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ABSTRACT

Author Sampo Vesa
Title Studies on Binaural and Monaural Signal Analysis

— Methods and Applications

Sound signals can contain a lot of information about the environment
and the sound sources present in it. This thesis presents novel contribu-
tions to the analysis of binaural and monaural sound signals. Some new
applications are introduced in this work, but the emphasis is on analysis
methods. The three main topics of the thesis are computational estimation
of sound source distance, analysis of binaural room impulse responses, and
applications intended for augmented reality audio.

A novel method for binaural sound source distance estimation is pro-
posed. The method is based on learning the coherence between the sounds
entering the left and right ears. Comparisons to an earlier approach are
also made. It is shown that these kinds of learning methods can correctly
recognize the distance of a speech sound source in most cases.

Methods for analyzing binaural room impulse responses are investi-
gated. These methods are able to locate the early reflections in time and
also to estimate their directions of arrival. This challenging problem could
not be tackled completely, but this part of the work is an important step to-
wards accurate estimation of the individual early reflections from a binaural
room impulse response.

As the third part of the thesis, applications of sound signal analysis
are studied. The most notable contributions are a novel eyes-free user
interface controlled by finger snaps, and an investigation on the importance
of features in audio surveillance.

The results of this thesis are steps towards building machines that can
obtain information on the surrounding environment based on sound. In
particular, the research into sound source distance estimation functions as
important basic research in this area. The applications presented could
be valuable in future telecommunications scenarios, such as augmented
reality audio.

UDC 534.8, 621.39, 004.934, 004.85
Keywords audio signal analysis, audio signal processing,

augmented reality audio, binaural signals, sound
source distance, room impulse responses,
reverberation time, eyes-free user interfaces, audio
surveillance
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TIIVISTELMÄ

Tekijä Sampo Vesa
Työn nimi Binauraalisten ja monauraalisten signaalien

analyysimenetelmiä ja niiden sovelluksia

Äänisignaalit sisältävät paljon tietoa ympäristöstä ja siinä olevista
äänilähteistä. Tässä väitöskirjassa esitetään uusia menetelmiä binauraalis-
ten ja monauraalisten äänisignaalien analysointiin. Lisäksi tutkitaan sovel-
luksia, jotka hyödyntävät äänisignaaleista saatua informaatiota. Väitöskirjan
kolme pääaihetta ovat äänilähteen etäisyyden laskennallinen estimointi,
binauraalisten huonevasteiden analyysi ja lisättyyn äänitodellisuuteen liit-
tyvät sovellukset.

Väitöskirjassa esitetään uusi binauraalinen menetelmä äänilähteen
etäisyyden estimointiin. Menetelmä perustuu korvien äänisignaalien välisen
koherenssin oppimiseen. Esitettyä menetelmää verrataan kirjallisuudesta
löytyvään aikaisempaan menetelmään. Tulokset osoittavat, että oppimiseen
perustuvilla paikannusmenetelmillä on mahdollista tunnistaa puheääniläh-
teen etäisyys useimmissa tapauksissa.

Väitöstyössä tutkitaan myös binauraalisten huonevasteiden analyysiä.
Esitetyillä menetelmillä voidaan selvittää varhaisten heijastusten saapumisa-
jat sekä myös estimoida niiden tulokulmat. Tätä haastavaa ongelmaa ei saatu
täysin ratkaistua, mutta tämä väitöskirjan osa on tärkeä askel kohti tarkkaa yk-
sittäisten varhaisten heijastusten estimointia binauraalisista huonevasteista.

Väitöskirjan kolmannessa osassa tutkitaan äänisignaalien analyysin
sovelluksia. Tärkeimpiä tuloksia ovat uusi sormien napsutuksella ohjatta-
va ei-visuaalinen käyttöliittymä ja äänivalvonnassa käytettävien piirteiden
painoarvot.

Tämän väitöskirjan tulokset ovat askelia kohti älykkäitä kuulevia koneita.
Varsinkin etäisyyden estimointiin liittyvä tutkimus on tärkeää perustutkimus-
ta tällä alueella. Esitetyt sovellukset voivat olla hyödyllisiä tulevaisuuden
matkaviestintäskenaarioissa, kuten lisätyssä äänitodellisuudessa.

UDK 534.8, 621.39, 004.934, 004.85
Avainsanat äänisignaalin analyysi, digitaalinen äänenkäsittely,

lisätty äänitodellisuus, binauraaliset signaalit,
äänilähteen etäisyys, huonevasteet, jälkikaiunta-aika,
ei-visuaaliset käyttöliittymät, äänivalvonta
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1 INTRODUCTION

Every day we are bombarded with sounds. Our hearing system is constantly
analyzing the stream of sound entering the ear canals. Based on our hearing
abilities, we can know the direction where the sound originates, how far
away is its source, and what is the most likely cause of the sound. If the
sound is speech, we can then attribute specific semantic meaning to series
of sounds that, by themselves, do not carry any specific meaning. Even
when blindfolded, we can simultaneously get some idea of the space we are
in — is it a cathedral, a small closet, or are we outside on a field? When not
in excessively noisy conditions, this analysis happens effortlessly. It is easy
to take all of this for granted. But, when examined more closely, it becomes
apparent that complex processing on several different levels by our sensory
and nervous system is necessary.

When the sound has been converted to neural impulses by the auditory
system, some mechanism is needed for analyzing the information received.
The brain has to make some sense of the sensory information. If there are
many sound sources present in the environment, how can they be separated
and grouped so that it is possible to recognize their causes? The parts of
the sound signal that originate from the same object in the environment
have to be grouped together. This is the problem that a field called auditory
scene analysis attempts to solve [18]. This processing is the front end that
is required for the higher processing stages to get a meaningful perception
of the complex sound environment.

In addition to allowing intra-species communication, it is likely that
hearing in humans — and other mammals — has also developed due to the
possibility of detecting impending danger by the sound that it causes [46],
before our visual senses can detect the possible threat. This is possible,
because sound waves bend around physical obstacles by a phenomenon
called diffraction. Even if the cause of the potential threat is in the field of
vision, hearing becomes useful when it is too dark for the visual senses to
pick up enough information from the environment.

Recognizing the most likely cause of the sound, e.g. a lion roaring, has
been vital for survival. But knowing the cause of the sound has not been
enough, because whether or not and what kind of action needs to be taken
when hearing a sound is dependent also on the spatial location of the sound
source. The process of estimating the location where a sound originates is
termed sound source localization [124]. Knowing the location by hearing
modality first makes it possible to direct the eyes towards the source of the
sound. Also, localization based on sound, without having to turn the head,
permits localization of short sound events that would otherwise be missed
[66]. Knowing the location by hearing modality first also makes it possible
to direct the eyes towards the source of the sound.

This thesis deals with analysis of sounds using a computer. The idea is
to gather information on the environment by analyzing sounds recorded by
microphones present in the environment. The microphones can be station-
ary sensors or they can be moving along with the user of some mobile device.

STUDIES ON BINAURAL AND MONAURAL SIGNAL ANALYSIS —METHODS AND APPLICATIONS 13



One way of approaching the analysis task is by constructing computational
auditory models that mimic the auditory system of humans as faithfully and
accurately as possible. Often these models act as front-ends that produce
such features that the higher stages of the auditory system then analyze. This
thesis takes an engineering-oriented approach, where the auditory system is
not accurately modeled. Instead, the focus is on solving the analysis tasks
using different means — some of which can be auditorily motivated. The
emphasis is on methods that are suitable for real-time processing. Many of
the methods presented in this thesis have been implemented in real-time
as part of the work.

1.1 Scope of this thesis

This thesis is concerned both with analysis of sound source content and its
location in space, as well as properties of the space itself. The analysis is
performed on sound signals recorded from the entrances of the ear canals of
humans. This binaural, two-channel signal contains the same information
that is available to the human auditory system. All of the publications in the
thesis (with the exception of publication [P7]) are based on a scenario where
a binaural sound signal recorded from the ears of the user is available for
analysis. The information obtained on the three mentioned aspects of the
audio environment can be useful in future telecommunication applications
and hearing aids. A few applications are, therefore, also presented as a part
of the thesis.

More specifically, this thesis concentrates on certain subtopics and ap-
plications of sound signal analysis. These topics are, in order of importance,
the following:

• Binaural estimation of sound source distance
Publications [P1] and [P2] present approaches to computational es-
timation of the line-of-sight distance between a sound source and a
listener inside a room. One of the main contributions of this thesis
is the proposal of a new machine learning approach for sound source
distance estimation, and its comparison to a previously presented
binaural localization method [146] in Publication [P2].

• Analysis of binaural room impulse responses
Publications [P3] and [P4] present novel wavelet-based methods for
the analysis of binaural room impulse responses (BRIRs). Publica-
tion [P3] presents a simple method for time-localizing reflections in
a BRIR. The method is extended in publication [P4] to include seg-
mentation of the reflections in time and frequency, making it possible
to estimate the azimuth angle (the angle of arrival in the lateral plane)
of the reflections.

• Applications to augmented reality audio
Three different applications of sound signal analysis to augmented
reality audio (ARA) are presented in this thesis (see Section 2.1 for a
brief introduction to ARA). The first of these is a real-time method for
blind estimation of the reverberation time (RT) based on binaural sig-
nals [P5]. The method can be used to adjust the reverberation times
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Table 1.1: Classification of the publications of this thesis.
sound source location environment properties sound source content

distance (speech) [P1] RT [P5] finger snaps [P6]
distance (speech) [P2] reflections [P3] short audio events [P7]

azimuth (transients) [P6] reflections [P4]

in auralization of virtual sources within the ARA context. The second
application is an eyes-free user interface that is controlled by binau-
rally detected and localized finger snaps [P6]. The interface is used
to control the play list of music player software. The third application
is audio surveillance — automatic monitoring of the environment
based on sound, using pattern recognition techniques. Publication
[P7] describes a study of finding the optimal set of features for audio
surveillance purposes.

