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ABSTRACT 

 
The growing interest in Structured Equation Modeling (SEM) techniques 

and recognition of their importance in IS research suggests the need to compare 

and contrast different types of SEM techniques so that research designs can be 

selected appropriately. After assessing the extent to which these techniques are 

currently being used in IS research, the article presents a running example which 

analyzes the same dataset via three very different statistical techniques.  It then 

compares two classes of SEM: covariance-based SEM and partial-least-squares-

based SEM. Finally, the article discusses linear regression models and offers 

guidelines as to when SEM techniques and when regression techniques should 

be used. The article concludes with heuristics and rule of thumb thresholds to 

guide practice, and a discussion of the extent to which practice is in accord with 

these guidelines. 
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Keywords: IS research methods; measurement; metrics; guidelines; heuristics; 

structural equation modeling (SEM); LISREL; PLS; regression; research 

techniques; theory development; construct validity; research rules of thumb and 

heuristics; formative constructs; reflective constructs. 

 

Note: The paper is written in such a way that readers with basic knowledge of 

multivariate statistics can follow the logic and examples.  It does not assume the 

reader is already conversant with LISREL, PLS, or other SEM tools.  This tutorial 

contains: 

• straightforward examples to illuminate more complex topics,  

• a glossary whose entries are linked to the text, and  

• a rudimentary structural model applying the Technology 

Acceptance Model (TAM) to e-Commerce. This model is analyzed 

in three ways: (1) PLS, (2) LISREL, and (3) linear regression. 
 

Because of the large number of notes associated with this paper, they are 

presented as end notes at the end of this paper rather than as footnotes.  

 

 I. INTRODUCTION 
Structural Equation Modeling (SEM) techniques such as LISREL1 and 

Partial Least Squares (PLS) are second generation data analysis techniques 

[Bagozzi and Fornell, 1982] that can be used to test the extent to which IS 

research meets recognized standards for high quality statistical analysis.  That is 

to say, they test for statistical conclusion validity [Cook and Campbell, 1979].  

Contrary to first generation statistical tools such as regression, SEM enables 

researchers to answer a set of interrelated research questions in a  

• single,  

• systematic, and  

• comprehensive analysis  
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by modeling the relationships among multiple independent and dependent 

constructs simultaneously [Gerbing and Anderson, 1988].  This capability for 

simultaneous analysis differs greatly from most first generation regression 

models such as linear regression, LOGIT, ANOVA, and MANOVA, which can 

analyze only one layer of linkages between independent and dependent 

variables at a time.  This ability is demonstrated by the running example in this 

paper (Section II) that applies the Technology Acceptance Model (TAM) [Davis, 

1989] to the problem of e-commerce acceptance.    

 

FIRST GENERATION vs. SECOND GENERATION MODELS 

SEM permits complicated variable relationships to be expressed through 

hierarchical or non-hierarchical, recursive or non-recursive structural equations, 

to present a more complete picture of the entire model [Bullock et al., 1994, 

Hanushek and Jackson, 1977].  In TAM [Davis, 1989], for example, the intention 

to use a new information technology is the product of two beliefs:  

1. the perceived usefulness (PU) of using the IT and  

2. the perceived ease of use of using it (EOU).  

But TAM also posits that perceived usefulness depends upon ease of use. Using 

SEM, these three paths can be modeled in one analysis (Figure 1).   

Using first generation regression models two unrelated analyses are 

required (H1 and H2 in one analysis and H3 in a second analysis): 

1. examining how items load on the constructs via factor analysis, and 

then,  

2. a separate examination of the hypothesized paths, run independently 

of these factor loadings.  

The intricate causal networks enabled by SEM characterize real-world 

processes better than simple correlation-based models. Therefore, SEM is more 

suited for the mathematical modeling of complex processes to serve both theory 

[Bollen, 1989] and practice [Dubin, 1976].   
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Figure 1. The TAM Model  

 

Unlike first generation regression tools, SEM not only assesses  

• the structural model – the assumed causation among a set of 

dependent and independent constructs – but, in the same analysis, 

also evaluates the  

• measurement model – loadings of observed items (measurements) 

on their expected latent variables (constructs).   
 

The combined analysis of the measurement and the structural model enables:   

• measurement errors of the observed variables to be analyzed as an 

integral part of the model, and  

• factor analysis to be combined in one operation with the hypotheses 

testing.   
 

The result is a more rigorous analysis of the proposed research model and, very 

often, a better methodological assessment tool [Bollen, 1989, Bullock et al., 

Intention to
USE

PU

EOU

H1

2H
3H

PU= Perceived Usefulness 

EOU= Ease of Use 
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1994, Jöreskog and Sörbom, 1989].   

 Thus, in SEM, factor analysis and hypotheses are tested in the same 

analysis.  SEM techniques also provide fuller information about the extent to 

which the research model is supported by the data than in regression techniques. 

 
THE EXTENT TO WHICH SEM IS BEING USED 

Not surprisingly, SEM tools are increasingly being used in behavioral 

science research for the causal modeling of complex, multivariate data sets in 

which the researcher gathers multiple measures of proposed constructs [Hair et 

al., 1998].2  Indeed, even a casual glance at the IT literature suggests that SEM 

has become de rigueur in validating instruments and testing linkages between 

constructs.   

 Before describing in greater depth the methods and approaches adopted 

in SEM vis-à-vis regression, it is useful to know the extent to which SEM is 

currently being used in IS research.  The results of analyzing techniques used in 

empirical articles in three major IS journals (MIS Quarterly, Information & 

Management and Information Systems Research) during the four year period 

between January 1994 and December 1997 are shown in Table 1.  Consistent 

with Straub [1989], the qualifying criteria for the sample were that the article 

employed either:  

• correlation or statistical manipulation of variables or  

• some form of data analysis, even if the data analysis was simply 

descriptive statistics.   

Studies using archival data (e.g., citation analysis) or unobtrusive measures 

(e.g., computer system accounting measures) were omitted from the sample 

unless it was clear from the methodological description that key variable 

relationships being studied could have been submitted to validation procedures.  

The number of articles published by each journal (n) and the percentage using 

SEM techniques are shown in the table.  Most of the 171 articles selected were 

field studies (74%); the remainder were field experiments (6%), laboratory 

experiments (15%) and case studies (5%) that used quantitative data.  
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       Table 1. Use of Structural Equation Modeling Tools 1994-1997 

 
SEM Approaches 

I&M 
(n=106) 

ISR 
(n=27) 

MISQ 
(n=38) 

All Three 
Journals 

PLS 2% 19% 11% 7% 
LISREL 3% 15% 11% 7% 
Other * 3% 11% 3% 4% 
Total % 8% 45% 25% 18% 

  * Other includes SEM techniques such as AMOS and EQS. 

 

Table 1 clearly shows that SEM has been used with some frequency for 

validating instruments and testing linkages between constructs in two of three 

widely known IS journals. In ISR, 45% of the positivist, empirically-based articles 

used SEM; in MISQ, it was 25%.  From the first appearance of SEM in 1990 in 

the major IS journals [Straub, 1990], usage grew steadily.  By the mid-1990’s 

SEM was being used in about 18% of empirical articles across the three journals, 

with PLS and LISREL being the two most common techniques.  Other SEM tools, 

such as EQS and AMOS, were used less often, but this is most likely because of 

the slowness of diffusion of innovation and is not a statement about the power or 

capability of these particular packages.  

 

WHAT IS IN THIS PAPER 
To help the reader understand the differences among LISREL, PLS, and 

linear regression, this article presents a running example of the analysis of a 

Technology Acceptance Model (TAM) dataset that uses these three statistical 

techniques. The running example begins in Section II. It can be skimmed or 

skipped by readers familiar with the three techniques.    

Despite increased interest and the growing literature of individual SEM 

models, there is no comprehensive guide for researchers on when a specific 

form of SEM should be employed.  To inform research practice and to explore 

the dimensions of the problem, Section III compares the two most widely used 
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SEM models in the IT literature: LISREL and PLS.  PLS and LISREL represent 

the two distinct SEM techniques, respectively:  

• partial-least-squares-based and  

• covariance-based SEM,  

 

In Section IV, the paper summarizes the major assumptions of the two 

SEM models.  Based on this analysis, guidelines are presented in Section V for 

when to choose one of the two SEM models or one of the first generation 

regression models.   

A summary of the major guidelines in Sections III, IV, and V, is presented 

below in Tables 2 and 3.  Table 2 summarizes the objective behind each 

technique and limitations relating to sample size and distribution.  A detailed 

discussion with citations on these issues can be found in Overview of Analytical 

Techniques in Section III.  Table 3 summarizes guidelines based on the 

capabilities of each technique.  These guidelines are discussed in detail and with 

citations in The SEM Model, also in Section III.   

 

II. RUNNING EXAMPLE OF USE OF SEM VERSUS FIRST 
GENERATION STATISTICAL TECHNIQUES 

 
 For those IS researchers who are not familiar with SEM, this section 

presents a sample analysis of a typical dataset that uses the three techniques 

discussed in this article: 3   

1. linear regression 

2. LISREL 

3. PLS 

 

 

 



 

Communications of AIS Volume 4, Article 7                     9 
Structural Equation Modeling Techniques and Regression: Guidelines 
For Research Practice by D. Gefen, D.W. Straub, and M. Boudreau 

 

Table 2. Comparative Analysis between Techniques 

Issue  LISREL  PLS Linear Regression  
Objective of 
Overall 
Analysis  

Show that the null 
hypothesis of the entire 
proposed model is 
plausible, while rejecting 
path-specific null 
hypotheses of no effect.    

Reject a set of path-
specific null 
hypotheses of no 
effect.  

Reject a set of path-
specific null hypotheses of 
no effect.  

Objective of 
Variance 
Analysis  

Overall model fit, such as 
insignificant χ2 or high 
AGFI.    

Variance explanation 
(high R-square) 

Variance explanation (high 
R-square) 

Required 
Theory Base  

Requires sound theory 
base. Supports 
confirmatory research. 

Does not necessarily 
require sound theory 
base. Supports both 
exploratory and 
confirmatory research. 

Does not necessarily 
require sound theory base. 
Supports both exploratory 
and confirmatory research. 

Assumed 
Distribution 

Multivariate normal, if 
estimation is through ML.  
Deviations from 
multivariate normal are 
supported with other 
estimation techniques. 

Relatively robust to 
deviations from a 
multivariate 
distribution.  

Relatively robust to 
deviations from a 
multivariate distribution, 
with established methods 
of handling non-
multivariate distributions.  

Required 
Minimal 
Sample Size  

At least 100-150 cases.   At least 10 times the 
number of items in the 
most complex 
construct. 

Supports smaller sample 
sizes, although a sample 
of at least 30 is required. 

 

TAM AS DOMAIN FOR RUNNING EXAMPLE 

 The domain of the running example is the Technology Acceptance Model 

(TAM), a widely researched theoretical model that attempts to explain the 

adoption of new information technologies.  A partial listing of previous TAM 

studies, presented in Appendix A, shows the extent to which this model has been 

examined in IS research.  TAM, based on the Theory of Reasoned Action [Ajzen 

and Fishbein, 1980, Fishbein and Ajzen, 1975], is a straightforward model of IT 

adoption that contends that beliefs such as system perceived usefulness (PU) 

and perceived ease-of-use (EOU) impact:  

1. attitudes toward use,  

2. intentions to use (IUSE), and ultimately  

3. IT acceptance (most often measured as utilization). 
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Table 3. Capabilities by Research Approach 

Capabilities  LISREL PLS Regression 
Maps paths to many dependent (latent or 
observed) variables in the same research 
model and analyze all the paths 
simultaneously rather than one at a time.  

Supported Supported Not supported 

Maps specific and error variance of the 
observed variables into the research 
model. 

Supported Not supported Not supported 

Maps reflective observed variables Supported Supported Supported 
Maps formative observed variables  Not supported Supported Not supported 
Permits rigorous analysis of all the 
variance components of each observed 
variable (common, specific, and error) as 
an integral part of assessing the structural 
model.  

Supported Not supported Not supported 

Allows setting of non-common variance of 
an observed variable to a given value in 
the research model.   

Supported Not supported Supported by 
adjusting the 
correlation 
matrix.  

Analyzes all the paths, both measurement 
and structural, in one analysis.  

Supported Supported Not supported 

Can perform a confirmatory factor analysis Supported Supported Not supported 
Provides a statistic to compare alternative 
confirmatory factor analyses models 

Supported Not supported Not supported 

 

 Figure 1, shown in Section I and repeated below, illustrates the basic 

research model used throughout this tutorial.  The causal linkages in TAM are 

thoroughly explained in the literature and need not be repeated here.  Suffice it to 

say, TAM studies typically involve up to three hypotheses associated with these 

fundamental constructs (Table 4).  First, PU is expected to influence outcome 

variables such as intention to use the system (see H1).  Researchers in this 

research stream choose outcomes depending on the questions they are 

investigating and the research methods they have selected.  Attitudes toward use 

are also chosen as DVs (dependent variables) as are several standard IT use 

variables.  The latter relationship is, perhaps, the most consistent finding in TAM 

studies with self-reported usage variables (see Straub, Limayem, and Karahanna 

[1995], however; this relationship raises a serious question about the possibility 

of common methods variance in most TAM studies).  Moreover, it has come to 

represent the most interesting derivative work trying to explain the conditions and 

antecedents to PU and EOU.  
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Figure 1. Basic TAM Model Used as Running Example 

  
Table 4. Typical TAM Hypotheses 

 

 

 Hypothesis 

H1 PU will impact the system outcome construct, Intention to Use the System. 
H2 EOU will impact the system outcome construct, Intention to Use the System. 
H3 EOU will impact PU. 

