
Communications of the Association for Information Systems

Volume 8 Article 4

January 2002

Object-Oriented Systems Development: A Review
of Empirical Research
Richard A. Johnson
Southwest Missouri State University, richardjohnson@smsu.edu

Follow this and additional works at: https://aisel.aisnet.org/cais

This material is brought to you by the AIS Journals at AIS Electronic Library (AISeL). It has been accepted for inclusion in Communications of the
Association for Information Systems by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Johnson, Richard A. (2002) "Object-Oriented Systems Development: A Review of Empirical Research," Communications of the
Association for Information Systems: Vol. 8 , Article 4.
DOI: 10.17705/1CAIS.00804
Available at: https://aisel.aisnet.org/cais/vol8/iss1/4

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301377137?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol8?utm_source=aisel.aisnet.org%2Fcais%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol8/iss1/4?utm_source=aisel.aisnet.org%2Fcais%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais?utm_source=aisel.aisnet.org%2Fcais%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://aisel.aisnet.org/cais/vol8/iss1/4?utm_source=aisel.aisnet.org%2Fcais%2Fvol8%2Fiss1%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 65

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

OBJECT-ORIENTED SYSTEMS DEVELOPMENT:
A REVIEW OF EMPIRICAL RESEARCH

Richard A. Johnson
College of Business Administration
Southwest Missouri State University
richardjohnson@smsu.edu

ABSTRACT

Object-oriented systems development (OOSD) is viewed by many as the best available

solution to the ongoing "software crisis." However, some caution that OOSD is so complex that it
may never become a mainstream methodology. To settle the controversy requires high-quality
empirical evidence. This paper surveys the most rigorous research on OOSD available over the
past decade. A review of these empirical studies indicates that the weight of the evidence tends
to slightly favor OOSD, although most studies fail to build on a theoretical foundation, many suffer
from inadequate experimental designs, and some draw highly questionable conclusions from the
evidence. This set of conditions points to the need for additional, higher quality research to build a
better case either for or against OOSD.

KEYWORDS: object-oriented, object-orientation, systems development, empirical research,
methodology

I. INTRODUCTION
Object technology (OT) is a recently emerging branch of information technology of which

object-oriented systems development (OOSD) is an extremely vital element. Many practitioners
(Booch, 1994; Coad and Yourdon, 1991; Coleman, Arnold, Bodoff, Dollin, Gilchrist, Hayes, and
Jeremaes, 1994; Jacobson, Christerson, Jonsson, and Overgaard, 1995; Rumbaugh, Blaha,
Premerlani, Eddy, and Lorensen, 1991) believe OOSD to be far superior to conventional systems
development (CSD). OOSD is viewed so highly in some circles that it has been elevated to the
“unified software development process“ (Jacobson, Booch, and Rumbaugh, 1999).

The advocates of OOSD claim many advantages including easier modeling, increased
code reuse, higher system quality, and easier maintenance. However, some express serious
concern about certain disadvantages of OOSD, such as its difficulty to learn, slower development
time, and poorer run-time performance (Pancake, 1995; Fichman and Kemerer, 1993). While the
OO paradigm appears full of promise, many developers seem reluctant to accept it
wholeheartedly, especially within the business community (Pancake, 1995). In the case of
OOSD, some say that “technology adoption is mostly the result of marketing forces, not scientific

66 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

evidence” (Briand, Arisholm, Counsell, Houdek, and Thevenod-Fosse, 1999, p. 388). As Smith
and McKeen (1996) have observed, OT is "still long on hype and short on results . . ." (p. 28).

With the large amount of hype surrounding OOSD, it seems reasonable to search for
hard core, empirical evidence before committing scarce corporate resources to its large-scale
adoption. While such evidence is generally lacking (Briand et al., 1999), some research on OOSD
has been reported over the past decade. The purpose of this paper is to present and examine the
methodologies and conclusions of some of the most meaningful empirical studies on the pros and
cons of OOSD (Section III). After these studies have been reviewed, implications of the findings
are discussed and possible future research is proposed, including a framework to guide
researchers. The results of this study should prove beneficial to practitioners who are
considering the adoption of OOSD and to researchers who are considering further exploration of
this important new paradigm of systems development.

II. BACKGROUND

WHAT IS OOSD?
OOSD is generally considered a revolutionary, rather than evolutionary, advancement in

systems development (Hardgrave, 1997) primarily because of its radical departure from
conventional systems development (CSD) (Fichman and Kemerer, 1992). While CSD is based
on decomposing a system into procedures (process oriented) or data (data oriented), OOSD is
predicated on decomposing a problem into interacting objects that encapsulate both data and
behavior (Booch, 1994). An object's attributes are captured in its data structure. An object's
behavior (also known as functions, procedures, or operations) is actuated when it receives
messages (function calls) from other objects. The object sending the message need only know
what is to be done, not how it is done. The object receiving the message contains the
implementation details. The encapsulation of data and behavior into a single entity (i.e., the
object) is germane to providing many benefits over CSD.

Just as CSD consists of the phases of analysis, design, and implementation (primarily
programming), OOSD involves OO analysis (OOA), OO design (OOD), and OO programming
(OOP). Throughout the 1990’s, an abundance of OOA and OOD methods emerged (e.g., Booch,
1994; Coad and Yourdon, 1991; Coleman et al., 1994; Jacobson et al., 1992; Rumbaugh et al.,
1991; Shlaer and Mellor, 1992; Wirfs-Brock and Johnson, 1990), eventually culminating in a
standard known as the Unified Modeling Language (UML) (Rumbaugh et al., 1998). Adding to the
multiplicity of methods, there are almost as many OOP languages (e.g., C++, Smalltalk, Java,
and the next version of Visual Basic). All phases of OOSD are founded on what is called the OO
paradigm (Korson and McGregor, 1990) consisting of a set of five basic precepts: (1) object, (2)
class, (3) inheritance, (4) polymorphism and (5) dynamic binding. In-depth discussions of OO
concepts can be found in Booch (1994), Coad and Yourdon (1991), and Rumbaugh et al. (1991),
among others.

ADVANTAGES AND DISADVANTAGES OF USING OOSD
The application of OOSD is usually expected to result in many distinct advantages over

CSD. However, disadvantages associated with OOSD are also reported. A fairly comprehensive
list of these advantages and disadvantages, as reported by both experienced and novice OO
developers, was compiled by the author from previous research (Johnson, 2000) and is
presented in Table 1 in priority rank.