Another way to categorize the topics of the thesis is the type of informa-
tion that is obtained from analysis of audio signals. Table 1.1 classifies the
publications into the following categories:

• Sound source location
The publications relating to sound source distance estimation ([P1],
[P2]) are concerned on the location of the sound source, as the
position of a sound source relative to a listener can be described by
two angles and a distance. The eyes-free user interface ([P6]) is based
on estimating the azimuth angles of finger snaps and mapping the
sectors that the angles belong to into commands for the program
or device that is controlled with the interface, for example an MP3
player.

• Environment properties
Publication [P5] is about blind estimation of reverberation time. The
reverberation time is a property of the room (environment), which
characterizes the rate of sound energy decay in the room. The BRIR
analysis method presented in publications [P3] and [P4] finds the
times and directions of arrival of early reflections in a room. There-
fore, that part of the work also falls into this category.

• Sound source content
The user interface described in [P6] includes a simple method of
classifying transient sounds into finger snaps and other sounds. The
audio surveillance system in [P7] analyzes all sounds that deviate
enough from the background sound and classifies them into different
categories in an unsupervised manner. Therefore, the content of the
sound, that is, its cause, is the main area of interest. Examples of
these causes are doors, cars, and keyboards.

STUDIES ON BINAURAL AND MONAURAL SIGNAL ANALYSIS —METHODS AND APPLICATIONS 15



1.2 Organization of the thesis

This doctoral thesis consists of a compendium and seven publications. The
next chapter describes the ARA system, which is the background from which
much of the research has originated. Following that, a separate chapter is
devoted to each of the three main themes, which are distance estimation,
impulse response analysis, and applications. In these chapters, previous
research on the area is first briefly reviewed, followed by a summary of the
new contributions to the field by the author. The compendium ends with
a description of the contributions of the author.
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2 BACKGROUND

The research leading to this thesis originates from groundwork on aug-
mented reality audio carried out at the Helsinki University of Technology
(TKK). Three of the seven publications ([P5], [P6], and [P7]) of the thesis
present applications of sound signal analysis in the context of ARA technol-
ogy. The remaining publications also present methods that could be utilized
in an ARA context. Therefore, a brief introduction to ARA technology is
presented in this chapter.

2.1 Augmented reality audio

The main idea in augmented reality audio is to add virtual and synthetic
sound sources to the natural sound environment around a person [64, 63].
The goal is to be able to preserve the experience of the surrounding sound
environment, keeping it as natural as possible. In many application scenar-
ios, the added sounds should also fit the real environment as transparently
as possible. This can be accomplished by a combination of signal process-
ing techniques and a special binaural headset, which consists of possibly
insulating ear plugs that have actuators (earphones) facing the ear canal
and small microphones on the other side. The terms wearable augmented
reality audio (WARA) [64] and mobile augmented reality audio (MARA)
[63] have been used to describe an ARA system where the user wears the
headset and the system is mobile in the usage situation.

Figure 2.1: A listener in a pseudo-acoustic environment (after [64]).

Figure 2.1 illustrates a user of an ARA system in a situation where the
sound of the outside world is picked up by the microphones and passed
through to the ear canal side by routing it through the earphones. The
user hears a representation of the surrounding environment. Because the
experience may not exactly match that of the situation without the headset,
the representation is called the pseudo-acoustic environment [64, 63].

In pseudo-acoustic reproduction, several factors in the headset con-
tribute to colorations as the sound signal of the outside world is passed
through the earphone to the ear canal. Depending on the type of the head-
set [153], there can be leakage between the headset and the skin, leakage

STUDIES ON BINAURAL AND MONAURAL SIGNAL ANALYSIS —METHODS AND APPLICATIONS 17
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Figure 2.2: A listener in an augmented environment (after [64]).

through the headset, as well as leakage caused by tissue and bone conduc-
tion [63, 152, 153, 133, 157]. The transfer functions of the microphone and
the earphone also have an effect on the signal [152]. Furthermore, when
the ear canal is closed, the canal changes from an open tube to a closed
one, affecting the resonances of the tube [133, 157].

In order to make the perceived pseudo-acoustic environment sound as
natural as possible, special filters need to be introduced to equalize the
coloration [63, 152, 153, 133, 157]. When equalizing the contribution
of different types of leakage and tissue conduction, it is necessary to use
equalization filters that have as little latency as possible [152, 133]. This
necessitates the use of analog components to get the latency low enough.
The equalization can take place in an ARA mixer [133], which also transmits
the pseudo-acoustic environment from the microphones to the earphones
and adds virtual sound sources to the mix (Fig. 2.2). These virtual sources
can consist of, e.g., location-based advertisements, an auditory calendar, or
auditory “post-it-notes” (messages played back when the user arrives at a
certain location) [98, 142]. A usability study of the ARA headset combined
with an ARA mixer when listening to natural sounds (the pseudo-acoustic
environment) is presented in [154].

Figure 2.3 shows one of the simplest applications of ARA; binaural telep-
resence where the user at a remote location hears the sound environment
at the location of another user. Two-way binaural communication can be
similarly enabled. However, the voice of the remote end speaker will be
heard at the center of the head by the local user. To mitigate this phe-
nomenon, the voice of the far-end user can be moved away from the center
while keeping the other parts of the remote binaural signal intact [97].

The entire ARA system is illustrated in Fig. 2.4. The bottom part of
the diagram shows how the virtual sounds are auralized. The auralization
part of the system includes a module for room simulation and binaural
reproduction by using head-related transfer functions (HRTFs). In head-
phone listening the sound sources are often perceived to be located inside
the head. This phenomenon is termed inside-the-head locatedness [14].
In order to make the virtual sound source sound convincing, the listener

18 STUDIES ON BINAURAL AND MONAURAL SIGNAL ANALYSIS —METHODS AND APPLICATIONS



Figure 2.3: One user experiences the sound environment heard by another
user (after [64]).

has to perceive the sound source being located outside the head (external-
ized) [63]. This can be achieved by using personalized HRTFs measured
from the listener, which, unfortunately is not practical enough. Moreover,
HRTFs are typically measured in free field, which makes them applicable
only in anechoic situations. One possible solution for achieving external-
ization is to add early reflections and reverberation to the virtual sources. In
a listening test using an ARA headset, a generic HRTF response measured
from just one subject combined with early reflections and statistical late
reverberation was found to result in adequate externalization [63].

Virtual sound sources (events) can be categorized as freely-floating or
localized sources (events) [98]. The former refers to positioning the sources
so that the only reference point is the head of the user, while the latter
refers to localizing the events to objects in the real world. For freely-floating
virtual sources to be perceived as natural, the location and orientation of the
head of the user needs to be known at each moment in time. Head tracking
is therefore necessary. Information from the head tracking system can be
utilized to keep a sound source at a certain location (localized source) even
if the user moves or turns his/her head. Moreover, many of the applications
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MIXERMIXER
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LOCATION AND ORIENTATION

ACOUSTICS PARAMETERS

PREPROCESSING FOR
TRANSMISSION

OUTPUT SIGNAL

INPUT

SIGNAL

Figure 2.4: A generic diagram of an augmented reality audio system (after
[64]).
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of ARA technology, e.g., location-based advertisements, need the knowledge
of the location of the user. Sometimes it is appropriate to know the location
on a local scale, e.g., where the user is located inside a building. A global
scale is appropriate when the user is in outdoor environments [63]. In
outdoor use, it is possible to use the Global Positioning System (GPS) for
tracking the location of the user [63, 123]. The location of the user can be
also utilized in gaming applications [123].

For inside environments, acoustic head tracking [155, 156, 80] can be
utilized to avoid using much extra equipment, such as magnetic trackers
(see [107] for a review of tracking technologies). In acoustic head track-
ing as proposed in [155, 156, 80], the common sound source localization
paradigm of a moving sound source and a static microphone array is re-
versed. The array consists of the two microphones worn by the user of the
ARA headset, and the anchor sounds that are played back from one or more
static loudspeakers. While the anchor sound could also be a sound source
already present in the environment, e.g., a computer or an air shaft, using
a known reference signal as the anchor will reduce the effect of interfering
sounds [155]. The location and orientation of the head of the user can be
obtained based on the cross-correlation between the received signals and
the known anchor source [155, 156, 80]. By using high frequencies in the
anchor sound it is possible to reduce the annoyance and sensitivity to envi-
ronmental noise [80]. When using multiple anchor sounds, it is necessary
to generate the anchor signals so that they do not overlap in frequency [80].

