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ABSTRACT 

FLUORESCENCE AND SIZE CHARACTERIZATION OF DISSOLVED 

ORGANIC MATTER IN RIVERINE AND SEA WATERS 

IN THE NORTHERN GULF OF MEXICO 

by Zhengzhen Zhou 

December 2012 

Riverine export of dissolved organic matter (DOM) is an important 

component in marine carbon budget but the composition and phase partitioning 

are poorly quantified. Monthly water samples were collected from the lower 

Mississippi and Pearl rivers between January 2009 to August 2011 for DOM 

characterization using the fluorescence excitation emission matrix (FluoEEM) 

technique, coupled with parallel factor analysis (PARAFAC), and flow field-flow 

fractionation technique. DOM in the Pearl River showed higher dissolved organic 

carbon (DOC) concentration, temporal fluctuation, and aromaticity, reflecting 

instantaneous inputs of DOM from local soil and plant litter. In contrast, DOM in 

the Mississippi River exhibited lower abundance, seasonal variability and 

aromaticity, but higher proportion of protein-type fluorophores, corresponding to 

integrated signals and enhanced photochemical degradation largely resulting 

from of prolonged water residence time, as well as in situ phytoplankton 

production. Distinct DOM characteristics in these two river contribute to explain 

the effect of source, hydrology and human impacts on composition and colloidal 

size distribution of riverine DOM. 
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In addition to terrestrial inputs of organic matter, oil is another source of 

organic matter in the Gulf of Mexico. The unprecedented Deepwater Horizon oil 

spill in April 2010 introduced large amount of crude oil into the Gulf of Mexico. 

The FluoEEM technique and PARAFAC modeling were also used to examine the 

fate, transport and transformation of oil in the water column during this oil spill. 

Oil greatly altered the optical properties of DOM in the entire water column during 

the oil spill. Persistent influence of oil on deep waters was observed even 15 

months after the spill. Three major oil components were characterized by 

FluoEEM and PARAFAC modeling. The oil component ratios varied consistently 

and quantitatively with degradation states of oil and can be used as an index to 

track oil in the water column. The chemical evolution of oil and its degradation 

pathways observed in the field were further tested and confirmed with results 

from controlled laboratory experiments using Macondo crude oil. Degradation 

half lives of PAH, n-Alkanes and oil components were identified and can help 

understand the degradation pathways of different oil components. 
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CHAPTER I 

GENERAL INTRODUCTION 

As one of the largest dynamic pools of reduced carbon, dissolved organic 

matter (DOM) plays a major role in the carbon cycle (Hedges, 2002), regulates 

the fate and transport of trace elements in marine and freshwater ecosystems 

(Pham and Garnier, 1998; Shiller et al., 2006; Taillefert et al., 2000), and controls 

the bioavailability and distribution of hydrophobic contaminants (Backhus et al., 

2003; Urrestarazu Ramos et al., 1998). The composition and relative abundance 

of DOM affect its interaction with trace metals and contaminants (Chin et al., 

1998; Perminova et al., 1999).  

Colloidal DOM, operationally defined as the >1 kDa fraction of DOM (Guo 

and Macdonald, 2006; Guo and Santschi, 2007; Lyvén et al., 1997), has been 

found to contain a variety of compounds and acts as a dynamic intermediary 

between dissolved and particulate species and regulates the transfer of particle 

reactive metal ions to particles (Amon and Benner, 1996; Baskaran and Santschi, 

1993; Guo and Santschi, 1997), and plays a critical role in regulating the 

concentration and speciation, hence fate, transport and bioavailability of trace 

metals and pollutants in aquatic systems (Benedetti et al., 2003; Buffle et al., 

1998; Lead and Wilkinson, 2006; Wilkinson et al., 1997). The size of colloidal 

DOM determines its utilization efficiency by microbes (Benner, 2002; Benner, 

2003; Findlay, 2003) and degradation status (Amon and Benner, 1996). 

Therefore, knowledge of the colloidal DOM size spectrum and composition 
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should provide new insights into biogeochemical cycling pathways and the role 

DOM plays in regulating the fate and transport of trace elements. 

Rivers export a substantial amounts of DOM into the sea each year 

(~17×1012 moles) (Trefry et al., 1994). Riverine DOM has been found to influence 

water quality and productivity in estuarine and coastal areas (Bianchi et al., 2010; 

Bianchi et al., 1997; Raymond et al., 2000), and the fate and transport of riverine 

DOM into the world ocean is an important part of marine carbon cycle (Hedges et 

al., 1997). The abundance and composition of riverine DOM and its temporal 

variations are largely controlled by its source material, extent of in situ riverine 

processes, and other hydrological and biogeochemical processes in rivers and 

their drainage basins (Bianchi et al., 2004; Dagg et al., 2005; Hedges et al., 

2000; Warnken and Santschi, 2004) 

As important as it is, the composition and size distribution of DOM in rivers 

and oceans are still largely uncharacterized, partly due to the diverse complexity 

of specific compounds in DOM, yet uncharacterized (Coble, 2007; Leenheer and 

Croué, 2003). The biogeochemical processes associated with the production, 

transformation and transportation of DOM are still not well understood (Coble, 

2007). 

Excitation-emission matrix (EEM) fluorescence spectroscopy has been 

widely used to examine characteristics, distribution and seasonal variations of 

fluorescent DOM, and to identify DOM sources in various water systems (Coble, 

1996; McKnight et al., 2001; Miller and McKnight, 2010; Moran et al., 2000; 

Parlanti et al., 2000). Application of a multivariate analysis technique, parallel 
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factor analysis (PARAFAC), on fluorescence EEMs allows one to further 

characterize DOM components based on their optical properties (Andersen and 

Bro, 2003), and has been widely used to characterize DOM from diverse sources 

in aquatic systems (Andersen and Bro, 2003; Stedmon and Markager, 2003; 

Stedmon and Markager, 2005). Thus, the combination of fluorescence EEMs and 

PARAFAC can be used to better understand DOM dynamics in natural waters 

(  ff  et al., 2008).  

Flow field-flow fractionation (FFF) is a chromatography-like analytical 

technique in which retention force is provided by a cross-flow perpendicular to 

the channel-flow, and colloids are separated based on their diffusion coefficients 

and hydrodynamic diameters (Giddings, 1993). A variety of ancillary detectors, 

for example UV-absorbance and fluorescence detectors, can be coupled on-line 

to an FFF system to examine continuous size spectra of colloidal DOM and to 

determine distinct types of colloids characterized with specific size and 

compositions (Stolpe et al., 2010; Stolpe et al., 2005; Wells, 2004; Zanardi-

Lamardo et al., 2002). 

No study has applied fluorescence EEMs spectroscopy combined with 

PARAFAC analysis, and few studies has employed the FFF technique (Stolpe et 

al., 2010) to compare DOM in the lower Mississippi and Pearl Rivers, two rivers 

with contrasting size and extent of anthropogenic impact.  It provides an 

approach to identify sources and cycling pathways of DOM and their relation with 

hydrology and other processes in the rivers. 
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The first part of this dissertation, including Chapter II and Chapter III, is to 

examine the abundance, composition and size spectra of colloidal DOM in river 

systems in the lower Mississippi River and lower Pearl River, to compare the 

characteristics of DOM in the lower reaches of the Mississippi River, a large 

turbid river with a massive drainage basin area and under extensive 

anthropogenic influence (Beckett and Pennington, 1986; Wiener et al., 1996) with 

the Pearl River, a small and less-human-impacted river (Duan et al., 2007a; 

Duan et al., 2007b) and to examine the effect of source, hydrological conditions, 

drainage plain size, land use, and human activities on the abundance, 

composition and size distribution of colloidal DOM in these two rivers that both 

export to the central north Gulf of Mexico. Chapter II and Chapter III will address 

these research problems concerning optical properties and colloidal size spectra 

of DOM, respectively. 

In addition to terrestrial inputs of organic matter, oil is another source of 

organic matter in the Gulf of Mexico (Anderson et al., 1983; Brooks et al., 1986). 

The unprecedented Deepwater Horizon oil spill in the northern Gulf of Mexico 

during April 20 – July 15, 2010 resulted in the release of over 800 million liters of 

crude oil from the Macondo well into the water column (Mascarelli, 2010; 

Schrope, 2011). For the remediation of oil, over 7 million liters of dispersant were 

used during the oil spill (Kujawinski et al., 2011). The vast quantity of oil and its 

long transit from the deep ocean to the sea surface made this oil spill different 

from other spill disasters. This Gulf of Mexico oil spill also provided a natural 

laboratory and an opportunity to examine the fate, transport and transformation 
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of crude oil components and their interactions with the environment (Camilli et al., 

2010; Diercks et al., 2010; Hazen et al., 2010; Wade et al., 2011). How oil 

interacts with natural organic matter and the subsequent dynamic changes in 

chemical and optical properties in the water column after the DWH oil spill in the 

Gulf of Mexico are also research questions of this dissertation. 

Many weathering processes, including dissolution, dispersion, evaporation, 

and photochemical and biological degradation, can affect the distribution and 

transport of crude oil in the Gulf of Mexico. Although oil in surface waters seemed 

to be weathered rapidly right after the oil spill, recent studies have shown the 

persistence of oil signatures in the deeper water column in the northern Gulf of 

Mexico, even 15 months after the oil spill (Ryerson et al., 2012; Zhou and Guo, 

2012). The fate, transport, and transformation of oil components and their 

degradation pathways and mechanisms in the water column remain poorly 

understood.  The relative importance between photochemical and biological 

degradation, and the chemical evolution and molecular fractionation of Macondo 

crude oil during degradation are largely unknown.  Therefore, in addition to field 

studies, controlled laboratory experiments are needed to better understand the 

degradation pathways and mechanisms of crude oil in marine environments. 

Previous studies have shown the usefulness of fluorescence EEM 

techniques and PARAFAC analysis in the characterization, fingerprinting, and 

monitoring of oil (Alostaz et al., 2008; Bugden et al., 2008; Christensen et al., 

2005; Patra and Mishra, 2002). However, applications of fluorescence EEMs and 
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PARAFAC analysis are still few for the Deepwater Horizon oil spill in the northern 

Gulf of Mexico. 

Objectives of the second part of this dissertation were to examine the 

distribution and variation of DOM and UV-vis absorbance in the water column 

around the Macondo well in the Gulf of Mexico during and after the oil spill, to 

characterize the fluorescence and other optical properties of oil and seawater 

samples for identification and fingerprinting of oil components, to determine the 

relationship between fluorescence component ratios and chemical evolution of oil 

in the water column, and to conduct laboratory experiments to examine the 

chemical evolution, the degradation and transformation pathways and 

mechanisms of oil components during photochemical and biological degradation 

of the Macondo crude oil.  Chapter IV focuses on the characterization of oil 

components in the Gulf of Mexico during the oil spill. Chapter V looks at the 

evolution of optical properties of DOM in the water column from the height of the 

oil spill to 15 months after Macondo well was capped. Using controlled laboratory 

experiments, Chapter VI reports the degradation pathways and fate and 

transformation of oil components during the degradation of crude oil. 
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CHAPTER II 

A COMPARATIVE STUDY OF COLORED- AND FLUORESCENT DISSOLVED 

ORGANIC MATTER IN THE LOWER MISSISSIPPI RIVER AND PEARL RIVER 

Introduction 

The global dissolved organic carbon (DOC) export from rivers to ocean is 

approximately 0.25 Gt annually (Aitkenhead and McDowell, 2000). Riverine 

dissolved organic matter (DOM) has been found to influence estuarine and 

coastal marine productivity (Bianchi et al., 1997; Findlay et al., 1998; Hopkinson 

and Vallino, 1995; Raymond et al., 2000). The fate and transport of riverine DOM 

to the ocean is an indispensable part of the global carbon cycle (Hedges et al., 

1997; Hope et al., 1994). 

The abundance and composition of riverine DOM, as well as its diagenetic 

state, overall reactivity and ultimate fate, are largely controlled by its source 

material, extent of in situ riverine processes, and other hydrological and 

biogeochemical processes in rivers and their drainage basins (Dagg et al., 2005; 

Duan et al., 2007a; Findlay and Sinsabaugh, 1999; Hedges et al., 2000; Ittekkot 

et al., 1985; Kaiser et al., 2004a; Thurman, 1985; Volk et al., 1997). 

In many small streams, the concentration of DOC has been found to show 

a positive correlation with river discharge (Boyer et al., 1997; Moore, 1989), and 

appeared to have a general origin from allochthonous terrestrial plant litter and 

event sources during flood from soil organic matter (Engelhaupt and Bianchi, 

2001). Also, watershed land use, morphology and microbial activity have been 

found to be the main contributors of DOM quantity and quality in streams 
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(Williams et al., 2010). In large rivers, however, the source and compositions of 

DOM are controlled by more complicated processes, due to the broad range of 

hydrological and chemical conditions in their multiple tributaries (Coynel et al., 

2005; Leenheer et al., 1995; Richey et al., 1990). Studies have shown that 

compared with DOM in smaller rivers, that in large rivers, especially in the lower 

reaches, is more likely to be degraded and has more origin from in situ sources 

(Hedges et al., 2000; Vannote et al., 1980). However, little research has been 

done to elucidate the differences of DOM in two water systems that are distinct in 

watershed size, yet both export to the Gulf of Mexico within close proximity 

(Duan et al., 2007a; Duan et al., 2007b). 

Natural factors such as biome type and soil C:N ratio, as contrasted by 

anthropogenic influences, have been found to determine the riverine DOC flux 

globally (Aitkenhead and McDowell, 2000). However, along with the growth of 

human population in watersheds around the entire globe, human activities such 

as man-made levees and dam constructions have suppressed terrestrial input 

from floodplains, increased residence time and promoted extensive in situ 

processing of DOM in the rivers (Beckett and Pennington, 1986; Wiener et al., 

1996). Relatively recent studies have demonstrated human impacts on the 

composition and export of DOM by rivers (Dalzell et al., 2005; Guo and Chorover, 

2003; Jacinthe et al., 2001; Lal, 2004). There is now a significant need to 

separate natural and anthropogenic mechanisms responsible for river 

biogeochemistry of DOM (Meybeck, 2003).  
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The diverse sources and high molecular complexity of DOM (Leenheer 

and Croué, 2003; Spitzy and Leenheer, 1990; Thurman, 1985) make it hard to 

capture variations of bulk characteristics of riverine DOM, especially in large 

rivers such as the Mississippi River (Duan et al., 2007a). Excitation-emission 

matrix (EEM) fluorescence spectroscopy has been widely used to examine 

characteristics, distribution (Boyd and Osburn, 2004; Coble, 1996; Coble et al., 

1998; De Souza Sierra et al., 1994; Mopper and Schultz, 1993; Moran et al., 

2000) and seasonal variations (Miller and McKnight, 2010) of fluorescent DOM, 

and to identify DOM sources (Boyd and Osburn, 2004; Coble, 1996; Hall et al., 

2005; McKnight et al., 2001; Parlanti et al., 2000) in various water systems. 

Application of a multivariate analysis technique, parallel factor analysis 

(PARAFAC), on fluorescence EEMs allows one to further characterize DOM 

components based on their optical properties (Andersen and Bro, 2003), and has 

been widely used to characterize DOM from diverse sources in aquatic systems 

(Cory and McKnight, 2005; Fulton et al., 2004; J ff  et         8; Stedmon and 

Markager, 2005; Stedmon et al., 2003), and to investigate the influence of land 

use on fluorescent DOM distribution (Stedmon et al., 2003).  Thus, the 

combination of fluorescence EEMs and PARAFAC can be used to better 

understand DOM dynamics in natural waters (J ff  et         8). It provides an 

approach to identify sources and cycling pathways of DOM and their relation with 

hydrology and other processes in the rivers. No previous study has applied 

fluorescence EEMs in combination of PARAFAC to identify DOM in the lower 

Mississippi and Pearl Rivers. The objective of this study is to examine the 
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abundance and optical properties of dissolved and colloidal organic matter and 

their temporal variability in the lower Mississippi River and lower Pearl River from 

January 2009 to August 2011.  

In this study, we compared DOM in the lower reach of Mississippi River, a 

large turbid river with massive drainage area and subjected to extensive human 

impacts (Beckett and Pennington, 1986; Wiener et al., 1996), with that in the 

lower Pearl River, a small and relatively less anthropogenically influenced black 

water river (Cai and Guo, 2009; Duan et al., 2007b). We also examined the effect 

of drainage basin size, hydrological conditions, and extent of human perturbation 

on the abundance, composition and optical properties of DOM in these two rivers 

that both export to the central north Gulf of Mexico. 

Our working hypotheses include, 1) DOM in the Pearl River should have 

higher temporal variability in abundance and composition due to its 

instantaneous local inputs (forest soils and wetlands) and hydrological effect from 

the drainage basin, while DOM in the Mississippi River should be less temporally 

variable as it is controlled largely by major tributaries and in situ photochemical 

and biological processing; 2) prolonged water residence time due to human 

activates such as dam and levee constructions in the lower Mississippi River, as 

compared to the Pearl River, should have resulted in DOM with more highly 

degraded terrestrial and more aquagenic components. 
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Materials and Methods 

Study Sites 

The Mississippi River is the largest river in North America, and its drainage 

basin, with a total area of ~3,220,000 km2, covers about 40% of the contiguous 

United States and a small part of Canada (Meade et al., 1990).  With its length at 

3,770 km and average flow rate at 17,000 m3/s, the Mississippi River is the fourth 

longest and tenth largest world river (Kammerer, 1990).  Cropland takes about 58% 

of its drainage basin, making the Mississippi River one of the most productive 

farming regions in the world (Goolsby and Battaglin, 2001; Goolsby et al., 2000). 

Dam systems and flood-control levees have restrained the river and reduced 

sediment discharge to the Gulf of Mexico (Keown et al., 1986; Meade et al., 

1990). Decreased suspended sediment and increased nutrients, organic 

contaminants and trace elements in the recent few decades have caused great 

concern (Bianchi et al., 2010; Shiller et al., 2006).  

The Pearl River on the contrary is a small black-water river that only drains 

the east-central Mississippi and southeastern Louisiana, with a total drainage 

area of about 22690 km2. It is 790 km long and ranks as s 3rd stream order. 

Natural forests cover about 43% of the drainage basin. Agricultural region only 

represents ~27% of the land use. Marsh and/or swamp areas cover a small part 

of the basin (~10%) (Duan et al., 2007a; Duan et al., 2007b). Hydrological and 

land cover characteristics of the Mississippi and Pearl rivers are listed in Table 1.  

These two rivers are considerably different not only in their basin size, but also in 

hydrology, land use, and water residence time. 
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The Mississippi River receives integrated signals from its wide drainage 

basin and subjected to massive human impact, while the Pearl River represents 

waters from a less human-perturbed black water system. These differences allow 

one to examine the effect of hydrological conditions, land use, and anthropogenic 

influences on the quantity and quality of DOM in river systems. 

Table 1 

Hydrological and Land Cover Characteristics of the Mississippi River and Pearl 

River 

   

 Mississippi River Pearl River 

Area (km2) 3,220,000 22,690 

Length (km) 3,770 790 

Discharge (m3/s) 17,000 260 

Land cover - Crop land (%) 58% 27% 

Land cover - Forest (%) NA 43% 

Land cover - Marsh & Wetland (%) NA 10% 

Sampling Locations 

Water samples from the lower Mississippi River were collected near the 

U.S. Geological Survey (USGS) hydrological station at Baton Rouge, Louisiana 

(3 ˚ 6'17  1'' N  91˚11'33 14'' W)  The Pearl River water samples were collected 

at the East Pearl River at Stennis Space Center (SSC, 30°20'55.52"N, 

89°38'28.74"W), at the lower Pearl River near the USGS hydrological station at 
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Bogalusa, Louisiana (PRB, 30°47'30"N, 89°49'20"W), and at the West Pearl 

River at the State Wildlife Management Area, Louisiana (PRW, 30°23'10.92"N, 

89°44'13.08"W) (Figure 1). The sampling dates, locations and basic parameters 

are listed in Tables 2 and 3. Discharge data at the two USGS hydrological 

stations are from USGS websites (http://waterdata.usgs.gov/nwis/rt). 

 

Figure 1. Sampling Locations In The Lower Mississippi River And Pearl River. 
Sample Processing 

About 40 L water samples from just below the river surface were filtered in 

the field through a 0.45 µm Memtrex polycarbonate pleated cartridge filters (GE 

Water & Process Technologies).  Aliquots of filtered waters were collected in 

amber glass vials for the measurements of DOC (with acidification) and CDOM 

and FDOM (without acidification). Samples were then kept in an iced cooler and 

transported back to the lab within 3 hours of collection and stored in the dark in a 

refriger tor  t 4˚C unti  further analysis. Water temperature and salinity were 

measured with a YSI meter at the time of sample collection. 

http://waterdata.usgs.gov/nwis/rt
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Ultrafiltration 

High-molecular-weight (HMW) DOM was separated and concentrated using 

the cross-flow ultra-filtration technique (Guo and Santschi, 1996; Guo and 

Santschi, 2007) with nominal cartridge pore size of 1 kDa (kilo-Dalton). The size-

fractionated samples, including the <1 kDa low-molecular-weight (LMW) fraction 

and the >1 kDa colloidal or HMW fraction, as well as the bulk water sample were 

further analyzed for optical and chemical characterization. Permeate time-series 

samples during ultrafiltration were collected at different concentration factors (CF) 

and determined for DOC concentration to examine the colloidal fraction 

(percentage) of bulk DOC, and hence the partitioning of organic carbon and other 

chemical species between LMW and colloidal phases. According to the 

ultrafiltration permeation model (Logan and Jiang, 1990), by fitting the DOC 

concentration of the permeate time-series samples as Cp and volume ratio of 

initial solution to the retentate solution as CF to the following equation:  

 

where Pc is the permeation coefficient, determined by the ratio of Cp to Cf, and 

the latter  is the feed concentration,    is the initial feed concentration (i.e. DOC 

concentration of the bulk dissolved phase) (Guo and Santschi, 2007). 

Measurements of DOC, UV-vis Absorption and ancillary chemical analysis 

Concentrations of DOC and DIC of the river samples were measured with 

a Shimadzu TOC-V total organic carbon analyzer using a high temperature 

combustion method (Guo et al., 1995). Calibration curves were generated before 

sample analysis. For DOC measurements, samples were acidified with 

  

lnCp = ln Pc ´C f
0( ) + 1-Pc( ) ´ ln CF( )

   

C f

0
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concentrated HCl to pH < 2 before analysis. Three to five replicate 

measurements, each using 150 µL sample. Coefficient of variance of triplicate 

sample measurements were <2%. Concentrations of Nanopure water, working 

st nd rds  nd certified DOC st nd rds (from Dr  H nse  ‟s L b  t the University 

of Miami) were measured every eight samples to check the performance of the 

instrument and ensure data quality.  The concentration of DIC was calculated 

from the difference between total dissolved carbon (TDC) and DOC 

concentrations, DIC = TDC-DOC (Guo and Macdonald, 2006). 

