20 0.42 10.10 88.13 

AIC 0.10 80.93 0.03 1.14 0.04 17.76 80.93 

CP 0.11 86.52 0.04 1.18 0.11 12.04 86.52 

FPE 0.10 80.96 0.03 1.14 0.04 17.73 80.96 

BIC 0.09 93.82 0.07 1.19 0.93 3.90 93.82 

GM 0.12 96.04 0.09 1.18 1.30 1.27 96.04 

HQ 0.09 89.08 0.07 1.19 0.30 9.29 89.08 

HQc 0.09 89.98 0.06 1.21 0.53 8.14 89.98 

GoF 0.10 0.30 0.07 0.02 0.04 99.54 0.30 
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Table 4B. Model Selection Rates Broken Down by Loading (Percentages) 
Case 2: All Variables Included; Data-Generating Model Not Included 

R2 0.02 35.60 0.00 0.64 0.06 63.72 35.60 

Adj R2 0.07 68.42 0.01 0.96 0.03 30.53 68.42 

Q2 7.11 32.63 11.86 5.33 30.66 12.50 32.63 

0.8 

AICc 0.04 84.21 0.02 0.64 0.11 14.97 84.21 

AICu 0.04 89.33 0.04 0.63 0.27 9.68 89.33 

AIC 0.04 82.50 0.02 0.60 0.06 16.78 82.50 

CP 0.04 88.50 0.03 0.63 0.10 10.69 88.50 

FPE 0.04 82.52 0.02 0.60 0.06 16.76 82.52 

BIC 0.04 95.14 0.04 0.61 0.54 3.61 95.14 

GM 0.04 97.17 0.08 0.63 0.82 1.26 97.17 

HQ 0.03 90.28 0.03 0.64 0.17 8.85 90.28 

HQc 0.04 91.41 0.04 0.63 0.29 7.58 91.41 

GoF 0.06 0.29 0.01 0.00 0.01 99.65 0.29 

R2 0.02 32.48 0.00 0.31 0.00 67.20 32.48 

Adj R2 0.03 69.72 0.00 0.49 0.01 29.75 69.72 

Q2 3.20 45.42 9.41 2.48 23.70 15.91 45.42 

0.9 

AICc 0.04 85.48 0.00 0.10 0.03 14.35 85.48 

AICu 0.04 90.93 0.00 0.12 0.07 8.84 90.93 

AIC 0.04 83.67 0.00 0.07 0.01 16.22 83.67 

CP 0.04 91.90 0.00 0.09 0.02 7.95 91.90 

FPE 0.04 83.71 0.00 0.07 0.01 16.17 83.71 

BIC 0.04 96.92 0.00 0.14 0.13 2.76 96.92 

GM 0.04 98.83 0.03 0.17 0.33 0.59 98.83 

HQ 0.04 91.84 0.00 0.09 0.06 7.97 91.84 

HQc 0.04 93.14 0.00 0.12 0.09 6.60 93.14 

GoF 0.01 0.04 0.00 0.01 0.02 99.94 0.04 

R2 0.00 21.19 0.00 0.01 0.02 78.80 21.19 

Adj R2 0.03 68.77 0.00 0.04 0.01 31.15 68.77 

Q2 0.71 68.97 3.78 0.73 5.67 20.34 68.97 

Note: Success rate denotes the choice of Model 2. 

Table 4C. Model Selection Rates Broken Down by Loading (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included 

Loading 
condition Criteria 

Model # Success 
rate 1 2 3 4 5 6 7 

0.7 

AICc 0.09 70.47 0.00 1.07 12.80 0.16 15.43 83.27 

AICu 0.11 74.19 0.03 1.06 13.84 0.36 10.41 88.03 

AIC 0.09 69.30 0.00 0.97 12.44 0.09 17.12 81.74 
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Table 4C. Model Selection Rates Broken Down by Loading (Percentages) 
Case 3: Missing Variable (ξ4); Data-Generating Model Not Included 