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 67

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

Table 1. Reported OOSD Advantages and Disadvantages

Priori
ty
Rank

Advantages Disadvantages

1 An easier modeling process Decreased system run-time performance
2 Improved modularity of systems Unavailability of adequate OO DBMS's
3 Improved maintainability of systems Increased initial development time
4 Improved quality of systems Unavailability of OO CASE tools
5 More understandable A&D models Confusion of too many OOA/D methods
6 Greater stability of designs over time Inability to try OOSD before committing
7 More flexible/adaptable development Complexity of OOA/D methods
8 An easier transition between phases Complexity of OOP languages
9 More effective code reuse Incompatibility of OOSD with processes
10 Improved communication with developers Inability to demonstrate OOSD benefits
11 Improved productivity of your work Difficulty learning OOA/D methods
12 More effective A&D model reuse A more difficult programming process
13 Greater user satisfaction with systems Difficulty learning OO programming
14 Improved communication with users Unsuitability of OOSD for projects

A review of some of the most recent and important empirical research into these
advantages and disadvantages follows. The discussion is organized around the particular
development phase (analysis, design, or programming) under investigation.

III. SELECTED EMPIRICAL STUDIES ON OOSD

RESEARCH ON OO ANALYSIS AND DESIGN
As evidenced by the reported OOSD advantages and disadvantages in Table 1, it is

apparent that most of the emphasis in the OO literature is placed on the analysis and design of
OO systems. This emphasis is to be expected since proper analysis and design are generally
considered cornerstones of system success (Brooks, 1987). Much of the empirical research on
OOSD focuses on these two phases of development.

Boehm-Davis and Ross (1992) compared the quality of designs and solutions for various
projects using three different types of systems development methodologies:

• procedural,
• data-oriented (Jackson System Development, or JSD), and
• object-oriented.

The eighteen subjects in this study were professional programmers divided into three groups of
six. Each group received training and/or had previous experience in one of the three different
methodologies. The subjects were asked to provide designs and write pseudo-code for three
different systems. Data were collected on solution completeness, time to design and code, and
solution complexity. The findings show that the JSD and OO groups

• generated significantly more complete solutions,

68 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

• required significantly less development time, and
• produced less complex solutions

than the procedural group. The accomplishments of the OO group look even more impressive
given that the JSD group had three to four times more overall development experience and more
than twice the experience with the JSD methodology compared to either the procedural or OO
group. Thus, one can conclude that for professional developers, OO designs and solutions are of
higher quality and take less time than procedural designs and solutions. While the results look
somewhat encouraging for OO, the experimental design of the research has some serious
limitations, primarily because it did not control for the prior level of experience across
methodologies.

Vessey and Conger (1994) also compared the same three analysis methods: process-
oriented (structured), data-oriented (Jackson System Development), and object-oriented (Booch).
Six software engineering students, inexperienced in any analysis method, received the same
training in all three methods during a university course. They were then assigned to one of three
groups (two students per group) and given equally complex analysis problems to solve using one
of the three methods. The researchers performed a protocol analysis and determined that novice
analysts found OOA more difficult to learn and apply than data-oriented analysis and data-
oriented analysis more difficult to learn and apply than process-oriented analysis. This study
seemingly contradicts the previous study’s findings that OO is easier to apply (Boehm-Davis and
Ross, 1992). While the methods used by developers in the Vessey and Conger (1994) study
were almost identical to those in the Boehm-Davis and Ross (1992) study, Vessey and Conger
used students instead of experienced developers and used a much smaller sample size (n=6 vs.
n=18). Also, the students were not randomly assigned to groups.

Pennington, Lee and Rehder (1995) performed a protocol analysis on a total of ten
experienced, professional developers. Three were expert procedural developers, four were
expert OO developers, and three were novice OO developers (who were, however, expert
procedural developers). All three groups were given a relatively simple swim meet scoring
problem and asked to create a complete design using their respective methods. Completed
designs were judged in terms of quality while developers were evaluated on productivity. The
results showed that the designs of the OO experts were more complete but took more time
compared to the procedural experts. Even though they took more time, the OO experts were
graded more efficient than the procedural experts when overall design quality was considered.
The study concludes that OO designs are of higher quality than procedural designs and take less
time to complete.

Hardgrave and Dalal (1995) performed a laboratory study of 56 advanced undergraduate
MIS majors, all enrolled in a senior-level DBMS course, to compare two competing data modeling
techniques: the extended entity-relationship (EER) model (McFadden and Hoffer, 1991) and the
Object Modeling Technique (OMT) of Rumbaugh et al. (1991). Although not explicitly identified in
the paper, the study appears to be based on the cognitive problem-solving theory of Newell and
Simon (1972) positing that characteristics of the task environment and characteristics of the
developer jointly influence problem-solving performance. The independent (task) variables in this
study were modeling technique (OMT or EER) and complexity of the resulting model (developer
characteristics were not measured). The students were randomly assigned to one of four groups,
with each group given a previously prepared, completed model to review (simple OMT, complex
OMT, simple EER, and complex EER). The students in each group, who had already received
training in the techniques, were provided with two additional one-hour lectures specifically on their
respective models. They were then asked to take a test on their understanding of the models and
complete a follow-up questionnaire. The dependent variables were

• level of understanding (measured by the score on the test),
• time to understand (measured by the time to complete the test), and
• perceived ease-of-use (measured by item scores on a questionnaire).

The results indicated that, for both simple and complex systems, OMT models were more quickly
understood than EER models. However, no significant difference was found for the depth of
understanding and the perceived ease of use of the two methods, regardless of task complexity.
Thus, OO modeling techniques may be understood more quickly but not more completely
compared to data-oriented techniques. One possible shortcoming of this study is that it compares

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 69

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

object-oriented to data-oriented modeling techniques. These two methods are much more closely
related than object-oriented and process-oriented techniques, so differences in understanding or
perceived ease of use may be difficult to detect, and even if detected, less relevant to the
concerns of many practitioners and researchers.