The UV-vis absorption spectra of samples were measured using a Cary 

300 Bio UV-visible spectrophotometer or an Agilent 8453 UV-visible 

spectrophotometer using a 1-cm path-length quartz cuvette over 200-1100 nm 

with 1 nm increments. The water blank was subtracted, and the refractive index 

effect was corrected by subtracting the average absorbance between 650 and 

800 nm (Stedmon and Bro, 2008). Values of specific UV absorbance (SUVA254) 

were calculated by dividing the UV absorbance at 254 nm (m-1) by the DOC 

concentration (mg-C/L). Spectral slope values were calculated using non-linear 

regression over wavelength interval between 290-400 nm (Zhou and Guo, 2012). 

Ancillary chemical analysis of nutrients, such as dissolved inorganic 

phosphorus (DIP), was done by Dr. Huijun He using standard methods (SEPA, 

2002). 

Measurements of Fluorescence EEMs and PARAFAC Analysis 

Sample was transferred into a 4.5 mL UV-grade quartz cuvette (10 mm 

light path). Fluorescence excitation–emission matrix (EEMs) spectra were 
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obtained with a RF-5301PC scanning spectrofluorometer (Shimadzu Corp., 

Kyoto, Japan) running Panorama fluorescence 1.1 software (LabCognition, 

Dortmund, Germany). In order to blank correct the spectra, scans of pure water 

were obtained in the same manner as the samples. These blank spectra were 

then subtracted from the sample spectra, before EEM contour plots were 

generated. For each fluorescence EEM, emission spectra were recorded over 

the range of 240-680 nm with 1nm intervals under excitation from 220 nm to 

400nm with 2 nm step. Slit widths of 5 nm excitation and 5 nm emission along 

with a sampling interval of 1.0 nm    sc n speed set to “f st”  which is 

 pproxim te y 8 nm/s   nd the response time set to „„ uto” w s used to gener te 

fluorescence spectra of samples. The scans of emission wavelengths at fixed 

excitation wavelengths were then combined to produce EEM spectra. Contour 

plots of the EEMs were generated by exporting the data into Microsoft Excel 

spreadsheets to be plotted using Matlab (Mathworks). On the fluorescence EEMs, 

the first and second order Raman and Raman peaks were removed. Contour 

plots were generated as normalized blank-corrected data (where spectral 

intensity was normalized to 1ppb-Quinine sulfate). All PARAFAC analyses were 

performed in MATLAB 6.5.1 (Mathworks) using the DOMfluor toolbox (Stedmon 

and Bro, 2008). Before modeling, the EEM area that was influenced by Rayleigh 

scattering and Raman scattering was eliminated from the dataset by the EEM 

algorithm. The model was constrained to nonnegative values and the results 

were validated using split half analysis (Andersen and Bro, 2003; Stedmon et al., 

2003). 
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Results and Discussion 

Hydrologic Characteristics 

Discharge in the Pearl River at Bogalusa during our sampling period 

ranged from 37 to 2010 m3/s (mean=338 m3/s; n = 45), with the two most 

prominent peaks in April 2009 and March 2011, respectively (Figure 2, from 

USGS website: http://waterdata.usgs. gov/nwis/rt). The four water samples 

collected at Stennis Space Center from the Pearl River in July and August, 2009 

and July and August, 2011 had specific conductivity at 25˚C (SPC) higher th n 

500 µS/cm. This is probably caused by seawater intrusion in the East Pearl River 

(Cai et al., 2012). These four samples were removed from our DOM analysis, as 

our objective was to investigate the influence of terrestrial sources and human 

impact on riverine DOM, instead of that from salt water. With high specific 

conductivity samples excluded, specific conductivity from the Pearl River 

samples ranged from 37 to 266 µS/cm (mean=81 µS/cm; n = 41). Positive 

correlations were found between specific conductivity and discharge (P<0.005, r2 

=0.20, Table 2). Dissolved inorganic phosphorus (DIP) concentration in our Pearl 

River samples ranged from 0.1-1.7 µM (mean = 0.7µM; n = 41). 

Discharge in the lower Mississippi River at Baton Rouge during our 

sampling period between 2009 and 2011 ranged from 7,538 to 40,012 m3/s 

(mean=20,283 m3/s; n = 33), with two most prominent peaks in May 2009 and 

May 2011, respectively (Figure 2, Table 3 from USGS website: 

http://waterdata.usgs.gov/nwis/rt). Specific conductivity for the lower Mississippi 

River samples ranged from 254 to 494 µS/cm (mean=358 µS/cm; n = 33), and 

http://waterdata.usgs.gov/nwi
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was closely correlated with discharge (P<0.00001 r2 =0.59). DIP concentration in 

our lower Mississippi River samples ranged from 0.8-3.3 µM (mean = 2.0µM; n = 

41). 

 

Figure 2. Seasonal Variations Of Discharge (m3/s) And Specific  
Conductivity At  5˚C (SPC  µS/cm) In The Lower Pe r   nd Mississippi Rivers. 
Temporal Variations in DOC and Optical Properties 

Dissolved Organic Carbon Concentrations. Concentrations of DOC varied 

from 225 to 1,121 µM (mean=543±206 µM, cv=38%) in the lower Pearl River, 

showing significant temporal changes in bulk abundance of DOM (Figure 3). 

Highest DOC concentration was observed in samples collected during highest 

discharge (April 2009). Significant positive correlation was found between DOC 

and discharge (P<0.0001, r2=0.55) in the lower Pearl River. Dissolved organic 
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matter in the lower Mississippi River, in contrast, showed smaller seasonal 

change in its bulk abundance as the DOC concentration ranged from 236 to 388 

µM (mean=306±40 µM, cv = 13%, Figure 3). Highest DOC concentration was 

observed in samples collected during highest discharge (May 2011). A good 

correlation with discharge (P<0.001, r2=0.38) was also found for DOC in the 

lower Mississippi River, although not as good a relation as that in the Pearl River. 

Similar seasonal variations of these characteristics of DOM were also observed 

by Duan et al. (2007 a,b). The high seasonal variation of DOC in the Pearl River, 

especially in the East Pearl River, can also be controlled by the change in the 

water sources between the main stem and Hobolochitto Creek during high and 

low flow periods (Shiller et al., 2012). 

Table 2 

Hydrodrologic Parameters and DOC Concentrations in the East Pearl River at 

Stennis Space Center (SSC) and Bogalusa Station (PRB). 

     

Date Discharge 

(m3/s) 

Specific 

conductivity(µS/ cm) 

Temp 

(˚C) 

DOC 

(µM) 

15-Jan-09SSC 1,189 48 10.3 728 

13-Feb-09SSC 127 NA 16.0 376 

14-Mar-09SSC 96 78 21.7 326 

2-Apr-09SSC 2,010 37 18.8 1121 
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Table 2 (continued). 

     

Date Discharge 

(m3/s) 

Specific 

conductivity(µS/ cm) 

Temp 

(˚C) 

DOC (µM) 

7-Apr-09SSC 1,469 39 17.5 834 

2-May-09SSC 116 75 27.4 438 

22-May-09SSC 289 60 24.9 666 

23-Jun-09SSC 66 238 32.8 398 

23-Sep-09SSC 94 266 28.3 899 

26-Oct-09SSC 881 80 17.7 889 

25-Nov-09SSC 114 83 18.2 569 

28-Dec-09SSC 943 39 9.8 790 

31-Jan-10SSC 983 48 10.5 736 

25-Feb-10SSC 428 38 11.3 579 

31-Mar-10SSC 248 60 18.0 429 

28-May-10SSC 116 83 32.4 506 

7-Jun-10SSC 140 43 26.3 666 

10-Jun-10SSC 87 53 28.7 N/A 

28-Jul-10SSC 96 52 30.4 671 

15-Sep-10PRB 48 85 28.2 225 

16-Nov-10PRB 47 117 16.6 398 

15-Dec-10PRB 67 94 8.6 325 
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Table 2 (continued). 

     

Date Discharge 

(m3/s) 

Specific 

conductivity(µS/ cm) 

Temp 

(˚C) 

DOC (µM) 

17-Jan-11PRB 99 84 9.2 337 

14-Feb-11PRB 167 72 8.2 482 

14-Feb-11SSC 167 67 11.7 571 

16-Mar-11PRB 1,354 37 17.8 747 

16-Mar-11SSC 1,354 39 18.5 870 

20-Apr-11PRB 103 85 24.4 430 

20-Apr-11SSC 103 91 24.4 552 

12-May-11PRB 107 72 26.2 539 

12-May-11SSC 107 72 28.9 501 

13-Jun-11PRB 53 102 30.9 304 

13-Jun-11SSC 51 103 31.2 358 

18-Jul-11PRB 61 134 29.2 392 

15-Aug-11PRB 43 78 32.0 277 

23-Aug-11SSC 73 NA NA 545 

23-Aug-11PRW 73 93 30.9 281 

1-Sep-11PRB 37 95 30.2 302 

1-Sep-11PRW 37 79 30.5 297 

15-Sep-11PRB 1,164 57 24.5 611 
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Table 3 

Hydrologic Parameters and DOC Concentrations in the Lower Mississippi River 

between January 2009 and August 2011. 

     

Date Discharge 

(m3/s) 

Specific conductivity 

(µS/cm) 

Temp 

(˚C) 

DOC (µM) 

23-Jan-09 16,622 382 6.3 256 

20-Feb-09 14,926 343 8.8 235 

27-Mar-09 18,774 314 13.0 324 

24-Apr-09 21,345 350 15.9 296 

29-May-09 34,688 308 36.7 339 

29-Jun-09 19,658 326 29.8 317 

30-Jul-09 10,395 388 27.8 270 

26-Aug-09 9,047 391 28.8 264 

29-Sep-09 11,771 330 25.6 299 

29-Oct-09 20,445 276 16.1 343 

30-Nov-09 20,048 324 13.0 337 

31-Dec-09 22,283 267 7.0 265 

28-Jan-10 17,695 355 7.3 275 

25-Feb-10 25,482 290 5.7 237 

25-Mar-10 17,505 384 11.9 266 

29-Apr-10 15,741 402 20.5 299 
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Table 3 (continued). 

     

Date Discharge 

(m3/s) 

Specific conductivity 

(µS/cm) 

Temp 

(˚C) 

DOC (µM) 

28-Jun-10 17,950 398 31.7 267 

26-May-10 27,694 318 24.1 315 

27-Jul-10 16,342 397 31.6 N/A 

3-Sep-10 12,074 401 29.5 291 

28-Sep-10 8,753 432 26.3 306 

29-Oct-10 8,243 454 19.8 N/A 

22-Nov-10 7,088 523 4.4 N/A 

22-Dec-10 7,538 437 6.6 284 

25-Jan-11 8,150 437 4.6 277 

28-Feb-11 9,902 477 11.6 270 

23-Mar-11 26,292 318 12.9 313 

28-Apr-11 23,806 325 19.3 290 

5-May-11 31,177 308 19.7 388 

12-May-11 38,964 290 30.4 353 

20-May-11 40,012 254 19.8 388 

26-May-11 39,360 268 21.6 355 

10-Jun-11 33,499 NA NA 352 

29-Jun-11 21,303 404 29.7 373 
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Table 3 (continued). 

  

 

Figure 3. Seasonal Variations Of Discharge (m3/s) And Dissolved Organic 
Carbon (DOC, mg-C/L), Absorption Coefficient At 254 nm (a254), Specific UV 
Absorbance At 254 nm (SUVA254) And Spectral Slope Between 290-400 nm 
(S290-400) In The Lower Pearl And Mississippi Rivers. 
 

Absorption Coefficient at 254 nm and Relationship between Bulk 

Properties. A large fraction of riverine DOM is comprised of humic-like 

     

Date Discharge 

(m3/s) 

Specific conductivity 

(µS/cm) 

Temp 

(˚C) 

DOC (µM) 

28-Jul-11 15,580 462 31.7 336 

24-Aug-11 10,871 494 30.2 320 
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substances that are high in aromatic components and unsaturated in nature. 

Laboratory experiments have established the link of unsaturated structure with 

absorption coefficient at 254 nm (a254) (Tru  eyov   nd Ru         4). 

Measurements of a254 has been used for determination of DOC (Martin-Mousset 

et al., 1997), and good empirical correlation with DOC has been found (A berts 

 nd T   cs     4). 

Samples collected from the lower Pearl River had a254 values ranging from 

20.1-142.2m-1 (mean = 66.4 m-1, cv = 47%, Figure 3). Large coefficient of 

variance indicates significant temporal changes in bulk composition of DOM. 

Highest a254 in the lower Pearl River during our sampling period was observed 

during April 2009 with the highest discharge (Figure 4). Positive correlation was 

found between a254 and discharge in the lower Pearl River (P<0.00001, r2=0.72). 

In contrast, a254 values of samples from the lower Mississippi River ranged from 

20.1 to 42.3 m-1 (mean=27.9 m-1, cv=20%, Figure 3), showing smaller seasonal 

changes in bulk composition of DOM. Highest a254 in the Mississippi River was 

observed during May 2011 which coincided with the highest discharge during the 

past 28 years. Positive correlation was found between a254 and discharge in the 

lower Mississippi River (P=0.0001, r2=0.44). 

As shown above, positive correlations with discharge were found for DOC 

and a254 in the lower Pearl and Mississippi Rivers. Strong relationships were also 

observed between a254 and DOC in the Pearl River (r2=0.87, P<0.0001, n=41) 

and the Mississippi River (r2=0.69, P<0.0001,n=33) (Figure 4). The relationships 

between DOC and a254 showed positive intercepts of on the x axes at 53 µM for 
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Pearl River and at 66 µM for the Mississippi River (Figure 4). As discussed in 

previous studies, these intercept values are corresponding to the abundance of 

nonchromophoric DOC in river waters (Spencer et al., 2008). Thus, the 

nonchromophoric fractions of DOC in the lower Pearl and Mississippi Rivers are 

~53 µM and ~66 µM, representing 10% and 21% of their corresponding bulk 

DOC, respectively. The higher amount of nonchromophoric fraction of DOC in 

the Mississippi River likely resulted from intensive photo- and bio- degradation of 

DOM in this river system due to it longer transit time (Duan et al., 2007a). 

Concentration of dissolved inorganic carbon (DIC) in the Pearl River did 

not seem to have obvious correlation with discharge in the Pearl River (Figure 4), 

suggesting complex sources of inorganic material in the Pearl River. The varying 

contributions from the main stem, Hobolochitto Creak, freshwater swamps and 

seawater intrusions are likely related to the source of DIC in the river water 

(Shiller et al., 2012). In contrast, discharge showed negative correlation with DIC 

(P<0.0001, r2 = 0.45, Figure 4), suggesting dilution of inorganic material during 

high discharge in the Mississippi River (De Souza Sierra et al., 1994). These 

contrasting facts further emphasize the different hydrological conditions and 

sources of materials in the two rivers. 

Spectral Slope. Spectral slope has been used as an indicator of CDOM 

molecular weight, as higher slope values are associated with lower molecular 

weight or lower aromaticity, and lower slope values suggests higher molecular  

weight and greater aromatic content (Blough and Del Vecchio, 2002; Moran et al., 

2000). Spectral slope values derived from the wavelength interval 290-400 nm 
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(S290-400)varied in the lower Pearl River from 13.3-17.2 ×10-3 nm-1 

(mean=15.4×10-3 nm-1, Figure 3).  

 

Figure 4. Relations Among DOC, a254, pH, Discharge And Dissolved Inorganic 
Carbon In The Lower Pearl And Mississippi Rivers. The Red Diamonds 
Represent Pearl River Samples Taken At The Stennis Space Center. Blue 
Squares Represent Samples From Bogalusa. Green Circles Are For Samples At 
The West Pearl River. 
 

No significant relationship was found between S290-400 and discharge. The 

S290-400 in the lower Mississippi River ranged from 13.7-18.0 ×10-3 nm-1 

(mean=16.4×10-3 nm-1, Figure 3), and showed a inverse seasonal variation to 

discharge (P=0.015, r2=0.21). 

Specific Ultraviolet Absorbance. Specific UV absorbance at 254 nm 

(SUVA254) has been associated with aromaticity of DOM (Weishaar et al., 2003). 
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In this study, SUVA254 ranged from 3.23 to 6.14 m2/g-C (mean=4.23 m2/g-C, 

Figure 3) in the lower Pearl River. Samples collected from the lower Mississippi 

River ranged from 2.74-4.34 m2/g-C (mean=3.32 m2/g-C, Figure 3). Week or no 

correlations between SUVA254 and discharge were found in the Pearl (P<0.01, 

r2=0.20) and Mississippi rivers, respectively. The SUVA254 and S290-400 values are 

intensive properties that are irrelevant to the abundance of DOM but the state 

and characteristics of it. As compared with the quantitative parameters (i.e. DOC 

and a254) that are closely correlated with discharge, these intensive parameters 

showing week or no significant correlation with discharge seemed to have more 

than one controlling factors besides river flow rate. 

HMW-DOC 

The colloidal size fraction of DOC (between 1kDa and 0.45 µm) in the 

Pearl River ranged from 62-77% (mean=69%), while colloidal fraction for 

samples from the lower Mississippi River ranged from 52-64% (mean=58%). The 

concentration of high molecular weight (HMW) DOC in the Pearl River ranged 

from 140- 460 µM (mean=327 µM). Samples collected from the lower Mississippi 

River had HMW DOC concentration ranging from 151-204 µM (mean=176 µM). 

No positive correlation was observed between discharge and colloidal size 

fraction. However, HMW DOC concentration was found to correlate with 

discharge in Pearl River  (P<0.05, r2=0.57) and Mississippi River (P<0.02, 

r2=0.44) (Figure 5). HMW DOC in both rivers seemed to increase with increasing 

discharge, suggesting flushing of more HMW-DOC from the surface soil during 

higher disch rge  It‟s noteworthy that during the flood in the Pearl River in April 



39 
 

 

2009, the concentration of HMW-DOC was not as high as one can expect from 

the interpolation of the discharge and HMW-DOC data at relatively lower 

discharge (< 500m3/s) scenario. HWM-DOC only increased to a very limited 

extent during the flood, suggesting changes in water sources and possibly limited 

supply of HMW-DOC from the surface soil horizon and the effect of dilution 

during flood season. 

No positive correlation was found between DOC concentration and colloidal 

fraction in the two rivers. Interestingly, higher colloidal fraction of DOM seemed to 

occur during high DOC concentration period in the Pearl River, while lower 

colloidal DOM fraction seemed to associate more with higher DOC concentration 

in the Mississippi River (Figure 5). This could be linked to DOM source and 

composition in these two rivers. DOM in the Pearl River has relatively limited 

sources; mainly instantaneous inputs from terrestrial origins such as soil, plant 

litter, fresh water swamps. In the contrast, DOM in the Mississippi River has 

more diverse origins and exist in more degraded status due to degradation. In 

addition to terrestrial sources, relatively high amount of DOM is also produced in 

situ by phytoplankton. Thus, increased flow rate in the Pearl River is likely 

accompanied with increased input of DOM, while in the Mississippi River can 

cause dilution of the aquagenic DOM. Limited data points and the difference in 

the abundance of DOM in the two rivers make this comparison difficult. Increased 

sample collection would provide better elucidation of the source of colloidal DOM.  
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Fluorescence Characteristics of DOM in the Rivers 

Fluorescence EEMs. Fluorescence EEMs can provide additional 

information regarding CDOM in the river samples. Figure 6 shows some 

examples of the fluorescence EEMs from the two rivers. The left column of 

Figure 6 shows the fluorescence EEMs of the dissolved phase (<0.45 µM), low 

molecular weight (LMW, <1 kD) and high molecular weight (HMW, >1kD and 

<0.45µM) fractions of the sample collected from the Mississippi River on May 29, 

2009. 

 

Figure 5. Relations Among Discharge, Concentration Of DOC And High 
Molecular Weight (HMW) DOC, And The Fraction Colloidal DOM  
In The Lower Pearl And Mississippi Rivers. The Red Diamonds Represent Pearl 
River Samples Taken At The Stennis Space Center. Blue Squares Represent 
Samples From Bogalusa. 
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LMW DOM seemed to have high relative importance of UV-humic like 

DOM at ~ Ex/Em 240/460 nm, and also some fractions of tryptophan-like material 

at Ex/Em ~230/340 nm. In contrast, HMW DOM showed high fluorescence 

intensity at Ex/Em wavelengths 340/450 nm, but greatly decreased fluorescence 

signals at lower excitation and emission wavelengths, suggesting partitioning of 

distinct DOM in specific size fractions.  

The right column of Figure 6 shows the variation of fluorescence EEMs 

before, during the peak, and at the end of a flood in the Pearl River. The flood 

seemed to have resulted in elevated fluorescence intensity, especially at 

wavelengths corresponding the terrestrial humic-like materials at Ex/Em ~ 

340/450 nm, on April 02, 2009, as compared to that in January 2009. 

Fluorescence intensity began to fall at the end of flood on April 07, 2009 to lower 

than that during the flood peak. 

PARAFAC Components. To statistically analyze the fluorescent DOM 

components, a six-component model was successfully validated when applying 

the PARAFAC analysis on our monthly samples from the Pearl River and 

Mississippi River. The excitation and emission wavelengths corresponding to the 

peak of these components are listed in Table 4, and the EEM contours of them 

are shown in Figure 7. It has been found that DOM present in different 

environments show similar fluorescence characteristics (A berts  nd T   cs  

2004), very likely caused by the quinone-like fluorophores existing in natural 

DOM (Cory and McKnight, 2005), including humic and fulvic acid (Thorn et al., 

1992). 
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Figure 6. Examples Of fluorescence EEMs Of River Samples, Including Those Of 
Bulk DOM, LMW-DOM (<1 kDa), And HMW-DOM (>1 kDa) In The Mississippi 
River (left column, sample collected on May 29, 2009) And Those Of Samples 
Before, During And At The End Of A Flood Event In The Pearl River During April 
2009. 
 

This allows one to associate the PARAFAC components to other 

fluorophores described in the literature. The first component in the river waters, 

with Ex/Em m ximum  t 374/465 nm  h s the ch r cteristic of the Pe   “C” in 

literature (Coble, 1996) and also resembles that of the component 3 reported by 

Stedmon et al. (2003), thus can be identified as a visible humic- like component. 

The second component has a peak at Ex/Em 244/454 nm, likely associated with 

the Pe   “A” (UV humic-like) reported by Coble (1996). The third component with 
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Ex/Em at 334/409 nm, seems to be similar to the component 4 in Stedmon et al. 

(2003), which was suggested to be terrestrially derived organic matter. 

Table 4 

Characteristics of the Six Fluorescence DOM Components in Mississippi and 

Pearl Rivers Identified by PARAFAC Modeling. 

    

Component Excitation 

Maximum  

(nm) 

Emission 

Maximum  

(nm) 

Description 

Component – 1 374 465 Visible humic-like DOM 

Component – 2 244 454 UV humic-like DOM  

Component – 3 334 409 Terrestrially derived organic matter 

Component – 4 264 511 Intermediates of photo-chemically 

degraded terrestrial DOM 

Component – 5 224 477 Photochemical degradation product of 

terrestrial organic matter 

Component – 6 236 366 Amino acids from biological production 

The fourth component, characterized with emission peak at >500 nm under 

excitation at 264 nm, lies within close proximity of the component 3 in Stedmon 

et al. (2007), and is likely to be a terrestrially derived material that acts as an 

intermediate of photochemical degradation of terrestrial DOM. The fifth 

component, showing an Ex/Em maximum at 224/477 nm, appears to be a 
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photochemical product of terrestrial organic matter, although the origin is not 

certain yet (Stedmon et al., 2007).  

