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Abstract 

We investigate the effects of mobile-sourced ridesharing via platforms like Uber, Lyft, 
and Didi Chuxing on the use of public transit systems. Our study uses trip-level data about 
Uber usage in New York City, turnstile data about subway usage, and trip-level data 
about taxicab and shared bike usage. We find that on the surface, ridesharing and 
subway usage are positively correlated. Exploiting a series of exogenous shocks to the 
system – the closing of subway stations – to better isolate substitution effects, our 
preliminary results suggest that the average shock results in an increase of over 30% in 
the use of ridesharing, highlighting the potential for crowd-based systems to serve as 
infrastructure that helps smooth unexpected supply and demand surges. Our ongoing 
work studies how these substitution patterns vary with neighborhood socioeconomic 
indicators, and how substitution towards mobile-hailed ridesharing compares to 
traditional taxi and bike sharing. We hope to lay a data-driven foundation to better 
understand how sharing economy alternatives substitute and complement existing and 
future capital-intensive transit systems, and to provide a more judicious basis for 
assessing impacts on different population segments. 

Keywords:  Data science and business analytics, sharing economy, ridesharing 
 

Introduction 

As the sharing economy has gained prominence in the world economy, mobile-hailed ridesharing 
companies like Uber and Lyft in the US, Didi Chuxing in China, and Ola in India have begun to challenge 
traditional transportation providers. The growing popularity and exponential growth of such services has 
led to concerns that they will lower the economic viability of public goods provision, perhaps even 
eventually replacing existing mass transit systems with private alternatives that are less inclusive.  

Ridesharing companies, in contrast, highlight their ability to provide services where public transit has 
failed. Upon its arrival in Boston, Uber ran promotions when the Red Line metro was scheduled to undergo 
repairs, citing “slow, inefficient buses” and “35,000 people left out in the cold waiting for shuttle service” 
(Uber 2011). For April Fool’s day in New York City, Uber announced a premature “expansion” of 
Manhattan’s long-awaited Second-Avenue subway line, offering rides along Second Avenue for the price of 
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a subway fare (Ninomiya 2014). And in San Diego, Uber explicitly claims: “gaps in public transportation 
become hubs for Uber…we complement public transit” (Donahue 2015).  

In this paper, we describe an empirical study that takes a first step at quantifying the relationship between 
ridesharing and the use of public transportation, and the influence of new sharing economy alternatives on 
individual choices of transport mode at the system level. Specifically, we use data on Uber and subway 
ridership from the city of New York to study the extent to which ridesharing services act as “invisible 
infrastructure” (Sundararajan 2016) that absorbs the demand surplus caused by subway service 
disruptions. We find that subway service disruptions are associated with increases in the use of ridesharing. 
The magnitude of these increases is economically significant relative to average Uber ridership but small 
relative to average subway ridership.  

Our findings suggest that Uber and Lyft’s business strategy of competing for market share among 
consumers inconvenienced by public transit makes sense; such services may benefit from subway service 
disruptions. In doing so, this work also illustrates the potential of applying large-scale Open Data at the city 
level in a business analytics context. Although the increase in Uber rides during periods of subway service 
disruptions matches our expectations, the magnitude of this increase is harder to predict. The fact that we 
were unable to establish a similar relationship between subway disruptions and green taxi or Citi Bike 
ridership further suggests the need for empirical validation of such intuitive trends. 

Background and Literature Review 

As ridesharing services have grown in popularity, researchers and practitioners have begun to explore how 
they influence transport mode choice at the individual level. These studies generally suggest that 
ridesharing is a substitute for driving. For example, Rayle et al. (2014) conducted an intercept survey of 
ridesharing users and matched this survey with existing data on taxi users and taxi trips from the same time 
period.  The authors found that many ridesharing customers reported less actual use of their cars, although 
the authors found no relationship between ridesharing and self-reported changes in car ownership. 
Similarly, a recent report from the American Public Transportation Association (APTA) used survey data to 
suggest that ridesharing is more likely to replace a trip in a private car than a trip with public transportation 
(Shared-Use Mobility Center 2016). 

Interestingly, there is also evidence of this substitution among individuals whose consumption choices have 
impaired their ability to drive. Greenwood and Wattal (2015) use variation in the timing of Uber’s market 
entry across California to estimate the impact of Uber availability on the number of drivers killed in alcohol-
related incidents. Encouragingly, they find that UberX reduces traffic fatalities nine to fifteen months after 
it arrives in a new city, as drunk drivers may substitute away from their own cars when an affordable 
alternative is available. 

