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Abstract 

Organizational members who conceal information about adverse behaviors present a substantial risk 
to that organization. Yet the task of identifying who is concealing information is extremely difficult, 
expensive, error-prone, and time-consuming. We propose a unique methodology for identifying 
concealed information: measuring people’s mouse-cursor movements in online screening 
questionnaires. We theoretically explain how mouse-cursor movements captured during a screening 
questionnaire differ between people concealing information and truth tellers. We empirically 
evaluate our hypotheses using an experiment during which people conceal information about a 
questionable act. While people completed the screening questionnaire, we simultaneously collected 
mouse-cursor movements and electrodermal activity—the primary sensor used for polygraph 
examinations—as an additional validation of our methodology. We found that mouse-cursor 
movements can significantly differentiate between people concealing information and people telling 
the truth. Mouse-cursor movements can also differentiate between people concealing information 
and truth tellers on a broader set of comparisons relative to electrodermal activity. Both mouse-cursor 
movements and electrodermal activity have the potential to identify concealed information, yet 
mouse-cursor movements yielded significantly fewer false positives. Our results demonstrate that 
analyzing mouse-cursor movements has promise for identifying concealed information. This 
methodology can be automated and deployed online for mass screening of individuals in a natural 
setting without the need for human facilitators. Our approach further demonstrates that mouse-cursor 
movements can provide insight into the cognitive state of computer users. 
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1 Introduction 
Organizational members who conceal information 
about adverse behaviors present a substantial risk to 
their organization. For example, insider threats—i.e., 
adversaries posing as trusted members of an 
organization—may conceal malicious acts, such as 
espionage or sabotage, resulting in significant danger 
to both the private and public sectors (Upton & Creese, 
2014). Even a nonmalicious employee may conceal 
information about noncompliance with organizational 
policies (e.g., security policies, acceptable-use policies), 
which can render organizations vulnerable to attacks. 
Security incidents facilitated by information concealment 
are prevalent (PWC, 2016; Schulze, 2016), costing 
organizations hundreds of thousands of dollars on average 
per incident (Raytheon, 2015) and costing society tens of 
billions of dollars per year (Figliuzzi, 2012).   

Being able to identify when people are concealing 
information about adverse behaviors is an extremely 
difficult, expensive, error-prone, and time-consuming 
task. For example, concealed information of malicious 
acts takes, on average, 256 days to detect (Gordover, 
2016). Most organizations report not having 
appropriate controls in place to detect when a 
concealed attack is occurring (Schulze, 2016), and 
detection systems are plagued with high numbers of 
false positives (Monahan, 2015). Even simple 
violations to organizational policies (e.g., storing 
confidential information on portable devices) are difficult 
to detect, resulting in deterrence programs that are often 
inadequate (Park, Ruighaver, Maynard, & Ahmad, 2012). 
Thus, there is a need to create systems that supplement 
existing techniques to improve deception detection.  

To address this challenge, we propose a novel 
approach to help identify concealed information: the 
monitoring of mouse-cursor movements in online 
screening questionnaires. Mouse-cursor movements 
can be monitored online in people’s natural 
environments without any specialized hardware or 
software installed on their computers. Additionally, 
this approach can be mass-deployed online to screen 
individuals for concealed information and can trigger 
follow-up evaluations as needed. Alternatively, this 
approach can be used to further screen individuals who 
are already flagged as potential threats by existing 
systems, decreasing the number of false positives. 

In this paper, we first present a specialized screening 
questionnaire—based on the concealed information 
test (CIT) 1 —as a robust technique to screen for 
concealed information online. We then theoretically 
explain how mouse-cursor movements differ between 
people concealing information and people telling the 

                                                      
1The CIT is a scientifically validated criminal interviewing 
technique that can be used in polygraph examinations. 

truth using this test. In doing so, we address the 
following research question: How do mouse-cursor 
movements differ for people concealing 
information and people telling the truth in an 
online CIT-based questionnaire? 

Second, in an exploratory analysis to further validate 
our methodology, we compare people’s mouse-
movement responses to their electrodermal activity 
while they complete the online questionnaire. 
Electrodermal activity is the primary response 
mechanism of interest used in the polygraph-based CIT 
(Krapohl, McCloughan, & Senter, 2009). An 
electrodermal response refers to a change in the 
electrical properties of the skin, which vary with the 
skin’s moisture level (Martini & Bartholomew, 2003). 
When a person conceals information while responding 
to a question (in our case, the online questionnaire), it 
causes arousal, thereby increasing the rate of sweat 
secretion on the skin, which increases the skin’s ability 
to conduct an electrical current (i.e., increased 
electrodermal activity) (Fowles, 2007). As our 
screening questionnaire is based on the CIT, we 
compare whether changes in mouse-cursor movements 
correspond to changes in electrodermal activity. In 
doing so, we answer the following exploratory 
research question: Do mouse-cursor movements 
correspond with changes in electrodermal activity 
during an online CIT-based questionnaire? 

We tested our hypotheses using an experiment during 
which participants concealed information in our CIT-
based test after completing a questionable task: 
stealing credit card numbers in a mock scenario. In the 
experiment, we simultaneously measured the mouse-
cursor movements and electrodermal activity of each 
participant. We found that mouse-cursor movements 
can significantly differentiate between people 
concealing information and people telling the truth in 
our online questionnaire. We also found that mouse-
cursor movements can differentiate between concealed 
information and truth on a broader set of comparisons 
relative to electrodermal activity. Both mouse-cursor 
movements and electrodermal activity demonstrated 
the potential to be used for identifying concealed 
information with a similar accuracy rate. Mouse-cursor 
movements, however, yielded significantly fewer false 
positives than electrodermal readings. Our results 
demonstrate that the use of mouse-cursor monitoring 
shows promise for identifying concealed information. 
The methodology can be implemented online and 
automated to mass-screen individuals in their natural 
environments to facilitate existing detection systems 
without the bias of human facilitators. Furthermore, this 
approach demonstrates that mouse-cursor movements can 
provide insight into the cognitive state of computer users.  



Journal of the Association for Information Systems 
 

3 

 

2 Background 
Developing systems to detect concealed information 
has been the focus of much research. In general, the 
research on detecting concealed information can be 
split into two complementary areas. First, several 
systems have been developed that look for cues 
indicating that information is being concealed, and 
other adverse behaviors, by monitoring information in 
a person’s environment. For example, studies have 
provided solutions that assess system calls (Liu, Martin, 
Hetherington, & Matzner, 2005), social media 
(Kandias, Stavrou, Bozovic, & Gritzalis, 2013), 
weblogs (blogs) (Myers, Grimaila, & Mills, 2009), 
activity logs (Legg, Buckley, Goldsmith, & Creese, 
2015), active directory logs (Hsieh, Lai, Mao, Kao, & 
Lee, 2015), and a variety of individual and personality 
characteristics (Agrafiotis et al., 2015) to detect 
concealed adverse behaviors. Sanzgiri & Dasgupta, 
(2016) group these techniques into several categories, 
including anomaly-based approaches, role-based access 
control, scenario-based approaches, using decoys and 
honeypots, risk analysis using psychological factors, 
and risk analysis using workflows. 

Second, several systems have been developed that 
question people directly about concealed information 
and other adverse behaviors. These systems introduce 
stimuli into a person’s environment (e.g., a screening 
questionnaire), then monitor the person’s responses to 
identify indicators of concealed information associated 
with those stimuli (Nunamaker, Derrick, Elkins, 
Burgoon, & Patton, 2011; Twyman, Lowry, Burgoon, 
& Nunamaker, et al., 2014). Researchers working in 
this area have investigated several topics, including 
system-design principles (Derrick, Jenkins, & 
Nunamaker, 2011), system use and possible 
applications (Jensen, Lowry, Burgoon, & Nunamaker, 
2010), various sensors to detect deception indicators 
(Proudfoot, Jenkins, Burgoon, & Nunamaker, 2016; 
Twyman, Elkins, Burgoon, & Nunamaker, 2014), the 
fusion of sensors designed to detect deception 
indicators (Derrick et al., 2010), people’s perceptions 
and reactions to system adoption (Elkins, Dunbar, 
Adame, & Nunamaker, 2013), and understanding 
countermeasures against automated credibility 
assessment systems (Proudfoot et al., 2016a).  

Our research specifically builds on and extends the 
second area of research by developing a theoretically 
sound, mass-deployable technique for detecting 
concealed information based on the CIT and mouse-
cursor tracking. As opposed to other sensors typically 
used to detect concealed information (e.g., 
electrodermal activity), mouse-cursor movements can 
be monitored in the course of an online questionnaire 
using JavaScript without any special hardware or 
software required on the respondent’s computer. 
Mouse-cursor movements can provide “high-fidelity, 
real-time motor traces of the mind (and) can reveal 

‘hidden’ cognitive states that are otherwise not detectable 
by traditional measures” (Freeman & Ambady, 2011). 

Researchers once believed that the mind’s cognitive 
and motor systems were functionally independent. 
However, recent research is unequivocally 
demonstrating that hand movements can show 
powerful traces of internal cognitive processes 
(Anderson et al., 2015; Freeman, Dale, & Farmer, 
2011; Hibbeln et al., 2017). For example, primate 
studies have shown that hand movements and mental 
dynamics are closely intertwined; the processing of 
perceptual information continually informs motor-
cortical population codes during a decision-making 
process, rather than waiting until the end of a decision-
making process (Cisek & Kalaska, 2005; Paninski, 
Fellows, Hatsopoulos, & Donoghue, 2004). 

In human studies, neurophysiological findings have 
shown that the brain immediately shares its ongoing 
results with the motor cortex when categorizing visual 
stimuli (Freeman, Ambady, Midgley, & Holcomb, 
2011). As information is shared with the motor cortex, 
the mind programs multiple movements concurrently 
in response to competing stimuli with action potential 
(Song & Nakayama, 2006; Song & Nakayama, 2008). 
These competing movement responses continuously 
influence subsequent behavior (Freeman, Ambady, 
Midgley et al., 2011). For example, hand movements 
have been shown to be predictive of cognitive 
processing, including decision conflict, difficulty 
judging the truthfulness of statements (McKinstry, 
Dale, & Spivey, 2008), deception (Duran, Dale, & 
McNamara, 2010; Monaro, Gamberini, Sartori, 2017), 
user identification (Ikehara et al., 2003), increased 
cognitive processing (Dale & Duran, 2011), emotion 
(Grimes, Jenkins, & Valacich, 2013; Hibbeln, Jenkins, 
Schneider, Valacich, & Weinmann, 2017), attention 
(Anderson et al., 2015), attraction toward distraction 
stimuli (Song et al., 2006; Song et al., 2008), language 
processing (Spivey, Grosjean, & Knoblich, 2005), 
interpretation of ambiguous sentences (Farmer, Cargill, 
Hindy, Dale, & Spivey, 2007), learning (Dale, Roche, 
Snyder, & McCall, 2008), attitude formation, 
concealment of racial prejudices (Wojnowicz, 
Ferguson, Dale, & Spivey, 2009), and dynamic 
competition in classification tasks (Dale, Kehoe, & 
Spivey, 2007; Freeman & Ambady, 2009; Freeman & 
Ambady, 2011; Freeman, Ambady, Rule, & Johnson, 
2008), to name a few. 