 

 

Figure 7. Characteristics Of Six Major DOM Components Identified By 
Fluorescence PARAFAC Modeling For Samples From The Lower Pearl And 
Mississippi Rivers. 
 
The sixth component has two peaks at Ex/Em ~230/360 and ~275/360 nm, 

respective y   nd seems to be   combin tion of the “N”  nd the “T” pe  s in the 

literature (Coble, 1996; Coble et al., 1998; Stedmon et al., 2003). The “N” pe   

has been linked to some labile materials derived from biological production 

(Coble et al., 1998)  whi e the “T” pe   is be ieved due to the indo e ring structure 

of tryptophan and likely to have origin from biological production in surface 
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waters. The sixth component, thus, is linked to amino acids and biological 

production. As pointed out by Stedmon et al. (2003), failure to separate the two 

peaks is probably caused by the limited number of samples. A larger sample set 

with increased number of samples would possibly allow us to separate the two 

chemical compounds in this fluorescent component. 

The emission wavelength of component 1 (Em >400nm) is likely linked to 

more conjugated fluorescent molecules (Sharma and Schulman, 1999), and 

Stedmon et al. (2003) suggested a component with a similar peak position to be 

terrestrially derived humic-like material with high molecular weight. Our results 

are in correspondence with these finding through the fluorescence signatures of 

ultra-filtered river water samples, where showed fluorescence intensity at Ex/Em 

340/450 nm is low in the LMW-DOM fraction and high in the HWM-DOM fraction, 

and the PARAFAC results identifying peak at Ex/Em 340/450 nm as visible 

terrestrial humic- i e m teri    “C”  (Component 1)  Thus Component 1 is 

identified as visible humic-like DOM with high molecular weight. Component 6, in 

contrast, is low in emission wavelength and low in the >1 kDa HMW fraction in 

both rivers. Fluorescence EEM of LMW-DOM also showed a higher fraction of 

tryptophan-like material, in agreement with the origin of component 6. Thus, 

component 6 shows signatures of amino acids with low molecular weight. Similar 

linkage between fluorescence component and molecular weight have also been 

found using both fluorescence EEM and flow field flow fractionation (Cuss  nd 

 u guen    1 ).  
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PARAFAC components and fluorescence indices in the rivers. The 

fluorescence intensities of DOM components derived from PARAFAC analysis 

varied differently in the two rivers (Figure 8), showing different source, 

composition and behavior in the rivers. 

 

Figure 8. Seasonal Variations In Discharge (m3/s) And Fluorescence  
Intensities (ppb-QSE) Of DOM Components Derived From  
PARAFAC Modeling In The Lower Pearl And Mississippi Rivers. 
 

The relative importance of component 1 (as normalized to the total 

fluorescence intensity of all the six components) increased with increasing 

discharge in both rivers (Figure 9) while that of component 6 decreased with 

increasing discharge, reflecting different sources of the two DOM components.  

Component 1 probably has its origin from flushing of surface soil during high flow, 

while component 6 is likely aquagenic DOM produced autochthonously. 

Sources of DOM can be indicated by different indices. The biological index (BIX), 

defined as the ratio of fluorescence intensity at 380 nm to that at 430 nm under 

the excitation wavelength of 310 nm, represents the existence of beta 
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fluorophore, which is indicative of autochthonous biological activity in natural 

waters (Huguet et al., 2009). Values of BIX between 0.8 and 1.0 have been 

measured in freshly produced (biological/microbial origin) DOM, and BIX values 

smaller than 0.6 represent little autochthonous DOM.   

 

Figure 9. Relations Among Discharge, Percentage Of C1 And C6 In The  
Lower Pearl And Mississippi Rivers. 
 

Biological index values decreased with increasing discharge in both the 

Pearl River (P<0.00001, r2=0.38) and Mississippi River (P<0.00001, r2=0.61) 

(Figure 10). Very similar correlation with discharge has been found for BIX and 

C6% values. It is reflecting the close relation of both these two parameters to in 

situ phytoplankton production. The negative correlations of BIX and C6% with 

discharge are likely caused by the dilution of freshly produced DOM during high 

flow.  
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Comparisons between the Mississippi River and Pearl River 

In the lower Pearl River, our results show a large seasonal variability in 

both DOC and a254 and a significant correlation of DOC (or absorbance) with 

discharge, similar to findings in previous studies and highlighting a strong 

seasonal fluctuation of DOC in small rivers (Malcolm and Durum, 1976). 

 

Figure 10. Relations Among Discharge And Biological Index in The Lower  
Pearl And Mississippi Rivers. 
 

This high seasonality is likely indicative of sources of DOM from local 

inputs controlled by hydrological processes, such as surface soils and plant litters 

(Duan et al., 2007a). The substantial seasonal variations of DOM in the Pearl 

River concurrent with changes in hydrological conditions suggest a strong 

connection of riverine processes to the type of landscape and land cover in the 

drainage basin. 

DOM in the Mississippi River, in the contrast, showed a small seasonal 

variation, and was probably controlled by complex upstream inputs from primary 

tributaries (Duan et al., 2007a), instead of hydrological transport of local inputs.  

Duan et al. (2007a, b) suggested mixing water from three primary tributaries as 
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main contributors of seasonal variation in DOC abundance in the lower 

Mississippi River, and that in situ processing of DOM plays an important role in 

regulating DOC concentrations. 

DIP concentration were found significantly higher in the Mississippi River, 

as compared with that in the Pearl River, reflecting higher extent of human 

impacts (Cai and Guo, 2009). Construction of dams and levees could have 

substantially increased the transition time of water and DOM in the Mississippi 

River, and thus make them subject to extensive photo- and bio- degradation 

before reaching the lower section of the river.  Longer transition time of river 

waters may also increase the production of aquagenic DOM in the river, altering 

the composition of riverine DOM.  Indeed, in situ processing of DOM has been 

linked with decreased aromatic carbons and increased carboxyl carbon in DOM 

under exposure to bacterial decomposition and photochemical oxidation 

(Engelhaupt and Bianchi, 2001; Osburn et al., 2001). A low fraction of CDOM or 

acidic DOM in the lower Mississippi River implies longer-term in situ river 

processing. The lower percentage of HMW DOC, higher spectral slope or more 

low molecular weight DOM in the lower Mississippi River further suggests greater 

extent of photochemical and microbial removal of organic matter, as compared 

with the Pearl River (Figure 5). 

Consistently, higher BIX values in the Mississippi River (Figure 10) 

suggest more freshly produced DOM and higher microbial activity in the water 

column. Furthermore, higher non-chromophoric DOC in the Mississippi River 

further indicates the presence of a fraction of degraded DOM. 
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In the Pearl River, more local sources from surface soils and plant litters 

and limited in situ river processing of DOM are consistent with previous studies 

using biomarkers and bulk DOM  (Duan et al., 2007a; Duan et al., 2007b). 

Effect of flood on river DOM 

Higher DOC and absorbance values were found in both the Pearl and 

Mississippi Rivers during flood seasons. Elevated DOC export (~90 fold) during 

flooding as compared to that of base flow was found in a Midwestern agricultural 

watershed, and increase in both discharge and DOC concentration were 

responsible for the flux change (Dalzell et al., 2005). Duan et al. (2007b) also 

observed higher DOC concentrations, enriched carboxyl and aromatic carbons in 

high molecular weight (HWM) DOM in the Pearl River during flooding. Greater 

proportion of hydrophilic carbon and less acid fractions of DOM in deep layers of 

soils as compared with surface soils (Cronan and Aiken, 1985; Kaiser et al., 

2004b; Williams and Melack, 1997; Yano et al., 2005a; Yano et al., 2005b) was 

likely responsible for this change in sources and characteristics of DOM during 

different flood conditions. 

Conclusions 

Dissolved organic matter was characterized using CDOM measurement 

and fluorescence EEM analysis coupled with PARAFAC modeling in the lower 

Mississippi River and Pearl River.  

Higher bulk DOM abundance was found in the Pearl River with higher 

HMW-DOM and colloidal fraction, readily linked to fresh source of DOM. Higher 
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non-chromophoric DOM was found in the Mississippi River, indicating the 

presence of more degraded DOM in the river system. 

DOM in the Pearl River showed a great seasonal variability and sources 

from surface soil and plan litters. In situ processing is limited in the Pearl River. In 

contrast, DOM in the Mississippi River is subjected to a completely different set 

of sources and processing. An integrated signal from large amount of tributaries 

make the seasonal variability of DOM in the Mississippi River limited. Dam 

constructions and levees largely increased the retention time of DOM in the 

Mississippi River, resulting in strong photo- and bio-degradation of DOM and 

thus a decrease in aromatic and an increase in aquagenic DOM components. 

A six-component model was validated from the river samples. Terrestrial 

humic-like DOM, UV humic-like DOM, degradation products of terrestrial organic 

matter, as well as protein-like materials are all amount the components. 
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CHAPTER III 

SIZE DISTRIBUTION OF COLLOIDAL ORGANIC MATTER IN RIVER WATERS 

AS CHARACTERIZED BY FLOW FIELD FLOW FRACTIONATION  

Introduction 

Rivers discharge large amounts of dissolved organic carbon (DOC), trace 

elements and nutrients to the ocean (Aitkenhead and McDowell, 2000; Meybeck, 

2003). Dissolved organic matter (DOM) exported from rivers has been found to 

affect water quality and primary production in estuaries and continental shelves 

(Bianchi et al., 1997; Findlay et al., 1998; Hopkinson and Vallino, 1995; Raymond 

et al., 2000).The fate and transport of riverine DOM to the ocean is an 

indispensable part of the global carbon cycle (Hedges et al., 1997; Hope et al., 

1994). The abundance and composition of riverine DOM and its temporal 

variations are largely controlled by its source material, extent of in situ riverine 

processes, and other hydrological and biogeochemical processes in rivers and 

their drainage basins (Bianchi et al., 2004; Dagg et al., 2005; Duan et al., 2007b; 

Hedges et al., 2000; Warnken and Santschi, 2004). 

Colloidal organic matter (COM), operationally defined as the DOM fraction 

between 1 kDa and 0.45 µm, has been found to consist of a variety of 

compounds and acts as a dynamic intermediary between dissolved and 

particulate species that regulates the transfer of particle reactive metals to 

particles (Amon and Benner, 1996b; Baskaran and Santschi, 1993; Guo and 

Santschi, 1997; Guo and Santschi, 2007; Lyvén et al., 1997). COM is a 

significant part of DOM (Benner et al., 1992; Guo and Macdonald, 2006; Guo et 
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al., 1995) and plays a critical role in regulating the concentration and speciation, 

hence the fate, transport and bioavailability of trace metals and pollutants in 

aquatic systems (Benedetti et al., 2003; Buffle et al., 1998; Lead and Wilkinson, 

2006; Wilkinson et al., 1997). The size of DOM also determines its utilization 

efficiency by microbes (Benner, 2002; Benner, 2003; Findlay, 2003). The 

molecular weight of DOM is in return controlled by microbial and photochemical 

degradation. As Amon and Benner (1996) stated in their size-reactivity 

continuum model, large colloids are associated with higher reactivity and are 

more bioavailable, while smaller colloids are normally older in terms of C-14 ages 

and more refractory (Guo et al., 1996). Therefore, knowledge of the colloidal 

DOM size spectrum and composition would provide insights into the 

biogeochemical cycling pathways and the role DOM plays in regulating the fate 

and transport of trace elements. 

Flow field-flow fractionation (FFF) is a chromatography-like elution 

technique in which retention force is provided by a cross-flow perpendicular to 

the channel-flow, and colloids are separated based on their diffusion coefficients 

and hydrodynamic diameters (Giddings, 1993). A variety of ancillary detectors, 

for example UV-absorbance and fluorescence detectors, can be coupled online 

to a FFF system to examine continuous size spectra of colloidal DOM and to 

determine distinct types of colloids characterized with specific size and 

compositions (Stolpe et al., 2010; Stolpe et al., 2005; Wells, 2004; Zanardi-

Lamardo et al., 2002).  
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So far, applications of FFF techniques to the characterization of DOM in 

natural waters are few.  Limited research has been done to examine the size 

distribution and chemical composition of colloids in the East Pearl River and the 

lower Mississippi River.  Very recently, Stolpe et al. (2010) showed the size 

spectra of DOM in a sample collected from each river during near high flow of the 

two rivers.  Nevertheless, the seasonality of size and composition of DOM and 

their controlling factors are largely unknown. Other applications of FFF to the 

characterization of DOM in the Mississippi River are restricted to UV-absorbing 

organic matter (Chen and Gardner, 2004; Wells, 2004). 

The objectives of this study include 1) to examine the abundance and size 

spectra of colloidal DOM in the lower Mississippi River and East Pearl River and 

their seasonal dynamics between January 2009 to February 2010, 2) to compare 

the characteristics of DOM in the lower reaches of the Mississippi River, a large 

turbid river with a massive drainage basin area and under extensive 

anthropogenic influence (Beckett and Pennington, 1986; Wiener et al., 1996), 

with the Pearl River, a small and less-human-impacted river (Duan et al., 2007a; 

Duan et al., 2007b), and 3) to examine the effect of source, hydrological 

conditions, drainage plain size, land use, and human activities on the abundance 

and size distribution of colloidal DOM in these two rivers that both export to the 

central north Gulf of Mexico. 

Our working hypothesis is colloidal DOM in the Pearl River should have 

higher abundance due to high bulk DOM concentration from large local input 

from forest soils and wetlands, while lower colloidal DOM abundance should be 
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found in the Mississippi River due to extensive human impacts, more degradation 

of terrestrial material and more production of aquagenic components. 

Materials and Methods 

Study Sites 

The Pearl River is a small 3rd order black-water river that is 790 km long 

with a total drainage area of about 22,690 km2 covering the east-central 

Mississippi and southeastern Louisiana. The largest land type of the Pearl River 

basin is natural forests (~43%). Marsh and/or swamp areas cover ~10% of the 

drainage basin. Agricultural regions represent ~27% of the land cover. 

The Mississippi River, in contrast, with its length of 3,770 km and average 

flow rate of 17,000 m3/s, ranks at the fourth longest and tenth largest world river 

(Kammerer, 1990). Its drainage basin covers about 40% of the contiguous United 

States and a small part of Canada (~3,220,000 km2) (Meade et al., 1990). 

Cropland takes about 58% of its drainage basin, making the Mississippi River 

one of the most productive farming regions in the world (Goolsby and Battaglin, 

2001; Goolsby et al., 2000). This river is largely constrained by dam systems and 

levees (Keown et al., 1986; Meade et al., 1990). Decreased suspended sediment 

and increased nutrients, organic matter and trace elements in the recent few 

decades have caused eutrophication, hypoxia and other environmental issues in 

the northern Gulf of Mexico (Boesch et al., 2009). 

These two rivers show distinct river size, hydrological conditions, land use 

and degree and human impacts. The Mississippi River receives integrated 

signals from its wide drainage basin and is subjected to massive human impact, 
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while the Pearl River represents waters from a less human-perturbed black water 

system. These differences allow one to examine the effect of hydrological 

conditions, land use, and anthropogenic influences on the quantity and quality of 

DOM in river systems. 

Sampling Locations 

Monthly water samples were collected between January 2009 and 

February 2010 from the lower Mississippi River at Baton Rouge, Louisiana 

(30˚26'17.01'' N, 91˚11'33.14'' W) and the East Pearl River at Stennis Space 

Center, Mississippi (30°20'55.52"N, 89°38'28.74"W) (Figure 1). The sampling 

dates, locations and basic parameters are listed in Table 1. 

 

Figure 1. Sampling Locations In The East Pearl River and Lower Mississippi 
River. 
 
Sample Processing 

Water samples of approximately 40 L taken from just below the river 

surface were filtered in the field through a 0.45 µm Memtrex polycarbonate 

pleated cartridge filters (GE water & process technologies).  Aliquots of filtered 

waters were collected in amber glass vials for the measurements of DOC (with 

acidification) and CDOM and FDOM (without acidification), and in plastic HDPE  
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Table 1 

Hydrologic Parameters and DOC Concentrations in the East Pearl River and 

lower Mississippi River. 

      

Location Date Discharge 

(m3/s) 

Specific Conductivity 

(µs/ cm) 

Temp 

(˚C) 

DOC 

(ppm) 

PR 15-Jan-09 189 48 10.3 8.7 

PR 13-Feb-09 127 NA 16.0 4.5 

PR 14-Mar-09 96 78 21.7 3.9 

PR 2-Apr-09 2011 37 18.8 13.5 

PR 7-Apr-09 1470 39 17.5 10.0 

PR 2-May-09 116 75 27.4 5.3 

PR 22-May-09 289 60 24.9 8.0 

PR 23-Jun-09 66 238 32.8 4.8 

PR 15-Jul-09 56 2,500 31.0 4.2 

PR 17-Aug-09 65 4,470 30.4 7.4 

PR 23-Sep-09 94 266 28.3 10.8 

PR 26-Oct-09 881 80 17.7 10.7 

PR 25-Nov-09 114 83 18.2 6.8 

PR 28-Dec-09 943 39 9.8 9.5 

PR 31-Jan-10 983 48 10.5 8.8 

PR 25-Feb-10 428 38 11.3 7.0 
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Table 1 (continued). 

bottles for FFF analysis. Samples were then kept in an iced cooler and 

transported back to the lab within 2-3 hours of collection and stored in dark in a 

refrigerator at 4˚C until further analysis. Water temperature, salinity, and pH were 

measured with a YSI meter at the time of sample collection.  

      

Location Date Discharge 

(m3/s) 

Specific Conductivity 

(µs/ cm) 

Temp 

(˚C) 

DOC 

(ppm) 

MR 23-Jan-09 16,622 382 6.3 3.1 

MR 20-Feb-09 14,926 343 8.8 2.8 

MR 27-Mar-09 18,774 314 13.0 3.9 

MR 24-Apr-09 21,345 350 15.9 3.6 

MR 29-May-09 34,688 308 36.7 4.1 

MR 29-Jun-09 19,658 326 29.8 3.8 

MR 30-Jul-09 10,395 388 27.8 3.2 

MR 26-Aug-09 9,047 391 28.8 3.2 

MR 29-Sep-09 11,771 330 25.6 3.6 

MR 29-Oct-09 20,445 276 16.1 4.1 

MR 30-Nov-09 20,048 324 13.0 4.0 

MR 31-Dec-09 22,283 267 7.0 3.2 

MR 28-Jan-10 17,695 355 7.3 3.3 

MR 25-Feb-10 25,482 290 5.7 2.8 
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Ultrafiltration 

High-molecular-weight (HMW) DOM was separated and concentrated using the 

cross-flow ultrafiltration technique (Guo and Santschi, 1996; 2007), with an 

ultrafiltration membrane having nominal pore size of 1 kDa (kilo-Dalton). The 

size-fractionated samples, including the <1 kDa low-molecular-weight (LMW) 

fraction and the >1 kDa colloidal or HMW fraction, as well as the bulk water 

sample (<0.45 µm) were further analyzed for optical and chemical 

characterization. Time-series permeate samples (< 1kDa) during ultrafiltration 

were collected at different concentration factors (CF) and determined for DOC 

concentration to quantify the colloidal fraction (percentage) of the bulk DOC, and 

hence the partitioning of organic carbon and other chemical species between 

LMW and colloidal phases. This was done according to the ultrafiltration 

permeation model (Logan and Jiang, 1990), by fitting the DOC concentration of 

the permeate time-series samples as Cp and volume ratio of initial solution to the 

retentate solution as CF to the following equation: 

 

where Pc is the permeation coefficient, determined by the ratio of Cp to Cf, and 

the latter  is the feed concentration,   is the initial feed concentration (i.e., 

initial DOC concentration in the <0.45 µm phase) (Guo and Santschi, 2007). 

Measurements of DOC Concentration 

Concentrations of DOC of the river samples were measured with a 

Shimadzu TOC-V total organic carbon analyzer using a high temperature 

combustion method (Guo et al., 1995). Calibration curves were generated before 

  

lnCp = ln Pc ´C f
0( ) + 1-Pc( ) ´ ln CF( )

   

C f

0
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sample analysis. For DOC measurements, samples were acidified with 

concentrated HCl to pH < 2 before analysis. Three to five replicate 

measurements, each using a 150 µL sample. Coefficient of variance was <2% for 

all samples. Concentrations of nanopure water, working standards and certified 

DOC standards (from Dr. Hansell’s Lab at the University of Miami) were 

measured every eight samples to check the performance of the instrument and 

ensure data quality. 

Flow Field-flow Fractionation Analysis 

The FFF system (F-1000, Postnova) was coupled on-line to optical 

detectors, including a UV-absorbance detector (Model 228, ISCO), two 

fluorescence detectors (Model 474, Waters and Acufluor LC-305, LabAlliance) 

and a refractive index detector (Model 214, Waters). Details of the on-line 

coupling of the FFF system and optical detectors followed that described in 

Stolpe et al. (2005, 2010). Dissolved river water samples (0.45µm filtrate) was 

preconcentrated on-channel(Lyvén et al., 1997). The FFF settings used in this 

study are shown in Table 2. These conditions allow determination of high-

resolution 0.5-20 nm colloidal spectra. Most UV-absorbing and fluorescent 

colloidal matter reside within this size range (Stolpe et al., 2010), even though it 

only is a limited fraction of the overall operationally defined colloids. At the end of 

the run time (60 min), the cross flow was turned off for fast elution of materials 

larger than 20 nm in size. Thus, the bulk concentrations of colloids in the >20 nm 

size range were also examined. The optical parameters measured by the on-line 

optical detectors include UV-absorbance at 254 nm (UV254), for indication of 
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CDOM, as well as fluorescence at excitation/emission wavelengths 350/450 nm 

(Fluo350/450) and 275/340 nm (Fluo275/340), representing humic-type and protein-

type fluorescence, respectively. 

Table 2 

Instrument Parameters for FFF Analysis. 

  

Parameter Value 

Accumulation wall membrane 1 kDa polyether sulfone (Omega, Pall Filtron) 

Carrier solution 10 mM NaOH, 5 mM boric acid, pH = 8 

Sample volume (ml) 10 

Cross flow rate (ml/min) 3.0 

Channel flow rate (ml/min) 0.5 

Focus flow rate (ml/min) 4.5 

Focus (Injection) time (min) 10 

Equilibration time (min) 1 

Run time (min) 60 

The conversion of FFF retention time (tR) to diffusion coefficient (D) was 

determined through calibration with proteins with known diffusion coefficients, 

including ovalbumin, bovine serum albumin, ferritin and thyroglobulin (Stolpe et 

al., 2010) under the same FFF settings for analyzing water samples. The void 

time (the retention time of non-retained solutes, t0) was determined by 

breakthrough measurements (Giddings et al., 1992). Due to the linear 
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relationship between the reciprocal of hydrodynamic diameter (D-1) and retention 

time (tR) at long retention times (tR>6t0), the slope, k, determined from the linear 

relationship between D-1 and tR can be further used to calculate D from tR using 

the following equation (Giddings, 1993): 

 

Diffusion coefficient was further converted to hydrodynamic diameter using 

calibration with polystyrene sulfonate (PSS) standards (Beckett et al., 1987). 

