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Abstract 

Big data has attracted significant attention in recent years due to its potential. While 

many organisations have access to big data, there is a lack of evidence and guidance 

on effective use of big data. Information systems research has explored effective use in 

a variety of contexts. However, it is yet to specifically consider the unique 

characteristics of big data. This paper presents the results of an empirical study that 

aimed to identify significant enablers and inhibitors of effective use of big data using 

an exploratory case study as a research method. We found adequate system 

capabilities, established the culture of collaboration, and good working attitude to be 

the key enablers and poor data quality, lack of data understanding, data silos, lack of 

time, lack of cost-benefit analysis, lack of top management support, and lack of 

technical skills to be the key inhibitors.  

Keywords:  Effective Use, Big Data, Enablers, Inhibitors, Definition 

 

 

 

 



 Enablers and Inhibitors of Effective Use of Big Data 

  

Twenty-Second Pacific Asia Conference on Information Systems, Japan 2018      

 

Introduction 

Big data is characterised by the so-called Vs, namely Volume (vast amounts of data generated), Variety 

(different type of data), Velocity (speed of data generated), Veracity (messiness of the data) and Value 

(turning data into useful insights) (Anuradha 2015). The last V – value – is to some extent dependent 

on how effectively organizations can use big data. The effective use of big data includes the complete 

technological stack, including raw data processing, storage, ways of managing data, and analytics 

(Merino et al. (2016)) and information systems that support the use of big data. The extent of big data 

projects success will be determined by how effectively an organization implementing big data.  

Burton-Jones and Grange (2012) define effective use as using a system in a way that helps attain goals. 

Existing information systems research has explored effective use in a variety of contexts. However, it 

is yet to specifically consider the unique characteristics of big data. Yet, effective use of big data is said 

to have the potential to transform economies and deliver a new wave of growth (Henke et al. 2016; 

Manyika et al. 2011). At the same time, however, research indicates that while most organisations have 

access to big data, they don’t necessarily have the capacity to use it effectively (LaValle et al. 2013). 

Accordingly, understanding the enablers and inhibitors that influence effective use of big data is a 

necessary step towards providing guidance for organisations, such that the full potential and value of 

big data can be realised. 

Prior research on effective use in the context of information systems has focused at the system level i.e. 

effective use of information systems (Agarwal et al. 2010; Boudreau and Seligman 2006; LeRouge et 

al. 2007; Pavlou et al. 2008). For example, Burton-Jones and Grange (2012) proposed a theory of the 

effective use of information systems. Their work is specifically based on representation theory but 

recognises that many other factors could drive effective use (e.g., intention to use, organisation culture, 

etc). Similarly, the Technology Acceptance Model (TAM) adapted social-psychological/behavioural 

theory and introduced perceived ease of use and perceived usefulness as antecedents of information 

systems effectiveness. UTAUT (The Unified Theory of Acceptance and Use of Technology) was 

developed on the basis of social cognitive theory and diffusion of innovations theory. While these 

studies shed light on effective use of information systems in a conventional enterprise setting, they do 

not consider big data specifically and the unique challenges related to the big data ‘Vs’. Thus, we argue 

that the body of knowledge on the effective use of information systems needs to be revisited in the 

context of big data.  

Although, historically, each of these characteristics has been tackled to varying levels of success, it is 

their collective impact that presents a unique set of challenges, quite distinct from previous information 

systems research. For example, the database research community has a long history of contributing to 

query performance for large data (Abadi et al. 2006; Candea et al. 2011; Wang et al. 2015) and data 

stream processing (Abadi et al. 2003; Babcock et al. 2002; Jiang et al. 2014) that addresses volume and 

velocity issues. More recently, scale-out architectures have been developed to store vast amounts of 

data. To handle velocity of the data, cloud infrastructures that allow bursting for additional computation 

power have been developed for real-time data analysis. Similarly, there are several contributions 

towards handling the variety of the data, such as unstructured, graph, spatial, microblog and text data. 

However, organisations are still struggling to manage and harness value from big data (Segarra et al. 