These studies also agree that ridesharing appeals to those who typically rely on the public transportation 
system. For example, Rayle et al. (2014)  found that ridesharing users were less likely to have a car than taxi 
customers, while the APTA report argued that the use of transport modes like ridesharing is associated with 
less car ownership and more use of public transportation. The authors differ on their attitudes towards 
whether ridesharing is a complement or substitute for public transportation; while Rayle et al. (2014) note 
that users saved approximately 10 minutes on average by choosing ridesharing over public transportation 
alternatives, APTA observes that ridesharing is most popular at times when public transportation operates 
less (e.g. late nights). The report concludes that public transportation systems would do well to leverage 
complementarities with such private-sector alternatives. 

There are fewer studies of the systemic impact of ridesharing on local transportation markets. Most 
recently, a number of journalists and citizen scientists have begun to explore this question. For example, 
FiveThirtyEight has analyzed ridership data to assert that Uber is cutting into the market share of New York 
City yellow cabs, even as it is increasing door-to-door service in New York's outer boroughs (Bialik et al. 
2015; Fischer-Baum and Bialik 2015). Nevertheless, this analysis is based on correlations rather than any 
sort of causal claim. Although such analyses form an important first step towards understanding 
ridesharing’s impacts, a more thorough investigation of this relationship is needed. The research described 
below is an attempt to address this gap.  
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Figure 1. Weekly Uber Pickups and Subway Entries (April 2014 - August 2015) 

Research Questions  

Our research studies the extent to which ridesharing acts as a short-term substitute for public 
transportation. Although short-run substitution seems likely, it is possible that ridesharing and public 
transportation target different individuals. For example, the cost of ridesharing may be prohibitive for 
individuals who normally travel with public transportation; or, the inconvenience and safety risks 
associated with public transportation may lead ridesharing users to avoid public transportation altogether. 
On the other hand, ridesharing and public transportation may be associated with different trip types. For 
example, individuals may prefer ridesharing for social trips, while they may rely on public transportation 
for commuting. We are interested in establishing whether such substitution does occur, and if it does, 
estimating its magnitude and the extent to which it is correlated with demographic and geographic 
characteristics of displaced commuters such as average income, baseline reliance on public transportation, 
and the level of transit service available. 

Data 

We use publicly available data from the city of New York, a natural setting for this study: the tri-state area 
is home to the largest public transportation system in the United States, and New York’s Metropolitan 
Transportation Authority (MTA) provides approximately one third of all public transit rides nationwide 
(MTA 2016a). As of January 2016, the MTA reported an average of 6.57 million heavy rail trips a day (APTA 
2016).  

New York City is also home to a growing number of ridesharing users. Our data on Uber pickups spans the 
period from April – September 2014 and January – June 2015.  During this period, ridesharing operated at 
a fraction of the scale of the subway system; the maximum number of rides per day that we observed was 
just under 134,000. Nevertheless, during this period the number of Uber pickups grew dramatically (see 
Figure 1), rising from 0.55 million per month in April 2014 t0 2.82 million in June 2015.  

For context, we extend our analysis of subway and Uber data to include three other popular mode choices: 
yellow taxis (approximately 428,000 rides per day during our period of observation), green taxis 
(approximately 49,000 rides per day during our period of observation), and Citi Bike (approximately 
22,000 rides per day during our period of observation). Yellow taxis are the classic mode of for-hire 
transportation in New York, with a service area that is heavily concentrated in mid-town Manhattan. Green 
cabs were introduced in 2013 to offset this spatial disparity; they serve uptown Manhattan and the outer 
boroughs, and are prohibited from picking up passengers south of West 110th Street or East 96th Street. 
Finally, Citi Bike has acted as New York’s bike share alternative since 2013; it is worth noting that Citi Bike 
ridership is highly seasonal. Citi Bike’s docks are concentrated primarily in central Manhattan and western 
Brooklyn, though its service area continues to expand. 
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Figure 2. Correlograms for Key Variables in the Aggregated Dataset 

Cells show histograms (diagonal), scatterplots (below diagonal) and correlations (above diagonal). 
From top left, the variables shown are: turnstile entries, Uber pickups, Uber pickups in the matched 
zone, yellow taxi pickups, yellow taxi pickups in the matched zone, green taxi pickups, green taxi 
pickups in the matched zone, Citi Bike pickups, a linear measure of time, the number of subway lines 
serving the zone, log mean income of the zone, the percent of workers who commute with public 
transportation in the zone, and log population in the zone. 