CP 0.09 73.33 0.00 1.04 13.57 0.11 11.86 86.90 

FPE 0.09 69.33 0.00 0.98 12.44 0.09 17.07 81.78 

BIC 0.11 79.28 0.06 0.99 14.91 0.86 3.80 94.19 

GM 0.13 80.92 0.10 1.08 15.24 1.20 1.32 96.17 

HQc 0.11 76.08 0.04 1.03 14.30 0.40 8.04 90.38 

HQ 0.09 75.14 0.01 1.08 14.16 0.24 9.28 89.30 

GoF 0.10 0.12 0.00 0.02 5.10 0.02 94.66 5.22 

R2 0.02 34.53 0.00 0.62 2.41 0.03 62.40 36.94 

Adj R2 0.08 59.59 0.00 0.83 10.09 0.03 29.39 69.68 

Q2 6.28 17.69 11.34 5.19 17.00 31.76 10.97 34.69 

0.8 

AICc 0.07 69.24 0.04 0.74 14.70 0.07 15.14 83.94 

AICu 0.07 73.62 0.08 0.76 15.83 0.16 9.49 89.46 

AIC 0.06 67.83 0.03 0.68 14.36 0.07 16.98 82.19 

CP 0.08 72.83 0.04 0.78 15.69 0.08 10.50 88.52 

FPE 0.06 67.84 0.03 0.68 14.36 0.07 16.97 82.20 

BIC 0.06 77.71 0.08 0.78 17.13 0.53 3.71 94.84 

GM 0.04 79.25 0.11 0.80 17.60 0.91 1.28 96.85 

HQc 0.07 75.11 0.10 0.78 16.27 0.18 7.50 91.38 

HQ 0.07 74.28 0.07 0.76 15.97 0.10 8.77 90.24 

GoF 0.00 0.03 0.01 0.00 4.50 0.00 95.48 4.53 

R2 0.01 31.13 0.01 0.41 2.50 0.00 65.95 33.63 

Adj R2 0.04 58.27 0.01 0.58 11.61 0.01 29.48 69.88 

Q2 3.06 24.03 9.42 3.03 22.59 23.60 14.46 46.62 

0.9 

AICc 0.01 68.02 0.04 0.10 17.06 0.02 14.74 85.08 

AICu 0.01 72.07 0.04 0.10 18.36 0.06 9.37 90.42 

AIC 0.01 66.64 0.02 0.09 16.62 0.02 16.59 83.27 

CP 0.01 72.78 0.04 0.12 18.52 0.01 8.51 91.30 

FPE 0.01 66.68 0.02 0.09 16.62 0.02 16.56 83.30 

BIC 0.02 77.18 0.04 0.13 19.46 0.11 3.06 96.63 

GM 0.02 79.12 0.04 0.16 19.90 0.26 0.50 99.02 

HQc 0.02 73.89 0.04 0.12 18.76 0.06 7.11 92.64 

HQ 0.01 72.67 0.04 0.10 18.49 0.02 8.67 91.16 

GoF 0.00 0.00 0.00 0.00 1.62 0.00 98.38 1.62 

R2 0.00 19.13 0.00 0.01 1.73 0.00 79.12 20.87 

Adj R2 0.01 55.46 0.01 0.08 13.58 0.00 30.87 69.03 

Q2 0.57 35.17 3.66 0.57 34.33 5.99 19.91 69.50 

Note: Success rate denotes the choice of Model 2 or 5. 
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6 Summary and Discussion 

6.1 Key Findings and Recommendations 
Our quest as IS researchers is to describe the 
sociotechnical processes that interest us with fidelity 
and economy. We create models to describe reality and 
uncover important relationships. Such models are a 
simplification or approximation of reality and hence 
cannot reflect it in its entirety (Burnham & Anderson, 
2002). In fact, the only advantage a model may have 
over reality is its simplicity (Shugan, 2002). Models 
are important because they reflect some (partial) aspect 
of reality through a set of parameters and relationships 
by omitting distracting details. Such parameters have 
relevant, useful interpretations, even when they relate 
to quantities that are not directly observable (Burnham 
& Anderson, 2002). Importantly, there is not one 
unique model that characterizes the empirical evidence 
within a theoretical framework, but variations may 
offer theoretically justified alternatives for explaining 
the phenomenon under study. Comparing theoretically 
plausible models can therefore help address Grover’s 
(2013, p. 5) concern that IS researchers have put 
“theories on a pedestal and treat them as immutable”, 
and are quick to blame the method when hypotheses in 
a preferred model are not supported. From informal 
conversations with PLS researchers, we have learned 
that they in fact do explore several models, but 
eventually only report the results for a single model. 
The model selection approach thus supports this 
intuitive exploration and encourages researchers to 
report their alternative models rather than keep them 
“behind the scenes”, leading to greater transparency. 
However, to reap the benefits of model comparisons, 
researchers must have adequate measures to identify 
the best model among a set of competing models. 
While corresponding criteria are routinely used in 
econometrics and factor-based structural equation 
modeling, the PLS framework did not have appropriate 
metrics for model selection to date.   

Addressing this gap in research, this study introduces 
model selection criteria derived from information 
theory, to empirically assess alternative model 
configurations when using PLS. Specifically, we 
compared the efficacy of several model selection 
criteria across a range of model and data constellations 
that typically arise in practical situations. Our results 
clearly suggest that when comparing alternative 
models, PLS users can greatly benefit from using 
asymptotically consistent model selection criteria, 
which performed best in our simulation study. In 

                                                           
8 An Excel spreadsheet that illustrates the computation of all 
model selection criteria considered in this study using the 
standard output from any PLS software can be obtained from 
the Downloads section at https://www.pls-sem.net/.  

particular, GM was the best-performing criterion with 
overall success rates of selecting a parsimonious yet 
well-fitting model in the upper 90s across all 
experimental conditions, closely followed by BIC. 
Thus, we recommend researchers to consider these 
criteria when performing theory-driven model 
comparisons. Researchers can easily compute these 
criteria manually using the formulae shown in 
Appendix B. 8  Furthermore, several model selection 
criteria analyzed in this study have been introduced in 
version 3.2.8 (and later) of the SmartPLS 3 software 
(Ringle, Wende, & Becker, 2015), 9  and are also 
available in the R semPLSic package (Monecke, 
Sharma, & Kim, 2013), which complements the 
semPLS package (Monecke, 2012).   

In contrast, the practice of model selection using R2, 
Adjusted R2, GoF, and Q2 should be avoided. Not only 
did these criteria display a pronounced preference for 
the saturated model, but, in some cases (i.e., Q2), 
they frequently selected incorrect models. That 
being said, the utility of PLS criteria lies in 
assessing a model’s in-sample explanatory power 
(R2) and predictive relevance (Q2), which reflect 
other important aspects of model quality.  

Because statistical inference assumes that a model 
has already been chosen, the roles and the sequence 
in which model comparison and model evaluation are 
conducted are different (Burnham & Anderson, 2002; 
Johnson & Omland, 2004). Thus, in line with Berk, 
Brown and Zhao (2010), we recommend the 
following five-step procedure for model selection and 
inference in a PLS study: 

Step 1: A manageable set of theoretically plausible 
path models is developed.  

Step 2: Data are collected. 

Step 3: Measurement model assessment is 
performed for all models identified in Step 1. 