Three specific studies relevant to identifying concealed 
information include that of McKinstry et al. (2008), 
who had participants in a controlled study judge the 
truthfulness of statements using a mouse cursor on a 
computer screen to select “yes” for true statements and 
“no” for false statements. The results revealed that 
when participants answered questions with a greater 
uncertainty of truthfulness, their mouse-cursor 
movements showed greater fluctuations. Similarly, 
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Duran et al. (2010) used a Nintendo Wii remote to 
capture participants’ hand movements while answering 
autobiographical questions either truthfully or falsely. 
Participants aimed the Wii controller at a wall that had 
the words “yes” or “no” projected onto the surface. 
When responding falsely, the responses had greater 
entropy. People’s hand trajectories also reached peak 
velocity later in the movement, with a steeper curve 
toward the false option. Finally, a third study reported 
on the use of mouse-movement analysis to detect fake 
identities (Monaro et al., 2017). Participants in this 
study had to answer expected, unexpected, and 
baseline questions by moving a mouse. The 
researchers found that the observed mouse trajectories 
and participants’ error rates could be used to accurately 
distinguish between liars and truth tellers. Clearly, a 
growing body of recent cognitive psychology and 
neuroscience research demonstrates a strong linkage 
between variations in hand movements and different 
types of cognitive activity, including deception. 

We add to these studies in several ways. First, we pair 
mouse-cursor tracking with a theoretically sound 
questionnaire format—the concealed information test 
(CIT)—to robustly detect concealed information. We 
adjust the CIT to allow it to be deployed online to capture 
mouse-cursor movements. Second, we theoretically 
explain and empirically test how mouse-cursor 
movements can predict concealed information in both 
within-subject comparisons while answering baseline vs. 
key questions, as well as in between-subject comparisons 
while answering key questions (baseline and key 
questions are explained in the next section). Third, we 
validate our approach for detecting concealed information 
by comparing it with the primary sensor used in 
polygraph examinations: namely, electrodermal activity.  

2.1 Concealed Information Test (CIT) 
In this study, we pair mouse-cursor tracking with a 
theoretically sound questionnaire format—the 
concealed information test—to detect concealed 
information. The CIT is the most scientifically 
validated polygraph-based questioning technique 
(Ben-Shakhar & Elaad, 2003; Council, 2003; Fiedler, 
Schmid, & Stahl, 2002). The objective of the CIT is to 
detect whether a person has “inside”, or “concealed”, 
knowledge of an activity (e.g., stealing intellectual 
property) (Ben-Shakhar et al., 2003). In a standard 
CIT, the person being interviewed is asked several 
questions about specific key pieces of information 
(e.g., someone accessing and stealing sensitive data).  

For example, in a context in which sharing sensitive 
information is prohibited, the interviewer may state, 
“We detected that one of our sensitive databases was 
accessed. If you accessed the data, you would know 
which database was breached”. The interviewer then 
provides approximately six plausible answers, with 
one of the six being the database that was breached, to 

which the interviewee responds “yes” or “no” as to 
their culpability (the answer associated with the 
incident of interest is referred to as the key item or 
question). The other five items should be plausible 
answers, yet unrelated to the adverse activity. These 
questions are termed baseline questions. When a 
truthful person completes the CIT, he or she will 
respond similarly to both the baseline and key 
questions. When a person concealing information is 
presented with a key question, however, he or she will 
have a detectable psychophysiological change as 
compared with the baseline questions (Krapohl et al., 
2009). This reaction, referred to as an orienting 
response, is traditionally measured as variations in 
electrodermal activity. However, the CIT has been 
extended to include other responses in information 
systems research, including eye tracking (Proudfoot, 
Jenkins et al., 2016) and postural rigidity (Twyman, 
Elkins, et al., 2014). 

We adapt the CIT format to allow us to implement it 
online and use it to capture mouse-cursor movements. 
First, whereas the traditional CIT is presented vocally 
to the respondent, we present stimuli (key items and 
baseline items) on a computer screen. Second, whereas 
people vocally answer “yes” or “no” during a 
traditional CIT, we have people answer each question 
using a computer mouse. Respondents are required to 
move the mouse from the bottom middle of the screen 
to one of the two upper corners of the screen, each of 
which contains a possible answer. For instance, if the 
computer screen displays the question, “Have you 
stolen any classified information?” the respondent 
must move the mouse from the lower middle of the 
screen to either “no” (to deny stealing classified 
information) or “yes” (if they wish to confess). Mouse-
cursor movements are captured while the respondent is 
answering each question. An example is shown in 
Figure 1. This specialized protocol for responding to 
questions allows us to measure specific movement 
characteristics to identify concealed information.  

3 Hypotheses 
We now explain how concealing information influences 
mouse-cursor movements captured using our specialized 
CIT-based questionnaire. Based on the response activation 
model (Welsh & Elliott, 2004), we predict that people 
concealing information will indicate an attraction toward 
the truthful answer before committing to the deceptive 
answer. The response activation model explains the process 
through which competing responses (e.g., answering “yes” 
or “no”) influence hand movements. As noted, the possible 
responses, in the context of a screening questionnaire, 
include “yes” to admit to an activity or “no” to deny an 
activity. The answer that the respondent ultimately chooses 
(e.g., “no” to deny the activity) is termed the target 
stimulus. The answer that is not chosen (“yes” to confess to 
the activity) is termed the distraction stimulus.  
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Figure 1. Example of a CIT Question 

The response activation model posits that when a 
person considers both a target stimulus and a 
distraction stimulus as potential answers, the mind 
automatically starts to program motor movements 
toward each stimulus concurrently. Programming 
motor movements refers to sending nerve impulses to 
the hand to stimulate movement to possible 
destinations. This stimulus occurs even before the 
mind has fully determined which answer to choose, 
enabling more efficient movements for when the 
respondent actually does make a final decision 
(Georgopoulos, 1990; Song et al., 2006; Song et al., 
2008; Tipper, Howard, & Jackson, 1997). For 
example, in the context of a person concealing 
information when answering a question, the mind will 
start programming movement to both the “yes” and 
“no” answers for a short period. 

As the brain determines which answer the mouse 
cursor should be moved toward, it begins to inhibit 
programming to the distraction stimulus so that the 
final movement to the target stimulus can emerge (e.g., 
by eliminating the movement path toward confessing 
to an adverse activity) (Tipper et al., 1997; Welsh et 
al., 2004). Inhibition is not immediate, but rather 
occurs over a short period depending on the salience of 
the distraction stimulus. If a distraction stimulus is not 
salient (i.e., if it does not have personal significance to 
the respondent), then inhibition will occur very quickly 
(i.e., in less than a few hundred milliseconds). 
However, if the distraction stimulus is salient and 
thereby captures the respondent’s attention (e.g., the 
stimulus has personal significance to an individual 
because of concealed information), inhibition will 
occur more slowly (up to ~750 milliseconds or 
more) (Welsh et al., 2004). 

When moving the hand before the inhibition is 
complete, the end result is a movement that is 

somewhere in the middle of both stimuli (Welsh et al., 
2004). For example, if the key stimulus (e.g., the “no” 
answer) is to the right, and the distraction stimulus 
(e.g., the “yes” answer) is to the left, the mind will start 
programming movements to both stimuli when they 
are shown. If the hand starts to move before the 
programming to the distraction stimulus is inhibited, 
the movement will consist of a combination of the two 
movements, resulting in a mouse trajectory that is 
closer to the middle of the two options until inhibition 
is complete. Figure 2 visualizes this outcome. 

In the context of responding to a screening 
questionnaire, concealing information on a key 
question is a catalyst for creating a salient distraction 
stimulus. When people see a question regarding an 
adverse behavior they are guilty of committing, their 
attention briefly turns to the truthful answer, which, if 
chosen, would signify their guilt. The individual’s 
response to this salient question is exhibited as an 
orienting response (Krapohl et al., 2009; Lykken, 
1959) and has been shown to cause detectable 
behavioral and physiological changes (King, 2002; 
Sokolov, 1963; Williams et al., 2000). For example, if 
someone is asked “Have you stolen any classified 
information?” and he or she is guilty, the truthful answer 
(“yes”) will be strongly salient and will catch the 
respondent’s attention. The respondent may even consider 
answering truthfully for a fraction of a second or longer 
before moving the mouse to the deceptive answer (“no”).  

These factors slow down the inhibition process. 
Movements that occur during these times will be a 
product of the person’s inclination toward both truthful 
and deceptive answers (mouse-cursor movements will 
be biased toward the truthful answer but will ultimately 
move to the deceptive answer). However, when the 
same person is answering another question truthfully, 
one that is not about adverse activity, it is likely that 
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the person will perceive the “yes” answer to be 
marginally salient. In this case, the person is less likely 
to pay much attention to that option, if any attention at 
all. Thus, inhibition occurs more quickly (if at all) and 
is likely finished before the person’s hand starts 
moving. Hence, the subsequent mouse trajectory is not 
as biased toward the opposite answer. In summary, 
when answering baseline and key questions on our 
screening questionnaire, the response-activation time 
for people concealing information will be slower on 

key questions than on baseline questions. The 
movement response subsequently will be more biased 
toward the opposite answer (see Figure 3). Thus, we 
propose the following hypothesis: 

H1: Mouse trajectories of people concealing 
information will show greater attraction toward 
the opposite response on key questions than on 
baseline questions.  

 
Figure 2. Combined Movement Resulting From Competing Motor Movements 

 
Figure 3. Example Trajectories of Truthful and Deceptive Responses 

H1 compares how people concealing information 
answer key and baseline questions. We now predict 
how people concealing information differ from truthful 
people when answering key questions. When 
answering key questions, the opposite answer should 
be more salient for people concealing information than 
for truthful people. Truthful people are not anticipating 
any questions that will incriminate them, so they 
habitually may answer each question truthfully (with 
the “no” answer) without paying any attention to the 
alternative answer (Krapohl et al., 2009). Thus, the 
inhibition period will be very short. In such situations, 
trajectories may not be biased at all, even on key 
questions (Welsh et al., 2004). However, the inhibition 

period for people concealing information will be 
longer, as they notice the truthful answer and must 
decide whether to deceive. This will cause a biased 
trajectory toward the opposite (truthful) answer. 
Accordingly, the mouse trajectories of people 
concealing information will be systematically biased 
toward the opposite answer, while truthful respondents’ 
mouse trajectories will not be biased toward the opposite 
answer to the same extent. Thus, we predict: 

H2: Mouse trajectories of people concealing 
information will show greater attraction toward 
the opposite response on key questions than the 
mouse trajectories of truthful people. 
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Being deceptive requires heightened cognitive 
resources (Carrión, Keenan, & Sebanz, 2010). When 
being deceptive, people must first decide whether to 
tell the truth or be deceptive. During this process, 
deceivers weigh the risks and advantages of being 
deceptive. Once they decide to be deceptive, they must 
compose the deception. This often includes fabricating 
details and ensuring consistency in a face-to-face 
setting (Buller & Burgoon, 1996). Although an online 
setting may be a less-salient medium, people still often 
develop a cover story, just in case they are later 
confronted. Furthermore, people often take additional 
precautions online to ensure that their responses are 
deliberate (Derrick et al., 2011). As a result, people exert 
more cognitive effort when concealing information on 
key questions compared with answering benign baseline 
questions. Due to this increased cognitive effort, there is 
less working memory available for other tasks while 
concealers answer key questions. 

