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Abstract 

Due to the integration of intermittent resources of power generation such as wind and solar, the 

amount of supplied energy will show unprecedented fluctuations. Electricity retailers can partially 

meet the challenge of matching demand and volatile supply by shifting power demand according to the 

fluctuating supply side. This so-called Demand Response mechanism requires innovations in 

Information Systems such as Advanced Metering Infrastructures. Whereas the technology side of these 

infrastructures is relatively well understood, further effort, to quantify the economic dimension of 

Demand Response, is strongly needed. Therefore, we present the foundation of a Demand Response 

system to model both costs and revenues based on-real world data. Although our model suggests that 

an average energy retailer faces initial setup costs for the infrastructure of up to € 24 million, we 

provide evidence that savings from load shifting exceed the running costs of the Information System 

significantly – by more than € 250k  per year. With higher information granularities, revenues from 

Demand Response increase further. However, this effect is countervailed by disproportionately 

growing communication costs and opposes the common expectation that more information is better 

than less. 

Keywords: Green IT/IS, business value of IS/value of IS, demand-side, information systems, decision 

making/makers. 
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1 Introduction 

The integration of intermittent sources of energy generation, such as wind and solar power, comes at 

the cost of unprecedented fluctuations in energy supply. Although their intermittent nature poses a 

challenge from the grid operation perspective, many states aim at increasing the share of renewable 

energies rapidly. For example, the European Union set the target share of renewables to 20 percent. 

Germany, the largest member state, even passed a law in 2011 mandating 35 percent of renewables by 

2020 and 80 % by 2050. Since renewable energy sources are volatile in nature – in contrast to so called 

baseload power sources such as coal or nuclear, which are independent of weather conditions – the 

integration of 20 % and more of renewables into the electricity markets will lead to considerable 

discrepancies (see Figure 1) between power demand and supply. 
 

 
Figure 1.  Discrepancy between power demand and supply in Germany on May 26

th
, 2012 traded 

at the European Energy Exchange (EEX, 2012). 

One possible path to match power demand and supply is given by the concept of Demand Response. 

Demand Response (DR) is defined by the U.S. Department of Energy (2006) and the FEDC (2006) as: 

“Changes in electric usage by end-use customers from their normal consumption patterns in response 

to changes in the price of electricity over time, or to incentive payments designed to induce lower 

electricity use at times of high wholesale market prices or when system reliability is jeopardized.” 

While Demand Response implies shifting load to when supply exceeds demand, the general idea of 

managing the demand-side of electricity markets is referred to as Demand Side Management. This 

umbrella term thus refers not only to Demand Response, but also to similar approaches such as the 

general increase of energy efficiency and time-based electricity pricing for end-consumers (Sui et al., 

2011). 

In many studies related to Demand Response (c.f. EU-DEEP, 2009, SEDC, 2011 and EU funded 

project ADDRESS), it is frequently assumed that Demand Response will be driven by energy retailers. 

Consequently, we focus on a setup where DR activities are being integrated on the distribution network 

level. In this way (cp. Mohagheghi et al., 2010), we implicitly incorporate requirements imposed by the 

power grid structure (e.g. congestion and node voltage limitations) into our modeling efforts. We 

restrict our publication to Demand Response based on an Advanced Metering Infrastructure (U.S. 

Department of Energy, 2008). Having in mind the intricate information flows and huge amount of data, 

Demand Response unveils to be inherently daunting for Information Systems (IS) research. Hence, the 

inevitable need for Information Systems to match supply and demand in the power grid was stressed by 

Dedrick (2010). 

As a main contribution to IS research, this paper not only designs an Information System for Demand 

Response, but, based on this design, provides a rigorous derivation of a comprehensive model to gauge 

both costs and corresponding savings. Using real-world data, the value of information in a DR system 

is quantified. In addition, we investigate whether a positive pay-off can be gained from more fine-

grained usage data. Interestingly, we show that more data on the customers’ energy profile are not 

necessarily accruing a positive pay-off for the retailer. If the data is too fine-grained (10 minutes), the 

associated communication costs outweigh the savings potentials. This finding contradicts e.g. Wicker 

and Thomas (2011), whose adverse recommendations rests on the assumption that an increase in 

information granularity incurs no costs. 
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2 Related Work 

To fully capture the notion of DR systems, it is necessary to view the underlying Information Systems 

from two angles. On one hand, we identify related publications that contributed to the design of a DR 

system and, on the other hand, explore literature related to costs and benefits of a DR system. Based on 

this literature review, we conclude this section by deriving our research questions and providing 

evidence that these questions are relevant and important to the IS community. 