Data sources 

The MTA has published weekly data on the number of turnstile entries and exits since 2010 (MTA 2016b). 
The data consists of cumulative readings for stations across the city, collected in approximately four-hour 
intervals at the subunit channel position level (which appears to correspond to a turnstile or a group of 
turnstiles). The data represents 4,635 unique subunit channel positions, which are associated with 732 
control areas (roughly analogous to station entrances or exits) and 468 remote units (analogous to 
stations). 

Several steps were taken to normalize the data for analysis. First, although cumulative entry and exit 
readings were generally recorded in four-hour intervals starting at midnight, the timing of readings was not 
always consistent. Therefore, readings were resampled at the hourly level, and missing values were filled 
through linear interpolation. Second, because these readings were cumulative, each reading was subtracted 
from the previous hour’s reading to obtain the differential number of entries and exits. Finally, occasional 
unexplained jumps in the cumulative readings occurred (possibly corresponding to when a counter was 
reset). To address these anomalies, negative entry or exit counts and entry or exit counts exceeding 10,000 
per hour for a single subunit channel position were discarded.  

New York City’s Taxi and Limousine Commission (TLC) collects data on passenger pickups for Uber and 
other for-hire vehicle companies. Through Freedom of Information Law (FOIL) requests, journalists have 
made this data publicly available for April – September 2014 and January – June 2015 (FiveThirtyEight 
2016). The 2014 Uber data contains trip-level pickup data for 5 Uber bases with GPS coordinates, whereas 
the 2015 data contains trip-level pickup data from 6 Uber bases with location identified according to one of 
New York’s 263 taxi zones.  
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Yellow and green taxi data was accessed from the TLC, which publishes geotagged trip-level data for its cabs 
(NYC Taxi & Limousine Commission 2016). Similarly, geotagged trip-level bike share data was obtained 
from the Citi Bike website (Citi Bike NYC 2016). Complementary demographic data from the 2010 census 
and the 2014 American Community Survey (ACS) was downloaded for New York City census tracts from 
the American FactFinder data portal (U.S. Census Bureau 2016a, 2016b). 

Aggregation 

To create a compiled dataset for analysis, all datasets were restricted to the range of dates for which Uber 
pickup counts were available: April – September 2014 and January – June 2015. To match the taxi zone 
level of aggregation in the 2015 Uber data, all ride-level data (Uber pickups from 2014, taxi rides, and Citi 
Bike pickups) was assigned to a taxi zone using GPS coordinates and aggregated. Similarly, each turnstile 
control area was assigned to a taxi zone, and turnstile entry counts were aggregated by taxi zone. Finally, 
because the turnstile data was primarily read in four-hour intervals starting at midnight, all zone-level ride 
counts were aggregated over the four-hour intervals leading up to 12am, 4am, 8am, 12pm, 4pm, and 8pm. 
The final dataset consists of 334,052 observations representing 2,160 four-hour intervals and 156 taxi 
zones. Summary data for key variables is shown in Figure 2. 

Associating the census data with taxi zones required extrapolating from tract-level statistics. The 2,168 
census tracts associated with New York’s five boroughs did not all fit neatly into taxi zone boundaries; 
therefore, we used the taxi zone boundaries to “slice” the census tract shapefile, resulting in 4,992 unique 
tract segments. To calculate aggregate statistics at the taxi zone level 𝑠𝑠𝑧𝑧, we computed: 

𝑠𝑠𝑧𝑧 = 1
∑  𝑛𝑛𝑡𝑡 𝑎𝑎𝑡𝑡𝑡𝑡𝑎𝑎𝑡𝑡

 𝑡𝑡
  ∑ 𝑠𝑠𝑡𝑡 ∗  𝑛𝑛𝑡𝑡  𝑎𝑎𝑡𝑡𝑡𝑡

𝑎𝑎𝑡𝑡𝑡𝑡     , 

where  𝑛𝑛𝑡𝑡 is population of tract 𝑡𝑡; 𝑎𝑎𝑡𝑡 is the area of tract 𝑡𝑡; 𝑎𝑎𝑡𝑡𝑧𝑧 is the area of tract 𝑡𝑡 that falls in zone 𝑧𝑧; and 𝑠𝑠𝑡𝑡 
is the relevant statistic for tract 𝑡𝑡 (e.g. the percent of workers commuting with public transit). In other 
words, we used the proportion of the tract area that fell in the taxi zone, 𝑎𝑎𝑡𝑡𝑧𝑧 𝑎𝑎𝑡𝑡�  , to estimate the proportion 
of the tract population that fell in the zone. We then used this population to weight the tract-level statistic 
𝑠𝑠𝑡𝑡  when aggregating at the zone level. 