When the consumption of cognitive resources 
increases, people’s reaction times become slower 
(Unsworth & Engle, 2005). Slower reaction times lead 
to slower hand movements (Meyer, Abrams, 
Kornblum, Wright, & Smith, 1988; Meyer, Smith, 
Kornblum, Abrams, & Wright, 1990). Namely, when 
cognitive load is high and reaction time is slow, the 
brain has less cognitive ability to program movement. 
The brain is also slower in programming corrections to 
the movement trajectory when visually guiding the 
hand to its destination. One way the brain 
automatically compensates for this decrease in free 
cognitive resources is to spread the movement across a 
larger time span, which decreases the speed of 
movement (Meyer et al., 1988; Meyer et al., 1990). 
Allowing more time for movement allows the brain to 
program a comparable movement that could have 
occurred in a shorter time, given greater available 
resources (Hibbeln et al., 2017). As a result, people 
concealing information should move more slowly 
while responding to key questions relative to baseline 
questions, as cognitive resources are more constrained 
compared with when they are telling the truth on 
baseline questions. In summary, we hypothesize: 

H3: People concealing information will move the mouse 
more slowly while responding to key questions, 
compared with responses to baseline questions.   

Hypothesis 3 predicts that people who are concealing 
information will have a slower response speed on key 
questions, compared with their response time on 
baseline questions. We also predict that people who 
conceal information will differ from truthful people 
when answering key questions in terms of speed. 
Concealing information expends more cognitive 
resources to answer key questions than telling the 

truth, since truthful people do not have to decide 
whether to tell the truth. As such, we predict that 
truthful people will answer key questions like they 
answer baseline questions, and since they have more 
free cognitive resources, they will move more quickly 
as a result (Meyer et al., 1988; Meyer et al., 1990). In 
addition, we predict that truthful people’s mouse-
movement speeds will be faster because they habituate 
to answering such questions. Neither baseline nor key 
questions are novel for truthful people (i.e., they are all 
viewed the same), so they can allow themselves to 
habituate to stimuli. This has been shown to increase 
the speed of people’s mouse-cursor movements 
(Anderson et al., 2015). In summary, we predict: 

H4: People concealing information will move the 
mouse more slowly when answering key 
questions, compared with truthful people.  

4 Methodology 
To test our hypotheses, we conducted an experiment in 
which people committed a questionably adverse act (a 
mock theft), then concealed information about this act 
while completing a screening questionnaire. Half of 
the participants were randomly assigned to commit 
the mock theft and conceal their involvement in the 
activity; the other half were asked to perform a 
benign activity. All participants—both in the 
concealed-information and truthful conditions—
then completed a screening questionnaire using a 
computer, during which we tracked their mouse-
cursor movements and electrodermal activity. 

4.1 Procedures 
A task was designed to mimic a realistic scenario in 
which half of the participants randomly committed a 
mock theft and concealed their involvement in the 
theft. Similar mock-crime experiments have been used 
widely in research to successfully mimic real-world 
deception scenarios (Burgoon, Blair, & Strom, 2008; 
Twyman, Lowry, et al., 2014; Twyman, Proudfoot, 
Schuetzler, Elkins, & Derrick, 2015; Valacich, Jenkins, 
Nunamaker, Hariri, & Howie, 2013). Although the 
task was sanctioned (i.e., participants were told to 
perform the illicit act and to appear innocent), the 
sanctioning was done indirectly, as a means of 
heightening both suspicion and anxiety. Participants 
registered for an appointment online and were 
randomly assigned to a concealed-information or truthful 
condition. Upon arriving at the experiment site, 
participants were given an envelope with instructions. 
They were instructed to enter the elevator (on the first 
floor), press a button to get to the fourth floor, and only 
then open the envelope and read the instructions. 
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Table 1. Guilty Participant Instructions 

Your task is to commit a theft. You will go into the MIS department front office and steal a computer file that contains 
department credit card numbers. You will then go to room 109 for further instructions. During the entire experiment, please 
try your best to appear innocent, do not raise any suspicion, and do not confess to committing the theft. If you are asked 
any questions about the theft, LIE.   

 

Below are the steps of your task: 

1. Go to the MIS Department front office (see the first picture). 
2. Go to the back-right corner of the reception area (circled in the lower picture; under the TV). Be confident. Don’t 

talk with anyone unless talked to. If anyone asks what you are doing, say you are a TA, and you need to get a file.  
3. Log in to the computer on the desk. Use the following credentials: 
4. Username: CHROME13\admin 
5. Password: manager 
6. You should see a picture of a red sports car as the desktop background and a file called “department credit card 

numbers” 
7. Open the file to make sure it contains the department credit card numbers 
8. Copy the entire file to the flash drive we gave you. You can plug the flash drive into the monitor or into the 

computer to the left side of the desk. DO NOT REMOVE THE FILE, JUST COPY IT. 
9. Log out of the computer. 
10. Go to room 109 with the flash drive when you are finished. 

 

To make sure you remember the details of this theft, please answer the following questions: 
 

What picture was on the desktop of the computer? ___________________________ 

What information was in the file you stole? ___________________________ 

Where did you copy the file to? _______________________________ 

What password did you use to log in to the computer? ______________________________ 

4.2 Concealed-Information Condition 
The envelope for the concealed-information condition 
contained a set of instructions and a jump drive (see 
Table 1). Participants were instructed to go to the 
Management Information Systems department, log in 
to a computer in the front office using a set of 
credentials, and steal a file containing department 
credit card numbers. Participants were instructed to 
lie if confronted about the theft. Upon completing the 
tasks listed in Table 1, participants were then 
instructed to go to a room on the first floor. When 
they arrived at the room, an experiment facilitator 
explained that a theft had occurred and that the 
participant had been identified as a suspect in the 
theft. The participant was then asked to answer 
questions in a screening questionnaire. 

4.3 Truthful Condition 
Participants in the truthful condition were also given a 
folded piece of paper. They were instructed to enter the 
elevator (on the first floor), press the button to get to 
the fourth floor, then read the paper. Like the guilty 

participants, the paper asked the truthful participants to 
go to the Management Information Systems 
department. However, rather than stealing information, 
innocent participants were asked to pick up a piece of 
paper (a free news article) at the front desk, then go 
back to the room on the first floor. Upon arriving at 
the room, an experiment facilitator explained that a 
theft had occurred and that the participant was a 
suspect in the theft. The participant was then asked to 
complete a screening questionnaire. 

4.4 CIT-Based Screening Questionnaire 
All participants completed a customized screening 
questionnaire based on the CIT. In designing the CIT-
based test, we pilot-tested all of the items (key and 
baseline) to ensure that an innocent person would 
respond similarly to each item without unintended 
responses (e.g., to ensure some questions do not 
inherently elicit slower responses). We familiarized 
each participant with the format of the CIT through a 
practice test, in which the program required the 
respondent to move the mouse within the first second 
or the system would display an error. This helped 
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ensure that inhibition was not complete before 
movement occurred. Completing the practice test also 
reduced the likelihood that an orienting response 
would occur, due to the novel format of the test, and 
therefore confound our results (Krapohl et al., 2009). 
Screenshots and explanations of the CIT-based 
screening questionnaire are shown in Table 2. 

4.5 Debrief 
After completing the screening questionnaire, 
participants were debriefed on the true purpose of the 
study. In addition, participants completed a short 
questionnaire to report select demographic information.  

4.6 Measures  
We collected mouse-movement data, electrodermal 
data, and video during the screening questionnaire. 
Mouse-movement behavior collected during the 
administration of the CIT was captured using 
MouseTracker software (Freeman & Ambady, 2010; 
Freeman, Ambady, Midgley et al., 2011). This 
software captures mouse-cursor movements in terms 
of raw time, x-coordinate, and y-coordinate at 
approximately 70 hz (70 times a second). In addition, 
it performs transformations that allow for the 
comparison of trajectories across different screen 
resolutions and sizes. First, it rescales all mouse-
trajectory data to a standard coordinate space (a 2 x 1.5 
rectangle that is compatible with the aspect ratio of the 
computer screen). The top-left corner of the screen 
corresponds to -1, 1.5, and the bottom-right corner of 
the screen corresponds to 1,0. Thus, the starting 
position is at position 0,0. Second, it remaps all data so 
the mouse starts at position 0,0. Although the person 
must click a button at the middle-bottom of the screen 
to see the next item, the button’s size allows for 
variations to exist (e.g., someone might actually click 
on the right side of the button). Thus, the trajectories 
are remapped for comparison. In our scenario, all 
participants used the same computer, which reduced 
the need to transform the data. However, to be 
consistent with past and future research, we also 
performed these transformations. 

Using a polygraph machine, we also captured 
electrodermal responses using two sensors on the 

pointer and ring fingers of the participants’ 
nondominant hands (the hand not used to move the 
mouse). We allowed 12 seconds to transpire between 
the onset and offset of each question in the CIT to 
allow the individual’s electrodermal activity to 
renormalize after reacting, before the onset of the next 
question (Gamer, Rill, Vossel, & Gödert, 2006).  

Finally, using a high-definition web camera, we 
captured video of each participant’s face during the 
interaction. We analyzed the video for emotion (fear) 
using computer-vision analyses as a check of validity 
(this will be explained in more detail later in the paper). 

4.7 Participants  
A total of 75 students were recruited for the experiment 
from an undergraduate business course; participants 
were incentivized with extra credit in the course. Of 
these, five participants in the guilty treatment refused 
to perform the mock-theft activity and four others 
confessed to committing the theft during the screening. 
This resulted in usable data from 66 participants (30 in 
the concealed-information treatment and 36 in the 
truthful condition). Fifty-nine percent of the 
participants were female, and the average age of 
participants was 21.8. The average number of years of 
college education per participant was 3.1. The most-
represented nationalities were American (69%), Chinese 
(11%), and Mexican (9%). Twenty-nine percent of 
students were business-management majors, 27% were 
majoring in accounting, 20% in marketing, 15% in 
finance, and 9% in management information systems.  

4.8 Evidence of Realism 
We designed the experiment to mimic a real scenario 
in which someone would be deceptive. Field-based 
deception research reports that sanctioned laboratory 
work is indeed generalizable to real-world deception 
(Kircher & Raskin, 1988; Pollina, Dollins, Senter, 
Krapohl, & Ryan, 2004). The participants in the 
deceptive condition of our experiment concealed 
information during the automated screening 
questionnaire. Thus, our experiment represents a 
scenario in which deception was present.
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Table 2. CIT Experiment 

Screenshot Explanation 

 

Beginning of the CIT explaining the 
purpose of the session.  

 

After clicking on “enter”, the person must 
move the mouse to the bottom-middle of the 
screen to click on “next” before seeing the 
first item. This anchors the mouse in the 
same location for each item. 

 

The first item (“passwords”) is shown. The 
person must move the mouse from the 
bottom-middle of the screen to the upper-
right or upper-left corners to answer the 
question. The program requires the 
respondent to move the mouse within the 
first second, or it displays an error (the 
respondent becomes accustomed to this in 
the practice test preceding the CIT). 
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Table 2. CIT Experiment 

 

The mouse is anchored at the bottom of the 
screen, prior to displaying the next item. 

 

The respondent then sees the next stimulus. 
The process is repeated for the following 
items: 

• Credit card numbers 
• Exam key 
• Social security numbers 
• Health records 
• Encryption codes 

In this test, “credit card numbers” was the 
key answer, and the other items were 
baseline answers.  

However, we also examined qualitative and 
quantitative evidence to assess the extent to which our 
experiment exhibited outcomes resembling real-world 
deception scenarios. First, from a qualitative 
perspective, five of the participants in the concealment 
treatment refused to perform the mock-theft activity. 
When asked why they would not complete the task, 
they said stealing the information felt too unethical or 
immoral. Four other people admitted to committing 
the theft during the screening process, citing the same 
reasons for not lying. These refusals provide 
anecdotal evidence regarding the realism of the 
scenario and provide proof that it elicited feelings 
comparable to real-world deception.  