 

.  
 In the original TAM studies by Davis [1989] and Davis et al. [1989], EOU 

was also thought to influence User Acceptance (a surrogate for IT Usage).  With 

respect to  H2  in Table 4, these studies and subsequent studies did not find 

consistent results.4  One empirically-derived explanation for why EOU did not 

produce invariant effects on system outcomes was offered by Davis [1989].  He 

argued that EOU may affect system outcomes only through the intermediate or 

intervening variable PU (i.e., H3).  His experiment confirmed this statistical 

explanation, which has also been posited and confirmed by later research (e.g., 

Adams et al. [1992], Gefen [2000], Gefen and Straub [2000], Keil et al. [1995], 

Venkatesh and Davis [1994]).   
 While a literature review and in-depth discussion of the TAM research 

Intention to
USE

PU

EOU

H1

2H
3H

PU= Perceived Usefulness 

EOU= Ease of Use 
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model are not necessary here, elaboration of the measurement and data 

gathering are relevant.  The instrument used to collect the data is shown in 

Appendix B.  While the measures are based on previously validated instruments 

in the literature, the current study re-validates these measures, as recommended 

by Straub [1989]. 

 

METHODOLOGY 
 To test TAM via the three statistical techniques, we conducted a free 

simulation experiment [Fromkin and Streufert, 1976] with student subjects.  As 

indicated in Appendix B, subjects were asked to use the Internet during the 

laboratory experiment to access Travelocity.com, thoroughly review the site, and 

then answer questions about it.  In free simulation experiments, subjects are 

placed in a real-world situation and then asked to make decisions and choices as 

part of the experiment.  Since there are no preprogrammed treatments, the 

experiment allows the values of the IVs (independent variables) to range over the 

natural range of the subject’s experience.  In effect, the experimental tasks 

induce subject responses, which are then measured via the research instrument. 

 Subjects were students taking MBA courses at the Lebow College of 

Business at Drexel University, a large accredited urban research university in 

Philadelphia.  Most of the subjects were well acquainted with commercial Web 

sites where products and services are offered for sale, so the technology itself 

was not a novelty to them.  Many were also familiar with the specific Web site 

selected for study, Travelocity.com.  To permit controlling for possible effects 

from prior experience, we also measured the extent of this activity for each 

subject.  One hundred and sixty subjects took part in the experiment.  The 

exercise was optional for the course, which can be interpreted to mean that there 

should be no confounding effects from coercing subjects into participation.  

Participation in the experiment was voluntary and the students were not 

rewarded for taking part in it.  Even so, 93% of the students volunteered to take 

part in the study.   

http://www.lebowdrexel.edu/
http://www.lebowdrexel.edu/
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DATA ANALYSIS USING LINEAR REGRESSION 
 Because linear regression cannot test all three relationships in a single 

statistical test, it is necessary to use two separate regressions to test the model 

fully.  In regression #1, IUSE is the dependent variable and PU and EOU are 

independent variables. In regression #2, PU is regressed on EOU as the only 

independent variable.  To perform linear regression analysis on the data, the 

researcher must first create an index for each of the constructs or variables.  As 

shown in Appendix B, the index represents the value of the construct by 

averaging the subject responses to items PU1-PU6 for PU, items EOU1-EOU6 

for EOU, and items IUSE1-IUSE3 for IUSE. 

 The findings from the statistical tests are shown in Figure 2.  As is 

common in the literature [Gefen and Straub, 2000], H1 and H3 are significant and 

in the posited directions while H2 is not.  Using an index (average) for the 

constructs in the TAM testing is acceptable because the items making up the 

instruments scales were tested to ensure that they formed strong unities and 

demonstrate good measurement properties (construct validity and reliability).  

The tests most frequently used are factor and reliability analyses [Straub, 1989].  

In this case, a Principal Components Analysis (PCA) of the primary research 

constructs showed extremely clean loadings in the factor structure, as depicted in 

Table 5.  The only loading that was marginal was PU1, which was still above the 

commonly cited .40 minimum loading level [Hair et al., 1998].  The reliabilities 

reported are Cronbach’s αs, and all are well above the cited minimums of .60 

[Nunnally, 1967] or .70 [Nunnally, 1978, Nunnally and Bernstein, 1994].  Note 

that in the example all six PU items are included.  Had PU1 been dropped, the 

factor analyses in PCA, LISREL, and PLS, would have shown a cleaner factor-

loading pattern.  (The same item also cross-loaded on the EOU factor in other e-

commerce studies [Gefen and Straub, 2000].)  The item was included because 

dropping it does not change the regression patterns and the objective is to use 

established scales “as is” in this demonstration.   
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Figure 2. TAM Causal Path Findings via Linear Regression Analysis 

DATA ANALYSIS USING LISREL 
To estimate coefficients, researchers employing LISREL typically use a 

different algorithm than the algorithm used for linear regression.  Instead of 

minimizing variance as in regression, the most common LISREL estimation 

method maximizes likelihood.5  The differences between the typical LISREL 

approach and that of regression will be examined in greater detail later in the 

paper.  For the moment, it is sufficient to say that the preliminary factor and 

reliability analyses that are required to legitimate indices in linear regression                      

 

 

 

Intention to 

USE 

PU 

EOU 

Regression #2 Regression #1 

 DV F (R2) IV Coefficient 
(T-value) 

Regression #1 Intention to Use 23.80** (.24) PU .41 (4.45**) 
   EOU .10 (1.07) 
     
Regression #2 PU 124.01** (.44) EOU .66 (11.14**) 
** = Significant at the .01 level 
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Table 5. Factor Analysis and Reliabilities for Example Dataset 
 

    Factors  Cronbach’s 
 Construct Item 1 2 3 αααα 
  PU1 .543 .277 .185  
 Perceived PU2 .771 .178 .053  
 Usefulness PU3 .827 .315 .185 .91 
 (PU) PU4 .800 .268 .234  
  PU5 .762 .352 .236  
  PU6 .844 .437 .290  
 Perceived EOU1 .265 .751 .109  
 Ease-of-Use EOU2 .217 .774 .150  
 (EOU) EOU3 .270 .853 .103 .93 
  EOU4 .303 .787 .105  
  EOU5 .248 .831 .179  
  EOU6 .242 .859 .152  
 Intention IUSE1 .183 .147 .849  
 To Use IUSE2 .224 .062 .835 .80 
 (IUSE) IUSE3 .139 .226 .754  

             Rotation Method: Varimax with Kaiser Normalization (Rotation converged in 6 iterations) 
 

are not necessary in SEM techniques like LISREL and PLS because the testing 

of measurement properties of the instruments is simultaneous with the testing of 

hypotheses.  The coefficients in LISREL can be read in a manner very similar to 

regression, that is, the standardized coefficients, known as betas and gammas, 

indicate the relative strength of the statistical relationships.  And the loadings 

from the instrument items to the constructs  (termed “latent” variables in SEM) 

can, once one recalibrates the scaling and examines the t-values, be interpreted 

in a similar manner to factor analysis. 

 We will discuss the LISREL findings in the same order in which the 

findings were discussed in the regression analysis.  Unlike regression, however, 

it is only necessary to conduct a single LISREL run, in that the technique can 

consider the underlying structural relationships of all the latent variables at once.  

Moreover, it can also estimate the strength of the measurement items in loading 

on their posited latent variable or construct.  Using the same dataset as in the 

regression runs (plus factor analysis and reliability tests), a single LISREL run 

produced the results shown in Figure 3 and Table 6.  The SMC in Figure 3 is the 

LISREL equivalent of an R2 in linear regression.  It shows the percent of   
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Figure 3. TAM Standardized Causal Path Findings via LISREL Analysis 

  

explained variance in the latent variable [Bollen, 1989] 

 As in the regression analysis, H1 and H3 are significant and in the posited 

directions.  H2, likewise, is not significant. Moreover, LISREL provides several 

indications of the extent to which the sampled data fits the researcher-specified 

model.  In this case, both the ratio of the χ2 to the degrees of freedom 

(160.17/87=1.84) and the adjusted goodness of fit (AGFI) index (.84) tell the 

researcher that the model is a reasonably good-fitting model.6   Finally, due to 

the low standardized root mean square residual (RMR), it is not unreasonable to 

conclude that the data fits the model.  Dropping PU1 significantly improves the fit 

indexes (almost all the published LISREL analyses of TAM have dropped 

 

Intention to 

USE 

PU 

EOU 

                .70** 

LISREL  
Fit Indices 

 Link Coefficient 
(T-value) 

SMC 

X2 = 160.17  PU -> Intended Use .51 (3.94**) .30 
df = 87  EOU -> Intended Use .06 (.48)  
AGFI = .84  EOU -> PU .70 (7.05**) .48 
RMR = .047     
** = Significant at the .01 level 

.51** 

.06 
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items).7  So that readers can make straightforward comparisons, we will use the 

same tabular format as Table 5 to present the LISREL-generated factor loadings 

and reliabilities.  Table 6 shows that the measurement properties for the 

instrument items using the confirmatory factor analysis (CFA) capability of 

LISREL are remarkably similar to those of the PCA performed earlier.  All meet a 

standard for significance at the .01 level. The reliabilities are likewise 

respectable.   

 

Table 6. Standardized Loadings and Reliabilities in LISREL Analysis 

 

  Latent Construct Loading (and Error) Reliability 
Construct Item PU EOU IUSE Coefficient 

 PU1 0.99 (.50)    
Perceived PU2 1.10 (.39)**    
Usefulness PU3 0.93 (.45)**   .95 

(PU) PU4 1.07 (.26)**    
 PU5 1.10 (.29)**    
 PU6 1.11 (.24)**    
 EOU1  0.78 (.45)   

Perceived EOU2  0.95 (.38)**   
Ease-of-Use EOU3  0.92 (.25)**  .94 

(EOU) EOU4  0.99 (.31)**   
 EOU5  1.00 (.27)**   
 EOU6  0.94 (.21)**   

Intention IUSE1   1.36 (.34)  
To Use IUSE2   2.17 (.38)** .95 
(IUSE) IUSE3   1.15 (.53)**  

The first item loading in each latent variable is fixed at 1.00 and does not have a t- value. 
 ** Significant at the .01 level   

 More details about each of these statistics are given below, but it is 

sufficient to point out at this time that the results of the LISREL analysis are in 

complete accord with those of the regression analysis.  The primary differences 

that the reader may wish to take note of is that when all of the causal paths are 

tested in the same model, there is not a statistical issue with the lack of 

connection between runs, which characterizes all regression analyses.  It is 

possible in regression, for example, to misinterpret the underlying causality in that 

no single run can partial out all the variance in complex research models. 
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DATA ANALYSIS USING PLS 
 In estimating its coefficients, PLS uses algorithms that have elements in 

common with both linear regression and LISREL.  Like regression, it works with 

the variance of the individual data item from the means. In partialing out variance 

for the entire research model via iterative analysis, PLS resembles LISREL.  In 

fact, it is this latter characteristic, that it works with the entire structure of the 

research model, that allows it to be categorized as a SEM technique. 

 Coefficients in PLS, shown in Figure 4, can be read in a manner very 

similar to regression and LISREL, that is, the standardized coefficients indicate 

the relative strength of the statistical relationships.  Moreover, loadings from the 

instrument items to the constructs can also be interpreted in a similar manner to 

the PCA that precede regression runs8 and the CFA that is utilized in LISREL.   

Using the same dataset as in the two previous analyses, a single PLS run 

produced the results shown in Figure 4 and Tables 7 and 8.   

As before, H1 and H3 are significant while H2 is not. While there are no 

overall model fit statistics produced by PLS, it can estimate t-values for the 

loadings utilizing either a jackknife or bootstrap technique.  The loadings and the 

significance level of their t-values are shown in Table 7.  Note that item loadings 

on their respective construct are presented by PLS, but that cross-loadings need 

to be calculated as the correlation of each standardized item with its factor 

scores on the constructs. Assessing the confirmatory factor analysis in PLS is 

then done by verifying that the AVE (discussed later) of each construct is larger 

than its correlations with the other constructs and that each item loading in the 

factor analysis is much higher on its assigned construct (factor) than on the other 

constructs.  Table 8 shows the correlation and AVE table. The AVE is presented 

in the diagonal with a gray background.   
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Figure 4. TAM Causal Path Findings via PLS Analysis   

 
Table 7. Loadings in PLS Analysis 

 
  Latent Construct 

Construct Item PU EOU IUSE 
 PU1 .776** .613 .405 

Perceived PU2 .828** .498 .407 
Usefulness PU3 .789** .448 .302 

(PU) PU4 .886** .558 .353 
 PU5 .862** .591 .451 
 PU6 .879** .562 .406 

Perceived EOU1 .534 .802** .323 
Ease-of-Use EOU2 .557 .839** .338 

(EOU) EOU3 .467 .886** .260 
 EOU4 .562 .843** .289 
 EOU5 .542 .865** .304 
 EOU6 .508 .889** .288 

Intention IUSE1 .350 .270 .868** 
To Use IUSE2 .380 .234 .858** 
(IUSE) IUSE3 .336 .280 .814** 

               N.B. A reliability statistic not automatically produced in PLS. 
   ** Significant at the .01 level 

 

Intention to 

USE 

PU 

EOU 

                .67** 

  Link Coefficient 
(T-value) 

R2 

  PU -> Intended Use .44 (3.69**) .24 
  EOU -> Intended Use .07 (.12)  
  EOU -> PU .67 (10.20**) .44 
** = Significant at the .01 level 

.44** 

.07 
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Table 8. AVE and Correlation Among Constructs in PLS Analysis 

 

AVE/ Correlation IUSE PU EOU 
IUSE .721   
PU .468 .742  
EOU .359 .632 .738 

 

SUMMARY AND CAVEAT 
What do these three analyses of this sample dataset show?  It is clear that 

in this particular circumstance, the analyses produced remarkably similar results.  