       

Figure 3. Sample Turnstile Entry Counts for Highly Correlated Zone Pairs          
(February 1-8, 2015) 
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Model 

Following prior work, our model design decisions included: (1) the unit of analysis, typically framed as a 
one-way trip, a round-trip tour, or a daily activity schedule; (2) the level of aggregation, typically 
aggregated by region or market segment, or disaggregate at the individual or household level; and (3) the 
type of data used, which may consist of revealed or stated preference data, longitudinal or cross-sectional 
data, and observational or attitudinal data (Ben-Akiva 2008; Ben-Akiva and Lerman 1985).  

Because New York’s subway data does not associate turnstile entries with exits at the individual level, and 
because only pickup data was available for Uber rides, our unit of analysis is effectively a trip leg start; we 
observe the point at which individuals begin to use a particular transport mode. Although restrictive, this 
should suffice for our purposes; the assumption is that an individual, attempting to use the subway and 
finding that it is out of service, makes a choice among the other available alternatives. Similarly, the 
constraints in the Uber data described above required aggregation at the taxi zone level. Fortunately, the 
richness of the available data allows both a longitudinal and observational analysis, with preferences 
revealed by actual behavior. 

Disruptions 

To test the hypothesis that ridesharing may act as a short-run substitute for public transportation, we first 
examined the impact of subway service disruptions on the use of Uber. A taxi zone was considered 
“disrupted” if one or more of its subway remote units (stations) experienced no turnstile entries or exits 
within a four-hour period. Almost all disruptions (98%) lasted for two days or less, with 89% lasting one 
day or less and 38% lasting only four hours. Disruptions most commonly started on Saturday (37%) and 
ended on Sunday (33%), a trend which is consistent with the MTA’s frequent use of weekends for planned 
repairs. Overall, taxi zones experienced disruptions approximately 0.88% of the time, yielding 2,912 four-
hour disruption incidents in our dataset. The model was estimated as follows: 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1 𝑑𝑑𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛𝑖𝑖𝑡𝑡 + 𝛽𝛽2 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡 + 𝛾𝛾1 𝑡𝑡𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡 + 𝛾𝛾2𝑧𝑧𝑑𝑑𝑛𝑛𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡  ,   (1) 

where uberit represents the number of Uber pickups for zone i in period t; 𝛼𝛼 is a constant; disruptionit is a 
binary variable indicating a subway disruption for zone i in period t, subwayit represents the number of 
turnstile entries for zone i in period t; timet is a vector of time controls that includes a linear variable 
indicating the passage of time in days, binary indicators for day of week, and binary indicators for hour of 
day; zonei  is a set of taxi zone fixed effects; and εit is an error term clustered at the zone level. The coefficient 
of interest is β1, the estimated change in the number of Uber rides associated with a disruption in a given 
taxi zone.  

Zone Matching 

To address the concern that Uber pickups and subway service disruptions may be correlated with a third 
omitted variable, we also create pairs of “matched” geographical areas with similar subway ridership 
patterns and test a specification that controls for Uber ridership in the matched areas. In other words, for 
each taxi zone, our goal is to identify a zone that can act as a counterfactual to the disrupted zone. 