2.1 Demand Response in IS research 

A recent literature review (Strüker and van Dinther, 2012) shows that there is a small but growing 

number of IS-related research papers on Demand Response. Corbett (2011), Palensky and Dietrich 

(2011), Tan et al. (2012) have contributed to IS research by deriving requirements and researching 

necessary components for the design of Demand Response systems. However, these references lack a 

design of the underlying strategy that controls load shifting. Feuerriegel et al. (2012) derived a 

mathematical formulation for optimal control of load shifting and load reduction, but the authors 

considered neither the costs nor different data granularities. 

Little is known about the economic potential of Demand Response in deregulated markets. Various 

references (e.g. Ridder et al., 2009) suggest that, due to the usage of Demand Response, profits of 

retailers will decrease. Demand Response activities do not actually decrease the amount of energy 

consumed, but merely shift it to when it is more convenient from the grid operation perspective 

(Strbac, 2008). To quantify the retailer’s profits, Feuerriegel et al. (2012) and Aalami et al. (2010) 

performed a study with real-world data. However, these authors neglected both investment and running 

costs for using available load shifting potential. Paulus and Borggrefe (2011) performed a cost-benefit-

study for energy-intensive industries in Germany that sell their load shifting potential at an exchange 

for spinning reserve, but did not consider efficiency gains from more convenient energy purchases. 

Recent references such as (NERA Economic Consulting, 2008, Faruqui et al., 2010, PWC Austria, 

2010, Gottwalt et al., 2011) provide an overview of the economic costs and benefits of Demand 

Response through Advanced Metering Infrastructures; however, all listed publications lacked (1) a 

simulation of the shifted loads and its financial savings and (2) an in-depth analysis of operational costs 

of smart meters. Consequently, quantifying the economic benefits still seems to be an open research 

question. 

Since the above research papers have concentrated on partial examinations of either revenues or costs 

of the required infrastructure, many questions have been left unanswered. 

2.2 Research framework 

Recently, Strüker and van Dinther (2012) asked “how large is the economic value of demand 

response”. Likewise, Strbac (2008) claims that there is a “lack of understanding of the benefits of 

Demand Side Management solutions” and, thus, “there needs to be a comprehensive analysis of the 

costs and benefits of installing such a sophisticated infrastructure”. As part of our evaluation, we will 

integrate both the cost as well as the revenue perspective in a combined cost-value-model. This model 

will help to understand the value of information in Demand Response. 

Research Question 1 (RQ1): (a) What are the costs when implementing Demand Response based on an 

Advanced Metering Infrastructure? (b) Which savings can be realized in such a setup? 

As both costs and revenues in the above research questions are dependent on the information 

granularity, we will evaluate the behavior of our model across multiple information granularities. 

Therefore, we vary the frequency of meter readout between intervals of 60, 30, 15 and 10 minutes as 

input for our model. We especially address the research questions of Watson et al. (2010) and Jagstaidt 

et al. (2011) on the optimum level of information granularity in a sensor network for optimizing a 

given distribution network. As we are not aware of any publications examining Demand Response 

across varying information granularities, we will address the following research question. 
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Research Question 2 (RQ2): (a) How do the saving potentials change across multiple information 

granularities and (b) how does this affect the costs? (c) What is the optimal amount of information? 

3 The Model 

In this section, we analyze the IS architecture of a Demand Response system and depict the relevant 

information flows of Demand Response, in order to rigorously derive the costs structure and the 

savings from Demand Response afterwards. An integrated view on both perspectives allows us to 

realistically assess the profitability of DR solutions and answer the research questions. 

3.1 Designing the Demand Response system 

The benefits of Demand Response unfortunately do not come for free, since it requires a sophisticated 

IS infrastructure. For leveraging the advantages, the retailer needs a lot more information than is 

available in today’s power networks. Hence, we lay out the design for an appropriate DR system and 

structure it according to the energy informatics framework of Watson et al. (2010), which partitions an 

energy system into the following building blocks: a central information system, sensor networks, 

sensitized objects, flow networks and related external stakeholders (cp. Figure 2). 