The reader should not generalize that this will always be the case, however.  

When certain endogenous constructs are added to this basic model, for example, 

the SEM analytical techniques   LISREL and PLS   come to different 

conclusions than linear regression.  As developed by Straub [1994], Gefen and 

Straub [1997], and Karahanna and Straub [1999], the construct social presence-

information richness (SPIR) has been found to predict PU.  But in the dataset 

used for the running example, SPIR is statistically significant in two separate 

SEM analyses, but not in a regression analysis.  Whether this difference is 

obtained because regression cannot partial out variance for the entire model 

whereas SEM can, or for some other reason, is not easy to determine.   In spite 

of the fact that the measurement properties of the instrument seem to be 

acceptable, no instrument perfectly captures the phenomenon and the interaction 

between the measurement characteristics and the statistical technique may spell 

the difference.  Then, again, as we shall shortly see, the assumptions and 

algorithms used in each of the techniques vary quite a bit and this could be the 

explanation. 

The point is not to resolve this particular issue here.  What is critical to 

note is that there may be subtle or even gross differences between analytical 

inferences about statistical conclusion validity depending on the researchers’ 

choices   in sample, in instrument, in method, and in analytical technique. 
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III.  SEM RESEARCH MODELS 

 Given the heavy increase in the use of SEM in well known IS journals, 

how does one know when the SEM statistics confirm or disconfirm hypotheses?  

Before addressing this key question, it is important to understand the central 

characteristics of the SEM techniques and what distinguishes them from ordinary 

least squares regression (linear regression models).  

 

DIAGRAMMATIC SYNTAX 

One of the most notable differences between SEM and its first generation 

predecessors, a difference that also indicates the nature of the analysis being 

performed, is the special diagrammatic syntax used in SEM. A sample of this 

syntax is presented in the theoretical model presented in Figure 5.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Generic Theoretical Network with Constructs and Measures 
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In LISREL terminology, the structural model contains the following:  

• exogenous latent constructs called Xi or Ksi (ξ), depending on the 

dictionary used.  

• endogenous latent constructs called Eta (η). 

• paths connecting ξ to η represented statistically as Gamma (γ) 

coefficients. 

• paths connecting one η to another are designated Beta (β).  

• shared correlation matrix among ξ ; called Phi (φ).  

• shared correlation matrix among the error terms of the η called Psi (ψ).   

• the error terms themselves are known as ζ (Zeta).   

 

To illustrate, IUSE and PU would be considered to be endogenous 

constructs in the TAM running example used earlier.  Both are predicted by one 

or more other variables, or latent constructs.  EOU, however, would be 

considered to be an exogenous latent construct in that no other variable in this 

particular model predicts it.  The causal path PU (ξ1) ⇒  IUSE (ξ2) was estimated 

as a β coefficient.  The causal path EOU (η1) ⇒  PU (ξ1) was estimated as a γ 

coefficient.9   

In addition, the measurement model consists of: 

!X and Y variables, which are observations or the actual data collected.  X 

and Y are the measures of the exogenous and endogenous constructs, 

respectively.  Each X should load onto one ξ, and each Y should load onto 

one η.   

• Lambda X (λΧ) representing the path between an observed variable X and 

its ξ, i.e., the item loading on its latent variable.  

• Theta Delta (Θδ) representing the error variance associated with this X 

item, i.e., the variance not reflecting its latent variable ξ.  

• Lambda Y (λY) representing the path between an observed variable Y and 

its η, i.e., the item loading on its latent variable.  
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• Theta Epsilon (Θε) representing the error variance associated with this Y 

item, i.e., the variance not reflecting its latent variable η.  

 

The Θδ and Θε matrixes are diagonal by default, meaning that an error 

term is supposed to load only on its corresponding item. The λΧ and λY matrixes 

are full and fixed, requiring the researcher to connect each item to its latent 

construct.  

In the running example, the X observed variables were items EOU1-

EOU6, since these measures are thought to reflect the latent construct EOU.    

For PU, the Y observed variables were PU1-PU6; for IUSE, the Y items were 

IUSE1-IUSE3. 

Figure 5 shows the standard representation of these elements. Boxes 

represent X and Y items, observations, or empirical data that the researchers 

collected.  These data are assumed to contain measurement error, not typically 

drawn in the diagram but always considered as part of the complete statistical 

model. With respect to the latent variables (constructs) of the model, these 

observations either reflect or form the latent constructs, and, thus, are said to be 

either reflective or formative.  These latent variables – named A, B, C, D, and E 

in Figure 5 – are displayed as circles or ellipses.   

Latent variables or research constructs cannot be measured directly.  

Note that the arrows connecting latent variables A, B, D and E to the 

measurement (also known as “indicator” or “observed”) variables point away from 

the latent variables.  The direction of the arrows indicates that LISREL assumes 

that the measurement variables reflect the construct represented by the latent 

variable.  In PLS, however, arrows may also point to (rather than from) a latent 

variable if they are formative (see explanation below), as shown with latent 

construct C.    As mentioned immediately above, the latent variables also have 

an error element that is typically not drawn in the diagram but is always part of 

the complete statistical model.   
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Arrows in the diagram between the latent constructs represent the 

researcher’s hypothesized causation paths, estimating the extent to which the 

latent variables vary linearly with other latent variables in the model.  Coefficients 

estimating the strength of the relationships are either βs or γs, depending on 

whether they represent early stage (effects of exogenous latent variables on 

endogenous latent variables) or late stage relationships (effects of endogenous 

latent variables on other endogenous latent variables) in the model.  Latent 

variables may be correlated not only through hypothesized cause-effect 

relationships but also through correlated error variance.  In this case, the 

correlation is shown with a double headed curved arrow, as between latent 

variables D and E, where the arrow  connects the two error components, ζ, of the 

two constructs.  

 

THE TWO PRIMARY METHODS OF SEM ANALYSIS   

The holistic analysis that SEM is capable of performing is carried out via 

one of two distinct statistical techniques:  

1. covariance analysis – employed in LISREL, EQS and AMOS – and  

2. partial least squares – employed in PLS and PLS-Graph [Chin, 1998b, 

Thompson et al., 1995].   

These two distinct types of SEM differ in the objectives of their analyses, the 

statistical assumptions they are based on, and the nature of the fit statistics they 

produce.  

The statistical objective of PLS is, overall, the same as that of linear 

regression, i.e., to show high R2 and significant t-values, thus rejecting the null 

hypothesis of no-effect [Thompson et al., 1995].  The objective of covariance-

based SEM, on the other hand, is to show that the null hypotheses   the 

assumed research model with all its paths   is insignificant, meaning that the 

complete set of paths as specified in the model that is being analyzed is 

plausible, given the sample data.  Moreover, its goodness of fit tests, such as χ2 
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test the restrictions implied by a model.  In other words, the objective of 

covariance-based SEM is to show that the operationalization of the theory being 

examined is corroborated and not disconfirmed by the data [Bollen, 1989, Hair et 

al., 1998, Jöreskog and Sörbom, 1989].   

 Another important difference between the two SEM techniques is that 

covariance-based SEM techniques, unlike PLS, enable an assessment of 

unidimensionality.  Unidimensionality is the degree to which items load only on 

their respective constructs without having “parallel correlational pattern(s)” 

[Segars, 1997].  In factor analysis terms, unidimensionality means that the items 

reflecting a single factor have only that one shared underlying factor among 

them.  Accordingly, there should be no significant correlational patterns among 

measures within a set of measures (presumed to be making up the same 

construct) except for the correlation associated with the construct itself (see also 

Anderson et al. [1987]).  Unidimensionality cannot be assessed using factor 

analysis or Cronbach’s α [Gerbing and Anderson, 1988, Segars, 1997]. 

An example of unidimensionality and parallel correlational patterns can 

clarify these terms. A student’s GPA is the average of his or her course grades.  

Assume there are only 10 courses in a narrow subject area and all students take 

all 10 courses.  All things being equal other than instructor, course grades in a 

factor analysis should all load onto one factor   the GPA for this set of courses.  

This can be verified using a factor analysis.  It is possible, however, that some of 

the grades are related to each other beyond their loading onto the GPA factor.  

Such a circumstance could occur, for example, when two course sections are 

taught by a very lenient professor who tries to help his students by giving them 

higher grades than other professors in this same course.  As a result, his two 

course sections would show a parallel correlational pattern.  They would share 

variance with the overall course grades (the GPA factor), but would also have a 

significant shared variance between them.  Likewise, if several of the courses 

were graded based on a take-home exam rather than on a traditional in-class 

examinations, it is unlikely that the 10 courses would show unidimensionality 

because the courses with the take-home exam would probably share a factor 
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among themselves beyond the factor that is associated with all the grades of all 

the courses.  In this hypothetical circumstance, it is likely that the take-home 

exam courses would share the “GPA” factor with the other courses, but would, in 

addition, have another shared factor among themselves reflecting the unique 

variance relating to take-home grades.  

Unidimensionality testing can uncover such cases.  When there is 

unidimensionality, there is no significant shared variance among the items 

beyond the construct which they reflect.   In addition, while both methods of SEM 

provide for factor analysis, covariance-based SEM also provide the ability to 

compare alternative pre-specified measurement models and examine, through 

statistical significances, which is better supported by the data [Jöreskog and 

Sörbom, 1989].  Assuming that the models are nested, this type of CFA enables 

the comparison of two separate measurement models for the same data and a 

significance statistic for which model is superior [Segars, 1997].10  Finally, 

covariance-based SEM provides a set of overall model-fit indices that include a 

wide set of types of fit  (unlike the single F statistic in linear regression and the R2 

that is derived from this F-value).  Covariance-based SEM is thought to provide 

better coefficient estimates and more accurate model analyses [Bollen, 1989].   

 

OVERVIEW OF ANALYTICAL TECHNIQUES 
Differences between SEM methods are the result of the varying algorithms 

for the analytical technique.  Covariance-based SEM uses model fitting to 

compare the covariance structure fit of the researcher’s model to a best possible 

fit covariance structure.  Indices and residuals provided tell how closely the 

proposed model fits the data as opposed to a best-fitting covariance structure.  

Covariance-based SEM tests the a priori specified model against population 

estimates derived from the sample.11,12  When the research model has a sound 

theoretical base, its overall objective is theory testing. Thus, these types of 

modeling examine whether the data is statistically congruous with an assumed 

multivariate distribution [Bollen, 1989, Hair et al., 1998, Jöreskog and Sörbom, 
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1989].13 Covariance-based SEM techniques emphasize the overall fit of the 

entire observed covariance matrix with the hypothesized covariance model; for 

this reason, they are best suited for confirmatory research.  

Our running example provides a straightforward translation of these terms.  

The TAM research model expresses certain causal paths that are specified in the 

theory or represent refinements or testable propositions by IS researchers.  If this 

model is an accurate description of the system use/technology acceptance 

phenomenon, then the relationships between observed measures of these 

constructs in the theoretical model should be superior to a LISREL-generated 

model of no-fit.  In other words, data gathered from the field or from experimental 

subjects should correspond well to patterns that are hypothesized by the 

research model.  By comparing the sample data and its various path-, item 

loading-, and error variance-estimates to a null model, it is possible to see how 

good the researcher’s TAM theoretical model really is. 

PLS, the second major SEM technique, is designed to explain variance, 

i.e., to examine the significance of the relationships and their resulting R2, as in 

linear regression.  Consequently, PLS is more suited for predictive applications 

and theory building, in contrast to covariance-based SEM.  Some researchers, 

thus, suggest that PLS should be regarded as a complimentary technique to 

covariance-based SEM techniques [Chin, 1998b, Thompson et al., 1995]   

possibly even a forerunner to the more rigorous covariance-based SEM 

[Thompson et al., 1995].  Using OLS (Ordinary Least Squares) as its estimation 

technique, PLS performs an iterative set of factor analyses combined with path 

analyses until the difference in the average R2 of the constructs becomes 

insignificant [Thompson et al., 1995].  Once the measurement and structural 

paths have been estimated in this way, PLS applies either a jackknife or a 

bootstrap approach to estimate the significance (t-values) of the paths.   

Neither of these PLS significance estimation methods require parametric 

assumptions.  PLS is thus especially suited for the analysis of small data 

samples and for data that does not necessarily exhibit the multivariate normal 

distribution required by covariance-based SEM [Chin, 1998b, Thompson et al., 
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1995].  This characteristic of PLS is in contrast to covariance-based SEM which 

requires a sample of at least 100 [Hair et al., 1998] or 150 [Bollen, 1989] because 

of the sensitivity of the χ2 statistic to sample size [Bollen, 1989, Hair et al., 

1998].14    Nonetheless, even in PLS the sample size should be a large multiple 

of the number of constructs in the model since PLS is based on linear regression.  

One guideline for such a sample size in PLS is that the sample should have at 

least ten times more data-points than the number of items in the most complex 

construct in the model [Barclay et al., 1995]. 