2.2 Relationship between ARA and this thesis

The research on ARA conducted at TKK has concentrated on three areas:

1. Hardware

2. Algorithms

3. Applications

Table 2.1 categorizes all publications (excluding master’s theses) related
to ARA research at TKK into these three classes. The publications of this
thesis are also shown in order to make clear which parts of ARA research
they relate to. An overview of the ARA system is presented in [64] and [63].
The research related to hardware has concentrated on the ARA headset
[152, 153, 154], and the ARA mixer [133, 157]. An ARA hardware and soft-
ware platform for mobile outdoor use has been described in [123]. Apart
from publications included in this thesis, research on algorithms has mostly
concentrated on acoustic head tracking [155, 156, 80]. One publication
[49] describes a method for acquiring BRIRs for auralization purposes on-
the-fly by using finger snaps made by the user as excitation. Ideas and
implementations of various applications of ARA have been presented in
[64, 98]. These applications include binaural telephony, speech commu-
nications with head-tracked auralization, an auditory sticker application, a
calendar application, and augmented sound events such as advertisements
and notifications. The problem of rendering the voice of the far-end user
in binaural telephony has been specifically addressed in [97].
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All of the publications of this thesis relate to the algorithms and applica-
tions of ARA. Since all of the publications deal with some kinds of analysis
algorithms, they are all listed under “Algorithms” in Table 2.1. Three of
the publications ([P5], [P6], [P7]) are also listed under “Applications”, as
they all are also concerned with a specific application, i.e. the incoming
sound signal is analyzed, and the information extracted is applied in the
ARA context. There are also connections to other fields such as hearing aids
research, where signal processing techniques for analyzing binaural signals
are also applied [61]. The following two question have been the starting
points for the research described in this thesis:

1. “What information on properties of the surrounding environment,
and the sound sources it contains, could be obtained by analyzing
the binaural signals picked up by the microphones of an ARA system?”

2. “How could this information be applied in the ARA context?”

Publications [P1]–[P4] are related to the first question. Two of them address
the problem of computational sound source distance estimation as a pattern
recognition (or learning) problem ([P1], [P2]). Although information on
the location of sound sources present in the environment could definitely
be useful in ARA, there are a few reasons why the method presented can
not directly be applied in ARA, though. The method requires a stationary
listener and the system also has to be trained for each configuration, i.e.
positioning of microphones and sources in each room, separately. The other
two of the publications concern binaural room impulse response analysis
([P3], [P4]). This topic does not necessarily directly apply to ARA, but the
inspiration for the research was the same question above.

The rest of the publications in this thesis are also concerned with the
second question. Some of the information obtained from the analysis of
the binaural signals can be utilized in making the virtual sources fit the
surrounding real sound environment better, e.g. by blindly estimating
the reverberation time from the binaural input and adjusting the RT of the
auralization to match that of the space, as is described in [P5]. The binaural
input can also be used as part of a user interface to the system. Publication
[P6] describes one possible ARA user-interface, based on detecting and
localizing finger snaps made by the user. The audio surveillance system
described in publication [P7] could also be used in an ARA context.
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Table 2.1: Classification of the publications related to the ARA research at
Helsinki University of Technology (TKK).

Hardware Algorithms Applications

[64] [64] [64]
[63] [155] [97]
[152] [156] [98]
[153] [80] [P5]
[133] [63] [P6]
[157] [P5] [P7]
[154] [P6] [123]
[123] [P3]

[P7]
[P1]
[P2]
[P4]
[49]
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3 COMPUTATIONAL SOUND SOURCE DISTANCE ESTIMATION

3.1 The problem of sound source distance estimation

Sound source distance estimation refers to estimating the line-of-sight dis-
tance, or range, between a sound source and a receiver (listener). In this
thesis, only passive distance estimation based solely on the sound signals that
are received, is considered. This approach can be contrasted with active
approaches such as echolocation used by bats [145], which involves sending
sound pulses to the environment and determining the distance based on the
received signals. In the work described in this thesis, sound source distance
estimation is only considered inside rooms, where there are reflections and
reverberation present.

Figure 3.1 depicts the problem of sound source distance estimation in
rooms. In this example there is a listener and two sound sources present.
Discrete echoes from the walls of the room and statistical diffuse late re-
verberation are also present in this scenario. The goal is to estimate the
distance to a sound source based on the received binaural or monaural sig-
nal only. Having two ears, humans naturally can utilize two sound signals
to estimate sound source distance. However, distance information can also
be present in monaurally recorded sounds as well.

When solving the problem of distance estimation using computers, it
would be easy to add a third microphone. Since with three microphones it
is possible to estimate two angles of arrival (or two time delays), the problem
of distance estimation is solved as the position of the sound source can
be easily revealed at the intersection defined by the two angles of arrival.
Adding even more microphones makes the localization more accurate.
Multi-microphone approaches utilize signal processing techniques for mi-
crophone arrays can be used for sound source localization [16]. However,
in this thesis only monaural and binaural signals are considered.

?

?

Figure 3.1: A depiction of the problem of sound source distance estimation
in rooms.
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3.2 Sound source distance perception cues

Human perception of sound source distance has been researched since
the beginning of the last century [48]. However, systematic research only
started during the 1960s (e.g. [33, 51]). A good summary of early research
into distance perception can be found in the Ph.D. thesis of J. Chomyszyn
[28]. Another Ph.D. thesis dealing with distance perception is the thesis of S.
Nielsen [114]. A review of later research in distance perception is presented
in [174], and a review that also concerns distance perception in animals can
be found in [113]. Distance rendering in virtual audio and auditory displays
is a topic that has gained some attention as well [143, 144, 119, 172]. There
are several distance cues that are utilized by the human auditory system.
These cues are combined in a flexible and adaptive manner in order to
obtain the perception of auditory distance [171].

Sound pressure level
Perhaps the intuitively clearest distance cue is the sound pressure level
(SPL), which for a point source obeys the so called 1/r law, i.e. the
sound pressure drops inversely proportional to distance r. This means that
for a point source in free field, the sound pressure level drops 6 dB for a
doubling of the distance. Obviously, this is an idealization, as natural sound
sources are rarely point sources and rarely in free field. Also, in human
perception this law only holds for distant sources as interaction with the
human head breaks this law at distances less than one meter [143]. Sound
pressure level correlates with perceived loudness of the sound. However, the
loudness of a familiar sound, such as speech, is often perceived as constant
even when the distance changes [175]. This is similar to the visual size
constancy effect, where the size of an object is perceived as constant while
the size of the retinal image changes with distance [70]. The type of speech
(whisper, conversation, shout), the perceived production level of speech
(measured at one meter from the speaker), and the level of presentation
(the sound pressure level at the listener) have been found to influence
distance judgments as well [24].

Spectral cues
Spectral cues also affect distance perception. At distances larger than 15 m,
air absorption decreases the levels of high frequencies more strongly com-
pared to the lower frequencies [174]. In rooms the frequency-dependent
absorption of the reflected sound also contributes to these spectral changes
[115]. Therefore, the relative levels between high and low frequency ranges
can act as a distance cue. However, it has been speculated that since low
frequencies are emphasized for near-field sources, the effect of spectral
cues may be the opposite at short distances [33]. This may not be the
case though, because this theoretical boost of low frequencies is due to the
distance dependent changes to the particle velocity at different frequencies,
which the human ear is not sensitive to [174].
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Figure 3.2: Left: Direct-to-reverberant ratio as a function of sound source
distance. Right: The corresponding source and receiver configurations.

Direct-to-reverberant ratio
One of the most important distance cues is the direct-to-reverberant ratio
(DRR). The DRR is defined as the ratio of the direct and reverberant sound
energies of a room impulse response h(t) [85, 86]

DRR = 10 log10

∫ T

0
h2(τ)dτ∫

∞

T
h2(τ)dτ

(3.1)

where T is the duration of the direct sound, which is usually around 2–3 ms.
The left panel of Fig. 3.2 shows an example of the DRR as a function of
distance. The DRR is computed from the left channel of the measured
real-world binaural room impulse responses corresponding to the source
and receiver configurations depicted in the right panel of Fig. 3.2. It is seen
that the DRR decreases monotonously as the distance to the sound source
increases. Figure 3.3 shows the spectrograms of a short speech sample
played back at the same source locations. The effect of reverberation can
be observed in both time and frequency, as details of the spectrogram are
blurred when the distance increases.

The DRR alone is not enough for estimating the distance, and other
information such as the reverberation time, room volume, and source di-
rectivity are also needed. It is speculated that humans implicitly learn these
additional cues based on experience [21]. It is also likely that the actual
processing that computes the DRR inside the human auditory system is not
necessarily based on temporal processing. Zahorik [173] has investigated
the discrimination thresholds of DRR in human listeners and found evi-
dence against temporal processing used for computing the DRR. A study
by Bronkhorst [20] suggests that binaural spatial separation of the direct
and reverberant sound energies may be involved in computing the DRR.
A more recent study by Larsen et al. [85], however, suggests that spectral
cues are the most discriminative cues for DRR perception. Based on the
current state of knowledge, it is, therefore, not clear what kind of auditory
processing is taking place to compute the DRR.
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Figure 3.3: Spectrograms of a male speech sample recorded at various
distances in a room with RT = 0.6 s.

Dynamic cues
In dynamic situations, where the source and/or the listener are moving,
some additional distance cues become available. One of these cues is the
acoustic tau, which specifies the time to collision with the sound source
[60, 5]. The idea is that rate of change of the intensity of the sound can
be used to make judgments of how far away the sound is, if the velocity of
the sound source (or the listener) is constant. Another dynamic distance
cue is the acoustic motion parallax, which is related to the rate of change of
the azimuth angle when the listener is moving and the source is stationary
[147]. The further away the source is, the slower the rate of change of the
azimuth angle is.

The effect of the environment
The usefulness of distance cues depends heavily on the type of environment
(free-field, room) and the range of distance considered. With human
distance perception, the head has a special effect on the interaural cues at
distances less than one meter. In a nutshell, the interaural time difference
(ITD) stays constant while the interaural level difference (ILD) changes
with distance in this range [23, 22]. The latter is thus a viable distance cue
for nearby sources.

