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Bergm: Bayesian Exponential Random Graphs in R

Alberto Caimo Nial Friel
University of Lugano University College Dublin

Abstract

In this paper we describe the main featuress of the Bergm package for the open-
source R software which provides a comprehensive framework for Bayesian analysis for
exponential random graph models: tools for parameter estimation, model selection and
goodness-of-fit diagnostics. We illustrate the capabilities of this package describing the
algorithms through a tutorial analysis of three network datasets.

Keywords: exponential random graph models, Bayesian inference, Bayesian model selection,
Markov chain Monte Carlo.

1. Introduction

Interest in statistical network analysis has grown massively in recent decades and its perspec-
tive and methods are now widely used in many scientific areas which involve the study of
various types of networks for representing structure in many complex relational systems such
as social relationships, information flows, protein interactions, etc. (see Salter-Townshend,
White, Gollini, and Murphy (2012) for a recent review of statistical network models).

Social network theory is based on the study of social relations between actors so as to un-
derstand the formation of social structures by the analysis of basic local relations. Statistical
models have started to play an increasingly important role because they give the possibility to
explain the complexity of social behaviour and to investigate issues on how the global features
of an observed network may be related to local network structures. The observed network is
assumed to be generated by local social processes which depend on the self-organizing dyadic
relations between actors. The crucial challenge for statistical models in social network theory
is to capture and describe the dependency giving rise to network global topology allowing
inference about whether certain local structures are more common than expected.

Exponential random graph models (ERGMs) (Frank and Strauss (1986); Wasserman and
Pattison (1996); Robins, Pattison, Kalish, and Lusher (2007)) are one of the most important
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family of models conceived to capture the complex dependence structure of an observed
network allowing a reasonable interpretation of the underlying process which is supposed to
have produced these structural properties. The dependence hypothesis at the basis of these
models is that the connections between actors (edges) self-organize into small structures called
configurations or network statistics. These are classical graph-theoretic structures such as
degrees, cycles, etc. which can be directly incorporated in ERGMs as sufficient statistics
with corresponding parameters measuring their importance in the observed network. The
computational intractability of these models is the main barrier to estimation.

The Bayesian approaches for exponential random graph models developed by Caimo and Friel
(2011) and Caimo and Friel (2013) represent one of the first complete Bayesian frameworks
for these models. The doubly-intractable posterior is estimated by the use of an approximate
exchange algorithm with adaptive direction sampling. This approach has proven to be effective
to improve mixing and local moves on the typically thin and high posterior density region.
In fact fast convergence occurs even when the algorithm starts from degenerate parameter
values. This approach exhibits better performance and convergence properties with respect
to classical non-Bayesian methods.

The recent progress made in the framework of network analysis has been possible thanks
to the development and implementation of software able to perform computational intensive
tasks. For this reason, the development of software has always represented an essential aspect
of the research activity in this area.

The Bergm package for R (R Development Core Team 2011) implements Bayesian analysis for
Exponential Random Graph Models using the methods described by Caimo and Friel (2011)
and Caimo and Friel (2013). The package provides a comprehensive framework for Bayesian
inference and model selection using Markov chain Monte Carlo (MCMC) algorithms. It
can also supply graphical Bayesian goodness-of-fit procedures that address the issue of model
adequacy. Although computationally intensive, the package is simple to use and represents an
attractive way of analyzing network data as it offers the advantange of a complete probabilistic
treatment of uncertainty. Bergm is based on the ergm package (Hunter, Handcock, Butts,
Goodreau, and Morris 2008b) which is part of the statnet suite of packages (Handcock, Hunter,
Butts, Goodreau, and Morris 2007) and therefore it makes use of the same model set-up and
network simulation algorithms. The ergm and Bergm packages complement each other in the
sense that ergm implements maximum likelihood-based inference whereas Bergm implements
Bayesian inference. The Bergm package has been continually improved in terms of speed
performance over the last two years and one of the purposes of this paper is to highlight these
improvements. We feel that this package now offers the end-user a feasible option for carrying
out Bayesian inference for exponential random graphs.