Step 4: A model is selected based on the model 
selection criteria.  

Step 5: Explanatory and predictive ability of the 
selected model is benchmarked, and statistical 
inference is applied to the structural paths to judge 
support for the proposed hypotheses.    

After the researcher has clearly articulated and 
motivated the research issue, the first step is to identify 
and develop a manageable set of theoretically justified 
competing models that represent alternative 
explanations of the phenomenon (Burnham & 
Anderson, 2002). In general, there are multiple 

9 https://www.smartpls.com/documentation/algorithms-and-
techniques/prediction-oriented-model-selection.  
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theoretical mechanisms that can explain the focal 
variable being studied (Imai & Tingley, 2012). The 
models selected for comparison should be motivated 
by theory from relevant fields, in line with PLS’s 
“causal predictive” nature focused on theoretical 
explanation (Jöreskog and Wold, 1982, p. 270; Chin, 
1995).10 The researcher should leverage the existing 
literature to provide valid theoretical rationale for all 
the models being considered. In particular, the 
researcher should be able to (1) describe the theoretical 
commonalities among the proposed alternative models 
(i.e., whether certain proposed effects are common 
across models); (2) contrast the models to highlight the 
differences in theoretical mechanisms being captured 
(such differences may manifest in PLS as 
additional/different paths or antecedents); and (3) 
explain why the commonalities and differences are 
important to consider in terms of the effect on the 
target variable for the population under study.  

The procedure continues with the data collection (Step 
2), whose nature strongly depends on the aim of the 
research (Sarstedt, Bengrat, Shaltoni, & Lehmann, 
2018). In this context, Calder, Phillips, and Tybout’s 
(1981) distinction between theory application and 
effects application research is particularly relevant. 
The former type of research evaluates a specific theory 
about effects beyond a single research setting. Hence, 
“effects observed in the research are employed to 
assess the status of theory. But, it is the theoretical 
explanation that is expected to be generalizable and not 
the particular effects obtained” (Calder, Phillips, & 
Tybout 1981, p. 197). In this case, sample 
representativeness is of secondary concern when 
comparing models as long as specific sample 
characteristics are not an integral part of the theory 
(Calder et al., 1981). This differs from effects 
application, which “is based on a desire for knowledge 
about the events and relationships in a particular real-
world situation. The primary goal of this type of 
research...is to obtain findings that can be applied 
directly to the situation of interest” (Calder et al., 1981, 
p. 198). Hence, when comparing alternative models 
in an effects application context, researchers need to 
ensure that their sample is representative of the 
specific population of interest.  

Step 3 entails evaluating the reliability and validity of 
the measurement models by using criteria that have 
been well documented in textbooks (e.g., Ramayah et 
al., 2018; Hair, Hult, Ringle, & Sarstedt, 2017), tutorial 
articles (e.g., Chin, 2010; Gefen et al., 2011; Hair, 
Hollingsworth et al., 2017), and recent research articles 
(e.g., Cheah et al., 2018; Franke & Sarstedt, 2019; 
Henseler, Ringle, & Sarstedt, 2015). Researchers 

                                                           
10 Because PLS path models focus on providing theoretical 
explanation, considering purely empirically motivated 
models would be akin to “snooping”, and is not 

should use the same data treatment options (e.g., 
missing value treatments) and algorithm settings 
across the models to maintain consistency. This step 
ensures that only those models whose measures exhibit 
a sufficient degree of reliability and validity are 
considered further for model selection (Step 4).   

Step 4 involves selecting a model based on the model 
selection criteria, followed by the structural model 
assessment and statistical inference for testing the 
research hypotheses (Step 5). While Steps 3 and 5 have 
been well documented in prior PLS research, our 
study focuses on model selection (Step 4), which 
had remained unaddressed to date. Hence, we issue 
some clarifying remarks to help researchers avoid 
falling prey to potential misconceptions regarding 
the use of model selection criteria.  

First and foremost, model selection criteria are not 
meant to automate model selection with minimal 
thought. Rather, these criteria are meant as tools that 
researchers can use to gain additional information 
about models under consideration (Pitt & Myung, 
2002). Selecting one model over another should 
proceed primarily on the basis of theoretical arguments 
aided by empirical evidence. Whether any of the 
models under consideration is theoretically meaningful 
depends primarily on the researcher’s theoretical logic 
(Burnham & Anderson, 2002). Because PLS is used 
for theory building by focusing on explanation 
(Jöreskog & Wold, 1982; Chin, 1995), model 
selection using the thoughtless “all possible subsets” 
approach would be akin to “data dredging” (Burnham 
& Anderson, 2002, p. 37). 

Second, like all empirical metrics, model selection 
criteria are also affected by the idiosyncrasies of the 
data at hand. The inability to select a “clear” winner is 
not a defect of the model selection criteria but rather an 
indication that the data are inadequate for such a strong 
inference (Burnham & Anderson, 2002). Science, as a 
discipline, rests on uncertainty both in theorizing and 
empirical modeling. The use of model selection 
criteria, while not a guarantee, brings transparency to 
the model selection process by providing researchers 
the ability to acknowledge model selection uncertainty.  

Third, it is unrealistic to assume that there is one best 
criterion to use for all scenarios (Andrews & Currim, 
2003b). For example, in Sarstedt et al.’s (2011) study 
on the performance of model selection criteria in the 
context of finite mixture-based latent class analysis in 
PLS, different degrees of model complexity had a 
significant effect on the criteria performance. However, 
while our recommendation to use BIC and GM certainly 
does not apply to all models, it is reasonable to conclude 

recommended for theoretical research that focuses on both 
explanation and prediction (Gregor, 2006). 
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that these metrics are useful for models with similar 
complexity as are commonly encountered in IS research 
and used in our simulation study.  