As a means of gathering more objective evidence, we 
recorded video of participants’ facial expressions as 
they completed the online CIT using a high-definition 
web camera. We then used Microsoft’s Cognitive 
Service Emotion API to analyze microfacial 
movements indicative of fear. The assumption is that 
people who committed the theft should exhibit greater 
fear of being caught (because they were guilty) vs. the 
innocent participants. Each video was entered into the 
API and, in return, we received fear scores for each 

frame of the video. To account for the multiple 
observations per participant, we used a linear mixed-
model analysis. In the model, we specified the fear 
score as the dependent variable, the treatment as the 
fixed effect, and the participant ID as the random 
effect. The results demonstrated that people who were 
deceiving exhibited a higher level of fear than people 
who were telling the truth (β = 0.020; t-value = 1.937; 
p < .05; R2 = 0.361), suggesting that the mock-theft 
scenario was realistic enough to cause a reaction that 
resembled real-life deception (i.e., increased fear).  

As a final validation, we examined the electrodermal 
activity of participants who concealed information vs. 
truthful participants. In the real world, electrodermal 
activity increases when an individual is being 
deceptive. We found this pattern to hold in our 
experiment, further validating that we induced 
deception indicators resembling those exhibited in the 
real world (see the Section 5.7, “Exploratory 
Comparison to Electrodermal Activity Part A: 
Concealed-Information Key vs. Baseline Question”, 
for detailed statistical information). 
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5 Analysis  
Each hypothesis was analyzed separately. Hypotheses 
1 and 2 (which hypothesize greater attraction when 
concealing information) were analyzed using a graded 
motor-response analysis, a standard technique for 
comparing mouse-cursor trajectories (Dale et al., 
2007). Hypotheses 3 and 4 (which hypothesize slower 
response speed when concealing information) were 
analyzed by comparing the mean-response speed for 
treatments and question types using linear mixed-
effects modeling for Hypothesis 3 (as this comparison 
is within subjects) and a t-test for Hypothesis 4 (as this 
comparison is between subjects). Finally, we examined 
whether differences were also observed in 
electrodermal activity to address the second research 
question and to evaluate how mouse-cursor indicators 
compare with electrodermal-activity indicators in a 
simple decision-tree prediction model. 

5.1 Graded Motor Response Analysis 
Description 

The graded motor-response analysis is a well-
established technique to test whether two mouse-
movement trajectories are different from each other 
(Dale et al., 2007). In our analysis, we used the graded 
motor-response technique to see whether participants 
in the concealed-information condition showed 
significantly more attraction toward the opposite 
answer (which is the truthful answer for the concealed-
information condition) on key questions, as compared 
with (1) their own responses to baseline questions, and 
(2) to truthful participants’ responses to key questions.  

As a prerequisite to the graded-motor response 
analysis, we first time-normalized the data. Time-
normalized data provide information regarding the 
overall shape of the trajectories, which can be 
compared across conditions and people (Dale et al., 
2007). The rationale for time normalization is that 
recorded trajectories tend to have different durations 
(i.e., some people simply move a mouse faster than 
other people). For example, consider a response from 
one person that lasts 800 milliseconds and a response 
from another person, who naturally moves slower, that 
lasts 1,600 milliseconds. If you try to compare the 
trajectories at 800 milliseconds for each response, you 
may not be comparing the same part of the trajectory—
one respondent is finishing the movement while the 
other is still in the middle of the movement. 
Furthermore, it is impossible to compare trajectories at 
1,600 milliseconds because the first did not last that 
long. Time normalization addresses this limitation by 
dividing the x,y coordinate pairs into 101 equal 
segments using linear interpolation. For each segment, 
the average x,y coordinate is computed based on the 
x,y coordinate pairs in that segment. For example, you 
can compare the end of one movement to the end of 

another movement by running a statistical test on the 
average x or y coordinate in segment 101, or you 
can compare the middle of competing trajectories 
by analyzing segment 50. 

In a typical graded motor-response analysis, 
differences between segments are tested using an 
appropriate statistical test (e.g., t-test, linear mixed-
effects model). To avoid a possible increase in Type I 
error (alpha slippage) with running 101 tests when 
comparing the entire trajectory, overall trajectories are 
only deemed significantly different if eight segments 
in a row are significantly different from each other. 
This cutoff was determined through bootstrapping 
simulations to provide a conservative criterion that 
accounts for alpha slippage (Dale et al., 2007). This 
equates to a critical value of .05^8, or p < 
.000000000039, to conclude that two trajectories are 
different from each other. To measure attraction 
between two horizontally aligned stimuli (e.g., the 
answers in our screening questionnaire), you would 
test whether there is a significant difference in the 
average x-coordinate for eight consecutive segments. 
For vertically aligned stimuli, you would test whether 
there is a significant difference in the average y-
coordinate to measure attraction.  

5.2 Baseline-Robustness Test 
Prior to analyzing our hypotheses, we ran a robustness 
check to ensure that the baseline questions did not 
induce any abnormal responses. Again, an assumption 
of the CIT is that participants would respond similarly 
to the baseline questions and abnormally only to the 
key question if they are concealing information. 
Therefore, baseline questions should not, by 
themselves, elicit any abnormal behaviors. To test 
whether people responded similarly to all of the 
baseline questions, we examined whether each 
baseline question had (a) significant attraction 
compared with the opposite answer as compared with 
the rest of the baseline questions, and (b) slower speed 
compared with the rest of the baseline questions using 
linear mixed-effects modeling.  

To test for attraction, we used graded-motor response 
analysis to predict the average x-position in each of the 
101 segments. We included n-1 (n = the number of 
baseline questions) binary dummy variables as fixed 
effects in the model to examine whether any of the 
baseline questions caused a significant difference for 
eight consecutive time slots (if all dummy variables 
were false, this singled out the last baseline question). 
We also included a random effect for each participant 
to control for the repeated nature of the data. None of 
the baseline questions had a significant effect for eight 
consecutive time slots. We then used the same model 
to test whether any of the baseline questions had a 
significant effect on speed (replacing the x-position 
dependent variable with the speed variable). Again, none 
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of the baseline questions significantly influenced speed. 
Thus, the results were consistent with our pilot testing, 
and the baseline questions were found to be appropriate. 

5.3 Hypothesis 1 Results: Concealed-
Information Key vs. Baseline 
Attraction 

Using the graded-motor response analysis, we 
analyzed the average x-coordinate in each of the 101 
segments to examine whether participants in the 
concealed-information condition (n = 30) showed 
more attraction toward the opposite answer for key 
questions vs. baseline questions. We tested for a 
difference in the x-position for each segment, as the 
answers were horizontally aligned (the answers “yes” 
and “no” were in the upper two corners of the page). 
As each participant responded to one target item, plus 

several baseline items (a within-subject comparison), 
we specified a linear mixed-effects model predicting 
the x-position for each segment (the dependent 
variable) based on whether the participant was viewing 
the key or baseline items (binary fixed effect) nested 
within each participant (random effect). This allowed 
us to examine whether there were differences in the x-
position within each participant’s responses to key and 
baseline items. The analysis revealed 28 sequential 
segments that were significantly different (p < .05)—
segments 43-70 and again for 11 sequential segments 
from 91-101. Thus, H1 is supported. As a reference 
regarding our control for alpha slippage, the probability 
of having 28 significant segments in a row is .05^28. 
Figure 4 graphs the average x position for each segment. 
The detailed statistics for the graded-motor response 
analysis are shown in Appendix A, Table A1. 

  

 
Figure 4. X-Locations by Normalized Time for Participants Concealing Information 

5.4 Hypothesis 2 Results: Concealed-
Information Key vs. Truthful Key 
Attraction 

Using the graded-motor response analysis, we then 
analyzed the average x-coordinate for each of the 101 
segments to examine whether participants in the 
concealed-information condition (n = 30) showed 
more attraction toward the opposite answer on key 
questions (based on x-values), compared with 
participants in the truthful condition (n = 36). Because 

                                                      
2  The mean differences for segments 1-9 are small and 
difficult to see visually in Error! Reference source not 
found.5. They are significant, however, because the standard 

each participant only saw one key item regardless of 
treatment, we used a one-tailed t-test to examine 
whether segments for the concealment and truthful 
groups differed. We found that the trajectories of 
truthful participants and participants who concealed 
information were significantly different (p < .05) for 
segments 1-9 (nine sequential segments), 25-39 (15 
sequential segments), and 72-101 (30 sequential 
segments)2. Thus, H2 is supported. Figure 5 graphs the 
average normalized x position for each segment. The 
detailed statistics for the graded-motor response 
analysis are shown in Appendix A, Table A2.

deviations are also very small. See Appendix A, Table A2 for 
more details. 
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Figure 5. X-Locations by Normalized Time for Key Items 

 

5.5 Hypothesis 3 Results: Concealed-
Information Key vs. Baseline Speed 

To test Hypothesis 3, we analyzed whether people in 
the concealed-information condition responded more 
slowly to key questions compared with baseline 
questions. As each participant responded to one target 
item, plus several baseline items, we specified a linear 
mixed-effects model predicting average speed based 
on treatment group (0 = baseline; 1 = concealment 

group) nested within each participant. This allowed us 
to examine differences in speed when viewing key vs. 
baseline items within each participant’s responses. 
Thus, the analysis supports H3. Participants in the 
concealed-information condition registered 
significantly lower speed on key questions (β = -0.028, 
t-value = -4.033; p < .001; R2 = 0.169). Speed on key 
questions was nearly twice as slow as speed on 
baseline questions. See Table 3 for summary statistics 
on speed for each treatment.   

Table 3. Summary statistics for treatment groups for speed (normalized pixel/millisecond)  
Mean Median SD Min Max 

Concealed-information key 0.0345 0.0250 0.0296 0.0011 0.0828 

Concealed-information baseline 0.0616 0.0707 0.0459 0.0003 0.1935 

Truthful key 0.0627 0.0752 0.0371 0.0001 0.1285 

Truthful baseline 0.0622 0.0778 0.0362 0.0005 0.1322 

5.6 Hypothesis 4 Results: Concealed-
Information Key vs. Truthful 
Condition Key Speed 

To test Hypothesis 4, we analyzed whether people in 
the concealed-information condition responded more 
slowly to the key question when compared with people 
in the truthful condition. As each participant responded 
to only one key question, we analyzed the data using a 
one-tailed t-test rather than a linear mixed-effects 
model. The analysis supported H4. Participants in the 
concealed-information condition had a slower 
average speed than did participants in the truthful 
condition: t(64) = -2.75; p < .01; d = 0.138. The speed 

of participants who concealed information on key 
questions was nearly twice as slow as truthful 
people’s speed on key questions. 