A series of a quinine sulfate standards were injected on-line to calibrate 

concentrations of UV254, Fluo350/450 and Fluo275/340 in samples. Integration of 

these optical parameters along the total colloidal size spectra was used to 

describe the FFF recoverable fraction of colloids and are denoted as [UV254]FFF, 

[Fluo350/450]FFF and [Fluo275/340]FFF. Colloidal size spectra were also integrated over 

smaller size ranges, including 0.5-2.3 nm, 2.3-20 nm and >20 nm to examine the 

percentages of the FFF-recoverable fraction in each colloidal size fractions. 

Results and Discussion 

Hydrographic Characteristics 

Discharge data of Pearl River at Bogalusa from the hydrological station of 

USGS during our sampling period ranged from 56 to 2010 m3/s (mean=536 m3/s; 

n = 17), with the highest value during a flood in April, 2009 (Figure 2). The two 

East Pearl River water samples collected in July and August, 2009 had specific 

conductivity at 25˚C (SPC) higher than 500 µS/cm, probably resulting from 

seawater intrusion in the East Pearl River (Cai et al., 2012). SPC ranged from 37 
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to 266 µS/cm (mean=87 µS/cm; n = 15) in the samples not influenced by 

seawater intrusion. No positive correlations was found between discharge and 

specific conductivity. 

 

Figure 2. Seasonal Variations Of Discharge (m3/s) And Specific Conductivity  
At 25˚C (SPC, µS/cm) In The Lower Pearl And Mississippi Rivers. 
 

Discharge in the lower Mississippi River ranged from 9047 to 34688 m3/s 

(mean=18798 m3/s; n = 14), with the highest flow rate observed during May 

2009 (Figure 2). Specific conductivity in Mississippi River ranged from 267 to 391 

µS/cm (mean=331 µS/cm; n = 14), and was positively correlated with discharge 

(P=0.01, r2 =0.41). Concentrations of DOC (3.91-13.45 ppm, mean= 7.82 ppm), 

colloidal organic matter (COC) (7.25 ppm for samples taken on April 07, 2009) 
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and colloidal fraction (72% on April 07, 2009) in the East Pearl River during our 

sampling period were higher than those in the Mississippi River, where DOC 

concentration ranged from 2.83-4.12 ppm (mean =3.5 ppm, n=5), COC ranged 

from 1.81-2.54 ppm (mean = 2.13 ppm, n=5), and colloidal fraction was averaged 

60% ±2%. 

Characteristics of Colloidal Size Spectra 

Figure 3 shows the colloidal size spectra of UV254, Fluo350/450, and 

Fluo275/340, corresponding to chromophores, humic-type fluorophores, and 

protein-type fluorophores, respectively, to represent the typical size distribution of 

distinct types of DOM in the rivers. Fractograms of the sample collected in the 

East Pearl River on December 28, 2009 are on the left and while those for the 

sample collected from the lower Mississippi River on November 30, 2009 are on 

the right.  

Fractograms of both UV254, Fluo350/450 of all the river samples showed one 

single narrow peak at 1-4 nm. The hydrodynamic diameter (dH) corresponding to 

the UV254 peaks were centered at dH = 1.5 ± 0.5 nm, and the Fluo350/450 peaks 

were centered at dH = 1.2 ± 0.5 nm. Interestingly, the colloidal size spectra of 

Fluo275/340 not only showed one peak at 0.5-4 nm, matching the UV254 and 

Fluo350/450 spectra, but also showed an additional peak at 3-8 nm. The maximum 

of the Fluo350/450 peak at 3-8 nm was centered at dH = 4.8 ±0 .4 nm. The different 

colloidal size spectra of UV254, Fluo350/450, and Fluo275/340 suggests distinct 

populations of colloids with different compositions. To better quantify the distinct 

colloidal size distribution of chromophores and fluorophores, the percentages of 



78 
 

 

[UV254]FFF, [Fluo350/450]FFF, and [Fluo275/340]FFF in the size intervals 1-5 nm, 5-20 nm 

and >20 nm were calculated.   

 
Figure 3. Fractograms Showing The Colloidal Size Spectra of UV254 
(chromophores), Fluo350/450 (humic-type fluorophores), And  
Fluo275/340 (protein-type fluorophores) In The Samples Collected  
From The Lower Pearl River on December 28, 2009 (left column)  
And The Lower Mississippi River On November 30, 2009 (right column). 
 

More than 78% of [UV254]FFF and more than 86% of [Fluo350/450]FFF were 

found in the 1-5 nm size fraction in the East Pearl River and lower Mississippi 

River, corresponding to the peak between 0.5-4 nm in the colloidal UV254 and 
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Fluo350/450 spectra. In contrast, a considerably larger fraction of the Fluo275/340 

spectra was found in the >20 nm size fraction (41% for the Pearl River and 66% 

for the Mississippi River, Figure 4).  

 
Figure 4. Integrated Size Spectra Of [UV254]FFF, [Fluo350/450]FFF, And 
[Fluo275/340]FFF Over  Size Intervals 1-5nm, 5-20nm And >20nm , 
In The Samples Collected From The Lower Pearl River On  
December 28, 2009 (left column) And The Lower Mississippi River 
 On November 30, 2009 (right column). 
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The colloidal size distributions of protein-type fluorophores are thus 

characterized by larger sizes compared to chromophores and humic-type 

fluorophores. The ubiquitous peak ranging from dH= 1- 4 nm and centering on 1.5 

nm is discernible in all the UV254, Fluo350/450, and Fluo275/340 size spectra. 

Previous studies demonstrated terrestrial sources of colloidal amino acids in the 

Mississippi and Pearl River (Duan and Bianchi, 2007). This fluorescent-nature 

and CDOM-rich colloid is likely to be natural fulvic acid (Beckett et al., 1987; 

Lead et al., 2000; Stolpe et al., 2010; Zanardi-Lamardo et al., 2002). 

The addition peak at 3-8 nm and the major proportion in the >20 nm 

fraction of Fluo275/340 spectra (Figure 3 and 4) suggest different sources of these 

groups of protein-type fluorophores. Previous studies have found larger size of 

fresh microbially derived amino acid (Amon and Benner, 1996a), thus, the 

protein-like colloids in the 3-8 nm and >20 nm size ranges are likely to have 

autochthonous origin. 

Seasonal Variation of DOM with Specific Composition and Size Distribution 

By integrating the full spectra of UV254 fractograms, including the 0.5-20nm 

fraction and the >20 nm fraction, the concentration of colloidal CDOM ([UV254]FFF) 

was calculated. Samples collected from the East Pearl River had [UV254]FFF 

values ranging from 123 ppb during low discharge to 4267 ppb during flood 

season (mean = 1197 ppb, n = 16). In contrast, [UV254]FFF of water samples from 

the lower Mississippi River were considerably lower and ranged from 36 ppb 

during low flow to 261 ppb during high flow (mean = 137 ppb, n = 13). Specific 

UV absorbance at 254 (SUVA254) nm has been found to show strong correlation 
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with aromaticity (Weishaar et al., 2003). The ratio between [UV254]FFF and COC is 

the counterpart of SUVA 254 in the colloidal fraction and representative of the 

aromaticity of colloidal organic matter in the sample (Stolpe et al, 2010). This 

[UV254]FFF/COC index is unit-less if the concentration of [UV254]FFF and COC are 

both selected as ppb, although the unit is essentially g-quinine sulfate/g-C. The 

[UV254]FFF/COC ratio in the sample from the East Pearl River collected on April 07, 

2009 was 0.39, while [UV254]FFF/COC ratio in the lower Mississippi River was 

considerably lower, ranging from 0.03 to 0.09 (mean = 0.05, n=13). 

The relative content of protein-type fluorophores in the colloidal CDOM 

can be represented by the [Fluo275/340]FFF to [UV254]FFF ratio. Samples from the 

lower Pearl River had [Fluo275/340]FFF/[UV254]FFF ratio ranging from 0.002 to 0.05 

(mean =0.01, n=16), while samples from the lower Mississippi River had 

[Fluo275/340]FFF /[UV254]FFF ratios ranging from 0.01-0.08 (mean = 0.03, n=13), 

showing higher protein-type fluorophores in the lower Mississippi River. 

Figure 5 shows the seasonal variation of chromophores, as represented 

by [UV254]FFF in the Pearl and Mississippi Rivers. Significantly positive correlation 

was found between [UV254]FFF and discharge in the Pearl River (P<0.0001, r2=0.7, 

Figure 5), with highest [UV254]FFF found during the flood in April 2009. In contrast, 

no significant correlation was found between [UV254]FFF and discharge in the 

Mississippi River. Similarly, [UV254]FFF showed positive correlation with DOC 

concentration in the Pearl River (P<0.005, r2=0.45, Figure 6), but did not show 

correlation with DOC in the Mississippi River. This is possibly reflecting sources 

of chromophoric organic matter from surface soils and plant litters during high 
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flow in the Pearl River, and the integration of signals of large drainage basin in 

the Mississippi River (Duan et al., 2007a). 

 

Figure 5. Seasonal Sariations In Discharge (m3/s) And [UV254]FFF (ppb) of 
Colloidal DOM In The Lower Pearl And Mississippi Rivers. 
 

The proportion of humic-type fluorophores in the bulk dissolved phase is 

indicated by the ratio of [Fluo350/450]FFF to DOC. In the Pearl River, 

[Fluo350/450]FFF/DOC is positively correlated with discharge (P<0.01, r2=0.43, 

Figure 6), reflecting increased importance of humic substances in the bulk 

dissolved organic carbon pool with increasing discharge, possibly from 

allochthnous sources. It is worth noticing that the relationship between 

[Fluo350/450]FFF/DOC and discharge in the East Pearl River seemed to show two 
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separate relations, one for samples taken during relatively lower (<500m3/s) 

discharge, and another during higher (>500m3/s)  flow rate. This is possibly 

caused by differences in sources of the East Pearl River during different flow 

rates. Because of the existence of an upstream weir, water from the main 

channel of Pearl River is largely limited during low flow, and the source water of 

the East Pearl River would shift to the Hobolochitto Creek. This change of water 

sources is likely to be reflected in the characteristics of DOM.  

 

Figure 6. Relations Among DOC (ppm), [UV254]FFF (ppb), Discharge (m3/s), 
[Fluo350/450]FFF/DOC ratio, and [Fluo275/340]FFF/[UV254]FFF Ratio In 
The Lower Pearl And Mississippi Rivers. 
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In contrast, [Fluo350/450]FFF/DOC in the Mississippi River failed to show 

correlation with discharge, possibly due to sources of integrated signal from large 

river basin and more extensive processing in the river. The relative importance of 

protein-type fluorophores in the chromophores were determined by the ratio 

between [Fluo275/340]FFF/[UV254]FFF, and was found to show no correlation with 

discharge in the Pearl River but negative correlation with discharge in the 

Mississippi River (P=0.003, r2=0.59).  

The decreasing [Fluo275/340]FFF/[UV254]FFF values with increasing discharge 

reflect different sources of protein-type fluorophores as compared to other DOM 

components, and possibly from autochthonous microbial origins subjected to 

dilution during high flow. 

Comparison between the Pearl River and Mississippi River 

The great similarity in the colloidal size spectra of UV254FFF and Fluo350/450 

between the Pearl River and Mississippi River suggests that chromophores and 

humic-type fluorophores are associated with the same type of organic 

macromolecules in these two rivers.  

Higher DOC concentration, larger colloidal fraction and considerably 

higher [UV254]FFF and [UV254]FFF/COC in the Pearl River suggest higher 

aromaticity and larger fraction of lignin-phenols in colloidal organic matter, in 

accordance with previous findings (Duan et al., 2007a; Duan et al., 2007b; Stolpe 

et al., 2010). Positive correlation between [UV254]FFF and discharge in the Pearl 

River suggests source of high aromatic from surface soil layer and plant litter.  
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Higher [Fluo275/340]FFF/[UV254]FFF ratios, its decreasing trend with increasing 

discharge, and higher relative fraction of the >20 nm protein-type fluorophores in 

the Mississippi River agrees with previous findings of higher in situ phytoplankton 

production in the Mississippi River (Duan et al., 2007a), likely caused by 

increased water residence time from dam and levee constructions. 

Conclusions 

Two types of colloids are likely to present in the river waters. One type 

with a narrow peak ranging at 1-4 nm in size shows chromophoric and 

fluorescent properties and is likely natural fulvic acids. The other types of colloids 

are characterized by two peaks at 3-8 nm and >20 nm with protein-type 

fluorescence, and are suggested to be from in situ phytoplankton production. 

These two types of colloids are both present in the lower Mississippi and Pearl 

Rivers. 

Sources of colloidal DOM in the Pearl River are more likely to be from 

forest soils and wetlands, owing to its high aromaticity, higher DOC concentration, 

larger colloidal fraction and considerably higher [UV254]FFF and [UV254]FFF/COC 

found in the Pearl River. Colloids in the Mississippi River, in contrast, have more 

aquagenic sources based on the higher [Fluo275/340]FFF/[UV254]FFF ratios and 

higher proportions of Fluo275/340 in the >20nm size range. The difference in the 

sources of colloidal DOM is coherent with the drainage size, land use and human 

impact on the two rivers. 

Week correlations between the various types of colloidal DOM and 

discharge in the Mississippi River indicates complex processes governing the 
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biogeochemistry of riverine DOM in this water system, in accordance with the 

fact that the DOM signal in the lower Mississippi River is integrated from a large 

upper river basin with various land types and modified in situ by degradation and 

autochthonous production. 

The source and compositions of the DOM in the East Pearl River and the 

lower Mississippi River as characterized by the colloidal size distribution of 

specific types of DOM are similar as those determined by optical analysis, such 

as UV-vis absorbance and fluorescence excitation emission matrix coupled with 

parallel factor analysis. More size specific characteristics of DOM are revealed by 

Flow field flow fractionation coupled with on-line detectors. 
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CHAPTER IV 

CHARACTERIZATION OF OIL COMPONENTS FROM THE DEEPWATER 

HORIZON OIL SPILL IN THE GULF OF MEXICO USING FLUORESCENCE 

EEM TECHNIQUES*1 

Introduction 

The unprecedented Deepwater Horizon oil spill in the northern Gulf of 

Mexico during April 20 –July 15, 2010 resulted in the release of over 800 million 

liters of crude oil from the Macondo well into the water column (Mascarelli, 2010; 

Schrope, 2011). For the remediation of oil, over 7 million liters of dispersant were 

used during the oil spill (Kujawinski et al., 2011). The vast quantity of oil and its 

long transit from the deep ocean to the sea surface made this oil spill different 

from other spill disasters. This Gulf of Mexico oil spill also provided a natural 

laboratory and an opportunity to examine the fate, transport and transformation 

of crude oil components and their interactions with the environment (Camilli et 

al., 2010; Diercks et al., 2010; Dietrich et al., 2012; Hazen et al., 2010; Hu et al., 

2011; Kujawinski et al., 2011; Leifer et al., 2012; Liu et al., 2011; Wade et al., 

2011).  

Dissolved organic matter (DOM) in aquatic systems is a complex mixture 

of organic matter with various sources and composition, and plays an important 

role in controlling the environmental behavior of many chemical species and 

                                                 

*
1
This chapter of the dissertation has been accepted for publication in the Journal of 

Marine Chemistry 

Zhou, Z. et al., 2012. Characterization of oil components from the Deepwater Horizon oil 

spill in the Gulf of Mexico using fluorescence EEM techniques. Marine Chemistry, 

(Accepted). 
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pollutants and their biogeochemical cycles in aquatic environments (Hedges, 

2002; Stolpe et al., 2010; Turner and Mawji, 2004). Chromophoric dissolved 

organic matter (CDOM) is the fraction of DOM that absorbs light mainly in the 

visible and ultraviolet range, and fluorescent dissolved organic matter (FDOM) is 

the part of DOM that emits fluorescence after absorption of light. Optical 

properties, including UV-vis absorbance, fluorescence excitation-emission 

matrices (EEMs) and their derivative parameters, have been widely used to 

quantify the abundance, reactivity and molecular weight of DOM and to 

characterize its composition and sources in aquatic environments (Chen and 

Gardner, 2004; Coble et al., 1990; Del Vecchio and Blough, 2004; Guéguen et 

al., 2007; Helms et al., 2008; Sierra et al., 2006; Vodacek et al., 1997; Weishaar 

et al., 2003), especially when combined with the use of PARAFAC modeling 

(Kowalczuk et al., 2009; Murphy et al., 2008; Stedmon and Bro, 2008; Stedmon 

et al., 2003; Walker et al., 2009; Yamashita et al., 2008). 

Previous studies have shown the usefulness of fluorescence EEM 

techniques and PARAFAC analysis in the characterization, fingerprinting, and 

monitoring of oil (Alostaz et al., 2008; Booksh et al., 1996; Bugden et al., 2008; 

Christensen et al., 2005; Ferreira et al., 2003; González et al., 2006; Kim et al., 

2010; Patra and Mishra, 2002). However, applications of fluorescence EEMs and 

PARAFAC analysis are still few for the Deepwater Horizon oil spill in the northern 

Gulf of Mexico. Several recent studies related to the Deepwater Horizon oil spill 

focused mostly on the extent and transport of oil, methane, and dispersants 

(Diercks et al., 2010; Hazen et al., 2010; Joye et al., 2011; Kessler et al., 2011; 
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Kujawinski et al., 2011; Valentine et al., 2010), as well as end member 

composition of gas and oil (Reddy et al., 2011).  Here, we report the distributions 

of DOM and fluorescence characterization of crude oil, weathered oil, and 

seawater samples collected from two cruises to the northern Gulf of Mexico 

during the Deepwater Horizon (DWH) oil spill, using fluorescence EEMs 

techniques coupled with PARAFAC modeling. 

 The major objectives of this study were to examine the distribution and 

variation of DOM and UV-vis absorbance in the water column around the 

Macondo well in the Gulf of Mexico, to characterize the fluorescence and other 

optical properties of oil and seawater samples for identification and fingerprinting 

of oil components, and to determine the relationship between fluorescence 

component ratios and chemical evolution of oil in the water column. 

Materials and Methods 

Study Site and Sampling 

The study area and sampling stations were located around the Deepwater 

Horizon oil rig in the northern Gulf of Mexico, covering an area of ~5600 km2 

during two cruises in May/June 2010 during the oil spill (Figure 1). The first cruise 

was accomplished onboard the R/V Pelican during May 10-14, 2010 and covered 

25 stations. The second sampling cruise was accomplished between May 26th 

and June 1st 2010 onboard the R/V Walton Smith and covered 29 stations (Table 

1 and Figure 1). Water samples were collected with Niskin or Go-flo bottles 

mounted on a CTD rosette system, and were filtered immediately after sample 

collection through 0.2 µm Whatman polycarbonate membrane filters. Filtered 
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samples for DOC were stored frozen in 30 ml HDPE bottles, while samples for 

optical measurements, including UV-vis absorbance and fluorescence EEMs, 

were collected with pre-combusted (550°C) 125 ml amber bottles and stored in 

the dark at 4˚C before measurements.  

 

Figure 1. Sampling Locations In The Northern Gulf Of Mexico During Early  
May 2010 R/V Pelican Cruise (Blue Circles) And Late May/Early  
June 2010 R/V Walton Smith Cruise (Light Blue Squares). The Location Of The 
Macondo Well Is Shown By The Red Square. Another Set Of Markers (Orange 
Stars And Brown Triangles) Were Used To Denote Where The Two Specific 
Groups Of DOM Were Found In Deep Waters. The Inserted Rectangle Shows 
Sampling Locations Inside The Dashed Line Area. 

Crude oil and dispersant samples were provided by BP. Weathered oil 

samples were collected with a basket from the sea surface as orimulsion at 

several stations close to the oil rig (e.g., stations 11 and 47). These oil samples 

were also measured for optical properties as an end-member reference for 

seawater samples after mixing with ultrafiltered seawater (<1 kDa) under 

ultrasound. 
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Table 1 

Sampling Locations, Sampling Date, and Some Bulk DOM Parameters in 

Surface Waters 

       

Station ID Latitude (N) 

Longitude 

(W) Date 

Surf.  

DOC 

(mg-

C/L) 

Surf.  

a254 

(m-1) 

Surf. 

S275-295 

(nm-1) 

Wellhead 28˚44.312′ 88°21.924′ -    

P-St1 28°56.325′ 89°23.114′ 05/10/10    

P-St2 28°55.940′ 89°22.352′ 05/10/10    

P-St3 28°55.736′ 89°22.002′ 05/10/10    

P-St4 28°55.819′ 89°21.726′ 05/10/10    

P-St5 29°00.194′ 88°49.097′ 05/10/10    

P-St6-1 28°51.243′ 88°29.105′ 05/10/10 1.23 3.84 .0227 

P-St6 29°16.261′ 88°16.152′ 05/10/10    

P-St6-2 28°51.649′ 88°29.344′ 05/10/10 1.20 3.87 .0231 

P-St7 28°48.892′ 88°12.372′ 05/11/10 1.15 3.32 .0235 

P-St8 28°47.876′ 88°12.600′ 05/11/10 1.17 4.07 .0230 

P-St9 28°48.036′ 88°12.123′ 05/11/10 7.94 3.78 .0235 

P-St10 28°42.498′ 88°17.692′ 05/11/10 1.00 3.52 .0199 

P-St11 28°42.455′ 88°17.200′ 05/11/10 1.02 2.74 .0229 
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Table 1 (continued). 

Station ID Latitude (N) 

Longitude 

(W) Date 

Surf.  

DOC 

(mg-

C/L) 

Surf.  

a254 

(m-1) 

Surf. 

S275-295 

(nm-1) 

P-St12 28°43.383′ 88°21.556′ 05/11/10 .87 1.58 .0274 

P-St13 28°42.533′ 88°21.776′ 05/11/10    

P-St14 28°41.988′ 88°26.698′ 05/12/10 1.05 3.18 .0223 

P-St15 28°42.969′ 88°24.612′ 05/12/10    

P-St16 28°43.520′ 88°23.231′ 05/12/10    

P-St17 28°42.953′ 88°23.390′ 05/12/10    

P-St19 28°43.965′ 88°23.419′ 05/12/10    

P-St20 28°44.739′ 88°23.320′ 05/12/10    

P-St21 28°41.924′ 88°23.682′ 05/12/10    

P-St22 28°39.156′ 88°28.442′ 05/13/10 .98 2.34 .0244 

P-St23 28°37.401′ 88°30.477′ 05/13/10 1.02 2.55 .0239 

P-St24 28°38.126′ 88°37.742′ 05/13/10 .91 1.82 .0267 

P-St25 28°42.847′ 88°23.075′ 05/14/10    
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Table 1 (continued). 

Station ID Latitude (N) 

Longitude 

(W) Date 

Surf.  

DOC 

(mg-

C/L) 

Surf.  

a254 

(m-1) 

Surf. 

S275-295 

(nm-1) 

P-St26 28°43.558′ 88°23.450′ 05/14/10 1.14 3.55 .0247 

P-St27 28°42.998′ 88°25.113′ 05/14/10    

WS-St2 28°43.807′ 88°24.575′ 05/26/10    

WS-St2-1 28°43.651′ 88°24.774′ 05/26/10 1.00 2.13 .0269 

WS-St2-2 28°43.483′ 88°25.096′ 05/26/10    

WS-St3 28°44.675′ 88°24.739′ 05/26/10 6.98 2.03 .0267 

WS-St7-B 28°43.410′ 88°29.041′ 05/27/10    

WS-St13 28°49.571′ 88°48.955′ 05/27/10 6.35 2.11 .0284 

WS-St26 28°42.524′ 88°35.058′ 05/28/10    

WS-St27 28°42.595′ 88°34.080′ 05/28/10    

WS-St29 28°43.688′ 88°29.272′ 05/28/10    

WS-St30 28°45.852′ 88°23.263′ 05/30/10 .83 1.49 .0310 

WS-St31 28°46.002′ 88°20.844′ 05/30/10 .82 1.50 .0313 

WS-St32 28°44.394′ 88°19.611′ 05/30/10 .79 1.66 .0315 
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Table 1 (continued). 