Central information system. As stated earlier, we are focusing on a setup, where Demand Response is 

realized on the distribution network level. In such a setup, the Distribution Management System 

(DMS) is the core information system. It features functions allowing for network monitoring and 

dynamic decisions for optimizing resources and managing demands for the entire distribution network 

(Simmhan et al., 2011). Within the DMS, two modules are of special interest for executing DR 

programs: the load forecasting engine, for predicting shortages of supply, and the Demand Response 

engine, for determining an optimal load curtailment scheme. 

Sensor networks. We are looking at a DR system based on an Advanced Metering Infrastructure 

(AMI). Hence, the AMI constitutes the sensor network closing the gap between the retailers’ DMS and 

the distributed customer premises. The smart meter exhibits the interface towards the customer. We 

denote “smart meters” as electronic meters that collect energy consumption data, so-called usage data 

records, at user-defined time intervals and optionally feature a unit for two-way communication. The 

transfer of usage data records within the AMI happens across various types of communication 

networks. We restrict our focus to the two most popular (cp. Gungor et al., 2011), namely wireless 

networks (GSM), and power line carrier (PLC). Whereas GSM-enabled meters establish direct point-

to-point connections with the backend, the communication stream from PLC-enabled meters is sent 

through concentrators. In any case, the central Meter Data Management System (MDMS) receives the 

collected usage data records, processes them and shapes the information into a useful asset for the 

retailer. These components build the “upstream” channel of an AMI. The “downstream” channel is 

composed by the central load management and control system, which distributes signals from the 

backend towards the consuming management system. The consuming management system represents 

the downstream’s counterpart of the smart meter, forwarding the transmitted signals towards the 

sensitized objects at the customers’ premises. The data volume that is produced within an AMI can 

easily overload a “traditional” DMS. Thus, upgrades for boosting its performance are required. 

Sensitized objects. Both energy consuming (i.e. load control devices) and producing (i.e. distributed 

energy resources) devices can be connected to and controlled by the DR system. In doing so, the only 

pre-requirement for connecting any device is that it is capable of being remotely controlled. 

Flow networks. Interfaces to the energy management system at the transmission network level secure 

information exchange with neighboring and overlying levels of the power network. 

External stakeholders. The DR system is rounded off by interfaces to various service providers for 

acquisition of external data sources, such as energy prices and weather forecasts. 
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Figure 2.  System view on a Demand Response system with Advanced Metering Infrastructures 

based on Mohagheghi et al. (2010), Watson et al. (2010), Simmhan et al. (2011), Sui et 

al. (2011). 

For execution of a DR program (i.e. the algorithm), various information exchanges need to be 

established between components of the above DR system. The standardization process for respective 

communication protocols and interfaces for this purpose is still under way (cp. Arnold, 2011). 

Envisioning the information flow in a DR system and the arising data traffic is essential for deducting 

the related communication costs later on. In the following, we provide a brief overview of generic 

informational exchanges that need to be performed before and during execution of a DR program. 

At first, the load forecasting engine projects the energy demand and supply for a future time window 

based on externally acquired weather forecasts [A] and electricity prices [B] and the usage data records 

[C], which are being collected from the connected smart meters. 

In case the load forecasting engine detects a shortage in supply, it passes the respective shortfall value 

to the DR engine [D]. Subsequently, the DR engine determines the optimal load curtailment and 

reduction scheme for all consumers connected to the distribution network. The type of DR program 

determines the subsequent communication procedure that is being conducted between the Demand 

Response engine and the smart meters. As a matter of fact, there are three major variants of how the 

detailed process flow for a DR program can be organized (Mohagheghi et al., 2010): (1) incentive-

based, (2) rate-based and (3) consumer-induced. We restrict our focus to incentive-based programs. 

The execution of an incentive-based DR program follows a three-stepped approach. First, the consumer 

transmits his DR contingencies, i.e. his maximal shift duration and shiftable power amount, for the next 

optimization interval to the retailer [E]. Second, the retailers uses the collected DR contingencies in 

conjunction with the projected energy demand [D] and the electricity prices [B] to calculate the optimal 

load shifting scheme. Third, the retailer reports back a set of control signals to the consumer [F]. The 

control signals contain the commands, which specify when to curtail resp. shift certain loads at given 

future time windows. We assume that the control signals are designed to be mandatory, i.e. the 

consumer is bound to execute these commands. 