5.7 Exploratory Comparison to 
Electrodermal Activity Part A: 
Concealed-Information Key vs. 
Baseline Question 

To help answer Research Question 2—Do mouse-
cursor movements correspond to changes in 
electrodermal activity in an online CIT-based 
questionnaire?—we also explored whether 
participants in the concealed-information condition 
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exhibited a difference in electrodermal activity 
between the presentation of key and baseline items 
(similar to H1 and H3). The polygraph is based on the 
assumption that a person concealing information will 
experience a heightened electrodermal response 
(caused by arousal and stress) when answering key 
questions deceptively, compared with answering 
baseline questions truthfully (Krapohl et al., 2009). 
Our results confirmed that this effect was present in our 
experiment. We specified a linear mixed-effects model 
predicting electrodermal responses using the treatment 
group (0 = baseline; 041 = concealment group) nested 
within each participant. We found that the peak 
electrodermal response was a significant predictor of 
key items for people concealing information (β = 
195.71y; t-value = 2.056; p < .05, R2 = 0.434). In other 
words, after controlling for individual differences, 
people concealing information were significantly more 
likely to experience a higher electrodermal response on 
key items than on baseline items. This also helps verify 
the validity and realism of our experiment, as this 
physiological result matches the pattern of 
electrodermal responses observed in real-life 
deception scenarios (Krapohl et al., 2009).  

5.8 Exploratory Comparison to 
Electrodermal Activity Part B: 
Concealed-Information Key vs. 
Truthful Key 

Similarly, we conducted a t-test to examine whether 
there was a difference in electrodermal activity 
between how participants in the concealed-information 
condition answered key questions, compared with 
participants in the truthful condition (similar to H2 and 
H4). There was no significant difference between the 
two treatment groups on concealment-group key 
questions: t(64) = -1.093; p > .05; d = 0.274: mean 
truthful group key questions = 4946 (sd = 2723); mean 
key items = 5385 (sd = 2501).  

5.9 Exploratory Comparison to 
Electrodermal Activity Part C: 
Prediction Capability 

As a final analysis to explore Research Question 2, we 
compared mouse-cursor tracking to electrodermal 
activity in a simple proof-of-concept prediction model. 
This allowed us to explore whether mouse-cursor 
tracking has the potential to be used for classifying 
who is concealing information, as well as how it 
indirectly compares with electrodermal activity. While 
the intent of this analysis was not to create an optimal 

                                                      
3  For example, the polygraph has been shown to have 
accuracy ranging from 70-90% in research (APA, 2014). 

model, nor to determine which indicator (mouse-
cursor movements vs. electrodermal activity) is better, 
it shows that mouse-cursor movements can be used in 
a simple model to predict deception.  

To do this, we implemented a theory-driven decision-
tree (i.e., rule-based) model for electrodermal activity 
and mouse-cursor movements separately. We did not 
use machine learning to train the model. Rather, the 
model used a theory based on our hypotheses and past 
methodologies to generate the decision-tree rules, 
thereby increasing its generalizability and reducing the 
likelihood of overfitting. The decision-tree models for 
electrodermal activity and mouse movements are 
shown in Figure 6 and are summarized below. 

The decision-tree model for electrodermal activity is 
based on how the polygraph CIT examination is scored 
(Krapohl et al., 2009), albeit simplified. Thus, the 
results should not be interpreted as the ultimate 
potential for electrodermal activity, nor as a direct 
comparison with the mouse-movement model. 3  The 
model only focuses on comparing responses to key 
items with responses to baseline items within subjects, 
as these differences were significant in our experiment 
and have been shown to be predictive in real-life CIT 
polygraph scenarios (Krapohl et al., 2009). We 
classified someone as concealing information if his or 
her response to the key item showed higher 
electrodermal activity relative to the participant’s 
responses to all baseline questions. Otherwise, the 
person was classified as truthful.  

The mouse-movement model was based on our 
hypotheses that deceivers would show a significant 
attraction toward the opposite response on key 
questions compared with baseline questions, and that 
they would also exhibit slower speeds. Note that we 
only used the comparison between baseline and key 
questions (Hypotheses 1 and 3) because this was 
commonly significant between electrodermal activity 
and mouse-cursor movement analyses. Thus, we 
classified someone as deceptive if (a) the movement 
trajectory on the key item showed significantly more 
attraction toward the opposite answer than did the 
person’s trajectories to the baseline questions, and (b) 
if the response to the key item was slower than the 
person’s responses to all baseline questions.  

We ran each participant’s data individually through the 
decision-tree rules and produced a prediction of 
truthful or deceptive. We then compared the prediction 
with ground truth (the treatment group) to generate 
aggregate statistics. The true- and false-positive rates 
are shown in Table 4.  
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Table 4. True and False Positives for Mouse-Movement Model 

Mouse-movement model 

 True-positive rate False-positive rate 

Concealed information .733 .167 

Truthful .833 .267 

Average .783 .217 

Electrodermal activity model 

 True-positive rate False-positive rate 

Concealed information .733 .389 

Truthful .611 .267 

Average .672 .328 
 
 

 

The results suggest that mouse-cursor movements can 
help differentiate between people concealing information 
and truthful people. The average accuracy of the mouse-
movement model was 78.3%, and the average accuracy 
of the electrodermal activity model was 62.7%.  

After tabulating the prediction models, we ran a 
statistical test of proportions to examine whether these 
two accuracy rates were significantly different from 
each other. This test is informational only and should 
not be used to conclude that mouse-cursor movements 
are a better indicator of deception than electrodermal 
activity (because the models are neither necessarily 
comparable nor optimized). The test of proportions 
showed a marginally significant difference between 
the two overall accuracy rates for the given model 
specification: χ2(1) = 2.035; p < .10. The biggest 
difference between the two models was the false-
positive rate for detecting truthful people. The 
difference between the mouse-movement model and 
the electrodermal activity model was 22.2%, which is 
significantly different: χ2(1) = 8.041; p < .01. 

6 Discussion 
This research introduces a novel, mass-deployable 
approach for identifying concealed information using 
an online CIT-based screening questionnaire and the 
tracking/analysis of mouse-cursor movements. In 
developing this solution, we proposed two research 
questions to understand the efficacy of using mouse-
cursor movements to identify concealed information. 

Our first research question asked: How do mouse-
cursor movements differ for people concealing 
information and people telling the truth in an online 
CIT-based questionnaire? We developed hypotheses 
to explain how (1) attraction toward the opposite 
response and (2) speed differs for people concealing 
information relative to truthful people across key and 
baseline questions. Table 5 summarizes the results; 
all hypotheses were supported.  

As electrodermal activity is the standard response used 
in CIT-based polygraph tests, our second research 
question asked: Do mouse-cursor movements 
correspond with changes in electrodermal activity 
during an online CIT-based questionnaire? To address 
this question, we simultaneously captured mouse-
cursor movements and electrodermal activity from our 
experiment participants. We then conducted three 
exploratory analyses. We found that both mouse-
cursor tracking and electrodermal activity 
differentiated between how people concealing 
information answered baseline and key questions. In 
our second analysis, the trajectory analysis 
differentiated between how people concealing 
information and truthful people answered key 
questions, but electrodermal activity did not. Finally, in 
our third analysis, we found that mouse-cursor tracking 
and electrodermal activity identified concealed 
information with similar accuracy; however, mouse-
cursor movements had fewer false positives. Below, we 
discuss the implications for research and practice. 
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Figure 6. Simple Theory-Driven Decision-Tree Models for Prediction 

Table 5. Summary of Hypotheses 

Hypothesis Result 

H1: Mouse trajectories of people concealing information will show greater attraction toward 
the opposite response on key questions than on baseline questions. 

Supported 

H2: Mouse trajectories of people concealing information will show greater attraction toward 
the opposite response on key questions than the mouse trajectories of truthful people. 

Supported 

H3: People concealing information will move the mouse more slowly while responding to 
key questions, compared with responses to baseline questions.   

Supported 

H4: People concealing information will move the mouse more slowly when answering key 
questions, compared with truthful people. 

Supported 

6.1 Implications for Research 
Our research provides a rigorous, theory-driven 
approach for identifying concealed information by 
monitoring mouse-cursor movements. Past research 
started to recognize the potential for identifying 

deception by monitoring mouse-cursor movements 
(e.g., Duran et al., 2010; McKinstry et al., 2008; 
Monaro et al., 2017). A current gap in this literature, 
however, is the need to construct a standardized 
questioning technique and explain how mouse-cursor 
movements differentiate between concealed 
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information and truth through theory-driven 
hypotheses. To address this need, we first draw on the 
concealed information test (CIT)—the most 
scientifically-validated polygraph-based questioning 
technique (Ben-Shakhar et al., 2003; Council, 2003; 
Fiedler et al., 2002)—as a basis for a mouse-cursor 
movement-screening questionnaire. We made several 
adaptations to the CIT to make our approach amenable 
to rapid scalability, including the presentation format 
and mode of answers (i.e., online format, answers in 
upper corners, movement starting position in bottom 
middle, requirement to start moving the mouse soon 
after the question appears). These adaptations extend 
the CIT to a mass-screening scenario that can be 
conducted online, enabling mouse-cursor tracking to 
be used as a granular sensor of concealed 
information. Importantly, our research empirically 
demonstrates that this format has efficacy for 
predicting concealed information in a computerized 
setting using mouse-cursor movements.  

Second, we provide theory-driven hypotheses of why 
mouse-cursor movements differentiate between people 
concealing information and truthful people on this 
specialized screening questionnaire. Past research has 
suggested that mouse-cursor movements may provide 
important information about people’s cognitive and 
emotional processes (e.g., Dale et al., 2011; Freeman, 
Dale, & Farmer, 2011; Grimes et al., 2013; Hibbeln et 
al., 2017). However, little research has explained 
theoretically why mouse-cursor movements differ 
between people concealing information and truthful 
people. To address this need, we drew on the response 
activation model (Welsh et al., 2004) to explain how 
concealing information causes people to show 
attraction toward the opposition response. We also 
drew on theory relating to cognitive load and response 
times to explain how concealing information causes 
people to move the mouse more slowly. Our hypotheses 
were supported. These findings provide theoretical 
insight into past empirical observations (e.g., Duran et 
al., 2010; McKinstry et al., 2008; Monaro et al., 2017) 
that mouse-cursor movements provide valuable input 
concerning the veracity of information.  

Third, we are among the first to measure mouse-cursor 
movements and electrodermal activity simultaneously 
while participants complete a computerized task. This 
responds to calls for the use of multimethod research 
to cross-validate results (Venkatesh, Brown, & 
Sullivan, 2016). Past research has largely found that 
meaningful electrodermal-activity indicators of 
deception occur when doing within-subject 
comparison—i.e., comparing a person’s key questions 
to how that same person responded to baseline 
questions (Krapohl et al., 2009). Confirming this 
finding, we found that electrodermal activity 
differentiated between how people answered baseline 
vs. key questions when concealing information in our 

experiment. Interestingly, these differences also 
corresponded to changes in the attraction and speed of 
people’s mouse-cursor movements (H1 and H2). This is 
an important finding to support the validity of the 
research—that mouse-cursor movement attraction and 
speed correspond to validated psychophysiological 
measures of concealed information from past literature.  

Interestingly, although past literature has found that 
electrodermal activity is higher in a within-subject 
comparison (when comparing baseline to key items 
when people are concealing information), it has 
typically not found support that electrodermal activity 
can significantly differentiate between subjects when 
comparing key items between truthful people and 
people concealing information (Fiedler et al., 2002; 
Krapohl et al., 2009). Our results support this 
conclusion; there was no difference between truthful 
people and people concealing information in terms of 
electrodermal activity. However, we also found a 
between-subject difference when comparing mouse-
cursor movements between truthful and deceitful 
people on key items. Namely, when respondents 
concealed information, they showed greater attraction 
and slower speed on key questions than those who 
were being truthful (H3 and H4). This suggests that 
mouse-cursor movements may provide information 
about cognitive processes that is not easily accessible 
through traditional deception-measuring methods 
(e.g., electrodermal activity). One reason mouse-
movement attraction and speed may be significant 
between participants (whereas electrodermal was not) 
is because levels of electrodermal activity vary 
immensely between people. Electrodermal activity 
may differ according to health conditions, fitness, 
temperature, and even the time of day (Poh, Swenson, 
& Picard, 2010; Turpin, Shine, & Lader, 1983). 
However, it may be that mouse-cursor movements are 
influenced by fewer external factors and are thus more 
robust to individual differences. This would explain 
why mouse-cursor speed and attraction are significant 
between subject indicators of concealed information 
whereas electrodermal activity was not. Future 
research should test these propositions and explore 
additional differences between electrodermal activity 
and mouse-cursor movements.   