Just as the objectives of the two types of SEM differ, so do their analysis 

algorithms.   Covariance-based SEM applies second order derivatives, such as 

Maximum Likelihood (ML) functions, to maximize parameter estimates.  Though 

LISREL uses ML estimates as a default, it can also be set to estimate these 

coefficients using other established estimation techniques, including Unweighted 

Least Squares (ULS), Generalized Least Squares (GLS), and Weighted Least 

Squares (WLS), among others.  ULS can be used when the observed variables 

have the same units; GLS and ML are appropriate when the observed variables 

are known to be multivariate-normal, although they are applicable even when the 

observed variables deviate from this assumption [Jöreskog and Sörbom, 1989].  

As to WLS, this estimation method should be used when polychoric correlations 

have been generated or when there are substantial deviations from a 

multivariate-normal distribution [Bollen, 1989, Jöreskog and Sörbom, 1983, 

Jöreskog and Sörbom, 1989].15   

PLS, on the other hand, applies an iterative sequence of OLS and multiple 

linear regressions, analyzing one construct at a time [Thompson et al., 1995].  

Rather than estimating the variance of all the observed variables, as in 

covariance-based SEM, PLS estimates the parameters in such a way that will 

minimize the residual variance of all the dependent variables in the model [Chin, 

1998b].  Consequently, PLS is less affected by small sample sizes [Thompson et 

al., 1995], as in the case of linear regression models in general [Neter et al., 

1990].  PLS, like linear regression models [Neter et al., 1990], is also less 

influenced by deviations from multivariate normal distribution [Chin, 1998b, 
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Thompson et al., 1995], although sample size considerations influence the 

strength of the statistical test [Cohen, 1977, Cohen, 1988].  Comparisons based 

on all three aspects discussed were  presented in Table 2 in Section I. 

In the running example, it is clear that the data gathered from the free 

simulation experiment produces normalized/standardized path coefficients and 

R-squares that are similar across all three techniques.  In minimizing the residual 

variance between the indicators of the latent variables PU and IUSE, EOU and 

IUSE, and EOU and PU, the statistical linkages in PLS between these constructs 

proves to be consistent with TAM theory.  Moreover, despite the use of different 

estimation methods, the regression approaches reached comparable percent of 

explained variance (R2 and SMC) and comparable standardized path 

coefficients.  

 

THE SEM MODEL 

The SEM model contains two inter-related models   the measurement 

model and the structural model.  Both models are explicitly defined by the 

researcher.  Pragmatically speaking, the researcher expresses which items load 

onto which latent variables and which latent constructs predict which other 

constructs through software packages specifically designed for these techniques, 

or, by one’s expression of the equations via generalized packages like SAS.  The 

measurement model defines the constructs (latent variables) that the model will 

use, and assigns observed variables to each.  The structural model then defines 

the causal relationship among these latent variables (see Figure 5; the arrows 

between the latent variables represent these structural connections).  The 

measurement model uses factor analysis to assess the degree that the observed 

variables load on their latent constructs (ξ and η, for exogenous and endogenous 

constructs, respectively).  The manifest or observed variables are identified as Xs 

and Ys, for items reflecting the exogenous and endogenous constructs, 

respectively.  SEM estimates item loading (λ) and measurement error for each 

observed item (Θδ and Θε, respectively for X and Y items).   
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The item loadings provided by SEM are analogous to a factor analysis 

where each factor is, in effect, a latent variable.  SEM techniques also explicitly 

assume that each of the observed variables has unique measurement error.16  

Measurement error represents both inaccuracy in participant responses and their 

measurement, as well as inaccuracies in the representation of the theoretical 

concept by the observed variables.  Consequently, covariance-based techniques 

are well suited for the analysis of models containing variables with measurement 

error [Bullock et al., 1994, Hair et al., 1998, Jöreskog and Sörbom, 1989], 

facilitating a transition from exploratory to confirmatory analysis.17   

Typically, a latent variable will be estimated based on multiple observed 

variables.  Nonetheless, SEM does permit the use of constructs represented by 

single items.  In such cases, in covariance-based SEM alone, the researcher 

explicitly sets parameters for the reliability and loading of the observed variable.  

Having a single item reflect a construct would be appropriate when the 

researcher uses an established scale with a known reliability and wishes to use 

an index of the scale as a whole, or when there is, indeed, only one item with 

little or no assumed measurement error, as with gender or age [Hair et al., 1998]. 

The structural model estimates the assumed causal and covariance linear 

relationships among the exogenous (ξ) and endogenous (η) latent constructs.18  

(As explained earlier, these paths are called γ when they link exogenous and 

endogenous latent constructs, and β when they link endogenous latent 

constructs.)  SEM also estimates the shared measurement error for the 

constructs (φ and ψ, for exogenous and endogenous latent constructs 

respectively).19 By allowing the researcher to specify these γ and ψ paths, SEM 

can support multi-layered causal models.     

Covariance-based SEM and PLS differ, however, in the types of 

relationship they support between the observed variables and their associated 

latent constructs.  PLS supports two types of relationship, formative and 

reflective.20  Formative observed variables, as their name implies, “cause” the 

latent construct, i.e., represent different dimensions of it.  Latent variables 

attached to formative measures are the summation of the formative observed 
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variables associated with them [Campbell, 1960, Cohen et al., 1990, Thompson 

et al., 1995].  These observed variables are not assumed to be correlated with 

each other or to represent the same underlying dimension [Chin, 1998a].   

The latent construct "Technological Environment," for example, might be 

measured by the extent of the IT infrastructure, but also by the level of technical 

support.  These measures could be uncorrelated, but each viewed as "forming" 

the construct.   

Reflective observed variables, on the other hand, reflect the latent variable 

and as a representation of the construct should be unidimensional and correlated 

[Gerbing and Anderson, 1988].  To emphasize this difference, formative items 

are drawn with an arrow leading to the latent construct, while reflective items are 

drawn with an arrow leading away from the latent construct.  PLS supports both 

types of observed variables whereas covariance-based SEM has been 

interpreted to support only reflective observed variables [Chin, 1998b, Thompson 

et al., 1995].21  According to one interpretation, reflective observed variables 

should be preferred to formative ones when there is a relevant theory and when 

the objective is theory testing rather than theory building [Chin, 1998b].   

An example might better clarify the difference between reflective and 

formative observed variables.  When a construct, such as intelligence, cannot be 

measured directly, researchers measure it indirectly using several indicator 

variables. In the case of intelligence these indicator variables might be scores 

obtained from a test.  When the scores are assumed to measure the same 

underlying aspect of intelligence, they are reflective. This situation would occur, 

for example, when a researcher is measuring algebraic intelligence and the 

indicator variables chosen evaluate aptitudes for addition, division, subtraction, 

and multiplication. On the other hand, when more than one aspect of intelligence 

is being measured, such as when the exam tests both algebraic and linguistic 

intelligence using one indicator variable each, then the indicator variables would 

be formative of a construct for “intelligence.”  It is conceivable and often the case 

that an individual’s algebraic and linguistic intelligence can be reasonably thought 

of as composite elements (or sub-constructs/meso-level constructs) of the molar-
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level construct “intelligence,” but not necessarily highly correlated with each 

other.  Therefore, they are formative rather than reflective of the molar construct 

“intelligence.”    Whereas both algebraic intelligence and linguistic intelligence are 

viable sub-constructs in this situation, the nature of constructs chosen by the 

researcher in other situations will determine whether the measures are better 

seen as formative or reflective. 

The ability to analyze complex models (like that shown in Figure 5) in a 

single, unified process is a major advantage of both types of SEM over first 

generation regression models.  In first generation regression models, item 

loadings on the latent variables must be analyzed in a separate step (as shown 

in the TAM running example in Section II) and the linkage to each dependent 

variable must be assessed independently (other than MANOVA, of course).22  

SEM analysis also generally results in a more rigorous variance analysis [Bollen, 

1989], and enables the researcher to include not only common variance but also 

specific and error variance explicitly into the research model [Hair et al., 1998].23    

Some SEM, such as LISREL, also permit the researcher to specify how 

the specific and error variance of each observed variable relates to those of other 

observed variables.  Accordingly, LISREL allows the setting and fixing of the item 

loading and measurement error of the observed variables [Bollen, 1989].  Setting 

the items loading, however, should not be exercised unless there is a good 

reason for doing so, such as comparing samples or when it is known that there is 

little or no measurement error (e.g., when measuring gender or age).24  Table 3 

in Section II presented guidelines based on capabilities by research approach.  

 

APPLYING CRITERIA TO THE RUNNING EXAMPLE 

How would these criteria for analytical method choice apply in the case of 

the TAM running example?  In the first case, as indicated earlier, TAM is a mature 

theoretical research stream in IS research.  As such, the relationships between 

the basic constructs are relatively well understood.  Based on Table 2, therefore, 

TAM testing should use confirmatory analytical techniques, which, in this case, 
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means that any of the three methods would be appropriate although LISREL and 

regression are to be preferred as they are especially suited for testing theory.    

Given that the sample size exceeds the minimal requirements for LISREL, which 

is the most demanding in this regard, any of these techniques would also be 

appropriate with regard to this criterion.   

 There are, however, conditions where the use of linear regression and 

PLS would be the most appropriate choices for the TAM running example.  If the 

sample size for the TAM researchers had been low, then the power of a LISREL 

analysis would have suffered badly and PLS, which can work with much smaller 

samples, would have been a better choice.    The tradeoff in this situation would 

be that PLS is best used for exploratory research, but can, when necessary, 

serve for confirmatory work.  

Regression might have been an appropriate choice if the researcher 

wished to make specific and direct comparisons to other studies that used this 

technique in the research tradition.  By the same token, ANOVA or MANOVA 

might be employed for these same reasons.  The statistics generated by 

regression and older statistical techniques seem to be more amenable to meta-

analysis, which might also be a factor in its selection.  Researchers who want to 

add to the research tradition and meta-analyze the cumulative effect of TAM 

studies would find it simpler to work with regression, ANOVA, t-tests, and simple 

or partial correlations. 

Finally, if the LISREL TAM model had refused to converge, as it did in 

some of the runs with our sample data when the SPIR variables were included, 

PLS or regression may also be a better choice.  One should never conclude that 

the refusal of LISREL to converge represents anything other than the inability of 

the matrices to be reduced, which is the mathematical method used for maximum 

likelihood estimation.  Lack of convergence does not suggest anything definitive 

about the model itself (as is obvious in the TAM case presented here) or its 

hypothesized causal paths.  If LISREL reports that the reason for non-

convergence is that a matrix is not positive definite, then two rows (item 

measures) are likely so similar that matrix reduction cannot be carried out, but 
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this would imply more about measurement than about the underlying theory 

being tested and relationships between constructs.  Moving to another technique 

is a perfectly acceptable alternative in such a case.   

 

STATISTICS IN SEM 

Just as the two types of SEM techniques differ in their underlying 

statistical assumptions and estimation methods, so do the statistics they 

produce.  First, it is important to note in this respect that covariance-based SEM, 

unlike linear regression models and PLS, does not always converge and produce 

interpretable results.  A covariance-based SEM model that does not converge 

will have to be modified or the theory base reassessed when the model:  

• does not converge,  

• warns of a non-positive definite covariance matrix, or  

• adds a ridge to the covariance matrix,  

 

Lack of convergence notwithstanding, the next few paragraphs describe 

SEM statistics, starting with covariance-based SEM statistics.   

 Covariance-based SEM packages generate statistics at three levels: 

1. at the individual path and construct level. 

2. at the overall model fit level.   

3. individual path modification indexes. 

 

 At the individual path level, SEM estimates item loadings and 

measurement error along with their respective t-values.  Construct reliability, the 

analog of a Cronbach’s α, can then be derived from these statistics.25  As with 

Cronbach’s α statistics, construct reliability should be above .70 [Hair et al., 

1998, Segars, 1997].  SEM also estimates the coefficients and t-values 

representing the relationships among the latent constructs γs, βs, φs, and ψs.  As 

in linear regression, a t-value is associated with each of these.  The t-values of 

the γs and βs need to be significant to support the hypothesized paths (above 
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1.96 or 2.56, for alpha protection levels of .05 and .01, respectively).  

The next important statistic in this group is the Squared Multiple 

Correlation (SMC) of each of the exogenous latent constructs.  Equivalent to an 

R2 in linear regression, the SMC is the explained variance of each latent 

construct [Bollen, 1989].   

The second set of statistics deals with the entire model fit.  The most 

important of these statistics is the likelihood-ratio chi-square (χ2).  Technically 

speaking, the χ2 statistic should be insignificant with a p-value above .05, 

because an insignificant χ2 shows good model fit [Jöreskog and Sörbom, 1989].26  

However, this criterion is satisfied only rarely because χ2 is sensitive to larger 

sample sizes and the power of the test [Jöreskog and Sörbom, 1989]. Therefore 

the ratio of χ2 to degrees of freedom is sometimes examined.27  Some 

commentators recommend that the ratio of χ2 to degrees of freedom be between 

1 and 2 [Hair et al., 1995, Hair et al., 1998].  But the IS literature has been more 

forgiving in this regard, recommending just a χ2 as small as possible [Segars and 

Grover, 1993] and showing a ratio of χ2 to degrees of freedom smaller than 3:1 

[Chin and Todd, 1995].   