Station ID Latitude (N) 

Longitude 

(W) Date 

Surf.  

DOC 

(mg-

C/L) 

Surf.  

a254 

(m-1) 

Surf. 

S275-295 

(nm-1) 

WS-St33 28°42.585′ 88°20.862′ 05/30/10 .78 1.60 .0311 

WS-St34 28°42.703′ 88°23.372′ 05/30/10 .71 1.51 .0283 

WS-St34-B 28°42.721′ 88°23.148′ 05/30/12    

WS-St36 28°42.616′ 88°24.602′ 05/30/12    

WS-St37 28°42.622′ 88°26.281 05/30/10    

WS-St39 28°42.193′ 88°28.455′ 05/30/10    

WS-St40 28°41.268′ 88°31.891′ 05/30/10    

WS-St41 28°40.951′ 88°34.170′ 05/30/10    

WS-St42 28°40.440′ 88°37.038′ 05/30/10    

WS-St43 28°39.024′ 88°37.082′ 05/31/10    

WS-St46 28°41.762′ 88°25.952′ 05/31/10    

WS-St47 28°43.302′ 88°23.837′ 05/31/10    

WS-St48 28°43.982′ 88°24.033′ 05/31/10    
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Table 1 (continued). 

Station ID Latitude (N) 

Longitude 

(W) Date 

Surf.  

DOC 

(mg-

C/L) 

Surf.  

a254 

(m-1) 

Surf. 

S275-295 

(nm-1) 

WS-St53 28°44.010′ 88°22.981′ 06/01/10    

WS-St57 28°44.190′ 88°23.603′ 06/01/10    

WS-St58 28°44.337′ 88°23.141′ 06/01/10    

WS-St59 28°44.514′ 88°22.714′ 06/01/10    

WS-St57 28°44.190′ 88°23.603′ 06/01/10    

WS-St58 28°44.337′ 88°23.141′ 06/01/10    

Measurements of DOC and UV-vis Absorption 

Concentrations of DOC were measured with a Shimadzu TOC-V total 

organic carbon analyzer using the high temperature combustion method (Guo et 

al., 1995). Samples were acidified with concentrated HCl to a pH<2 before 

analysis. Three to five replicate measurements each with 150 µL were made, 

with a coefficient of variance <2%. Calibration curves were generated before 

sample analysis. Nanopure water, working standard and certified DOC standard 

solutions (from Dr. Hansell’s Lab at the University of Miami) were measured 

every eight samples to check the performance of the instrument. 

UV-vis absorption spectra of samples were measured using a Cary UV-

visible spectrophotometer (300 Bio) and a 10-cm path-length quartz cuvette over 
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the 190-900 nm wavelength ranges with 0.2 nm increments. The water blank was 

subtracted, and the refractive index effect was corrected by subtracting the 

averaged absorbance between 650 and 800 nm (Stedmon et al., 2000). Specific 

UV absorbance (SUVA) values were calculated from the UV absorbance at 254 

nm (or others such as 225 and 240 nm) and DOC concentration (mg-C/L). 

Spectral slopes were determined by nonlinear regression (MATLAB software) 

over the 275-295 nm wavelength rage using the following equation: 

 (Guéguen and Cuss, 2011; Helms et al., 2008; Moran et al., 2000; 

Twardowski et al., 2004). 

Measurements of Fluorescence EEMs 

Fluorescence signatures of seawater samples were acquired using a 

Shimadzu RF-5301PC spectrofluorometer and a 1 cm path-length quartz cuvette 

at 20 ˚C. Ninety-one separate fluorescence emission spectra were scanned from 

240 to 680 nm with 1 nm interval under excitation wavelengths from 220 to 400 

nm with a 2 nm step and concatenated to generate an excitation-emission matrix 

that is able to provide DOM component information for the water sample 

quantitatively and qualitatively (Coble, 1996; Green and Blough, 1994).  

A water blank was scanned daily and its EEM was subtracted from each 

sample’s EEM. Emission correction spectra were generated using rhodamine B 

and barium sulfate with the correction package from Shimadzu and multiplied to 

the EEM spectra (Stedmon et al., 2003). Quinine sulfate standards were also 

scanned daily for calibration and for checking instrument performance. Data in 

two triangle areas, corresponding to the Rayleigh and Raman scattering peaks 

  

y = Ae-Sol +O
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were eliminated in the PARAFAC analysis to acquire better mathematical results 

(Andersen and Bro, 2003; Christensen et al., 2005). All fluorescence intensities 

were converted to ppb-QSE units (Coble, 1996). 

PARAFAC Modeling 

Fluorescence PARAFAC modeling was used to investigate the spatial and 

temporal changes in DOM fluorescence components (Stedmon and Bro, 2008). 

PARAFAC modeling was applied to all 94 seawater samples from the two 

sampling cruises, using MATLAB software (MathWorks R2010b) and DOMFluor 

Toolbox (Stedmon and Bro, 2008). Seventeen samples were picked out as 

outlier samples after close examination of their EEMs and a non-negativity outlier 

test.  Then the model was further validated by split-half analysis (Harshman and 

Lundy, 1984; Stedmon and Bro, 2008). 

The fluorescence intensities of each component in every sample were 

quantified as outputs of the PARAFAC modeling, and were used as inputs to 

generate contour maps of the differentiated components in the study area. 

Contour Map Generation 

All contour maps were generated using MATLAB software (MathWorks 

R2010b) and m_map Toolbox 

(http://www.mathworks.com/MATLABcentral/linkexchange/links/ 993-mmap-a-

mapping-package-for-MATLAB). The triangle-based cubic interpolation method 

was used to generate grid data for mapping. 

 

 

http://www.mathworks.com/MATLABcentral/linkexchange/links/%20993-mmap-a-mapping-package-for-MATLAB
http://www.mathworks.com/MATLABcentral/linkexchange/links/%20993-mmap-a-mapping-package-for-MATLAB
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Results and Discussion 

Distributions of DOC and CDOM 

Both bulk dissolved organic carbon (DOC) and CDOM concentrations in 

the surface waters near the Deepwater Horizon site during the two cruises were 

greatly influenced by oil released from the Macondo well. Concentrations of DOC 

were as high as 6 mg-C/L, which is considerably higher than the baseline values 

in the northern Gulf of Mexico (~1 mg-C/L) (Guo et al., 1994; Guo et al., 1995) 

and even the Mississippi River (Duan et al., 2007; Guo et al., 2009). These high 

DOC concentrations coincided with higher UV absorbance and lower spectral 

slope values and were found in surface waters around stations near 28˚44´ N 

88˚25´ W and 28˚48´ N 88˚12´ W (Figure 2), indicating the presence of the 

released oil and its influence on the composition of DOM. Because the spectral 

slope S275-295 is inversely related to DOM molecular weight (Helms et al., 2008; 

Twardowski et al., 2004), this suggests that higher molecular weight materials 

dominated the DOM found in surface waters near the Macondo well. 

Nevertheless, lower DOC concentrations, less optically active DOM, and lower 

molecular weight DOM were found at stations between the above stated areas 

covering the exploded oil rig, showing a patchy distribution of oil. Elevated DOC 

concentrations were also found at ~28˚49´ N 88˚49´ W, suggesting also the 

influence of oil at the northwest corner of the study area, since mere natural 

organic matter from river waters would not cause such high DOC concentration 

in the coastal waters of the Gulf of Mexico (Guo et al., 2009; Wang et al., 2004). 

In deep waters between 1100 and 1400 m, a region of elevated DOC 
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concentrations was found in the area located at 28˚41´- 28˚44´ N 88˚24´- 88˚33´ 

W (Figure 2), consistent with the presence of oil plume reported by other studies 

(Diercks et al., 2010; Hazen et al., 2010). However, no clear relationship was 

observed between the distribution pattern of DOC and other optical properties in 

the deep waters. 

 

Figure 2. Distributions Of DOC Concentration (mg-C/L), UV-Vis Absorption 
(M-1) At 254 nm And Spectral Slope (S) In Surface (Left Column)  
And Deep Waters Between 1,100 – 1,400 m (Right Column) In  
The Northern Gulf Of Mexico. 
 

Optical properties such as fluorescence and UV-vis absorbance can be 

used as a general proxy for DOM abundance in seawater, with a specific 
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correlation slope value between DOC concentration and optical properties when 

sources of DOM are constant (Chen and Gardner, 2004; Kowalczuk et al., 2010; 

Stedmon and Markager, 2003; Vodacek et al., 1997). Similarly, changes in SUVA 

values can be linked to sources and composition of DOM in the aquatic system 

(Weishaar et al., 2003). In this study, the correlations between DOC and 

SUVA254 are dispersed and suggested the presence of two major types of DOM 

with distinctly different fluorescence/absorbance yields (Figure 3). Samples with 

high DOC concentrations but low SUVA254 values seemed to have a quasi-

positive correlation between SUVA and DOC or a254 values in deep waters 

(Figure 3) suggesting a similar DOM source. In addition, DOC concentrations (or 

a254) and SUVA254 are positively correlated for samples with lower DOC 

concentrations (0.6-1.3 mg-C/L) and higher SUVA254 values (P<0.0001 for 

surface water samples and P<0.12 for deep water samples, Figure 3). The slope 

value of the regression line derived from low DOC samples is considerably 

higher than that derived from high DOC concentration samples, suggesting the 

existence of highly optically active DOM components in deep water samples 

(Figure 3).  

Since oil components characterized by fluorescence spectroscopy also 

had lower excitation wavelengths such as 225 and 240 nm (see section 3.2), the 

correlations between DOC and optical properties at these wavelengths were also 

examined. Lower p-values and higher correlation coefficients were found for 

correlations between DOC and SUVA225 or SUVA240 (not shown) for deep-water 

samples, as compared to its counterparts at 254 nm. However, the overall 
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conclusions are the same regardless of wavelengths used to derive absorbance 

or spectral slope values. The decoupling between DOC concentration and optical 

yield might result from fractionation of DOM constituents under the influence of 

dispersants and preferential residence of higher molecular weight and more 

optically active DOM in large droplets in the deep water.  

 

Figure 3. Relations Among DOC Concentration, UV-Vis Absorption At 254 Nm, 
Specific UV Absorbance At 254 nm, Spectral Slope (S) From Nonlinear 
Regression Over 290-400 nm, And Oil Fluorescence Intensity In Surface Waters 
(Left Panels) And Deep Waters (Right Panels). Samples With High DOC 
Concentrations But Low SUVA254 Values Are Represented By Orange Stars, 
While Samples With Lower DOC Concentrations But Higher Optical Activities Are 
Shown With Brown Triangles. The Same Marker Types Used Here Were Also 
Followed In Figure 1, Where High DOC Concentration Samples Were Found 
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Around ~28˚42’N 88˚28’W In The Deep Water. Similar Property Correlations 
Were Also Found For Derived Optical Data At 225 Or 240 nm (Not Shown).  
 

In addition, it is also likely caused by the filtration of seawater samples 

with 0.2 µm membranes, which may preferentially retain highly soluble low 

molecular weight DOM with a low optical yield, but reject less soluble large 

molecular weight DOM with a high optical yield.  Nevertheless, methods do not 

seem available for filtration of oil-contaminated water samples without causing 

possible fractionation. 

As shown in Figure 3, there are negative correlations between a254 and 

spectral slope (S) in both surface and deep waters, indicating samples with 

higher a254 values also contained higher molecular weight DOM components. 

This again suggests the influence of oil on the water column during the sampling 

time periods. Higher values of SUVA254 (up to 2.2 m2/g-C) and lower S values 

(0.01-0.025 nm-1) were found in deep waters compared to surface waters, which 

had a high end SUVA254 value of 1.5 m2/g-C and S values ranging from 0.02 to 

0.032 nm-1. This suggests that the deep waters contained DOM component(s) 

with higher optical activity (yield) and lower spectral slope values or higher 

molecular weight from “fresher” crude oil components, which are subjected to 

biodegradation and photochemical degradation during their transport from deep 

to surface waters (Figure 3). 

Fluorescence Characteristics of Oil, Dispersant and Chemically Dispersed Oil 

Excitation-emission spectra of crude oil from the Macondo well, dispersant 

used during the oil spill, and chemically dispersed crude oil with an oil and 

dispersant ratio of 1:1 showed distinct fluorescence characteristics (Figure 4). 
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The crude oil sample had its maximum fluorescence intensities centered on 

226/340 nm.  Another fluorescence component of the crude oil had an emission 

maximum located at 322 nm over the excitation wavelength range of 260 – 280 

nm (Figure 4A), which coincides with the fluorescence peak identified for other 

crude oils reported by Bugden et al. (2008). The dispersant was characterized 

with an intensity peak at Ex/Em 234/376 nm and another emission maximum at 

370 nm over an excitation range of 260-290 nm (Figure 4B). 

Figure 4. Fluorescence EEM Spectra Of End-member Crude Oil (Panel A), 
Dispersant (Panel B), Dispersed Crude Oil (1:1, panel C) And Weathered Oil 
Collected From Surface Seawater At Close Proximity Of The Oil Rig (Panel D). 
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Chemically dispersed oil showed a large increase in the fluorescence 

intensity of the emission band at 430 nm and was characterized with a peak at 

Ex/Em 260/430 nm (Figure 4C). Bugden et al. (2008) and Kepkay et al. (2002) 

also found similar effects of dispersant on the fluorescence spectra of crude oil. 

However, the fluorescence characteristics of dispersant were not easily 

discernable in the EEM of chemically dispersed oil. The different EEM spectra 

between crude oil, dispersant, and chemically dispersed oil should allow one to 

investigate the influence of both oil and dispersant on natural water samples. 

Weathered oil samples collected from surface water during May/June 

2010 cruise (e.g., station 47) showed very similar fluorescence EEM spectra to 

those of the crude oil sample from the Macondo well (Figure 4D). Nevertheless, 

their fluorescence EEM spectra also showed additional fluorescence components, 

for example, the one with a peak at Ex/Em ~240/355 nm.  In addition, the 

spectral slope value of the weathered oil sample (0.0079 nm-1) was larger than 

that found for the crude oil, 0.0019 nm-1, suggesting overall smaller molecular 

weights for weathered oil samples. These differences are probably largely 

derived from rapid microbial and photochemical degradation of oil in the water 

column, as also observed in laboratory degradation experiments using the 

Macondo crude oil (Zhou et al., 2012). The changes in the EEM spectra and 

other optical properties of oil samples might thus be used to evaluate the 

degradation status of oils and their fate and transport in the water column. 

Fluorescence Characteristics of Seawater Samples 
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Examples of fluorescence EEMs of seawater samples from different 

depths at two stations are shown in Figure 5. These EEM spectra and Ex/Em 

maxima strongly resemble those of the crude oil as shown in Figure 4, indicating 

the dominance of oil on all samples regardless of water depth and station (Figure 

5).  Fluorometry has been used to screen oil presence in the subsurface plume 

during the DWH oil spill (Diercks et al., 2010; Wade et al., 2011). A strong 

correlation was found between fluorescence intensities and polycyclic aromatic 

hydrocarbon (PAH) concentration (Wade et al., 2011). Both in-situ fluorescence 

data (Diercks et al., 2010; Joye et al., 2011) and our bench-top 

spectrofluorometric measurements showed that most of the elevated oil 

fluorescence intensities were found at 1000 – 1400 m. However, maximal oil 

fluorescence signatures were measured either in surface waters or deep waters 

at different stations (see examples in Figure 5), indicating heterogeneous 

distributions of oil in the water column during the DWH oil spill. 
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Figure 5. Examples Of Fluorescence EEMs Of Water Samples From Two 
Vertical Profiles Showing The Strong Presence Of Oil with Maximum 
Fluorescence Intensities Occurring Either In The Surface (Left Panels) Or Deep 
Waters (Right Panels). 
 

While elevated fluorescence signatures identified by an in situ CDOM 

sensor faded away rapidly due to use of an unfavorable Ex/Em wavelength pair, 

identification and fingerprinting of oil components in seawater using 3D 

fluorescence spectroscopy are sensitive and reliable even several months after 

the oil spill event (Zhou and Guo, 2012) .  

While the EEM spectra of seawater samples overwhelmingly contain the 

fingerprints of crude oil components (Figure 5), the fluorescence signatures of 

dispersant (Figure 4B) were not identifiable in seawater samples collected during 
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May/June 2010 due to its low optical activity compared to oil and its highly 

dispersive nature and rapid dilution by ambient seawater in the water column 

although the presence of dispersant was detected by other techniques 

(Kujawinski et al., 2011). Diminished emission peaks of pure dispersant in 

fluorescence EEM after the mixture of oil and dispersant also explain the 

absence of dispersant related fluorescence signatures in the water column. In 

contrast, the fluorescence peak at Ex/Em 260/430 nm, corresponding to 

chemically dispersed oil, was visually observable in seawater samples collected 

in June 2010. 

Based on PARAFAC modeling, six fluorescence DOM components (C1 – 

C6) can be readily identified for seawater samples collected during the May/June 

2010 cruises (Figure 6), and their specific Ex/Em maxima are listed in Table 2. 

The first fluorescence component (C1) with its Ex/Em maximum at 226/340 nm is 

the dominant component from the crude oil, and is probably the source of higher 

molecular weight DOM in deep waters. This component strongly resembles the 

PAH fluorescence (Beltrán et al., 1998; Christensen et al., 2005). The second 

component (C2) has its fluorescence Ex/Em intensity peak at 236/350 nm, 

resembling naphthalene/1-methyl naphthalane (Alostaz et al., 2008), but may 

also have originated from the degradation of crude oil based on changes in 

fluorescence component ratios (see discussion below). The third fluorescent 

component (C3), with two peaks at Ex/Em 256/460 and 340/460 nm, seems to 

have terrestrial humic characteristics showing widespread “A” and “C” peaks 

(Coble, 1996). In addition, the humic-like “A” peak also lies within close proximity 
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of the peak characteristic in chemically dispersed oil (Figure 4 and Bugden et al., 

2008). Thus, it is likely that C3 is a mixture of natural humic-like DOM and 

chemically dispersed oil. The fourth component (C4), showing two peaks at 

Ex/Em ~240/324 and 280/324 nm, respectively, appears to consist of amino acid 

signals (Coble, 1996; Stedmon et al., 2007). The fifth component (C5) has two 

emission peaks at 290 and 477 nm over excitation at 224 nm, and appears to be 

a photochemical product of terrestrial organic matter, but its origin is yet 

uncertain (Stedmon et al., 2007). The sixth component (C6), with Ex/Em 

maximum at (260–280)/311 nm, shows a similar emission maximum as fluorene 

(Beltrán et al., 1998; Christensen et al., 2005), and is also likely a product of 

crude oil. The higher abundance of high molecular weight DOM in deep waters 

probably resulted from the preferential degradation or volatilization of lower 

molecular weight oil components in surface waters (Douglas et al., 2002). 

Overall, four of the fluorescence DOM components (C1, C2, C3 and C6) 

are associated with the oil components found in the crude oil, weathered oil, and 

chemically dispersed oil samples. Thus, they are DOM components derived from 

Macondo oil. 
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Figure 6. Characteristics Of Six Major DOM (Or Oil) Components Revealed By 
Fluorescence PARAFAC Modeling For Seawater Samples Collected During May 
2010 In The Northern Gulf Of Mexico. 
 

It is noteworthy that C3, has similar fluorescence characteristics to those 

previously reported for UV humic-like substances in natural seawater, as well as 

to the chemically dispersed oil. The C4 shows amino acid signals and C5 is likely 

to be a photochemical product of terrestrial organic matter (Table 2, Figure 6). 

However, as Christensen et al. (2005) noted, the alkylation of PAHs such as 

phenanthrene can also produce similar red-shifted emission spectra at longer 

wavelengths, while complex mixtures of PAHs having similar excitation and 
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emission spectra could produce broad, featureless components from PARAFAC 

modeling.  

Table 2 

Characteristics of the Six Fluorescence Components (C1 to C6) in Seawater 

Samples Identified by PARAFAC Modeling 

    

Component Excitation 

peak (nm) 

Emission 

peak (nm) 

Description 

C1 226 340 Oil – related, dominant component 

C2 236 350 Oil – related, degradation product 

C 3 256, 340 460 Terrestrial humic substance, and 

chemically dispersed oil 

C4 232, 275 324 Amino acids 

C5 224 290, 477 Photochemical degradation product of 

terrestrial organic matter 

C 6 252 311 Oil – related, degradation product 

As shown in Figure 7, fluorescence intensity of oil components (e.g., 

component 1, C1) and a254 were positively correlated (P = 0.0011) in surface 

water samples. In contrast, the scattered relationship between oil fluorescence 

intensity and absorbance values of deep-water samples suggested that oil 

components in the deep water were more complex and diversified. For example, 

some samples from the deep water had high oil fluorescence signals but 
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intermediate absorbance values, while other samples had high absorbance but 

very low fluorescence intensities (Figure 7), consistent with the heterogeneous 

distribution of oil in the water column (Figure 5). 

 

Figure 7. Correlation Between a254 (M-1) And Fluorescence Intensity Of 
Component 1. 
 

I speculated that deep water samples contained mostly fresher oil derived 

from the Macondo well containing a wide spectrum of oil components with 

different optical characteristics and fluorescence quantum yields, while surface 

water samples contained oils which had undergone fractionation, degradation, 

and coagulation during their transport from the deep water to the surface. 

Furthermore, the oil-derived fluorescent substances detected in deep waters 

have the strongest absorption in the UV wavelength range <300 nm, as indicated 

from their primary excitation peaks at <300 nm (Figure 4). This in part explains 

the relationship of oil component C1 fluorescence to a254 in Figure 7. The 

differences in oil components between the surface and deep waters should be 

reflected in fluorescence components identified by PARAFAC analysis and the 

spatial and temporal changes in oil component ratios and will be discussed 

below. 
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Figure 8. Distributions Of Fluorescence Intensities (Ppb-Qse) Of DOM 
Components Derived From PARAFAC Modeling In Surface (Left Panels) And 
Deep Waters Between 1,100 – 1,400 M (Right Panels) Near The Deepwater 
Horizon Site (Red Square). 
 
Spatial Variability of PARAFAC Components 

The distributions of the three oil components (C1, C2 and C6) and C3 that 

partially represents chemically dispersed oil in surface waters show a pattern of 
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dominance by a point source, with the highest oil fluorescence intensity close to 

the Macondo well, at 28˚43’N 88˚25’W (Figure 8). As the distance from the point 

source close to the oil rig increased, the fluorescence intensity decreased, 

consistent with the extent of oil influence. Another area of elevated oil 

fluorescence intensities was found at around 28°47’N 88°16’W. The spatial 

distribution pattern of oil components in the surface water is consistent with that 

observed for DOC concentration, UV-vis absorbance and spectral slope in the 

regions impacted by oil (Figure 2). Similar distribution patterns of oil has been 

observed through satellite imagery in the Gulf of Mexico (Hu et al., 2011), 

suggesting compatibility of circulation patterns and oil-derived component spatial 

distribution. The distribution pattern of C4, possibly comprising amino acids, also 

showed a response to the presence of oil, likely from induced growth of oil-

degrading bacteria and breakdown of biota that are intolerant to the toxicity of 

crude oil (Figure 8). In contrast, the fifth fluorescent component, consisting of 

photochemical products of terrestrial organic matter, generally had a low 

fluorescence intensity and was more evenly distributed spatially (Figure 8), 

suggesting that the sources for C5 were different from the oil components. 