Three network datasets will be used throughout this tutorial for illustrative purposes: the
first is the Kapferer Tailor Shop dataset (Kapferer 1972) whose directed edges represent work
interactions in a tailor shop in Zambia (then Northern Rhodesia) and nodal attributes refer to
the job status. The second network is Zachary’s karate club (Zachary 1977) which represents
the undirected social network graph of friendships between 34 members of a karate club at
a US university in the 1970s. The third is excerpt of 50 girls from the Teenage Friends and
Lifestyle Study data set. Figure 2 displays the graphs of the first two networks, Figure 10
displays the graphs of the Teenage Friends and Lifestyle Study network. The exact R code
used to produce these plots is given in Appendix A.
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In this paper we describe how to install and load Bergm (Section 2) providing a brief summary
of what Bayesian ERGMs are (Section 3). Sections 4, 5, and 6 overview the algorithms and
the functions used to produce posterior estimates for the parameters, Bayesian goodness-of-fit
procedures and model selection respectively. Two examples are developed in Section 4.3 and
Section 6.1. This paper does not provide an exhaustive description of all the functionality
and options available, and more information about the commands and methods mentioned
are available through the R help system within the package.
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Figure 1: Kapferer Tailor Shop directed graph. Nodal covariates consists of employees’ occu-
pational categories: 1=head tailor, 2=cutter, 3=line 1 tailor, 4=button machined, 5=line 3
tailor, 6=ironer, 7=cotton boy, 8=line 2 tailor.

2. Getting Bergm

The Bergm package can be obtained and loaded in R using the following commands:

R> install.packages ("Bergm")
R> library("Bergm")

Since Bergm depends on ergm (Hunter et al. 2008b) (which in turn depends on network
(Butts 2008)), coda (Plummer, Best, Cowles, and Vines 2006), and mvtnorm (Genz, Bretz,
Miwa, Mi, Leisch, Scheipl, and Hothorn 2012). Installing the package will automatically load
all the dependencies. All of these packages are available on the Comprehensive R Archive
Network (CRAN) at http://CRAN.R-project.org.

The results presented in this paper have been obtained using R version 3.1.1 on a Mac using
Bergm version 3.0; ergm version 3.1.3; network version 1.10.2; coda version 0.16-1; and
mvtnorm version 1.0-0.
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Figure 2: Zachary’s karate club undirected graph.

3. Bayesian exponential random graphs

The Bayesian approach to statistical problems is probabilistic. Inference is based on the
posterior distribution which is the conditional probability of the unknown quantities given
the observed ones. The posterior distribution extracts the information in the data and provide
a complete summary of the uncertainty about the unknowns.

In the ERGM context (see Wasserman and Pattison (1996) and Robins et al. (2007)), the pur-
pose of Bayesian inference is to learn about the posterior distribution of the model parameters
0 of an observed graph y on n nodes:

p(y|0) p(8) _ exp{6's(y)} p(6)
p(y) 2(8)  p(y)

p(Oly) = (1)

where s(y) is a known vector of sufficient network statistics (Figure 3) (Morris, Handcock,
and Hunter 2008), p(@) is a prior distribution placed on 6, z(0) is the likelihood normalizing
constant, and p(y) is the model evidence. Equation 1 provides a probabilistic statement about
how likely parameter values are after observing the data y. The likelihood p(y|@) is translated
into a proper probability distribution that can be summarised by computing expected values,
standard deviations, quantiles, etc.

Unfortunately the posterior distribution (Equation 1) is doubly-intractable as both z(€) and
p(y) cannot be evaluated analytically (Koskinen 2004). This makes the use of standard
MCMC procedures infeasible.

In order to carry out Bayesian inference for ERGMs, the Bergm package makes use of a com-
bination of Bayesian algorithms and MCMC techniques. The exchange algorithm circumvents
the problem of computing the normalizing constants of the ERGM likelihoods, while the use
of multiple chains interacting with each others (population MCMC approach) by means of
adaptive direction sampling is able to speed up the computations and improve chain mixing
quite significantly.
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Figure 3: Some of the most used configurations for directed (a) and undirected (b) graphs.
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4. Bayesian parameter estimation

In order to approximate the posterior distribution p(€|y), the Bergm package uses the ex-
change algorithm described in Section 4.1 of Caimo and Friel (2011) to sample from the
following distribution:

p(0',y',8ly) o< p(y|0)p(8)e(6'10)p(y'|6')

where p(y’|@’) is the likelihood on which the simulated data y’ are defined and belongs to the
same exponential family of densities as p(y|@), ¢(8'|0) is any arbitrary proposal distribution
for the augmented variable 8’. As we will see in the next section, this proposal distribution
is set to be a normal centered at 0.

At each MCMC iteration, the exchange algorithm consists of a Gibbs update of 8’ followed by
a Gibbs update of ¢’, which is drawn from the p(-|@’) via an MCMC algorithm (Hunter et al.
2008b). Then a deterministic exchange or swap from the current state 6 to the proposed new
parameter @'. This deterministic proposal is accepted with probability:

e ag(y')p(6')€(616")qg (y) L 2(0)2(9)
" ag(y)p(0)e(0'0)qg (y')  2(0)z(6') |
where gg and gg/ indicates the unnormalised likelihoods with parameter 6 and 0’, respectively.

Notice that all the normalising constants cancel above and below in the fraction above, in
this way avoiding the need to calculate the intractable normalising constant.