Finally, the most widely used overall model fit indices are the Goodness of 

Fit Index (GFI), the Adjusted Goodness of Fit Index (AGFI), and the Root Mean 

Residual (RMR).  GFI measures the absolute fit (unadjusted for degrees of 

freedom) of the combined measurement and structural model to the data. AGFI 

adjusts this value to the degrees of freedom in the model.  The standardized 

RMR (Root Mean Residuals), on the other hand, assesses the residual variance 

of the observed variables and how the residual variance of one variable 

correlates with the residual variance of the other items.  It is important to note 

that large standardized RMR values mean high residual variance, and that such 

values reflect a poorly fitting model.  Thresholds for these indices in IS research 

are above .90, above .80, and below .05, respectively [Chin and Todd, 1995, 

Segars and Grover, 1993]. A more restrictive .90 threshold for AGFI is 

sometimes cited (e.g., Chin and Todd  [1995], Hair et al.  [1998]).     
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Another important fit index is the Normed Fix Index (NFI), which measures 

the normed difference in χ2 between a zero factor null model with no common 

variance across measures and a proposed multi-factor model [Bentler, 1990].28  

Typically, NFI should be above .90 [Chin and Todd, 1995, Hair et al., 1998].   

The third set of statistics is the modification indexes.  Some SEM, notably 

LISREL, provide modification indices that estimate the difference in model fit χ2 

for each possible individual additional path.  A value in these so-called 

modification matrices [Jöreskog and Sörbom, 1989] above 3.84 suggests that 

adding that path may significantly improve model fit [Hair et al., 1998].  This 

criterion is analogous to the way stepwise linear regression chooses to add IVs 

to the regression model, except that stepwise linear regression analyzes the 

change in the F statistic.  Researchers should be cautious, however, to add only 

paths justified by theory and not attempt to retrofit the model [Bullock et al., 1994, 

Hair et al., 1998].   

Please note that the LISREL statistics in the TAM running example 

exceed all of the thresholds just cited.  The fit indices are good, and the residual 

variance is low.  The ratio of χ2 to degrees of freedom is well within boundaries.  

The T-values indicate that the paths that are posited to be significant are 

significant and those that were not expected to be significant, are, indeed, not 

significant.  A minimalist interpretation is that statistical conclusion validity is in 

favor of the TAM research model and that the data does not disconfirm the 

theory.  In spite of this conclusion, measurement issues in TAM remain.  

Common methods variance could be a serious problem for nearly all TAM 

studies to date [Straub et al., 1995]. 

 PLS has a less extensive set of statistics.  At the measurement model 

level, PLS estimates item loadings and residual covariance.  At the structural 

level, PLS estimates path coefficients and correlations among the latent 

variables, together with the individual R2 and AVE (Average Variance 

Extracted)29 of each of the latent constructs.  T-values of both paths and loadings 

are then calculated using either a jackknife or a bootstrap method.  Good model 

fit is established with significant path coefficients, acceptably high R2 and internal 
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consistency (construct reliability) being above .70 for each construct [Thompson 

et al., 1995].  Convergent and discriminant validity are assessed by checking that 

the AVE of each construct is larger than its correlation with the other constructs, 

and that each item has a higher loading (calculated as the correlation between 

the factor scores and the standardized measures) on its assigned construct than 

on the other constructs.  The implications of these issues are presented in Table 

9.  

 

Table 9. Comparative Analysis Based on Statistics Provided by SEM 

Statistics  LISREL  PLS Regression  
Analysis of overall model fit Provided Provided Provided  
Analysis of individual 
causation paths  

Provided Provided Provided  

Analysis of individual item 
loading paths 

Provided Provided Not provided  

Analysis of residual non-
common error  

Provided Not Provided Not provided  

Type of variance examined 1.   Common  
2.   Specific 
3.   Error 

Common 
Combined specific and 
error  

Common   
 
 

Analysis of statistical power Not available Available through the f2 
statistic. 

Available 

 Again, the PLS run in the TAM running example generates statistics that 

infer that the instrument has acceptable measurement properties and that the 

hypothesized relationships are supported by the data.  T-values were all 

significant for every item loading onto the latent constructs and for every path 

except for the EOU ⇒  IUSE link (as predicted).  Explained variance is in keeping 

with other studies in the tradition. 

 

ADDITIONAL ANALYSES: NESTED MODELS AND INTERACTION 
EFFECTS  

Good fit indices show that the data support the proposed model, but they 

do not indicate that the selected model is necessarily parsimonious or the best 

model among a set of theoretically feasible models.  These issues can be 

examined in covariance-based SEM techniques in a manner analogous to the 
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way nested linear regressions can examine the significance of the difference in 

the F and in the R2 statistics between nested models via a stepwise liner 

regression.   The application of nested models in SEM is discussed in Appendix 

C. The implications are presented in Table 10.  

 

Table 10. Comparative Analysis Based on Capabilities 
 

Capabilities  LISREL  PLS Regression  
Examines interaction effect on 
cause-effect paths  

Supported Supported Supported 

Examines interaction effect on 
item loadings  

Supported Not readily supported Not supported 

Examines interaction effect on 
non-common variance  

Supported Not readily supported Not supported 

Examines interaction effect on the 
entire model  

Supported Not readily supported Not supported 

Can cope with relatively small 
sample size  

Problematic  Supported Supported 

Readily examines interaction 
effect with numerous variable 
levels 

Problematic  Supported Supported 

Can constrain a path to a given 
value  

Supported Not supported Not supported 

Examines nested models Supported Supported Supported 
 

Another examination that is sometimes necessary is the analysis of 

interaction effects.  In linear regression and analysis of variance models 

examining this is relatively simple.  One adds a new variable to the regression 

model, calculated as the product of the assessed independent variables that are 

assumed to interact, and then rerun the regression [Neter et al., 1990].  However, 

this procedure does not work well in covariance-based SEM because, inevitably, 

such a calculated new variable will have high shared residual variance with the 

variables from which it is derived.30   As with any other high residual variance, 

this deviation will then be reflected in the RMR statistic.  Consequently, 

interaction effects are assessed in a different manner in covariance-based SEM.  

The recommended approach is to use multi-sample analysis [Jöreskog and 

Sörbom, 1989].   

Multi-sample analysis is performed in covariance-based SEM by 

examining the parameter estimates of exactly the same model run with two 
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distinct samples, and constraining the φ and/or the ψ elements of the second 

sample to be equal to those derived for the first sample.  Alternatively, the two-

sample analysis can constrain any or several of the paths γ, β, λΧ, Θδ, λY, Θε in 

the second model to equal those in the first model.  Thus, LISREL can examine 

an interaction effect of the kind examined in linear regression by constraining the 

γ or the β paths in one sample to be equal to those estimated by LISREL in the 

other sample.  If the χ2 of the model with the constrained paths is significantly 

smaller than the χ2 of the model with the unconstrained paths, given the 

difference in degrees of freedom between the two χ2, then there is a significant 

interaction effect [Jöreskog and Sörbom, 1989].  

For example, examining a gender effect on a given model would require 

running the theoretical model on the sub-sample of one gender first, and then 

running exactly the same model with the sub-sample of the other gender but 

constraining the paths to the path estimates obtained from the first gender.  

Constraining the other paths in this manner would permit the exploration of other 

types of interaction effects, some of which cannot be examined in linear 

regression, such as whether item loadings differ across sub-populations.   

Examining interactions in this manner, however, requires a separate 

sample for each interaction value.  For example, an interaction effect based on 

gender would require two samples and one analysis to compare the two genders, 

but an interaction effect based on a four-value category interaction would require 

4 samples and 6 comparative analyses [Jöreskog and Sörbom, 1989].  

Consequently, this type of analysis is not very practical once the number of 

interaction categories is large because of the need to collect separate samples 

for each category and the probability of getting a significant t-value in one of the 

tests purely by chance.31  The implications of these issues are presented in Table 

10.  
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IV. WHEN TO USE LINEAR REGRESSION  
IN PREFERENCE TO SEM 

 

INTERPRETING CAUSAL RELATIONSHIPS IN SEM 

Establishing causation is difficult in research.  Typically, establishing 

causation requires showing [Cook and Campbell, 1979]:  

1. association,  

2. temporal precedence, and  

3. isolation.   

Association means that when the “cause” event happens, it is very likely that the 

“effect” event will happen too.  For example, when fires break out firefighters are 

usually there.  Thus, “fires” are associated with “firefighters”.  Association is 

typically measured through correlation.  Correlation alone, however, is not 

enough to establish causation; it is also necessary to establish that the “cause” 

event occurred before the “effect” event.  Thus, one may conclude that the fires 

cause the arrival of the firefighters, and not vice versa, because the fires occur 

first.  One would be mistaken, however, to conclude that fires cause firefighters 

to come, because there are other events involved, specifically, somebody calling 

the fire-department.  Without showing that no other event was involved, 

concluding that such causation occurred would be misleading.  Establishing that 

no such other event occurred is called isolation32 or ruling out rival hypotheses 

[Cook and Campbell, 1979]. 

 Consequently, statistical analysis alone cannot prove causation, because 

it does not establish isolation or temporal ordering [Bollen, 1989, Bullock et al., 

1994].  Nonetheless, correlation analysis, including linear regression and SEM, 

can be used to show that the correlations found in the data are in accordance 

with the causation predicted by an established theory-base [Bollen, 1989].  

These principles apply equally well to SEM, except that corroborating causation 

in this manner is more difficult in SEM because of the complexity of the structural 

models it supports and the large number of alternative, but statistically 
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equivalent, models that can be supported by the same data.  These effects have 

been extensively studied with regard to covariance-based SEM, where it has 

been shown, for example, that reversing the direction of any causation path or 

replacing it with a correlation path will produce an equivalent model with the 

same fit indices [Stelzl, 1986].  This concern for equivalence of models and the 

concern for “over-fitting” the model to the data and consequently coming up with 

non-generalizable results is a major reason why covariance-based SEM should 

be used as a confirmatory and not as an exploratory method [Bullock et al., 1994, 

Hair et al., 1998].   

Another concern in inferring a cause-effect related issue in SEM is 

specification errors, i.e., not specifying an important construct in the model and/or 

not specifying enough observed measurements for each construct [Bagozzi and 

Baumgartner, 1994].33  Bias created by either of these problems can result in an 

incorrect interpretation of the results, as in other types of statistical analysis [Hair 

et al., 1998]. 

Because of over-fitting, the fact that the same data can support many 

equivalent models, and specification errors, the assumed causation in 

covariance-based SEM should be based on a theoretical rationale supported by 

data.  In other words, the assertion of causation is applicable in SEM only when 

and because the data analysis corroborates theory-based causation hypotheses 

(as specified in the structural model) [Bollen, 1989, Bullock et al., 1994, Hair et 

al., 1998].  Consequently, covariance-base SEM should be used as a 

confirmatory analysis method only.  It needs to show that the hypotheses are 

plausible given the data.  PLS, on the other hand, does not require strong theory 

and can be used as a theory-building method [Chin, 1998b, Thompson et al., 

1995].  The implications of these issues are presented in Table 11.  

 

INHERENT ANALYTICAL ASSUMPTIONS  

Another major concern when using SEM is inherent assumptions, such as 

data distribution assumptions.  Apart from the assumed multi-normal distribution  
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Table 11. Comparative Analysis Based on Capabilities 
 

Capabilities  LISREL  PLS Regression  
Establishment of causation No No No 
Possible over-fitting Problematic Less problematic Less problematic 
Testing of suspected non-
linear effect 

Problematic Problematic Mitigated by data 
transformation  

Suspected influential outliers  Problematic Problematic Mitigated by data 
transformation  

Suspected 
heteroscedasticity  

Problematic Problematic Mitigated by data 
transformation  

Suspected polynomial 
relation 

Problematic Problematic Mitigated by data 
transformation  

 

 

that is important when ML estimation is used (discussed above), a central 

assumption in SEM is that the relationship between the observed variables and 

their constructs and between one construct and another is linear.  SEM has no 

established tools for handling variations from this assumption, unlike linear 

regression that has established methods of identifying and proven remedial data 

transformational methods for handling data that has nonlinear relationships.  

Linear regression can also deal with multicollinearity (violations of the assumed 

independence of predictor variables), outliers, heteroscedasticity (unequal 

variance among the measurement items), and polynomial relationships (such as: 

Y = b0 + b1X + b2X2) [Hair et al., 1998, Neter et al., 1990].  No such remedies are 

available yet in SEM.  SEM has no tools to identify, let alone handle, these 

violations of the major distribution assumptions.  Using linear regression is 

advisable in these cases, as shown in Table 11.   
 

 

V. WIDELY USED VALIDATION HEURISTICS IN SEM 

 Validity rules of thumb are pragmatic measures indicating patterns of 

behavior that are acceptable within a scientific community.  There is no 

recognized means of verifying the truth of such heuristics, other than through 

tradition or evaluation of best of breed practice.  It is traditional, for example, to 
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accept a p-value of .05 in SEM [Jöreskog and Sörbom, 1989], just as the .01 and 

.05 thresholds are the accepted heuristics in linear regression [Neter et al., 

1990].  As with first generation regression models, there is no mathematical or 

other means for establishing these levels [Nunnally, 1967, Nunnally, 1978, 

Nunnally and Bernstein, 1994].  Nonetheless, rules of thumb are desirable 

because of their practicality, enabling researchers to utilize them as de facto 

standards.  A summary of key heuristics is presented in Table 12.  

 

Table 12. Heuristics for Statistical Conclusion Validity (Part 1) 

 

Validity Technique Heuristic 
Construct Validity 
 
Convergent 
Validity 

CFA used in 
covariance-based 
SEM only.  

GFI > .90, NFI > .90, AGFI > .80 (or >.90) and an 
insignificant χ2, to show unidimensionality.  In addition, 
item loadings should be above .707, to show that over 
half the variance is captured by the latent construct  
[Chin, 1998b, Hair et al., 1998, Segars, 1997, 
Thompson et al., 1995].  

Discriminant 
Validity 
 

CFA used in 
covariance-based 
SEM only. 