Fourth, the model selection criteria can only be used to 
compare models on the same data set. Researchers 
cannot hope to compare and interpret models across 
samples using these criteria, as the properties of these 
data sets will be different. In particular, model 
selection criteria values cannot be compared across 
different missing data treatments commonly used in 
PLS (i.e., mean replacement, and casewise or pairwise 
deletion; Hair, Hult, Ringle, & Sarstedt, 2017). 
Similarly, all criteria assume that the same endogenous 
variable is the subject of interest; hence, it only makes 
sense to compare models with the same target 
construct (Burnham & Anderson, 2002).  

Fifth, models selected by model selection criteria will 
often differ from those selected on the grounds of the 
null hypothesis testing paradigm (Posada & Buckley, 

2004). In fact, the model selection criteria’s 
performance is unrelated to the statistical significance 
of the path coefficients (Burnham & Anderson, 2002). 
While it may be sufficient (but not optimal) to rely on 
the null hypothesis paradigm in cases where only 
univariate causality is being determined, when 
multivariate causality is under consideration—as is the 
case in most PLS studies—statisticians agree that 
model comparison based on model selection criteria 
offers clear advantages (Elliott & Brook, 2007; 
Stephens, Buskirk, Hayward et al. 2005; Lukacs, 
Thompson, Kendall et al., 2007).  

In Table 5, we summarize these and additional potential 
misconceptions and offer further clarifying remarks to 
avoid associated pitfalls as well as provide suitable 
references. Our illustration distinguishes between (1) 
research design issues, (2) differences with the null 
hypothesis paradigm, and (3) operational issues.  

 

Table 5: Possible Misconceptions and Clarifications 

Misconception Clarification Suggested readings 

Research design issues 

Competing models are required 
in all PLS studies. A paper 
should be rejected if it does not 
compare models.  

Competing models are not required in all PLS studies. 
Comparing alternative explanations (models) is a foundational 
step in the scientific method of strong inference whose 
application has encouraged faster innovation in more vigorous 
and livelier fields and separated them from lethargic ones. 
However, competing models have limited utility in strictly 
confirmatory settings where the goal is to judge the applicability 
of a single established model in a specific context. 

Burnham & Anderson, 
2001; Chamberlin, 1890; 
Clarke, 2007; Elliott & 
Brook, 2007; Nuzzo 2015; 
Platt, 1964; Yi & Nassen, 
2015  

Model selection criteria 
minimize (or eliminate) the role 
of theory and encourage 
comparing “atheoretical” or 
“thoughtless” models.  

If all the models in the competing set are theoretically poor, the 
model selection criteria will still select a (poor) model (i.e., 
“garbage in, garbage out”). The effective use of model selection 
criteria requires researchers to generate a manageable set of 
theoretically plausible models by taking guidance from the 
existing theory. 

Burnham & Anderson, 
2001; Burnham & 
Anderson, 2002;  

Model selection criteria will 
always lead to a single “best” 
model, and hence are a 
guarantee against model 
selection uncertainty. 
Researchers should always 
choose models that have the 
“best” selection criteria values. 

Model selection criteria offer empirical guidance while 
comparing models. If a single model emerges as a clear winner, 
then inference can proceed based on that model. When there exist 
several models that are close in the information theoretic sense, 
and no clear winner emerges, then researchers should 
acknowledge model selection uncertainty. The tie among the 
models can then be broken to pick one model for conditional 
inference by considering the goal of the study, theoretical 
argumentation, and the full set of available empirical evidence 
(including explanatory and predictive metrics). In case none of 
the empirical criteria are able to separate the models, the models 
should be considered statistically equivalent. The choice of a 
model must then move beyond data analysis toward theoretical 
and practical considerations, as the data are unable to resolve the 
issue.  

Buckland, Burnham & 
Augustin, 1997; Burnham 
& Anderson, 2002; 
Henley, Shook & Peterson, 
2006; MacCallum, 
Wegener, Uchino et al. 
1993; Raftery, 1995 
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Table 5: Possible Misconceptions and Clarifications 

BIC and GM are the only 
recommendable model selection 
criteria across all scenarios.  

While it is unrealistic to assume that there is one best criterion to 
use across all scenarios, BIC and GM are useful for models with 
similar complexity as commonly encountered in IS research and 
used in our simulation study.  

Andrews & Currim, 
2003b; Sarstedt, Becker, 
Ringle et al., 2011 

Only parsimonious models 
should be selected. 
Alternatively, selecting a more 
complex model should always 
be avoided.   

Parsimony is a key ingredient in empirically achieving a good 
balance between bias and variance in a specific data set and leads 
to generalizability and better out-of-sample predictive power. 
Parsimony has also been suggested as one of the primary goals 
of the scientific enterprise. The tradeoff between bias and 
variance is not related to theoretical complexity per se, which is 
expected to increase as more detailed knowledge about the 
system under consideration accumulates over time, and in this 
sense is a desirable trait.     

Myung, 2000; Pitt & 
Myung, 2002; Simon, 
2001; Shmueli & Koppius, 
2011; Zellner, 
Keuzenkamp, & McAleer, 
2001.  

The true model is required to be 
in the competing set of models.  

There is no mathematical requirement in the derivation of model 
selection criteria, including the asymptotically consistent criteria, 
which assumes the true model is in the competing set of models. 
In fact, a true model is generally out of reach and even worse, 
unknown. The results of this study show that the performance of 
the model selection criteria was unaffected by the inclusion or 
exclusion of the data-generating model in the competing set.   