Wang (1996a) performed an experiment using thirty-two undergraduate students with no
previous systems analysis training or experience. The subjects were randomly divided into two
groups. One group was trained for five hours on the data flow diagram (DFD) method, while the
other group was trained for five hours on an object-oriented analysis method. The subjects were
then presented with a mini-case in management information systems analysis. The OO group
spent significantly less time on their analyses of the problem and created solutions that were
significantly more accurate. After completing the analysis, the subjects responded to a
questionnaire concerning their perceptions of the analysis method used. The OO group reported
that the OOA method was easier to learn and understand. The OOA method was also rated
superior overall. This study confirms the results of several previously cited studies: OOA
produces higher quality models more quickly than procedural analysis.

In a separate study, Wang (1996b) again compared a structured method of analysis
(DFD) with object-oriented analysis (OOA) using two groups of inexperienced undergraduate MIS
majors. Students were randomly assigned to two groups, 24 in the DFD group and 20 in the OOA
group. Each participant learned his respective analysis method and created analysis diagrams
based on information in a mini-case study. The total time allowed for training and problem solving
was 7.5 hours spanning several class sessions. The two dependent variables were the syntactic
and semantic accuracy (in conveying system requirements) of the resulting analysis diagrams.
Using ANOVA techniques, the results indicated that the syntactic accuracy for the DFD group
was significantly greater in the early sessions, but that syntactic accuracy for the OOA group was
significantly greater in the last session. However, there was no significant difference in semantic
accuracy for the DFD and the OOA groups. Apparently contradicting the results of his own
previous study (Wang 1996a), this experiment concludes that OOA appears more difficult to learn
than DFD, and that OOA does not produce solutions of higher quality.

Herbsleb, Klein, Olson, Brunner, Olson, and Harding (1995). Another important benefit
claimed for OOA and OOD is improved communication among development team members, as
well as between users and developers (Garceau, Jancura, and Kneiss, 1993). The assumption is
that OO is easier to understand, but it is not clear whether increased understanding should lead
to increased or decreased communication. No empirical research was found on improved
communication between users and developers, but Herbsleb, Klein, Olson, Brunner, Olson, and
Harding (1995) focused on developer interaction during the design phase of OO projects. In this
research, several field studies were conducted using developers’ time sheets, videotapes of
meetings on design activities, and semi-structured interviews with developers. Results indicated
that when OOD methods are used, fewer spontaneous episodes of clarification occur. Also,
planned summaries and walkthroughs occur much more often when using OOD. More attention
was given to the reasons for specific design choices for the OO projects. OOD seems to
encourage a deeper inquiry into the reasons underlying design decisions but less inquiry into the
requirements. The authors of this paper believe these findings indicate improved communication
in software development teams, which leads to greater understanding of requirements.

However, there may be alternative explanations. For example, fewer spontaneous
episodes of clarification could occur if developers wish to disguise a lack of understanding. The
increased number of planned summaries and walk-through’s could result if developers perceive a
lack of understanding among peers. Thus, the study may indicate that OOD decreases one form
of communication and increases another simply because OOD is new and/or more difficult to
understand, not because it is easier or more natural.

Davies, Gilmore, and Green (1995). Supporters of OOSD claim that thinking in terms of
interacting objects, rather than in terms of functions or procedures, should be more natural to
humans (Pancake, 1995). Davies, Gilmore, and Green (1995) set out to test the claim that OO
decomposition of the problem domain is more natural to the ways of human cognition than
functional decomposition. Twelve expert and twelve novice programmers were presented with
cards containing fragments of code from a large C++ library for graphics applications. Their task
was to sort the cards according to any criteria they felt appropriate. The purpose of the sort was

70 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

to determine whether the subjects would perform functional or object-oriented decompositions of
the problem domain. Subjects performed the sorting of code fragments and reported the reasons
for their sorting (categorized as either function-based or object-based). The results showed that
expert subjects seemed to focus more on the functional properties of the code while the novice
subjects tended to classify the code fragments according to important features of the OO
paradigm (class membership, object similarity, or inheritance relations). According to the authors,
the “results appear to suggest fairly clearly that functional information is of much greater
importance to experts than is information about objects and their relations” (p. 242). The
implication is that OO decomposition is not more natural for expert developers, as was expected
by the researchers. Of course, an alternative explanation is that experts are simply more
experienced with functional decomposition and tended to see the code fragments in that way.

Agarwal, Sinha, and Tanniru (1996) performed a thorough experiment comparing the
ability of novice analysts to perform a requirements analysis using either a process-oriented (PO)
or an object-oriented (OO) analysis methodology. This study explicitly identifies the Newell and
Simon (1972) problem-solving theory as its basis, extending it with the concept of “cognitive fit”
(Vessey, 1991), which implies that a closer fit between the nature of the task and the way it is
represented in the problem space should improve problem-solving performance. A total of 43
undergraduate students (with no prior training or experience in any type of systems analysis)
were randomly divided into two groups: a PO group (n=24) and an OO group (n=19). Each group
was trained six hours in its respective analysis methodology—the DeMarco (1978) method for the
PO group and the Coad and Yourdon (1991) method for the OO group. Individuals in each group
were then presented with two problems to analyze—one problem was clearly more function-
strong (PO) while the other was more structure-strong (OO). According to the theory of cognitive
fit, the PO group should perform better on the PO problem, while the OO group should perform
better on the OO problem. The researchers found that the PO group had significantly better
overall performance than the OO group on the PO task, but that there was no difference in overall
performance between the two groups on the OO task. The researchers concluded that PO
methodologies should be easier for novices to learn than OO methodologies, possibly because
people may have a greater tendency to reason procedurally.

Morris, Speier, and Hoffer (1999) again put the issue of prior experience to the test. As in
the Agarwal et al. (1996) study, the Newell and Simon (1972) problem-solving theory served as
the theoretical backdrop. Seventy-one student subjects, 34 of whom were procedurally
experienced (juniors and seniors in a SA&D course) and 37 of whom were novices (freshmen and
sophomores in an introduction to computing course), received brief training in DFD and OOA
(Coad and Yourdon, 1991) methods. They were then asked to develop models for two simple
tasks. The dependent variables under examination included (1) subjective mental workload, a
self-reported assessment of the cognitive effort utilized that is based on a previously validated
instrument, (2) solution quality, (3) time to solution, and (4) attitudinal measures of confidence,
preference, and ease of use. Both groups of subjects reported that the subjective mental
workload for OOA was significantly higher than for DFD, indicating that OOA would be more
difficult to learn and/or use. There was no significant difference in the time to solution for either
group, or for the solution quality for the novice group. The procedurally experienced group
created a DFD solution that was of higher quality than the OOA solution. This outcome is not
surprising since many believe that procedural methods must be unlearned before OO methods
can be learned (Pancake, 1995). A somewhat surprising result was that the novice group judged
OOA easier to use and preferable to DFD, even though the subjective mental workload measure
was higher for OOA. This finding could imply that while OOA may be more challenging, it is also
more intellectually stimulating to novices.