The incentive-based DR program is an a-priori commitment by the consumers to reduce energy. Thus, 

the consumer receives a (monetary) compensation according to the prior defined incentive scheme after 

the load shifting took place. It should be noted, that all status and monitoring data (e.g. regarding the 

power quality), which is being transmitted across the network is not part of our considerations. 

3.2 Cost structure of the Demand Response system 

Based on the above architecture of a DR system we develop a cost model that incorporates both initial 

capital expenditures as well as the running costs for the system. 
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Sizing of the DR system is accomplished bottom-up – from the consumer interface towards the 

backend. Let     be the number of smart meters of both residential and industrial customers, which are 

connected to the given distribution network. Going “upstream” the DR system, the number of 

concentrators    and MDMS servers    can be derived from    . Let    ,   ,    and    denote the 

running costs for the prior mentioned components. We assume the load management and control 

system’s functionality to be integrated with the MDMS. Similarly, the consuming management is 

assumed to be integrated into the smart meters. Furthermore, the NMS needs to be sized according to 

   , which is reflected by the running cost    of the NMS. The DMS is assumed to be in place even 

without an AMI. But as stated earlier, the boosted information load in an AMI requires performance 

tweaks for the DMS. Thus, additional running costs for the DMS, denoted by   , are inevitable. Given 

these assumptions, we define the following cost pools. 

Capital expenditures. The costs of procuring and installing the above mentioned components 

constitute the total capital expenditures for the DR system. 

Communication costs. Two major communication streams need to be evaluated for depicting the 

communication costs: (1) executing the DR program and (2) reading out usage data records. Let       
be the share of deployed meters with GSM-modules and        be the related price function for data 

transfer via GSM. Communication via PLC-enabled meters does not produce any volume-based costs. 

For executing the assumed incentive-based DR program, two messages need to be exchanged between 

retailer and consumer (cp. section 3.1). For simplicity’s sake and w.l.o.g. the frequencies of reading, 

meter values and for execution of DR control signals are assumed to be equal and denoted by  . Hence, 

the total daily data volume can be calculated as           , with   being the total message size 

and 1440 the number of minutes per day. All in all, the communication costs per meter for executing 

the DR program result as 

            ⏟
                   

  ⏟
                      

     ( )⏟    
               (         )

    ⏟
         

. 

The annual communication costs per meter for reading out usage data records are derived analogously 

and are denoted by          

Operating costs. The operating costs cover the annual expenditures for e.g. maintenance, personnel, 

energy, etc. for all components of the DR system. The operating costs for the DR system are 

            ⏟      
            

      ⏟  
             

   ⏟
   

      ⏟    
    

   ⏟
   

. 

Total running costs. The total annual costs for the DR system include the operating costs as well as 

the communication costs: 

                      . 

For determination of the cost components we do not consider support costs (e.g. setup of a customer 

call center), related process costs (e.g. registration of new meters) and additional effort for integrating 

the DR system into the existing IS landscape. Further investments into the communication 

infrastructure, beside the deployed communication units, are not incorporated into the model. 

3.3 Modeling the savings realized through Demand Response programs 

Having assessed the cost perspective in the previous section, we now put the attention to the savings 

potentials of Demand Response. Therefore, we derive a mathematical model to optimize DR decisions. 

As shown in section 3.1, we design a DR engine that is affected by the following parameters: energy 

demand, DR contingencies and electricity prices. We restrict our model to support two of the most 

common energy derivatives: future options and day-ahead auctions. The former can be traded to 

guarantee – ahead of time – energy for long-term delivery periods ranging from years to single days. In 

order to reduce the complexity of our model, we aggregate all future options into a single derivative 

with price    per watt-hour. In addition, a day-ahead spot market provides energy at price   ( ) per 
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watt-hour for a specific time   of the day. As a third option, the intraday market can satisfy short-term 

energy needs, but can be neglected due to insufficient market liquidity. 

The problem of optimally harnessing Demand Response can be formulated as a linear optimization 

problem (Feuerriegel et al., 2012). Accumulating the retailer’s expenditures on energy derivatives 

yields the aggregated expenditures which embody the target function    (during an optimization 

horizon of   time steps) denoted by 

   
     ( )     ( )

       
     ( )     ( )

       ∑   ( )   ( )
 

   
  

The first summand accounts for the expenditures on future derivatives, while the second sums costs 

from day-ahead auctions. The (time-dependent) parameters   ( ) and    indicate the demanded 

quantities in the day-ahead market and the future options respectively. As a simplification, the energy 

retailer is assumed to be only a purchaser of energy. As most German retailers do not produce 

electricity (Umweltbundesamt, 2013), this assumption is valid. Thus, the linear problem is bounded 

and a unique solution exists. We yield 

  ( )    and             for          

Let  ( ) denote for a given time   the amount of demanded energy. As a further constraint, the 

purchased electricity must match the retailer’s power demand at time  . This is stated by 

  ( )        ( )       for           

where the left-hand side accounts for the total energy purchased that is supposed to equal the right-

hand side, which accounts for the energy demand. 