Specifically, we created a list of all possible pairs from the 156 zones for which turnstile entry counts existed. 
We removed all pairs of zones that were served by the same subway lines, due to concerns that disruptions 
may travel along a given subway line. We also removed all pairs of zones that were spatially contiguous, due 
to concerns that turnstile entries in one zone might be negatively correlated with turnstile entries in 
neighboring zones when disruptions occur. For each of the remaining eligible pairs, we calculated the 
Pearson correlation between the time series of four-hour turnstile entry counts, and matched zones in 
descending order of correlation. Of the 156 zones for which turnstile entry counts existed, we were able to 
pair 124 zones, with correlations in turnstile entries ranging from 0.98 to 0.43. Figure 3 contains a sample 
plot with one week’s worth of turnstile entry data from the 3 zone pairs with the highest correlation, along 
with a map of these zones. We then estimated the following model: 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1 𝑑𝑑𝑑𝑑𝑠𝑠𝑢𝑢𝑢𝑢𝑑𝑑𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛𝑖𝑖𝑡𝑡 +  𝛽𝛽2 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑎𝑎𝑠𝑠𝑖𝑖𝑡𝑡 +  𝛽𝛽3𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑚𝑚𝑡𝑡 + 𝛾𝛾1 𝑡𝑡𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡 +  𝛾𝛾2𝑧𝑧𝑑𝑑𝑛𝑛𝑢𝑢𝑖𝑖 + 𝜀𝜀𝑖𝑖𝑡𝑡  ,   (2) 



 Ridesharing and the Use of Public Transportation 
  

 Thirty Seventh International Conference on Information Systems, Dublin 2016 7 

where ubermt represents the number of Uber pickups for matched zone m in period t, and uberit, 𝛼𝛼 , 
disruptionit, subwayit, timet, zonei, and εit are as described above. Once again, the coefficient of interest is 
β1, the estimated change in the number of Uber rides associated with a disruption in a given taxi zone. 
Results of fixed-effects regressions for both models are presented in Table 1.  

Other Transport Modes 

In order to add context to our estimates of the relationship between subway disruptions and Uber ridership, 
we also fit models (1) and (2) using yellow taxi, green taxi, and Citi Bike pickups as the dependent variable. 
Note that while the zone pairings remained the same regardless of the dependent variable (because zone 
matching was completed using correlations in the turnstile entry data), the actual count of rides in the 
matched zone reflect yellow and green taxi ridership, respectively. Unfortunately, the Citi Bike station data 
covered only 39 of New York’s 263 taxi zones; consequently, the number of zone pairings with data for both 
zones was too low to estimate specification (2). Results are shown in Table 1. 

Demographic Characteristics 

In models (1) and (2), we rely on fixed effects to capture zone-level variation in mode preferences. 
Nevertheless, transport models often quantify such variation by framing mode choice as a function of 
individual attributes – such as the demographic characteristics of the traveler or the land use of surrounding 
areas – as well as the available mode alternatives (Ben-Akiva and Lerman 1985). In their review of the 
literature, Taylor and Fink (2003) further highlight transportation system characteristics as potentially 
important predictors of ridership, such as the availability of service and the level of coordination between 
different transit lines. 

As described above, we estimated key demographic characteristics at the taxi zone level from New York’s 
census and ACS data, including: mean income, total population, and the percentage of workers who 
commute with public transit. Using data on subway entrance locations, we are also able to measure the 
number of subway lines serving each taxi zone, which we adopt as a rough proxy for the availability of public 
transportation alternatives (assuming that neighborhoods with many intersecting lines represent more 
central transit hubs).  To investigate how demographic characteristics correlate with transport mode choice, 
we replace zone fixed effects with zone-level characteristics to estimate the following model: 

𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑖𝑖𝑡𝑡 = 𝛼𝛼 +  𝛽𝛽1𝑐𝑐𝑑𝑑𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑠𝑠𝑖𝑖 + 𝛽𝛽2𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑𝑡𝑡𝑢𝑢𝑖𝑖 + 𝛽𝛽3 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑖𝑖 + 𝛽𝛽4 𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑎𝑎𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛𝑖𝑖 + 𝛾𝛾1 𝑡𝑡𝑑𝑑𝑡𝑡𝑢𝑢𝑡𝑡 + 𝜀𝜀𝑖𝑖𝑡𝑡  ,  (3) 

where 𝑐𝑐𝑑𝑑𝑡𝑡𝑡𝑡𝑢𝑢𝑡𝑡𝑢𝑢𝑢𝑢𝑠𝑠𝑖𝑖  is the estimated percentage of workers in zone i who commute using public 
transportation; 𝑑𝑑𝑛𝑛𝑐𝑐𝑑𝑑𝑡𝑡𝑢𝑢𝑖𝑖  is the log estimated mean income in zone i; 𝑠𝑠𝑢𝑢𝑢𝑢𝑠𝑠𝑑𝑑𝑐𝑐𝑢𝑢𝑖𝑖 is the number of subway lines 
serving zone i; 𝑑𝑑𝑑𝑑𝑑𝑑𝑢𝑢𝑢𝑢𝑎𝑎𝑡𝑡𝑑𝑑𝑑𝑑𝑛𝑛𝑖𝑖 is the log estimated population of zone i; and uberit, 𝛼𝛼, timet, and εit are as above. 
We also estimate this model with yellow taxi, green taxi, and Citi Bike ridership as the dependent variable; 
results of Ordinary Least Squares regressions using these specifications are shown in Table 2. 

