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rakenteissa.

Tämän väitöskirjan tulokset tuovat lisää ymmärrystä keinotekoisten impedanssipintojen ominaisuuksista. Nämä
tulokset ovat tärkeitä suunniteltaessa uusia impedanssipintoja ja kyseisiin pintoihin perustuvia sovelluksia.
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1 Introduction

The electromagnetic properties of homogeneous materials arise from the microstructure
and chemical composition of the material. These properties, generally measured by per-
mittivity and permeability, dictate the response of the material to external electric and
magnetic fields, respectively. In artificial electromagnetic materials the microstructure of
the material is man-made and, in general, designed for a particular function or application.
In artificial microstructures, the electromagnetic properties that these materials posses are
often not readily found in nature. Also, the dimensions of the building blocks or particles
are electrically small, that is, the overall size of the building block is much smaller than
the wavelength of the electromagnetic wave. Therefore it is convenient to refer to these
materials also as metamaterials, which is a common name for this type of materials in the
literature. Compared to the artificial electromagnetic materials, in artificial impedance
surfaces the structure is bound into two dimensions. This doctoral thesis concentrates on
such artificial impedance surfaces.

In electromagnetic theory it is convenient to model surfaces with boundary conditions
where the surface impedance of a structure denotes the ratio of the tangential electric
and magnetic field components on that surface. This type of closed-form expressions for
the electromagnetic properties or analytical models of the artificial impedance surfaces is
extremely useful when studying the properties of various types of surfaces and especially
when designing applications where the artificial impedance surface is just one of the
building blocks of a larger system. Further, these analytical models bring physical insight
and provide information about the artificial impedance surface that can lead to innovations
and new applications. For the artificial impedance surfaces studied in this doctoral thesis
there have been no accurate and physically sound models available in the literature.

In this doctoral thesis the properties of different types of artificial impedance surfaces
are studied. The main emphasis of the work is on the analytical modeling of artificial
impedance surfaces. In addition, the properties of the studied surfaces are applied to elec-
tromagnetic absorbers, impedance waveguides, and electromagnetic band gap structures
for antenna applications. The objectives of this work are to find accurate closed-form ex-
pressions for the electromagnetic fields on the surface of the studied artificial impedance
structure that would model the properties of the surface in a physically correct manner.
Further, to use the insight given by these analytical models to design applications based
on the exotic properties of these surfaces.

The research methods used in this doctoral thesis include derivation of analytical expres-
sions for the properties of the artificial impedance surfaces and their applications as well
as numerical verification of the predicted results. In addition, the results in some cases
have been verified experimentally and compared to other results available in the literature.

The rest of the thesis is organized in the following manner:

Chapter 2 discusses very generally the use of impedance boundary conditions in electro-
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magnetics with a view to familiarize the reader with this subject, which is closely related
to the topic of this thesis.

In Chapter 3 and paper [I] the properties of capacitive screens are studied. The properties
of these screens are essential for the operation of the artificial impedance surfaces and
therefore their correct and accurate analytical modeling is crucial for the future work of
modeling of artificial impedance surfaces. Example results are shown and comparison
with other results available in the literature is done.

In Chapter 4 and papers [I-V] the properties of different types of artificial surfaces are
studied. The studied artificial impedance surfaces are composed of a capacitive grid over
a grounded dielectric slab. The grounded dielectric slab can be perforated with vertical
metallic vias connecting the grid or mesh on the substrate to the ground plane or there
can be no vias; both cases are considered. The differences of these two types of surfaces
for surfaces waves are also studied. Furthermore, a plasmonic resonance found in the
artificial impedance surfaces structures and its connection to novel boundary conditions
is discussed. The scientific contributions of this chapter include accurate analytical mod-
els for different artificial impedance surfaces and study of the propagation properties of
surface waves on some of the studied surfaces.

In Chapter 5 and papers [II,VI,VII] some applications based on the artificial impedance
surfaces discussed in the previous chapter are studied. The considered applications are
electromagnetic absorbers [VI], tunable impedance waveguides [II], and electromagnetic
band gap structures [VII]. The design of the electromagnetic absorbers is based on the
artificial impedance surfaces studied in the previous chapter. In this chapter the possi-
bility to use the plasmonic resonance for enlarging the absorption band of the absorber
is studied. In the case of tunable impedance waveguides, the propagation properties of
parallel-plate waveguides are studied when the sidewalls of the waveguides have been re-
placed with one or two tunable artificial impedance surfaces. The scientific contributions
of this chapter include novel methods to improve the performance of these devices as well
as accurate analytical models for these applications.

Contributions of the original publications are provided at the end of the corresponding
chapters and the conclusions of the thesis as well as the summary of the contributions are
given in Chapter 6.
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2 Averaged boundary conditions in general

The possibility to simplify solutions of electromagnetic problems is one of the main mo-
tivations of this thesis. Especially, in the case of complicated artificial impedance sur-
faces that are parts of a bigger system, an accurate approximative boundary condition
eases the analysis of the system considerably. While imposing a boundary condition, the
fields behind the boundary have been calculated and their response at the boundary is
known. The purpose is not to find an exact field distribution at the boundary but rather
a smoothly varying averaged distribution that would create the same fields as the exact
distribution at some distance away from the boundary. It is then possible to replace the
complicated structure with a boundary condition that connects the tangential electric and
magnetic fields. Therefore these boundary condition are referred as impedance or transi-
tion conditions. After imposing the boundary condition, the fields behind the boundary
have no physical meaning. In the following a boundary condition for an interface with an
isotropic material is derived and the different orders of approximations for this condition
are explained more thoroughly. Finally, the principles of the derivation of the boundary
condition for the inductive grids considered in the forthcoming parts of this thesis are ex-
plained in general. Many books have been written on this topic and an interested reader
is directed to [12–14]. The following discussion will generally follow the treatment of
impedance boundary conditions as done by Tretyakov [14].

Let us consider a semi-infinite isotropic material with permittivity ε and permeability
μ having an interface at z = 0. It is possible to find an exact boundary condition for
the tangential fields at this interface in the Fourier domain (for plane waves) and in the
physical domain. However, in the physical domain the operational boundary conditions
require always certain degree of approximations, as shall be seen later. In the following
the exact boundary condition for the case of semi-infinite material sample is written in
the Fourier domain. The boundary condition for the physical domain can then be easily
derived from here.

From Maxwell’s equations we find that the tangential fields with respect to the material
interface in the isotropic material can be written as

∂

∂z
n× Et = −jωμHt − 1

jωε
∇t × (∇t ×Ht) , (2.1)

where

Et · n = 0, Ht · n = 0, ∇t =
∂

∂x
x0 +

∂

∂y
y0 (2.2)

and n = z0 is the normal of the surface. For simplicity, let us consider only the case
for the TM-polarized fields. In this case the magnetic field has only a component along
the x-axis (Hx) and the electric fields has components along both y- and z-axes (Ey and
Ez, respectively). For this polarization only the magnetic field component Hx and the
electric field component Ey enter equation (2.1). In this case (2.1) simplifies to (omitting
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the e−jkyyejβz dependency of the fields):

∂

∂z
Ey =

(
jωμ+

k2
y

jωε

)
Hx. (2.3)

We can integrate (2.3) over the material volume from the minus infinity to zero and get
rid of the derivative on the left side. This would correspond to averaging of the fields over
the whole material thickness. Assuming that the material has some losses, the fields very
far away from the interface disappear, and (2.1) can be written as

Ey+ =

(
jωμ+

k2
y

jωε

)
·
∫ 0

−∞
Hxdz, (2.4)

where + refers to the surface of the interface. In the material (z < 0), the general solution
for the tangential magnetic fields read

Hx = Hx+e
jβz, (2.5)

where β =
√
k2 − k2

y (Im (β) < 0) is the wave number in the normal direction in the
material, k = ω

√
εμ is the wave number in the material, and ky is the wave number in the

y-direction (in this case also the transverse wave number). The integral of the tangential
magnetic fields in (2.4) gives ∫ 0

−∞
Hxdz =

1

jβ
Hx+. (2.6)

We can now rewrite (2.4) as

Ex+ = η

√
1− k2

y

k2
Hx+, (2.7)

where η =
√

μ
ε

is the wave impedance. This is the exact boundary condition for a semi-
infinite isotropic material in the Fourier domain. We can transfer this to the physical
domain by replacing the tangential wave numbers with differential tangential operators
(ky → j ∂

∂y
)

Ey+ = η

√
1 +

1

k2

∂2

∂y2
Hx+. (2.8)

This, however, is not practically useful boundary condition because of the pseudodiffer-
ential operator

√
1 + 1

k2
∂2

∂y2
. In practice certain approximations are needed for the pseu-

dodifferential operator in order to get a functional boundary condition. For instance, one
can expand the operator into the Taylor series and choose an appropriate approximation.
This brings us to the discussion on the accuracy and the order of the boundary conditions.

Let us first define the order of the boundary conditions considered in this thesis to be that
of the highest order of the tangential derivatives included in the boundary condition. We
can expand the pseudodifferential operator into the Taylor series as√

1 +
1

k2

∂2

∂y2
=

(
1 +

1

2k2

∂2

∂y2
− 1

8k4

∂4

∂y4
+

1

16k6

∂6

∂y6
+ . . .

)
(2.9)
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where the first four terms of the approximation are written. By including the first two,
three, or four terms into the approximation we respectively get the second-, fourth-, and
sixth-order boundary conditions. For an exact boundary conditions in the physical domain
all the spatial derivatives would be needed. Naturally, also other approximations for the
pseudodifferential operator can be used. The choice of the approximation (and its order)
depends largely on the application and the required accuracy.

So far we have derived a boundary condition for a simple example. In principle, many
boundary conditions can be derived in a similar manner; first we need to find averaged
tangential fields on the surface and then connect them to one another. Let us consider an
inductive grid comprising thin electrically conductive wires along the x-axis, for instance.
In order to derive a boundary condition for this structure we first need to calculate the
fields at a certain wire of the grid to find out the induced current on that wire. To do
this, we sum up the exciting external field at this point together with the field components
created by all the wires in the system excited by this same external field:

E loc
x + Ew

x + Eext
x = ZIe−jkxx, (2.10)

where E loc
x is the local electric field along the x-axis created by all the other wires in the

grid, Ew
x is the field created by the wire itself, Eext

x is the exciting external field, Z is the
impedance per unit length of the wire, I is the current on the wire, and kx is the wave
number in the x-direction. We can then average the current over the grid and connect the
averaged current to the averaged tangential fields scattered by the grid. By summing up
the scattered and incident fields at the grid we can derive a relation between the averaged
total fields on the grid and hence our boundary condition.