2016; Wamba et al. 2017; Zeng and Glaister 2017). Recent studies indicate that most big data initiatives 

fail to deliver on their expectations (Marr 2015) and that the failure is often not due to technology but 

due to problems associated with organising and managing the socio-technical complexity of big data 

projects.  

Decision support systems in organisations are moving from model-driven to data-driven. In model-

driven decision support systems, users and analysts interact primarily with a predefined (mathematical) 

model and its results. Model-driven approaches have been highly successful in helping to solve well-

defined and structured problems (for example, what-if-analysis). Meanwhile, in data-driven approaches, 

users (data scientists) interact primarily with the data. This approach promises to solve unstructured, 

exploratory and so-called wicked problems, by identifying relations or patterns in data to gain insights 

and foresights for decision-making. Given the complexity of the methods and the size of the data on 

which they are applied, there are understandably some cultural issues within organisations that can 
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become barriers in adopting a data-driven approach to decision making (Davenport and Patil 2012; 

McAfee et al. 2012). According to IBM (LaValle et al. 2013), 1 in 3 business leaders do not trust the 

information they use for decision making. Indeed, one of big data characteristics is veracity, which 

means that a lack of data quality and trustworthiness might influence the credibility of insight generated. 

Furthermore, there is a belief that a machine cannot replace the instinct and capability of humans (Chui 

et al. 2016). Decision makers may need to learn how to supplement human insights with actionable 

insights from big data analytics. Such resistance and barriers may result in widening of the business-

technology divide - an enduring problem that has been the target of years of research in information 

systems, and hence needs to be studied in the specific context of big data initiatives.  

Based on the above arguments, the effective use of big data in an organisation is a complex 

phenomenon. Understanding the technical, social and business enablers and inhibitors that are 

influencing effective use of big data is a necessary step towards developing a theory of the effective use 

of big data and, thus, providing guidance to organisations such that the value of big data can be better 

realised. Accordingly, in this study, we explore the case of a data-intensive project that meets the 

characteristics of big data. The study aims to identify, in an empirical manner, enablers and inhibitors 

that might influence effective use of big data. Based on a case study research design, we identify and 

describe 15 enablers and inhibitors that influence effective use of big data. We also use the study to 

distil a definition of effective use of big data to facilitate a more conscious usage of the term and more 

coherent development of research on this subject. 

This paper is organized as follows. In the next section, we report on the current body of knowledge 

related to effective use of information systems. We then present the methodology that constitutes a 

description of the case study setting, data coding and analysis, and approach to identify enablers and 

inhibitors from a case study. We identify and describe 15 enablers and inhibitors for effective use of 

big data and discuss the outcomes of the study in the results and discussions section. We conclude by 

summarising the findings and outlining future research opportunities.  

Related Work  

A substantial number of prior studies have focused on developing models and theory relating to the use 

and effective use of information systems and technology. TAM is one such well-tested model of 

information technology use (Davis et al. 1989). TAM is based on two theories - TRA (Theory of 

Reasoned Action) and the expectancy-value model. It suggests that information system usage is 

determined by two major variables: perceived usefulness and perceived ease of use. The model was 

further enhanced by Venkatesh et al. (2003), with the development of the UTAUT (Unified Theory of 

Acceptance and Use of Technology). UTAUT posits that usage behaviour is influenced by several 

factors, including performance expectancy, effort expectancy, social influence, facilitating conditions, 

gender, age, experience and voluntariness of use. TAM and UTAUT are widely recognized as the 

underpinning theories of information technology use in IS research. 

However, to achieve designed objectives or goals, systems must be used effectively, not just used. The 

Theory of Effective Use (TEU) (Burton-Jones and Grange 2012) is a natural progression from studying 

use, as in TAM and UTAUT, to the study of effective use. TEU is founded on representation theory 

(Burton-Jones and Grange 2012). It proposes two levels of effective use, viz. the nature and the drivers 

of effective use. Adaptation actions and learning actions are identified as the major antecedents (drivers) 

of effective use. Trieu (2013) extended TEU in the context of business intelligence (BI) systems, by 

studying the impact of enterprise architecture maturity stages on effective use. In the big data context, 

Merino et al. (2016) conducted a study to explore whether data quality levels were sufficient for 

intended use. Accordingly, they proposed a model to assess the level of Quality-in-Use of big data. This 

research, to the best of our knowledge, is the latest attempt to develop TEU further, and to extend the 

body of knowledge on information systems and technology use.    