Results 

In general, turnstile entries and Uber pickups were positively correlated, with each turnstile entry 
corresponding to 0.005 additional Uber pickups. This is unsurprising, given that there are likely to be 
overall fluctuations in the total number of riders for different four-hour intervals and zones that are not 
captured by time- or zone-level fixed effects.  

After controlling for these variations in zone-level turnstile traffic, we nevertheless see evidence of increased 
Uber ridership during periods of subway service disruption. Zones that experienced a disruption were 
associated with 14.17 additional Uber rides in a four-hour period, a 31% increase relative to the average of 
45.61 rides per zone. This supports our hypothesis that Uber may serve as a short-run replacement for 
public transit for some riders. Our results also indicate a successful matching process: each additional Uber 
pickup in a matched zone was associated with 0.24 additional pickups in the zone of interest. However, 
controlling for Uber pickups in the matched zone did not influence our estimate of the impact of subway 
disruptions. 

Yellow taxi pickups followed a similar pattern. Yellow taxi pickups were positively correlated with turnstile 
entries; each entry was associated with 0.032 additional pickups. Furthermore, disruptions were associated 
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with 44.16 additional yellow taxi rides, a 12% increase over the baseline average of 379 pickups per taxi zone 
in a four-hour period. Including controls for pickups in the matched zone only increased our estimate of 
the absolute and relative magnitude of substitution. We were unable to support or reject any relationship 
between green taxi rides and turnstile entries, or to identify any measurable variation in these rides with 
subway service disruptions, perhaps on account of the newness of this mode. While Citi Bike rides are 
positively correlated with turnstile entry volume, we were also unable to establish a relationship between 
these rides and subway closures.  
 

Table 1. Uber, Taxi, and Citi Bike Pickups as a Function of Subway Service Disruptions 

Pickups Uber  Yellow Taxi  Green Taxi  Citi Bike  
 (1) (2) (3) (4) (5) (6) (7) 

Turnstile Entries 0.005*** 0.005*** 0.032*** 0.036*** 0.000 0.000 0.003*** 
(0.001) (0.001) (0.005) (0.007) (0.000) (0.001) (0.001) 

Disruption 14.173*** 14.173* 44.158** 54.655** 0.099 -0.830 4.859 
(5.071) (7.188) (17.042) (21.048) (3.709) (3.840) (9.574) 

Pickups in        
Matched Zone 

 0.240***  0.127**  0.043  
 (0.082)  (0.050)  (0.030)  

Time (linear) 0.170*** 0.110*** -0.079*** -0.059*** 0.037*** 0.032*** -0.063*** 
(0.018) (0.018) (0.013) (0.014) (0.006) (0.006) (0.009) 

Taxi Zone Controls Yes Yes Yes Yes Yes Yes Yes 

Observations 334,052 263,056 334,052 265,238 334,052 265,238 84,140 
R-squared 0.309 0.310 0.253 0.220 0.099 0.093 0.394 

Number of Taxi Zones 156 124 156 124 156 124 39 
Mean LHS 45.61 38.22 379 311.9 49.74 47.88 75.13 

 

Table 2. Uber, Taxi, and Citi Bike Pickups as a Function of Zone Characteristics 

Pickups Uber Yellow Taxi Green Taxi Citi Bike 
  (1) (2) (3) (4) 

Log Mean Income  66.386*** 714.477*** 16.897 23.789 
(7.872) (109.740) (14.438) (19.255) 

Workers Commuting with 
Public Transit (%)  

-1.038** -16.719*** 3.287*** -1.625** 
(0.430) (4.189) (0.681) (0.654) 

# Subway Lines      
Serving Zone 

7.480*** 61.572*** 3.576 2.065 
(1.635) (22.519) (2.820) (2.416) 

Log Population 1.682 12.850 10.953** 14.512** 
  (3.968) (34.227) (4.465) (6.056) 

Time (linear) 0.168*** -0.098*** 0.038*** -0.064*** 
  (0.017) (0.019) (0.006) (0.008) 

