
Association for Information Systems
AIS Electronic Library (AISeL)

ECIS 2011 Proceedings European Conference on Information Systems
(ECIS)

Summer 10-6-2011

GENERIC PERFORMANCE PREDICTION
FOR ERP AND SOA APPLICATIONS
Daniel Tertilt

Helmut Krcmar

Follow this and additional works at: http://aisel.aisnet.org/ecis2011

This material is brought to you by the European Conference on Information Systems (ECIS) at AIS Electronic Library (AISeL). It has been accepted
for inclusion in ECIS 2011 Proceedings by an authorized administrator of AIS Electronic Library (AISeL). For more information, please contact
elibrary@aisnet.org.

Recommended Citation
Tertilt, Daniel and Krcmar, Helmut, "GENERIC PERFORMANCE PREDICTION FOR ERP AND SOA APPLICATIONS" (2011).
ECIS 2011 Proceedings. 197.
http://aisel.aisnet.org/ecis2011/197

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by AIS Electronic Library (AISeL)

https://core.ac.uk/display/301351607?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://aisel.aisnet.org?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2011?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2011?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
http://aisel.aisnet.org/ecis2011/197?utm_source=aisel.aisnet.org%2Fecis2011%2F197&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:elibrary@aisnet.org%3E

GENERIC PERFORMANCE PREDICTION FOR ERP AND

SOA APPLICATIONS

Tertilt, Daniel, fortiss – An-Institut of the Technische Universitaet Muenchen,

Guerickestrasse 25, 80805 Muenchen, Germany, tertilt@fortiss.org

Krcmar, Helmut, Technische Universitaet Muenchen, Boltzmannstrasse 3, 85748 Garching,

Germany, krcmar@in.tum.de

Abstract

Enterprise systems are business-critical applications, and strongly influence a company’s
productivity. In contrast to their importance, their performance behaviour and possible bottlenecks

are often unknown. This lack of information can be explained by the complexity of the systems itself,

as well as by the complexity and specialization of the existing performance prediction tools. These

facts make performance prediction expensive, resulting very often in a “we fix it when we see it”
mentality, with taking the risk of system unavailability and inefficient assignment of hardware

resources.

In order to address the challenges identified above, we developed a performance prediction process to
model and simulate the performance behaviour and especially identify performance bottlenecks for

SOA applications. In this paper, we present the process and architecture of our approach. To cover a

variety of applications the performance is modelled using evolutionary algorithms, while the
simulation uses layered queuing networks. Both techniques allow a domain-independent processing.

To cope with the resource requirements for delivering prediction results fast, EPPIC automatically

acquires cloud resources for performing the modelling and simulation. With its slim user interface

EPPIC provides an approach for easy to use performance prediction in a broad application context.

Keywords: Performance, Analysis, Prediction, Modelling, Simulation, SOA, ERP.

1 Introduction

The performance of a software system is very often ignored when designing the system (Menascé,

2002). This can be attributed to the invisibility of most parts of a software system and also of its weak

points. Bad performance of for example an enterprise resource planning (ERP) system is not

immediately visible and tangible, compared to a many kilometers traffic jam caused by a bridge that is
too small. Nevertheless correcting the performance problems afterwards can be just as costly and

difficult, as stated by Brebner et al. (2009). Moreover, the complexity of modern software systems

makes it hard to understand how the system will perform under a changed load, or even after changes
on the soft- or hardware. Existing tools are either tailored for a very special type of application, or they

come with a variety of protocols and adapters and hundreds of configuration properties, resulting in

the need of expert knowledge to operate them.

Not knowing the performance behaviour of an enterprise system though is a big risk. As enterprise

systems are the backbones of many business processes, performance problems can not only block the

scalability of these processes, but even bring down a department’s or company’s whole operational

work.

In order to address these challenges, we develop a process and architecture of an integrated

performance prediction tool for distributed enterprise applications, especially for enterprise service

oriented architectures (SOA, (Dustdar, Gall and Hauswirth, 2003)). We called the tool EPPIC
(Evolutionary Performance Prediction in the Cloud). As an exemplary implementation for an SOA we

demonstrate the EPPIC process on an ERP system as an SOA service provider, i.e., a way of accessing

the ERP system that becomes more and more crucial (Schneider, 2008).