Although covering a smaller area, the distribution pattern of the four oil-related 

components in the deep water, showed again a distribution pattern with a point 

source from the Macondo well (Figure 8), but they had not been dispersed as far 

as in the surface water during the sampling time period.  It seemed that lateral 

transport of oil in the deep water was limited during May/June 2010 compared to 

that in the surface water as shown in Figure 8. 
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Variations in Oil Component Ratios and Their Implications 

Three of the fluorescence components, C1, C2 and C6, identified by 

PARAFAC modeling resemble those of crude oil and weathered oil. The absolute 

fluorescence intensity of them all seemed to decrease from crude oil to seawater 

samples. However, changes in the fluorescence component ratios, an intensive 

property, between crude oil and weathered oil in seawater, and between 

seawater samples and crude oil, would likely reflect the degradation status of oil 

and can be used as an index to examine the fate and transformation processes 

of oil in the Gulf of Mexico. For example, the ratio of C2 to C1 shows a general 

increase from crude oil to weathered oil and to the seawater samples (Figure 9).  

This suggests that the degradation rate of C1 could be much faster than C2 or 

that component C2 is largely a degraded product of crude oil.  As the oil 

degraded, the C2/C1 ratio in seawater increased from early May to late May and 

to October 2010, regardless of surface or deep waters (Figure 9).  For the 

component ratio of C6/C1, however, the crude oil had a similar ratio as the 

weathered oil collected from surface waters, and a higher C6/C1 ratio than the 

samples collected during early May 2010 when the extent of the oil spill was 

high. After the initial decrease, the C6/C1 ratio then increased with time in these 

series samples (Figure 9). This suggests that C6 could be an original crude oil 

component with a higher initial degradation rate compared to C1, and at the 

same time, it could also be a degradation-derived oil component, resulting in an 

initial decrease in the C6/C1 ratio, followed by an increase with time especially 

after the wellhead was capped (Figure 9). We hypothesize that C2 is largely 
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derived from the degradation of crude oil whereas C6 is an original oil component 

but also could be derived from oil degradation. Therefore, the dynamic changes 

in the fluorescence components of oil-affected seawater samples can be linked 

to the degradation and fractionation processes, and thus the fate and transport of 

crude oil during oil spill events. 

 

Figure 9. Variations In The Oil Component Ratio C2/C1 (Left Panel) And C6/C1 
(Right Panel) Of Crude Oil [Oil(C)], Weathered Oil [Oil(W)], Deep Water Samples 
Taken In Mid-May [M(D)], Surface Samples Taken In Mid-May [M(S)], Deep 
Water Samples Taken In Late May - Early June, [Mj(D)], Surface Water Samples 
Taken During Late May-Early June [Mj(S)], Deep Water Samples Taken In 
October [O(D)], And Surface Water Samples Taken In October 2010 [O(S)] (Data 
of October 2010 Samples Are From The Next Chapter). 

 
In addition, the fluorescence component ratios may represent a compelling 

alternative to other chemical analyses of oil in seawater. These results have 

important implications in oil spill research and environmental monitoring.  

As shown in Figure 10, both the C2/C1 and C6/C1 ratios in surface water 

samples were positively correlated (P< 0.001 for both cases) with spectral slope 

value, which had an inverse relationship with the aromaticity and average 

molecular weight of DOM (Helms et al., 2008; Twardowski et al., 2004). Thus, 
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the positive correlation of C2/C1 or C6/C1 ratios with spectral slope values 

indicates that both C2 and C6 components contain more low molecular weight 

DOM materials with less aromaticity compared to crude oil.  

As the oil degraded, both C2/C1 and C6/C1 ratios in the water column 

increased and the overall molecular weight tended to decrease.  Similarly, the 

C6/C2 ratio was also positively correlated (P = 0.0013) with the spectral slope 

(Figure 10), suggesting that the average molecular weight of oil components 

decreased from C1 to C2 and C6. 

 

Figure 10. Relationships Between Spectral slope (S) And Oil Component  
Ratios (C2/C1, C6/C1, and C6/C2) in Surface Water Samples. 
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Conclusions 

The Deepwater Horizon oil spill greatly changed the optical properties of 

DOM in seawater in the northern Gulf of Mexico, and provided a natural 

laboratory to study the fate and transformation processes of oil in marine 

environments. Elevated DOC concentration, higher absorption values, and lower 

spectral slope (i.e., higher molecular weight DOM) were found in the surface 

waters during May and early June 2010.  There were two types of DOM in the 

water column, one with high optical activity but low in abundance and the other 

with low optical activity but high in DOC concentration. The fluorescence EEM 

spectra of both surface oil and seawater samples strongly resembled those of 

crude oil from the Macondo well, with maximum Ex/Em centered on 226/340 nm. 

Six fluorescence components were identified using PARAFAC analysis: three of 

them are components associated with crude or weathered oil, one represents 

partially UV humic-like DOM and partially chemically dispersed oil, one 

represents amino acid-like substances, and one is possibly a photochemical 

product of terrestrial DOM. Based on the dynamic changes between the 

fluorescence components in the water column, C2 and C6 contain mostly lower 

molecular weight materials and the oil component ratios such as C2/C1 and 

C6/C1 seem closely related to the degradation status of oil. The combined 

application of fluorescence EEM, PARAFAC modeling, and other optical 

properties can be used to effectively examine oil degradation pathways and 

mechanisms, and the fate and transport of oil components in the water column. 
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CHAPTER V 

EVOLUTION OF OPTICAL PROPERTIES OF SEAWATER INFLUENCED BY 

DWH OIL SPILL IN THE GULF OF MEXICO*1 

Introduction 

The Deepwater Horizon (DWH) oil spill in the Gulf of Mexico from April to 

July 2010 is an unprecedented marine oil spill event in which over 800 million 

liters of crude oil gushed from the seafloor at ~1500 m depth, and a total of ~7 

million liters of dispersants were released in surface waters and deep waters 

(Camilli et al., 2010; Hazen et al., 2010; Kessler et al., 2011; Kujawinski et al., 

2011; Mascarelli, 2010; National Commission on the BP Deepwater Horizon Oil 

Spill and Offshore Drilling (National Commission), 2010; Schrope, 2011; 

Valentine et al., 2010). Massive studies have been carried out to investigate the 

impacts of oil on ecosystems and factors and processes that regulate the 

weathering and change of oil composition in the water column of natural systems 

(Boehm et al., 1982; Camilli et al., 2010; Harrison et al., 1975; Mansour and 

Sassen, 2011; Valentine et al., 2010) and in the laboratory (Delille et al., 1998; 

Wang et al., 2011). Recent studies have reported the extent and transport of oil, 

methane and dispersants in the Gulf of Mexico since the DWH oil spill (Diercks et 

al., 2010; Hazen et al., 2010; Joye et al., 2011; Kessler et al., 2011; Kujawinski et 

al., 2011). However, there are no published results on the characterization of oil 

                                                 

*
1
This chapter of the dissertation has been published in the Journal of Environmental 

Research Letters.  

Zhou, Z. and Guo, L., 2012. Evolution of the optical properties of seawater influenced by 

the Deepwater Horizon oil spill in the Gulf of Mexico. Environmental Research Letters 

7(2), 025301, doi: 10.1088/1748-9326/7/2/025301. 
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from seawater samples using fluorescence excitation emission matrix (EEM) 

techniques coupled with parallel factor (PARAFAC) analysis. The fate and 

degradation pathways of oil from the DWH oil spill remain poorly understood. 

How oil interacts with natural organic matter and the subsequent dynamic 

changes in chemical and optical properties in the water column after the DWH oil 

spill in the Gulf of Mexico is largely unknown. 

Crude oil contains diverse hydrocarbons and organic molecules that could 

contribute to UV absorbance and fluorescence signatures in seawater and could 

be readily determined and characterized by UV-vis spectroscopy and 

fluorescence spectroscopy techniques (Bidleman et al., 1990; Bugden et al., 

2008; Patra and Mishra, 2002; Vandermeulen et al., 1979; Von Der Dick and 

Kalkreuth, 1986; Wakeham, 1977). Similarly, composition and sources of DOM in 

aquatic environments can be effectively characterized by its optical properties, 

including UV-vis absorbance and fluorescence EEMs spectra (Chen and Gardner, 

2004; Coble, 2007; Coble et al., 1990; Del Vecchio and Blough, 2004; Guéguen 

et al., 2007; Helms et al., 2008; Sierra et al., 2006; Vodacek et al., 1997; 

Weishaar et al., 2003), especially when combing the application of PARAFAC 

modeling (Kowalczuk et al., 2009; Murphy et al., 2008; Stedmon and Bro, 2008; 

Stedmon et al., 2003; Walker et al., 2009; Yamashita et al., 2008). Indeed, 

fluorescence EEM and PARAFAC techniques have been used in many previous 

studies to characterize, fingerprint and monitor oil in coastal and marine 

environments (Alostaz et al., 2008; Booksh et al., 1996; Bugden et al., 2008; 

Ferreira et al., 2003; González et al., 2006; Kim et al., 2010; Østgaard and 
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Jensen, 1983; Patra and Mishra, 2002; Santos-Echeandía et al., 2008).  Few 

studies have been conducted for the DWH oil spill in the northern Gulf of Mexico 

using the fluorescence EEM technique and PARAFAC modeling to track the fate, 

transport, and transformation of oil in the water column.  Our hypothesis was that 

oil from DWH would significantly alter the optical properties of DOM in the water 

column and the degradation and transformation processes of oil components 

could be effectively traced by their dynamic changes in optical properties. 

The objective of this study was to examine the dynamic changes in time 

series bulk organic matter, UV-vis absorbance, fluorescence EEM spectra in the 

water column near the Macondo well in the Gulf of Mexico through cruises from 

2010 to 2011 after the oil spill using UV-vis and 3D fluorescence spectroscopy 

coupled with PARAFAC modeling.  Together with data obtained during the oil 

spill, the variation in oil components and DOM optical properties in the water 

column over the 15-month time period was used to derive indices for tracking the 

degradation and transformation processes, and thus the fate and transport of oil 

in the Gulf of Mexico. 

Materials and Methods 

Study site and Sampling 

Water samples were collected from stations around the Deepwater 

Horizon oilrig in the northern Gulf of Mexico during two cruises in October 2010 

and October 2011 (Figure 1). Both cruises was accomplished onboard the R/V 

Cape Hatteras and covered 24 and 27 stations during October 2010 and October 



137 
 

2011, respectively.  Detailed sampling locations and selected hydrographic data 

are listed in table 1. 

 

Figure 1. Sampling Locations In The Northern Gulf of Mexico During 
October 2010 (Blue circle) And October 2011 (Teal Pentacle) Onboard R/V Cape 
Hatteras. 
 

Water samples from different depths at each station were collected with 

Niskin or Go-flo bottles mounted on a CTD rosette system, including surface 

waters at ~ 2-5 m depth and Chlorophyll a maximum layer, deep water samples 

between 1100 m and 1400 m, and bottom water samples (Table 1). Immediately 
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after sample collection, water samples were filtered through pre-combusted glass 

fiber filters (0.7 µm, Whatman).  

Table 1 

Sampling Locations, Sampling Dates, and Hydrographic Data for Stations 

Occupied During October 2010 and October 2011 in the Gulf of Mexico 

       

Station 

ID 

Latitude 

(˚N) 

Longitude 

(˚W) 
Date 

Water 

Depth 

(m) 

Surface 

Water 

Temp. (˚C) 

Surface 

Water 

Salinity 

Oct 2010       

GIP 01  30° 6.113′ 88°42.328′ 10/12/10 16 24.42 31.64 

GIP 02  29°45.038′ 88°35.618′ 10/12/10 28 25.46 32.92 

GIP 03  29°23.384′ 88°41.304′ 10/12/10 53 25.62 30.77 

GIP 04  28°57.278′ 88°56'.103′ 10/14/10 126 26.30 30.26 

GIP 05  28°52.122′ 89°38'.413′ 10/13/10 72 26.17 30.52 

GIP 06 28°30.663′ 89°48.499′ 10/13/10 530 27.11 35.36 

GIP 07 28°14.383′   89°7.240′ 10/13/10 1136 27.43 35.62 

GIP 08 27°54.370′ 88°27.001′ 10/14/10 2360 25.83 33.48 

GIP 09 28°12.581′ 87°37.515′ 10/15/10 2530 27.27 36.41 

GIP 10 28°25.614′ 87°55.219′ 10/15/10 2315 26.95 36.30 

GIP 11 28°14.216′ 88°21.528′ 10/16/10 1973 26.17 35.62 
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Table 1 (continued). 

       

Station 

ID 

Latitude 

(˚N) 

Longitude 

(˚W) 
Date 

Water 

Depth 

(m) 

Surface 

Water 

Temp. (˚C) 

Surface 

Water 

Salinity 

GIP 12 28°26.275′ 88°49.166′ 10/16/10 1210 25.96 32.70 

GIP 13 28°40.100′ 88°52.327′ 10/14/10 1025 26.63 32.36 

GIP 15 28°44.315′ 88°33.390′ 10/16/10 1207 25.44 33.00 

GIP 16 28°43.383′ 88°24.577′ 10/17/10 1560 25.66 34.26 

GIP 17 28°38.237′ 88°31.128′ 10/18/10 1595 25.99 34.38 

GIP 18 28°44.336′ 88°20.416′ 10/17/10 1,570 26.49 35.82 

GIP 19 28°37.587′ 88°12.515′ 10/20/10 2,010 26.99 36.43 

GIP 20 28°45.393′   88°9.595′ 10/20/10 1,760 26.83 36.35 

GIP 21 28°42.960′ 87°54.086′ 10/20/10 2,180 26.97 36.35 

GIP 22 28°40.502′ 87°39.250′ 10/19/10 2,370 26.97 36.28 

GIP 23 28°51.774′ 88°11.835′ 10/20/10 1,350 25.90 34.66 

GIP 24 28°46.235′ 88°22.874′ 10/18/10 1,418 26.11 35.56 

GIP 25 28°55.602′ 88°19.579′ 10/21/10 1,160 26.05 34.99 
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Table 1 (continued). 

       

Station 

ID 

Latitude 

(˚N) 

Longitude 

(˚W) 
Date 

Water 

Depth 

(m) 

Surface 

Water 

Temp. (˚C) 

Surface 

Water 

Salinity 

Oct 2011       

GIP 02 29º45.423′ 88º35.125′ 10/20/11 20 25.28 34.58 

GIP 04 29º45.423′ 88º35.125′ 10/20/11 126 23.94 32.27 

GIP 06 28º57.252′ 88º56.095′ 10/21/11 520 26.44 36.47 

GIP L 28º30.633′ 89º48.488′ 10/21/11 1,130 26.33 35.08 

GIP 7 28º06.175′ 88º24.657′ 10/21/11 1,150 26.24 35.34 

GIP K 28º14.264′ 89º07.380′ 10/21/11 1,332 26.26 35.17 

GIP 11 28º23.047′ 88º52.007′ 10/22/11 1,984 26.20 35.39 

GIP I 28º14.255′ 88º21.631′ 10/22/11 1,734 26.19 35.51 

GIP H 28º32.779′ 88º28.153′ 10/22/11 1,697 26.21 35.47 

GIP 17b 28º35.169′ 88º30.717′ 10/23/11 1,577 26.11 35.47 

GIP 13 28º38.186′ 88º31.018′ 10/23/11 1,017 26.03 35.86 

GIP M 28º40.153′ 88º52.284′ 10/23/11 1,207 26.24 35.34 

GIP G 28º41.288′ 88º44.181′ 10/23/11 1,395 26.13 35.14 

GIP 15 28º41.113′ 88º33.161′ 10/24/11 1,178 26.12 35.35 
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Table 1 (continued). 

       

Station 

ID 

Latitude 

(˚N) 

Longitude 

(˚W) 
Date 

Water 

Depth 

(m) 

Surface 

Water 

Temp. (˚C) 

Surface 

Water 

Salinity 

GIP B 28º44.331′ 88º33.668′ 10/24/11 1,480 26.11 35.32 

GIP A 28º44.593′ 88º28.894′ 10/24/11 1,237 26.22 35.40 

GIP C 28º48.874′ 88º26.403′ 10/25/11 1,378 26.03 35.42 

GIP 24 28º46.135′ 88º25.902′ 10/25/11 1,400 25.97 35.35 

GIP 18 28º46.258′ 88º22.852′ 10/25/11 1,554 25.97 35.27 

GIP 16b 28º44.304′ 88º20.326′ 10/25/11 1,554 25.88 35.27 

GIP D 28º43.788′ 88º24.619′ 10/26/11 1,618 25.84 35.23 

GIP E 28º41.365′ 88º22.549′ 10/26/11 1,708 25.89 35.28 

GIP J 28º38.349′ 88º21.051′ 10/26/11 1,847 26.15 35.34 

GIP 23 28º35.657′ 88º18.951′ 10/27/11 1,345 25.98 35.45 

GIP 20 28º51.770′ 88º11.777′ 10/27/11 1,752 25.99 35.41 

GIP F 28º45.374′ 88º09.595′ 10/28/11 1,729 26.24 35.62 

GIP 25 28º42.65′ 88º14.45′ 10/28/11 1150 26.09 35.46 

Filtered water samples for dissolved organic carbon (DOC) were collected 

in 30 ml HDPE bottles and stored frozen, while samples for optical 

measurements, including UV-vis absorbance and fluorescence EEMs, were 
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collected with pre-combusted (550°C) 125 ml amber bottles and stored in the 

dark at 4˚C. 

Measurements of DOC and UV-vis Absorption 

Concentrations of DOC were measured on a Shimadzu TOC-V total 

organic carbon analyzer using the high temperature combustion method (Guo et 

al., 1995). For DOC measurements, samples were acidified with concentrated 

HCl to pH<2 before analysis. Three to five replicate measurements, each using 

150 µL sample were made, with a coefficient of variance <2%. Calibration curves 

were generated before sample analysis. Nanopure water, working standards and 

certified DOC standards (University of Miami) were measured as a sample every 

eight seawater samples to check the performance of the instrument. Total DOC 

blank, including water and instrument blanks, was normally less than 2-6 µM 

(Guo et al., 1995).  

UV-vis absorption spectra of samples were measured using an Agilent 

8453 UV-visible spectrophotometer and a 1-cm path-length quartz cuvette over 

the 200-1100 nm wavelength ranges with 0.1 nm increments. The water blank 

was subtracted, and the refractive index effect was corrected by subtracting the 

averaged absorbance between 650 and 800 nm (Stedmon et al., 2000). Specific 

UV absorbance at 254 nm (SUVA254) values was calculated by dividing 

absorption coefficient (m-1) at 254 nm (a254) by the DOC concentration (mg-C/L). 

Non-linear spectral slopes between 290-400 nm were calculated to provide 

information on the overall molecular weight of DOM (Helms et al., 2008; 

Twardowski et al., 2004; Zhou and Guo, 2010).  
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Measurements of Fluorescence EEMs 

A Shimadzu RF-5301PC spectrofluorometer was used to measure 

fluorescence signatures of water samples in a 1 cm path-length quartz cuvette. 

Each sample was scanned from 240 to 680 nm with 1 nm interval under 

excitation wavelengths from 220 to 400 nm with a 2 nm step. Ninety-one 

separate fluorescence emission spectra were concatenated to generate an 

excitation-emission matrix that is able to provide DOM component information for 

the water sample qualitatively and quantitatively (Coble, 1996; Green and Blough, 

1994). PARAFAC modeling was used to derive DOM fluorescence components 

(Stedmon and Bro, 2008) and to examine the spatial and temporal changes in 

DOM components in the Gulf of Mexico. 

A water blank was scanned daily before sample analysis and its EEM was 

subtracted from each sample’s EEM. Emission correction spectrum was 

generated using Rhodamin B and barium sulfate with the correction package 

from Shimadzu and multiplied to the EEM spectra. Quinine sulfate standards 

were also scanned daily for fluorescence calibration and for checking the 

instrument performance. All fluorescence intensities were converted to ppb-QSE 

units (Coble, 1996). Data in two triangle areas, corresponding to the Rayleigh 

and Raman scattering peaks were eliminated in the PARAFAC analysis to 

acquire better mathematical results. 

PARAFAC Modeling 

PARAFAC modeling was applied to all field seawater samples collected 

from 2010 to 2011, using the MATLAB software (MathWorks R2010b) and the 
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DOMFluor Toolbox (Stedmon and Bro, 2008). Sample matrices were calibrated 

and corrected before running the PARAFAC analysis. A non-negativity outlier 

test was performed and no outlier sample was chosen for removal. Thus, no 

sample was removed before split-half analysis and model validation. The 

fluorescence intensities of each component in every sample were quantified as a 

result of the PARAFAC modeling. 

Results and Discussion 

Variations in Quantity and Quality of DOM in the Water Column 

The spatial distributions of salinity, DOC concentration, UV absorption 

coefficient at 254 nm (a254) and specific UV absorbance at 254 nm (SUVA254) 

during October 2010 are showed in Figure 2. During October 2010, three months 

after the oil spill was capped, the DOC concentration and a254 in surface waters 

did not show an obvious influence of oil and their abundance dropped back to 

more naturally occurring levels, with the highest value found at stations close to 

the Mississippi River plume and a general decrease in DOC with increasing 

salinity (Figure 3).   

These surface distribution patterns are distinctly different from those 

observed during the oil spill in the May and June cruises (Diercks et al., 2010; 

Zhou et al., 2012a), showing remarkable resilience of surface waters. The 

distribution of DOC and chromophoric dissolved organic matter (CDOM) in 

surface waters during the early stages of the oil spill in May and June 2010 

showed a profound influence of oil released from the Macondo well in the 

northern Gulf of Mexico, with DOC concentrations as high as 6 mg-C/L found 
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around the oilrig, which were considerably higher than the baseline values in the 

northern Gulf of Mexico (Guo et al., 1994; Guo et al., 1995; Hansell and Carlson, 

1998). 

 

Figure 2. Distributions Of Salinity (Upper Left Panel), DOC Concentration  
(mg-C/L, Upper Right Panel), UV Absorption Coefficient At 254  
nm (a254 in m-1, Lower Left Panel) And Specific UV Absorbance (SUVA254 In 
m2/g-C, Lower Right Panel) In The Surface Water  
From The Northern Gulf Of Mexico During October 2010 After 
Three Months Of The Oil Spill.  
 

Similarly, elevated DOC concentrations and absorbance values in deep 

waters between 1100 and 1400 m were also observed during May/June 2010 
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(Zhou et al., 2012a), consistent with the presence of oil plume observed in the 

deep water (Camilli et al., 2010; Hazen et al., 2010; Schrope, 2011). 