Absolute and relative cues
It is often useful to differentiate between absolute and relative auditory dis-
tance cues. The former provides information on the absolute distance to
the sound source (for example, “The source is at a distance of two me-
ters”.), while the latter cues allow only for relative judgments (for example,
“The source has moved to a distance twice as far away from where it was
previously.”). Sound pressure level (intensity) can be regarded as a relative
distance cue [143], while the direct-to-reverberant ratio is considered to
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provide information on absolute distance [106, 115, 21].

3.3 Human performance in distance estimation

In order to gain a perspective on the accuracy of computational sound
source distance estimation, it is useful to have a look at how well humans
fare in the distance estimation task. There is a tendency in human listeners
to underestimate small distances and overestimate large distances [174]. A
psychophysical function in the form of a compressive power function can
be used to model the relationship between the true sound source distance
r and the perceived distance r′ as [174]

r′ = kra (3.2)

where the constant k and exponent a are parameters of the power function.
Zahorik et al. [174] present statistics of the parameters of the power function
for listening test results compiled from 21 articles related to sound source
distance perception research, comprising of a total of 84 data sets obtained
in various test setups and environments. Figure 3.4 shows the perceived
distance modeled by Eq. (3.2) as a function of the true distance, with
parameter values of k and a chosen as the mean of the parameters estimated
from the 84 data sets presented in [174]. It is seen that distances below
approximately 1.9 m are overestimated, while distances above that are
progressively more and more underestimated. This underestimation may
correspond to a phenomenon called auditory horizon, which refers to the
existence of a maximum perceived distance. However, there is no direct
evidence that such a saturation phenomenon exists [174].

In conclusion, human accuracy in distance estimation is clearly lower
compared to estimating the angle of arrival, where the accuracy can be as
low as 1◦ for sound sources in the front [174].
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Figure 3.4: An example of modeling distance perception experiment results
using a compressive power law function (k = 1.32, a = 0.54).
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3.4 Related research

As a topic of research, computational distance estimation differs in an im-
portant way from estimation of the direction of arrival, i.e. azimuth and
elevation angles. The difference is that actual models for computational dis-
tance estimation have not been proposed until recently (as discussed later),
while models for direction localization have existed for several decades.
Already in 1907, Lord Rayleigh proposed the so called duplex theory of
sound localization [118]. The theory basically states that for sounds arriv-
ing from directions other than the medial plane there are differences in
level (ILD) and time (ITD) between the two ears, and these differences
are used by the auditory system to resolve the direction of incoming sound.
A popular auditory model for calculating the ITD is the cross correlation
(CC) model of Jeffress [74]. Another prominent model is the equalization
cancellation (EC) model, first proposed by Durlach [41]. In addition to
these pioneering models, lots of new ideas for directional localization have
been proposed over the years — extensions of the CC and EC models
[93, 94, 31, 17, 45, 121] and new architectures, such as [130] and [125].
Binaural localization and tracking algorithms have also been studied in, for
example, [7, 27, 120, 95, 134, 136, 165, 135]. Reviews of computational
binaural sound localization can be found in [149, 150]. The basics of spatial
hearing are presented in [14].

In an article published in 1968, Hirsch [69] proposed that the sound
source distance r could be estimated by the ratio of the time and intensity
differences Δt and ΔI

r =
2cΔt

ΔI/Iav
(3.3)

where c is the speed of sound and Iav is the average intensity between the
ears. It was later pointed out [56] that with the resolution of the human
auditory system, the errors of distance estimated using the above formula
would be large. Also, the method would also be very imprecise when the
source is directly in front of the listener, as Δt and ΔI would be close to
zero. Molino [110] presents an extension of the model where the head
is modeled as a rigid sphere. However, the azimuth angle of the sound
source has to be known in this extended model. Both of these models
have difficulties with distant sources, as the interaural cues are virtually
independent on distance for distances greater than one meter [23, 22].

Calamia [25] proposed a method for 3D localization in the nearfield
(r < 1 m). The azimuth, elevation, and distance (range) are estimated
by comparing the interaural cues of the measured signal with those pre-
computed from HRTFs at different positions. The best match reveals the
most likely location. With regards to the distance, the method only works at
distances less than one meter, because the ILD is distance-dependent only
up to a distance of approximately one meter [23, 22].

If the relative timings and amplitudes of a number of early reflections
are known, it is possible to estimate the sound source distance — along
with other quantities such as the DRR and the reverberation time — based
solely on that information [86]. There has to be some method to accurately
estimate the reflections from the signal, though. In [86] it is reported that
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the distance estimates of this method suffer from underestimation and large
variability when the first nine early reflections are used for the estimation.

Griesinger investigated binaural [57] and monaural [58] cues that char-
acterize the apparent distance of sound sources. The binaural cue is based
on the interaural cross-correlation coefficient (IACC), and the monaural
cue is pitch coherence. The actual application of these cues to computa-
tional distance estimation is not tested, though.

A method for automatic classification of hand claps into far-field and
near-field was presented by Lesser and Ellis [90]. The energy-based monau-
ral distance cues utilized were the center of mass, slope, and energy dif-
ference of the transient and the background sound. The generalization
performance between two rooms was found to be good. The presented
method is applicable for transients only.

The first actual model for computational binaural sound source dis-
tance estimation was proposed in 2007 by Lu et al. [102, 34]. Their model
is based on the acoustic tau and the motion parallax, which are estimated
sequentially in a particle filtering framework. However, this model is suit-
able for dynamic situations only due to its sequential nature. An extended
version of the model has been presented, where the DRR is added as an ex-
tra distance cue [101]. The relationship between the DRR and the distance
is learned from training data using Gaussian mixture models (GMMs).
Adding the DRR was reported to improve the results for simulated speech
sources. Performance of the models presented has not been evaluated in
real rooms yet.

Georganti et al. [52] have presented a method for monaural learning of
the distance of a speech sound source. The proposed features measure the
statistics of the LP residual and the spectrum of the signal. The learning is
based on GMMs. It is reported that the method is accurate for distances up
to 1.5 meters.

To conclude, the state of the art in computational distance estimation
can be summarized as follows. There exists one actual computational model
for sound source distance estimation [102, 101]. However, evaluation of
the model with real-world data has not been presented yet. Other methods
have restrictions on the ranges considered (e.g. near field only [25]) or the
signal types (e.g. transients only [90]), and the accuracy (e.g. only accurate
up to 1.5 m [52] or just crude classification to near/far field [90]). Further
contribution is needed in finding features that depend on distance only. For
example, in [101] it is reported that the way of computing the DRR used
resulted in some dependence on sound source power for speech sources.
Better accuracy would also be desirable. It is known that humans cannot
estimate sound source distance very accurately (see Sec. 3.3), but there is
no reason to settle for the accuracy of the human auditory system. The work
presented in this thesis addresses some of the aforementioned problems by
presenting a method that can correctly recognize the distance of a speech
sound source — the most important signal class for practical applications
— at distances varying from 0.5–5.0 m (possibly larger distances can also
be recognized, but this has not been investigated yet).
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3.5 Binaural coherence

The methods for sound source distance learning presented in publications
[P1] and [P2] are based on the binaural coherence — sometimes termed
the interaural coherence (IC) [45] — as the main localization cue. The
binaural coherence is also utilized for different purposes in publications
[P5] and [P6]. Binaural coherence is basically the strength of correlation
between the left and right ear signals as a function of frequency. When
there is correlation between the signals, the coherence is high. In terms
of the sound field that the binaural signal corresponds to, the coherence
is low when the sound field is diffuse, which usually means that there is
reverberation. On the contrary, if the direct sound is strong at the listening
position, the binaural coherence will be high. Therefore, the interaural
coherence can be used to indicate which parts of the signal — in time
and in frequency — are occupied by the direct sound, which is usually the
signal of interest. At the same time, low coherence parts indicate parts of the
signal occupied by reverberation, which is usually considered a nuisance
to be removed. Therefore, the coherence can be useful in applications
such as dereverberation [3], multi-source localization [45], and selecting
signal processing strategies in hearing aids [167]. It has also been shown
that the human auditory system responds to high binaural coherence with
increased activity, indicating that coherence is utilized in the localization
process [182].

In the work described in this thesis, the binaural coherence is estimated
as the magnitude-squared coherence (MSC) between the left and right ear
signals [3, 167]

γ̂2
lr(f, t) =

|Ĝlr(f, t)|2
Ĝll(f, t)Ĝrr(f, t)

(3.4)

Ĝll(f, t) = 〈|Xl(f, t)|2〉 (3.5)
Ĝrr(f, t) = 〈|Xr(f, t)|2〉 (3.6)
Ĝlr(f, t) = 〈X∗

l (f, t)Xr(f, t)〉 (3.7)

where Ĝll(f, t) and Ĝrr(f, t) are the power spectrum estimates at frequency
f and time t of the left and right ear signals, respectively, Ĝlr(f, t) is
the cross spectrum estimate, and Xl(f, t) and Xr(f, t) are the left and
right channel signal short-time Fourier transforms (STFTs), respectively.
Complex conjugation is denoted by an asterisk (∗). While it is possible to
estimate the spectra in different ways [26], in this thesis the estimation is
done by time-averaging (denoted by 〈·〉) using a first-order IIR

〈Q(n)〉 = β · 〈Q(n − 1)〉 + (1 − β) · Q(n) (3.8)

where Q(n) is an arbitrary time series and β is the forgetting factor, which
is more conveniently defined using the time constant

β = exp

(
− Nh

τ · fs

)
(3.9)

where Nh is the hop size of the STFTs, τ is the desired time constant in
seconds, and fs is the sampling rate. By increasing the time constant, infor-
mation from a longer time period is utilized in computing the coherence.
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Figure 3.5: Coherence spectrograms of a male speech sample recorded at
various distances in a room with RT = 0.6 s.