RESEARCH ON OO PROGRAMMING
Many advocates of OOSD claim that it enhances both productivity and quality, primarily

because of increases in model and code reuse. While no empirical studies on model reuse were
found, several studies did explore the issue of code reuse.

Lewis, Henry, Kafura, and Schulman (1992) tested hypotheses related to code reuse in a
controlled experiment with 21 senior software engineering students. Business applications were
created using either a procedural language (Pascal) or an object-oriented language (C++). They

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 71

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

determined that using the OO paradigm resulted in higher levels of reuse and improved
programmer productivity.

Chen and Chen (1994) performed a laboratory experiment to compare three approaches
to programming: (1) the traditional method of coding a system from scratch, (2) an OO method
employing components of reusable C++ code, and (3) reusable design frameworks. A framework
is a completed OO design of a subsystem, consisting of concrete, collaborating classes that are
subsequently catalogued into a library (Gamma, 1995). Three teams of graduate students (two
groups of seven and one of six) were given the same development task, a window manager
system. Each group was assigned one of the three methods to code the problem solution. It was
determined that programmers were more productive and produced higher quality systems when
provided reusable components and frameworks than when building a system from scratch.
However, the results may be questioned as it appears the teams employing reuse were provided
with detailed information on the availability of the components that were previously tailor-made for
the target system. Also, students were not randomly assigned to different experimental groups.

Basili, Briand, and Melo (1996), in a fairly rigorous study, tested the hypotheses that
higher rates of code reuse result in (1) higher software quality, (2) lower software maintenance,
and (3) higher developer productivity. Eight development teams, each containing three randomly
assigned computer-science graduate students, were given the task of developing a complete
management information system for a hypothetical video rental business. OMT (Rumbaugh et al.,
1991) was used for analysis and design and C++ was used as the implementation language. The
eight teams were provided with equal training in the use of various types of C++ libraries for
creating and applying GUI's, functions, and databases. Thorough measurements were taken on
the amount of code reuse and the overall progress of all eight teams. Statistically significant
results were obtained supporting all three hypotheses.

Harrison, Samaraweera, Dobie, and Lewis (1996) compared a functional language (SML)
to an object-oriented language (C++) in a controlled experiment using several different metrics.
One developer, who was equally experienced in both languages, was asked to create a total of
twelve different algorithms using both SML and C++. The statistically significant conclusions
included (1) the procedural language required twice the testing time, (2) the procedural language
resulted in 2.5 times the error rate, and (3) the procedural language resulted in 1.5 times as much
reuse as the OO language. There were no significant differences in modification requests,
modification times, and total development time. These results confirm some of the expected
advantages of OOP but contradict others. Obviously, a serious limitation of this study is the use
of only one developer (a sample size of one).

Wood, Daly, Miller, and Roper (1999). While reuse is generally expected to improve
programmer productivity and system quality, other aspects of the OO paradigm might negatively
impact such measures. For example, increasing levels of inheritance may exacerbate, rather than
mitigate, maintenance efforts. Wood, Daly, Miller, and Roper (1999) performed a series of well-
designed experiments on student subjects to determine if the number of inheritance levels
incorporated in two different OO database applications (one relatively simple and one somewhat
more complex) affected the amount of time required to add program code for new classes. The
results indicated that when three levels of inheritance are involved, maintenance of the system
required significantly less time than for a “flat” system (i.e., no inheritance), but when five levels of
inheritance are involved, maintenance of the system required significantly more time than for a
flat system. Thus, the use of inheritance may improve maintenance efficiency up to a point, but its
overuse could degrade maintenance performance. One shortcoming of this study was the failure
to provide the subjects with system design documentation to aid in their maintenance efforts.

Briand, Wust, Daly, and Porter (2000). In a study dealing with both function calls and
inheritance, Briand, Wust, Daly, and Porter (2000) discovered that the frequency of method
invocations and the depth of inheritance hierarchies are the major determinants of fault-
proneness of resulting software classes. Eight three-person teams of upper division
undergraduate students, with no previous OO experience, were taught OOAD. Each team
developed a medium-sized MIS for a hypothetical video rental business. The OMT analysis and
design method (Rumbaugh et al., 1991) was used with C++ as the implementation language.
Independent testers, consisting of experienced software professionals, evaluated the coded
classes for faults. Existing measures of coupling (classes using methods or attributes in other

72 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

classes), cohesion (methods within a class using common attributes of the class) and inheritance
(classes deriving methods from ancestor classes) defined at the class level were used as
independent variables to predict the probability of fault-proneness in class code. The classes
investigated were either developed from scratch or were extensive modifications of library
classes. Univariate analysis showed that increased levels of coupling and inheritance significantly
impact fault-proneness of classes while cohesion does not. Multivariate analysis showed that
models involving coupling and inheritance measures could be developed to automatically detect
faulty classes with an accuracy rate approaching 90%.

RESEARCH ON ALL PHASES OF OOSD
 Fedorowicz and Villeneuve (1999). Most empirical research on OOSD focuses on a
single phase of the systems development life cycle and on a limited set of concerns (e.g.,
difficulty of learning or productivity). In a more comprehensive approach, Fedorowicz and
Villeneuve (1999) conducted a survey of 228 computer-industry practitioners with interest in
commercial OO tools, 70% of whom were at least somewhat experienced with such tools.
Overall, respondents

(1) preferred OOAD to traditional analysis and design methods,
(2) found OOSD to be more useful and efficient,
(3) preferred OO for communication with users and team members, and
(4) found that objects are both shareable and reusable.

These attitudes became more substantial with increases in
(1) the number of SDLC steps involved,
(2) project size, and
(3) OO experience,

as well as when OO tools and formal methodologies were used. However, respondents found
that it is more difficult to acquire OO skills, but this view becomes less substantial with increasing
OO experience, and with the increased use of OO tools and methodologies. They also noted that
OOA takes longer than traditional analysis, but that a net savings should result over the entire
SDLC. One major limitation of this study is that only sketchy information was reported on the
specific type and duration of OO experience of the respondents.