Even though surface water DOC and CDOM did not seem to have a 

significant oil signature by October 2010, as shown in Figure 2, the relationship 

between DOC concentration and salinity in all water samples throughout the 

water column shows an abnormal deviation from a general conservative DOC-

salinity relationship as observed before the oil spill in the Gulf of Mexico and in 

other oceanic environments (Conmy et al., 2004; Guo et al., 1995; Kowalczuk et 

al., 2010; Stedmon and Markager, 2003; Weishaar et al., 2003). Surprisingly, 

some of the DOC concentrations from those abnormal deep-water samples were 

significantly lower than those observed previously from deep waters in the Gulf of 

Mexico and North Atlantic Ocean (Figure 3 and (Guo et al., 1994; Guo et al., 

1995; Hansell and Carlson, 1998)). We hypothesized that the extremely low DOC 

concentrations measured for oil contaminated deep waters were the result of the 

scavenging or removal of DOC by oil droplets and subsequent sorption of oil on 

glass fiber filters during water sample filtration.   

Based on the correlations between salinity, DOC, a254, and SUVA254, two 

major types of DOM could be identified in the water column during October 2010, 

three months after the oil spill (Figure 3). The first type of DOM, residing mostly 

in the upper water column, had natural DOM characteristics with a positive 

correlation between DOC concentration and SUVA254 values. The second group 

of DOM, found exclusively in deep waters with a characteristic salinity of 

34.96±0.03, had an anomalously high optical yield and a negative correlation 
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between SUVA254 values and DOC concentrations, showing a strong influence of 

oil on deep waters in October 2010 (Figure 3) although rapid recovery was 

observed in surface waters.  

 

Figure 3. Relationships Between Salinity, DOC Concentration, a254, And 
SUVA254 In The Water Column Of The Northern Gulf of Mexico  
During October 2010. 
 

Similar to the results observed during October 2010 (Figures 2 and 3), 

surface water samples collected during October 2011 (15 months after the oil 

spill) had undetectable oil signals (Figure 4), but deeper water samples again 

showed a strong presence of oil contaminated DOM (Figure 5). While the oil 

signatures in surface waters identified from optical properties faded away quickly, 

the presence of oil in the deep-water column persisted even 15 months after the 
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oil spill in the Gulf of Mexico was capped. Effective microbial and photochemical 

degradation in surface waters, water stratification in the deeper water column, as 

well as circulation in the Gulf of Mexico (North et al., 2011) are likely the major 

factors governing the distribution of oil and DOM and their fate and transport in 

the water column. 

 

Figure 4. Distributions Of Salinity (Upper Left Panel), DOC Concentration (mg-
C/L, Upper Right Panel), UV Absorption Coefficient At 254 nm (a254 in m-1, 
Lower Left Panel) And Specific UV Absorbance At 254 nm (SUVA254 in m2/g-C, 
Lower Right Panel) In The Surface Water In The Northern Gulf of Mexico During 
October 2011, After 15 Months Of The Oil Spill. 
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Fluorescence Characteristics of DOM in the Water Column 

Fluorescence EEM spectra of crude oil and a time series of seawater 

samples taken from the same depth at ~1050 m in the Gulf of Mexico, from May 

2010, October 2010 and October 2011 are shown in Figure 6. Crude oil had its 

maximum fluorescence emission at 320-360 nm over excitation of 220-240 nm, 

centering on Ex/Em 226/340 nm. Another peak in the crude oil EEM was located 

at an emission wavelength of 322 nm under excitation between 260-280 nm, 

similar to that reported by Bugden et al. (2008). 

 

Figure 5. Relationships Between Salinity, DOC Concentration, a254, SUVA254 
In The Water Column Of The Gulf of Mexico During October 2011. 
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As shown in Figure 6, the fluorescence EEM signatures of seawater 

samples taken in May 2010 strongly resemble those of the crude oil, indicating 

the presence of oil in the water column and its influence on seawater samples. 

However, oil fluorescence signatures derived from EEM spectra were weak in 

samples collected during October 2010 and October 2011 cruises, indicating 

effective dilution, degradation and transformation of oil in the water column. 

 

Figure 6. Fluorescence EEMs Of Crude Oil (Upper Left Panel) And Field 
Samples Taken In May 2010 (Upper Right Panel), October 2010 (Lower Left 
Panel) And October 2011 (Lower Right Panel). 
 

Since data of DOC and other optical properties clearly demonstrated the 

presence of oil in deep waters even 15 months after capping the spill (see 

previous section), the weak oil fluorescence signatures observed after the oil spill 

likely also resulted from the application of vast quantity of dispersants during the 
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DWH oil spill and thus the interactions of oil with dispersants in the water column 

(Yamada et al., 2003; Yin et al., 1997).  Indeed, significant alterations in oil EEMs 

spectra have been observed when dispersants were present with oil (Bugden et 

al., 2008; Guo et al., 2010). Other factors contributing to the weak fluorescence 

signatures included possible sorption effect during sample filtration processes 

since, in general, oil has a very low solubility in seawater, and can be readily 

removed on filters and sorbs on the bottle wall during sample processing. 

Oil Components as Derived from PARAFAC Modeling 

Despite low fluorescence oil signatures, oil components could be 

recognized from these seawater samples using PARAFAC modeling (Figure 7). 

As shown in table 2, four DOM fluorescence components had been identified 

using PARAFAC analysis of EEM data from seawater samples taken during and 

after the oil spill.  
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Figure 7. Characteristics Of Four Major DOM Components Identified By 
PARAFAC Analysis Based On Fluorescence EEMs Of All Field Samples 
Collected During Four Cruises From May 2010 During  
The Oil Spill To October 2011, After 15 Months Of The Oil Spill In  
The Northern Gulf of Mexico. 
 

A total of 228 fluorescence emission matrices collected at wavelengths 

from 240 to 680 nm over excitation wavelengths from 220 to 400 nm were 

decomposed into a four-factor PARAFAC model, including three oil-related 

components (C1, C2 and C3) and one humic-like DOM component (C4). The first 

component, C1, having emission maximum at 224 nm under excitation 

wavelength of 328 nm, is the most prominent oil component. The second and 

third components were identified at Ex/Em maximum wavelengths of 264/324 

and 232/346 nm, respectively. The fourth component, with its maximum Ex/Em of 

248/446 nm, is characterized as naturally occurring humic-like DOM (Table 2, 

Figure 7). As shown in Figure 8, fluorescence intensities of the oil component C3 
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had a broad correlation with a254 in the Gulf of Mexico in October 2010, 

suggesting an oil component with similar quantum yields and optical activities. 

Table 2 

Fluorescent DOM Components Identified Using PARAFAC Analysis Based on 

EEM Spectra of All Field Seawater Samples Collected from the Gulf of Mexico 

    

DOM component 
Excitation 

wavelength (nm) 

Emission 

wavelength (nm) 
Description 

    

Component-1 224 328 Oil 

Component-2 264 324 Oil 

Componnet-3 232 346 Oil 

Component-4 248 446 Humic-like 

A more scattered relationship between a254 and fluorescence intensities 

was observed for oil components C2 and C1 (Figure 8), suggesting that both C1 

and C2 are more complex in composition and might have multiple 

production/degradation pathways. 

Chemical Evolution of Oil as Characterized by its Component Ratios 

Since the oil-related fluorescence components identified by PARAFAC modeling 

were derived from seawater samples collected at different times during and after 

oil spill, changes in the fluorescence intensities and component ratios between 

seawater samples would likely reflect the results of degradation and 
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transformation of oil in the water column.  Additionally, the fluorescence 

component ratio is an intensive property, which is not related to quantity or 

abundance of oil, and should be an ideal parameter or index to evaluate time 

series samples in the same water column. As shown in Figure 9, even though the 

intensity/concentration of DOM fluorescence components decreased with time, 

the C2/C1 and C3/C1 ratios increased consistently in seawater samples from the 

middle of May to May/June to October 2010 and to October 2011, indicating that 

these oil component ratios are indeed correlated with oil degradation and can be 

used as an index for tracking the chemical evolution of oil during its degradation 

and transformation in the water column. The increase in the C2/C1 and C3/C1 

ratios during oil degradation in the water column suggests that both oil 

components, C2 and C3, had significantly lower degradation rates as compared 

to the C1 oil component, or that C2 and C3 are also degraded products of crude 

oil.  Independent controlled laboratory experiments on the degradation of crude 

oil also provided similar variation trends of oil component ratios with increasing 

C2/C1 and C3/C1 ratio during oil degradation (Zhou et al., 2012b), further 

supporting the use of C2/C1 and C3/C1 ratios as an index to trace weathered 
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degraded oil in marine environments.  

 

Figure 8. Relationships Between a254 And The Fluorescence Intensity Of  
Oil Components, C1, C2 And C3 And Between Spectral Slope (S) And Oil 
Component Ratio C2/C1, C3/C1and C2/C3 In The Water Column Of The 
Northern Gulf of Mexico During October 2010. 
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Data from the October 2010 cruise also showed a broad correlation 

between spectral slope values and oil component ratios such as C2/C1, C3/C1 

and C2/C3, in the water column of the Gulf of Mexico, although the correlations 

are somewhat scattered (Figure 8).  

Given that spectral slope values are inversely related with the aromaticity 

and average molecular weight of DOM (Helms et al., 2008; Twardowski et al., 

2004), these positive correlations between oil components and spectral slope 

values suggest C2 and C3 are less aromatic and have lower inferred molecular 

weight components compared with crude oil. Thus, the overall molecular weight 

of DOM in the water column is expected to decrease as oil is degraded and as 

C2/C1 and C3/C1 ratios increase (Figure 9). Similar correlation between C2/C3 

ratio and spectral slope (Figure 8) further suggest a decreasing trend of average 

molecular weight in oil components from C1 to C3 and then to C2. However, 

detailed analyses of hydrocarbon composition are needed to confirm this 

conclusion derived from spectral slope measurements. 

Interestingly, the C2/C1 ratios in surface water samples were, in general, 

slightly higher than those of deep water samples regardless of sampling time, 

suggesting that the C2 component is either less sensitive to photochemical 

degradation, or its production rate from degradation is slightly higher than its 

degradation. In contrast, surface water C3/C1 ratios were in general lower than 

deep water samples except for May 2010 samples collected during oil spill 

(Figure 9), suggesting that production of C3 in the surface waters could be lower 

than its degradation. We hypothesize that C2 is mostly derived from 
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photochemical degradation and C3 is a degradation product from both microbial 

and photochemical degradation, while both of them are also subject to 

degradation in the water column. 

 

Figure 9. Variations In The Oil Component Ratios, C2/C1 and C3/C1, With  
Time Based On Field Samples Collected During Four Cruises At Different Time 
In The Gulf of Mexico, Including Samples Taken In Mid-May 2010 [M10] And 
Late May – Early June 2010 [MJ10] During The Oil Spill, October 2010 [O10] 
Three Months After The Oil Spill, And October 2011 [O11] 15 Months After The 
Oil Spill Was Capped. Deep-Water Samples Are Denoted With Purple Squares, 
While Surface Water Samples With Green Pentacles. 
 
The inferred C2/C3 ratio was higher in surface water samples than in deep 

waters, and increased with time, further confirmed the degradation preference of 

C2 and C3. Thus, changes in oil component ratios in the water column could be 

quantitatively linked to the fate and degradation and transformation pathways of 

crude oil in the water column. 

Conclusions 

The Deepwater Horizon oil spill had a profound influence on the optical 

characteristics of DOM in the northern Gulf of Mexico. At the early stages of the 

oil spill during May-June 2010, more freshly released crude oil in the water 

column gave rise to elevated DOC concentration and optical reactivity, showing 
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two distinct types of DOM in the water column, with a strong influence of oil 

throughout the entire water column. During October 2010, three months after the 

oil spill was capped, DOM in the upper water column seemed to contain mostly 

natural organic matter. However, anomalous DOM with high optical yields still 

resided in deep waters, showing a persistent oil influence on optical properties. 

The strong presence and persistent influence of oil in the water column was also 

observed in deep waters surrounding the DWH Macondo well during October 

2011, even 15 months after the oil spill was capped. Four DOM fluorescence 

components have been identified using PARAFAC modeling on EEMs data of 

seawater samples from the Gulf of Mexico. Three of them are oil components 

and one is UV humic-like DOM. The fluorescence component ratios, such as 

C2/C1 and C3/C1, showed a consistent increase with time from 2010 to 2011 in 

the Gulf of Mexico, and could be quantitatively linked to the degradation status of 

oil in the water column and thus, be used as indices to effectively track the fate 

and transport of oil in marine environments. These results have important 

implications in oil spill research, environmental monitoring, and the development 

of in situ sensors. 
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CHAPTER VI 

CHEMICAL EVOLUTION OF MACONDO CRUDE OIL DURING LABORATORY 

DEGRADATION AS CHARACTERIZED BY FLUORESCENCE EEMS AND 

HYDROCARBON COMPOSITION*1 

Introduction 

During the Deepwater Horizon oil spill in the Gulf of Mexico between April 

20 and July 15, 2010, over 800 million liters of crude oil were released from the 

Macondo well to the water column, exerting great adverse effects on the marine 

life, human health, and natural resources in the northern Gulf of Mexico 

(Mascarelli, 2010; Schrope, 2011). Many weathering processes, including 

dissolution, dispersion, evaporation, and photochemical and biological 

degradation, would affect the distribution and transport of crude oil in the Gulf of 

Mexico. Studies related to the Deepwater Horizon oil spill have been focused 

mostly on the extent and transport of oil, methane, and dispersant in the water 

column (Diercks et al., 2010; Hazen et al., 2010; Joye et al., 2011; Kessler et al., 

2011; Kujawinski et al., 2011). Although oil in surface waters seemed to be 

weathered rapidly right after the oil spill, recent studies have shown the 

persistence of oil signatures in the deeper water column in the northern Gulf of 

Mexico, even 15 months after the oil spill (Ryerson et al., 2012; Zhou and Guo, 

2012). The fate, transport, and transformation of oil components and their 

                                                 

*
1
This chapter of the dissertation has been accepted for publication in the Journal of 

Marine Pollution Bulletin. 

Zhou, Z., Liu, Z. and Guo, L., 2012. Chemical evolution of Macondo crude oil during 

laboratory degradation as characterized by fluorescence EEMs and hydrocarbon 

composition. Marine Pollution Bulletin, (in press). 
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degradation pathways and mechanisms in the water column remain poorly 

understood.  The relative importance between photochemical and biological 

degradation, and the chemical evolution and molecular fractionation of Macondo 

crude oil during degradation are largely unknown.  Therefore, in addition to field 

studies, controlled laboratory experiments are critically needed to better 

understand the degradation pathways and mechanisms of crude oil in marine 

environments.  

Polycyclic aromatic hydrocarbons (PAHs), as well as some other aromatic 

constituents, are the components in crude oil responsible for its optical properties, 

especially its fluorescence characteristics (Barron et al., 2003; Booksh et al., 

1996; Patra and Mishra, 2002; Yamada et al., 2003). The existence of these 

compounds allows the use of optical properties to examine the composition and 

transformation of oil. Fluorescence EEM techniques coupled with PARAFAC 

modeling have been used in previous studies for characterizing, fingerprinting, 

and monitoring of oil in marine environments (Alostaz et al., 2008; Booksh et al., 

1996; Bugden et al., 2008; Ferreira et al., 2003; González et al., 2006; Kim et al., 

2010; Patra and Mishra, 2002; Santos-Echeandía et al., 2008; Vandermeulen et 

al., 1979; Von Der Dick and Kalkreuth, 1986; Wakeham, 1977). In addition, gas 

chromatography with flame ionization detection (GC-FID) and gas 

chromatography-mass spectrometry (GC-MS) techniques have also been used 

to examine the chemical composition of crude oil during degradation (Bence et 

al., 1996; Boehm et al., 1983; Christensen and Tomasi, 2007; Douglas et al., 

2002; Liu et al., 2012; Magi et al., 2002; Overton et al., 1981; Wakeham, 1996; 
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Wang et al., 2004; Yan et al., 2006). However, laboratory studies on oil 

degradation using both fluorescence EEMs and GC-MS techniques are still few 

(D’Auria et al., 2008; Ziolli and Jardim, 2003), especially for the degradation of 

Macondo crude oil from the Gulf of Mexico. The combination of fluorescence 

EEMs and GC-MS techniques should allow us to link fluorescence signatures 

and hydrocarbon composition to reveal the evolution of the oil’s composition and 

fingerprint during degradation. 

In this study, laboratory experiments were conducted to examine the 

chemical evolution, the degradation and transformation pathways and 

mechanisms of oil components during photochemical and biological degradation 

of the Macondo crude oil. Measurements included the bulk dissolved organic 

carbon (DOC) concentration, UV-vis absorbance, fluorescence EEMs, and 

hydrocarbon composition, including analysis of n-alkanes and PAHs using GC-

FID and GC-MS. The major objectives of this study were to (1) examine the 

chemical fractionation of oil components during their degradation in terms of their 

fluorescence characteristics and hydrocarbon composition, (2) establish a 

linkage between hydrocarbon composition and fluorescence signatures, and (3) 

develop potential indices based on fluorescence EEMs for tracking the fate and 

transport of oil in the water column in the northern Gulf of Mexico. 

Materials and Methods 

Degradation Experiments 

Macondo crude oil (MC252), acquired from BP, was dispensed into pre-

combusted amber glass bottles and acid-cleaned Teflon bottles containing 
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seawater or deionized water. All degradation experiments and amounts of oil and 

dispersant used are listed in Table 1. Seawater collected from the Gulf of Mexico 

was filtered through a 0.45 µm Nuclepore filter cartridge (Osmotics). Deionized 

water was used to represent freshwater for the comparison with seawater to 

examine the difference in oil degradation between freshwater and seawater.  

Additional experimental treatments occurred with and without the addition of 

dispersants to determine the effect of dispersants on the degradation of crude oil. 

Table 1 

Oil and Dispersant Concentrations in Degradation Experiments (DW=deionized 

water, SW=seawater) 

     

Sample ID 

 

Oil conc.  

(µl/l) 

Dispersant 

conc.  

(µl/l) 

Incubation 

medium 

Treatment 

 

DW-dark 20 0 Deionized water Dark 

DW-light 20 0 Deionized water Light 

SW-dark 20 0 Sea water Dark 

SW-light 20 0 Sea water Light 

SW-dispersant-

dark 10 10 Sea water Dark 

SW-dispersant-

light 10 10 Sea water Light 
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Teflon bottles (Thermo Scientific) were used for light treatments (photo-

degradation plus microbial degradation), while amber glass bottles wrapped with 

aluminum foil were used for dark control treatments (microbial degradation only).  

All the bottles were placed in an incubator filled with running water to maintain a 

consistent temperature. During the 105-d experimental period, the average 

temperature was 30 °C, and the average temperature in August was 35 °C 

(Table 2). The degradation incubator was placed outdoors to receive natural 

solar radiation. Two temperature/radiation data loggers were used to monitor the 

variability of both temperature and radiation during oil degradation. Average light 

intensity ranged from 59021 to 69179 lux from June to October. A maximum light 

intensity as high as ~330,667 lux was found in August 2011, and the daytime 

average was ~ 69,179 lux (Table 2). 

Immediately after oil was added and mixed, an initial water sample (t = 0 d) 

was collected from each treatment. After that, samples were taken at different 

frequencies and time intervals to track oil degradation at both short-term (15 d) 

and longer-term time scales (up to 150 d). Before each sampling, bottles were 

taken from the water bath incubator, shaken vigorously for 5 minutes and then 

allowed to calm for 5 minutes. Duplicate samples were collected for 

measurements of DOC, dissolved inorganic carbon (DIC), UV-vis absorbance, 

fluorescence EEM, and hydrocarbons (see below for detailed methods). 

Measurements of DOC and UV-vis Absorption 

Concentrations of DOC and DIC of the time-series samples were 

measured with a Shimadzu TOC-V total organic carbon analyzer using a high 
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temperature combustion method (Guo et al., 1995). For DOC measurements, 

samples were acidified with concentrated HCl to pH < 2 before analysis. 

Table 2 

Light Intensity and Temperature during Oil Degradation Experiments 

     

Month 

 

Light intensity 

daytime mean 

(lux) 

Light intensity 

daytime max 

(lux) 

Temp. 

daytime mean  

(°C) 

Temp. 

nighttime 

mean  

(°C) 

June 62,882 264,534 33.5 28.8 

July 59,021 264,534 33.0 29.2 

Aug. 69,179 330,667 34.6 29.9 

Sep. 59,418 297,601 31.4 26.9 

Oct. 62,398 231,467 28.5 23.2 

Nov. 32,747 159,823 24.0 21.1 

Three to five replicate measurements, each using 150 µL sample, were made 

with a preset coefficient of variance <2%. Calibration curves were generated 

before sample analysis. Concentrations of nanopure water, working standards 

and certified DOC standards (from Dr. Hansell’s Lab at the University of Miami) 

were measured every eight samples to check the performance of the instrument 

and ensure data quality.  The concentration of DIC was calculated from the 

difference between total dissolved carbon (TDC) and DOC concentrations, DIC = 
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TDC-DOC (Guo and Macdonald, 2006) .   

The UV-vis absorption spectra of samples were measured using an 

Agilent 8453 UV-visible spectrophotometer and a 1-cm path-length quartz 

cuvette over 200-1100 nm with 1 nm increments. The water blank was 

subtracted, and the refractive index effect was corrected by subtracting the 

average absorbance between 650 and 800 nm (Stedmon and Bro, 2008). Values 

of specific UV absorbance (SUVA254) were calculated by dividing UV absorbance 

at 254 nm (m-1) by the DOC concentration (mg-C/L). Non-linear spectral slopes 

between 290-400 nm and 350-550 nm were calculated. 

Measurements of Fluorescence EEMs 

A Shimadzu RF-5301PC spectrofluorometer was used to measure 

fluorescence signatures of water samples in a 1 cm path-length quartz cuvette 

(Zhou and Guo, 2012). Ninety-one separate fluorescence emission spectra were 

scanned from 240 to 680 nm with 1 nm intervals under excitation wavelengths 

from 220 to 400 nm with a 2 nm step and concatenated to generate an 

excitation-emission matrix that provides DOM component information for the 

water sample quantitatively and qualitatively (Coble, 1996; Green and Blough, 

1994). PARAFAC modeling was used to investigate the spatial and temporal 

changes in DOM fluorescence components (Stedmon and Bro, 2008). 

A water blank was scanned daily and its signatures were subtracted from 

each sample’s EEM. The emission correction spectrum was generated using 

Rhodamin B and barium sulfate with the correction package from Shimadzu and 

multiplied by the EEM spectra (Stedmon et al., 2003). Quinine sulfate standards 
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were also scanned daily for concentration calibration and for checking the 

instrument performance. All fluorescence intensities were converted to ppb-QSE 

units. Data in the two triangular areas corresponding to the Rayleigh and Raman 

scattering peaks were eliminated in the PARAFAC analysis to acquire better 

mathematical results (Andersen and Bro, 2003; Christensen et al., 2005). 

PARAFAC Modeling 

PARAFAC modeling was applied to fluorescence EEM data from all 

samples except those with the addition of dispersants, using MATLAB 

(MathWorks R2010b) and DOMFluor Toolbox (Stedmon and Bro, 2008). Sample 

matrices were calibrated and corrected before running the PARAFAC analysis. 

No outlier samples were found after a non-negativity outlier test. Thus, no sample 

was removed as an outlier before split-half analysis and model validation 

(Harshman and Lundy, 1984; Stedmon and Bro, 2008). The fluorescence 

intensities of each component extracted from the PARAFAC model were directly 

related to the component’s concentration in the water samples. 