The exchange algorithm is implemented by the bergm function in the following way:

fori=1,....N
1. generate 0’ from €(-|0)
2. simulate y' from p(-|@’)
3. update § — 0’ with the log of the probability

min (0, [0 -0 [s(y) — s(y)] +log [%D

end for

where s(y) is the observed vector of network statistics and s(y’) is the simulated vector of
network statistics.

4.1. Block-update sampler

Step 1 of the algorithm consists in generating 8’ from some proposal distribution within each
iteration. Bergm uses a block-update sampler with normal proposal to simultaneously update
of the parameter values in the MCMC chain:

c(60'|8) ~ N'(8,%,). (2)

Typically, tuning the parameter X, of the proposal distribution e from which 6 is drawn
represents the crucial part of the algorithm since a poor tuning of the proposal parameter X,
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can slow down the chain’s mixing rate and therefore the algorithm can take a very long time
to converge to the stationary posterior density. By default 3. is set to a diagonal matrix with
every diagonal entry equal to 0.0025.

4.2. Parallel adaptive direction sampler

In order to improve mixing a parallel adaptive direction sampler (ADS) (Gilks, Roberts, and
George 1994; Roberts and Gilks 1994) is considered: at the i-th iteration of the algorithm we
have a collection of H different chains interacting with one another. By construction, the state
space consists of {01,...,0py} with target distribution p(61]y) ® --- ® p(@uly). A parallel
ADS move consists of generating a new value 8, from the difference of two parameters 6y,
and 0y, (randomly selected from other chains) multiplied by a scalar term ~ which is called
parallel ADS move factor plus a random term e called parallel ADS move parameter (Figure 4)
which is equivalent to the block-update sampler defined in (Equation 2). The algorithm can
be summarised as follows:

fori=1,....N
forh=1,...,H
1. generate h; and hy such that hy # he # h
2. generate 0) from (0, — 0y,) +¢€(-|01)
3. simulate y' from p(-6})
4. wupdate 6 — 0, with the log of the probability

min <0, (61— 6,]" [s(y) — s(»)] +log BEZSD

end for

end for

4.3. Kapferer tailor shop network

Consider the Kapferer Tailor Shop network and a 3-dimensional model including the follow-
ing network statistics: edges (edges), mutual edges (mutual) and cyclic triples (ctriple)
involving nodes with the same job status, where the job status is represented by a categorical
nodal attribute variable consisting of 8 levels described in Figure 1.

edges D it Yij
mutual > iz YijYii
ctriple("job") Z##k Yij¥YjkYki Where i, j, k have the same job status

The format of the model specification is the same of an ergm formula:

R> formula <- y ~ edges + mutual + ctriple("job")
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Figure 4: The parallel ADS move of the current state (darker blue dot) consists of generating
a new parameter value along the direction made by the difference of two randomly sampled
parameter states (light blue dots) belonging to different chains plus a random term.

Then we can use the bergm function to sample from the posterior distribution using the
MCMC algorithm described above. In this example we use the parallel ADS procedure de-
scribed in Section 4.2. By default, the number of chains in the population is set as twice the
number of dimensions of the model. It is possible to choose a different number of chains by
using the argument nchains. In order to perform the block-site update described in Section
4.1 it is necessary to set nchains = 1. For each chain, we can then set the number of burn-in
iterations (burn.in) and the number of iterations after the burn-in (main.iters). The num-
ber of iterations used to simulate a network 4’ at each iteration is defined by the argument
aux.iters.

R> post.est <- bergm(formula,

+ burn.in=500,

+ gamma=0.7,

+ main.iters=1500,
+ aux.iters=5000)

The population MCMC with parallel ADS move is the default procedure of the bergm function.
The total number of iterations, e.g., the size of the posterior sample, is nchains X main.iters.
The proposal covariance structure 3. is defined by the argument sigma.epsilon which is set
to be a diagonal matrix with every diagonal entry equal to a small number. In many cases,
good mixing of the chain is ensured by a sensible tuning of the parallel ADS move factor
gamma and therefore the argument sigma.epsilon can be generally left at its default value.
The parameter gamma can be easily tuned to achieve a suitable acceptance rate by starting
from its default value (0.5). The range of values that gamma can take depends on the size of
network and the kind of network statistics included in the model.

As said above, parallel ADS is adopted as the default procedure but it is automatically
disabled in the case of uni-dimensional models where the block-update sampler is used and
the argument gamma is used to tune the variance of the normal proposal distribution e.