Johnson (2000) conducted a somewhat similar survey of 150 randomly selected,
experienced developers from across the U.S. in order to encompass all OOSD phases and a very
wide range of concerns. A total of 96 of these subjects were seasoned OO developers, and the
remaining 54 (henceforth called non-OO developers) were experienced developers trained in
OOSD, but with no significant industrial experience on OO projects. The survey included
questions concerning the fourteen specific advantages and fourteen specific disadvantages of all
phases of OOSD (analysis, design, and programming) listed in Table 1. On a scale from 1 (low)
to 7 (high), the OO developers assigned a median rating of 6 for such advantages of OOSD as
easier modeling, higher quality systems, improved maintainability, easier transition between
development phases, and more effective code reuse. Regarding OOSD disadvantages, the OO
developers did not judge any in the list of fourteen (such as increased development time,
complexity, difficulty to learn, or unsuitability for projects) to be of concern. On the contrary, OO
developers generally believed that OOA, OOD and OOP were not difficult to learn. The OO
developers were significantly more convinced of the vast majority of OO advantages than the
non-OO developers, and significantly less convinced that OOSD is difficult to learn, compared to
the non-OO developers. Apparently, actual experience with OOSD may enhance beliefs in the
advantages of OOSD and reduce concerns about the disadvantages of OOSD. An alternative
explanation is that OOSD may be accompanied by a “halo effect” where those committed to it
believe it is indeed a “silver bullet.”

Table 2 summarizes results of the studies cited.

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 73

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

IV. GENERAL CONCLUSIONS ABOUT OOSD
Eighteen empirical studies, representing some of the best available in the field of OOSD,

were reviewed in Section III. These studies span multiple phases of OOSD: analysis (OOA),
design (OOD), and programming (OOP). A majority of the studies concentrate on the areas of
OOA and OOD where most of the benefits of object technology are expected to accrue (Booch,
1994). In general, the conclusions reached in these studies are somewhat mixed.
• Eight studies (53%) were favorable toward OOSD,
• four (27%) were unfavorable, and
• the remainder (20%) included both positive and negative results.
Interestingly, the same researcher (Wang, 1996a, 1996b), using very similar subjects and tasks,
obtained apparently conflicting results.

In nearly every instance where studies were favorable to OOSD, higher system quality
and developer productivity were cited as primary benefits. On the other hand, nearly every
negative result focused on the difficulty of learning OOSD. These results are consistent with the
anecdotal OO literature. Only Johnson (2000) obtained results that consistently claimed OOSD is
not more difficult than traditional methods. In any event, the results suggest that while OOSD may
be somewhat more difficult to learn than conventional methods of systems development, the
effort spent in education and training may ultimately pay off in increased quality and productivity.

Some studies discussed above present mixed results on other important OOSD issues.
For example, the OO paradigm was found to be more natural for developers (Davies et al., 1995),
although the logical derivation of this conclusion from the data is highly suspect. The conclusion
that OOSD enhances communication (Herbsleb et al., 1995) may actually highlight a potential
disadvantage of OOSD, i.e., that OOSD may be more confusing, thus necessitating an increased
level of communication. Several studies (Lewis et al., 1992; Chen and Chen, 1994; Basili et al.,
1996) found that OO code reuse improves productivity and quality, while Harrison et al. (1996)
claim that OO programming was accompanied by less reuse. However, the latter study was
based on a sample size of only one. Thus, most of the evidence supports the claim that OOSD
enhances code reuse.

Upon careful examination of Table 2, nearly all cases where only negative results were
obtained stemmed from the use of inexperienced students as subjects. This suggests that proper
learning can play a tremendous role in the ultimate effectiveness of OOSD. Students given only a
few hours or weeks of training in OOSD should not be expected to perform OO tasks particularly
well, especially given that OOSD may be somewhat difficult to learn. The conventional wisdom is
that proficiency in OOSD may require six to eighteen months of full-time experience (Fayad, Tsai,
and Fulghum, 1996). Thus, many of the negative results could be attributed to the types of
subjects chosen and the amount of training provided.

V. THEORY ISSUES
IS researchers would overwhelmingly agree that theory should form the basis for any

serious empirical study. In the case of research into the advantages and disadvantages of OOSD,
theory has definitely taken a back seat. Of the eighteen studies cited in this paper, only three
explicitly attempt to rely on previously accepted theory (Hardgrave and Dalal (1995), Agarwal et
al. (1996), and Morris et al. (1999)). In these cases, the theoretical background was the
information-processing model of Newell and Simon (1972). As Figure 1 illustrates, this theory
posits that problem-solving performance is directly influenced by the individual’s internal
representation of the problem, which in turn is influenced jointly by characteristics of the task
environment and characteristics of the information processing system (i.e., the problem-solver).
For example, the ability to successfully solve a systems development problem may depend on
the approach (OO vs. procedural) and the information processing system (experienced vs.
inexperienced systems developers) employed. In defense of the other fifteen studies, most
appear to be at least implicitly (although sometimes loosely) based on this same problem-solving
theory.

74 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

 Table 2. Summary Of Selected Empirical Research on OOSD

 Date Phases

Studied
Types of
Subjects

System
Charac-
teristics

n Dependent
Variables

Slant of
Results

Major Conclusions

Boehm-Davis and
Ross

1992 OOA/
OOD

Experienced
developers

Simple
/partial

18 Quality,
productivity

Pro OOA/D results in higher quality and
productivity than procedural
analysis/design.

Vessey and Conger 1994 OOA Inexperienced
students

Simple
/partial

6 Ease of
learning/use

Con OOA is more difficult to learn and use
than procedural analysis.

Pennington et al. 1995 OOD Experienced
developers

Simple
/partial

10 Quality,
productivity

Pro OOD results in higher quality and
productivity than procedural design.

Hardgrave and Dalal 1995 OOA Inexperienced
students

Simple
/partial

56 Ease of
learning/use

Pro &
con

OOA is more readily understood, but not
more completely understood than data-
oriented analysis.

Wang 1996a OOA Inexperienced
students

Simple
/partial

32 Ease of
learning

Pro OOA is easier to learn and understand
than procedural analysis.

Wang 1996b OOA Inexperienced
students

Simple
/partial

44 Ease of
learning,
quality

Con OOA is more difficult to learn and does
not result in higher quality than
procedural analysis.