In what follows, averaged boundary conditions, such as the ones derived in this section,
are studied for particular capacitive screens. First, literature is reviewed for the work
done on analytical modeling of inductive and capacitive screens. The literature review
is limited to screens composed of periodically organized grids of parallel strips or wires
referred to as inductive or capacitive grids, and to inductive or capacitive meshes. In
inductive and capacitive meshes the strips on a plane are organized in two orthogonal
directions and bonded to one another at intersections.
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3 Analytical modeling of capacitive grids and
meshes

3.1 Introduction

In the simplest artificial impedance surface a capacitive grid is positioned over a grounded
dielectric slab in order to create a resonant structure. No metallic inclusions are embedded
in the dielectric substrate, as in mushroom-type impedance surfaces. The capacitive grid
can be an array of square patches in order to have an isotropic response from the surface,
but the grid can also be anisotropic and comprise rectangular patches or strips. The correct
and accurate modeling of capacitive grids plays an important role in the modeling of the
complete surface structure. In general, the modeling of planar metallic screens excited
by a plane wave can be categorized into computational and analytical methods. The
computational models for conducting screens composed of square or rectangular patches
(e.g. in [15–18]) are as a rule based on the Floquet expansion of the scattered field. In
this doctoral thesis we concentrate on the analytical models that describe the properties
of such screens through the averaged electromagnetic fields on the screens.
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Figure 3.1: (a) Periodically organized grid of parallel strips having an inductive response
to the electric fields parallel to the strips and (b) its complementary structure. For the
complementary structure the response to the electric field perpendicular to the strips is
capacitive. Therefore, the complementary structure is commonly referred to as capacitive
grid. Further, (c) inductive mesh and (d) its complementary structure capacitive mesh.
Metal parts are colored grey.
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The cases of periodically organized thin electrically conductive wires and strips have been
studied in the literature since 1890s. An illustration of periodically organized parallel in-
ductive and capacitive strip structures is shown in Fig. 3.1. In the case, when the incident
electric field component is parallel to the wires, the response of these structures to the im-
pinging electromagnetic wave is inductive at low frequencies. In general, this condition
has been studied more widely in the literature than its complementary structure, where the
wire diameter or the strip width is large compared to the periodicity of the structure and
the response of the screen is capacitive at low frequencies. Actually, due to this fact, it
is convenient to derive the equivalent surface impedance of the capacitive screen through
its inductive complementary structure using so-called Babinet’s principle (also referred
to as Booker’s condition [19]). For this reason the properties of some inductive grids and
meshes are reviewed in the following. The examination is limited to the structures that
serve the purpose of deriving an analytical model for patch arrays or capacitive grids, that
is, to inductive grids and bonded meshes.

In the following, the previous work on the analytical modeling of inductive grids and
bonded meshes is discussed. The discussion is then extended to the use of Babinet’s
principle at the interface of two dielectrics and finally to modeling of capacitive strips
and meshes. The contributions of this thesis to the modeling of capacitive screens are
discussed in the end of this chapter.

3.2 Inductive grids and meshes

Apparently, the first quantitative study on the properties of parallel wire grids was done by
Lamb in 1898 [20]. In [20] Lamb used conformal mapping techniques to derive the static
field distributions near the grid of parallel wires and used this information as the basis
for calculations of the reflection and transmission coefficients for the normal incidence.
In [20] it was found that if the wire diameter is small compared to the grid periodicity,
the reflection and transmission coefficients are dependent on the periodicity of the grid.
Later, in 1914, von Ignatowsky made detailed analysis of the scattering properties of
parallel wire grids for oblique incidence and for different materials of the wires [21]. The
theory covered also cases when the wavelength is comparable with the periodicity of the
grid. After [21], the reflection and transmission properties of parallel wire grids in free
space have been studied in [22–29].

MacFarlane [23] showed in 1946, to the best of the author’s knowledge, for the first time
that the scattering problem of a parallel wire grid can be solved using a transmission-
line model, where the wire grid is modeled as a shunt impedance and the homogeneous
surrounding medium is modeled as infinite transmission lines. The shunt impedance is
proportional to ln (a/2πr0) + Δ, where a is the periodicity of the grid, r0 is the radius of
the wires, and Δ is a correction factor depending on the incidence angle and periodicity.
This relates closely to the approach used in this thesis in modeling of capacitive meshes
or artificial impedance surfaces. Wessel [24] and Hornejäger [25] arrived to the same
result, but defined the grid impedance differently. Wessel and Hornejärer defined the
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grid impedance to be the ratio between the electric field component parallel to the wires
and the current of a single wire. The approach of MacFarlane was used later by Wait
[26] to take into account the finite conductivity of the wires. Wait found that the finite
conductivity of the wires can be taken into account by adding a corresponding impedance
in series with the shunt grid impedance of MacFarlane [23]. Correspondingly, in [27]
similar finding was done with respect to the grid impedance of [24, 25]. The periodical
loading of the wire grid with lumped circuit elements was first proposed by Trentini [28].

As a concluding remark of the discussion so far, the works of MacFarlane [23], Wait [26],
and Trentini [28] have developed a general transmission-line model for the case of wire
grids in homogeneous media. In its generality, this model covers most of the cases that
can be considered for this type of structure. However, the models so far have suffered
from an obvious drawback: Namely, they do not take into account the effect of a nearby
material interface. In applications such grids are in general constructed on or backed up
with dielectric layers. Therefore, knowledge on the effect of the surrounding dielectrics
to the properties of the grids becomes important.

In [30] Wait used the transmission-line model for calculating the reflection of a plane
wave at oblique incidence on a wire grid parallel to a dielectric interface. More results
were later provided in [31] where some of the errors in [30] were corrected. The results
in [30, 31] show that a dielectric medium can have a significant effect on the correction
factor of the grid impedance and that in the very vicinity of the dielectric interface the
value of the correction factor changes rapidly with respect to the distance from the grid
to the interface. However, for electrically dense grids (a/λ � 1), the effect remains
small. Also, cases when the permeability of the surrounding medium differs from the
one in free space [32–34] or when the grid is located at the interface of two magnetic
materials [35–37] have been studied.

In the case of inductive metallic meshes, apparently the first derivations of the averaged
boundary conditions have been conducted by Kontorovich and Astrakhan in [38, 39]. In-
dependently from Kontorovich and Astrakhan, Ulrich [40] derived the expression for the
grid impedance of square wire meshes in free space qualitatively from the formulas pre-
sented in [29] for the grid impedance of a parallel wire grid. Ulrich reasoned that for the
normal incidence the square mesh can be considered to be composed of two independent
grids of wires that for certain polarization have both inductive and capacitive response.
Therefore, for the case when λ � a � r0 the response of the inductive mesh should be
that of an inductive grid with the same parameters a and r0. The result of this simple rea-
soning agrees with the results of [38,39]. The results of Kontorovich and Astrakhan were
later verified by Hill and Wait [41]. In 1982 Lee et al. [42] obtained an approximation for
the grid impedance for an inductive or capacitive grid mesh in a homogeneous medium
at normal incidence by matching a curve to extensive amount of numerical data.

The models for the normal incidence discussed above are of the first order whereas the
models for the oblique incidences are of the second order with respect to the tangential
spatial derivatives. The accuracy of the models can be increased further by taking into
account terms of higher orders. Especially in the cases of large incidence angles or elec-
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trically large periodicity of the grid, the use of higher-order approximations increases the
accuracy of the model notably. Such conditions have been derived for a parallel wire grid
by Yatsenko [43] up to the sixth order.

3.3 Capacitive grids and meshes

One of the earliest equivalent circuit models of capacitive grids can be found in [29]. The
expressions for the grid impedance [29] cover TE- and TM-polarized cases for arrays
of parallel capacitive strips or wires in homogeneous materials and have been obtained
by using an integral equation method. Capacitive meshes, i.e. patch arrays, were not
considered. The case of capacitive mesh was considered later by Ulrich [44] for the
normal incidence1. Ulrich reasoned that at low frequencies the inductive grids and meshes
as well as the capacitive counterparts should behave similarly. However, experiments had
shown that at frequencies when λ becomes approximately equal to the periodicity of the
mesh, the capacitive and inductive meshes become resonant. Based on this empirical
observation Ulrich improved the equivalent circuits for inductive and capacitive grids
for meshes with an additional capacitor and inductor, respectively. The value of these
extra circuit elements was evaluated from the measurements by matching the resonance
at λ ≈ a in the circuit model with the measurements. Similarly as for the case of inductive
grids and meshes, the accuracy of the models presented in [29, 44] is lost when the gap
between the strips is no longer small compared to the strip width.

Following generally the equivalent circuits of Marcuvitz [29] and Ulrich [44], the case of
capacitive strips or meshes at a dielectric interface were studied by various authors for the
normal incidence in [45–48]. Timusk and Richards [45] took the effect of the dielectric
substrate into account by simply considering the elementary parallel combination of two
capacitors with different dielectrics. Shanahan and Heckenberg [46], and later Compton
et al. [47], used instead Babinet’s principle to develop an equivalent circuit model for ca-
pacitive grids and meshes from their complementary structures. However, the free-space
Babinet’s principle was not used appropriately in [46], as was pointed out by Compton
et al. [47]. By correctly using the modified approximate Babinet’s principle, the authors
of [47] arrived to the same result as Timusk and Richards [45], further verifying the cor-
rectness of both results. In [48] some errors in the previously published models were
pointed out and corrected models were presented. The importance of the work of Comp-
ton et al. [47] and Whitbourn [48] arises from the derivation of the approximate Babinet’s
principle.

Much later, Holloway et al. [49] studied the reflection properties of arrays of separate
scatterers. As an example, also the case of a square patch array was considered even
for the oblique incidence (see also [50]). However, Holloway et al. [49] considered the
interactions between the separate scatterers to be solely dipole interaction neglecting the
capacitive interaction between the adjacent patches. This becomes important when the

1Ulrich [44] derived also an equivalent circuit for a capacitive grid from its complementary structure
inductive grid by using Babinet’s principle.
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separation of the adjacent patches becomes small, which is the case in all high-impedance
surfaces. Also, in [51] Clavijo et al. touched the topic of modeling capacitive meshes
while deriving an analytical model for a high-impedance surface. In that work the au-
thors of that paper derived semi-intuitively an expression for the input impedance of a
capacitive mesh by treating the mesh as an anisotropic material slab with a finite thick-
ness.

In conclusions of the literature review for the capacitive screens, homogenization models
for arrays of capacitive strips are available in the literature, even for oblique incidence.
However, models for capacitive square meshes or arrays of patches have been consid-
ered only for the normal incidence or for structures where the separation of the adjacent
patches is considerably large. Also, semi-intuitive expressions have been derived for the
capacitive meshes. The response of the latter structure is nearly isotropic when λ � a
whereas the former structure remains anisotropic even at low frequencies.

3.4 Contributions of this thesis

In the following, the findings of [I, II] and, especially, how the proposed models physi-
cally differ from the previously published models are discussed in more detail.