Effective use of big data has received attention from practitioners and researchers in many industries. 

For example, studies in the healthcare sector have explored effective use of big data in ambulatory care 

(Thorpe and Gray 2015) and Neonatal Intensive Care Unit (Vijayalakshmi et al. 2015). The use of big 

data for organisational efficiency and effectiveness has also been investigated (Hazen et al. 2014). 
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Tallon (2013) in his paper has addressed enablers and inhibitors of big data and analytics use on 

government aspects. Moreover, several journal articles forecast future challenges and trends related to 

the use of big data, emphasising the importance of exploiting its benefits (Assunção et al. 2015), 

(Kambatla et al. 2014), (Chen and Zhang 2014) and (Huser and Cimino 2015). While these articles 

outline benefits of effective use of big data, they do not explore the enablers and inhibitors of making 

effective use of big data that including all related aspects.  

The lack of studies and lack of core knowledge on enablers and inhibitors that impact effective use of 

big data is an impediment to the success of projects involving new and large datasets. Such enablers 

and inhibitors may stem from technology, human sources, and organisational capabilities and from the 

data itself. Thus, developing a comprehensive model of effective use of big data requires substantial 

theoretical development, which, in turn, requires the identification of enablers and inhibitors as a 

prerequisite. We aim to contribute towards this goal by identifying the enablers and inhibitors that have 

the potential to impact effective use of big data and formulate the definition of effective use of big data.  

Research Method 

This study uses an exploratory case study as a research strategy. The aim of using an exploratory study 

is to extract detailed and reliable perspectives of the issues being investigated. In this case, data are 

gathered primarily using semi-structured interviews and through document analysis. The semi-

structured interviewing technique was chosen as the main data collection technique to enable the 

researcher to ask for more detail, probe an issue, and go back and forth among important points and 

request further explanation. Accordingly, an open-ended semi-structured interview protocol was 

prepared.   

As the objective of the study was to iteratively identify, develop and saturate emerging concepts, the 

selection of participants was purposive (Alemu et al. 2017). Since the focus was on concepts and 

categories rather than descriptions (i.e. conceptualisation rather than representative sampling), the 

profile of participants (such as personal details, educational background, gender, age, etc.) was not 

collected and, hence, could not be analysed.  

Case Study Setting 

While there is a tendency for individuals to equate big data simply with a large volume of data, it is in 

fact variety, not volume or velocity, which drives big data initiatives and investments (Bean 2016). A 

2016 survey of over fifty executives in large organizations (Partners 2016) suggests that variety trumps 

volume and velocity when it comes to big data success. Organizations continue to report that variety is 

the primary technical driver behind big data investments (40%), with volume (14.5%) and velocity 

(3.6%) lagging well behind. Organizations are seeking to integrate more sources of data, including new 

sources as well as legacy sources. Accordingly, we chose a project that collected data for all research 

data throughout an Australian university - the aim of the project was to present research-related 

information to fulfil government requirements. The project focused on a wide range of data sources, 

including structured and unstructured data (such as text files, email, website and scientific data). The 

selected case involved the management and analysis of over 15 million tuples and 8000 entities. The 

veracity of data in the selected case was also of concern because of major challenges in relation to data 

accuracy and trustworthiness.    

Data Collection 

Primary data collection was undertaken using interview protocols, supported by reviews of related 

documents and systems, where available. During the interview, participants were asked 4 categories of 

questions, as follows:  

• Setting: The characteristics, purposes, benefits and examples of successful use of big data. 

• Perception: The perceived and actual value of big data. 

• Experiences: Challenges and support mechanisms of effective use of big data. 
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• Opinions: Meaning of big data and effective use of big data.  