Comparing the χ2 of the original model with an 
alternative model where the constructs in question are 
united as one construct.  If the χ2 is significantly 
smaller in the original model, discriminant validity has 
been shown [Segars, 1997].  

Convergent & 
Discriminant 
Validities 
 

PCA used in PLS 
can assess factor 
analysis but not as 
rigorously as a CFA 
in LISREL does and 
without examining 
unidimensionality  

Each construct AVE should be larger than its 
correlation with other constructs, and each item 
should load more highly on its assigned construct than 
on the other constructs.  

Reliability 
 
Cronbach’s α  
 
 

 
Cronbach’s αs should be above .60 for exploratory 
research and above .70 for confirmatory research 
[Nunnally, 1967, Nunnally, 1978, Nunnally and 
Bernstein, 1994, Peter, 1979]. 

 
Internal 
Consistency 

SEM The internal consistency coefficient should be above 
.70 [Hair et al., 1998, Thompson et al., 1995].  

Unidimensional 
Reliability 

Covariance-based 
SEM only.  

Model comparisons favor unidimensionality with a 
significantly smaller χ2 in the proposed measurement 
model in comparison with alternative measurement 
models [Segars, 1997].  
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Table 12. Heuristics for Statistical Conclusion Validity (Part 2) 

 
Model Validity 
AGFI LISREL AGFI > .80  [Segars and Grover, 1993] 
Squared 
Multiple 
Correlations 

LISREL, PLS No official guidelines exist, but, clearly, the larger 
these values, the better 

χ2 LISREL Insignificant and χ2 to degrees of freedom ratio of less 
than 3:1 [Chin and Todd, 1995, Hair et al., 1998] 

Residuals  LISREL RMR <.05 [Hair et al., 1998] 
NFI LISREL NFI  > .90 [Hair et al., 1998] 
Path Validity  
Coefficients 

LISREL The β and γ coefficients must be significant; 
standardized values should be reported for 
comparison purposes [Bollen, 1989, Hair et al., 1998, 
Jöreskog and Sörbom, 1989] 
.  

 PLS Significant t-values [Thompson et al., 1995].  
 Linear Regression  Significant t-values [Thompson et al., 1995].  
Nested Models 
 LISREL A nested model is rejected based on insignificant βs 

and γs paths and an insignificant change in the χ2 
between the models given the change in degrees of 
freedom [Anderson and Gerbing, 1988] 
[Jöreskog and Sörbom, 1989] 
. 

 PLS A nested model is rejected if it does not yield 
significant a f2 [Chin and Todd, 1995]. 

 Linear Regression  A nested model in a stepwise regression is rejected if 
it does not yield a significant change in the F statistic 
(reflected directly in the change in R2) [Neter et al., 
1990].  

 

Given that these guidelines are what amount to de facto SEM standards 

for the IS field, we collected data (in the same research discussed in Section 1) 

on the extent to which IT research follows these guidelines.  As can be seen from 

Table 13 and Table 14, there are areas of concern and areas where the field is 

doing remarkably well. 

What should be said about the reporting of SEM covariance-based 

statistics in the IS literature?  The grayed rows in Table 13 are, in our view, both 

a critical and minimal set of statistics for establishing construct validity and the 

truth of theoretical models, and so we will concentrate on these rows.  The lack of 

reporting of AGFI across all three journals is, frankly, disturbing.  As argued 

above, the adjusted goodness of fit reports whether the theory fits the data or 
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not, given a statistical adjustment for degrees of freedom.  Readers are left in 

serious doubt as to the merit of the case when this statistic is absent.  As Table 

13 notes, when this statistic is being reported, the values on the whole seem to 

meet our rule of thumb, which is a hopeful sign. 

 

 
Table 13.  Number Of Covariance-based SEM Articles Reporting SEM Statistics 

in IS Research 
 
 

 
Statistics 

I&M 
(n=6) 

ISR 
(n=7) 

MISQ 
(n=5) 

All Journals 
(n=18) 

GFI reported 3 (50%) 3 (43%) 1 (20%) 7 (39%) 
Of GFI reported, number > 0.90 1 (33%) 2 (67%) 1 (100%) 4 (57%) 
AGFI reported 2 (33%) 2 (29%) 1 (20%) 5 (28%) 
Of AGFI reported, number > 0.80 1 (50%) 2 (100%) 1 (100%) 4 (80%) 
RMR reported 2 (33%) 4 (57%) 2 (40%) 8 (44%) 
Of RMR reported, number < 0.05 0 (0%) 1 (25%) 1 (50%) 2 (25%) 
χ2 insignificance reported 3 (50%) 2 (29%) 0 (0%) 5 (28%) 
Of χ2 insig. reported, number > .05 3 (100%) 1 (50%) 0 (0%) 4 (80%) 
Ratio χ2 / df reported 5 (83%) 6 (86%) 4 (80%) 15 (83%) 
Of ratio χ2 / df reported, number < 3 5 (100%) 5 (83%) 2 (50%) 12 (80%) 
SMC 2 (33%) 3 (43%) 2 (40%) 7 (39%) 
NFI reported 3 (50%) 3 (43%) 3 (60%) 9 (50%) 
Of NFI reported, number > .90 2 (67%) 3 (100%) 3 (100%) 8 (89%) 
CFI reported 3 (50%) 2 (29%) 1 (20%) 6 (33%) 
T-values or significance of paths 4 (67%) 6 (86%) 4 (80%) 14 (78%) 
Construct Reliability reported 5 (83%) 7 (100%) 4 (80%) 16 (89%) 
Use of Nested Models 4 (67%) 6 (86%) 3 (60%) 13 (72%) 

   Notes: Rows in gray should receive special attention when reporting results 
 11 articles used LISREL, 6 EQS, and 1 AMOS 

 

        Table 14.  Number of PLS Studies Reporting PLS Statistics in IS Research 
(Rows in gray should receive special attention when reporting results) 

 
 

 
PLS Statistics 

I&M 
(n=2) 

ISR 
(n=5) 

MISQ 
(n=4) 

All Journals 
(n=11) 

R2 reported 2 (100%) 5 (100%) 4 (100%) 11 (100%) 
AVE reported 2 (100%) 5 (100%) 3 (75%) 10 (91%) 
T-values or significance of paths 2 (100%) 5 (100%) 4 (100%) 11 (100%) 
Construct Reliability reported 2 (100%) 4 (80%) 3 (75%) 9 (82%) 
Use of Nested Models 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
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Expressing the extent to which the model explained the variance in the 

dataset for each exogenous variable, the SMCs are likewise being reported at 

low levels, across all journals.  Again, it is difficult to see how a researcher can 

hope to defend the explanatory power of his/her model without this statistic.  

Since there are no rules of thumb for explained variance, it only remains for 

researchers to convince reviewers/editors that the values reported are sufficiently 

high to indicate that the theory has reasonable explanatory power.  It is purely a 

matter of good argumentation and not something that authors should, therefore, 

avoid. 

 Whereas reporting of RMRs is roughly as deficient as reporting of the 

AGFIs and SMCs, and also an area that calls for greater attention, the disclosure 

of χ2 / df ratio, t-values, and construct reliability is generally good.  It is curious 

that editors and reviewers are apparently stringent with regard to these statistics, 

but not so with AGFI, SMC and RMR.  Another encouraging signal is that when 

these statistics are reported, they generally meet or exceed the rules of thumb 

articulated in Table 12. 

 Other than nested models, all of the PLS statistics shown in Table 14 

should be reported, and usually are.  Perhaps because there are fewer overall 

statistics offered to the researcher in PLS, these have most often been placed in 

the public forum for readers.  

A final note about sample size may also be useful at this juncture. In spite 

of the fact that PLS can be run with relatively small sample sizes, these, on 

average, were larger than those in the LISREL articles.  The mean for PLS 

articles was 295 (minimum 40, maximum 1020) whereas for LISREL, it was 249 

(minimum 41, maximum 451).  The low minimum among the LISREL articles 

raises a flag, in that the rules of thumb recommend at least 100.  
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VI. CONCLUSION 
 Covariance-based SEM, PLS-based SEM, and linear regression models 

overlap in many ways, including analysis objectives, distribution assumptions, 

and etiological and correlational linearity assumptions.  Nonetheless, there are 

distinct differences among the three approaches that makes each more or less 

appropriate for certain types of analysis.  Furthermore, even when all three 

techniques are appropriate, the resulting set of supported hypotheses in the 

model may be more or less credible because of underlying data distribution 

assumptions and the analysis methods employed.   

Thus, choosing an analysis method based correctly on the research 

objectives and the limitations imposed by the sample size and distribution 

assumptions is crucial.  The importance of establishing statistical conclusion 

validity using such tools in positivist research cannot be overemphasized.  It is, in 

essence, the strength of evidence researchers have to report in order to prove 

that their models are supported by data collected.  Indeed, studies lacking strong 

statistical conclusion validity are highly questionable [Cook and Campbell, 1979].  

This paper has presented key criteria for effective practices in the use of new and 

old tools for this form of validation. These guidelines are summarized in the 

tables throughout the tutorial.   

The meta-analysis shown in Tables 13 and 14 indicates that much still 

must be done in this regard.  There is wide disparity among journals on utilization 

of SEMs.  In ISR, for instance, 45% of empirical articles use SEM techniques, 

whereas in MISQ, this figure is closer to 25%.  Assuming that SEM techniques 

represent state-of-the-art in many research settings, this discrepancy must be 

heeded.  Editors and reviewers may want to encourage authors to use SEM 

tools, where appropriate.  Nonetheless, as noted in this article, there are 

situations where SEM tools are not called for.  In such cases, editors and 

reviewers will want to ensure that authors are not over-using the techniques, by, 

perhaps, choosing them for mimetic rather than for solid, technical reasons. 

To internalize such statistical knowledge, editors, associate editors, and 

reviewers will want to immerse themselves in at least the three (or four, including 
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factor analysis) techniques touched on in this article.  There are many instances 

where an editor will be confronted with disagreements among the methodological 

experts asked to review and where merely adding another knowledgeable 

reviewer is not going to resolve the issue.  The reviewing process should not be 

a vote.  It should be a set of judgments, where more knowledgeable opinions are 

weighted more heavily than those of less understanding.   

Hopefully, this article has resulted in a renewable and upskilling of some 

faculty in this area.  Courses in LISREL are de rigeur for many doctoral 

graduates since 1990 and in doctoral-granting institutions where it is not, such 

courses need to be added.  The history of our oldest academic journals, such as 

MIS Quarterly, is testimony to the requirement for post-millennium researchers to 

be careful methodologists as well as content specialists. 

Guidelines as to when to use each SEM and what statistics need to be 

reported are clearly necessary.  In this tutorial, we have summarized some of the 

most important aspects to be considered when choosing a SEM technique and 

we have reviewed the most widely used statistics reported together with their 

established thresholds.  As can be seen from Tables 13 and 14, many studies 

report only a partial set of these statistics, and, even then, many of these 

statistics fall short of the common thresholds.  As in any other statistical method, 

when the statistics are not within their respective thresholds, the conclusions 

drawn based on the analysis are potentially flawed.  Applying the appropriate 

analysis technique, given the research objective and the data, reporting the 

appropriate statistics, and ensuring that their values are within the established 

thresholds, is crucial in LISREL [Chin, 1998a, Jöreskog and Sörbom, 1989], PLS 

[Chin, 1998a], and linear regression models [Cohen, 1988, Cook and Campbell, 

1979, Hair et al., 1998, Neter et al., 1990, Nunnally and Bernstein, 1994].  

Guidelines for such clear reporting are obviously necessary for good positivist 

science [Chin, 1998a].   

We hope this tutorial provides researchers with a helpful and practical tool 

toward reaching these objectives.  
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Editor’s note: This article was received on February 29, 2000. It was with the authors for 6 
months for 2 revisions, and was published on October 24, 2000 

ENDNOTES 
 
1 LISREL is a registered trademark of SSI: http://www.ssicentral.com/lisrel/mainlis.htm   
 
2 A February 2000 on-line search on ABI-Inform yielded 194 articles that utilized LISREL 
analytical techniques.  In that many articles using LISREL may not even mention this fact in the 
abstract or headings, this undoubtedly represents only a portion of all uses of LISREL in business 
studies.  
 
3 Professors Dale Goodhue (Carlson School of Management, Minnesota), Fred Davis (University 
of Arkansas), and Ron Thompson (Wake Forest University) compared these techniques in a 
panel-tutorial in the 1990 ICIS Conference in Copenhagen.  None of their findings are reproduced 
here in any way, although our results are strikingly similar. 
 
4 Gefen and Straub [2000] present a theoretical explanation for this lack of consistency and 
empirical findings which support this interpretation. 
 
5 LISREL can use one of several estimation techniques. The most commonly used method, and 
the default, is Maximum Likelihood. This is the method also used in this analysis.  
 
6 As we shall see later in the paper, some methodologists suggest a .90 threshold for this value 
while others use a .80 standard.  Accordingly, .84 is somewhere in between and, because of the 
low RMR, was deemed to be acceptable in this case. 
 
7 See Gefen And Straub’s [2000] synopsis of these studies. 
 
8 In fact, some methodologists interpret PLS as a PCA technique.  We do not intend to enter into 
this debate in this paper, however. 
 
9 It is useful to note that these distinctions are artificial--there is no substantive difference between 
a gamma and a beta.  Maintaining the distinction achieves some computational efficiency, but 
that is its only real function. 
 
10 This is achieved by comparing the χ2 of the two models and choosing the model with a 
significantly smaller χ2 [Segars, 1997].  
 