Let us start from the complementary structure of a capacitive grid, that is from an induc-
tive grid with electrically narrow strips along the x-axis. The plane of incidence lies in
the (x − z)-plane and the incident wave is polarized so that the transverse electric field
component is always along the x-axis. For the normal incidence the phase front of the
incident plane wave is parallel to this inductive screen and no phase difference occurs
between the current in one place of a strip compared to another. Therefore the current
flows uniformly along the strips and the electric charges do not accumulate in any part of
the strips. For oblique incidence the phase of the incident electric field component along
a strip is different in one place compared to another. Because of this, also the phase of
the current varies along the strip and causes charges to accumulate in different parts of
the strip. The same phenomenon takes place in all electrically conductive interfaces and
naturally has an effect on the averaged transition conditions for oblique incidence. Due
to duality, the same physics applies also to the complementary structure of the inductive
grid, that is for a capacitive grid. In this case the transverse component of the magnetic
field is directed along the gaps between the adjacent strips and the electric surface current
is replaced with the magnetic surface current.

In inductive meshes strips directed along the y-axis are bonded with the strips of the
inductive grid discussed in the previous paragraph and the plane of incidence remains
the same. The strips along the y-axis are at the same potential as the points at which
they are bonded to the strips along the x-axis. For the normal incidence the response
of the inductive mesh is the same as of the inductive grid. This is because the current
flows uniformly and there exists no potential difference on the strips along the x-axis.
For oblique incidence different points of the strips directed along the x-axis and the strips
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along the y-axis lie at different potentials. Due to the potential differences between the
strips in the y-direction and the points of the strips along the x-axis, now current flows
also from the orthogonal strips directed along the y-axis to the strips directed along the
x-axis, and vice versa. Because of this additional current and Kirchhoff’s current law, the
current on the strips along the x-axis becomes discontinuous. Again, due to duality of
the problems, the same applies also for the capacitive meshes with magnetic fields and
surface currents. This has been taken into account in the models derived in [I, II] for the
capacitive grids and meshes, and semi-intuitively also in [51] for capacitive meshes. Other
models, such as the ones presented in [44–48] for capacitive meshes, do not take these
effects into account in their models for the normal incidence. Also, in [49] a completely
different approach is considered that does not involve surface currents at all, but separate
scatterers.

3.4.1 Analytical modeling of capacitive grids and meshes at the interface
of two dielectric media

Let us consider an inductive mesh formed by parallel strips in two orthogonal directions,
as illustrated in Fig. 3.2 (a). The periods of the structure in the x- and y-directions are a
and b, respectively. For the case when a = b and the period of the structure a is electri-
cally small, the electromagnetic response of the structure is nearly isotropic and it weakly
depends on the plane of incidence. In the case of non-zero electric field components
along the direction of the strips and for the case when the strip width is much smaller
than the period of the structure (a, b � w), the response of the mesh is inductive at low
frequencies. Averaged boundary conditions for such meshes can be found e.g. in [14]. In
Fig. 3.2 (b) the complementary structure for the inductive strip mesh is shown. Here, the
blank parts of the structure illustrated in Fig. 3.2 (a) are metal. For the structure illustrated
in Fig. 3.2 (b) the electromagnetic response of the grid is capacitive at low frequencies,
as shall be seen below. Let us consider in the following a case where the incidence plane
is in the (y − z)-plane. For this case the grid impedance for an array of patches over
a dielectric sheet can be derived from the averaged boundary conditions for inductive
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Figure 3.2: (a) A mesh of ideally conducting strips in homogeneous host medium. (b)
Array of patches in homogeneous host medium. Metal parts are colored grey.
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Figure 3.3: The θ and ϕ angles. In this figure k is the wave vector of the incident wave.
When the incidence plane is in the (x − z)-plane, ϕ = 0. Similarly, when the incidence
plane is in the (y − z)-plane, ϕ = π/2.

meshes [14] through Babinet’s principle and it reads for TM- and TE-fields, respectively,
as [I,II]:

ZTM
g = −j

ηeff
2αTM

, (3.1)

ZTE
g = −j

ηeff

2αTE

(
1− k20

k2
eff

sin2 θ
1+ b

a

b
a

) , (3.2)

where the effective wave impedance ηeff = η0√
εeff

, the effective wave number keff =

k0
√
εeff , θ is the angle of incidence (see Fig. 3.3), and b and a are the dimensions of

the unit cell of the structure along the x− and y−axes, respectively. Further, α is the grid
parameter and it reads for the TM- and TE-polarized cases, respectively, as:

αTM =
keffa

π
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⎛
⎝ 1
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(
πw
2a

)
⎞
⎠ , (3.3)

αTE =
keffb

π
ln

⎛
⎝ 1

sin
(
πw
2b

)
⎞
⎠ , (3.4)

where w is the gap between the adjacent patches (see Fig. 3.1 (b)). In the case a = b the
mesh is isotropic and above expressions for the grid parameters are the same for the TM
and TE fields. The effective relative permittivity for an array of patches or a grid of strips
on a boundary between two media having the relative permittivities of ε1 and ε2 reads
approximately [47]:

εeff =
ε1 + ε2

2
. (3.5)

The grid impedance for a capacitive grid shown in Fig. 3.3 (b) reads for TM- and TE-
fields, respectively, as [I]:

ZTM
g = −j

ηeff
2αTM

, (3.6)
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Figure 3.4: (a) An inductive grid of ideally conducting strips in homogeneous host
medium. (b) A capacitive grid of ideally conducting strips in homogeneous host medium.
Metal parts are colored grey.

ZTE
g = −j

ηeff
2αTE

1(
1− k20

k2
eff

sin2 θ
) . (3.7)

Eqs. (3.6) and (3.7) correspond to the results presented in [29] for an array of capacitive
strips. Care should be taken when using expressions (3.6) and (3.7) since for different
polarizations the plane of incidence varies. Following the notations in Fig. 3.4, for the
TE-polarized case the plane of incidence is the (x−z) plane whereas for the TM-polarized
fields the incidence plane is the (y − z) plane.

Expressions (3.1)-(3.2) and (3.6)-(3.7) are valid for the cases when a, b/λ ≤ 0.5. The
validity range of the expression for the grid impedance can be extended by using a higher-
order approximation for the grid parameter. In [43] the accuracy of the higher-order
approximation for sparse wire grids was shown to be good up to the frequencies where
a, b ≈ λ. The ultimate limit for the validity of (3.1) and (3.2) is a, b = λ for the normal
incidence. After this limit the fields at the screen become too quickly oscillating and
averaging fails. After the limit a, b = λ grating lobes emerge and the characterization of
the surface with a single surface impedance is not adequate.

3.4.2 Numerical verification and comparison to existing results

In [I] the analytical results for the capacitive mesh were verified numerically. As an ex-
ample, an array of square patches in free space was considered. The dimensions of the
array were chosen to be a = b = λ/10 and w = a/10. The reflection coefficient of
such structure as the function of the incidence angle is given in Fig. 3.5. The reflec-
tion coefficient of the array can be calculated from a transmission-line model, where the
shunt grid impedance Zg is in between two infinite transmission lines whose characteris-
tic impedances equal to the free-space impedance for the same plane as the patch array.
The results according to (3.1) and (3.2) are compared with the results of Holloway et
al. [49]. Comparison is made also with numerical results based on the Fourier modal
method developed by Granet and Plumey [52] and used in [53] for analysis of strip grat-
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ings. The agreement between the grid impedance model presented in (3.1) and (3.2) and
the numerical results is very good. The results compare well also against the alternative
analytical model [49], although the agreement with the numerical results is slightly better
with the present model.

3.5 Summary of related publications

In [I] the analytical models for the capacitive grids and meshes at the interface of two
media are derived (see also [II] for a more general solution). This has been done strictly
following Maxwell’s equations, starting from the corresponding complementary struc-
tures through Babinet’s approximate principle, that is from solutions for inductive grids
and meshes. The averaged boundary conditions for these inductive structures have been
studied widely in the literature, as discussed earlier. The resulted averaged boundary con-
ditions for the capacitive grids and meshes are accurate even for oblique incidence and
for small separation between the adjacent patches or strips. In the case of the capacitive
grids the results are equivalent to those in [29] obtained by integral equation method.
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Figure 3.5: The TE- and TM-reflection coefficient versus the incident angle for an array
of square patches. The dimensions of the array are the following: a = b = λ/10 and
w = a/10. RH corresponds to the results according to the model by C. L. Holloway [49].
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4 Analytical modeling of artificial impedance
surfaces

4.1 Introduction

The notion “artificial impedance surface” includes all the artificial structures that are de-
signed to operate as a surface with a given impedance response. For instance, corrugated
surfaces [54–57] that are composed of series of vertical slots cut into metal, can be consid-
ered as an artificial impedance surface when the number of slots per wavelength is large.
In this doctoral thesis the analysis concentrates on so-called mushroom structures with
or without vertical wires and on structures composed of an array of metallic wires. Such
an array of periodically repeated metallic wires, where the periodicity of the structure is
much smaller than the wavelength, can be treated also as a medium with certain constitu-
tive material parameters ε and μ. For this reason such a structure is referred also as a wire
medium. An illustration of a mushroom structure without vertical wires, a grounded slab
of wire medium, and a mushroom structure with vertical wires is given in Figs. 4.1 (a),
(b), and (c), respectively.

In the simplest type of a high-impedance surface a capacitive mesh lies over a grounded
dielectric slab, as shown in Fig. 4.1. The principle of operation is that the capacitive re-
sponse of the screen together with the inductive response of the grounded material slab
form a resonant structure. The modeling of this type of a structure is rather straightfor-
ward and the analysis of Chapter 3 of the capacitive strips and meshes becomes useful
(this, of course, applies generally to all structures composed of these capacitive screens).
In the more complicated structure, where the dielectric slab is perforated with metallic
wires, one can consider the mushroom surface to be composed of a capacitive grid over
a grounded wire medium slab. The analogy becomes apparent in Fig. 4.1. Therefore it is
convenient to treat the subject of the wire medium and especially the impedance bound-
ary conditions for such structure before discussing the models for the artificial impedance
surfaces considered in this thesis.

In what follows, analytical models for different types of high-impedance surfaces are
discussed. Before this, however, the properties of the wire medium and grounded wire
medium slabs are reviewed. The contributions of this thesis to the modeling of the con-
sidered artificial impedance surfaces, or mushroom structures, are discussed at the end of
this chapter.

4.2 Artificial dielectrics: Wire medium

Wire medium is a structure that consists of a periodically organized lattice of paral-
lel wires with the lattice constant (or periodicity) a and the wire radius r0, as shown
in Fig. 4.2. Naturally, in order to justify the treatment of the structure as a homoge-
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nized medium, the lattice constant needs to be much smaller than the wavelength. In
Fig. 4.2 an illustration of a one-dimensional wire medium is shown, but also two- or
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Figure 4.1: (a) A side and top view of mushroom-type artificial impedance surface with-
out metallic wires in the substrate. (b) A side and top view of a grounded wire medium
slab. (c) A side and top view of mushroom-type structure with metallic wires in the sub-
strate (also known as the Sievenpiper mushroom structure [79]). This structure can be
considered to be composed of the structures shown in (a)-(b).
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Figure 4.2: An infinite lattice of periodically organized wires.

three-dimensional structures are possible. The wire medium (or rodded medium) was
first studied by Brown [58] in 1953 in the context of microwave lenses. The purpose was
to make use of the low-loss and dielectric constant below unity properties of the artifi-
cial dielectric material (see also [59–62]). In his work Brown derived expressions for
the refractive index of a wire medium composed of perfectly conducting wires aligned
parallel with the exiting electric field. Later Rotman [63] used the wire medium for
simulating plasma and expanded the analysis of Brown to cover wires made of resistive
materials.2 Both Brown [58] and Rotman [63] made use of the transmission-line formal-
ism in their studies, but also electromagnetic mixing formulas can be used to characterize
wire medium [62] (more about electromagnetic mixing formulas in general can be found
in [64]).