It is possible to visualise the results of the MCMC estimation by using the bergm.output
function which is based on the coda package (Plummer et al. 2006) which is an R package for
MCMC output analysis and diagnostics.
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R> bergm.output (post.est,lag.max=50)
MCMC results for Model: y ~ edges + mutual + ctriple("job")

Posterior mean:
thetal (edges) theta2 (mutual) theta3 (ctriple.job)

Chain 1 -3.4959346 3.6878307 0.9911443
Chain 2 -3.5206027 3.7528209 1.0021785
Chain 3 -3.4500632 3.5582041 0.9674991
Chain 4 -3.4675361 3.6290626 0.9669324
Chain 5 -3.5121016 3.7160281 0.9960164
Chain 6 -3.4930906 3.6577777 0.9825008

Posterior sd:
thetal (edges) theta2 (mutual) theta3 (ctriple.job)

Chain 1 0.1528820 0.3595036 0.1808921

Chain 2 0.2138147 0.4328422 0.2055869

Chain 3 0.1768300 0.4407702 0.2090132

Chain 4 0.1499667 0.3609036 0.2171879

Chain 5 0.1668627 0.3703079 0.2024424

Chain 6 0.1832811 0.3892008 0.2065293
Acceptance rate:

Chain 1 0.2686667

Chain 2 0.2660000

Chain 3 0.2673333

Chain 4 0.2306667

Chain 5 0.2693333

Chain 6 0.2900000

Overall posterior density estimate:
thetal (edges) theta2 (mutual) theta3 (ctriple.job)
Post. mean -3.4898881 3.666954 0.9843786
Post. sd 0.1768949 0.398493 0.2043015

Overall acceptance rate: 0.27

The output above shows the results of the MCMC estimation: posterior means and stan-
dard deviations, and acceptance rates for every chain in the population and for the overall
chain. Notice that the posterior summaries of each chain are consistent with each other.
Figure 5 displays the MCMC diagnostic plots produced by the bergm.output function. In
this example, we observe a low density effect expressed by the negative value of the posterior
mean of the edge effect parameter (6;) combined with the positive mutuality and transitivity
within people having the same job status expressed by the mutual edge parameter (f3) and
cyclic triple parameter (f3) respectively. The overall acceptance rate is around 27% and the
autocorrelation is negligible after lag 50.
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MCMC output for Model: y ~ edges + mutual + ctriple("job")
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Figure 5: MCMC diagnostics for the overall chain. The 3 plot columns, from left to right,
are: estimated marginal posterior densities, trace plots, and autocorrelation plots.
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5. Bayesian goodness-of-fit diagnostics

An important contribution of this article is to propose a Bayesian procedure to establish
whether the estimated parameter posterior of the model achieves a good fit to the key topo-
logical features of the observed network.

The bgof function provides a useful tool for assessing Bayesian goodness-of-fit so as to exam-
ine the fit of the data to the posterior model obtained by the bergm function. The observed
network data y are compared with a set of networks y,,y,, ..., yg simulated from S indepen-
dent realisations 61,03, ...,0g of the posterior density estimate. This comparison is made in
terms of high-level characteristics g(-) such as higher degree distributions, etc. (see Hunter,
Goodreau, and Handcock (2008a)). The algorithm can be summarised as follows:

fori=1,...,8
1. sample 0; from the estimate of p(f|y)
3. simulate y; from p('|0i)
4. calculate g(y,)

end for

For example, the code below is used to compare the Kapferer Tailor Shop network with a
series of networks simulated from S = 100 random realisations (sample.size) of the esti-
mated posterior distribution post.est using 10,000 iterations (aux.iters) for the network
simulation step. The bgof function may take a few seconds to run and, at the end of the
execution, it will automatically plot the results as shown in Figure 6.

R> bgof (post.est,
sample.size=100,
aux.iters=10000,
directed=TRUE,
n.ideg=20,
n.odeg=20,
n.dist=10,
n.esp=15)

+ + + + + + +

The set of statistics used for the comparison of directed networks includes the in-degree
distribution, the out-degree distribution, the minimum geodesic distance distribution and the
edgewise shared partner distribution. The arguments n.ideg, n.odeg, n.dist, and n.esp
indicates the number of boxplots to plot for each distribution respectively.

In Figure 6 we see, based on the various goodness of fit statistics, that the networks simulated
from the posterior distribution are in reasonable agreement with the observed network. We
can therefore conclude that the data are a reasonable fit to the model, despite its simplicity.

6. Bayesian model selection

11
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Bayesian goodness-of-fit diagnostics
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Figure 6: Bayesian goodness-of-fit diagnostics. The red line displays the goodness of fit
statistics for the observed data together with boxplots of goodness of fit statistics based on
100 simulated networks from the posterior distribution.
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An important problem in statistical analysis is the choice of an optimal model from a set of a
priori competing models. In the ERGM context, this task translates into the choice of which
subset of network statistics should be included into the model.