Let us assume that we will be granted for each time interval a certain DR potential. This potential can 

now be shifted forward or backward in time. Here, we distinguish load shifting potential according to 

the maximum duration   (e.g. one, two, etc. hours) that it can be displaced. For each of these shifts  , 
the variables   ( ) denote the available potential. When we shift DR potential between two hours   and 

  , this is indicated, with   being the maximum length of the shift, by the parameter    (   
   ). The 

value of    (   
   ) denotes the amount of power that is consumed less at time step  , but that is 

additionally required at time step   . In order to guarantee that demand matches the purchased energy 

amounts, we derive the following constraint, 

  ( )        ( )      (   )     (   )        (      )      (      )  
                   (      )      (      )     (      )      (      )     

This new constraint is only fulfilled when the purchased quantities on the left-hand side equal the right-

hand side which itself consists of the demand and possible alterations due to Demand Response. 

Whenever     or    , we define with some arbitrary   for reasons of readability    (   )   . 

Next, we derive additional constraints on the potential of Demand Response. Recall that the variables 

  ( ),   ( ),   ( ), etc. limit the maximum amount of energy that can be displaced. Therefore, we 

deduce 

   (   )    ( )     (   )    ( )  etc.  

Additionally, we need additional constraints that limit the flow direction (i.e. that demand is moved 

solely away from time interval  ). Therefore, when we shift energy from time interval   by   hours in 

either direction, this value cannot be negative, 

   (       )    (      )           for all   and          

Furthermore, we need to guarantee the conservation of used load shifting potential such that all demand 

that is shifted away is finally added somewhere else, thus 

∑    (      )
  

    
   for all    
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3.4 The value of information in Demand Response 

In order to combine the two previously discussed views – namely costs and savings potentials of a DR 

system –, we introduce an expedient metric named information value of Demand Response. In the 

Smart Grid realm, the core information piece is given by usage data records. Their value is determined 

by multiple components, which can be derived from the numerous areas of application for which these 

records can be applied, such as process optimization through automated meter reading and optimization 

of energy demand and supply. Here, we focus on the contribution of Demand Response to the overall 

value of usage data records. Hence, we define the information value of a single record as 

  ( )  
(∑     ) 

 
, with   being the number of meter readouts per year. 

4 Evaluation – Computational Analysis 

In the following section, we test our mathematical model in a setting using real-world data. The gained 

results are used for evaluating the above research questions. 

4.1 Datasets 

For our evaluation setting, we assume a fictitious German retailer delivering electricity to 290,000 

residents. The retailer’s overall annual energy demand accounts for           (E-Control, 2012). As 

a next step, we aggregate the average daily demand curves for residential households, commercial and 

industrial customers in Germany (E.ON, 2012) with ratio     :/      /      (Styczynski, 2011) to 

derive the hourly amounts of energy demand. To achieve an annual demand accounting for           

in total, the demanded power is normalized accordingly. Industrial customers are excluded from 

calculation of the DR saving potentials. 
 

Commercial 

Customers 

Max. Shift Duration/h 1 2 12 16 

Average Power Shift/kW 16 164 8850 4650 5129 

Residential 

Households 

Max. Shift Duration/h 1 2 12 24 

Average Power Shift/kW 7353 6750 35 068 3616 

Table 3.  DR Potential through load shifting scaled for retailer (Klobasa, 2007). 

All prices for energy derivatives and spot auctions are based on the historic hourly data of the 

European Energy Exchange, EEX for short (EEX, 2012). Here, the price for future options    is based 

on the index prices named ELIX Day Base. The data granularity of electricity prices and energy 

demand is increased by linear interpolation to gain the desired granularity. 

The capabilities of Demand Response vary strongly among both industry and households. Klobasa 

(2007) analyzed the market penetration of Demand Side Management and its overall potential for 

Germany (see Table 3). To utilize this potential, we assume a DR system characterized by the 

parameters in Table 5. The number of smart meters is computed as 220 k based on an assumed annual 

energy consumption of 3,500 kWh per residential household and 6,500 kWh per commercial customer. 