Finally, no single methodology for detecting deception 
is perfect. Rather, the best prediction of deception 
comes from multiple complementary sources. For 
example, prior information systems research has 
investigated the use of an automated interviewing 
platform to conduct credibility assessments (Derrick, 
Elkins, Nunamaker, Zeng, & Burgoon, 2010; Derrick 
et al., 2011). This system collects data on a variety of 
potential indicators, including eye movements and 
kinesic activity (Proudfoot, Jenkins et al., 2016; 
Twyman, Elkins, et al., 2014). In theory, as the number 
of reliable indicators that are analyzed by the system 
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increases, accuracy should also increase, false 
positives should be reduced, and the system should be 
more resistant to countermeasures (Proudfoot, Boyle, 
& Schuetzler, 2016; Twyman et al., 2015). 
Considering this related work, the results and 
contributions of the present study to existing research 
should be interpreted as a new layer in the defense-in-
depth strategy for detecting deception. The ideal system 
for identifying concealed information should triangulate 
several sources of both passive and active indicators, 
including log analysis, mouse-trajectory analysis, mouse-
speed analysis, communication analysis, personality 
assessments, and other behavioral information. 

6.2 Implications for Practice 
Researchers have long been interested in developing 
means to identify concealed information. For example, 
numerous studies have been conducted to develop 
integrity scales (and other criterion-focused 
occupational personality scales) that can predict 
problematic behaviors in the workplace (e.g., theft, 
disciplinary problems, absenteeism) (Jones, 1981; 
Ones & Viswesvaran, 2001; Ones, Viswesvaran, & 
Schmidt, 1993; Terris & Jones, 1982) and help 
organizations avoid hiring individuals who may pose a 
threat. While a meta-analysis of these tools found them 
to be effective (Ones et al., 1993), technology is 
permitting novel means of identifying past and future 
nefarious actions by organizational insiders concealing 
information. Our research has powerful implications 
for practice as it introduces a new way of detecting 
concealed information in organizations. People who 
conceal information about adverse behaviors in 
organizations present a significant danger to both the 
private and public sectors, and the detection of 
concealed information is traditionally a difficult, 
expensive, error-prone, and time-consuming task. We 
provide a solution that can supplement extant 
monitoring systems to improve deception detection. 
For example, this approach can be mass-deployed 
online to screen individuals for various types of 
concealed information (e.g., noncompliance with 
organizational policies), and thereby trigger follow-up 
evaluations. Alternatively, it can be used to screen 
individuals already flagged as potentially being non-
compliant by existing systems (e.g., file-logging 
systems) to decrease the number of false positives. In 
response to an alert, our solution can be deployed 
easily through a variety of mechanisms (e.g., links in 
email, system interjections, embedding in applications 
or websites, etc.) and does not require any special 
hardware or software on the person’s computer. 
Importantly, data analysis and the generation of results 
can be automated and computed in under a second. 

One area in particular that our research can enhance is 
that of manual screening processes, such as 
background checks and polygraph examinations. 

Traditional manual screening for threats is time-
consuming and expensive. For example, polygraph 
examinations take multiple hours to administer, on 
average, and are often viewed as being subjective due 
to the variability present in the examiner’s method of 
conducting the interview and interpreting the results. 
These screenings are also expensive and cannot be 
easily deployed en masse. As a result, government 
agencies that rely on polygraph examinations have 
overwhelming backlogs of people who need screening 
and never receive it (GAO, 2004; Serbu, 2016). Our 
proposed solution, on the other hand, can easily be 
deployed to thousands of individuals simultaneously 
within an organization using an online questionnaire. 
The approach is unbiased and based on theoretically 
driven cues of deception. People can complete the 
questionnaire in their natural environments (e.g., on 
their own computer). The marginal cost of deploying it 
to an additional person is minuscule. Thus, our 
approach can also be used for prescreening to reduce 
the subset of people who must receive manual 
screenings (e.g., the polygraph). In this way, our 
research can help organizations deploy limited 
manual resources more effectively. 

6.3 Limitations and Future Research 
Although our experiment was designed to mimic a 
realistic concealed-information scenario (see Section 
4.8: “Evidence of Realism”), the experiment was 
sanctioned. Several differences exist between our 
experiment and real-world deception. First, 
participants were instructed to commit the theft and to 
lie if asked about committing the theft. Past research 
has shown that people are more willing to commit 
questionable activities if they are asked to do them by 
an authority figure (e.g., an experiment facilitator) 
(Milgram, 1963). Second, the stakes of being caught in 
the deception were low. If people got caught deceiving, 
there were no consequences. Thus, people’s reactions 
(including mouse movements) may be different from 
what would happen in a real-world deception scenario. 
For example, in the real world, people may experience 
greater decision conflict and cognitive load when 
deceiving than they would in this experiment. As a 
result, we would expect that inhibition of competing 
motor responses would be slower because real-life 
experiences are more salient than simulated 
experiences. This would result in even greater 
attraction to the opposite response. Likewise, the 
increased cognitive load may cause people to move 
more slowly. Thus, real-world deception may cause 
more profound differences between people concealing 
information and people telling the truth. This supports 
prior deception research showing that laboratory 
deception experiments are indeed generalizable to 
real-world deception (Kircher et al., 1988; Pollina et 
al., 2004). Nevertheless, future research should 



Identifying Concealed Information Using Mouse-Cursor Movements 
 

20 

 

cross-validate the results of our study in a higher-
stakes, more-realistic scenario.  

Another potential difference between our experiment 
and real-world deception is the prevalence of 
countermeasures. A countermeasure refers to measures 
taken by a person to avoid being classified as 
deceptive. Prior information-systems research 
investigating other types of systems designed to 
identify deception have (1) also acknowledged the 
potential risk of countermeasures, and (2) evaluated 
the robustness of these systems to detect 
countermeasures (Twyman et al., 2016; Proudfoot et 
al., 2016). Because of the low stakes in our experiment, 
and because people did not know how we were 
detecting deception, participants likely did not engage 
in extensive countermeasure use. For example, H1 and 
H3 are contingent on the respondent moving the mouse 
very soon after seeing the question-and-answer options. 
If the respondent waits until the inhibition process is 
complete before answering, the movement trajectories 
will not be biased by the competing motor programming 
(Welsh et al., 2004). This could potentially be used as a 
countermeasure to avoid detection.  

Future research should seek to develop strategies for 
mitigating countermeasure attempts. For example, a 
tool designed to implement our mouse-movement 
methodology for detecting concealed information must 
encourage participants to move the mouse quickly, 
ideally within the first second. In our experiment, 
participants were required to move the mouse within 
the first second, otherwise an error message was 
displayed. An alternative design for encouraging 
people to move the mouse during the decision-making 
process is to have people answer a question by 
dragging a ball from the lower middle of the screen to 
one of the answers in the upper-left or upper-right 
sections of the screen. The system withholds the 
question until the person starts dragging the ball 
upward, then registers an error if the person stops 
dragging the ball or releases the ball. In this way, the 
movement captures the dynamic nature of a person 
processing the question for the first time. Future 
research could test such a system. 

Furthermore, this study focused largely on only one 
age demographic, as the average age of participants 
was just under 22 years. Participants were students, 
and, based on a self-reported questionnaire, were 
deemed to be computer savvy. In several of our pilot 
studies, we used Amazon’s Mechanical Turk to recruit 
participants. The average age of these participants was 
roughly 35 years old, and the results were similar to 
those reported in this study. Furthermore, the cultural 
demographic was much richer in these pilot studies 
since most participants were not from the U.S. While 
this pilot process points to an increased 
generalizability of our findings, future work should 
evaluate our proposed methodology for identifying 

concealed information in a more diverse population. 
Furthermore, future research should examine whether 
individual differences affect the diagnostic capability 
of using mouse-movement analysis for deception 
detection. For example, women tend to experience 
guilt more than men (Bybee, 1997), and narcissism, 
agreeableness, and self-esteem have been found to 
correlate negatively with guilt (Strelan, 2007). Future 
research could examine the extent to which these 
individual factors influence mouse-cursor 
movements when being deceptive.   

In addition, we allowed 12 seconds to transpire 
between the onset and offset of each question in the 
CIT, thereby accommodating each individual’s 
electrodermal activity to react to a question, then 
normalize, before the onset of the next question 
(Gamer et al., 2006). Theoretically, valid mouse-
movement responses do not require this amount of 
time. Thus, future research should examine whether 
the mouse-movement results would change after 
removing this exaggerated latency between questions.  

Future research could also present alternative 
questionnaire designs to see whether this improves the 
accuracy of mouse-cursor movements in identifying 
concealed information. For example, one could present 
a CIT in which every question is treated as a target 
question for screening purposes (e.g., replacing 
baseline questions with questions that ask about key 
organizational data assets). Each question could be set 
iteratively as the target and compared versus the rest to 
identify anomalies in a screening scenario.  

Additionally, it is important to note that devising and 
conducting a CIT-based screening process inherently 
requires a certain amount of time (even in the most 
automated and rapid interactions). As security 
incidents are often extremely time-sensitive (i.e., it is 
critical to identify the person(s) who may be tampering 
with, destroying, or stealing important organizational 
data as quickly as possible), the approach presented in 
this paper may not be ideal for all circumstances, 
especially if the organization is unaware that an incident 
has occurred or is currently taking place and a new CIT 
interaction must first be developed (e.g., appropriate 
stimuli selection) before it can be deployed. 

Finally, a practical limitation, and an opportunity for 
future research, is the constantly evolving landscape of 
human-computer interaction. The use of a computer 
mouse to interact with a computer clearly has been a 
ubiquitous standard for decades. However, with the 
introduction of handheld devices (e.g., smartphones 
and tablets), which permit people to accomplish many 
similar and overlapping tasks without the use of a 
mouse (or keyboard), it is worth acknowledging that 
the utility of this exact approach may be reduced over 
time as other interaction mediums, such as 
touchscreens, proliferate further. However, the 
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technique presented in this paper can be adapted for 
use on other types of devices. For example, on a 
touchscreen, a highly similar CIT-based task could be 
utilized in which people drag an object across a screen 
using their fingers. The theoretical underpinnings 
discussed in this paper still would apply to this type of 
interaction, and the indicators that could be measured 
using this approach would be highly similar to the 
present research. In short, the way in which people 
interact with a system may change over time, but it is 
probable that a mouse-based approach could be 
modified to be both applicable, and effective, in any 
number of contexts and interaction formats. Future 
research should seek to evaluate the potential 
applicability of this study as new interaction formats 
are introduced and become widespread. 