We further created two versions of the above questions, varied slightly for business vs technical users, 

and administered them depending on the type of participant involved: business user and technical staff. 

Five participants from the single organisation were interviewed. These participants include 2 technical 

staff and 3 business users. Interviews were conducted between July 2017 and August 2017. All 

interviews were digitally recorded. The interviews averaged 60 minutes in duration, with a total time of 

334 minutes. All interviews were transcribed to facilitate analysis, as were the related interview notes 

made by three researchers involved in the interviews. Table 1 provides an overview. 

Table 1. Summary of Interview Data 

Participant Role Gender Date and duration of interview 

Participant A Project Director Female 26-07-2017, 1h07min 

Participant B Manager of Data Services Male 31-07-2017, 1h11min 

Participant C Project Officer Female 01-08-2017, 1h13min 

Participant D Director, Planning and 

Business Intelligence 

Female 07-08-2017, 1h19min 

Participant E Director, Research 

Analysis and Operations 

Female 07-08-2017, 44min 

Data Coding and Analysis 

The coding started with a process referred to as microanalysis (Strauss and Corbin 1990). That is, a 

line-by-line analysis of semi-structured interview to identify initial codes. This research follows the 

three steps of Saldaña (2015), to generate and label codes: First, review the characteristics of the 

research question(s). Second, identify coding methods (such as in vivo, selective coding) consistent 

with the research question(s). Third, assign codes (using coding methods) that best represent the 

relevant information in the data. We used NVivo 11 to organise and analyse the data because it is useful 

for moving data easily from one code to another and to document the data as it is analysed (Miles and 

Huberman 1994). 

The coding process was conducted using a dual coder approach. The first researcher coded the 213 

pages of transcripts using open coding. Table 2 provides some exemplary coding. The second researcher 

then verified all the codes by checking the codes and the transcripts to ensure the context and the code 

names are related. Three outcomes were possible in this 2nd coder verification approach: text doesn’t 

match the code, text matches a different code, or text doesn’t match any code. A discussion to reach 

consensus took place to finalize the code’s name. The coding process produced 15 enablers and 

inhibitors.  

Table 2. Exemplary Coding 

Quote Code 

 “…income data is particularly missing, [there 

are] all sorts of manual processes involved in 

attaching income record to projects, it’s not 

straightforward at all...” 

 

Poor Data Quality 

 

 

“…not understanding what the data was 

collected for originally or why it was assigned for 

classification […] people - they have not been 

involved in that process, they can just make sort 

of the assumptions, the assumptions are the 

enemy of meaningful insight from data…” 

Lack of Data Understanding 
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Identification of Enablers and Inhibitors  

Enablers of effective use of big data are factors that contribute to strengthening the attainment of the 

big data initiative goals. Inhibitors of effective use of big data, on the flip side, are defined as factors 

which contribute to weakening the attainment of the big data initiative goals. The enablers and inhibitors 

are identified by examining their positive or negative effects on the effective use of big data. While they 

can be two sides of the same coin, in this paper we report them in the positive or negative sense 

depending based on their perception by the participants in the case study at hand.  

We identified the most significant enablers and inhibitors using a weighted sum of three criteria. We 

use the weighted sum method as this method is commonly used  in multi-criteria decision analysis and 

ranking techniques (Triantaphyllou 2000). The first criterion is the frequency of occurrence of the codes 

in the transcripts. The greater the number of occurrences of the codes, the stronger, or more prominent 

the enabler or inhibitor. The second criterion is the number of interviewees that mention the underlying 

enabler or inhibitor. The greater the number of interviewees mentioning the enabler or inhibitor, the 

more prominent it is. The third criterion relates to whether the enabler or inhibitor is explicitly 

mentioned by interviewees as being significant, critical or important (it receives a score of 1 if so, and 

0 otherwise). We assign a weight of 1, 3, and 5, respectively, to each of the three criteria and sum the 

result to obtain the score for ranking, following the formula: score = 1 * (number of occurrence) + 3 * 

(number of interviewees that mention the factor) + 5 * (1 if important, 0 if is not).  For example, if an 

enabler occurs 3 times, and is mentioned by 2 interviewees and is indicated as important, then: score = 

1 * 3 + 3 * 2 + 5 * 1 = 14.  