In 1983 King et al. [65] derived an expression for the grounded wire medium slab or
“Fakir’s bed of nails” shown in Fig. 4.1 (b). The same structure had been experimentally
investigated earlier by Kay [66] and Querido [67]. King [65] showed that in the case when
the lattice constant is sufficiently small with respect to the operational wavelength and
the medium is below cut-off, the surface impedance of the grounded wire medium slab
becomes independent of the incidence angle. In this case one can consider the parallel
wires to behave as shorted TEM transmission lines whose length is equal to the thickness
of the dielectric layer [14].

Recently, the spatially dispersive properties of the wire medium have been studied in
[68–70]. Accurate analysis reveals that the structure is spatially dispersive (the medium
is characterized using non-local material parameters). In the context of grounded wire
medium slabs, the spatially dispersive properties of the wire medium have been taken
into account in recent works of Silveirinha [71–73]. While trying to solve the elec-

2Being similar problems with the modeling of grids discussed in the previous chapter, it is interesting
to see the analogy between the works of Brown [58] and Rotman [63], and MacFarlane [23] and Wait [26].
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tromagnetic fields in the wire medium slabs, the spatially dispersive properties of wire
media include an extra variable into the expressions. Therefore, the classical boundary
conditions are not sufficient in order to solve the problem unambiguously and additional
boundary conditions are needed. In [71] an additional boundary condition at the interface
of air and wire medium was derived. Later, Silveirinha [72] derived an additional bound-
ary condition also for the interface of metal and wire medium. These additional boundary
conditions were used in [73] to derive a closed-form expression for the surface impedance
of a grounded wire medium slab (the structure shown in Fig. 4.1 (b)).

Also the suppression of spatial dispersion in wire medium has been studied recently.
Interestingly, it has been found that in mushroom structures the spatial dispersion can be
suppressed when the structure is electrically thin [2, 3]. This result is in good agreement
with the findings of [74], where it was also noticed that the spatially dispersive properties
of wire medium become nearly negligible when effective capacitance between the wires
is increased. In such cases the wire medium can be modeled as a uniaxial material with
local material parameters (spatially non-dispersive).

4.3 Analytical models for the artificial impedance surfaces in
the literature

The artificial impedance surface structures composed of patch arrays excluding vertical
vias have been first proposed in [75–77], whereas the similar artificial impedance surface
including vertical wires, i.e., a mushroom structure, has been proposed in [78, 79]. No
quantitative models for the high-impedance surface structures were presented in [76,77].
In their analysis of the surface Liu et al. used numerical methods based on the Floquet
expansions of the fields on the surface of the structure. In [77] a schematic illustration
of the equivalent-circuit model was given for qualitative understanding of the properties
of the newly proposed structure. A similar circuit model to that of [77] for a mushroom
structure with vertical metallic wires was proposed by D. Sievenpiper in [78]. Here the
capacitance of the patch array formed a parallel resonant circuit with the inductance of the
grounded dielectric slab. The capacitance in this model was calculated through the quasi-
static approximation for a gap between two semi-infinite strips. No phase variation in any
of the transverse directions was taken into account. The approximation for the inductance
in [78] assumes constant magnetic field magnitude over the height of the structure and
holds only for electrically thin structures. Furthermore, the effect of the vertical metallic
wires is not taken into account. In [51] the Sievenpiper high-impedance surface was
modeled in terms of layered homogeneous materials with anisotropic magneto-dielectric
tensors. The resulting expressions for the surface impedance of high-impedance surfaces
are lengthy and complicated. Although the validity of the approach of treating an array of
rectangular patches as a thin slab of anisotropic material remains debatable, the authors
of [51] touch the topic of grid impedance of an array of patches without treating it in more
detail. The grounded dielectric slab with metallic vias was treated in [51] as a slab of wire
medium, as was also done in [14,80]. In [14,80,81] the models for the square patch array



41

neglected the periodicity of the array in the other direction or were derived for the normal
incidence.

So far we have discussed artificial impedance surface structures composed of square patch
arrays which at low frequencies are nearly isotropic. However, also anisotropic struc-
tures, composed of capacitive strips, have been proposed. Higgins et al. [82] considered a
high-impedance surface comprising an array of parallel capacitive strips over a grounded
dielectric slab perforated with metallic vias. The main emphasis in [82] was to make
the frequency response of the surface electrically tunable and only a schematic illustra-
tion of the equivalent circuit model was presented. In fact, for the normal incidence the
electromagnetic response from an array of strips for one polarization (electric field or-
thogonal to the strips) is exactly the same as from an array of patches.3 Therefore one
can argue that for the structure proposed in [82] for the normal incidence and for the po-
larization where the electric field is orthogonal to the strips the models were published
already in [14, 51, 80, 81]. Furthermore, although the models in [14, 80] were derived for
high-impedance surfaces with patches, they are actually applicable for high-impedance
surfaces with strips due the fact that the periodicity in one of the directions is neglected,
as shall be seen later in the following subsections.

Also the possibility to mechanically or electrically tune the artificial impedance surfaces
has been studied. In [83] Sievenpiper et al. demonstrated a simple way of mechanically
tuning the direction of the main beam of a reflector-type antenna. In that paper the ca-
pacitive grid of an artificial impedance surface was formed with two overlapping patch
arrays. The effective capacitance was then tuned by mechanically sliding the upper ar-
ray and changing the overlapping area. Although in practical applications this approach
might not be feasible, the method of varying the effective grid capacitance of the artificial
impedance surface for tuning has been used in many following papers. In [84] Sieven-
piper et al. used the same method for electrically tunable artificial impedance surfaces
in reflector-type antennas. In [84] the capacitance formed between the adjacent patches
of the capacitive mesh was tuned by voltage controllable varactors. By forming a certain
gradient for the effective capacitance the reflection phase of the surface could be changed
and the direction of the main beam tuned. Later this was done for leaky-wave antennas
with mechanically [85] and electrically [86] tunable effective capacitances. In [84] some
of the vertical metallic vias were used to bring bias voltage for the varactors. Also differ-
ent type of bias networks have been proposed [87]. In [87] Mias et al. also proposed a
lumped element model for the mushroom structure for the normal incidence.

In conclusions of the literature review on the analytical modeling of artificial impedance
surfaces, for artificial impedance surfaces with capacitive strips or arrays of patches, no
physically strict analytical models have been presented in the open literature for oblique
incidence.

3Considering the princible of operation of high-impedance surfaces, this is the more interesting polar-
ization since the response of grid of strips for this polarization is capacitive.
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Figure 4.3: An artificial impedance surface composed of an array of patches over a
grounded dielectric slab.

4.4 Contributions of this thesis

In the following the results of the thesis relating to this topic are shortly presented. First,
analytical models for the artificial impedance surfaces are presented. We start from the
analytical models for the structures composed of a capacitive screen over a grounded di-
electric slab. We will then consider structures in which the grounded dielectric slab is
perforated with vertical metallic wires. Also, electrically tunable surface structures are
considered. After this, we will discuss what kind of effective material parameters are
needed for an uniaxial material slab in order to realize artificial magnetic conductors.
Finally, the analytical models are verified with simulations and in some cases with exper-
iments.

4.4.1 Analytical model for the artificial impedance surface composed of a
capacitive grid over a grounded dielectric slab

Let us consider an artificial impedance surface that is composed of a capacitive grid or
mesh (considered in section 3.4.1) over a grounded dielectric slab. In Fig. 4.3 a case of
an array of patches over a grounded dielectric slab is shown (this corresponds also to
the case in Fig. 4.1(a)). For this type of structure it is convenient to model the system
by using the transmission-line formalism. An equivalent transmission-line model for the
artificial impedance surface structure is shown in Fig. 4.4. In the transmission-line model,
the surface impedance of the artificial impedance surface at the interface of the capacitive
grid Zinp can be calculated as a parallel connection of the grid impedance Zg and the
surface impedance of the grounded dielectric slab Zd at the grid interface:

Z−1
s = Z−1

g + Z−1
d . (4.1)

Further, Z0 is the free-space impedance that reads for the TM and TE fields, respectively,
as

ZTM
0 = η0 cos(θ), (4.2)

ZTE
0 =

η0
cos(θ)

, (4.3)
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Figure 4.4: An equivalent transmission-line model for the artificial impedance surface.

where η0 is the plane-wave impedance in free space and θ is the incidence angle. The
grid impedances are given for the TM- and TE-polarized cases in (3.1) and (3.2) in the
case of capacitive arrays of metal patches, and in (3.6) and (3.7) in the case of capacitive
grids, respectively. The surface impedance of the grounded dielectric slab can be written
in dyadic form as

Zs = jωμ
tan (βh)

β

(
It − ktkt

k2

)
, (4.4)

where μ is the absolute permeability of the substrate (in our case μ = μ0), β =
√
k2 − k2

t ,
k = k0

√
εr is the wave number in the substrate material, εr is the permittivity of the mate-

rial, h is the height of the material slab, and kt is the tangential wave number component,
as imposed by the incident wave.

From (3.1), (3.2), and (4.1) we get for the surface impedance of the artificial impedance
surface composed of a capacitive mesh over a grounded dielectric slab [I]

ZTM
s =

jωμ tan(βh)
β

cos2(θ2)

1− 2keffαTM
tan(βh)

β
cos2(θ2)

, (4.5)

ZTE
s =

jωμ tan(βh)
β

1− 2keffαTE
tan(βh)

β

(
1− k20

k2
eff

sin2 θ
1+ b

a

b
a

) , (4.6)

where θ2 is the angle of refraction calculated from the law of refraction as θ2 = arcsin
(
sin (θ) /

√
εr
)
,

keff = k0
√
εeff is the effective wave number, εeff = (εr + 1) /2 is the effective relative per-

mittivity, and αTM,TE is the grid parameter given by (3.3) and (3.4) for the TM and TE
fields, respectively. Further, a and b are the periodicity of the capacitive mesh as given in
Fig. 4.4.