Let m indicate a particular model from a set of competing models with corresponding pa-
rameters 6,,. Following the Bayesian paradigm, interest focuses on exploring the posterior
distribution,

p(m, 0m|y) o< p(y|m, Om) p(Om|m) p(m)

where p(0,,|m) and p(m) are prior distributions within model m, and on model m, respec-
tively. The reversible jump Markov chain Monte Carlo (RJIMCMC) algorithm (Green 1995)
was designed to explore this type of posterior distribution across the joint model and param-
eter space. It is therefore a type of MCMC algorithm that allows one to jointly explore the
uncertain between and within models.

This approach is very appealing since it relies exclusively on probabilistic considerations but
is very challenging from a computational viewpoint. As stated above, the intractability of the
likelihood normalising constant z(6,,) in Equation 1 renders standard RJIMCMC techniques
infeasible. However, the exchange algorithm used for parameter estimation can be easily
generalised so as to include model indicators.

The auto-RJ exchange algorithm described in Caimo and Friel (2013) represents a trans-
dimensional RJIMCMC extension of the exchange algorithm involving an independence sam-
pler based on a distribution fitting a parametric density approximation to the within-model
posterior. This approach overcomes the issue of the likelihood intractability sampling from:

p(0,,, 0, ,m, Y |y) o< p(Y|Orm, m)p(O | m)p(m)w (6, |m')h(m/|m)p(y'|6,,,,m")  (3)

where m and m/ are two competing models, p(y|0,,, m) and p(y'|@,,,m’) are the two likeli-
hoods for the data y under model m and the simulated data 4y’ under model m/ respectively,
p(0,,]m) and p(m) are the priors for the parameter and the respective model m, w(-) is a
within-model proposal (independence sampler) which fit a parametric density approximation
to the model posteriors and h(-) is a between-model proposal. Notice that the marginal
distribution for 8/, and m’ in Equation 3) is the target distribution of interest p(8,,, m|y).

The bergmS function implements the auto-RJ exchange algorithm which consists of two parts:
an offline step and an online step. In the online step, samples from the posterior p(8,,|y, m)
are gathered from each competing model using the bergm function and then approximated by
normal distributions N (fi,,,, ﬁ)m) determined by the first and second moments from a sample
from the model.

The second step (online run) of the algorithm consists of a Gibbs update of m’ followed
by a Gibbs update of 0., which is generated via the independence sampler w(0/ ,|m') ~
N (ft,,r, ). This is followed by a Gibbs update of y’ which is generated from p(-|0.,,,m’).
Then a deterministic exchange move from a current state (6,,,m) to the proposed new state
(0’ .,,m’) is accepted with probability:

m/s

90, @) 90,0 W) p(0, ) p(') WOl Em) B(mim)
3 qem,m<y) qa:n“m/(y,) p(am’m) p(m) w(gg’n”ltl’m’:ﬁ)m’) h(ml’m)

where 9, m and a9 , indicates the unnormalised likelihoods under model m with param-

eter 0,, and under model m’ with parameter @’ , respectively.

13
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The structure of the bergmS function can be described in the following way:

fori=1,....N

1. generate m’ from h(-|m)

2. generate 0/, ~ N (fi,,, Sy
3. simulate y’ from p(-|@. ., m’)
4.

update (0,,,m) — (0,,,,m') with the log of the probability:

POm) w(O, | fo, St

)

where s,,(y) and s,,/(y) are the observed vectors of network statistics under model m and
m’ respectively, and s,,(y’) and s,/ (y’) are the simulated vector of network statistics under
model m and m/ respectively. Here, we have assumed the model priors and the between model
proposals to be uniform. The reader is referred to Caimo and Friel (2013) for more details on
this algorithm.

min (o, 0L [5m(Y') — 5m(¥)] + 0.5 [5mr (y) — 8 ()] + log

end for

6.1. Karate club network

In this example, we consider the Karate club network and we propose three competing models
to fit the data using a set of new specification statistics introduced by Hunter and Handcock
(2006) and Hunter (2007): geometrically weighted edgewise shared partners (gwesp) and
geometrically weighted degrees (gwdegree):

gwesp ebv Z;f 1—(1- e*%)k} EPy(y)
gudegree e® Y0141 — (1- e_‘z’“)k} Dy (y)
where the scale parameters ¢, = 0.2 and ¢, = 0.8. Dg(y) is the number of pairs that have

exactly k& common neighbours and E Py (y) is the number of connected pairs with exactly k
common neighbours.

The specification of these models requires the creation of a list of formulas:

R> formulae <- c(y ~ edges + gwesp(0.2,fixed=TRUE),

+ y = edges + gwdegree(0.8,fixed=TRUE),
+ y ~ edges + gwesp(0.2,fixed=TRUE)
+ + gwdegree (0.8, fixed=TRUE))

The bergmS command is then used to carry out the algorithm. To do this we have to specify
several arguments for both the offline and online step.