11 Mathematically, this is expressed as H(o): Σ = Σ(θ), where Σ is the population covariance matrix 
represented by the covariance matrix of the observed variables, and Σ(θ) is the null hypothesis 
covariance structure hypothesized by the researcher and written as a function of the research 
model’s parameters, θ [Bollen, 1989]. 
 
12 Multiple-item scales can be introduced into the analysis because correlations among common 
and unique error terms in LISREL do not have to be automatically assigned a zero value.  As in 
confirmatory factor analysis, this allows overt modeling of the measurement error (in LISREL 
these matrices are called Θδ and Θε, for X and Y measures, respectively).  The communality of 
variance is reflected as loadings on the latent construct that are thought to underlie the multiple 
items [Bollen, 1989]. 
 
13 See Jöreskog and Sörbom [1989] for a detailed discussion of how variations from the multi-
normal distribution affect the fit indexes.  
 

http://www.ssicentral.com/lisrel/mainlis.htm


 

Communications of AIS Volume 4, Article 7                     50 
Structural Equation Modeling Techniques and Regression: Guidelines 
For Research Practice by D. Gefen, D.W. Straub, and M. Boudreau 

 

14 Though some of the estimation techniques, such as ML and GLS, do not actually require a 
multivariate normal distribution to estimate the model parameters, the estimations they provide 
still need to be “interpreted with caution” [Jöreskog and Sörbom, 1989] (p. 21).  Moreover, the χ2 
statistic may show an unjustified but acceptable fit in sample sizes smaller than 100 [Bollen, 
1989, Hair et al., 1992].  
 
15 Intervals between ranked data points do not have to be equally distributed, as in interval-scaled 
data.  If one assumes that the distances between these points are, on the whole, randomly 
distributed, statistical tests can be performed on the data.  Polychoric distributions, therefore, are 
the distributions against which the differences between ranks can be checked [Jöreskog and 
Sörbom, 1989].  
 
16 LISREL examines the extent to which this measurement error is correlated with the 
measurement error of other observed variables.  The larger these standardized residuals are, the 
worse the model fit.   
 
17 A confirmatory analysis attempts to support a predefined hypothesized relationship, rather than 
examine all the possible relationships and select the one that has the best statistical fit.   
 
18 These are also known as predictor and criterion variables, respectively.   
 
19 In addition, there are many package-specific assumptions.  For example, LISREL assumes 
(unless explicitly specified otherwise) that the exogenous latent constructs are correlated through 
shared measurement error while the endogenous constructs are not.   
 
20 Choice of validation technique is affected to an extent by whether the constructs being tested 
are formative or reflective [Blalock, 1969]. The types of measurements and scales employed are 
different depending on whether the measures are reflective of their constructs or formative.  
Suppose, for instance, the construct “firm performance”.  It could be measured formatively by: (1) 
an index that compared the pricing of the firm to that of its competitors, (2) revenue generated per 
employee, and (3) a ratio comparing the IT performance of the business unit with its industrial 
group.  These measures form the construct, but do not really reflect it.  A set of measures that 
does reflect its construct would be the perception of a CIO about the strategic value of IT in the 
firm, measured by four questions with similar low to high semantic anchors.  Only constructs that 
rely on reflective measures need to establish factorial validity since formative measurements may 
not be highly correlated. 
 
21 There is one exception to this: when dealing with directly observed variables, LISREL 
estimates a set of linear regressions among constructs that are composed of one formative 
directly observed variable [Jöreskog and Sörbom, 1989].  
 
22 In first-generation regression models, researchers must first establish that the measurement 
model is correct, typically using a factor analysis to establish convergent and discriminant validity, 
and then use internal reliability techniques, such as Cronbach’s α, to assess construct reliability.  
Once these validities have been established, researchers combine these observed variables into 
latent variables, usually through the creation of index values, ignoring the fact that some 
measurement items may carry more weight than others and ignoring non-common variance.  
Only then do researchers estimate the specified causation paths between the latent variables – 
but only one at a time and, again, ignoring non-model specific variance.  Testing paths to more 
than one dependent variable at a time can be accomplished in MANOVA, of course, but this 
approach is restricted somewhat by the requirement for categorical independent variables.   
 
23 The total variance of a measurement item is composed of three elements: common, specific, 
and error variance.  Common variance is the variance that reflects the latent construct; it is 
typically shared with other measurement items.  Error variance is variance that is added to the 
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item due to imperfect measurement.  Specific variance is variance that is associated with the 
unique item alone.  First-generation regression models consider only the common variance; 
LISREL examines all three [Hair et al., 1998]. 
 
24  Other than, of course, the circumstance where there are multiple measures and LISREL 
requires that one of the item loadings be fixed at 1.0. 
 
25 Construct reliability is calculated as : (Σ (std loadings))2 / (((Σ (std loadings))2 + Σ (std errors)) 
 
26  Hair et al. [1998], while recommending that the p-value of the χ2 should be > .05 also note that 
“… but .1 or .2 should be exceeded before non significance is confirmed” (p. 654).  
 
27 Researchers should be aware that some feel that this ratio, like the χ2 itself, has been entirely 
discredited as a meaningful statistic. 
 
28 NFI is calculated as (χ2

null - χ2
proposed) / χ2

null 
 
30 AVE is calculated as: Σ λ2  /  (Σλ2 + Σ Var(ε) ) 
 
31 NFI in this case would be calculated as:  δ = ((χ2

Mo)- (χ2
Mn)/(χ2

Mo)  

     where Mo is the original model and Mn the nested model.  

 
32 The f2 statistic is calculated as follows:  
 

        R2 revised-model  - R2 original-model 
f2 =  –––––––––––––––––––––––    
          1 - R2 original-model   
 

32 The variance of a calculated variable is a function of the observed variables it is built from 
[Freund, 1982].  
 
33 Typically, the p-value in LISREL is set to .05. Thus, when more than 20 comparisons are made, 
as would be the case in an interaction effect involving more than 3 values, there is a high 
probability of randomly getting a significant difference. 
 
34 For a detailed discussion on the nature of causation and why temporal precedence and 
isolation can never be truly established, see Bollen [1989]. 
 
35 Unless the measurement error is known, at least 2, and preferably at least 3 observed 
variables should be used for each latent variable in covariance-based SEM [Anderson and 
Gerbing, 1988].  

 
36 NFI in this case would be calculated as:  δ = ((χ2

Mo)- (χ2
Mn)/(χ2

Mo)  

     where Mo is the original model and Mn the nested model.  

 
37 The f2 statistic is calculated as follows:  
 

        R2 revised-model  - R2 original-model 
f2 =  –––––––––––––––––––––––    
          1 - R2 original-model   
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APPENDIX A 
TAM STUDIES 

 
Study Subjects 
[Davis, 1989] (Study 1) Knowledge workers 
[Davis, 1989] (Study 2) MBA students 
[Davis et al., 1989] (after 1 hour) MBA students 
[Davis et al., 1989] (after 14 weeks) MBA students 
[Mathieson, 1991] Undergraduate students 
[Moore and Benbasat, 1991] Knowledge workers 
[Thompson et al., 1991] Knowledge workers 
[Davis and Bagozzi, 1992] (Study 1) MBA students 
[Davis and Bagozzi, 1992] (Study 2) MBA students 
[Adams et al., 1992] (Study 1) Knowledge workers 
[Adams et al., 1992] (Study 2) Knowledge workers 
[Hendrickson et al., 1993] Undergraduate students 
[Segars and Grover, 1993] Adams et al.’s (1992) data 
[Hendrickson et al., 1993] Undergraduate students 
[Sambamurthy and Chin, 1994] Knowledge workers 
[Sambamurthy and Chin, 1994] Undergraduate students 
[Venkatesh and Davis, 1996] Undergraduate students 
[Straub, 1994] Knowledge workers 
[Szajna, 1994] MBA students 
[Chin and Gopal, 1995] Knowledge workers 
[Premkumar and Potter, 1995] Knowledge workers 
[Straub et al., 1995] (Model 1) Knowledge workers 
[Straub et al., 1995] (Model 2) Knowledge workers 
[Keil et al., 1995] Knowledge workers 
[Taylor and Todd, 1995b]  Students 
[Taylor and Todd, 1995a] Students 
[Igbaria, 1995] MBA students 
[Montazemi, 1996] Knowledge workers 
[Chau, 1996] (Study 1) Administrative/clerical staff 
[Chau, 1996] (Study 2) Administrative/clerical staff 
[Szajna, 1996] (Study 1: pre-implementation) Graduate business students 
[Szajna, 1996] (Study 2: post-implementation) Graduate business students 
[Gefen and Straub, 1997] Knowledge workers in airline industry  
[Straub et al., 1997] Knowledge workers in airline industry  
[Gefen, 1997] MBA students 
[Gefen and Keil, 1998] Knowledge workers 
[Doll et al., 1998] Undergraduate students  
[Fenech, 1998] Undergraduate students 
[Rose and Straub, 1998] Knowledge workers 
[Karahanna and Straub, 1999] Knowledge workers 
[Karahanna et al., 1999] (Study 1) Knowledge workers 
[Karahanna et al., 1999] (Study 2) Knowledge workers 
[Venkatesh, 1999] Knowledge workers  
[Gefen, 2000] Knowledge workers 
[Ridings and Gefen, 2000] Knowledge workers 
[Gefen and Straub, 2000] MBA Students 

 
 
 
 



 

Communications of AIS Volume 4, Article 7                     61 
Structural Equation Modeling Techniques and Regression: Guidelines 
For Research Practice by D. Gefen, D.W. Straub, and M. Boudreau 

 

 
 

APPENDIX B 
INSTRUCTIONS TO SUBJECTS AND INSTRUMENTATION 

INSTRUCTIONS:  
 As part of an ongoing study on Internet use, we would be grateful if you could devote 10 
minutes to completing this instrument.  

 

1. Please logon to the Internet and access www.travelocity.com  
2. Use the Web-site to search for a flight to Heathrow Airport (London) next month. 
3. Then, please fill in the instrument below.  
 
Please circle the appropriate category:  
Gender M   ,   F 
Age group 15-19, 20-24, 25-29, 30-34, 35-39, 40-44, 50-54, 55-59, 60-64, 65-69, above 70 
What language do you speak at home (English, Italian, Hindi, Cantonese, etc.)?  
Have you ever bought products on the World Wide Web  Yes,      No 
How many times have you used Travelocity.com?   
Have you given your credit card number on the Web?  Yes,      No 

  
Please indicate your agreement with the next set of statements using the following rating 
scale: 

 
1 2 3 4 5 6 7 

Strongly  
Agree 

Agree Somewhat  
Agree 

Neutral Somewhat 
Disagree 

Disagree Strongly 
Disagree 

 

Code* Item Agree  Disagree 
   
EOU1 Travelocity.com is easy to use.  1   2   3   4   5   6  7 
EOU2 It is easy to become skillful at using Travelocity.com. 1   2   3   4   5   6  7 
EOU3 Learning to operate Travelocity.com is easy . 1   2   3   4   5   6  7 
EOU4 Travelocity.com is flexible to interact with . 1   2   3   4   5   6  7 
EOU5 My interaction with Travelocity.com is clear and understandable . 1   2   3   4   5   6  7 
EOU6 It is easy to interact with Travelocity.com. 1   2   3   4   5   6  7 
PU1 Travelocity.com is useful for searching and buying flights . 1   2   3   4   5   6  7 
PU2 Travelocity.com improves my performance in flight searching and 

buying.  
1   2   3   4   5   6  7 

PU3 Travelocity.com enables me to search and buy flights faster.  1   2   3   4   5   6  7 
PU4 Travelocity.com enhances my effectiveness in flight searching and 

buying. 
1   2   3   4   5   6  7 

PU5 Travelocity.com makes it easier to search for and purchase flights. 1   2   3   4   5   6  7 
PU6 Travelocity.com increases my productivity in searching and purchasing 

flights. 
1   2   3   4   5   6  7 

IUSE1 I am very likely to buy books from Travelocity.com. 1   2   3   4   5   6  7 
IUSE2 I would use my credit card to purchase from Travelocity.com. 1   2   3   4   5   6  7 
IUSE3 I would not hesitate to provide information about my habits to 

Travelocity. 
1   2   3   4   5   6  7 

 Thank You! 
* Students did not receive the item codes****.  

http://www.travelocity.com/
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APPENDIX C 

 EXAMINING NESTED MODELS IN SEM 

In covariance-based SEM, examining nested models is accomplished by 

comparing the χ2 statistic of the original model with the χ2 of a “nested” model.  

Generally speaking, a model M2 is nested within another model M1 (i.e., M2 < M1) 

if it contains exactly the same constructs and if its freely estimated parameters 

are a subset of those estimated in M1.  If the difference in χ2 between the two 

models is insignificant given the difference in degrees of freedom between the 

models, then the additional path in the “nested” model does not significantly 

improve the model.  In such a case, the parsimonious, theoretical model should 

be chosen.  Comparing models in this manner can be used for causation paths 

(β and γ), item loadings (λ), and correlation (Φ and Ψ).   

Anderson and Gerbing [1988] suggest using this method to assess a 

theoretical model by estimating five nested plausible alternative model 

specifications.  The five models are: (1) a saturated model (Ms) that links all 

constructs; (2) a null model Mn that contains no paths among the constructs; (3) a 

theoretical model Mt representing the theoretical model to be tested; (4) a 

constrained model Mc that constrains theoretically defensible paths in Mt; and (5) 

a unconstrained model Mu that frees theoretically defensible paths in Mt.  These 

five structural models represent a nested sequence of: Mn < Mc < Mt < Mu < Ms. 