Taxi Zone Controls No No No No 

Observations 334,052 334,052 334,052 84,140 
R-squared 0.363 0.472 0.168 0.308 

Number of Taxi Zones 156 156 156 39 
Mean LHS 45.61 379 49.74 75.13 

 

*** p<0.01  ** p<0.05  * p<0.1. Standard errors are shown in parentheses and were clustered at the taxi 
zone level. Dataset has one observation per four-hour period, by taxi zone. Fixed effects for the day of the 
week and four-hour period of the day, as well as a constant, were included but are not shown. 
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In examining demographic characteristics, we find a strong positive correlation between Uber and yellow 
taxi pickups and the log mean income in a given taxi zone, though this effect is stronger in relative terms 
for yellow taxis.  Interestingly, we find that Uber and yellow taxi ridership is higher in taxi zones served by 
more subway lines, but it is negatively correlated with the percent of workers commuting with public 
transportation in the zone. This may reflect the fact that Uber and yellow taxi pickups are concentrated in 
zones with a large number of competing transport options.   

Conclusion and Next Steps 

To our knowledge, this research represents the first attempt to pair ridesharing and subway ridership data 
from New York City to investigate substitution between the two transport modes. Our preliminary findings 
act as a proof-of-concept for this approach. They support the hypothesis that a decrease in public 
transportation use can be partially offset by an increase in ridesharing, at least in the short run and in 
response to subway system shocks. Although the magnitude of this response is high relative to average 
ridesharing levels, it is a small fraction of subway usage. It remains to be seen how much this substitution 
grows as mobile-hailed ridesharing becomes increasingly mainstream. 

In extending our analysis to alternative transit modes, we find a parallel increase in yellow taxi rides in the 
face of service disruptions, though this increase appears to be smaller in relative terms. We find no evidence 
of an impact on green taxi or Citi Bike ridership. Perhaps, since many subway service disruptions occur in 
the evenings (when it may be difficult or dangerous to street-hail a green taxi outside of central Manhattan, 
and when riding a bike is less appealing), there is not substitution of significance. In either case, our findings 
suggest that while subway disruptions should intuitively drive riders to other forms of transportation, this 
effect is not equal across all transport modes. 

As research-in-progress, our work has many limitations. Although subway disruptions provide a natural 
experiment for the study of short-term substitution behavior, disruptions are not a wholly exogenous shock. 
Planned disruptions may be optimally scheduled during periods when subway ridership is low (and Uber 
ridership is high) so as to minimize system impact, while unplanned disruptions may be correlated with 
omitted variables such as crime rates (e.g. the closure of stations due to police activity), which also drive 
Uber use. Furthermore, Uber’s own competitive behavior may introduce distortions into observed 
substitution patterns; for example, in the past Uber has run promotions to coincide with periods when 
disruptions occur (Ninomiya 2015).  

In addition, while we have tried to control for obvious determinants of ridership and disruptions using time- 
and zone-level fixed effects, we have not captured the full range of variation in factors that jointly determine 
these variables. An exploratory analysis of demographic variation in ridership suggests considerable 
differences across modes. Notably, Uber and yellow taxi ridership is highest in zones with higher mean 
income and fewer residents who commute with public transportation, despite the fact that these zones 
receive better levels of subway service.  

One of our next steps will be to estimate a discrete choice model that combines our data on subway, Uber, 
taxi, and Citi Bike ridership into a single framework. This approach will enable a more careful analysis of 
the tradeoffs between different modes, and will allow us to model these tradeoffs as a direct function of 
rider demographics. We also plan to extend our analysis beyond subway service disruptions to examine 
other situations where substitution between the two modes is likely. For example, by collecting more data 
on time- and location-specific Uber price promotions, we hope to study the impact of other types of shocks 
on the distribution of mode choice. Finally, as the city publishes additional data on for-hire vehicles, we 
plan to extend our analysis to other ridesharing providers, building a more complete picture of New York’s 
transit system as a whole.  

We hope to lay a data-driven foundation to better understand how sharing economy alternatives substitute 
and complement existing and future capital-intensive transit systems, and to provide a more judicious basis 
for assessing impacts on different population segments. Taken together, our results will provide more 
granular insights into how ridesharing affects mode choice in the most heavily-used municipal 
transportation system in the US – a valuable asset to any policymaker looking to understand and manage 
the sharing economy’s new competitors. 
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