Morris et al. 1999 OOA Experienced
and
inexperienced
students

Simple/
partial

71 SMW, quality,
productivity,
ease of
learning/use

Pro &
con

OOA is more difficult to use; DFD-
experienced students produced higher
quality OOA models than inexperienced
students, inexperienced students
preferred OOA over DFD.

Lewis et al. 1992 OOP Experienced
students

Simple
/partial

21 Level of reuse,
productivity

Pro OOP results in greater reuse and
productivity than procedural
programming.

Chen and Chen 1994 OOP Experienced
students

Simple
/complete

20 Quality,
productivity

Pro OO reuse results in higher quality and
productivity than programming from
scratch.

Basili et al. (1996) 1996 OOP Experienced
students

Simple
/complete

24 Quality,
productivity,
maintainability

Pro Increasing OO reuse results in higher
quality and productivity, less
maintenance.

Communications of the Association for Information Systems (Volume 8, 2002) 65-81 75

Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

Harrison et al.
(1996)

1996 OOP Experienced
developer

Simple
/partial

1 Quality,
productivity,
reuse

Pro &
con

OOP results in less testing time, higher
quality, but less reuse.

Wood et al. (1999) 1999 OOP Experienced
students

Simple
/partial

31 Maintainability Pro &
con

Low inheritance depth results in less
maintenance time, higher depth in more
maintenance time.

Briand et al. (2000) 2000 OOP Experienced
students

Simple/
complete

18 Maintainability Con Increased levels of coupling and
inheritance contribute to fault-proneness
of classes.

Agarwal et al. (1996) 1996 OOA Inexperienced
students

Simple
/partial

43 Cognitive fit Con OOA is more difficult to learn, results in
lower quality com-pared to procedural
analysis.

Davies et al. (1995) 1995 OOA Experienced/
inexperienced
developers

Simple
/partial

24 Cognitive fit Con OOA is not more natural to experienced
developers.

Herbsleb et al.
(1995)

1995 OOA/
OOD

Experienced
developers

Complex/
partial

12 Level of
communication

Pro OOA/D results in increased
communication among developers.

Fedorowicz &
Villeneuve (1999)

1999 OOA/
OOD/
OOP

Experienced
developers

Complex/
complete

228 Preference,
ease of
learning,
productivity,
communication
, reuse

Pro &
con

Preference for OOSD increases with
project size and OO experience; OO
novices find OOSD difficult to learn: OO
results in higher productivity, better
communication; objects are sharable
and reusable.

Johnson (2000) 2000 OOA/
OOD/
OOP

Experienced
developers

Complex/
complete

150 Many
advantages/
disadvantages

Pro OOSD is easier to learn and use, very
suitable for projects, and results in
higher quality and productivity
compared to CSD.

 76 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

Figure 1. General Theoretical Model (Newell And Simon, 1972)

VI. METHODOLOGY ISSUES

Table 2 also highlights several possible methodological weaknesses in empirical
studies of OOSD. First, many studies are very narrow in scope, focusing on only one phase
of the life cycle, and even then comparing only two specific techniques, such as an OO class
diagram vs. a data flow diagram. While the resolution of such narrow issues may be
necessary and helpful, it does not address the entire system development process and
could unfairly skew perceptions either for or against OOSD. For example, OOA may indeed
take more time to complete than procedural analysis, supporting a conclusion that analysts
are less productive when using OO (Vessey and Conger, 1994). However, more time spent
in OOA may result in much less implementation and maintenance time for the completed
system. The overall result could be improved productivity using OOSD.

Another major problem with many empirical studies in OOSD is the small sample
size and otherwise poor experimental design. Sample sizes of one or two per treatment are
very susceptible to attack in terms of both internal and external validity. Such studies may be
unable to detect significant differences between procedural and OO methods due to low
statistical power. Poor experimental designs that fail to randomly assign subjects to
treatments or otherwise fail to control for developer experience would suffer in the ability to
generalize to the population of developers.

As discussed earlier, studies often use inexperienced students as subjects. Such
practices may be acceptable when the purpose of the research is strictly to explore the
difficulty of learning OOSD, but not when research questions focus on the quality and
productivity of models or completed systems. Also, the question of learning OOSD may be
even more critical to experienced procedural developers who may be forced by
management to make the transition to OO in the middle of their careers, but no studies were
found that specifically address this group.

Another concern is the use of extremely simple problems in laboratory studies.
Results of such studies are hardly generalizable to what are often referred to as “industrial
strength” development projects (Booch, 1994). It is possible that process-oriented

Task

Envionment

 Information

Processing
System

Problem

Representation

Performance

Communications of the Association for Information Systems (Volume 8, 2002) 64-81 77

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

methodologies may be superior to OO for simple problems, while the power of the OO
approach may be more evident for complex problems.

Finally, potential problems exist with studies that attempt to train novice students
quickly in OOSD. Instructors at universities where such studies are conducted are likely to
be significantly less experienced in the new OO methodologies than the more established
procedural methodologies. This condition could result in less than optimum conditions for
effectively and efficiently transferring complex OO knowledge, making it even more difficult
for students to learn OO adequately.

VII. FUTURE RESEARCH
Clearly, more research of higher quality is needed to determine with greater

certainty how OOSD compares to CSD. Theory should serve as the cornerstone of every
study. Laboratory experiments could be designed to determine how well subjects, especially
students, are able to learn and apply the multiple facets of OOSD. Field studies and survey
research on experienced developers could explore the transition to OOSD in industry and
the effectiveness of OOSD on complex projects. Researchers could also investigate whether
learning OOSD is more difficult for novice or experienced developers. The appropriateness
of OOSD or CSD approaches for certain types of real-world problems (e.g., simple vs.
complex, function-intensive vs. data-intensive) should be addressed. The dynamics of how
teams of developers approach OOSD vs. CSD should be explored. Longitudinal studies
should be conducted to determine if those who found OOSD difficult to learn eventually
mastered the techniques and whether those who found OOSD less difficult to learn were
any more successful at applying the methodology.