Similarly, from (3.6), (3.7), and (4.1) we get for the surface impedance of the artificial im-
pedance surface composed of a capacitive grid of metal strips over a grounded dielectric
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Figure 4.5: Illustration of the mushroom structure (a) from the side and (b) from above.
The structure comprises a patch array over a dielectric slab perforated with metallic vias.
The gap between the adjacent patches is w and εr is the relative permittivity of the host
medium.

slab [I]

ZTM
s =

jωμ tan(βh)
β

cos2(θ2)

1− 2keffαTM
tan(βh)

β
cos2(θ2)

, (4.7)

ZTE
s =

jωμ tan(βh)
β

1− 2keffαTE
tan(βh)

β

(
1− 2

εr+1
sin2 θ

) . (4.8)

4.4.2 Analytical model for the artificial impedance surface composed of a
capacitive grid over a grounded dielectric slab perforated with metal-
lic vias

Let us now consider a mushroom structure shown in Fig. 4.5. For TE fields the electric
field is always perpendicular to the wires. If the radius of the wires is very small, the
electric field does not excite them and the wire medium slab appears for the TE fields
as a grounded dielectric slab. Therefore, it can be concluded that for the TE fields the
analytical models derived for the artificial impedance surfaces in section 4.4.1 are also
applicable for the mushroom structures. However, for TM-polarized oblique incidence
the electric field component parallel to the vertical wires excites them. For this polariza-
tion the effect of the wires needs to be taken into account. In the following analysis for
the TM fields it is considered that the mushroom structure is comprised of a capacitive
patch array and an effective grounded wire medium slab.

Following the lay-out of [II], in the case when the mushroom structure is electrically thin,
the wire medium can be considered to be uniaxial with local material parameters. In this
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case the surface impedance for the grounded uniaxial material slab reads [14]:

ZTM
d = jωμ0

tan(βTMh)

βTM

k2 − k2
t − k2

p

k2 − k2
p

, (4.9)

where
β2
TM = ω2ε0εrμ0 − εr

εn
k2
t , (4.10)

and kp is the plasma wave number given for an arbitrary lattice (r0 � a, b) as [70]

(
kp
√
ab

)2
=

2π

ln
( √

ab
2πr0

)
+ F (a/b)

, (4.11)

where

F (a/b) = −1

2
ln (a/b) +

+∞∑
n=1

⎛
⎝coth

(
πna

b

)
− 1

n

⎞
⎠+

πa

6b
. (4.12)

For a square lattice F |a=b = 0.5275. Furthermore, a and b are the periods of the wires
and the patches in the y- and x-directions, respectively, r0 is the radius of the wires, and
the local approximation for the relative permittivity for the fields along the normal of the
medium reads

εn = εr

(
1− k2

p

k2
0εr

)
. (4.13)

Now, using (3.1) and (4.9) we get for the surface impedance of electrically thin mushroom
structures [II]

ZTM
s =

jωμ0
tan(βTMh)

βTM

(
1− sin2(θ)

εn

)
1− 2keffαTM

tan(βTMh)
βTM

(
1− sin2(θ)

εn

) . (4.14)

If the electrical thickness of the mushroom structure is no longer small, the effects of the
spatial dispersion in the wire medium need to be taken into account. In this case the wire
medium slab can no longer be considered to be uniaxial with local effective material pa-
rameters, but the contribution from both TM and TEM modes excited in the wire medium
by the incident TM fields has to be considered. However, using the additional boundary
conditions, the fields at the interface of the mushroom structure and air can be solved.
The reflection coefficient ρ of the mushroom structure for the magnetic fields follows
from this theory and it reads [III]

ρ =

εTM
n

γTM
coth (γTMh) +

εTM
n −εr

k
cot (kh) + η0

jk0
Z−1

g − 1
jkz

εTM
n

γTM
coth (γTMh) +

εTM
n −εr

k
cot (kh) + η0

jk0
Z−1

g + 1
jkz

, (4.15)

where kz =
√
k2
0 − k2

t , γTM =
√
k2
p + k2

t − k2, and the relative effective permittivity
along the direction of the metallic vias is written for the TM polarization as

εTM
n = εr

(
1− k2

p

k2
p + k2

t

)
. (4.16)
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Both expressions (4.14) and (4.15) are valid only for plane waves. For both (4.14) and
(4.15) the validity range is defined by the validity ranges of expressions (3.1)-(3.2) and
(3.5)-(3.6), respectively. Furthermore, the radius of the wires r0 � a. In addition, for
(4.14) the height of the mushroom structure needs to be electrically thin: λ � h.

4.4.3 Varactor-tunable artificial impedance surface

As discussed earlier, commonly the electrically tunable artificial impedance surfaces are
realized by using varactors to vary the effective capacitance between the adjacent patches
or strips. It is possible to take this additional capacitance due to the varactors into ac-
count in the analytical models for the different types of artificial impedance surfaces. In
capacitive grids and meshes the averaged effective capacitance is formed due to small
gaps in the screen. By connecting varactors over these gaps, we actually connect an addi-
tional capacitance in parallel with the averaged effective capacitance. Therefore, the grid
impedances in (3.1)-(3.2) and (3.5)-(3.6) for capacitive meshes and grids, respectively,
can be rewritten to take the additional capacitance into account as [II]

ZTM,TE
g =

1

jω
(
CTM,TE

g + Cvar

) , (4.17)

where indices TM and TE refer to the polarization, Cvar is the capacitance of the varactor,
and Cg is the effective averaged capacitance of the grid written in a lumped element form.
Following the notations in Fig. 3.2, the grid capacitance for ideally conducting capacitive
mesh reads for TM and TE fields, respectively, as [II]

CTM
g =

aε0 (ε1 + ε2)

π
ln

⎛
⎝ 1

sin
(
πw
2a

)
⎞
⎠ , (4.18)

CTE
g =

bε0 (ε1 + ε2)

π
ln

⎛
⎝ 1

sin
(
πw
2b

)
⎞
⎠(

1− k2
0

k2
eff

sin2 θ

1 + b
a

b

a

)
. (4.19)

4.4.4 Grounded uniaxial material slabs

In the context of uniaxial material slabs, let us consider a general case of grounded uni-
axial material slabs. The uniaxial symmetry of a structure is the most general allowed
symmetry, if the surface plane should be isotropic. Here the uniaxial symmetry is consid-
ered with a view to simplify the realization of an all-angle magnetic wall when compared
to the realization of a magnetic wall with fully isotropic materials. A schematic picture
of the grounded uniaxial material slab is shown in Fig. 4.6. In the following, analytical
models derived in [IV] for the analysis of the proposed structure are reviewed. Further,
the needed material parameters for the realization of an all-angle magnetic wall for the
TM fields and practical structures for this polarization are discussed. For the TE fields the
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use of uniaxial symmetry does not offer as promising benefits as for the TM fields and
the discussion regarding the TE fields can be found in [IV].

It is convenient to model the properties of the structure illustrated in Fig. 4.6 with a sur-
face impedance at the interface of the uniaxial material and air. This can be done using a
transmission-line model similar to that in Fig. 4.4. Instead of just one isotropic effective
material parameter εr in Fig. 4.4, we have the effective transverse and normal permittivi-
ties (εt and εn) and permeabilities (μt and μn), respectively. Using the transmission-line
model, the local approximation of the surface impedance for the TM and TE fields can be
written, respectively, as [IV]

ZTM
s = j

βTM

ωεt
tan (βTMh) , (4.20)

ZTE
s = j

ωμt

βTE

tan (βTEh) , (4.21)

where h is the height of the slab and the normal components of the wave numbers in the
uniaxial material slab read for the TM and TE fields, respectively, as

β2
TM = ω2εtμt − k2

t

εt
εn
, (4.22)

β2
TE = ω2εtμt − k2

t

μt

μn

. (4.23)

Here, kt is the transverse wave number.

In [IV] it was shown that especially for TM fields the realization of the magnetic wall
effect becomes simple. For this polarization it is possible to realize a magnetic wall just
by letting εn → 0. For εn > 0 the surface would not support TM-polarized surface waves
nor would the magnetic wall effect be periodic with respect to the frequency. However, for

�

Figure 4.6: An illustrative picture of the grounded uniaxial material slab. Index t cor-
responds to the direction tangential to the interfaces, and index n marks the components
along the unit vector n.
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εn < 0 the electromagnetic response of the surface would becomes a quickly oscillating
function of ω.

One possible example of a crystal with near zero values for the effective permittivity
is the wire medium. Close to the plasma frequency of the wire medium, the effective
permittivity of the material approaches zero. Also, the structure of the wire medium is
readily anisotropic so that the uniaxial symmetry is easily attainable. However, in practice
the frequency band of the operation will be limited due to the finite band of the plasma
resonance. For the proposed structure for the TM fields the wires should be oriented in
the vertical direction, similarly to the “Fakir’s bed of nail’s” structures.

The wire medium is known to exhibit spatial dispersion. However, the above analysis is
based on the local approximation of the uniaxial material. Therefore the spatial dispersion
in the wire medium needs to be suppressed in order to realize the proposed features of the
grounded uniaxial material slab as an artificial magnetic wall. This is possible either by
coating the wires with high-μ material [74] or by increasing the capacitance between the
wires [2, 3, 74].

It is interesting to notice that that this study pertains closely to the recent studies on
the new electromagnetic boundary conditions for anisotropic materials by Lindell and
Sihvola [88,89]. Indeed, the boundary condition n ·D = 0, which relates very closely to
the principle of operation of the above structure for the TM fields, can be clearly separated
from the conventional boundary condition n×H for magnetic conductors.

4.4.5 Numerical verification and comparison to the existing results

In [I]-[IV] and [1] the preceding analytical results were verified numerically and, when
possible, compared to the existing results. In the following these results are reviewed
shortly. The models for the different impedance surfaces are verified with full-wave sim-
ulations using commercial Ansoft’s High Frequency Structure Simulator (HFSS) pro-
gram [90]. The verification is done in terms of reflection phase diagrams. An application
note describing the simulation model for such HFSS simulations can be found in [91].
For brevity, only structures composed of square patches are considered. First, the model
for the artificial impedance surface (see (4.5)-(4.6)) is verified, after which the model
for the mushroom structure ((4.6) and (4.13)) is considered. Finally, the models taking
into account the spatial dispersion in the wire medium (4.15) and the additional varactor
capacitances (4.18)-(4.19) are verified.

In [1] the analytical results were verified with an example of an artificial impedance sur-
face with the following parameters (following the notations in Fig. 4.3): a = b = 2mm,
w = 0.1mm, h = 2mm, and εr = 4. The reflection phase results for the incidence
angles of 0◦ and 60◦ degrees for both polarizations are shown in Fig. 4.7. The agreement
between the analytical and simulation results is very good for both polarizations and all
incidence angles. The analytical results for the artificial impedance surfaces were verified
also in [I] with a number of simulations.
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Figure 4.7: The reflection phase diagrams for the artificial impedance surface with the
design parameters a = b = 2mm, w = 0.1 mm, h = 2mm, and εr = 4. The analytical
results are calculated using (4.5) and (4.6) [1].
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Figure 4.8: The reflection phase diagrams for the articial impedance surface with the
design parameters a = b = 2mm, w = 0.1 mm, h = 2mm, εr = 4, and r0 = 0.05mm.
The analytical results are calculated using (4.6) and (4.13) [1]. Comparison is made also
with the analytical model of Sievenpiper [78].
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In the case of mushroom structures, the analytical verification of the analytical results
were made in [II,III] and [1]. In [1] an example of the mushroom structure with the same
design parameters as for the artificial impedance surface (see the reflection phase diagram
in Fig. 4.7) were considered. The via radius was r0 = 0.05mm. The reflection phase
results for this structure calculated using (4.6) and (4.13) are compared with the model of
Sievenpiper [78] and HFSS simulations in Fig. 4.8. Clearly, the model of Sievenpiper [78]
becomes less accurate for the TE fields as the incidence angle grows. For the TM fields
the accuracy of the Sievenpiper model remains rather good even for oblique incidence.
The agreement between the simulation results and the analytical results calculated using
(4.6) and (4.13) is very good for both polarizations and all incidence angles.