2 Related Work1

Becker et al. (2007) introduce the Palladio Component Model (PCM) for predicting the performance
of a component-based software system at design time. Kraft et al. (2009) estimate service resource

demands based on response time measurement using linear regression and the maximum likelihood

estimation, focusing on the analysis of ERP systems. Brebner et al. (2008) focus on the performance
prediction of SOA, and perform extended case studies in governmental software development projects.

Bögelsack et al. (2008) describe how to use a simulation model for simulating the performance

behaviour of complex ERP systems, while Rolia et al. (2009) use Layered Queuing Models (LQM) for

modelling ERP performance.

3 Research Design

All the previously mentioned approaches have one thing in common – their application requires

extended manual effort and expert knowledge. In contrast to that our research aims on developing an

easy to use performance prediction framework. We use a design science approach as defined by
Hevner, March, Park and Ram (2004) to answer the following research question.

How can a performance prediction framework be designed using evolutionary algorithms and layered

queuing networks to efficiently forecast the performance behaviour of SOA enterprise applications

using cloud resources?

1 Due to the limited space in a research in progress paper, the related work section is strongly shortened. An extended

literature review can be requested from the author.

Our design science artefact is the EPPIC tool. In several iterations the tool and its components are

developed and evaluated. The evaluation is done by applying the artefact to load-testable enterprise

systems and by comparing the predicted performance behaviour with the measured performance data.

4 Prediction Process

Before describing the developed architecture, we give an overview of the performance prediction
process. The performance prediction process consists of three steps – measurement, modelling, and

simulation. EPPIC builds upon existing measured performance data, so that we will keep the

measurement section small and focus on the aspects of modelling and simulation. Performance models
are fundamental to predict the scalability of software and hardware systems, either by analytical

methods or simulation (Menascé and Almeida, 1998). Following this advice, we develop performance

models for each component in the analyzed software system. As we want to support different types of
components and different patterns of input data, we use an evolutionary algorithm approach to model

the component’s performance behaviour. The evolutionary algorithm is used to perform a multi-

objective optimization (Zitzler and Thiele, 1999) on the given performance data, resulting in an

approximation of the performance behaviour represented by a continuous mathematical formula. The
performance models are used for simulating the behaviour of the analyzed system. For simulation we

use Layered Queueing Networks (LQN) as defined by Franks et al. (2009).

4.1 Process Step 1: Performance Measurement

In the EPPIC architecture we focus mainly on the performance modelling and simulation. It is

assumed that measured performance data of the system components exist, or is obtained by the use of
an external tool. In our evaluations we used the tool PEER (Performance Evaluation Cockpit for ERP

Systems) developed by Jehle (2010), as this tool provides a suitable way to gather performance data of

a software system without having a visible performance impact on the tested system.

4.2 Process Step 2: Performance Modelling

For every service of the SOA, a performance model is created. The performance model is an
approximation of the component’s response time, based on various input parameters like the request

type and size and the number of parallel requests. The performance models are used as input for the

simulation, and represent the response time behaviour of a service.

The evolutionary algorithm used for performance modelling consists of a population of individuals

competing for a limited resource, in this case simply the number of allowed individuals. After random

model initialization, the individuals compete by comparing their fitness value, in this case the negative
geometrical distance of the model to the measured performance data. The individual with the better

fitness passes its model to the loser, where it is, to a given chance, mutated (Goldberg, 1989), and

crossover (Goldberg, 1989) is performed to a given chance by the exchange of a random part of the

winner’s model by a random part of the loser’s model. The mutation of the passed model allows the
model to converge towards a maximum in the search space, which means a model approximating well

the measured performance data. As this maximum might be a local maximum crossover allows

jumping in the search space, which enables the algorithm to leave a local maximum and to jump to a
global one. The advantage of an evolutionary algorithm for modelling is that it can be efficiently

executed on any set of measured performance data, independent of its structure and size (Gwozdz and

Szlachcic, 2009). This allows the creation of performance models even for services with few measured

data available (i.e. cost-intensive and/or externally provided services), while the exactness of the
model can be strongly increased by the consideration of any kind of available input data. Furthermore

the evolutionary algorithm provides first results very fast (dependent on the underlying hardware

resources, as described in the following chapter), while it can continue optimizing the model

continuously.