The offline run consists of running the bergm function for each of the models proposed.
Therefore we set some arguments main.iters, burn.ins, gammas which are vectors containing
values for bergm arguments: main.iters, burn.in, gamma for each competing model.
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The argument iters refers to the number of iterations used for the online run. The number
of MCMC steps used for network simulation is specified as usual by the argument aux.iters
and this will be used in both the offline and the online step.

R> mod.sel <- bergmS(formulae,

+ iters=25000,
aux.iters=2000,
main.iters=rep(700,3),
burn.ins=rep(100,3),
gammas=c(1,1,0.8))

+ + + +

The bergmS.output function produces the MCMC diagnostics for each competing model
explored by the MCMC algorithm. Figure 7 and 8 display the plots regarding the posterior
model and parameter density estimate for the best model, respectively.

R> best.mod <- bergmS.output(mod.sel,lag.max=100)

BEST MODEL

Model 1: y ~ edges + gwesp(0.2, fixed = TRUE)
Posterior parameter estimate:
Post. mean: Post. sd:
thetal (edges) -3.2655591 0.3280836
theta2 (gwesp.fixed.0.2)  1.1048745 0.2473057

Within-model acceptance rate: 0.25

Model 3: y ~ edges + gwesp(0.2, fixed = TRUE) + gwdegree(0.8, fixed = TRUE)

Posterior parameter estimate:
Post. mean: Post. sd:

thetal (edges) -3.4900339 0.5002413
theta2 (gwesp.fixed.0.2) 1.1717390 0.2743921
theta3 (gwdegree) 0.4537180 0.5895084

Within-model acceptance rate: 0.18

BF_13 = 11.84936

Model 2: y ~ edges + gwdegree(0.8, fixed = TRUE)

Posterior parameter estimate:
Post. mean: Post. sd:
thetal (edges) -1.332852 0.000000
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theta2 (gwdegree) -1.331943 0.000000
Within-model acceptance rate: O

BF_12 = 2880.875

Between-model acceptance rate: 0.03

In the results above we have the posterior parameter estimates for two of the competing
models (Model 2 has not been visited enough times through the MCMC runs to have reliable
posterior parameter estimates) with respective within-model acceptance rates and an estimate
of the Bayes Factor (about 12) for the comparison between Model 1 and Model 3 which makes
clear that there is evidence that Model 1 is the best model of the set. This implies that the
observed network is not enhanced by the effect captured by the geometrically weighted degree
network statistic.

After running the command bergmS. output, it is possible to perform a Bayesian goodness-of-
fit tests. In this case, since the observed network is undirected, the set of high-level statistics
include the degree distribution in place of the in-degree and out-degree distributions.

R> bgof (best.mod,

+ aux.iters=10000,
+ n.deg=20,

+ n.dist=10,

+ n.esp=15)

In this example, the observed data appears to be a reasonable fit to the posterior distribution
of the model selected (Model 1), based on the goodness of fit geodesic and the shared partners
statistics displayed in Figure 9.

7. Example: Teenage Friends and Lifestyle Study

The adolescent friendship network were collected in the “Teenage Friends and Lifestyle Study”
(Pearson and Michell 2000). Friendship network data and substance use were recorded for
a cohort of pupils in a secondary school in Glasgow (Scotland). Here we consider 3 actor
covariates: drugs consumption (which was binarized in this example), sport activity, and
smoking (Figure 10).

In this example we focus on the transitivity effect expreessed by the geometrically weighted
edgewise shared partner network statistic and the homophily effect of the drugs consumption
(nodematch("drugs") ) and its relationship to sport activity (nodematch(c("sport","drugs"))
and smoking (nodematch(c("smoke","drugs"))).

The homophily effect modeled by nodematch counts the number of edges for which two nodes
share the same covariate value. When multiple relationships are studied, the nodematch
statistic counts only those on which all the covariate values match). More information about
network statistics and their description can be found typing 7ergm.terms.

We propose the following 4 competing models:
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MCMC output for Model: y ~ edges + gwesp(0.2, fixed = TRUE)

Figure 8: MCMC diagnostics: posterior parameter probabilities.
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R> m1 = y ~ edges + gwesp(log(2),fixed=TRUE) + nodematch(c("sport","drugs"))
R> m2 = y ~ edges + gwesp(log(2),fixed=TRUE) + nodematch(c("smoke", "drugs"))
R> m3 = y ~ edges + gwesp(log(2),fixed=TRUE) + nodematch("drugs")

R> m4 = y ~ edges + gwesp(log(2),fixed=TRUE)

An important advantages of the Bayesian approach include easily interpreted measures of
uncertainty through the use of prior knowledge. In this context, for example, it is known that
the network graph is sparse meaning that the density effect (expressed by the edge statistic)
is likely to be negative. For this reason we can include this prior information by setting the
parameter value for the edge statistic equal to —1.