One problem with conducting future research on OOSD involves clearly defining a
strategy to address specific research questions. The following list presents several
dimensions that empirical researchers should consider in the design of future experiments or
field studies on the pros and cons of OOSD:

• Underlying theory used to develop hypotheses
• Types of methodologies to be compared: process-oriented, data-oriented,

object-oriented
• Types of applications to be developed: function-intensive, data-intensive,

hybrid
• Complexity of applications to be developed: simple classroom vs. complex

industrial-strength
• Level of previous OO development experience: novice vs. experienced
• Type of previous experience: process-oriented, data-oriented, object-

oriented
• Type of development approach: individual vs. team
• Type of experiment: laboratory vs. field (including survey research)
• Sample size: small vs. large
• Scope of experiment: single OOSD phase/partial system vs. multiple

phases/complete systems
• Time frame of research: cross-sectional vs. longitudinal

As is apparent from the list above, the choices for empirical investigation of OOSD
are numerous. An ideal situation would be to collect detailed data on experienced individual
developers or development teams who create identical complete real-world systems
(perhaps of varying complexity) using both conventional and OO methods. For all phases of
such projects, direct comparisons could be made in a head-to-head competition.

Regardless of the particular research question to be addressed, better experimental
designs with tighter controls and larger samples could enhance validity. The obvious
dilemma in this type of research is obtaining the cooperation of sufficiently large numbers of
qualified subjects for laboratory or field studies. However, without adequate experimental
designs, a quick resolution to the OO controversy will remain elusive.

 78 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

VIII. CONCLUSION

To resolve the question of whether object-oriented systems development (OOSD) is
indeed superior to conventional systems development (CSD) requires strong empirical
evidence. This paper reviewed eighteen empirical studies on a wide variety of OOSD
phases and techniques. These studies are marked by two primary but somewhat conflicting
characteristics. First, the majority of studies found OOSD superior to CSD. The major
strengths of OOSD are improvements in quality and productivity while the primary weakness
of OOSD is its apparent difficulty to learn. Second, the theoretical foundations and research
methodologies represented by many of the studies are seriously lacking, suggesting a call
for future research to address the OO controversy more concretely.

Editor’s Note: This article was received on August 21, 2001. It was with the author for three
and a half months for one revision. The article was published on January 28, 2002

REFERENCES

Agarwal, R, Sinha, A.P., and Tanniru, M. (1996). Cognitive fit in requirements modeling: a
study of object and process methodologies. Journal of Management Information
Systems, 13:2 (Fall), 137-162.

Basili, V., Briand, L. and Melo, W. (1996). How reuse influences productivity in object-

oriented systems. Communications of the ACM, 39:10 (October), 104-116.

Boehm-Davis, D. and Ross, L. (1992). Program design methodologies and the software

development process. International Journal of Man-machine Studies, 36, 1-19.

Booch, G. (1994). Object-oriented analysis and design with applications, 2nd ed.

Benjamin/Cummings (Redwood City, CA).

Briand, L., Arisholm, E., Counsell, S., Houdek, F., and Thevenod-Fosse, P. (1999).

Empirical studies of object-oriented artifacts, methods, and processes: state of the
art and future directions. Empirical Software Engineering: An International Journal,
4:4 (December), 387-404.

Briand, L., Wust, J., Daly, J., and Porter, D. (2000). Exploring relationships between design

measures and software quality in object-oriented systems. The Journal of Systems
and Software, 51, 245-273.

Brooks, F.P. (1987). No silver bullet: essence and accidents of software engineering. IEEE

Computer, 20:4 (April), 10-19.

Chen, D.J. and Chen, D.T.K. (1994). An experimental study of using reusable software

design frameworks to achieve software reuse. Journal of Object Oriented
Programming, 7:2 (May), 56-67

Coad, P. and Yourdon, E. (1991). Object-oriented analysis, 2nd ed. Yourdon Press

(Englewood Cliffs, NJ).

Communications of the Association for Information Systems (Volume 8, 2002) 64-81 79

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

Coleman, D., Arnold, P., Bodoff, S., Dollin, C., Gilchrist, H., Hayes, F. and Jeremaes, P.
(1994). Object-oriented development: the fusion method. Prentice-Hall (Englewood
Cliffs, NJ).

Davies, S.P., Gilmore, D.J. and Green, T.R.G. (1995). Are objects that important? Effects of

expertise and familiarity on classification of object-oriented code. Human-Computer
Interaction, 10, 227-248.

DeMarco, T. (1978). Structured analysis and system specification. Prentice-Hall (Englewood

Cliffs, NJ).

Fayad, M., Tsai, W. and Fulghum, M. (1996). Transition to object-oriented software

development. Communications of the ACM, 39:2 (February), 108-121.

Fedorowicz, J. and Villeneuve, A. (1999). Surveying object technology usage and benefits:

A test of conventional wisdom. Information & Management, 35, 331-344.
Fichman, R.G. and Kemerer, C.F. (1992). Object-oriented and conventional analysis and

design methodologies: comparison and critique. IEEE Computer, 25:10 (October),
22-39.

Fichman, R.G. and Kemerer, C.F. (1993). Adoption of software engineering process

innovations: the case of object orientation. Sloan Management Review, 34:2
(Winter), 7-22.

Gamma, E. (1995). Design patterns: elements of reusable object-oriented software.

Addison-Wesley (Reading, MA).

Garceau, L., Jancura, E., and Kneiss, J. (1993). Object-oriented analysis and design: a new

approach to systems development. Journal of systems management, 44:1
(January), 25-33.

Hardgrave, B. (1997). Adopting object-oriented technology: evolution or revolution? The

Journal of Systems and Software, 37, 19-25.

Hardgrave, B. and Dalal, N. (1995). Comparing object-oriented and extended-entity-

relationship data models. Journal of Database Management, 6:3 (Summer), 15-21.

Harrison, R., Samaraweera, L., Dobie, M., and Lewis, P. (1996). Comparing programming

paradigms: an evaluation of functional and object-oriented programs. Software
Engineering Journal, 11:4 (July), 247-254.

Herbsleb, J., Klein, H., Olson, G., Brunner, H., Olson, J., and Harding, J. (1995). Object-

oriented analysis and design in software project teams. Human-Computer
Interaction, 10, 249-292.

Jacobson, I., Booch, G., and Rumbaugh, J. (1999). The unified software development

process, Reading, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., and Overgaard, G. (1995). Object-oriented

software engineering: a use case driven approach, 2nd ed. Addison-Wesley
(Wokingham, England).

Johnson, R.A. (2000). The up's and down's of OOSD: does experience make a difference?

Communications of the ACM, (forthcoming).

 80 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

Korson, T. and McGregor, J. (1990). Understanding object-oriented: a unifying paradigm.
Communications of the ACM, 33:9 (September), 40-60.