4.3 Process Step 3: Performance Simulation

For simulating the performance behaviour of the system, we use Layered Queuing Networks (LQN).

LQN offer flexibility in modelling software entities using the task as its main concept. A task can be
either a hardware resource or a software entity. Each task has its own (infinite) queue to store

incoming requests until they can be processed. Both, software entities and hardware, can be single- or

(infinite) multi-servers depending on the number of requests that can be processed concurrently. A
task may provide more than one service; therefore a task can contain different entries. For instance, a

database may be modelled as a task offering services like “insert”, “update” and “delete”.

Key advantages of LQNs are, beside others, the natural mapping of LQN to componentized, multi-

tiered, and multi-layered enterprise level software stacks and its extensibility to include newly
discovered bottleneck resources or devices into existing models (Ufimtsev and Murphy, 2006). The

LQN formalism maps very well to the ERP system architecture as it supports modelling of the internal

hierarchical and parallel activities (Woodside, 2002). The formalism is very flexible due to the
reusable sub models.

5 Architecture

In this chapter we describe the architecture of our performance prediction tool EPPIC for SOA

applications. The architectural design of EPPIC is focused on maximum generality to allow the

prediction of multiple types of applications. Furthermore the architecture is strongly scalable to allow
the prediction of small systems up to very large enterprise systems. Figure 1 depicts the architecture of

the EPPIC tool.

Figure 1. Architecture of the EPPIC Tool

A client application executable on any standard device, such as e.g. standard PCs, laptops and tablet

PCs provides the user interface for system design, measured data input, and the prediction result. The

central managing server manages the cloud resources as well as the knowledge base. Resources for

modelling and simulation are allocated temporarily in an Infrastructure as a Service (IAAS) cloud, and
already modelled component performance behaviours and designed systems are stored in the

knowledge base. In the following, we will describe all the architecture’s components in detail.

5.1 Client

The client application serves three purposes. First, it is used for configuring the tested system. For this
the application provides a drag & drop interface for defining the system components and their relation.

For standardization and readability reasons the system design view is oriented at the UML component

diagram.

Second, the client interface in this view allows the attachment of measured performance data to system
components. This data is used for creating the performance models.

Third, the performance prediction results are shown in the client interface. In the first version of

EPPIC we will focus mainly on bottleneck detection. For this, we mark bottlenecks (components
which queues run full during simulation) in yellow or red (dependent on the speed the queues get

filled), while uncritical components stay green. The interface allows re-runs of the simulation, i.e. after

changes on the load behaviour has been performed.

5.2 Central Managing Server

While the client application provides the user interface, the central managing server is the managing
backend component. It provides a web service interface for the client applications and manages the

cloud resources used for modelling and simulation. Furthermore it manages the knowledge base and

decides whether a performance model is taken from there, or newly modelled using the cloud
resources.

The central managing server provides a SOAP/HTTP web service interface to the client. Using this

interface, the clients can transfer system configurations and request performance prediction.

For the computation-intensive performance modelling and simulation, we use automatically
allocatable cloud resources. The central managing server allocates and de-allocates the required cloud

resources automatically in a cost-optimized manner. As the chosen cloud resource provider (see also

the following section) allows resource allocation on an hourly base, the managing server allocates
resources as needed, and keeps them up for multiples of full hours. In this way, an allocated resource

can be used for multiple modelling or simulation rounds.

Already modelled components and system structures are stored in the knowledge base. The storing
and fetching of the knowledge base objects is done by the central managing server. For identifying a

user’s systems and components (and also for anonymizing the data in the cloud, as described later on),

each model and system design is identified by a unique identifier. The central managing server

maintains the mapping between the unique identifier and the user.