We can also set up the prior variance/covariance structure. In this case we set the prior
covariance matrix of each model to be a diagonal matrix with every entry equal to 5.

R> mean.priors <- list(c(-1,0,0),c(-1,0,0),c(-1,0,0),c(-1,0))
R> sigma <- 56
R> sigma.priors <- list(diag(sigma,3),diag(sigma,3),diag(sigma,3),diag(sigma,2))

As we have done above, we can use the bergmS function to perform Bayesian model selection
and get an estimate of the Bayes Factors.

R> mod.sel <- bergmS(c(ml,m2,m3,m4),

iters=50000,
mean.priors=mean.priors,
sigma.priors = sigma.priors,
aux.iters=5000,
main.iters=rep(1000,4),
burn. ins=rep(100,4),
gammas=rep (0.7,4))

R> best.mod <- bergmS.output (mod.sel,lag.max=200)

+ + + + + + +

BEST MODEL

Model 3: y ~ edges + gwesp(log(2), fixed = TRUE) + nodematch(c("drugs"))

Posterior parameter estimate:
Post. mean: Post. sd:

thetal (edges) -4.5805494 0.3395364
theta2 (gwesp.fixed.0.693147180559945) 1.0009564 0.1330043
theta3 (nodematch.drugs) 0.8180081 0.3348887

Within-model acceptance rate: 0.11

Model 4: y ~ edges + gwesp(log(2), fixed = TRUE)

Posterior parameter estimate:
Post. mean: Post. sd:
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thetal (edges) -4.0061009
theta2 (gwesp.fixed.0.693147180559945) 1.0852981

Within-model acceptance rate: 0.21

BF_34 = 6.1875

Model 2: y ~ edges + gwesp(log(2), fixed = TRUE) +

Posterior parameter estimate:

Post. mean:
thetal (edges) -4.1570235
theta2 (gwesp.fixed.0.693147180559945) 1.0586371
theta3 (nodematch.smoke.drugs) 0.3143428

Within-model acceptance rate: 0.16

BF_32 = 12.4805687203791

Model 1: y ~ edges + gwesp(log(2), fixed = TRUE) +

Posterior parameter estimate:

Post. mean:
thetal (edges) -4.0878854
theta2 (gwesp.fixed.0.693147180559945)  1.0849115
theta3 (nodematch.sport.drugs) 0.1633458

Within-model acceptance rate: 0.12
BF_31 = 41.58

Between-model acceptance rate: 0.03

0.2135235
0.1295703

nodematch(c("smoke", "drugs"))

Post. sd:
0.2314948
0.1416855
0.1885215

nodematch(c("sport", "drugs"))

Post. sd:
0.2355906
0.1317221
0.1778837

In the results above we have the posterior parameter estimates for all the competing models
with respective within-model acceptance rates and an estimate of the Bayes Factors for the
comparison between the four models which makes clear that there is evidence that Model 3
is the best model of the set. This implies that the observed network is enhanced by the drugs

consumption homophily effect.

R> bgof (best.mod,

+ aux.iters=20000,
+ n.deg=20,
+ n.dist=10,
+ n.esp=15)

In this example, the observed data appears to be a reasonable fit to the posterior distribution



Journal of Statistical Software

of the model selected (Model 3), based on the goodness of fit geodesic and the shared partners
statistics displayed in Figure 13.

MCMC output : posterior model probabilities
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Figure 11: MCMC diagnostics: posterior model probabilities.

From this results we can conclude that girls having the same level of drugs assumption tends
to be friend. While girls with the same level of drugs assumptions and same level of smoking
behaviour or sport activity do not seem to create a significant number of friendship con-
nections. The transitivity effect is an important feature of the network graph but it is not
sufficient to explain the complexity of the observed network data.

8. Discussion

The software package Bergm aims to help researchers and practitioners in two ways. Firstly,
it is currently the only package for R that provides a simple and complete range of tools for
conducting Bayesian analysis for exponential random graph models. Secondly, Bergm makes
available a platform that can be easily customised, extended, and adapted to address different
requirements.

The software package is under continual development and it is far from finished. The main
limitation of the software is its computational cost which makes it unsuitable for managing
network graphs larger than hundreds of nodes, however it is perfectly suited for networks
involving up to a hundred nodes. An important improvement in terms of computational time
and efficiency will be done by turning some of the R functions into C functions integrated
with the ergm package. We expect that will yield further reductions in computational run
time.