We assume that all meters are rolled out and put into operation at the same time. 

By varying the frequency of collecting usage data from the meters, we have designed four scenarios to 

evaluate our model across different information granularities. Scenario 1 assumes an information 

granularity of 60 minutes. In this base scenario, the usage data is recorded once every 60 minutes or 24 

times per day respectively. In fact, 60-minute-intervals are a frequent delivery period when trading at 

energy exchanges (EEX, 2012). In the case of Germany, 60-minute-intervals are further enforced by 

regulatory issues (Bundesnetzagentur, 2012). Scenario 2 assumes an information granularity of 30 

minutes, while scenario 3 is based on an information granularity of 15 minutes. In related literature (cp. 

PWC Austria, 2010), a 15-minute-interval is often used as standard for collection of usage data records. 

In scenario 4, the information granularity is increased further and set to 10 minutes. Calculating the 
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results for this scenario already required more than 24 hours of computation and, therefore, we 

restricted our evaluation to these four scenarios. 
 

Parameter  Variable Value 

Share of GSM-enabled smart meters      20% 

Communication costs for GSM per kByte      Logarithmic cost function 

Hardware costs per meter GSM / PLC     € 95 / € 80 

Number of PLC-enabled meters per concentrator    
  

⁄  200 

Number of meters per MDMS server    
  

⁄  30,000, for      ⁄  

Size of messages per iteration of DR program   300 byte 

Table 4.  Parameters of Demand Response system based on expert estimations and PWC Austria 

(2010) and NERA Economic Consulting (2008). 

4.2 Results 

This section addresses each research question (cp. section 2.2) individually to present our findings. 

Findings to Research Question 1. When evaluating the costs and revenues of a DR system, we recall 

scenario 1 with a granularity of 60 minutes. The initial investments for the system add up to a total sum 

of € 24.217 M and the annual running costs amount to € 3.381 M (RQ1a). The corresponding annual 

savings account for € 3.10 M (RQ1b) – resulting in a positive annual surplus. The DR case has the 

potential to financially sustain itself, when only running costs, without investments being considered. 

Following this assumption, Demand Response even contributes a substantial share to the overall 

business case of introducing AMI. 

Findings to Research Question 2. Next, we assess the DR system’s financial performance across 

varying information granularities. The results of potential savings and costs are listed in Table 5. 

Load shifting decreases the retailer’s expenditures for procuring electricity from € 109.9 M down to 

€ 106.8 M – a significant cut of € 3.10 M. An increase in information granularity allows the retailer to 

allocate energy even more efficiently. By increasing data granularity to 15 minute intervals, earnings 

rise to € 3.360 M. Compared to the 60 minute case, this is a considerable increase of 8.04 %. Scenario 

4 shows a lower efficiency gain compared to the other granularities which might be a drawback of 

using a polynomial interpolation of first order in our model. When comparing the savings with and 

without DR, the results turn out to be more striking. The benefit from a higher granularity is several 

times higher than in the case without DR – purely by shifting load more efficiently. 

 

 Scenario 1: 

60 minutes 

Scenario 2: 

60 vs. 30 min 

Scenario 3: 

60 vs. 15 min 

Scenario 4: 

60 vs. 10 min 

Savings from higher granularity only – € 80 k € 90 k € 90 k 

Savings from DR & higher granularity € 3.10 M € 3.230 M € 3.360 M € 3.270 M 

Efficiency gains – +3.86 % +8.04 % +5.14 % 

Total running costs € 2.852 M € 3.080 M € 3.471 M € 3.788 M 

… thereof: DR communication costs  € 124 k € 213 k € 357 k € 477 k 

Total cost increase – +7.99 % +21.70 % +32.79 % 

Information value per 1000 meter readouts € 0.20 € 0.06 € -0.02 € -0.07 

Table 5.  Comparison of efficiency gains in 2011 across different information granularities. 
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Looking at the costs, we observe an increase as well. In particular, the communication costs grow 

severely; doubling the information granularity exhibits the double amount of data that needs to be 

transferred and processed. Hence, the communication costs almost quadruple when comparing scenario 

1 and 4, whereas the remaining operating costs only increase by around 8 %. 