Defining Effective use of Big Data 

To enhance understanding of effective use of big data, we also aimed to synthesise from the semi 

structured interview data a definition for effective use of big data. To ensure consistency of views, we 

first discussed what big data is by asking participants “What does big data mean to you?” Following 

this discussion, we explored through asking “What does effective use of big data mean to you?” what 

the participants considered to constitute effective use of big data. 

Results and Discussion 

Enablers and Inhibitors  

In the following, we describe the identified enablers and inhibitors and present them from the most 

significant to the least significant based on the earlier described selection/scoring criteria in research 

method section, namely: number of codes, number of interviewees and the perceived importance. We 

identify four enablers (E): (Adequate System Capabilities, Established Culture of Collaboration, Good 

Working Attitude, and Champions) and 11 inhibitors (I): (Poor Data Quality, Lack of Data 

Understanding, Data Silos, Lack of Time, Lack of Cost-Benefit Analysis, Lack of Top Management 

Support, Lack of Technical Skills, Lack of Data Management Process, Lack of Right People, Lack of 

Clear Goal, Poor Data Privacy and Security), as shown in Table 3 together with their relative ranking. 

In the following we offer summaries of each enabler and inhibitor, providing examples from our 

interview data.  

Table 3. Identified Significant Enablers and Inhibitors 

# Name 
# of codes 

(Weight=1) 

# of 

interviewees 

(Weight=3) 

Importance 

(Weight=5) 
Score Ranking 

1 Poor Data Quality (I) 41 5 Yes 61 1 

2 
Lack of Data Understanding 

(I) 
31 4 Yes 48 2 

3 
Adequate System 

Capabilities (E) 
24 4 Yes 41 3 

4 Data Silos (I) 22 3 Yes 36 4 
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# Name 
# of codes 

(Weight=1) 

# of 

interviewees 

(Weight=3) 

Importance 

(Weight=5) 
Score Ranking 

5 Lack of Time (I) 18 4 Yes 35 5 

6 
Established Culture of 

Collaboration (E) 
17 4 Yes 34 6 

7 
Lack of Cost-Benefit 

Analysis (I) 
15 4 Yes 32 7 

8 Good Working Attitude (E) 17 3 Yes 31 8 

9 
Lack of Top Management 

Support (I) 
21 3 No 30 9 

10 Lack of Technical Skills (I) 10 4 Yes 27 10 

11 
Lack of Data Management 

Processes (I) 
20 2 No 26 11 

12 Lack of Right People (I) 9 2 Yes 20 12 

13 Lack of Clear Goal (I) 12 2 No 18 13 

14 Champions (E) 9 2 No 15 14 

15 
Poor Data Privacy and 

Security (I) 
4 1 No 7 15 

 

Poor Data Quality (I) 

The term data quality is defined as fitness for use (Juran 1992). Data quality is a cross-disciplinary and 

often domain specific problem or one that is dependent on the context due to the importance of fitness 

for use (Sadiq et al. 2011). Data quality of big data should include a focus on usability (Bertino and 

Ferrari 2018; Cai and Zhu 2015; Jianzhong and Xianmin 2013). Data quality issues impede the effective 

use of big data and have become a significant inhibitor, as indicated by interviewees in our study, e.g. 

“It’s combination of things, hmm… I would say top of these is data quality…” Data quality problems 

may have many forms, including: data that is not formatted properly and does not include unique 

identifies, data duplicates, missing data, misclassification, and poor control of data quality at point of 

entry, resulting in ‘garbage in garbage out’.    