Burnham & Anderson, 
2002; Burnham & 
Anderson, 2004; 
Cavanaugh & Neath, 1999 

Comparison with the null hypothesis paradigm 

Model selection criteria are a 
replacement for p-values or 
measures of model fit. The use 
of p-values and PLS criteria is 
not recommended.  

The method for selecting a model should be kept separate from 
the method used for model inference and reporting to avoid 
publication bias in PLS studies. The practice of model selection 
using path statistical significance (p-values) or PLS criteria is not 
recommended. 

Berk et al., 2010; Cohen, 
1994; Raftery, 1995 

Models selected on the basis of 
path significance (p-values) or 
R2 will be the same as those 
selected by model selection 
criteria. Therefore, the use of 
model selection criteria is 
redundant.  

Because model selection criteria are tuned to the information 
content in a sample, their performance is unrelated to the 
statistical significance of path coefficients. In addition, PLS 
criteria such as R2 try best to evaluate the model’s fit to the 
“data”, including its noise content. In contrast, model selection 
criteria try to model “information” contained in the data by 
avoiding noise and overfitting. This distinction means that 
models selected on the basis of model fit will tend to differ from 
models selected by model selection criteria, unless the data are 
totally devoid of noise. The overarching goal of science is not to 
simply look for statistical significance (or highest R2) in a given 
sample, but rather meaningful relationships that best capture 
information in the data and generalize beyond the sample.     

Burnham & Anderson, 
2001; Burnham & 
Anderson, 2002; Johnson 
& Omland, 2004; Kirk, 
1996; Pitt & Myung, 2002; 
Raftery, 1995; Reese, 2004  

Model selection criteria will 
always select a model that is 
best in terms of the null 
hypothesis paradigm (or with 
greatest number of significant 
paths).    

The use of path significance (p-values) offers no objective basis 
with which to judge which model is the best in the PLS 
framework and is not recommended for selecting a model among 
alternatives. In fact, the reliance on null hypothesis testing to 
select a model can induce publication bias via “p-value hacking” 
(see Section 2.2.1). The five-step procedure presented above 
delineates the roles of model selection and statistical inference to 
ensure that a model that offers the best balance between fit and 
parsimony in the given sample is selected before conducting 
statistical inference.    

Aho, Derryberry, & 
Peterson, 2014; Raftery, 
1995; Wasserstein & 
Lazar, 2016 
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Table 5: Possible Misconceptions and Clarifications 

Model selection criteria can be 
used to state which model is 
“significantly” better than the 
other. 

As model selection criteria are derived using information theory, 
researchers should avoid using statistical inference-related 
terminology associated with the null hypothesis testing paradigm 
(significant, type 1, type 2 errors, etc.) to avoid confusion. Model 
selection criteria do not provide evidence in the form of simple 
dichotomies such as “accept” or “reject”, or “significant” or 
“nonsignificant”. In particular, researchers cannot claim that one 
model is “significantly” better than another when using model 
selection criteria.  

Burnham & Anderson, 
2002; Johnson & Omland, 
2004; Raftery, 1995  

Operational issues 

Model selection criteria values 
can be compared across data 
sets. Or, the expectation that 
model selection criteria will 
always select the same model 
across data sets or contexts. 

Model selection criteria can only be used to compare models on 
exactly the same data set. This also includes comparing the 
criteria across different missing data or outlier treatments 
commonly used in PLS as these methods change the underlying 
data. The onus is on the researcher to ensure that the sample is 
representative of the population under study. The generalizability 
of a model can then be assessed over time as more replication 
studies become available. 

Burnham & Anderson, 
2002;  

Model selection criteria can be 
used to compare models with 
different target endogenous 
constructs. 

All model selection criteria assume that the same target 
endogenous construct is the subject of interest. Hence, their use 
is limited to comparing models with the same target construct. 
However, model selection criteria do allow comparing models 
with different antecedent constructs.   

Burnham & Anderson, 
2002 

Model selection criteria can be 
used with single models. 
Alternatively, standalone values 
of model selection criteria are 
interpretable and useful. 

Because model selection criteria are relative distance metrics, a 
standalone value, no matter how large or small, is not 
meaningful. Thus, interpreting a model selection criterion value 
for a single model is meaningless. Instead, the difference in 
values of two models can be interpreted as the relative loss in 
information between them.   

Burnham & Anderson, 
2001; Burnham & 
Anderson, 2002; Burnham 
& Anderson, 2004; 
Raftery, 1995 

Model selection criteria have 
values restricted to a specific 
range.  

Unlike R2, which varies between 0 and 1 and has a useful 
interpretation, the model selection criteria do not have a scale. 
Thus, a wide range of values (including negative values) are 
possible. Furthermore, there are no strict “cut-off” values to 
indicate which models are important.      

Burnham & Anderson, 
2002; Johnson & Omland, 
2004; Raftery, 1995 

Model selection criteria can 
only be used to compare nested 
models.  

In contrast to the null hypothesis testing paradigm, model 
selection criteria are not bound by the nesting requirement and 
can be used to select among nonnested models.    

Burnham & Anderson, 
2002; Johnson & Omland, 
2004; Raftery, 1995 

The order in which models are 
compared matters.  

The order of comparison when using model selection criteria is 
irrelevant, unlike the hypothesis testing approaches (e.g., forward 
addition, backward elimination, and stepwise) that may be 
affected by the order.  