Future versions of the Bergm package will address several issues including Bayesian analysis
of Curved Exponential Random Graph Models (Hunter and Handcock 2006) and exponential
random graph models with missing data (Koskinen, Robins, and Pattison 2010).
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MCMC output for Model: y ~ edges + gwesp(log(2), fixed = TRUE) + nodematch(c("drugs"))
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A. R code for loading and plotting the network data

Here we give the code to load the datasets presented in this paper and to plot the network
graphs displayed in Figure 2. The main functions to load and plot network data are network
and plot.network respectively. They are both included in the network package which is one
of the depencencies of Bergm and it is automatically loaded by typing the 1ibrary ("Bergm")
command (see Section 2). We include the set.seed statement in order to produce exactly
the same graphs of Figure 2 and 10. The Zachary karate network dataset used in this paper
is available in the statnet package. The directed network data and nodal attributes for the
Kapferer dataset and the Teenage Friends and Lifestyle Study’ social network dataset can be
downloaded from the Siena datasets repository http://www.stats.ox.ac.uk/"snijders/
siena/.

R> install.packages("statnet")
R> library("statnet")

R> install.packages ("Bergm")
R> library("Bergm")

The Kapferer Taylor Shop network and nodal attribute data can be loaded into R by typing:

R> y <- network(read.table("kapferer.dat"), directed = TRUE)
R> x <- read.table("kapfa_stat.dat")
R> y Jv} 'job' <- x

The last command is used to attache the nodal covariate “job” represented by the object x to
the network object y.

To plot the network graph as in Figure 1 we used the following code:

R> CC <- colors()[c(24,135,53,142,258,28,551,119)]
R> set.seed(20)
R> par(oma=rep(0,4) ,mar=rep(0,4))

R> plot(y,

+ vertex.col=CC[x[,1]],

+ edge.col=colors()[c(229)],
+ vertex.cex=1.5,

+ usearrows=TRUE)

R> legend("topright",

+ legend=seq(1,8),

+ col=CC,

+ yjust=0,

+ pch=19)

The legend function creates a legend showing the colors associated to the levels of the “job”
nodal attribute. For more information about this function type ?legend.

The following code was used to load the Zachary Karate Club network and to plot it as in
Figure 2:
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R> data("zach", package = "ergm.count")
R> y <- zach

R> par(oma=rep(0,4) ,mar=rep(0,4))

R> set.seed(20)

R> plot(y,

+ vertex.col=colors () [123],
+ edge.col=colors() [c(229)],
+ vertex.cex=1.5)

The following code was used to load the Teenage Friends and Lifestyle Study’ social network
and to plot it as in Figure 10:

R> y <- read.table("s50-networkl.dat")

R> y <- network(as.matrix(y),matrix.type="adjacency", directed=FALSE)
R> x1 <- read.table("s50_data/s50-sport.dat")
R> x2 <- read.table("s50_data/s50-smoke.dat")
R> x4 <- read.table("s50_data/s50-drugs.dat")
R> y v/ 'sport' <- x1[,1]

R> y }v7 'smoke' <- x2[,1]

R> y %4v’% 'alcohol' <- x3[,1]

R> x4[,1] <- ifelse(x4[,1] < 3, 1, 2)

R> y Jv7 'drugs' <- x4[,1]

R> CC <- rainbow(2)

R> set.seed(20)

R> par(mfrow=c(1,3),oma=rep(0,4) ,mar=rep(0,4))

R> plot(y,

+ vertex.col=CC[x1[,1]],

+ edge.col=colors() [c(229)],
+ vertex.cex=1.5,

+ usearrows=TRUE)

R> legend("topright",
+ legend=c("non regular","regular"),
+ col=CC,

+ yjust=0,

+ pch=19,

+ title="SPORT")

R> CC <- rainbow(3)

R> set.seed(20)

R> plot(y,

+ vertex.col=CC[x2[,1]],

+ edge.col=colors() [c(229)],

+ vertex.cex=1.5,

+ usearrows=TRUE)

R> legend("topright",

+ legend=c("non", "occasional", "regular"),
+ col=CC,

+ yjust=0,
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+ pch=19,
+ title="SMOKE")
R> CC <- rainbow(2)
R> set.seed(20)
R> plot(y,
+ vertex.col=CC[x4[,1]],
+ edge.col=colors() [c(229)],
+ vertex.cex=1.5,
+ usearrows=TRUE)
R> legend("topright",
+ legend=c("non - once or twice a year",'"once a month - once a week"),
+ col=CC,
+ yjust=0,
+ pch=19,
+ title="DRUGS")

More details about the commands used in this section can be found in the help files by typing
?network and 7plot.network. More information about the network package can be found

in Butts (2008).
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