The results presented in Fig. 4.8 are for an electrically thin mushroom structure. When
the electrical thickness of the structure increases, the assumption that the wire medium
can be modeled as a uniaxial material fails. However, by taking the spatially dispersive
properties of the wire medium into account, as is done in (4.15), this particular case can
be modeled with very good accuracy. As an example of this, in [III] a mushroom struc-
ture was considered with the following design parameters: a = b = 1mm, w = 0.1 mm,
h = 5mm, εr = 1, and r0 = 0.05mm. The results according to the models (4.14) and
(4.15) for TM fields are compared with the HFSS simulations in Fig. 4.9. It is clear from
Fig. 4.9 that at low frequencies, when the mushroom structure is electrically thin, the

0 10 20 30 40 50 60
−180

−135

−90

−45

0

45

90

135

180

Frequency [GHz]

R
ef

le
ct

io
n 

ph
as

e 
[d

eg
]

Figure 4.9: The reflection phase diagrams for the articial impedance surface with the
design parameters a = b = 1mm, w = 0.1 mm, h = 5mm, εr = 1, and r0 = 0.05mm.
The results according to (4.15), (4.14), and simulations are in black, red, and blue, re-
spectively. The simulation and the analytical results for the incidence angle θ = 30◦ are
plotted with circles and dashed lines, respectively. Similarly, the results for θ = 60◦ are
plotted with stars and dotted lines, respectively.
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Capacitive sheetsPEC

y

x

z

(a) (b)

Figure 4.10: (a) Simulation model of the tunable artificial impedance impedance surface
unit cell. Because of the periodicity, the capacitance of each capacitive sheet equals to
2Cvar. (b) The reflection phases for different angles of incidence and for different values
of varactor capacitance. HFSS simulation results are denoted with crosses and circles for
varactor capacitance values of 60 fF and 120 fF, respectively. The simulation results for
normal incidence, 45◦ (TM), and 45◦ (TE) are colored blue, green, and red, respectively.
The analytical results are plotted in black.

agreement with both of the analytical models and simulations is very good. However, as
the electrical thickness of the mushroom structure grows at higher frequencies, the differ-
ence between the model (4.14) and the simulation results grows. The agreement between
the model (4.15) and the simulation results remains good even for higher frequencies.
Clearly, the effects of spatial dispersion become important for electrically thicker struc-
tures and cannot be neglected in the analytical models. However, in applications the
preferable size of the artificial impedance surfaces is in general very thin.

Also, the plasma resonance of the wire medium can be used to achieve a resonance in
the mushroom-like impedance surfaces. This can be done either far away from the main
structural resonance of the impedance surface or close to it. The resonances predicted by
the analytical formulas have been compared against the simulation results in [III,IV] (see
also [VI]) and the results are in good agreement with each other.

Further, in [II] the model taking into account the additional varactor capacitances was
verified numerically. In Fig. 4.10 (a) the simulation model of the varactor-tunable artificial
impedance surface is shown. The reflection phases for the artificial impedance surfaces
with the design parameters a = b = 1mm, w = 0.1mm, h = 0.2mm, εr = 4, and r0 =
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0.05mm. The additional capacitance has the values of 60 pF and 120 pF. The analytically
calculated and simulated reflection phase diagrams are shown in Fig. 4.10 (b) for the
normal incidence and for the angle of 45◦. The agreement between the analytical results
and the HFSS simulation results is good.

4.4.6 Experimental verification

In [V] the model for the artificial impedance surface without metallic vias embedded into
the substrate has been verified experimentally with reflection phase measurements. The
measurement setup is illustrated in Fig. 4.11. The measurements are done in an anechoic
chamber. The sample under test is placed on a rotating unit that can be rotated remotely
with an accuracy of ±0.03◦. The sample is illuminated with the transmitting antenna.
The distance between the transmitting antenna and the sample is approximately 5.3 m.
The angle between the transmitting antenna and the surface of the sample is tuned to
correspond to the correct angle of incidence, and the receiving antenna is then positioned
with the help of mirrors and a laser. The laser is used to position and align the receiving
antenna so that the laser beam launched from the transmitting antenna is reflected from
the mirror on the sample to the mirror on the receiving antenna and all the way back to
the laser. The distance between the receiving antenna and the sample is approximately
3.6 m.

The measurements were conducted for a sample with the following parameters: a =
b = 5.113mm, w = 0.33mm, h = 1.54mm, and εr = 4.4(1 − j0.02). The results of
the measurements are compared also with the analytical models (4.5) and (4.6), and with
simulation results obtained using HFSS. The measurement results are shown in Figs. 4.12
and 4.13 for TM and TE fields, respectively. The measurement result is the average and
the standard deviation is given for every twentieth measurement point.

Figure 4.11: The measurement setup.
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4.5 Summary of related publications

In [I] a simple and yet accurate analytical model has been derived for artificial impedance
surfaces. The model is based on the analytical models derived for the capacitive screens in
[I,II] and on the well-known model for a grounded dielectric slab. Compared to the exist-
ing models in the literature, the proposed model is strictly based on Maxwell’s equations
and is accurate even for oblique incidence. This is because most of the proposed models
neglect the effects of spatial dispersion in the artificial impedance surface structure. In the
proposed model the spatial dispersion is taken into account both in the grounded dielec-
tric slab and in the capacitive screen lying over it. The model for the artificial impedance
surface has been validated for different examples with numerical methods in [I].

In [II] the model for artificial impedance surfaces has been extended for mushroom-type
structures by taking into account the effect of the vertical metallic vias. This is different
from the model derived in [78] where the vias were neglected. The grounded dielectric
slab embedded with metallic wires has been modeled as a wire medium slab with effective
local material parameters (similarly as in [14, 51]), that is the spatial dispersion of the
wire medium is assumed to be suppressed. Furthermore, the possibility to electrically
tune the response of an artificial impedance surface with varactors has been studied. The
effective averaged capacitance of the capacitive screen is mainly due to the small gaps
between the adjacent metallic strips or patches. Therefore, a fair approximation can be
made and the effective capacitance per unit cell can be written in a lumped element form
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Figure 4.12: The reflection phase measurements at θ = 30◦ for the TM fields. The solid
red line corresponds to the measurement results, the dashed black line to the analytical
results, and the black circles correspond to the HFSS simulation results.
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Figure 4.13: The reflection phase measurements at θ = 30◦ for the TE fields. The solid
red line corresponds to the measurement results, the dashed black line to the analytical
results, and the black circles correspond to the HFSS simulation results.

for capacitors over the small gaps. This way the additional varactor capacitance can be
easily taken into account through circuit theory formalism. The analytical model taking
into account the additional capacitance of the varactors has been validated for different
examples with numerical simulations in [II]. Compared to other models available in the
literature, the proposed model shows good agreement with the simulation results even for
oblique incidence.

The spatial dispersion of the wire medium in the context of the mushroom structure is
studied more thoroughly in [III]. A model taking into account the spatial dispersion in
the wire medium has been derived for the mushroom structure. In the models derived in
[II], [51] (see also [IV,VI]) local material parameter values are used for the wire medium
slab (the wire medium is considered to be spatially non-dispersive). However, the work of
Silveirinha [73] clearly shows that a grounded wire medium slab may have properties very
different from a uniaxial material slab with local material parameters. Also, in certain
cases wire medium exhibits extreme anisotropy as shown by King [65], Tretyakov [14],
and Silveirinha [73]. Although the arguments favoring the use of the local approximation
of the permittivity of the wire medium are physically sound and the correctness of the
assumption on the local material parameters in [II] have been numerically verified, there
is an apparent contradiction with the studies of [70, 73]. As it turns out in [III], the
studies [70, 73] and [II] are both correct. Namely, the effect of spatial dispersion in
the wire medium can be nearly suppressed when the mushroom structure is electrically
thin. Furthermore, the suppression of the spatial dispersion in the wire medium in the
context of the mushroom structure leads to an additional resonance, as shown in [III].
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This additional resonance of the mushroom structure occurs due to the plasma resonance
of the wire medium.

The objective of [IV] has been to study possibilities to create all-angle artificial magnetic
conductors with a stable response with respect to the incidence angle. The purpose has
been to simplify the manufacturing of artificial magnetic conductors by using grounded
uniaxial material slabs. It is thought that uniaxial symmetry allows one to renounce the
structural isotropy, hence simplifying the manufacturing, without sacrificing the isotropy
of the surface impedance. In order to achieve in this, the study has not been restricted
only to naturally available materials.

The expression for surface the impedance of the grounded uniaxial material slab is derived
for the local material parameters (no spatial dispersion). As a result of a systematical
study, it is found that by using grounded uniaxial material slabs it is possible to achieve
an all-angle magnetic-wall effect for both TE and TM polarization. For TM polarization
a realizable structure is proposed and its performance is verified by simulations.

In [V] the analytical results of [I] have been verified experimentally. The measurement
setup has been carefully described and reflection measurements are conducted on a sam-
ple for different angles of incidence. The reflection phase is calculated from these mea-
surement results for different polarizations. The agreement between the analytical results
calculated using the expressions in [I] and the measured reflection phases is good. This
further verifies the results of [I].
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5 Some applications based on artificial impedance
surfaces

5.1 Introduction

Artificial impedance surfaces are not studied only for academic interest. The list of appli-
cations that utilize the exotic properties of artificial impedance surface cover electromag-
netic band-gap structures (EBG) [92–95] and artificial magnetic conductors (AMC) [78,
96–99] for antenna applications, phase shifters and impedance waveguides [82,100,101],
quasi-TEM waveguides [102–104], planar reflect-arrays [83, 84, 105, 106], and leaky-
wave antennas [85, 86, 107] just to name a few. In the following, some applications are
reviewed more thoroughly, namely electromagnetic absorbers, impedance waveguides,
and electromagnetic band-gap structures.

5.2 Electromagnetic absorbers

5.2.1 Review of the literature and background

In electromagnetic absorbers the incident electromagnetic energy is dissipated into heat
within the absorber structure. The electromagnetic energy can be coupled inside the ab-
sorber structure in many ways (see [108]). Here the discussion on the electromagnetic
absorbers is constricted to resonant type of absorbers, which are electrically thin com-
pared to the other type of absorber structures.