Figure 3.5 presents coherence spectrograms of the same short speech
sample as in Fig. 3.3 played back at the same locations. The figures are
plotted so that white corresponds to a coherence of zero and black to a
coherence of one. The time constant for coherence computation was set
to τ = 5 ms. Compared to the corresponding spectrograms (Fig. 3.3),
the effect of increasing distance is much more evident. This is seen as the
decrease of the high coherence areas in the plots. In parts of the signal
where noise dominates, the coherence gets random values.

3.6 Novel contributions

The approach for sound source distance estimation taken in this thesis is
inspired by machine learning approaches to sound localization (e.g. [7, 120,
146]). Particularly, the approach of Smaragdis and Boufounos [146] has
been the main inspiration. They presented a microphone array method for
learning the position of a stationary sound source. The microphone array
can have as few as two sensors. Because in [146] it is reported that when
using two sensors (binaural dummy head) the method has difficulties with
sound source positions that share the same azimuth angle but have different
distances, it was decided to investigate how distance could be learned with
similar methods when only two microphones (binaural input signal) are
available.

Two articles in this thesis deal with binaural sound source distance
learning. Publication [P1] is the first publication on the topic. It proposes
a novel method for learning the distance of a sound source, based on the
binaural coherence (see Sec. 3.5) as a distance cue. White noise is used
as the training signal, while the distances of speech sounds are recognized.
A stationary listener (a dummy head) is situated inside a room, and a sta-
tionary sound source (a loudspeaker) is also present. In the learning phase,
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white noise is played back from the loudspeaker and the time average of
the coherence of the binaural signal recorded using the dummy head is
taken. This mean coherence is termed coherence profile, as it captures
the mean shape that the coherence takes at a certain position in the room.
Interestingly, it was found that the variance of the coherence is a distracting
cue and could not be used in the classification. In the testing phase, the
coherence of the speech signal is computed. The classification system is
based on energy-weighted maximum likelihood, which basically compares
the coherence of the received binaural signal with the coherence profiles
obtained in the training phase, giving more weight to time-frequency el-
ements that have high energy. The method is evaluated using a dummy
head and a loudspeaker as the listener and the sound sources, respectively.
It is shown that the method can correctly recognize the distance when the
sound source is in the front of the listener.

Publication [P2] delves deeper into sound source distance learning,
expanding the research of [P1] with some modifications to the method and
by having a larger data set for evaluating the method. By increasing the time
constant of the coherence calculation (see Sec. 3.5), good performance is
obtained also when the sound source is at a side direction from the listener.
The proposed method is compared with a slightly modified version of the
method presented in [146]. It is shown that both methods can recognize the
distance of a speech sound source correctly in most cases. The investigations
also reveal that the coherence exhibits clear changes as a function of sound
source distance (see Fig. 3 in [P2]). Compared to the interaural time
and level difference features employed of a previous approach [146], the
coherence also behaves more smoothly along the frequency axis. Possibly
due to these reasons, the proposed method is able to generalize better
compared to the baseline method [146], when there is a slight mismatch
between the sound source locations in training and testing (see Sec. V-
D in [P2]). It is revealed that the main drawback of the methods is the
lack of generalization when there is a great mismatch between the spatial
configuration of the source and the microphones in the training and testing
conditions.

The work described in publications [P1] and [P2] presents important
novel contributions to the field of computational sound source distance
estimation and also to acoustic source localization in general. It is shown
that the distance of a speech sound source can be recognized from bin-
aural signals using a simple classification approach. This enables using
only two microphones for localizing a speech source, while in traditional
microphone array techniques [16] there are typically more than only two
microphones. Also, in these kinds of learning approaches there is no need
for microphone calibration and the locations of the microphones do not
have to be known a priori [146]. The publication [P2] also sheds light on
the behavior of the interaural coherence and other interaural parameters
when the source and receiver positions change inside a room. The limits
of machine learning approaches for sound source localization are inves-
tigated, gaining knowledge applicable in further research on the subject.
The investigation of the behavior of coherence as a function of distance
also contributes to basic research in room acoustics.
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4 ANALYSIS OF BINAURAL ROOM IMPULSE RESPONSES

4.1 The problem of detection and localization of early reflections

A binaural room impulse response characterizes the acoustic behavior of a
room from the source to a listener. A BRIR is the signal that is received at the
ears of a listener after sending a perfect impulse into the room. There are
several factors that shape the sound that a sound source emits into a room.
The sound is spread into the space according to a frequency-dependent
directivity pattern, which is a property of the sound source. Part of the
sound travels directly to the listener if there are no obstacles for line-of-sight
propagation. Some of the sound energy gets reflected from the surfaces
present in the room. These surfaces include walls, floor, ceiling, and other
objects such as furniture, that may be present in the room. Some of this
reflected sound then reaches the listener, and some of it continues reflecting
from the surfaces. These discrete reflections that occur for some time after
sending sound into the room are called early reflections. In addition to
specular reflections where the reflection angle is the same as the angle of
the incoming sound, diffraction also happens at the surfaces, causing the
sound to scatter in other directions as well. At some point in time there
will be so many overlapping reflections that one cannot speak of individual
reflections any more, and it is best to treat the received sound as statistical
late reverberation. The effect of the listener is also included in a binaural
room impulse response, as the head and torso of the listener also shape the
signal entering the ears.

Figure 4.1 shows a simplified version of a monaural (single-channel)
room impulse response. The direct sound arrives first. Then, early re-
flections arrive, followed by late reverberation. In this thesis, two different
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Figure 4.1: A simplified room impulse response composed of direct sound,
early reflections, and late reverberation.
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sub-problems related to analysis of binaural room impulse responses are
considered:

1. Estimating of the arrival times (detection) of early reflections ([P3],
[P4]).

2. Estimating the angles of arrival (localization) of early reflections
([P3]).

The first problem refers to finding the arrival times of the early reflections.
The arrival time corresponds to the total time that the sound has traveled in
the air, since sending the sound into the room. Fig. 4.1 depicts the times
of arrival of the early direct sound (t0) and the two first early reflections
(t1,t2). The second problem is about finding the direction of arrival of each
of the early reflections that were detected as part of the solution for the first
problem. In this thesis, only the estimation of the azimuth angle, i.e. the
angle of arrival in the lateral plane, is considered. Estimation of the angle of
arrival is made possible by having two channels, which provides interaural
localization cues for determining the direction.

4.2 Related research on analysis of early reflections

Analysis of room impulse responses gives insights into room acoustics [84].
It has been widely regarded that the lateral reflections — reflections that
come from the sides relative to the listener — contribute to the quality of the
acoustics of a hall [8]. By using a microphone with both omnidirectional
and figure-of-eight directivity characteristics, a quantity called lateral energy
fraction (LEF) can be computed [9]. The LEF characterizes the amount of
acoustic energy coming from the sides relative to the total incoming energy.
A related quantity, the interaural cross-correlation coefficient (IACC) is
also related to spatial impression [9, 67]. It can be calculated from binaural
room impulse responses measured using small microphones situated at the
entrances of the ear canals of a real head or a dummy head.

However, both LEF and IACC do not give detailed information about
the individual early reflections in the BRIR. The arrival times and directions
of arrival of the reflections could be useful for constructing new measures
of the quality of acoustics and also for gaining insight into the details of
the acoustic behavior of rooms. One example of the latter is listening to
room impulse responses in slow motion so that the relative arrival times and
directions of early reflections can be heard [96]. According to the knowledge
of the author, not much research exists on the topic of estimating the arrival
times and directions of individual reflections, based on any kind of room
impulse response.

Gover et al. [55] used a 32-microphone spherical array to capture
directional room impulse responses. From these impulse responses, the
reflections could be localized in both time and frequency. The arrival
times and directions were found to match with knowledge of the room
geometry.

Park and Rafaely [122] used a 98-element spherical scanning micro-
phone array to obtain directional impulse responses in concert halls. Their
method was reported to correctly localize the direct sound and some initial
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early reflections — the first order reflections and a few second order reflec-
tions. Later, Rafaely [127] proposed a method which employs a microphone
on a rotating boom to sample the response on an imaginary sphere, based
on which the directional response can be calculated. This method also
identifies the direct sound and the first order early reflections correctly.

Rigelsford [132] used a volumetric microphone array for acoustic imag-
ing. 64 microphones were placed in pseudo-random positions inside a
spherical volume. The method was able to localize multiple sound sources
and therefore might be suitable for analyzing early reflections, even though
this application is not investigated in [132].

O’Donovan et al. [116] used a spherical microphone array for acoustic
imaging so that the acoustic image could be overlaid on a video of the space.
This techniques allows to see visually exactly where reflections originate
from as a time progresses after the arrival of the direct sound [117].

Yet another method based on microphone arrays is the one presented by
Roper and Collins [137, 138]. They used a combination of a circular array
(24 microphones) and a line array (23 microphones) for finding the eleva-
tion and azimuth angles of early reflections, respectively. The detection of
reflections was based on emitting a special chirp signal and then detecting
the arrival times based on matched filtering, which is practically imple-
mented using the matching pursuit algorithm. The direction of arrival is
then estimated using beamforming. The algorithm was able to identify all
first order reflections and many of the second order reflections.