7 Conclusion  
Identifying people who are concealing information is 
critical for protecting individuals, organizations, and 

society. We propose that measuring people’s mouse-
cursor movements in an online CIT-based 
questionnaire can help improve the detection of 
information concealment. We empirically tested our 
theory-derived hypotheses in a mock-theft experiment, 
in which mouse-cursor movements and electrodermal 
activity were measured simultaneously. We found that 
mouse-cursor movements can significantly 
differentiate between people who are concealing 
information and truthful people using an online CIT-
based questionnaire. We also found that mouse-cursor 
movements can differentiate between people who 
conceal information and truthful people using a 
broader set of comparisons relative to electrodermal 
activity. Mouse-cursor movements also yielded 
significantly fewer false positives than electrodermal 
activity. Our results demonstrate that the use of mouse-
cursor monitoring holds promise for identifying 
information concealment and can be used to supplement 
existing systems to improve deception detection. 
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Appendix A: Detailed Statistics for Hypothesis 1 And 2 
Hypotheses 1 and 2 were analyzed using a graded motor-response analysis. In a graded motor response analysis, 
differences between segments are tested using an appropriate statistical test (e.g., t-test, linear mixed effects model). 
To avoid alpha slippage from running 101 tests when comparing the entire trajectory, overall trajectories are only 
deemed significantly different if eight segments in a row are significantly different from each other. This cutoff was 
determined through bootstrapping simulations to provide a conservative criterion that accounts for alpha slippage (Dale 
et al., 2007). This equates to a critical value of .05^8, or p < .000000000039 to conclude that two trajectories are 
different from each other. Measuring attraction between two horizontally aligned stimuli (e.g., the answers in our 
screening questionnaire) would require testing whether there is a significant difference in the average x-coordinate for 
eight consecutive segments. Below is the detailed means, standard deviations, and t-tests for each of the 101 segments 
for Hypothesis 1 and Hypothesis 2.  

Note, that for both sets of results, we show effect sizes. However, because the graded motor-response analysis is not 
based on a single test, but rather a sequence of significant results, a better effect size can be obtained by referencing 
Section 5.9, “Exploratory Comparison to Electrodermal Activity Part C: Prediction Capability”, in the main paper. 

  

Table A1. Detailed Results of Linear Mixed Effects Model for Hypothesis 1: 

Variable 
Estimate  
(the effect of 
concealment) 

Std_Error T_Value R2 P-Value (one-tailed) 

X_1  (0.0003)  0.0002   (1.8122)  0.0216   0.0350  
X_2  (0.0006)  0.0003   (2.2209)  0.0691   0.0132  
X_3  (0.0010)  0.0006   (1.6796)  0.1320   0.0465  
X_4  (0.0016)  0.0010   (1.5884)  0.1748   0.0561  

X_5  (0.0029)  0.0017   (1.7238)  0.2055   0.0424  
X_6  (0.0043)  0.0028   (1.5472)  0.2228   0.0609  
X_7  (0.0054)  0.0035   (1.5266)  0.2244   0.0634  
X_8  (0.0063)  0.0049   (1.2851)  0.2185   0.0994  
X_9  (0.0066)  0.0060   (1.0885)  0.2001   0.1382  
X_10  (0.0067)  0.0074   (0.9083)  0.1836   0.1819  

X_11  (0.0064)  0.0088   (0.7316)  0.1692   0.2322  
X_12  (0.0078)  0.0099   (0.7836)  0.1268   0.2166  
X_13  (0.0095)  0.0111   (0.8580)  0.1018   0.1955  
X_14  (0.0104)  0.0120   (0.8696)  0.0989   0.1923  
X_15  (0.0111)  0.0124   (0.8978)  0.0961   0.1846  
X_16  (0.0104)  0.0132   (0.7917)  0.1011   0.2143  

X_17  (0.0104)  0.0139   (0.7454)  0.0944   0.2280  
X_18  (0.0127)  0.0147   (0.8649)  0.0550   0.1936  
X_19  (0.0156)  0.0153   (1.0164)  0.0272   0.1547  
X_20  (0.0177)  0.0148   (1.1962)  0.0391   0.1158  
X_21  (0.0181)  0.0145   (1.2445)  0.0657   0.1067  
X_22  (0.0176)  0.0146   (1.2069)  0.0973   0.1137  

X_23  (0.0171)  0.0146   (1.1676)  0.1178   0.1215  
X_24  (0.0182)  0.0150   (1.2123)  0.1149   0.1127  
X_25  (0.0202)  0.0158   (1.2781)  0.1153   0.1006  
X_26  (0.0216)  0.0170   (1.2727)  0.1131   0.1016  
X_27  (0.0228)  0.0178   (1.2802)  0.1167   0.1002  
X_28  (0.0243)  0.0186   (1.3087)  0.1246   0.0953  
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Table A1. Detailed Results of Linear Mixed Effects Model for Hypothesis 1: 
X_29  (0.0268)  0.0192   (1.3999)  0.1425   0.0808  

X_30  (0.0285)  0.0198   (1.4419)  0.1727   0.0747  
X_31  (0.0309)  0.0209   (1.4766)  0.2034   0.0699  
X_32  (0.0333)  0.0223   (1.4971)  0.2193   0.0672  
X_33  (0.0387)  0.0240   (1.6126)  0.2049   0.0534  
X_34  (0.0401)  0.0262   (1.5315)  0.1890   0.0628  
X_35  (0.0394)  0.0278   (1.4175)  0.1748   0.0782  

X_36  (0.0400)  0.0297   (1.3459)  0.1579   0.0892  
X_37  (0.0424)  0.0312   (1.3594)  0.1359   0.0870  
X_38  (0.0445)  0.0331   (1.3466)  0.1115   0.0891  
X_39  (0.0433)  0.0342   (1.2662)  0.1017   0.1027  
X_40  (0.0423)  0.0351   (1.2045)  0.1006   0.1142  
X_41  (0.0467)  0.0355   (1.3140)  0.1024   0.0944  

X_42  (0.0549)  0.0357   (1.5401)  0.1153   0.0618  
X_43  (0.0626)  0.0365   (1.7158)  0.1152   0.0431  
X_44  (0.0714)  0.0379   (1.8846)  0.1193   0.0297  
X_45  (0.0783)  0.0394   (1.9887)  0.1229   0.0234  
X_46  (0.0855)  0.0410   (2.0867)  0.1294   0.0185  
X_47  (0.0893)  0.0427   (2.0908)  0.1320   0.0183  

X_48  (0.0891)  0.0446   (1.9974)  0.1301   0.0229  
X_49  (0.0828)  0.0464   (1.7837)  0.1278   0.0372  
X_50  (0.0820)  0.0483   (1.6970)  0.1152   0.0449  
X_51  (0.0819)  0.0500   (1.6397)  0.1167   0.0520  
X_52  (0.0872)  0.0519   (1.6806)  0.1090   0.0464  
X_53  (0.0969)  0.0537   (1.8040)  0.1165   0.0356  

X_54  (0.1070)  0.0557   (1.9230)  0.1173   0.0272  
X_55  (0.1168)  0.0579   (2.0170)  0.1189   0.0218  
X_56  (0.1263)  0.0599   (2.1075)  0.1196   0.0175  
X_57  (0.1359)  0.0609   (2.2326)  0.1305   0.0128  
X_58  (0.1377)  0.0613   (2.2447)  0.1442   0.0124  
X_59  (0.1435)  0.0610   (2.3515)  0.1724   0.0093  

X_60  (0.1483)  0.0610   (2.4322)  0.1904   0.0075  
X_61  (0.1530)  0.0607   (2.5196)  0.2165   0.0059  
X_62  (0.1579)  0.0611   (2.5835)  0.2284   0.0049  
X_63  (0.1579)  0.0617   (2.5598)  0.2279   0.0052  
X_64  (0.1545)  0.0622   (2.4838)  0.2197   0.0065  
X_65  (0.1524)  0.0620   (2.4569)  0.2156   0.0070  

X_66  (0.1474)  0.0618   (2.3840)  0.2085   0.0086  
X_67  (0.1441)  0.0616   (2.3380)  0.2049   0.0097  
X_68  (0.1379)  0.0619   (2.2298)  0.1953   0.0129  
X_69  (0.1298)  0.0619   (2.0969)  0.1838   0.0180  
X_70  (0.1133)  0.0614   (1.8442)  0.1716   0.0326  
X_71  (0.0864)  0.0600   (1.4394)  0.1649   0.0750  

X_72  (0.0651)  0.0582   (1.1192)  0.1664   0.1315  
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Table A1. Detailed Results of Linear Mixed Effects Model for Hypothesis 1: 
X_73  (0.0478)  0.0558   (0.8565)  0.1729   0.1959  

X_74  (0.0331)  0.0532   (0.6229)  0.1714   0.2667  
X_75  (0.0181)  0.0489   (0.3692)  0.1864   0.3560  
X_76  (0.0053)  0.0453   (0.1169)  0.2076   0.4535  
X_77  0.0143   0.0407   0.3508   0.2429   0.3629  
X_78  0.0241   0.0373   0.6478   0.2576   0.2586  
X_79  0.0212   0.0331   0.6410   0.2561   0.2608  

X_80  0.0113   0.0308   0.3650   0.2010   0.3576  
X_81  0.0053   0.0301   0.1774   0.1507   0.4296  
X_82  0.0050   0.0289   0.1723   0.1393   0.4316  
X_83  0.0006   0.0274   0.0208   0.1101   0.4917  
X_84  (0.0054)  0.0270   (0.1989)  0.0369   0.4212  
X_85  (0.0023)  0.0298   (0.0787)  0.0000   0.4686  

X_86  0.0031   0.0287   0.1091   0.0001   0.4566  
X_87  (0.0004)  0.0219   (0.0198)  0.0000   0.4921  
X_88  (0.0111)  0.0126   (0.8759)  0.1519   0.1905  
X_89  (0.0159)  0.0117   (1.3517)  0.2210   0.0882  
X_90  (0.0173)  0.0106   (1.6299)  0.2593   0.0516  
X_91  (0.0195)  0.0097   (2.0132)  0.3013   0.0220  

X_92  (0.0202)  0.0089   (2.2765)  0.3368   0.0114  
X_93  (0.0203)  0.0082   (2.4758)  0.3626   0.0066  
X_94  (0.0190)  0.0079   (2.3968)  0.3698   0.0083  
X_95  (0.0173)  0.0077   (2.2617)  0.3802   0.0119  
X_96  (0.0152)  0.0074   (2.0476)  0.3899   0.0203  
X_97  (0.0135)  0.0073   (1.8577)  0.3906   0.0316  

X_98  (0.0135)  0.0073   (1.8567)  0.3884   0.0317  
X_99  (0.0136)  0.0073   (1.8662)  0.3885   0.0310  
X_100  (0.0136)  0.0073   (1.8651)  0.3886   0.0311  
X_101  (0.0136)  0.0073   (1.8651)  0.3886   0.0311  
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TableA2. Detailed Results of T-Tests for Hypothesis 2 
Variable Mean 

Concealment 
Group 

SD 
Concealment 
Group 

Mean 
Truthful 
Group 

SD 
Truthful 
Group 

T-Value DF P-Value 
(one 
tailed) 