Lewis, J., Henry, S., Kafura, D., and Schulman, R. (1992). On the relationship between the

object-oriented paradigm and software reuse: an empirical investigation. Journal of
Object-Oriented Programming, 5:4, 35-42.

McFadden, F. and Hoffer, J. (1991). Database Management, 3rd ed. Benjamin/Cummings

(Redwood City, CA).

Morris, M., Speier, C., and Hoffer, J. (1999). An examination of procedural and object-

oriented systems analysis methods: Does prior experience help or hinder
performance? Decision Sciences Journal, 30:1 (Winter), 107-136.

Newell, A., and Simon, H.A. (1972). Human problem solving. Englewood Cliffs, NJ: Prentice-

Hall.

Pancake, C.M. (1995). The promise and the cost of object technology: a five-year forecast.

Communications of the ACM, 38:10 (October), 33-49.

Pennington, N., Lee, A.Y., and Rehder, B. (1995). Cognitive activities and levels of

abstraction in procedural and object-oriented design. Human-Computer Interaction,
10, 171-226.

Rumbaugh, J., Booch, G., and Jacobson, I. (1998). The unified modeling language

reference manual, Reading, MA: Addison-Wesley.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Lorensen, W. (1991). Object-

oriented modeling and design. Prentice Hall (Englewood Cliffs, NJ).

Shlaer, S. and Mellor, S. (1989). Object lifecycles: modeling the world in states. Prentice-

Hall (Englewood Cliffs, NJ).

Smith, H.A. and McKeen, J.D. (1996). Object-oriented technology: getting beyond the hype.

The DATA BASE for Advances in Information Systems, 27:2 (Spring), 20-29.

Vessey, I. (1991). Cognitive fit: a theory-based analysis of the graphs versus tables

literature. Decision Sciences, 22:2, 219-240.

Vessey, I. and Conger, S. (1994). Requirements specification: Learning object, process,

and data methodologies. Communications of the ACM, 37:5 (May), 102-113.

Wang, S. (1996a). Toward formalized object-oriented management information system

analysis. Journal of Management Information Systems, 12:4 (Spring), 117-141.

Wang, S. (1996b). Two MIS analysis methods: an experimental comparison. Journal of

Education for Business, 71:3 (Jan/Feb), 136-142.

Wirfs-Brock, R. and Johnson, R. (1990). Surveying current research in object-oriented

design. Communications of the ACM, 33:9 (Sep.), 105-124.

Wood, M., Daly, J., Miller, J., and Roper, M. (1999). Multi-method research: an empirical

investigation of object-oriented technology. The Journal of Systems and Software,
48:1 (Aug.), 13-26.

Communications of the Association for Information Systems (Volume 8, 2002) 64-81 81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

ABOUT THE AUTHOR

Richard A. Johnson is Assistant Professor of Computer Information

Systems in the College of Business Administration at Southwest Missouri

State University. He received his Ph.D. in Business Administration from the

University of Arkansas. His Research interests include object-oriented

develoment, E-business systems development, and ERP systems. Dr.

Johnson’s publications appear in Communniucations of the ACM, DATA

BASE, and the Journal of Systems and Software, among others.

Copyright © 2001 by the Association for Information Systems. Permission to make digital or
hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and full citation on the first page. Copyright for components of this
work owned by others than the Association for Information Systems must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to
redistribute to lists requires prior specific permission and/or fee. Request permission to
publish from: AIS Administrative Office, P.O. Box 2712 Atlanta, GA, 30301-2712 Attn:
Reprints or via e-mail from ais@gsu.edu .

 82 Communications of the Association for Information Systems (Volume 8, 2002) 65-81

 Object-Oriented Systems Development: A Review of Empirical Research by R. A. Johnson

 ISSN: 1529-3181

EDITOR-IN-CHIEF
Paul Gray

Claremont Graduate University
AIS SENIOR EDITORIAL BOARD
Rudy Hirschheim
VP Publications
University of Houston

Paul Gray
Editor, CAIS
Claremont Graduate University

Phillip Ein-Dor
Editor, JAIS
Tel-Aviv University

Edward A. Stohr
Editor-at-Large
Stevens Inst. of Technology

Blake Ives
Editor, Electronic Publications
University of Houston

Reagan Ramsower
Editor, ISWorld Net
Baylor University

CAIS ADVISORY BOARD
Gordon Davis
University of Minnesota

 Ken Kraemer
Univ. of California at Irvine

Richard Mason
Southern Methodist University

Jay Nunamaker
University of Arizona

Henk Sol
Delft University

Ralph Sprague
University of Hawaii

CAIS EDITORIAL BOARD
Steve Alter
U. of San Francisco

Tung Bui
University of Hawaii

H. Michael Chung
California State Univ.

Donna Dufner
U.of Nebraska -Omaha

Omar El Sawy
University of Southern
California

Ali Farhoomand
The University of
Hong Kong, China

Jane Fedorowicz
Bentley College

Brent Gallupe
Queens University,
Canada

Robert L. Glass
Computing Trends

Sy Goodman
Georgia Institute of
Technology

Joze Gricar
University of Maribor
Slovenia

Ruth Guthrie
California State Univ.

Chris Holland
Manchester Business
School, UK

Juhani Iivari
University of Oulu
Finland

Jaak Jurison
Fordham University

Jerry Luftman
Stevens Institute of
Technology

Munir Mandviwalla
Temple University

M.Lynne Markus
City University of Hong
Kong, China

Don McCubbrey
University of Denver

Michael Myers
University of Auckland,
New Zealand

Seev Neumann
Tel Aviv University,
Israel

Hung Kook Park
Sangmyung
University, Korea

Dan Power
University of Northern
Iowa

Maung Sein
Agder University
College, Norway

Peter Seddon
University of Melbourne
Australia

Doug Vogel
City University of Hong
Kong, China

Hugh Watson
University of Georgia

Rolf Wigand
Syracuse University

ADMINISTRATIVE PERSONNEL
Eph McLean
AIS, Executive Director
Georgia State University

Samantha Spears
Subscriptions Manager
Georgia State University

Reagan Ramsower
Publisher, CAIS
Baylor University

	Communications of the Association for Information Systems
	January 2002

	Object-Oriented Systems Development: A Review of Empirical Research
	Richard A. Johnson
	Recommended Citation

	Microsoft Word - Journal.doc