Defrance [39] applied matching pursuit to identify the arrival times
of reflections in a monaural room impulse response. The source signal
was a pistol shot, which was used as the atom in the matching pursuit.
Therefore, the method cannot be used with impulse responses measured
in the standard way, for example, with sweep [112] or the maximum length
sequence [131]. The arrival time distributions were investigated and a way
of measuring the mixing time (see [68]) was presented.

Kuster [83] investigated the estimation of room volume from a room
impulse response. In the article, a method for detecting the arrival times
of reflections from a monaural room impulse response is presented. This
method is used in publication [P4] as a baseline method for detecting early
reflections in time.

In conclusion, the state of the art in analysis of early reflections can be
summarized as follows. There are various methods which require an array
consisting of several microphones [55, 122, 132, 137, 138]. Some methods
are based on a special recording system such as a rotating boom [127]
or a spherical microphone array [116, 117], or they require the impulse
response to be measured using a special signal such as a pistol shot [39]. A
monaural method for identifying the arrival times of early reflections has
been presented [83]. According to the knowledge of the author, methods
that can estimate the arrival times and directions of early reflections based
on binaural room impulse responses have not been presented earlier. The
work presented in this thesis addresses this gap in knowledge.
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4.3 Continuous wavelet transform

Publications [P3] and [P4] present novel wavelet-based methods for analysis
of binaural room impulse responses. The methods are largely based on the
continuous wavelet transform (CWT), which is a time-frequency transform
that allows a finer time resolution at higher frequencies compared to the
lower ones [32]. Also, the frequency resolution is logarithmic, which corre-
sponds to human hearing that also has a logarithmic frequency resolution
[111].

The CWT is defined for a signal x(t) as [99, 32]

Wx(u, s) =
1√
s

∞∫
−∞

x(t)ψ∗

(
t − u

s

)
dt (4.1)

where u is translation, s is scale (sometimes called dilation), t is time, ψ is
the mother wavelet, and ∗ denotes the complex conjugation. Two different
mother wavelets are used in publication [P3]: the Morlet and Paul wavelets.
In publication [P4], only the former is used. The Morlet wavelet is defined
as [158]

ψ(t) = π−1/4ejω0te−t2/2 (4.2)

where t is time and ω0 is the oscillating frequency. Both are non-
dimensional. The Paul wavelet is defined as [158]

ψ(t) =
2mjmm!√

π(2m)!
(1 − jt)−(m+1) (4.3)

where m is the order of the wavelet. The continuous cross-wavelet transform
(XWT) is used for detecting ([P3]) and segmenting ([P4]) early reflections.
The XWT is defined as [59]

|WLR(t, s)| = |WL(t, s)W ∗

R(t, s)| (4.4)

Figure 4.2 plots the two wavelet functions used in publications [P3] and
[P4]. The Paul wavelet is more localized in time compared to the Morlet
wavelet. Therefore the time resolution of the Paul wavelet is better than that
of the Morlet wavelet, while with the frequency resolution the situation is
the other way around. Figure 4.3 shows a measured binaural room impulse
response and the XWT computed from it. The strongest early reflections
can easily be seen as dark areas in the XWT (top panel), as well as in the
time-domain signals (two bottom panels). Since the wavelet functions are
well localized in time, they are suitable for the analysis of early reflections
and other transient-like signals.

4.4 Related research on applications of wavelets to RIR analysis

Since the analysis method presented in publication [P4] is based on
wavelets, previous applications of wavelets to audio and especially acoustic
impulse response analysis are briefly summarized. The continuous wavelet
transform has been used previously in applications such as audio restoration
[168], additive synthesis [12], and analysis of intermodulation effects [13].
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Figure 4.2: The complex Morlet and Paul wavelets.

Very few applications of wavelets to room impulse response analysis
can be found from the literature related to room acoustics. Schönle et
al. [139] present a wavelet-based method for sub-band decomposition and
re-synthesis of room impulse responses. Their method is based on the
discrete wavelet transform (DWT), though. Loutridis [99] used the CWT
for analysis of room and loudspeaker impulse responses. The CWT is used
for separating modal components and estimating decay and reverberation
times. Lee [88, 89] applied the CWT for accurate determination of the
reverberation time. It was demonstrated that the reverberation time can
be estimated more accurately by using the CWT instead of a standard
third-octave bandpass filterbank.

4.5 Novel contributions

Estimation of reflection arrival times from a BRIR [P3]
A new method for detecting the arrival times of early reflections from binau-
ral room impulse responses is presented in publication [P3]. The method
is based on the cross-wavelet transform (see Sec. 4.3 and [59]) between
the left and right ear signals. The method is tested with both measured
and modeled responses. The estimated arrival times are compared to the
ground truth obtained from a shoebox room model, which is constructed
for real rooms using the image source method [2, 15]. The average er-
rors between the arrival times of the reflections in the model and the arrival
times obtained using the proposed method were calculated. It is shown that
the proposed method can locate the first order reflections with a mean error
between 0.24–0.30 ms with the measured responses. Including the sec-
ond order reflections increases the average errors to between 0.32–0.63 ms.
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Figure 4.3: The cross-wavelet transform computed from a binaural room
impulse response.

With modeled reflections the error is between 0.10–0.35 ms for first and
second order reflections. The responses are analyzed only up to 30 ms from
the direct sound.

Segmentation of reflections from a BRIR [P4]
In a follow-up report, publication [P4], the method proposed in publication
[P3] is extended by segmenting the early reflections based on the XWT using
the watershed segmentation algorithm [54] adapted from image processing.
Based on the segmented areas (early reflections) of the CWTs of the left and
right ear signals, the interaural cues (ILDs and ITDs) are computed and
matched with cues computed from HRTFs (the KEMAR [50] and CIPIC
[1] HRTF sets) measured at different azimuths and elevations. The best
match gives the azimuth and elevation of each reflection. The accuracy of
the method is investigated by computing the time and angle errors of the
nearest reflections compared to the ground truth values obtained from an
image source model. If the nearest reflection is too far (more than ±1 ms),
it is considered as a missed reflection in the evaluation. A comparison to
a method consisting of the reflection detector of Kuster [83] and azimuth
localization by mapping maximum cross-correlation lag to the angle is
made. The idea of resynthesizing the responses with stretched time scales,
in order to produce slow-motion versions of the responses for auralization
[96], is also investigated.

It is shown that from the studied responses (two measured and two
simulated), the times of arrival of the early reflections up to 30 ms are
estimated with average errors below 0.4 ms and 0.3 ms for the proposed and
baseline methods, respectively. The errors in the estimates for the azimuth
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angles of the reflections are in the range 30◦–54◦ for both of the methods.
Even though the angle estimates of the proposed method are not very
accurate, the proposed method can be useful for slow-motion auralization
of measured responses where estimates of the angles are not needed. It
should also be noted that the angles of reflections overlapping in time and
frequency are very difficult to recover, and such reflections were present
in the studied responses, which also contributed to the average error being
large when estimating the azimuth angles.
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5 APPLICATIONS TO AUGMENTED REALITY AUDIO

This part of the thesis explores how real-time sound signal analysis can
be applied in the context of augmented reality audio. Various possibil-
ities for utilizing the information obtained from analysis of the binaural
input provided by the augmented reality headset described in Chapter 2
are explored. Common to all the applications described in this chapter
is continuous monitoring of the surrounding sound environment and de-
tection of discrete short-time sound events from the sound stream. These
events are then analyzed in various ways and the information is utilized
either immediately ([P5], [P6]) or later in off-line analysis ([P7]).

Figure 5.1 presents a common framework for the publications described
in this chapter. First, the sound of the environment is picked up by a
microphone (or two microphones), amplified, and converted to digital form.
Then, the sound signal representation is transformed by computing features
from the signal. This is followed by segmentation of the signal to discrete
audio events. These events are analyzed in real-time and the results of the
analysis are then passed to some software application, such as the virtual
sound renderer in publication [P5], or music player software in publication
[P6].

The first application ([P5]) makes the virtual sound sources fit the sur-
rounding sound environment better, by estimating the reverberation time
of the surrounding environment and then adjusting the RT of the virtual
sound sources to match that. The second application ([P6]) is a simple
user interface based on localizing finger snaps made by the user. This
user interface then controls, for instance, the play list of a music player
application. The third application ([P7]) is audio surveillance, related to
which the sub-topic of the importance of different low-level audio features
for unsupervised classification of transient audio events is investigated.

amplifier & A/D

sound sensor(s)

feature extraction
Preprocessing /

detection /
segmentation

Audio event

AnalysisApplication
Clustered events ([P7])

RT ([P5])

Command ([P6])

Figure 5.1: The common framework of sound signal analysis applied to
ARA in publications [P5], [P6], and [P7].
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5.1 Binaural blind estimation of reverberation time for adjusting the reverberation
of virtual sources

Related research
Traditionally, the reverberation time of a room is obtained by first measuring
the room impulse response using some method. A standard manner for
measuring the RT can be found in [148] (also see [47]). The reverberation
time can be obtained by inspecting the rate of decay of the energy in an
impulse response. Because the energy time curve itself is typically very noisy,
backward integration [140] is often applied to obtain a smoother curve, and
the RT is then estimated from the slope of a line fitted to the curve. However,
there are applications where the measurement of an impulse response is
impractical or impossible, but it would still be useful to get an estimate of
the RT based on passively received sound signals. Methods that estimate
the RT without any prior information about the source signal or the room
are called blind RT estimation methods.

One of the first attempts at blind estimation of reverberation time is
presented by Hansen [62]. The method makes an assumption on the nature
of the signal, so that the method is intended for music signals played back
in a reverberant space. Information on the reverberation is extracted from
the envelope of the autocorrelation function by employing the Schroeder
method [140]. Some agreement with the true RT values is reported.