5.3 Usage of Cloud Resources

The algorithms used for performance modelling and simulation scale nearly linear with the available

hardware resources. For providing fast feedback to the user we need huge CPU and memory resources

for short periods of time. As it is not economic to host this amount of hardware resources for just some

peaks a day we decided to use the Amazon Elastic Compute Cloud (EC2). The EC2 provides
Infrastructure as a Service (IAAS), which allows us to allocate dynamically as many hardware

resources as needed. The hardware allocation is done programmatically using the EC2 API,

initializing the allocated machines with a predefined basic Linux template which brings the Java
runtime as well as the modelling and simulation applications.

The data sent to the cloud for modelling and simulating is anonymized. To identify the correlation

between prediction results and systems an identifier is attached to the input data and results. These
identifiers are managed by the managing server. Using the anonymization helps to mitigate concerns

of transparency and security of the data in the cloud.

5.4 Knowledge Base

Modelling the component performance models and designing the system structure is a time consuming
process. To avoid duplicated effort once modelled components and designed systems are stored in the

knowledge base. After a component’s behaviour is modelled once, or a system is designed, it can be

reused for modelling alternative systems, or for the simulation of scenarios like the adding or

removing of hardware, increased load behaviour, or hardware and software failure.

6 First Results

As a first step for implementing the presented EPPIC architecture we developed a prototype for the

evolutionary algorithm for modelling the performance behaviour of the system’s components, called

Darwin. First results gathered by applying the prototypical implementation of Darwin on performance
data of an industrial ERP system (SAP ERP) won by load testing the work material creation process of

the Production Planning Integration Case Study (Weidner, 2006) are very promising. The evolutionary

model generation results in performance models that are very close to the real component performance

behaviour with errors between 10 to 15 percent. Surprisingly, but well interpretably when looking at
the storage of the generated model, the performance of the evolutionary modelling algorithm is

strongly correlated to the available memory, and less to the CPU resources. The analysis of this fact

showed that the generated models become complex, requiring too much memory when stored as
object trees. Further improvements can be made to the performance of the modelling algorithm by

analyzing different model storage formats, like for example a string representation.

As already stated in section 3.3 the resource consumption using LQN based approaches differ between
the used evaluation technique. When using the Mean Value Analysis (MVA) based solver, the solving

time is extremely short, even with very low usage of hardware resources. Evaluation of LQN models

using the simulation tool takes a lot of more computing power. As this approach is not based on a

mathematical solution the accuracy of the results rises with the number of iterations, which leads to
longer runtimes and therefore to a need for more computing power. Nevertheless both evaluation

techniques are needed, and with the usage of automatic resource allocation we cope well with the

volatile resource consumption. The algorithm to decide which and how much resources are allocated
will be one of the big challenges in the EPPIC project.

7 Conclusion and Future Work

The increased accessing of ERP systems as SOA services will allow software performance engineers

to merge the approaches for predicting the performance of ERP and SOA applications. When ERP

provided in a Cloud gain more attention in research and practice, the approaches will be very similar.
With EPPIC we already developed an approach towards this development by creating a unified

performance prediction technique for ERP as well as SOA.

In the presented version of the architecture, the knowledge base simply stores a user’s component
performance models and its designed systems for follow-up usage. The performance of the prediction

process might be improved by, when modelling a component’s performance, identifying similar,

already modelled components, and use their models either as the component’s model (potentially with
modifications), or at least as initial model for the evolutionary algorithm. Furthermore the case that no

measured performance data is available for a system’s component can be covered by the knowledge

base. To fulfil this goal, a matching algorithm has to be developed that is able to identify similar

components.

Next steps will have to validate the EPPIC approach by performing case studies on real enterprise

applications using an EPPIC prototype covering all of the described functionality. Further effort will

be focused on the optimization of the evolutionary modelling, as on a complex system under test it

requires most of the hardware resources and time.