Burnham & Anderson, 
2002; Johnson & Omland, 
2004; Raftery, 1995 

6.2 Limitations and Future Research   
As with all research, our study is subject to limitations 
that offer avenues for future research. First, because 
PLS estimation does not necessarily maximize the 
overall likelihood function, we have adapted and 
evaluated the use of model selection criteria in this 
context under a variety of scenarios. While our results 
show consistency across different manipulations, we 
have investigated only a subset of all possible model 
selection scenarios, and it is not guaranteed that the 
same behavior will extend to other cases. Specifically, 

exploring the performance of these model selection 
criteria in more complex models involving interaction 
effects (e.g., Henseler & Chin, 2010), nonlinear 
effects (e.g., Rigdon, Ringle, & Sarstedt, 2010), or 
hierarchical component models (e.g., Becker, Klein, 
& Wetzels, 2012) would be particularly fruitful. In 
doing so, researchers should examine a broader set of 
data constellations, by considering, for example, 
lateral collinearity (Kock & Lynn, 2012).  

Second, while beyond the scope of this study, model 
selection criteria also allow researchers to quantify 
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model selection uncertainty through the use of model 
ranks and Akaike weights (Dayton, 2003; Johnson & 
Omland, 2004). Akaike weights quantify the evidence 
in favor of a model being the actual best model in 
comparison to other models for the situation at hand 
(Burnham & Anderson, 2002). By comparing the rank 
and Akaike weights of all competing models, 
researchers can create evidence ratios and judge the 
relative strength of evidence for each participating 
model in comparison to others (Wagenmakers & 
Farrell, 2004). More importantly, Akaike weights 
allow researchers to create more accurate model-
averaged estimates based on a set of models (i.e., 
multimodel inference) rather than relying on a single 
model, which can improve out-of-sample predictive 
accuracy (Burnham & Anderson, 2004; Claeskens & 
Hjort, 2008; Hansen, 2007; Symonds & Mousalli, 
2011). We believe that this can be a particularly 
fruitful area for future research to explore.  

Third, because model selection and PLS criteria 
require focus on a specific endogenous construct, 
comparing two theories with different target 
constructs is not feasible. However, Cohen, Carlsson, 
Ballesteros, and Amant (1993) have proposed an 
extension to path analysis that allows for comparing 
models with reversed causality and which has been 
successfully implemented in a PLS context (Sattler, 
Völckner, Riediger, & Ringle, 2010). Future research 
should try to merge these two approaches to broaden 
the focus of model selection. 

Finally, we have restricted our attention to reflectively 
specified measures and further research would be 
necessary to examine the case of formatively 
specified constructs, which have received 
considerable attention in the recent IS research (e.g., 
Diamantopoulos 2011; Petter, Straub, & Rai, 2007).   

7 Conclusion 
The overall goal of this paper is to encourage model 
selection practices in PLS with the aim of helping 
create generalizable theories in IS research. The 
practice of model selection has been considered a 
fundamental building block of scientific progress by 
the philosophers of science (e.g., Lakatos, 1970; 
Meehl, 1990), and is consistent with the fundamental 
scientific pursuit of strong inference (Platt, 1964). 

While models, by definition, cannot reflect all of 
reality (Burnham & Anderson, 2002), they can be used 
to approximate the mechanisms that underlie the data 
generation process (MacCallum, 2003). In practice, 
this means that researchers should seek to identify a 
model that is parsimonious and consistent with reality. 
Such a model achieves a sound balance between fit to 
the data and parsimony and, hence, has the best 
chance of being generalizable. Theory guides the 
derivation of models that are likely to reflect reality 
adequately but evaluating them in isolation is likely 
to be prone to confirmation bias. Having a set of 
theory-driven competing models is one way to 
circumvent this bias (Preacher, 2006).  

The ability to evaluate theory-driven (plausible) 
competing models is especially relevant in exploratory 
settings, a context for which PLS was originally 
designed (e.g., Wold, 1974; 1980). Our study 
compared the performance of model selection criteria 
in PLS under a variety of data and model 
constellations. The results strongly suggest that 
researchers should avoid basing the decision to select 
a model using the PLS criteria (i.e., R2, Adjusted R2, 
GoF, and Q2), as is the current practice in academic 
research and industry. Instead, the use of model 
selection criteria (in particular, BIC and GM) is 
advised due to their robust model selection 
performance under all the contexts studied here. With 
a proper theoretical base and a strong study design, 
these criteria allow researchers to consider competing 
models within the PLS framework and select the best 
model among them. While certainly not a panacea, we 
believe that these criteria can provide the much-needed 
empirical guidance to researchers to make more informed 
model selection decisions under exploratory settings.   
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Appendix A 
Table A1. PLS-Based Studies that Analyzed Multiple Models for Reasons Other than Comparing Theoretically Justified 

Alternatives in the Top Four IS Journals (ISR, JAIS, JMIS, and MISQ) Published April 2011 - April 2016. 

Reference Aim of the analysis involving multiple models 

Grgecic, Holten, & Rosenkranz (2015) | JAIS Alternative construct operationalizations 

Karahanna & Preston (2013) | JMIS Alternative construct operationalizations 

Ray, Kim, & Morris (2012) | ISR Alternative construct operationalizations 

Elie-Dit-Cosaque, Pallud, & Kalika (2011) | JMIS Comparison with another research study 

Xu, Benbasat, & Cenfetelli (2013) | MISQ Explanatory power when adding antecedent construct 

Fang et al. (2014) | MISQ Moderator model 

Ou, Pavlou, & Davison (2014) | MISQ Moderator model 

Sun (2012) | MISQ Moderator model 

Venkatesh, Thong, & Xu (2012) | MISQ Moderator model 

Xu, Benbasat, & Cenfetelli (2011) | JAIS Moderator model 

Matook, Cummings, & Bala (2015) | JMIS Only controls, main effects, main effects plus interactions (stability 
check) 

Mehta & Bharadwaj (2015) | JMIS Only controls, main effects, main effects plus interactions (stability 
check) 