Cohen's 
D 

X_1 (0.0001) 0.0005  0.0002  0.0008  (1.8826) 65.0000  0.0321  0.5028  
X_2 (0.0001) 0.0005  0.0003  0.0011  (1.8022) 65.0000  0.0381  0.5002  
X_3 (0.0001) 0.0008  0.0004  0.0013  (1.7506) 65.0000  0.0424  0.4567  
X_4 (0.0001) 0.0009  0.0004  0.0016  (1.6576) 65.0000  0.0511  0.4410  
X_5 (0.0003) 0.0013  0.0005  0.0018  (2.0156) 65.0000  0.0240  0.5191  
X_6 (0.0002) 0.0014  0.0006  0.0019  (1.9658) 65.0000  0.0268  0.5064  
X_7 (0.0002) 0.0014  0.0007  0.0020  (2.0040) 65.0000  0.0246  0.5194  
X_8 (0.0002) 0.0020  0.0007  0.0021  (1.8483) 65.0000  0.0346  0.4654  
X_9 0.0000  0.0024  0.0013  0.0032  (1.8528) 65.0000  0.0342  0.4757  
X_10 (0.0001) 0.0030  0.0005  0.0050  (0.5553) 65.0000  0.2903  0.1469  
X_11 (0.0002) 0.0060  0.0011  0.0059  (0.8632) 65.0000  0.1956  0.2164  
X_12 (0.0018) 0.0143  0.0019  0.0077  (1.3316) 65.0000  0.0938  0.3401  
X_13 (0.0036) 0.0219  0.0017  0.0146  (1.1526) 65.0000  0.1267  0.2899  
X_14 (0.0045) 0.0259  0.0020  0.0220  (1.0780) 65.0000  0.1425  0.2695  
X_15 (0.0043) 0.0268  0.0024  0.0273  (0.9802) 65.0000  0.1653  0.2464  
X_16 (0.0041) 0.0259  0.0017  0.0317  (0.7873) 65.0000  0.2170  0.2005  
X_17 (0.0040) 0.0254  0.0021  0.0362  (0.7600) 65.0000  0.2250  0.1967  
X_18 (0.0039) 0.0258  0.0023  0.0394  (0.7267) 65.0000  0.2350  0.1897  
X_19 (0.0032) 0.0255  0.0030  0.0436  (0.6797) 65.0000  0.2496  0.1803  
X_20 (0.0027) 0.0244  0.0045  0.0486  (0.7294) 65.0000  0.2342  0.1981  
X_21 (0.0018) 0.0218  0.0055  0.0536  (0.6844) 65.0000  0.2481  0.1925  
X_22 (0.0015) 0.0204  0.0072  0.0561  (0.7894) 65.0000  0.2164  0.2263  
X_23 (0.0004) 0.0192  0.0096  0.0568  (0.9096) 65.0000  0.1832  0.2637  
X_24 0.0002  0.0188  0.0124  0.0542  (1.1577) 65.0000  0.1256  0.3343  
X_25 0.0000  0.0208  0.0186  0.0472  (1.9753) 65.0000  0.0262  0.5482  
X_26 0.0016  0.0225  0.0191  0.0435  (1.9554) 65.0000  0.0274  0.5288  
X_27 0.0027  0.0270  0.0210  0.0416  (2.0394) 65.0000  0.0227  0.5333  
X_28 0.0034  0.0318  0.0241  0.0412  (2.2134) 65.0000  0.0152  0.5669  
X_29 0.0032  0.0376  0.0274  0.0414  (2.4222) 65.0000  0.0091  0.6116  
X_30 0.0048  0.0438  0.0360  0.0474  (2.7111) 65.0000  0.0043  0.6839  
X_31 0.0071  0.0533  0.0479  0.0700  (2.5837) 65.0000  0.0060  0.6627  
X_32 0.0098  0.0685  0.0585  0.0977  (2.2637) 65.0000  0.0135  0.5861  
X_33 0.0116  0.0819  0.0729  0.1385  (2.1025) 65.0000  0.0197  0.5570  
X_34 0.0156  0.0951  0.0818  0.1606  (1.9547) 65.0000  0.0275  0.5176  
X_35 0.0204  0.1048  0.0877  0.1734  (1.8313) 65.0000  0.0358  0.4835  
X_36 0.0246  0.1088  0.0905  0.1797  (1.7309) 65.0000  0.0441  0.4569  
X_37 0.0284  0.1103  0.0932  0.1867  (1.6465) 65.0000  0.0522  0.4362  
X_38 0.0322  0.1146  0.0999  0.1906  (1.6779) 65.0000  0.0491  0.4433  
X_39 0.0378  0.1256  0.1135  0.2008  (1.7645) 65.0000  0.0412  0.4637  
X_40 0.0440  0.1396  0.0987  0.2037  (1.2282) 65.0000  0.1119  0.3188  
X_41 0.0462  0.1423  0.1011  0.2064  (1.2143) 65.0000  0.1145  0.3150  
X_42 0.0465  0.1408  0.1041  0.2093  (1.2648) 65.0000  0.1052  0.3291  
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TableA2. Detailed Results of T-Tests for Hypothesis 2 
X_43 0.0481  0.1370  0.1068  0.2113  (1.2881) 65.0000  0.1011  0.3367  
X_44 0.0519  0.1377  0.1098  0.2123  (1.2644) 65.0000  0.1053  0.3305  
X_45 0.0570  0.1404  0.1132  0.2120  (1.2219) 65.0000  0.1131  0.3186  
X_46 0.0620  0.1418  0.1178  0.2119  (1.2128) 65.0000  0.1148  0.3158  
X_47 0.0708  0.1438  0.1240  0.2117  (1.1516) 65.0000  0.1269  0.2993  
X_48 0.0832  0.1494  0.1353  0.2147  (1.1038) 65.0000  0.1369  0.2860  
X_49 0.1018  0.1652  0.1503  0.2228  (0.9732) 65.0000  0.1670  0.2503  
X_50 0.1162  0.1809  0.1634  0.2317  (0.8938) 65.0000  0.1874  0.2286  
X_51 0.1339  0.2043  0.1764  0.2402  (0.7530) 65.0000  0.2271  0.1911  
X_52 0.1506  0.2230  0.1888  0.2458  (0.6457) 65.0000  0.2604  0.1630  
X_53 0.1638  0.2325  0.2064  0.2519  (0.6966) 65.0000  0.2443  0.1757  
X_54 0.1749  0.2370  0.2268  0.2640  (0.8189) 65.0000  0.2079  0.2069  
X_55 0.1867  0.2420  0.2436  0.2791  (0.8620) 65.0000  0.1959  0.2184  
X_56 0.2010  0.2511  0.2616  0.2991  (0.8677) 65.0000  0.1944  0.2204  
X_57 0.2157  0.2632  0.2769  0.3146  (0.8344) 65.0000  0.2036  0.2120  
X_58 0.2344  0.2786  0.2890  0.3215  (0.7186) 65.0000  0.2375  0.1820  
X_59 0.2513  0.2910  0.3023  0.3267  (0.6532) 65.0000  0.2580  0.1651  
X_60 0.2675  0.3021  0.3179  0.3326  (0.6291) 65.0000  0.2657  0.1588  
X_61 0.2853  0.3079  0.3343  0.3380  (0.6010) 65.0000  0.2750  0.1517  
X_62 0.3040  0.3085  0.3528  0.3400  (0.5970) 65.0000  0.2763  0.1507  
X_63 0.3246  0.3059  0.3718  0.3387  (0.5801) 65.0000  0.2819  0.1465  
X_64 0.3478  0.3020  0.3946  0.3352  (0.5824) 65.0000  0.2812  0.1471  
X_65 0.3696  0.2986  0.4227  0.3325  (0.6660) 65.0000  0.2539  0.1683  
X_66 0.3917  0.2980  0.4534  0.3318  (0.7760) 65.0000  0.2203  0.1960  
X_67 0.4118  0.2995  0.4874  0.3327  (0.9470) 65.0000  0.1736  0.2392  
X_68 0.4334  0.3014  0.5203  0.3319  (1.0870) 65.0000  0.1405  0.2744  
X_69 0.4549  0.2966  0.5491  0.3255  (1.2004) 65.0000  0.1172  0.3030  
X_70 0.4838  0.2858  0.5806  0.3143  (1.2782) 65.0000  0.1029  0.3227  
X_71 0.5234  0.2648  0.6130  0.2955  (1.2650) 65.0000  0.1052  0.3197  
X_72 0.5559  0.2504  0.6670  0.2603  (1.7291) 65.0000  0.0443  0.4350  
X_73 0.5849  0.2342  0.6990  0.2331  (1.9444) 65.0000  0.0281  0.4881  
X_74 0.6127  0.2171  0.7387  0.2183  (2.3037) 65.0000  0.0122  0.5787  
X_75 0.6444  0.1904  0.7675  0.2128  (2.4150) 65.0000  0.0093  0.6105  
X_76 0.6717  0.1691  0.7862  0.2039  (2.4147) 65.0000  0.0093  0.6142  
X_77 0.7076  0.1324  0.8032  0.1899  (2.2876) 65.0000  0.0127  0.5927  
X_78 0.7320  0.1127  0.8188  0.1761  (2.2941) 65.0000  0.0125  0.6010  
X_79 0.7482  0.1035  0.8311  0.1632  (2.3708) 65.0000  0.0104  0.6218  
X_80 0.7595  0.1008  0.8391  0.1486  (2.4542) 65.0000  0.0084  0.6380  
X_81 0.7684  0.0995  0.8415  0.1344  (2.4286) 65.0000  0.0090  0.6248  
X_82 0.7776  0.0979  0.8462  0.1227  (2.4369) 65.0000  0.0088  0.6220  
X_83 0.7837  0.0948  0.8516  0.1134  (2.5648) 65.0000  0.0063  0.6519  
X_84 0.7884  0.0902  0.8544  0.1042  (2.6792) 65.0000  0.0047  0.6791  
X_85 0.7953  0.0813  0.8539  0.0893  (2.7176) 65.0000  0.0042  0.6863  
X_86 0.8049  0.0719  0.8493  0.0685  (2.5223) 65.0000  0.0071  0.6322  
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TableA2. Detailed Results of T-Tests for Hypothesis 2 
X_87 0.8108  0.0635  0.8460  0.0535  (2.4071) 65.0000  0.0095  0.6020  
X_88 0.8148  0.0567  0.8480  0.0501  (2.4877) 65.0000  0.0077  0.6225  
X_89 0.8179  0.0503  0.8511  0.0500  (2.6348) 65.0000  0.0053  0.6616  
X_90 0.8196  0.0470  0.8543  0.0499  (2.8485) 65.0000  0.0029  0.7177  
X_91 0.8195  0.0452  0.8563  0.0496  (3.0753) 65.0000  0.0015  0.7766  
X_92 0.8199  0.0440  0.8576  0.0488  (3.2178) 65.0000  0.0010  0.8132  
X_93 0.8203  0.0425  0.8554  0.0434  (3.2490) 65.0000  0.0009  0.8170  
X_94 0.8217  0.0409  0.8523  0.0391  (3.0511) 65.0000  0.0016  0.7651  
X_95 0.8231  0.0392  0.8500  0.0376  (2.7969) 65.0000  0.0034  0.7013  
X_96 0.8247  0.0380  0.8483  0.0371  (2.4979) 65.0000  0.0075  0.6267  
X_97 0.8258  0.0377  0.8473  0.0364  (2.3115) 65.0000  0.0120  0.5797  
X_98 0.8259  0.0376  0.8470  0.0357  (2.2871) 65.0000  0.0127  0.5732  
X_99 0.8259  0.0376  0.8470  0.0357  (2.2871) 65.0000  0.0127  0.5732  
X_100 0.8259  0.0376  0.8470  0.0357  (2.2871) 65.0000  0.0127  0.5732  
X_101 0.8259  0.0376  0.8470  0.0357  (2.2871) 65.0000  0.0127  0.5732  
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