Couvreur et al. [35, 36] present a blind RT estimation method, which
is based on a distortion model of the reverberated speech. Given a model
for the anechoic speech, the RT can be then estimated from reverberant
observations based on maximum likelihood (ML).

Neural networks have been applied in blind RT estimation by Cox
et al. [38]. They trained a multilayer feedforward network using speech
samples convolved with impulse responses having different reverberation
times. Another network is used for refining the estimates.

For use in conjunction with their dereverberation algorithm, Lebart et
al. [87] present a method which is based on detecting the parts of a sound
signal containing free decays, and then estimating the RT on those signal
parts using linear regression.

Baskind and Warusfel [11] proposed a method for blind estimation
of the RT based on locating decaying segments and applying Schroeder
integration [140] to the segmented parts. The method utilizes binaural
responses by taking the average over the RT estimates of the left and right
channels.

Baskind and de Cheveigne [10] presented a pitch-synchronous method
for estimating the RT from binaurally recorded reverberant music. The
short-time coherence (see Sec. 3.5) is used to find the times for the be-
ginnings and ends of decay analysis. The Schroeder method and linear
regression is used for the estimation of RT. Estimation errors were not cal-
culated, but most estimates were found to be between the true early decay
time (EDT) and the true reverberation time.

Ratnam et al. [129] modeled the late reverberation as exponentially
decaying Gaussian noise, and employed a ML approach for estimating the
reverberation time. No segmentation is used in the approach, but the
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ML estimation was performed by using a sliding window and the final RT
estimate was based on the statistics of the running estimates. The method
shows good correlation with the true RT values. A computationally efficient
real-time version of the algorithm has also been presented [128].

Vieira [163] presented a method that estimates the RT by segmenting
the parts of free decay and applying a least squares fit to the logarithmic
decay curve obtained by the Schroeder method. Later, the method was
improved by using a nonlinear regression approach [170] for blind RT
estimation [164].

Wu and Wang [169] derived a monotonic relationship between pitch
strength and reverberation time. Their method works only for reverberation
times up to 0.6 s.

Zhang et al. [179, 178] proposed a blind RT estimation method that
can handle noisy situations (e.g. occupied rooms). Blind source separation
(BSS) is combined with adaptive noise cancellation to preprocess the signal
and remove the noisy disturbance prior to estimating the RT. The denoised
signal is segmented to find suitable sections of free decay and the RTs are
estimated on the segments using a maximum likelihood procedure with a
model proposed by Ratnam et al. [129].

Kendrick et al. [82] present a method where the method of Ratnam et
al. [129] is modified by modeling the reverberation with multiple decaying
exponentials instead of just one. This is a more realistic assumption in
many rooms and allows for flexibility and estimation of the early decay time
as well. In a manner similar to [179, 178], the estimation is only carried
out on suitable segments with decay. The method proposed in [82] has
been compared with the envelope spectrum-based method [91] to estimate
the reverberation time and other monaural acoustic parameters [81]. It was
found that the enveloped spectrum method is more accurate for the EDT
and the maximum likelihood method for the RT for speech and music in
real and simulated rooms.

Falk et al. [100] have used the auditory modulation spectrum for blind
estimation of the RT. A consistency measure between GMMs trained with
clean speech and the reverberant test samples was calculated, and the result
was mapped to RT.

Wen et al. [166] estimated the RT blindly based on distributions of
frequency-dependent signal decay rates. The decay rates are calculated
from STFTs of speech signals, and certain properties of the distributions of
the decay rates are mapped onto the RT.

In conclusion, approaches for blind RT estimation can be roughly cat-
egorized into methods that are based on segmenting the input signal in
order to find signal segments suitable for analysis (e.g. [62, 38, 87, 11, 10,
163, 164, 82]), and to methods that estimate the RT continuously without
segmentation (e.g. [129, 128, 35, 36]). The approach in this thesis falls into
the former category. While it lacks the sophistication of the current state-
of-the art approaches (e.g. [82, 166]), it presents a relatively straightforward
method for estimating the RT for real-time applications. The method is
geared towards adjusting the reverberation time of virtual sound source in
real-time in the ARA context.
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Novel contributions
The method for blind estimation of reverberation time presented in publi-
cation [P5] is a real-time method intended for adjusting the reverberation of
virtual sound sources in an augmented reality audio context (see Sec. 2.1).
The method is based on finding transients from the incoming sound signal
and then performing the backward integration method of Schroeder [140]
on the free decays following each transient. Linear regression is applied to
each segment to obtain an estimate of RT. By inspecting the statistics of the
estimates, a final estimate for the RT is obtained.

The upper limit of integration in the Schroeder method is sought by
finding the point where the noise floor starts. The starting point of the decay
curve, on the other hand, is decided by inspecting the short-time coherence
between the left and right ear signals and excluding the part with high
coherence, which consists of the direct sound and the first early reflections.
Special care is also taken to find the limits of line fitting to the decay curve
obtained with the Schroeder method. The starting point is fixed to the time
where the decay falls to −5 dB below the maximum of the curve, while the
end point is varied from −5 dB to −35 dB and a line is fitted to that range
of the decay curve. The RT is obtained from the slope of the line whose
end point results in the largest correlation coefficient.

A real-time version of the algorithm running on a Linux workstation
was implemented in C++ within the Mustajuuri real-time audio processing
framework [73]. The main use of the algorithm in the ARA context is
adjusting the RT of virtual sound sources to match that of the environment
around the user. In practice, this means that the current estimate of the RT is
set as the RT of a reverberation algorithm. In informal listening experiments
it was found that matching the RT to that of the surrounding space increases
the naturalness of the virtual sound sources, as they now have subjectively
similar reverberation characteristics. The just noticeable difference (JND)
of RT perception for speech has been found to be between 3.3% and 9.6%
[79]. However, in latest studies the JND in human perception of RT from
music signals has found to be between 20% and 30% [105]. The estimates
obtained using the proposed algorithm are seen to fall within±100 ms from
the true value when the true RT is 0.8 s (see Fig. 4 in publication [P5]).
This range is outside the JND according to [79], but the JND studies do not
answer the question of how much the RT can deviate in auralization so that
the virtual sound source will still be perceived as matching the surrounding
space in terms of the reverberation. The tolerance for deviations from the
correct RT could be investigated as a future study.

5.2 Eyes-free user interface based on finger snaps

Related research
User interfaces that do not have visual feedback can be useful in mobile
applications, such as when walking or driving a car, where having to concen-
trate on the visual interface would be distracting [19, 180]. Space constraints
of small devices such as personal music players make it difficult to apply
visual interfaces to such devices [19, 180]. Visually impaired people also
benefit from eyes-free user interfaces, for obvious reasons [180]. The re-
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search question addressed in this thesis is the input to such an interface.
Head and hand gestures detected by sensors have been used as inputs to
such interfaces [19, 104, 78]. A touchpad sensor has also been employed as
an input [180]. In this thesis, only transient sounds as input are considered.
Speech interfaces are beyond the scope of this work.

Li et al. [92] used hand claps and finger snaps as an input in virtual en-
vironment applications. An autoregressive model and wavelet coefficients
are used as the features fed into a feed-forward back-propagation neural
network for classification of the snaps and claps. The system is designed to
be used in conjunction with camera-based tracking so that the input sounds
trigger events in a manner similar to mouse clicks. An example is given of
using the interface in a multimedia kiosk.

Scott and Dragovic [141] constructed a 3-D used interface based on
audio input. Loud transient sounds, such as finger snaps and hand claps, are
detected and localized in 3-D space using six microphones. The detection
is based on simple amplitude thresholding and no classification of the signal
content is made. Certain volumes of the space can be defined as buttons, so
that a transient sound localized within the volumes creates a command to
the user interface. Controlling an MP3 player is given as an example. It is
reported that novice users easily understand how to use this user interface.

Jylhä and Erkut [75, 76, 77] have proposed a method for detecting and
recognizing different types of hand claps and devised several applications
with interaction based on hand claps. These applications include a virtual
audience application, music tempo controller, and a sampler.

Novel contributions
In publication [P6], a novel eyes-free user interface with binaural audio
input is presented. The method is based on the binaural input provided
by the microphones in the ARA headset (see Sec. 2.1). First, transients
are detected based on the short-time coherence between the signals (see
Sec. 3.5). This is followed by calculating the cross-correlation from the
transients and converting the lag of the maximum to azimuth angle. The
azimuth angle plane in front of the user is divided into three sectors which
correspond to three commands given to the software. As an example,
controlling a music player software is presented. Evaluation of the method
shows that the interface functions correctly in a quiet office environment.

5.3 Features in audio surveillance

Related research
Automatic audio surveillance monitors the environment based on sound.
Many activities of interest make some kinds of sounds, which makes the
audio modality a good choice for surveillance — or a good complement to
visual modality. Sound diffracts around obstacles, which gives audio surveil-
lance a benefit that video-based surveillance does not have, as line-of-sight
between the sensor and the object of interest is not required. Different appli-
cations of audio surveillance have been presented in recent years, including
an automated audio diary [42], automated airplane sound level measure-
ment [4], surveillance of a living environment [71, 72], elevator surveillance
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[126], monitoring of patients [160], scream and gunshot detection [161],
and automated verbal aggression detection [162]. Closely related is also the
research on environmental sound recognition [53, 159, 37, 40, 6, 29] and
auditory context recognition [30, 43, 103, 44, 177].