Angst, Devaray, & D’Arcy (2012) | JMIS Stability when antecedent constructs removed 

D’Arcy, Herath, & Shoss (2014) | JMIS Stability when antecedent constructs removed 

Johnson & Coopper (2015) | JMIS Stability when antecedent constructs removed 

Xue. Liang, & Wu (2011) | ISR Stability when antecedent constructs removed 

Armstrong, Brooks & Riemenschneider (2015) | MISQ Stability when comparing with saturated model 

Arazy & Gellatly (2012) | JMIS Stability when control variables included 

Kock & Chatelain-Jardón (2011) | JAIS Stability when control variables included 

Setia, Venkatesh, & Joglekar (2013) | MISQ Stability when control variables included 

Zhang, Venkatesh, & Brown (2011) | JAIS Stability when control variables included 

Wan, Compeau, & Haggerty (2012) | JMIS Stability when control variables removed 

Kankanhalli, Ye, & Teo (2015) | MISQ Stability when different endogenous construct 

Benlian, Koufaris, & Hess (2011) | JMIS Stability when structural paths added 

Johnston, Warkentin, & Siponen (2015) | MISQ Stepwise extension of model to test stability 

Note: JAIS=Journal of the Association for Information Systems, JMIS=Journal of Management  
Information Systems, MISQ=MIS Quarterly 
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Table A2. PLS-Based Studies that Compared Theoretically Justified Alternative Models in the Top Four IS Journals 
(ISR, JAIS, JMIS, and MISQ) Published April 2011 - April 2016. 

Reference Criterion used for model selection 

Chandra, Srivastava, & Theng (2012) | JAIS  f2, R2 

Dinger et al. (2015) | JAIS  R2 

Hsieh, Rai, Petter, & Zhang (2012) | MISQ  R2 

Majchrzak, Wagner, & Yates (2013) | MISQ  R2 

Polites & Karahanna (2012) | MISQ  R2 

Sykes (2015) | MISQ  R2 

Tan, Benbasat, & Cenfetelli (2013) | MISQ  f2, R2 

Xue et al. (2013) | JMIS  Path coefficient significance 

Wagner, Beimborn, & Weitzel (2014) | JMIS  f2, R2 

Note: JAIS=Journal of the Association for Information Systems, JMIS=Journal of Management  
Information Systems, MISQ=MIS Quarterly 
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Appendix B 
The asymptotically efficient and consistent criteria described in this paper can be written as a function of the maximized 
value of the likelihood function (𝐿𝐿�). For example, 

𝐴𝐴𝐴𝐴𝐴𝐴 =  −2𝑙𝑙𝑙𝑙𝐿𝐿� + 2𝑝𝑝𝑘𝑘 

𝐵𝐵𝐵𝐵𝐵𝐵 =  −2𝑙𝑙𝑙𝑙𝐿𝐿� + 𝑝𝑝𝑘𝑘𝑙𝑙𝑙𝑙(𝑛𝑛) 

𝐻𝐻𝐻𝐻 =  −2𝑙𝑙𝑙𝑙𝐿𝐿� + 2𝑝𝑝𝑘𝑘𝑙𝑙𝑙𝑙(𝑙𝑙𝑙𝑙(𝑛𝑛)) 

Under a normal error distribution assumption, these likelihood-based formulas can be written in terms of SSerror as 
shown in Table B1 below (Burnham & Anderson, 2002; p.63; McQuarrie & Tsai, 1998). 

Table B1. Information Theoretic Model Selection Criteria  

Criterion Formula Description 

Distance-based criteria 

Final prediction error (FPE) 
�

SSerrork
n −  pk

� × �1 + 
pk
n � 

Selects the best model by minimizing the final 
prediction error.   

Mallow’s Cp 
�

SSerrork
MSerror

� − (n −  2pk) 
Based on mean square error (MSE); MSerror is 
MSE from the saturated (full) model. 

Akaike information criterion 
(AIC) n �log �

SSerrork
n � +  

2pk
n � 

Estimates the relative expected KL distance to 
the unknown true model.  

Unbiased AIC (AICu) 
n �log �

SSerrork
n −  pk

� +  
2pk

n � 
Uses the unbiased estimate for population MSE, 
hence differs from AIC in small samples.   

Corrected AIC (AICc) 
n �log �

SSerrork
n � + 

n + pk
n − pk − 2 � 

Corrects AIC’s tendency to overfit (select a 
complicated model) under small samples. 

Consistent criteria 

Bayesian information 
criterion (BIC) n �log �

SSerrork
n � +  

pklog (n)
n � 

Derived using Bayesian argument; adjusts AIC 
for model complexity by using a stronger 
penalty for overfitting.  

Geweke-Meese criterion 
(GM) �

SSerrork
MSerror

� +  pklog (n) 
Adjusts Mallow’s Cp for model complexity by 
using a stronger penalty for overfitting.  

Hannan-Quinn criterion (HQ) 
n �log �

SSerrork
n � + 

2pklog (log(n))
n � 

Corrects small sample performance of BIC by 
using a stronger penalty term.  

Corrected HQ criterion (HQc) 
n �log �

SSerrork
n � + 

2pklog (log(n))
n −  pk − 2 � 

Corrects small sample performance of HQ and 
adjusts for model complexity.  

Note: SSerror(k) is the sum of squared errors for the kth model in a set of models; MSerror is the mean squared error from the saturated model; pk 
is the number of predictors in the kth model plus 1.  