8 References

Becker, S., Koziolek, H. and Reussner, R. (2007) Model-based performance prediction with the

palladio component model, ACM, pp. 54-65.
Bögelsack, A., Jehle, H., Wittges, H., Schmidl, J. and Krcmar, H. (2008) An Approach to Simulate

Enterprise Resource Planning Systems, 6th International Workshop on Modelling, Simulation,

Verification and Validation of Enterprise Information Systems, MSVVEIS-2008, In conjunction
with ICEIS 2008(Eds, Ultes-Nitsche, U., Moldt, D. and Augusto, J. C.) INSTICC PRESS,

Barcelona, Spain, pp. 160-169.

Brebner, P., O'Brien, L. and Gray, J. (2009) Performance Modeling Evolving Enterprise Service
Oriented Architectures, Joint Working IEEE/IFIP Conference on Software Architecture 2009 &

European Conference on Software Architecture 2009Cambridge.

Brebner, P. C. (2008) Performance modeling for service oriented architectures, Companion of the 30th

international conference on Software engineeringACM, Leipzig, Germany, pp. 953-954.
Dustdar, S., Gall, H. and Hauswirth, M. (2003) Software-Architekturen für Verteilte Systeme,

Springer-Verlag, Berlin, Heidelberg.

Franks, G., Al-Omari, T., Woodside, M., Das, O. and Derisavi, S. (2009) Enhanced Modeling and
Solution of Layered Queueing Networks, IEEE Transactions on Software Engineering, 35 (2), pp.

148-161.

Goldberg, D. E. (1989) Genetic algorithms in search, optimization, and machine learning, Addison-

Wesley Professional, Upper Saddle River,NJ, USA.
Gwozdz, P. and Szlachcic, E. (2009) An Adaptive Selection Evolutionary Algorithm for the

Capacitated Vehicle Routing Problem, Logistics and Industrial Informatics, 2009. LINDI 2009.

2nd International, 10-12 Sept. 2009, pp. 1-6.
Hevner, A. R., March, S. T., Park, J. and Ram, S. (2004) Design Science in Information Systems

Research, MIS Quarterly, 28 (1), pp. 77-105.

Jehle, H. (2010) Performance-Messung eines Portalsystems in virtualisierter Umgebung am
Fallbeispiel SAP, Lehrstuhl für Wirtschaftsinformatik, München.

Kraft, S., Pacheco-Sanchez, S., Casale, G. and Dawson, S. (2009) Estimating service resource

consumption from response time measurements, Proceedings of the Fourth International ICST

Conference on Performance Evaluation Methodologies and ToolsICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Pisa, Italy, pp. 1-10.

Menascé, D. A. (2002) Software, performance, or engineering?, Proceedings of the 3rd international

workshop on Software and performanceACM, Rome, Italy, pp. 239-242.
Menascé, D. A. and Almeida, V. A. F. (1998) Capacity planning for Web performance: metrics,

models, and methods, Prentice Hall.

Rolia, J., Casale, G., Krishnamurthy, D., Dawson, S. and Kraft, S. (2009) Predictive modelling of SAP
ERP applications: challenges and solutions, Proceedings of the Fourth International ICST

Conference on Performance Evaluation Methodologies and ToolsICST (Institute for Computer

Sciences, Social-Informatics and Telecommunications Engineering), Pisa, Italy, pp. 1-9.

Schneider, T. (2008) SAP-Performanceoptimierung, Galileo Press, Bonn.
Ufimtsev, A. and Murphy, L. (2006) Performance Modeling of a JavaEE Component Application

using Layered Queuing Networks: Revised Approach and a Case Study, SAVCBS 2006.

Weidner, S. (2006) Integrations-Fallstudie PP (SAP ECC 5.0).
Woodside, M. (2002) Tutorial Introduction to Layered Modeling of Software Performance.

Zitzler, E. and Thiele, L. (1999) Multiobjective Evolutionary Algorithms: A Comparative Case Study

and the Strength Pareto Approach, IEEE Transactions on Evolutionary Computation, 3 (4), pp. 257

- 271.

	Association for Information Systems
	AIS Electronic Library (AISeL)
	Summer 10-6-2011

	GENERIC PERFORMANCE PREDICTION FOR ERP AND SOA APPLICATIONS
	Daniel Tertilt
	Helmut Krcmar
	Recommended Citation

	tmp.1310564526.pdf.jgBKx