The topic related to audio surveillance in this thesis is, however, inves-
tigating the importance of different features for classification in an audio
surveillance application. Härmä et al. [71] chose ten features for audio
surveillance from a larger set of features based on analysis of their covari-
ances. Mitrovic et al. [109] determined the usefulness of a large set of
audio features (including MPEG-7 descriptors) for recognizing environ-
mental sounds, based on the factor loading matrix and entropy measures.
Defreville et al. [40] sought optimal features for urban sound source clas-
sification using an automatic feature extraction system based on genetic
programming [181]. Valenzise et al. [161] use a combination of filter and
wrapper approaches for feature selection for a gunshot and scream classi-
fier. Chu et al. [29] used matching pursuit for extracting features that are
effective in recognizing environmental sounds.

Novel contributions
Publication [P7] presents an investigation into the significance of different
features in an audio surveillance application. Short-time, transient-like
audio events are collected using a real-time implementation of a fore-
ground/background segmentation algorithm [71]. The events that deviate
enough from the background are stored for later off-line analysis. In this
analysis, the factor loadings [65] of principal component analysis (PCA)
of the features is examined to assess the correlations between individual
features. The audio events are clustered then using the K-means [151]
and self-tuning spectral clustering [176] algorithms. Based on the manual
labeling of the events, it is possible to assess the quality of the clustering with
the goal that audio events with a particular label should be in one cluster
only. A genetic algorithm (GA) is used to find weighting for the features
that maximizes the clustering quality. The idea of using GAs for finding
weights for features is taken from [108]. The main contribution of the paper
is the insight gained into the importance of individual features based on
these weights. It is shown that delta mel-frequency cepstral coefficients and
variance features are important when clustering transient acoustic events.
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6 SUMMARY OF PUBLICATIONS AND CONTRIBUTIONS OF THE AUTHOR

Publication [P1]
This paper presents a novel method for estimating the distance of a (speech)
sound source based on the analysis of a binaural signal. The magnitude-
squared coherence is used as the main distance cue in the learning system.
The method is able to identify the correct source-to-receiver distance when
the source is in front of the listener.

The present author is the sole author of this publication.

Publication [P2]
This is an extended version of the publication [P1]. The method presented
in publication [P1] is further investigated and more scenarios are tested to
get a clear idea of the limits of the approach. Comparisons to a previous
approach [146] are also made. The algorithms are tested in two different
positions in two rooms with different reverberation characteristics. It is
shown that, in most cases, both methods can identify the distance correctly
on a grid with 0.5 m spacing at source azimuth angles 0◦, 60◦, 90◦, and
180◦. The proposed method also generalizes to some extent, when the
sound source is moved slightly off the training positions.

The present author is the sole author of this publication.

Publication [P3]
This paper presents a novel analysis method for binaural room impulse
responses. The method utilizes cross-wavelet transform for time-localizing
the individual room reflections from a measured BRIR. The results show
that the Paul wavelet has potential in this application due to its better time
resolution compared to the Morlet wavelet.

The present author has written 95% of this publication. The present
author is solely responsible for all other parts of the work.

Publication [P4]
This paper is a continuation of publication [P3], which dealt with a novel
wavelet-based impulse response analysis method. An updated version of
the analysis method of publication [P3] is used for extracting the indi-
vidual room reflections, analyzing their directions-of-arrival, and possibly
re-synthesizing a slowed-down version of the measured response in order
to hear how the room behaves acoustically. The proposed method is com-
pared to a previous approach. Both methods are shown to find the times
of arrival accurately, while estimating the azimuth angle is shown to be
difficult, especially when many of the reflections come from the sides.

The present author has written 95% of this publication. The analyzed
impulse responses were measured and simulated by Dr. Tapio Lokki. The
present author is solely responsible for all other parts of the work.
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Publication [P5]
This article describes a novel method for blind estimation of the reverber-
ation time of a room. By analyzing a continuous arbitrary signal recorded
in a room, the method iteratively calculates an estimate of the room rever-
beration time. An important new contribution is the use of variable limits
in line fitting when calculating the slope of sound energy decay. This new
method increases the accuracy of the reverberation time estimates.

The present author has written 95% of this publication. The present
author is solely responsible for all other parts of the work.

Publication [P6]
A novel user interface is presented in this article. Continuous binaural
signals recorded from the ears of a user are analyzed. Transient sounds
are detected and passed for further analysis in which the azimuth angle for
each transient is calculated. The azimuth plane is divided into three sectors
(“left”, “center”, and “right”) which translate into one of three commands.
A command is executed if the transient is classified as a finger snap and a
few consistency checks are passed. The method is also evaluated: 90% of
the finger snaps were correctly localized by the algorithm.

The present author has written 95% of this publication. The present
author is solely responsible for all other parts of the work.

Publication [P7]
The choice of features affecting the performance of a clustering-based un-
supervised audio surveillance system is investigated in this paper. The
results show that, in order to differentiate between acoustically similar tran-
sient event classes, delta mel-frequency cepstral coefficients and variance
features are important.

The present author is the sole author of this publication.
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7 CONCLUSIONS

This thesis consisted of different methods to analyze binaural signals (with
the exception of publication [P7]). Three different areas were covered in
the thesis:

1. Computational sound source distance estimation in rooms (publica-
tions [P1] and [P2]).

2. Analysis of early reflections from binaural room impulse responses
(publications [P3] and [P4]).

3. Real-time applications of sound signal analysis with specific emphasis
on augmented reality audio (publications [P5], [P6], and [P7]).

For the area of computational sound source distance estimation, the
thesis contributed a new binaural learning method that can recognize the
distance between a speech source and a listener correctly in most cases.
Publication [P1] introduced the method, and publication [P2] investigated
it further. A comparison to an earlier approach of sound source position
learning [146] was also made. It was shown that both methods have their
strengths and weaknesses. The baseline method made slightly less errors
in recognition and could handle cases where strong reflections compared
to the direct sound are present. The proposed method seems to generalize
better when there is a small mismatch between training and testing data.
The distance recognition capabilities of both methods rely on the effects
that the early reflections and late reverberation have on the statistics of
binaural cues. This differs from learning the sound source direction, where
there is a clearer relationship between the interaural cues themselves and
the direction of arrival — at least on the horizontal plane (azimuth angle).
As a part of [P2], this difference was investigated.

The main challenge in distance estimation is the difficulty of separating
the effects of distance on the sound signal from effects caused by other rea-
sons. It is likely that both high and low level auditory processes are involved
in distance perception. In order to successfully mimic these processes com-
putationally, the processes should be understood first. The work presented
in this thesis is an important step towards a true 3-D localization system,
while also acting as basic research towards a more complete understanding
of the challenges in computational distance estimation.

Novel analysis methods for binaural room impulse responses were pro-
posed in publications [P3] and [P4]. These methods allow detecting the
times of arrival ([P3]) and also the directions ([P4]) of early reflections
present in an impulse response. To the best knowledge of the author, es-
timating the times and directions of arrival of reflections from a measured
BRIR (as is done in [P4]) have not been attempted before. The problem
is especially challenging, because there are only two microphone signals
available and the diffraction effects of the head make the interpretation of
the interaural cues difficult. Also, the presence of noise and other artifacts
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in a measured response cause uncertainties in the estimation. Although
the results in [P4] are not excellent, they contribute as pioneering attempts
to tackle the problem of analyzing individual reflections from binaural re-
sponses. Also, the cross-wavelet transform is introduced as a potential tool
in the analysis of room acoustics.

The binaural method for blind estimation of reverberation time pre-
sented in publication [P5] contributed new ways of setting the integration
limits for the Schroeder method. Also, no other reports of actual real-time
implementations of blind RT estimation methods were available at the
time (in 2004), and not even later, to the best knowledge of the author.
An algorithm intended for real-time use has been presented [128], but only
an offline implementation is described. The method of publication [P5]
was mostly intended for use in adjusting the virtual sources in augmented
reality audio (see Section 2.1). It would have most value in that kind of an
application. However, since several new methods for blind RT estimation
[169, 179, 178, 82, 100, 166] have been proposed since publication [P5],
this knowledge should be utilized when designing a real-time algorithm for
an ARA context.

A novel eyes-free user interface was presented in publication [P6], show-
ing an example of a sound-based input for augmented reality audio. Al-
though similar interfaces based on transient sounds (hand claps, finger
snaps) have been presented, this is the still the only binaural ARA-oriented
method found in the relevant literature. By increasing the noise robustness
and recognition accuracy of the method, there might be great potential in
user interfaces with inputs like this. A great advantage is that there is no
need to include special input devices, if the two microphones would be
included anyway for ARA purposes. These kinds of interfaces with non-
speech are useful in many portable applications, as they do not require any
specialized devices and do not require tactile or visual interaction with the
devices.

A third application presented in this thesis is audio surveillance. How-
ever, the actual novel contribution is a detailed investigation into the impor-
tance of different features in unsupervised clustering of short sound events.
The method used for quantifying the importance of the features based the
goodness of clustering might be useful in other clustering applications as
well.

This thesis presented novel methods for the analysis of binaural and
monaural audio signals. Most notably, the problem of computational sound
source distance learning was investigated. Novel methods for analysis of
BRIRs were presented. On the applications side, most importantly a novel
user interface with non-speech audio input was introduced. The different
research topics shared many similarities, especially on the side of methods
used. Most notably, the coherence between left and right ear signals1 was
applied in several publications. Novel uses for coherence were proposed
in these publications. The contributions of the thesis will be useful in the
area of sound signal analysis and its applications.

1Publications [P3] and [P4] used the magnitude of the cross-wavelet transform, which also
measures the strength of correlation between two signals.
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