Measurements of n-alkanes and PAHs 

For hydrocarbon analysis, we mainly focused on n-alkanes and PAHs, two 

major components in oil. While n-alkanes represent a group of labile compounds, 

PAHs are directly related to the fluorescence of oil samples.  Hydrocarbons in 

each sample were serially extracted two times with 20 mL of dichloromethane 

(DCM) using a separatory funnel. The extracts were combined and passed 

through 5 g of sodium sulfate, then washed with another 20 mL of DCM through 

the sodium sulfate column. About 1 mL of the final extract was obtained by 
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concentrating the extracts with a Rotovap and solvent-exchanged with hexane. 

An aliquot of the concentrated extract (1 mL) was transferred into silica gel 

chromatographic columns for sample cleanup and fractionation (Wang et al., 

2004). Three grams of activated silica gel topped with 3-5 g of anhydrous 

granular sodium sulfate (about 1 cm) filled the column. Before transferring the 

concentrated extracts, 20 mL of hexane was used to condition the column. Just 

prior to exposure of the sodium sulfate layer to air, the concentrated extracts 

were transferred into the column. Twelve mL of hexane and 15 ml of 1:1 (v/v) 

benzene/hexane solutions were used to elute the saturated hydrocarbons and 

aromatic hydrocarbons, respectively. The hexane fraction of each sample was 

used for total GC-detectable saturated n-alkanes analysis, while the 

benzene/hexane fraction was for analysis of PAHs. Extracts for each fraction 

were concentrated by a Rotovap to a final volume of 200 µL for GC-FID and GC-

MS analyses. 

The distribution of n-alkanes (n-C8 through n-C40, pristane, and phytane) 

was measured with a Shimadzu GC-FID 2014 gas chromatography with flame 

ionization detection, equipped with a JW scientific DB5 column (30 m x 0.25mm, 

0.25m film thickness). The injection volume was 1 µL with a split ratio of 20. The 

temperature of the column was ramped from 40C to 280C at a rate of 8C min-1, 

and held at 280C for 40 min. Calibration of the concentration was performed 

with an internal standard of hexadecane-d34 and external standards of n-alkanes, 

pristane and phytane. Analyses of PAHs were performed with a Shimadzu GC-

MS QP2010 plus gas chromatography-mass spectrometry, equipped with a 
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Restek DB-5 column (20 m x 0.18mm, 0.18m film thickness). The GC-MS 

analysis was performed in a selective ion mode with a split ratio of 20. The other 

instrumental parameters were the same as described above. 

The relative response factors (RRF) for each compound were calculated 

relative to the internal standards. Deuterated hexadecane-d34 and 

benzo(e)pyrene-d12 were used for quantitation. An instrument blank and standard 

solutions which included authentic n-alkanes with pristane and phytane, or 

authentic target PAHs, were analyzed before each sample batch to monitor 

accuracy and precision. The recoveries of hexadecane-d34 and benzo(e)pyrene-

d12 were 77.1±11.0% and 93.2 ±12.1%, respectively. 

Results and Discussion 

Variations in Organic Carbon Concentrations 

Extensive oil degradation was observed under light conditions in both 

freshwater- and seawater-based treatments. Values of UV absorption coefficient 

at 254 nm (a254) showed an initial abrupt increase at the beginning of the 

degradation (~ 3 d) followed by a steady decrease towards the end of the 

experiment (Figure 1A), indicating considerable oil degradation. The steady drop 

of SUVA254 under light conditions further confirmed the photo-degradation of 

aromatic components of the crude oil (Figure 1B). However, the concentration of 

DOC in the light bottles increased during oil degradation, especially during the 

first 20 days, and remained at a steady concentration or slightly increased 

afterwards (Figure 1C). We speculated that there was a competition between 

production of water-soluble components and degradation of optically active oil 
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components, and that aromatic and hydrophobic components, such as 

naphthalene and phenanthrene, were preferentially degraded during 

photodegradation of crude oil. This will result in a reduction in the optically active 

DOM components, but an increase in less optically active DOM components, 

such as carboxyl groups, which can be generated during oil degradation (Watson 

et al., 2002), and which would cause the increase in DOC concentration. 

Therefore, during oil degradation, the hydrophobic DOM components, and thus 

the a254 and SUVA values decreased while the hydrophilic DOM components, 

and thus the bulk DOC concentration increased (Figure 1A, B, C).   

 

Figure 1. Variations In Absorption Coefficient Value At 254 nm (a254, m-1), 
Specific UV Absorbance At 254 nm (SUVA254, m2/g-C), And  
Dissolved Organic Carbon (DOC) And Dissolved Inorganic  
Carbon (DIC) Concentrations (mg-C/l) During Oil Degradation. 
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Overall, the dissolution and degradation of crude oil would result in an 

increased concentration of DOM, as reflected by the increased value in bulk 

DOC. Among all the hydrocarbons, the more aromatic and optically active 

components are readily photo-degraded, likely causing the quick drop in 

absorbance and SUVA values after their initial rise. Concentrations of DIC under 

light conditions also increased during initial degradation, reflecting the 

transformation of DOC to DIC. In contrast, although the initial concentration in the 

dispersant-added treatment was as high as 40 ppm, the DIC concentration 

remained at the same level (Figure 1D). The spectral slopes slightly increased in 

treatments with seawater under both light and dark conditions, suggesting 

preferential decomposition of aromatic DOM in seawater. 

Variations in Fluorescence Characteristics during Oil Degradation 

Figures 2 and 3 show the fluorescence EEMs of oil samples in the dark and 

light treatments, respectively, at the initial (left panels) and degraded (right 

panels) states. Initially, oil in all treatments without dispersant showed the same 

fluorescence EEMs, with the most prominent peak at Ex/Em 226/240 nm 

followed by a second peak at Ex/Em 262/315 nm. As shown in Figure 2, 

degradation under dark conditions gradually lowered the fluorescence intensities 

at both the 226/240 nm and 262/315 nm peaks, and at the same time gave rise 

to a third peak at Ex/Em 244/366 nm. On the other hand, degradation under light 

conditions greatly changed the EEM spectra of oil, resulting in a red shift in 

fluorescence signatures (Figure 3). Clearly, the fluorescence characteristics of 
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DOM could be significantly altered during oil degradation regardless of dark or 

light treatments, reflecting the active transformation of oil components. 

 

Figure 2. Fluorescence EEM Plots Of Samples Incubated In Dark Bottles In Their 
Initial (Left Panels) And Degraded (Right Panels) States, Including Oil Dispensed 
In Milli-Q Water Without Dispersant (Upper Panels), Oil Dispensed in Sea Water 
Without Dispersant (Middle Panels), And Oil Dispensed In Sea Water With 
Dispersant (Lower Panels). 
 

The addition of dispersants seemed to enhance fluorescence intensities 

over a wide range of emission wavelengths between 400-500 nm upon excitation 

wavelengths from 230 to 280 nm. Similar results were also found by Bugden et al. 

(2008). Degradation of oil in the presence of dispersants seemed to produce 

similar degradation products as oil without dispersant under dark and light 

conditions. 
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Figure 3. Fluorescence EEM Plots Of Samples Incubated In Light Bottles In Their 
Initial (Left Panels) And Degraded (Right Panels) States, Including Oil Dispensed 
In Milli-Q Water Without Dispersant (Upper Panels), Oil Dispensed in Sea Water 
Without Dispersant (Middle Panels), And Oil Dispensed In Sea Water With 
Dispersant (Lower Panels). 
 

Four fluorescent DOM components could be identified from PARAFAC 

modeling using fluorescence EEM data of all the 59 samples from different 

treatments under light and dark conditions over 150 d (Figure 4). The most 

dominant oil component, C1, had its maximum fluorescence intensity at Ex/Em 

226/328 nm; the second one, C2, showed a peak at Ex/Em 262/315 nm; while 

the third component, C3, had its characteristic fluorescence signature at Ex/Em 

244/366 nm. The first three components were identified as oil-related 

components (Figure 4; Table 3). The fourth component, C4, having a wide 
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emission peak over 400-540 nm under excitation of 260 nm, had its maximum 

fluorescence intensity at Ex/Em 262/507nm, showing UV humic-like DOM 

characteristics (Figure 4; Table 3). 

Table 3 

Fluorescent Dissolved Organic Matter (DOM) Components Derived from 

PARAFAC Modeling 

    

Component 

 

Excitation wavelength 

(nm) 

Emission 

wavelength (nm) 

Description 

 

C1 226 328 Oil-related 

C2 262 315 Oil-related 

C3 244 366 Oil-related 

C4 262 507 Natural DOM 

The oil component ratio of C3/C1 under light conditions showed an even 

more abrupt increase in the beginning of degradation within ~20 d and then 

steadily decreased (Figure 5B). The relationship between C3 and C1 in light 

bottles also showed an excess of C3 (Figure 5D). The oil component ratio of 

C2/C1 under light conditions increased rapidly with time during the first ~30 d, 

followed by a gradual decrease after ~75 d (Figure 5A). Additionally, the 

relationship between C2 and C1 showed an excess of C2 compared with C1 

during degradation (Figure 5C). These results suggest a preferential degradation 

of C1 during the early stage of degradation, resulting in the accumulation of C2.  
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On the other hand, the steadily low C2/C1 ratio (Figure 5A) and the linear 

relationship between C1 and C2 under dark conditions suggested similar 

degradation pathways for C2 and C1 in dark treatments (Figure 5C). 

 

Figure 4. Characteristics Of Four Major DOM Components Derived From 
PARAFAC Analysis Based On Fluorescence EEMs Of Oil Degradation Samples. 
 

More interestingly, component C3 seemed to decrease with increased C1 

when the C1 value was higher than 200 ppb-QSE in dark treatments, suggesting 

a conversion of organic matter between C1 and C3 under dark conditions.  We 

hypothesized that C3 had part of its origin from C1 through biodegradation. 

Under light conditions, the decreasing C3/C1 ratios after initial rapid degradation 

indicated a preferential degradation of C1 and a relatively slower degradation 

rate of C3 during later stages of degradation (Figure 5B). 
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Figure 5. Variations in The Oil Component Ratios C2/C1 (A) and C3/C1 (B) With 
Time In Light And Dark Conditions And Relationships Between Fluorescent 
Components C2 And C1 (C), As Well As C3 And C1 (D) During Oil Degradation. 
 
Variations in Hydrocarbon Composition during Degradation 

After the first 24 h, n-alkanes in the dark bottle were found to be largely 

depleted in the low molecular weight fractions (C9 - C13) (Figure 6, upper panel), 

suggesting the preferential degradation of low molecular weight (LMW) fractions. 

Samples in the light bottle not only showed a large decrease of LMW n-alkanes 

after the onset of degradation, but also exhibited a consistent right shift of the 

percentage profile (Figure 6, middle panel), with similar preferential loss of LMW 

n-alkanes under light conditions as observed in other studies (Bence et al., 1996; 

Christensen and Tomasi, 2007; Douglas et al., 2002; Wade et al., 2011). Since 
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n-alkanes may be less subject to photochemical reactions, it is likely that 

biodegradation of oil could be enhanced by photochemical processes (Delille et 

al., 1998).

 

Figure 6. The Variation Of n-alkanes Compositions In Dark Conditions  
(Upper Panel), Light Conditions (Middle Panel), And With  
Dispersant Added In Light Conditions (Lower Panel) During Oil Degradation. 
 



185 
 

 

In the presence of dispersants, the percentage of LMW hydrocarbons 

dropped quickly in the beginning of degradation, and remained steady after about 

~23 d (Figure 6, bottom panel), suggesting that dispersants enhanced the 

weathering of oil during the early degradation stage. Compared to the 

isoprenoids pristane and phytane, the normal alkanes are more readily degraded, 

resulting in a decrease in the n-C17/pristane and n-C18/phytane ratios, which 

could be used as an index for the extent of crude oil degradation (Bence et al., 

1996; Hostettler and Kvenvolden, 1994; Kaplan et al., 1996).  Indeed, a general 

decreasing trend of the n-C17/pristane ratio was observed in our time series 

samples (Figure 7). 

 

Figure 7. The Variation Of The nC17/Pristane Ratio In Dark Conditions  
(Upper Panel), Light Conditions (Middle Panel), And With  
Dispersant Added In Light Conditions (Lower Panel) During Oil Degradation. 
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Kaplan et al. (1996) also showed a decrease of the n-C17/pristane ratio in 

degraded diesel fuel, bunker C fuel, and others.  

The PAHs in oil are mostly the C1 to C4 alkylated homologues of their 

parent PAH components, among which naphthalene, phenanthrene, 

dibenzothiophene, fluorene and chrysene are the most dominant (Christensen et 

al., 2005; Wang and Fingas, 2003). This characteristic is also found in the 

Macondo crude oil (Liu et al., 2012). The degradation rates of different PAHs are 

linked to their number of rings and degree of alkylation (Bence et al., 1996; Page 

et al., 1999). As shown in Figure 8, naphthalene, phenanthene, fluoranthene, and 

chrysene were the most dominant PAHs in the MC252 crude oil. The depletion of 

naphthalene and phenanthrene is consistent with the change of PAH 

components during their degradation (Figure 8, middle and bottom panels), 

suggesting their preferential loss. The addition of dispersants seemed to 

enhance the degradation of naphthalene and phenanthrene and raised the 

percentage of fluoranthene and pyrene (Figure 8, bottom panel). Biodegradation 

also played a role in the weathering of oil, based on the variation of PAH 

percentages under dark conditions (Figure 8, upper panel). 

Linkage between Hydrocarbon Composition and Fluorescence Signatures 

The total concentration of PAHs was significantly correlated with the sum 

of the intensities of fluorescent components (p < 0.15) in both dark and light 

bottles, suggesting that fluorescence intensity could be an alternative for 

determining the PAH components in a well-defined system. Both the abundance 

of LMW oil constituents and fluorescence intensities of DOM components 
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decreased monotonically during the entire degradation process, especially under 

light conditions (Figures 6, 7, 9).  

 

Figure 8. The Variation of PAH Compositions In Dark Conditions (Upper  
Panel), Light Conditions (Middle Panel), And With Dispersant  
Added In Light Conditions (Lower Panel) During Oil Degradation. 
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Thus, both hydrocarbon composition and fluorescence EEM signatures 

probably reflected the same evolution trend of oil degradation. 

Phenanthrene is characterized with a maximum fluorescence intensity at 

Ex/Em 250/370 nm (Alostaz et al., 2008; Christensen et al., 2005). Component 

C3 derived from PARAFAC analysis in this study had a peak at Ex/Em 244/366 

nm. The correlation between C3 and phenanthrene showed values of r2 = 0.95 

and p-value < 0.02 under light conditions, and r2 =0.73 and p-value <0.14 under 

dark conditions. It is likely that variations in C3 might be quantitatively linked to 

the PAH component phenanthrene. More data are needed to establish a more 

quantitative relationship between fluorescence signatures and hydrocarbon 

composition. 

Degradation Kinetics 

Fluorescence intensities of DOM components all decreased with time 

under light conditions, indicating the loss of fluorescent DOM during oil 

degradation (Figure 9). To a first approximation, the degradation kinetics of each 

oil component could be evaluated by fitting their fluorescence intensity (on a 

logarithmic scale) against time assuming a first-order degradation process. 

Based on the fitting equations and the slope values from the degradation data of 

the first 30 d (Table 4), the degradation half-life (t1/2) of each fluorescent oil 

component was estimated to be 2.2, 13.9 and 8.2 d for component C1, C2 and 

C3, respectively. Interestingly, among the three fluorescent oil components, C1 

had the shortest degradation half-life or the fastest degradation rate, followed by 

component C3, while component C2 had the lowest degradation rate. Thus, 
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under laboratory degradation conditions, the mean life of these fluorescent oil 

components was in the order of ~4 - 20 d.  

 

Figure 9. Variations In The Fluorescent DOM Components C1 (A), C2 (B), C3 (C), 
And C4 (D) During The Degradation Of Macondo Crude Oil. 
 

Our oil degradation time-series sampling was extended to a period of more 

than five half-lives, allowing the evaluation of the entire degradation process not 

only for the initial oil components, but also for the degradation derived and 

transferred components. The distinct degradation rates between different oil 

components should change the relative importance of fluorescent DOM 

components during oil degradation and thus their component ratio. For 

hydrocarbons, the degradation half-lives of total alkanes and total PAHs were 
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estimated to be 22 and 25 d, respectively, again assuming first-order reactions 

(Table 5).  

Table 4 

Intensities of Fluorescent Dissolved Organic Matter (DOM) Components 

from PARAFAC Modeling 

  

 Concentration of fluorescent DOM components (ppb-QSE) 

Time (day) 

Component C1 Component C2 Component C3 

0.0 325.0 116.3 52.8 

1.0 277.5 108.4 94.0 

2.1 185.4 103.2 90.3 

3.2 107.6 86.2 75.0 

6.1 33.4 66.8 45.8 

10.1 14.2 50.4 24.4 

15.2 9.7 50.0 18.8 

22.2 7.2 44.3 13.6 

31.2 4.8 37.2 8.5 

These hydrocarbon degradation half-lives corresponded to a mean life of 

~34 d, which is slightly longer than that of fluorescent components, likely 
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resulting from their difference in the sensitivity to photochemical processes 

between fluorescent organic components and hydrocarbons as a whole. In 

general, total alkanes and PAHs seemed to have slower degradation kinetics 

compared to the fluorescent oil components (Table 5). 

Table 5 

Degradation Half-lives of Hydrocarbon and Fluorescent DOM Components 

Based on Data from the First 30 Days of Degradation Experiments 

      

Kinetic 

Parameter 

Total 

Alkanes 

Total  

PAHs 

Component 

C1 

Component 

C2 

Component 

C3 

Half–life (d) 22 25 2.2 13.9 8.2 

Degradation 

constant (k, d-1) .031 .028 .32 .05 .08 

 

Effect of Dispersants on Oil Degradation 

The addition of dispersants resulted in changes in the fluorescence 

characteristics of oil in seawater during degradation, with a shift of fluorescence 

EEM spectra to emission between 400-500 nm when excited from 230-280 nm 

(Figure 2, bottom left panel). The results of PARAFAC analysis based on all 

samples, including those with the addition of dispersants, showed an extra 

fluorescence component with its Ex/Em maximum at 240/446 nm (Figure 10). 

The fifth fluorescence component, C5, with fluorescence characteristics similar to 
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those of a natural DOM component found in coastal waters, had a rapid 

decrease in light bottles, but a gradual decrease in dark bottles (Figure 10). The 

addition of dispersants seemed to have enhanced the preferential loss of the 

LMW fraction of oil components, including n-alkanes with the number of carbons 

lower than 17 as well as naphthalene and phenanthrene at their early stage of 

degradation (Figures 6 and 8). 

 

Figure 10. Fluorescent Characteristics Of A DOM Component Extracted From 
PARAFAC Analysis Applied To Samples Including Dispersant-Treated 
Experiments (Left Panel) And Its Variation During Oil Degradation (Right Panel). 
 
Applications of Fluorescence Component Ratios to Tracking Oil Degradation  

Results from our oil degradation experiments clearly show an increase in 

the fluorescent oil component ratios C2/C1 and C3/C1 during oil degradation 

(Figure 5). Based on fluorescence EEM data and PARAFAC modeling of field 

seawater samples from the Gulf of Mexico, the C2/C1 and C3/C1 ratios also 

increased consistently in time series field samples taken during and after the 

Deepwater Horizon oil spill (Zhou and Guo, 2012), which resembled the trends 

observed in the laboratory degradation experiments (Figure 5). The coincidence 

between data from our laboratory experiments and results of time series field 

samples from the Gulf of Mexico indicates that our laboratory experiments using 
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Macondo oil broadly mimicked oil degradation in the field and supports the use of 

the oil component ratios as an index for tracking oil degradation and chemical 

evolution of oil during its degradation in the water column of the Gulf of Mexico. 

The increase in both the component ratios, C2/C1 and C3/C1, suggests 

that components C2 and C3 have lower degradation rates compared with C1, 

and/or that C2 and C3 are also degradation products of crude oil, consistent with 

the kinetic results from oil degradation (see previous section). The C2/C1 ratio 

showed lower values in the deep-water samples and higher values in the surface 

samples corresponding with a lower and less variable C2/C1 ratio in the dark 

bottles and higher and an increased C2/C1 ratio in light bottles, suggesting that 

C2 is less sensitive to photo degradation. In contrast, the C3/C1 ratios had higher 

values in the deep-water samples compared with surface water samples after the 

oil spill stopped, suggesting a lower C3 production rate in surface waters 

compared to its degradation rate. 

Values of both component ratios C2/C1 and C3/C1 were smaller in the 

field samples compared with those found in samples from the laboratory 

experiments, likely resulting from the efficient degradation of C1 and the nature 

of the closed system bottle degradation experiments compared to the open 

environment in the Gulf of Mexico.  Overall, the similar trends in fluorescence oil 

component ratios between laboratory studies and field data support the use of 

fluorescence signatures to track the fate, transport, and transformation of oil in 

marine environments. 
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Conclusions 

Water-soluble DOM abundance increased steadily during the oil 

degradation experiments, while optical activity showed a decreasing trend after a 

rapid initial increase. Competition between production of water-soluble DOM 

fractions and photochemical degradation of optically active oil components are 

likely the cause of this evolving trend. A fraction of DOC was readily transformed 

into DIC during the degradation process. Photochemical degradation caused a 

large decline in the aromatic fraction of oil, a preferential loss of low molecular 

weight alkanes and PAHs, and decreased degradation indexes such as the n-

C17/pristane ratio. 

Three fluorescence oil components, C1, C2, and C3, were identified from 

samples of the degradation experiments, with their fluorescence intensity 

maxima at Ex/Em 226/328, 262/315, and 244/366 nm, respectively. The 

components C2 and C3 had lower degradation rates than C1. Under dark 

conditions, C2 showed similar degradation rates as C1, while C3 seemed to be 

produced by oil degradation and was likely derived from C1. We speculated that 

component C2 mainly was degraded through photodegradation, while C3 was 

degraded by both microbial and photochemical degradation. The differences in 

fluorescence component ratios could be used as a proxy for the degradation 

state of oil in marine environments. The variations in oil components and their 

ratios resembled those observed in field samples from the Gulf of Mexico, 

showing a considerable evolution in chemical composition and fluorescence 

signatures during oil degradation. 
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Hydrocarbon composition and fluorescence signatures were linked with 

each other during oil degradation. Similar degradation half-lives were observed 

for both fluorescence oil components and total alkanes and PAHs, although 

generally the latter components seemed to have a relatively slower degradation 

kinetics due to the difference of their sensitivity to photodegradation. 

Fluorescence oil component C3 was linked to phenanthrene through its chemical 

characteristics. 

The addition of dispersants resulted in a significant change in fluorescence 

EEM spectra, and enhanced the decomposition of LMW alkanes and PAHs in the 

early stages of degradation. Photochemical degradation is an effective 

degradation pathway of oil, resulting in an overall LMW DOM with higher spectral 

slope values and red-shifted fluorescence maxima. Results from laboratory 

degradation experiments should facilitate the interpretation of field data and 

provide new insights on the degradation pathways and mechanisms, and thus 

the fate and transport of oil components in the Gulf of Mexico. 
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