To compute the criteria in Table B1, researchers can calculate the SSerror for the partial regression of a certain target 
construct as follows: 

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝑅𝑅2)𝑆𝑆𝑆𝑆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 , 

where R2 is the coefficient of determination of the target construct for the kth model in the competing set. As the PLS 
algorithm uses standardized latent variable scores as input for the partial regressions in the structural model, SStotal is 
equal to N-1. Hence, 

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝑅𝑅2)(𝑁𝑁 − 1) 
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To calculate MSerror, researchers need to calculate the R2 of the saturated model in which all constructs are linked to 
the target construct: 

𝑀𝑀𝑀𝑀𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 = (1 − 𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠2 ) 

Finally, pk is the number of immediate antecedents predicting the target construct plus 1. 

We illustrate the computation of all criteria in an Excel sheet, which can be obtained from the Downloads section at 
https://www.pls-sem.net/.  

  



Journal of the Association for Information Systems 
 

397 

 

About the Authors 
Pratyush Nidhi Sharma is an assistant professor in the Alfred Lerner College of Business & Economics, University 
of Delaware. He received his PhD from the University of Pittsburgh in 2013. His research interests include online 
collaboration communities and networks, open source software development, and research methods used in 
information systems, particularly partial least squares path modeling. In addition, he is also interested in issues 
surrounding technology use and adoption and human computer interaction. His research has been published in 
distinguished journals such as the Journal of Retailing, Decision Sciences, Government Information Quarterly, Journal 
of Information Systems, Journal of Business Research, Journal of International Marketing, and International Journal 
of Accounting Information Systems. In addition, he has published several book chapters and presented his research at 
premier conferences such as the International Conference on Information Systems, Americas Conference on 
Information Systems, INFORMS, and PLS. 

Marko Sarstedt is a chaired professor of marketing at the Otto-von-Guericke-University Magdeburg (Germany) and 
adjunct professor at Monash University Malaysia. His main research interest is the advancement of research methods 
to further the understanding of consumer behavior. His research has been published in Journal of Marketing Research, 
Journal of the Academy of Marketing Science, Multivariate Behavioral Research, Organizational Research Methods, 
MIS Quarterly, Decision Sciences, Journal of World Business, and Long Range Planning, among others. Marko has 
coedited several special issues of leading journals and co-authored four widely adopted textbooks, including A Primer 
on Partial Least Squares Structural Equation Modeling (PLS-SEM) (together with Joe F. Hair, G. Tomas M. Hult, and 
Christian M. Ringle). Marko has been named a member of Clarivate Analytic’s 2018 Highly Cited Researcher list. 

Galit Shmueli is the Tsing Hua Distinguished Professor at the Institute of Service Science, National Tsing Hua 
University, Taiwan. She is also the director of the Center for Service Innovation & Analytics at NTHU's College of 
Technology Management. She earned her Master’s and PhD degrees in statistics from the Technion-Israel Institute of 
Technology and her BA in psychology and statistics from Haifa University. Her research focuses on statistical and 
data mining methodology with applications in information systems and healthcare and a focus on prediction vs. 
explanation. She has authored and co-authored multiple books and publications in peer-reviewed journals, including 
Management Science, Journal of the American Statistical Association, Journal of the Royal Statistical Society, 
Information Systems Research, MIS Quarterly, Journal of the Association of Information Systems, Journal of Business 
and Economic Statistics, Marketing Science, Statistical Science, Technometrics, and Proceedings of the National 
Academies of Science. 

Kevin H. Kim (†) was an associate professor of education in the Department of Psychology at the University of 
Pittsburgh. He passed away in July 2014. His scholarship was in statistical methods as well as in the behavioral and 
social sciences. His work focused on structural equation modeling, multivariate statistics, multilevel modeling, and 
Asian American mental health. He published extensively in methodology and in several other academic disciplines 
and worked as a co-investigator on numerous federally funded grants with faculty throughout Pitt and other 
universities. In 2007, he cowrote the book titled Univariate and Multivariate General Linear Models: Theory and 
Applications. He was also a highly regarded teacher of statistical methodology at Pitt, teaching numerous graduate- 
level courses and supervising many PhD students.  

Kai Oliver Thiele received his PhD from the Hamburg University of Technology in Germany. He holds an MBA 
degree from the University of Kansas and a Master’s degree in business mathematics from the University of Hamburg. 
He received a DAAD scholarship and a scholarship from the German Institute for Japanese Studies to conduct his 
research in Japan. 

 

 

 

 

Copyright © 2019 by the Association for Information Systems. Permission to make digital or hard copies of all or part 
of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for 
profit or commercial advantage and that copies bear this notice and full citation on the first page. Copyright for 
components of this work owned by others than the Association for Information Systems must be honored. Abstracting 
with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires prior 
specific permission and/or fee. Request permission to publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, 
GA, 30301-2712 Attn: Reprints or via email from publications@aisnet.org. 


	1 Introduction
	2 Model Selection in PLS Studies: Current State of Affairs and Issues
	2.1 Review of Current PLS Model Selection Practices in IS Research
	2.2 Issues Related to Current PLS Model Selection Practices
	2.2.1 Model Selection Based on Measures of Fit
	2.2.2 Model Selection Based on the Null Hypothesis Paradigm


	3 Model Selection Criteria
	4 Monte Carlo Study
	4.1 Study Design
	4.2 Experimental Conditions and Data Generation Method

	5 Analysis and Results
	5.1 Overall Model Selection Rates
	5.2 Model Selection Rates by Sample Size
	5.3 Model Selection Rates by Effect Size
	5.4 Model Selection Rates by Loading Condition (AVE)

	6 Summary and Discussion
	6.1 Key Findings and Recommendations
	6.2 Limitations and Future Research

	7 Conclusion
	Acknowledgments
	References
	Appendix A
	Appendix B
	About the Authors