Lack of Data Understanding (I) 

Lack of data understanding relates to users not being aware of the purpose for which data was collected 

originally, which may result in them making incorrect assumptions about the data, leading to poor 

quality insights. For example, one interviewee indicated: “…not understanding what the data was 

collected for originally or why it was assigned for classification […] people - they have not been 

involved in that process, they can just make sort of the assumptions, the assumptions are the enemy of 

meaningful insight from data…” Researchers and practitioners suggest providing a ‘user-oriented’ view 

of metadata during data collection that can effectively improve data understanding (Di Giovanni et al. 

2009). To improve data understanding and engagement of the users, Dimara et al. (2017) suggests using 

narratives in the context of data analysis and communication.   

Adequate System Capabilities (E) 

To ensure effective use of big data, system capabilities must be augmented to meet the characteristics 

of big data that exceed a normal system’s capabilities. System capabilities are gradually challenged due 

to the scalability and performance considerations purely owing to changing nature of data (Mohanty et 

al. 2013). The studied organisation also created a system to satisfy the dynamic user needs. “So, we 

have built some great systems off the back of that…” The interviewee emphasized that system 

capabilities are most important/critical support for effective use of big data.    
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Data Silos (I) 

Data silos are a collection of datasets with no specific links to any other data (Jennings and Finkelstein 

2010). The data in the case studied was fragmented, spread across systems that were not integrated and 

belonged to various departments: “We do our best, but, um, there’s certainly a lot of challenges around, 

um, bringing customer information to the right area. You know, making sure it's aligned with the right 

area of the organisation…” Data silos can be tackled by implementing good data integration practices. 

Data integration is a process used to combine data from disparate sources into meaningful and valuable 

insights. It allows different data types (such as datasets, documents and tables) to be merged by users, 

organisations and applications, for use as personal or business process and/or functions.  

Lack of Time (I) 

This inhibitor is specific to big data projects with a tight project schedule, as was the case in the project 

we studied. The duration of this project was relatively short, with a critical deadline that had to be met 

due to regulatory requirements. Four of our 5 interviewees emphasized this inhibitor influencing 

effective use of big data. They indicated that there was not enough time to collect and analyse all the 

data and also to build the required system to facilitate their analysis: “That was very rushed, and we had 

a very short period of time…” 

Established Culture of Collaboration (E) 

A good culture of collaboration is reflected in a group of people with different functional expertise 

coming together to complement their skills and work toward a common goal – e.g. business 

professionals working effectively together with data analysts and IT professionals to gain insights from 

data (Kiron and Shockley 2011). Four interviewees highlighted the strong culture of collaboration in 

the organisation as the most predominant enabler in the effective use of big data: “The culture of 

collaboration and common purpose that I think our organisation has been quite good at…” One 

interviewee indicated that the culture of collaboration was been deeply embedded in the project team: 

“There is a rare exception, where someone didn't act very collaboratively and so, that sort of behaviour 

been very rare…”  

Lack of Cost-Benefit Analysis (I) 

Cost-Benefit Analysis is the process of evaluating a planned action by determining what net value it 

will have for the organisation. A cost-benefit analysis needs to performed to measure the potential long-

term benefits of adopting big data to support data-driven decision making and communicate findings to 

non-technical stakeholders (Skourletopoulos et al. 2017). The organisation in the studied case invested 

in expensive data sources but then found that not all purchased data was needed/used. “It isn’t giving 

you an answer that’s useful in any business sense. But it’s also about the cost of it all, you know, it’s 

the cost-benefit stuff…” 

Good Working Attitude (E) 

Working attitude is a tendency to respond positively or negatively towards a certain situation (Cacioppo 

et al. 1997). From this study, we identified several indictors of working attitudes that can enable big 

data projects: committed, focused, hard-working, good morale, efficient, ethical, and trustworthy: “… 

everybody was committed to do as best as we could within the period of time, so everybody worked 

incredibly hard, and there was really good morale with the all of the team to get all of the data in, by 

certain time…” 

Lack of Top Management Support (I) 

Top management support is the willingness of top management to provide necessary resources and 

authority for project success (Jang and Lee 1998). The studied organisation faced a problem with lack 

of top management support, in terms of providing more investment in infrastructure: “…they have to 

spend money on the right infrastructure because big data can actually be very useful…” Top 

management needs to address correctly defining and appropriating the necessary resources to ensure 

big data project success. 
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Lack of Technical Skills (I) 

Technical skills are the knowledge and abilities needed to accomplish analytical, scientific or 

technology-related duties, as well as other tasks relating to big data tools or processes. The problem 

faced by the studied organisation was not the lack of tools but rather problems with utilising them 

corectly, especially in the context of analytics. “Those sorts of tools that are out there, […] our ability 

to use them is limited…” Organizations in order to leverage data through big data analytics need human 

capital with high level of technical skills. 