Classical structures for electromagnetic absorbers include Jaumann, Salisbury, and Dal-
lenbach absorbers [109] (see also [16, 110]). The absorbers have been listed here in a
chronological order, although the order of the first two absorbers named after their in-
ventors is not evident. Apparently the Jaumann absorbers were used already during the
second World War, whereas, to the best of the author’s knowledge, there has been no men-
tioning in the literature that the Salisbury absorber would have been used already by this
time. However, the patent for the Salisbury absorber was filed in 1952. For the Jaumann
absorber the author has not found any such literature reference.

The difference between the Jaumann and Salisbury absorber can be easily understood by
considering their principle of operation. In a Salisbury absorber losses are created with a
resistive sheet that is placed at a distance of λ/4 over the ground plane, whereas in Jau-
mann absorbers resistive sheets are stacked over each other. The approximative distance
of the resistive sheets in the Jaumann absorber is quarter wavelength (measured at the cen-
ter frequency of the absorption band). By stacking the resistive sheets at an approximate
quarter wavelength distance from each other, a number of closely positioned resonances
can be created and a wider absorption band can be achieved compared to the Salisbury
absorber. Actually, although the Jaumann and Salisbury absorbers have been invented
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apparently at the same time, the Jaumann absorber can easily be considered to be a mod-
ification of the simpler Salisbury absorber. The principle of operation of both of them
is the same. In contrast to the Jaumann and Salisbury absorbers, in Dallenbach absorber
no resistive sheets are used. Instead, the incident power is dissipated in lossy homoge-
nous dielectric materials layered on top of each other over a ground plane. Otherwise the
Dallenbach absorber shares the similarities of the Jaumann and Salisbury absorbers.

In all the aforementioned absorbers the absorption mechanism relies on the quarter wave-
length resonance of the grounded dielectric substrate. Depending on the application, the
bandwidth of such an absorber may not be sufficient. One possibility to enlarge the ab-
sorption band is to use the same mechanism to create multiple resonances in the absorber,
as is done in Jaumann absorber. Another possibility is to use different mechanism to
create additional resonances in the vicinity of the primary, λ/4-wavelength, resonance of
the grounded dielectric substrate. As an example, Reinert et al. [111] included chiral in-
clusions to the Dallenbach absorber’s dielectric coatings and used the chiral resonance to
enhance the absorption and enlarge the bandwidth of the absorber. Chandran et al. [112]
used complex fractal geometries in a similar way. Further, in [113] Terracher et al. used
a frequency selective surface (FSS) on top of a grounded dielectric substrate. All these
absorption enhancement techniques widen the absorption band by creating an additional
resonance in the vicinity of the λ/4-resonance. Because of this the electrical thickness of
the structure remains still considerably large.

In order to reduce the electrical thickness of the structure, artificial impedance surfaces,
or high-impedance surfaces, can be used for electromagnetic absorbers. This type of
absorbers relate closely to the Salisbury absorber: The resonance is achieved by using
the properties of the high-impedance surface and the absorption by a separate resistive
sheet [114]. Also, one can incorporate the losses directly into the capacitive sheet over
the grounded dielectric slab as was done by Kern et al. [115]. The resistive sheet can
be realized by using commercially available resistive materials on top of the capacitive
sheet or between the metallic parts of the capacitive sheet [116, 117]. One can even
connect resistors between the adjacent metallic parts of the capacitive sheet of the high-
impedance surface [118, 119]. The drawback of these designs, especially the ones using
lumped resistors, is the inherent difficult way of realizing the resistive sheet (i.e. the high
cost of high frequency lumped resistors and the number of spot welding).

Tretyakov et al. [120] proposed a simple way to realize the wanted absorption behavior in
the artificial impedance surfaces: One simply needs to add losses to the grounded dielec-
tric substrate. This method relates actually closely with the use of the resistive sheets. In
electrically thin absorbers the amplitude of the electric fields is rather weak everywhere
in the substrate except on the capacitive mesh (or rather between the adjacent patches). A
part of the fringing electric fields between the patches exhibit the dielectric substrate that
induces losses to the system. The losses can be therefore considered as a certain averaged
sheet resistance acting on the surface current. Further, in [120] the stability with respect
to the TM-polarized incidence angle was obtained by using metallic vias connecting the
patches to the ground plane. The purpose was to use the extreme anisotropy of the wire
medium formed by the metallic wires in the high-impedance surface favorably, and excite
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only the TEM mode in the array of vias treated as the wire medium slab. Apart from this
design topology, a similar approach as in [120] can be used to increase the absorption of
resonant frequency selective surfaces in free space, as done in [121, 122].

5.2.2 Enlarging the operational band of resonant electromagnetic absorbers

In [VI] a novel technique to increase the absorption band of electromagnetic absorbers is
proposed. The technique exploits an additional resonance for the TM-polarized oblique
incidence in mushroom-like artificial impedance surfaces, when the plasma frequency of
the wire medium slab is close to the original resonance of the artificial impedance surface.
The analytical results are verified with numerical simulations done with CST Microwave
Studio [123].

As an example, in [VI] an absorber based on a mushroom structure was considered with
the following design parameters (following the notations of Fig. 4.5): a = b = 10mm,
w = 1.25mm, h = 3mm, εr = 2(1 − j0.5), and the radius of the wires was varied.
The normalized plasma frequencies for the proposed structure and for the wire radii of
0.01mm and 0.1mm read, respectively, 3.6 GHz and 4.7 GHz. In Fig. 5.1 the power re-
flection factors are given for oblique incidence θ = 60◦. The analytical results have been
calculated using (4.5) and (4.6). In Fig. 5.1 (a) the power reflection factors are given for
the TE fields. As expected, the metallic wires have practically no effect on the perfor-
mance of the absorber for the TE polarization. For TM polarization the power reflection
factors are shown in Fig. 5.1 (b). In addition to the structural resonance of the mushroom
structure close to the plasma frequency also a plasma resonance of the wire medium is
clearly seen in the results. For the wire radius of 0.01 mm the additional resonance lies
reasonably far away from the primary structural artificial impedance surface resonance at
approximately 7.5 GHz. For the wire radius of 0.1 mm the additional resonance is closer
to the primary resonance and the absorption is enhanced considerably over the whole
band.

The agreement between the analytical and simulation results is good. The results in
Fig. 5.1 clearly show that by designing the plasma frequency of the wire medium close to
the primary resonance of the artificial impedance surface, the absorption can be enhanced
for the TM polarization. Evidently, the wires have no effect on the TE fields, which
is a drawback of this technique. However, as the fields impinging on the absorber in
practice are randomly polarized (excluding applications in which the absorbers are used
in anechoic chambers), the proposed modification introduces an overall lowering of the
reflected power.
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(a)

(b)

Figure 5.1: The effect of the vias to the power reflection factors for (a) TE and (b) TM
polarization. The angle of incidence is 60◦. For the TE-polarized case the analytical
results are the same for different via radii and in the absence of vias. The parameters
of the absorber are the following: a = b = 10mm, w = 1.25mm, h = 3mm, and
εr = 2(1− j0.5).

5.3 Impedance waveguides

5.3.1 Review of the literature and background

In impedance waveguides certain impedance boundaries are used as sidewalls of a waveg-
uiding structure. Such impedance boundaries may be dielectric coated metal surfaces,
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corrugated surfaces, or artificial impedance surfaces to name a few examples. Apparently
the first analysis on the propagation properties of parallel-plate impedance waveguides
have been made by Barlow [124] and Wait [125]. In 1965 Barlow [124] proposed initially
to use the shielded impedance surfaces for surface waves that would be shielded from
the surrounding environment. In [124] Barlow used corrugated surfaces to support TM-
polarized surface waves. Later, in 1967, Wait [125] investigated the possibility to have
also waveguide modes excited in the shielded surface wave guide and the contaminat-
ing effect of the waveguide modes to the initial surface wave mode suggested by Barlow.
Barlow later found that the structure which he proposed supports also a quasi-TEM wave-
guide mode [126]. In [126, 127] also coaxial structures were considered. Later, in 1971,
Dybdal [128] expanded the analysis to rectangular impedance waveguides. In a simi-
lar structure to an impedance waveguide, this type of waveguiding structures have been
used in horn antennas for beam shaping [129–132]. Further, in waveguiding structures
corrugated surfaces have been used to transform the fields inside the waveguides [133].

In corrugated surfaces, parallel slits are cut into a metal slab. At the frequency, where the
corrugated surface appears as a magnetic wall for the TM fields, the electrical thickness
of the corrugations equals to a quarter wavelength. The obvious drawback of the corru-
gated surfaces is that it can support only TM-polarized surface waves. For TE fields the
corrugated surface appears as a metal surface. Therefore the above analyses have been
restricted to TM fields. Also, due to the bulky structure of the corrugated surfaces, any
tuning of the properties of the surface becomes unavoidably very difficult. Therefore, also
other types of artificial impedance surfaces have been used in impedance waveguides. Ar-
tificial impedance surfaces composed of capacitive grids have the possibility to be easily
tuned. For instance, Higgins and Xin et al. [82, 134] used this possibility to create an
electrically tunable phase shifter with voltage tunable varactors. Later, the same principle
was used in [101] with MEMS- (microelectromechanical systems) based tunable capaci-
tors. Other than phase shifters, the impedance waveguides are used in stop-band [135] or
band-pass [136] filters. In [82, 101, 134–136] the emphasis has been on proving the con-
cept of the application rather than on the analysis of different modes in the waveguides.
Also, only TE fields have been considered. More recently, Kehn et al. [137] have made
analysis of dispersion in a rectangular waveguide with non-tunable impedance sidewalls
numerically by using the method of moments.

5.3.2 Tunable impedance waveguides

In [II] the propagation properties of parallel-plate impedance waveguides are studied us-
ing the plane wave interpretation. In the plane wave interpretation the waveguide modes
are considered to be formed by a set of plane waves with certain transverse and longitu-
dinal wave numbers. To illustrate the problem, the geometry of a two-dimensional wave-
guide is shown in Fig. 5.2. The number of transverse wave vector components is limited
to one as no propagation occurs in the x-direction. In the y-direction the waveguide has
been confined by impedance surfaces Z±

inp. The superscript ± refers to the upper/lower
surface, respectively. In Fig. 5.2 β is the propagation constant along the waveguide, k is
the wave number, and ky is the wave number in the y-direction, or the transverse wave
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number. The dispersion relations for the structure can be solved from the boundary con-
ditions at the impedance surface. The dispersion equations can be written for the TE and
TM fields, respectively, as [II]

tan(kyd) = jη
k

ky

Z+
inp + Z−

inp

η2 k
2

k2y
+ Z+

inpZ
−
inp

, (5.1)
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ky
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η2
k2y
k2

+ Z+
inpZ

−
inp

, (5.2)

where η is the wave impedance in the medium filling the waveguide, d is the distance
between the two impedance surfaces, and ky = ±√

k2 − β2 is the transverse wave num-
ber. By choosing the “minus”-branch of the transverse wave number, also surface modes
on the waveguide sidewalls are predicted by the above dispersion equations. Actually,
although the dispersion equations (5.1) and (5.2) are initially derived for a parallel-plate
impedance waveguide having artificial impedance surfaces as sidewalls, they can be ap-
plied to more general cases. As a matter of fact, equations (5.1) and (5.2) are applicable
for all cases where wave propagation between two impedance surfaces is studied, such as
for surface waves in different structures. More recently, in 2009, similar results for the
dispersion equations as presented here have been obtained independently by Holloway et
al. [138].