The information value links costs and saving potentials. An information value that grows with an 

increasing information granularity is equivalent to an improved overall profit of the retailer. In such a 

case, more information would result in higher profits. However, counter-intuitively, our results draw a 

different picture (see Figure 6): the information value decreases heavily with increasing information 

density. Based on our four scenarios we reckon that the information value even decreases more than 

linear, leaving the retailer with a shrinking overall annual profit. In addition to that, Figure 6 shows the 

information value for data granularities of 90 and 120 minute intervals where hourly blocks are traded 

at the day-ahead market. As the meter readout granularity exceeds the market resolution, the load 

cannot be shifted to the optimal time interval and, matter-of-factly, the information value turns 

negative. 
 

  
Figure 6.  The diagram shows the information value for granularities across 120 to 10 minutes. 

We assume spot auctions with delivery periods that match the granularity, except for 

the 90 and 120 minute cases where hourly blocks are traded at the day-ahead market. 

In a nutshell, we have shown that – for our setting – an augmented information granularity boosts the 

savings potentials significantly (RQ2a). However, the savings are eaten up by disproportionately 

increasing costs (RQ2b). Summing up, these findings lead to a surprising conclusion regarding the 

optimal information granularity (RQ2c): more information is not better, but even leads to shrinking 

financial profits. However, based on our set of four discrete scenarios, a universal proposition on the 

optimal amount of information cannot be provided. 

4.3 Managerial and policy implications 

In the previous evaluation section, we have illustrated the potential profits of a DR system. Beyond 

costs for setup and operations of the system, the implementation as well as the success is also 

determined by additional cost components. In particular, financial compensation to the participating 

consumers must be considered due to the assumed incentive-based DR program. Klobasa (2007) 

proposes an average payment of roughly € 2 per MWh. 

As shown, if only Demand Response is being considered as a use case for installation of an AMI, more 

information does not necessarily entail more profit. However, it should be taken into account that for 

other application scenarios, such as not-yet-defined value-added services, a higher information 

granularity is essential or leading to a considerably better service quality and, thus, an increased profit. 

Furthermore, when looking at the financial benefits of implementing an AMI, one cannot disregard the 

potential cross-effects, such as reduction of consumed energy due to an increased transparency on the 

consumer side, which would lead to reduced revenues of the retailer. Analogously, additional positive 

effects could occur. For example, process costs would be reduced as a result of billing process 

automation and improvement. In addition, further synergy effects can potentially be realized when 

implementing gas and water meters as well. 
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The regulator inherits a very important role in the context of smart meter rollouts. First, the regulator 

designs the market roles involved in operations of a DR system. In major energy markets (e.g. 

Germany), the concept of segregated market roles has been implemented. The variety of players, such 

as metering point operators, distribution network operators and energy suppliers, significantly increases 

the complexity of a DR system. The increased number of interfaces leads to more demanding security 

requirements and a higher data volume. Second, the regulator decides upon subsidization for an AMI 

rollout. Our results contribute to this policy discussion as they support the argument of providing 

substantial subsidy for implementing such an infrastructure. The use case of Demand Response is not 

capable of fully funding the required infrastructure, but it can contribute a substantial value share to its 

operations. 

5 Conclusion and Outlook 

Due to the integration of intermittent resources of power generation, the amount of supplied energy 

will show unprecedented fluctuations. Electricity retailers can address this challenge by using Demand 

Response for shifting power demand according to the fluctuating supply side. As we have shown in 

this paper, savings from load shifting exceed the running costs for a respective information system 

significantly. However, an average energy retailer faces huge initial costs for setting up an appropriate 

infrastructure. As these costs cannot be covered by the annual surplus, governmental subsidies might 

be necessary to install the DR system. Moreover, we have shown that collecting more information does 

not necessarily yield a higher profit for the retailer; increasing revenues are devoured by a 

disproportionate increase in costs. We have shown the financial impact of a DR system for a retailer in 

Germany. The results can be easily transferred to other European countries that rely on a similar energy 

market design. 

In future work, we will apply a multi-year perspective as, especially, communication costs are likely to 

become significantly cheaper over the next year. Moreover, the communication protocols probably get 

further optimized and, thus, induce less communication efforts. In addition, changing the DR system’s 

topology (e.g. deployment of aggregators or different communication media) might alter the cost 

effects. Additional positive cost effects might originate from using Demand Response for grid 

stabilization instead of load shifting. These questions must be addressed in future work. 
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