Lack of Data Management Process (I) 

According to Kiron et al. (2012), adequate data management processes need to be established to create 

an environment in which effective use big data is enabled. In the studied organization, the interviewees 

identified lack of data management process, from data capture, storage, transformation through to 

provision of results. For example: “…in terms of the data capture, there are some limitations…” 

Lack of Right People (I) 

The availability of the right people is important to the big data project success (Gao et al. 2015). 

However, involving the right people is often difficult. The studied organization faced this problem: 

“That’s another thing that was quite complex in doing in this project. How to ensure we had the right 

staff…” Another interviewee pointed out: “So we will advertise for people, and we will rarely get more 

than one appointable…” 

Lack of Clear Goal (I) 

McAfee et al. (2012) argues that a clear goal is a prerequisite for an organization to be a top performer 

in their use of big data. The studied organization suffered from a lack of clear goals in terms of their 

big data project and lacked a detailed and well planned step-by-step project map.  “The goal was never 

defined upfront. We didn’t realise I think from the very beginning […]  we didn’t know that we were 

going to have to build a system…” 

Champions (E) 

A champion is often a manager who actively promotes IS solutions (Guinan et al. 1998). In the case of 

the studied project and organization, there was a manager who developed a reliable and easy to use 

system to support data management. “So as far as I’m concerned, the number one support mechanism 

that I think the organization can’t do without is [name of person] …” Another interviewee mentioned 

the same name again “…but there’s a key individual in this organization, [name of person] …” 

Poor Data Privacy and Security (I) 

Based on (Halaweh and El Massry 2017) empirical study, data privacy and security is one of the factors 

that affects the success or failure of big data implementation in organization. Our study reinforces this 

finding. The studied organization had a problem with privacy issue “I mean, there’s obviously privacy 

issues…” and storing data in secure places. “I think the organization has to make sure that secure 

storage for the working data and secure storage for the data once they finished…”  

Defining Effective Use of Big Data       

Having outlined the identified inhibitors and enablers, we now move on to explore how our participants 

perceived big data and its effective use.  

To recap, effective use in the information systems discipline is defined as the degree to which the use 

of an information system increases achievement of the goals an organisation has set concerning the 

system (Burton-Jones and Grange (2012). Therefore, effective use is said to be attained if an 

organisation realises the intended outcomes of system use, such as increasing customer satisfaction or 

decreasing delivery time. This definition considers the multilevel nature of system usage (individual, 

group, and organisational level) and assumes that “the relevant goal for effective use is simply whatever 

end-point the system is intended to achieve”. Furthermore, ‘goal achievement’ has objective qualities 
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that can be quantitatively measured to assess performance. For example, if a company deploys a system 

to reduce the time of delivery product, the system is used effectively if the time for delivering the 

product decreases. 

While there is agreement on this definition in the information systems discipline, there is a lack of 

understanding of effective use in the context of big data. Consensus, however, is important. Ronda‐
Pupo and Guerras‐Martin (2012) argue that the level of consensus on a definition of a concept shown 

by a scientific community can be used as a measure of the progress of a discipline and knowledge. Big 

data has instead evolved quickly, and arguably in a disorderly manner, so that such a universally 

accepted formal statement denoting what is the meaning of the effective use of big data does not exist.  

Through our case study, we explored what effective use of big data meant to the project participants. 

Their summarised responses as shown in Table 4.   

Table 4. Definition of Effective Use of Big Data 

Participant Definition 

Participant A Use of big data for evidence-based decisions, or to change behaviour. 