As an example, in [II] a parallel-plate waveguide whose height was 7 mm was considered.
In the Ka-band (26-40 GHz) only one waveguide mode would propagate in a metallic
parallel-plate waveguide with the same dimension. Also, a case where the separation
between the waveguide sidewalls is 3.5 mm was considered, so that the Ka-band lies
below the cut-off. The waveguide was confined between identical mushroom surfaces
composed of a capacitive mesh with the following design parameters: a = b = 1mm,
g = 0.1mm, h = 0.2mm, εr = 4, and r0 = 0.05mm. In addition, a 60-pF capacitor was
connected between the adjacent patches. The medium inside the impedance waveguide
was air. In Figs. 5.3 and 5.4 the propagation properties in the 7-mm and 3.5-mm high
waveguides, respectively, are illustrated. The analytical results show good agreement
with the simulation results done with HFSS.

Figure 5.2: Illustration of the two-dimensional waveguide confined by two impedance
surfaces.
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Figure 5.3: The propagation properties of a 7-mm high impedance waveguide with two
tunable impedance surfaces. The value of the varactor capacitance is Cvar = 60 fF. The
fundamental modes of the metal waveguide are plotted with dash-dot lines. βTE and βTM

refer here to the propagation constants of the TE and TM modes, respectively.

Figure 5.4: The propagation properties of a 3.5-mm below-cutoff impedance waveguide
with two tunable impedance surfaces. The value of the varactor capacitance is Cvar =
60 fF. βTE and βTM refer here to the propagation constants of the TE and TM modes,
respectively.

5.4 Electromagnetic band-gap structures in antenna applica-
tions

5.4.1 Review of the literature and background

Artificial impedance surfaces can be used also to suppress surface wave propagation. In
this case for a given frequency band there exists no eigenvalue solution for surface waves.
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For this reason this type of structures are also referred to as electromagnetic band-gap
(EBG) structures with a close reference to photonic band-gap structures (PBG).

Corrugated surfaces, being a type of artificial impedance surface, have been widely stud-
ied in antenna applications since the 1950’s and even earlier [57, 139–148]. Also EBG
structures [149–153] and, more recently, artificial impedance surfaces studied in this the-
sis have been used in antenna applications [79, 92–95]. Here, attention is paid especially
to the possibility to suppress surface waves on the impedance surface and this way en-
hance the radiation properties of the antenna. In finite-size metallic ground planes for
antennas, the edges of the ground plane always influence the radiation pattern of the an-
tenna due to the surface waves that reradiate from the edges. Further, the surface waves
reduce the antenna efficiency by allowing energy to be coupled into bound modes travel-
ing inside the surface structure rather than to propagating modes in free space. With an
EBG surface these surface wave modes can be suppressed and a good radiation pattern
can be restored.

Obviously, in order to succeed in this design, one should have knowledge on the dis-
persion behavior of the surface wave modes. This cannot be achieved analytically or
even semi-analytically without an accurate model for the impedance surface. The disper-
sion of surface waves on a given artificial impedance surface can be solved by using the
transverse resonance condition, as is done for instance in [18, 51, 154, 155]. In [51] the
dispersion properties of artificial impedance surfaces were studied semi-analytically. This
means that the closed-form expressions for the surface impedance were functions of the
transverse wave number. Therefore the dispersion equations resulting from the transverse
resonance condition needed to be solved numerically. Naturally, approximations on the
properties of the artificial impedance surfaces can be made in order to write the surface
impedance in a non-spatially dispersive form and facilitate the calculation of dispersion
properties of the surface waves on these surfaces. Such approximations can be done,
for instance, for artificial impedance surfaces comprising high-εr substrates or relatively
high, densely packed wire medium slabs (the extreme anisotropy in the wire medium).
No verification of the results were given in [51].

5.4.2 Analysis of the surface waves

In [VII] a comparison of the dispersion properties of the surface waves on an artificial
impedance surface without metallic vias and on a mushroom surface was made. As an
example, the following design parameters for the surfaces were considered in [VII] (fol-
lowing the notations in Fig. (4.3) and (4.5)): a = b = 2mm, h = 1mm, w = 0.2mm,
εr = 10.2, and when applicable r0 = 0.05mm. In Figs. 5.5 and 5.6 the dispersion be-
havior of the surface waves for the artificial impedance surface and for the mushroom
surface are shown, respectively. The results have been verified with HFSS simulations.
The proper modes refer to the physical solutions of the transverse resonance condition
whereas the improper ones refer to the nonphysical solutions satisfying the same condi-
tion. Both solutions are obtained from different branches of the same dispersion equation.
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It is shown in Figs. 5.5-5.6 and in [VII] that for the surface structure without wires there
exists no band gap, whereas for the surface structure with vias there exists one. Further-
more, for the TM surface waves on the artificial impedance surface with wires there exists
a backward-wave solution predicted also by the analytical model.
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Figure 5.5: Dispersion behavior of surface waves on the HIS without vias. (a) The real
part of the normalized propagation constant. (b) The imaginary part of the normalized
propagation constant.
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Figure 5.6: Dispersion behavior of surface waves on the HIS with vias. (a) The real
part of the normalized propagation constant. (b) The imaginary part of the normalized
propagation constant.
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5.5 Summary of related publications

In [VI] a new type of technique to enlarge the absorption band of a resonant-type absorber
is introduced. The technique is based on the use of the plasma resonance of wire medium
in the context of mushroom structure (see [III]). When the plasma resonance of the wire
medium is designed close to the main structural resonance of the mushroom-type artificial
impedance surface, the total absorption of the structure is enhanced and the operational
bandwidth enlarged. As long as the wire medium is excited by the incident fields, the
plasma resonance is independent from the incidence angle.

In [II] a semi-analytical model is derived for calculating the propagation constants in an
impedance waveguide. In the derivations it is assumed that the different modes in the
waveguide consist of a set of plane waves, for which the response at the boundaries of
the waveguide is well known from our previous works. This model is used to study the
propagation properties in different tunable impedance waveguides. Depending on the
size of the waveguide different phenomena are found in tunable impedance waveguides.
In an oversized waveguide it is possible to convert one mode to another. In a single-mode
waveguide one can have multi-mode propagation and band gaps. Also, forward- as well
as backward-wave propagation can occur in a below-cutoff waveguide.

Finally, in [VII] a comparative study on the propagation properties of surface waves on
different type of artificial impedance surfaces is made. The objective of the study has
been to verify that the analytical expressions for the surface impedance of different types
of artificial impedance surfaces can be used to calculated the propagation properties of
surface waves.
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6 Conclusions

In this thesis several types of grids, artificial impedance surfaces, and mushroom struc-
tures have been studied. Emphasis has been on the analytical modeling of these struc-
tures. These surfaces posses many features that can be exploited in different applications
in radio engineering.

First, capacitive grids and meshes have been studied. An averaged boundary condition
for the oblique incidence has been derived for these structures starting from the bound-
ary conditions for their complementary structures and using the approximate Babinet’s
principle. The resulting boundary conditions are applicable not only for screens in homo-
geneous materials, but also for screens at an interface of two media. Comparison with the
existing results found in the literature as well as with numerical results has been made.
The derived boundary conditions for capacitive grids show good agreement with the re-
sults found in the literature. For capacitive meshes, the derived boundary conditions show
better agreement with the numerical results than the existing solutions.

Secondly, the averaged boundary conditions for capacitive screens have been used to de-
rive accurate boundary conditions for artificial impedance surfaces. Further, the effect
of wire medium composed of vertical metallic wires in the substrate of mushroom-like
impedance surfaces has been taken into account in the boundary conditions as well as
the effect of additional capacitances between the adjacent metallic patches or strips. The
effect that the spatial dispersion of the wire medium has on the characteristics of the
mushroom structures has been studied in detail. In the cases when the mushroom struc-
ture is electrically thin or when the wire medium is characterized with extreme anisotropy,
a local model can be used to characterize the properties of the wire medium in the mush-
room structure topology. It is found that in the case when the spatial dispersion in the wire
medium is suppressed, an additional resonance is created in the vicinity of the main res-
onance of the mushroom structure due to the plasma resonance of the wire medium. The
developed boundary conditions for artificial impedance surfaces and mushroom structures
have been verified in their region on validity using various numerical methods. Also, the
analytical results have been experimentally verified. Compared to other existing analyti-
cal solutions, the present results show better agreement with the numerical results.

Further, the properties of grounded uniaxial material slabs have been studied analytically.
The results show that it is possible to create an isotropic magnetic wall effect in the sur-
face plane (cf. AMC). This new design simplifies the manufacturing of the AMC planes
considerably. In the most promising case the magnetic wall effect can be realized for the
TM fields by having εn → 0. As an example, it has been shown that this type of surface
can be realized using wire medium at its plasma frequency and suppressing the spatial
dispersion of the wire medium. The analytical results have been verified numerically.

Finally, the studied mushroom structures have been applied to selected radio engineering
applications. These applications are the electromagnetic absorbers, impedance waveg-
uides, and electromagnetic band-gap structures. In electromagnetic absorbers, the ab-
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sorption band of the absorbers is enlarged and the absorption is enhanced by using the
additional resonance in the mushroom structure. Although the additional resonance oc-
curs only for the TM fields, in practice waves impinging on the surface have random
polarization. Because of this, the proposed modification introduces an average lowering
in the reflected power in such applications, for instance, that aim to reduce the radar cross
section of an object. The analytical results have been verified with numerical simulations
and the agreement between the results is shown to be good.

In impedance waveguides, the possibility to tune the resonance frequency of the mush-
room structures has been used to create tunable impedance waveguides. An analytical
model for the dispersion properties of waves in a parallel-plate waveguide has been de-
rived. Actually, in its generality, the model can be used to model waves in any environ-
ment confined with two impedance boundaries. The model is used to study the propaga-
tion properties in the impedance waveguide. In waveguides of electrically small height
multi-mode propagation and band gaps are shown. Furthermore, forward- as well as
backward-wave propagation in a below-cutoff waveguide is presented. The results are
verified with numerical simulations.

In the case of electromagnetic band-gap structures, comparison between the dispersion
properties of artificial impedance surfaces and mushroom-structures is made semi-analytically
and numerically. Evidently, the dispersion properties of these surfaces are very different
for the TM surface waves. Moreover, the preceding analytical models for these surfaces
are verified to be accurate even for modeling of surface waves.
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