The null model of the Generic Theoretical Network from Figure 5 is presented in 

Figure 6; the saturated model is presented in Figure 7.     

The four tests required to examine the five nested models are 

asymptotically independent [Steiger et al., 1985], each test examining a no 

difference null hypothesis between two nested structural models.  However, 

since the χ2 statistic depends on sample size, trivial differences between the two 

nested models can cause a significant difference in the χ2 [Anderson and 

Gerbing, 1988, Bentler and Bonett, 1980].  In order to overcome this problem, the 

NFI (Normed Fit Index) statistic comparing a nested model Mn with an original 
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model Mo should be used [Bentler and Bonett, 1980].34  Ranging from 0 to 1, this 

index represents the increment in fit obtained in evaluating two hierarchical step-

up models. It should be noted, though, that any nested model comparison is 

applicable only for the comparison of models that differ only in one path 

[Anderson and Gerbing, 1988], in a manner analogous to stepwise linear 

regression.  

Nested model comparison is also available in PLS [Thompson et al., 

1995], although not through examining the difference of significance in χ2 values.  

In PLS, the significance of a nested model containing an additional path is 

examined by comparing the R2 of the revised model with that of the original 

model using an f2 statistic.35  The additional path can be considered as having a 

small, medium, or large effect if f2 is above .02, .15 or .35, respectively [Chin, 

1998b], as in Cohen’s [1988] analysis of power in linear regression.  Unlike 

LISREL and linear regression, however, PLS cannot be set to automatically 

perform a stepwise analysis.   

 

  

 

 

 

 

 

 

 

 

 

 

Figure 6. Null Model of the Generic Theoretical Network 
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Figure 7. Saturated Model of the Generic Theoretical Network  
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GLOSSARY  
This glossary presents three types of terms that are used in this article: 

1. Statistical 

2. TAM constructs 

3. Other terminology 

Both abbreviations and specialized terms are included.   

 

STATISTICAL TERMS:  

 
• AGFI: Adjusted Goodness of Fit Index. Within covariance-based SEM, 

statistic measuring the fit (adjusted for degrees of freedom) of the 

combined measurement and structural model to the data. 

 

• AMOS: A covariance-based SEM, developed by Dr. Arbuckle, Published 

by SmallWarters and marketed by SPSS as a statistically equivalent tool 

to LISREL.  Details are available at http://www.spss.com/amos/ . 

 

• ANOVA: Univariate analysis of variance. Statistical technique to 

determine, on the basis of one dependent measure, whether samples are 

from populations with equal means. 

 

• AVE: Average Variance Extracted. Calculated as  (Σλi
2)/( (Σλi

2) + (Σ(1-

λ i
2)), the AVE measures the percent of variance captured by a construct 

by showing the ratio of the sum of the variance captured by the construct 

and measurement variance.   

 

http://www.spss.com/amos/
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• CFA: Confirmatory Factor Analysis. A variant of factor analysis where the 

goal is to test specific theoretical expectations about the structure of a set 

of measures. 

 

• Construct validity: One of a number of subtypes of validity that focuses 

on the extent to which a given test is an effective measure of a theoretical 

construct. 

 

• Cronbach’s alpha: Commonly used measure of reliability for a set of two 

or more construct indicators. Values range between 0 and 1.0, with higher 

values indicating higher reliability among the indicators. 

 

• DV: Dependent Variable. Presumed effect of, or response to, a change in 

the independent variable(s). 

 

• EQS: A covariance-based SEM developed by Dr. Bentler and sold by 

Multivariate Software, Inc. EQS provides researchers with the ability to 

perform a wide array of analyses, including linear regressions, CFA, path 

analysis, and population comparisons. Details are available at 

http://www.smallwaters.com/. 

 

• Equivalence of Models: When two or more models produce exactly the 

same fit indexes in LISREL making model interpretation based on 

statistics alone problematic. This can easily happens in LISREL when 

changing the direction of an assumed causation or changing a causation 

path (β) into a shared correlation (ψ).  

 

• Endogenous construct: Construct that is the dependent or outcome 

variable in at least one causal relationship. In terms of a path diagram, 

there are one or more arrows leading into the endogenous construct. 

  

http://www.smallwaters.com/
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• Exogenous construct: Construct that acts only as a predictor or "cause" 

for other constructs in the model. In terms of a path diagram, the 

exogenous constructs have only causal arrows leading out of them and 

are not predicted by any other constructs in the model. 

 
• F statistic (F-ratio): tests the hypothesis that the amount of explained 

variation is greater than that explained by chance alone.  The F statistic is 

calculated as the ratio of the sum of squared error explained by the model 

divided by its degrees of freedom to the sum of squared error about the 

average divided by its degrees of freedom.  This provides the ratio of the 

variance of the prediction errors.  When employed in the procedure 

entitled ANOVA, the obtained value of F provides a test for the statistical 

significance of the observed differences among the means of two or more 

random samples.  

 

• f2: A statistic used to assess whether a change in R-square is substantive 

between nested models in PLS in which an additional path is added.   

 

• Factor analysis: A statistical approach that can be used to analyze 

interrelationships among a large number of variables and to explain these 

variables in terms of their common underlying dimensions (factor). 

 

• First generation statistical techniques: A general term relating to 

correlation based analyses methods that preceded LISREL and PLS.  

These methods include linear regression, ANOVA, MANOVA, etc. These 

technique require researchers to analyze the item loadings on the latent 

variables separately from the linkage of the independent variables to the 

dependent variable.   

 

• Formative variables: Observed variables that “cause” the latent variable, 

i.e., represent different dimensions of it.   
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• GFI: Goodness of Fit Index. Within covariance-based SEM, statistic 

measuring the absolute fit (unadjusted for degrees of freedom) of the 

combined measurement and structural model to the data. 

 

• Heteroscedasticity: Unequal variance among the measurement items. 

 

• Holistic analysis: Analysis combining both structural and measurement 

models. 

 

• IV: Independent Variable. Presumed cause of any change in a response 

or dependent variable(s). 

 

• Latent variable: Research construct that is not observable or measured 

directly, but is measured indirectly through observable variables that 

reflect or form the construct.   

 

• Linear models: A systematic relationship between two variables that can 

be described by a straight line.  

 

• Linear regression: A linear regression uses the method of least squares 

to determine the best equation describing a set of x and y data points. 

 
• LISREL: A procedure for the analysis of LInear Structural RELations 

among one or more sets of variables and variates. It examines the 

covariance structures of the variables and variates included in the model 

under consideration. LISREL permits both confirmatory factory analysis 

and the analysis of path models with multiple sets of data in a 

simultaneous analysis. 
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• Loading (Factor Loading): Weighting which reflect the correlation 

between the original variables and derived factors.  Squared factor 

loadings are the percent of variance in an observed item that is explained 

by its factor.  

 
• LOGIT: Special form of regression in which the criterion variable is a non-

metric, dichotomous (binary) variable. 

 

• MANOVA: Multivariate analysis of variance. Statistical technique that can 

be used to simultaneously explore the relationship between several 

categorical independent variables and two or more metric dependent 

variables.  

 

• Measurement model: Sub-model in structural equation modeling that (1) 

specifies the indicators for each construct, and (2) assesses the reliability 

of each construct for estimating the causal relationships. 

 

• Multicollinearity: Extent to which an independent variable varies with 

other independent variables.  Excessively high multicollinearity challenges 

the statistical assumption that the independent variables are truly 

independent of each other.  Some techniques, such as PLS, are 

distribution-free and do not make the assumption of independence.  Linear 

regression assumes low or no multicollinearity and provides a VIF statistic 

to assess its extent.  LISREL assumes that all the IVs are independent of 

each other, at once.  

 

• Nested models: Models that utilize the same constructs, but differ in 

terms of the number or types of causal relationships represented.  When 

they differ by only one causal path, they are said to be “nested” in one 

another.   
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• NFI: Normed Fix Index. Within covariance-based SEM, statistic measuring 

the normed difference in χ2 between a single factor null model and a 

proposed multi-factor model. 

 

• Observed indicator / variables: Observed value used as an indirect 

measure of a concept or latent variable that cannot be measured or 

observed directly. 

 

• Over Fitting: Ex-post facto “adjustments” of the research model to the 

data: customizing the research model to sample-specific correlations. The 

resulting model represents the data but is not adequate for hypotheses 

testing.  One way of handling this type of hindsight analysis is by splitting 

the data into two datasets.  Building the model based on one dataset and 

then testing the hypotheses on the other [Cliff, 1983].  

 

• Parallel correlational patterns (see Unidimensionality): Additional 

correlations between measurement items that are not reflected in a factor 

analysis or in the measurement model.  For example, if items A1, A2, A3 

and A4 load together on the same factor in a factor analysis but, 

additionally, A1 and A2 are highly correlated to each other in another 

dimension that is not captured in the factor analysis. Confirmatory factor 

analysis in LISREL can detect such cases.   

 

• PLS: Partial Least Squares. A second generation regression model that 

combines a factor analysis with linear regressions, making only minimal 

distribution assumptions.   

 

• PCA: Principal Components Analysis. Statistical procedure employed to 

resolve a set of correlated variables into a smaller group of uncorrelated or 

orthogonal factors. 
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• Polychoric correlation: Measure of association employed as a 

replacement for the product-moment correlation when both variables are 

ordinal measures with three or more categories.  LISREL usually assumes 

that the correlation matrix being analyzed is a Pearson matrix of interval or 

ratio data.  If the correlations are non-parametric, adjustments in the 

LISREL model have to be made and a WLS estimation, rather than ML, 

should be used.  

 
• Reflective variables: Observed variables that “reflect” the latent variable 

and as a representation of the latent variable should be unidimensional 

and correlated. 

 

• Reliability: Extent to which a variable or set of variables is consistent in 

what it is intended to measure. If multiple measurements are taken, the 

reliable measures will all be very consistent in their values. 

 

• R-square or R2: Coefficient of determination. Measure of the proportion of 

the variance of the dependent variable about its mean that is explained by 

the independent variable(s). R-square is derived from the F statistic.  This 

statistic is usually employed in linear regression analysis and PLS. 

 

• RMR: Root Mean Square Residual. Within covariance-based SEM, 

statistic assessing the residual variance of the observed variables and 

how the residual variance of one variable correlates with the residual 

variance of the other items. 

 

• Second generation data analysis techniques: Techniques enabling 

researchers to answer a set of interrelated research questions in a single, 

systematic, and comprehensive analysis by modeling the relationships 

among multiple independent and dependent constructs simultaneously.   
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• SEM: Structural Equation Modeling. Multivariate technique combining 

aspects of multiple regression (examining dependence relationships) and 

factor analysis (representing unmeasured concepts with multiple 

variables) to estimate a series of interrelated dependence relationships 

simultaneously. 

 

• SMC: Squared Multiple Correlation.  Explained variance of each latent 

variable.  Used in LISREL, similar to R-square in regression.  

 

• Statistical conclusion validity: Type of validity that addresses whether 

appropriate statistics were used in calculations that were performed to 

draw conclusions about the population of interest. 

 

• Stepwise linear regression: Regression model that is developed (and 

run) in stages where new independent variables are added to the 

regression model one at a time in a decreasing order of increased R-

square so long as the resulting increase in the F statistic is still significant.  

 
• Structural model: Set of one or more dependence relationships linking 

the model constructs. The structural model is most useful in representing 

the interrelationships of variables between dependence relationships.  

 

• Structural relationships: Linkages between research constructs (or 

variables) that express the underlying structure of the phenomenon under 

investigation.  Sometimes referred to as “paths.” Structural relationships 

are often represented as hypotheses in the research design.   

 
• Unidimensionality: Similar to the concept of reliability, a unidimensional 

construct is one in which the set of indicators has only one underlying trait 

or concept in common.  
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TAM CONSTRUCTS:   
 

• EOU: Ease Of Use. 

 

• IUSE: Intentions to Use. 

 

• PU: Perceived Usefulness.  

 

• SPIR: Social presence-information richness.   

 

• TAM: Technology Acceptance Model.  

 

 

OTHER TERMINOLOGY  

 
 

• GPA: Grade Point Average. 

 

• IT: Information Technology. 

 

• Case study: Research method involving the intense examination of a 

single unit (person, group, or organization) by the researcher, where no 

independent variables are manipulated nor confounding variables 

controlled. 

 

• Field study: Research method involving non-experimental inquiries 

occurring in natural systems.  Researchers using field studies cannot 

manipulate independent variables or control the influence of confounding 

variables. 

 



 

Communications of AIS Volume 4, Article 7                     74 
Structural Equation Modeling Techniques and Regression: Guidelines 
For Research Practice by D. Gefen, D.W. Straub, and M. Boudreau 

 

• Field experiment: Research method involving the experimental 

manipulation of one or more variables within a naturally occurring system 

and subsequent measurement of the impact of the manipulation on one or 

more dependent variables. 

 

• Free simulation experiment: A form of experimentation in which the IVs 

are not manipulated in order to examine independent variables - 

dependent variables relationships, but are allowed to move freely over 

their natural range.  Subjects are all presented with identical experimental 

tasks and respond to these tasks with freely chosen choices. 

 

• Laboratory experiment: Research method taking place in a setting 

especially created by the researcher for the investigation of the 

phenomenon. Within a laboratory experiment, the researcher has control 

over the independent variable(s) and the random assignment of research 

participants to various treatment and non-treatment conditions. 

 

• Travelocity.com: Travel site on the Internet providing secure online 

reservation capabilities for air, car, hotel and vacation reservations, plus 

access to a vast database of destination and other travel information. 

http://www.travelocity.com 
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