Participant B Not gaining insight from flawed understanding of the data.  

Participant C Not misrepresenting data. The ability to link stories that we haven’t been able to link 

in the past and be able to apply them. 

Participant D Giving you answers that are useful to business and with appropriate use of resources 

(cost-benefit analysis). 

Participant E Drawing together a conclusion based on data that is of use or meets our requirements. 

The data might give you a very interesting story. It is utilizing that information to help 

drive the goals of an organisation – i.e. what we do from here. It is to ensure that if 

we’re setting a strategic agenda, that the data supports it or in the future shows 

advancement towards whatever that strategy is. It is more about using it to set goals 

that are achievable, but also possibly aspirational based on where you are now.    

 

By reviewing these responses, we argue that the core of the concept of effective use of big data can be 

expressed by the following notions: 

• Evidence-based decision making 

• Generation of new insights 

• Setting of organisational goals  

• Behavioural change 

We observe that the ‘object’ to which effective use of big data should refer in its definition is 

‘organization goals’, but not necessarily towards only achieving them, as in effective use of information 

systems, but beyond that towards setting new strategies and aspirations and changing behaviour. That 

is more than meeting goals. Effective use of big data is also the ability to set new goals in an informed 

manner. We argue that this observation is instrumental in defining a distinctive and authentic definition 

for effective use of big data.  

Concluding Discussion 

Effective use of big data in organisations is a complex phenomenon and understanding the technical, 

organizational and business enablers and inhibitors that contribute to effective use of big data is key to 

providing organisations with guidance for increased success in big data projects. This study is the first 

attempt to explore enablers and inhibitors that may influence effective use of big data. In this paper, we 

report on a case study that investigates the experience of an organisation’s use of big data. Through the 

study, we identified four enablers and 11 inhibitors. We propose these items need to be studied further 

to provide guidance for companies for their big data projects. To summarise the enablers and inhibitors, 
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and their impact on effective use of big data, we develop a preliminary model that provides a starting 

point for future research to achieve a more nuanced understanding of effective use of big data. Grounded 

in our analysis of the data, the conceptual model in Figure 1 is based on the following propositions: 

Proposition 1: Effective use of big data is influenced by right data that can be measured by data 

understanding, data quality, data management process, and data privacy and security. 

Proposition 2: Effective use of big data is influenced by people and organizational support, 

which can be measured by top management support, culture of collaboration, technical skills, 

good working attitude, and right people. 

Proposition 3: Effective use of big data is influenced by system support, which can be measured 

by system capabilities and system integration. 

Proposition 4: Effective use of big data is influenced by perceived benefit, which can be 

measured by cost-benefit analysis and clear goals. 

Right Data

People & 

Organizational 

Support

System Support

Perceived Benefit

Effective Use of Big 

Data

Data Understanding

Data Quality

Top Management Support

Culture of Collaboration

System Capabilities

Data Management Process

Technical Skills

Data Privacy & Security

Good Working Attitudes

Cost-Benefit Analysis

A Clear Goal

`System Integration

Right People

 

Figure 1.  Model of the Enablers of Effective Use of Big Data 

Although this study offers an initial step in identifying enablers and inhibitors that impact effective use 

of big data, there are some limitations in this research. To study effective use of big data, and to 

ultimately develop a theory of it, sophisticated methodological approaches are needed to build strong 

evidence of enablers and inhibitors and relationships, together with associated hypotheses or 

propositions. Substantive theory-building efforts are required to ensure an adequate consideration of 

the complex problem represented by big data.  

Our findings in this paper are based on a single case study. Hence external validity associated with the 

extent of generalisability of the study requires further consideration. We envision an exhaustive and 

rigorous future study which will define effective use of big data on the basis of a larger set of empirical 

evidence, further investigating enablers and inhibitors that influence effective use of big data and 

examining the relationships between them. Going forward, studying the various enablers and inhibitors 

through multiple case studies in different organizations, is needed as the basis to refine, evaluate and 

develop a theory of effective use of big data. 
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