
Power Cepstrum Calculation with Convolutional Neural
Networks

Cálculo del Power Cepstrum con Redes Neuronales Convolucionales

Mario Alejandro Garcı́a1 and Eduardo Atilio Destéfanis1

1Universidad Tecnológica Nacional Facultad Regional Córdoba, Argentina
mgarcia@frc.utn.edu.ar

Abstract

A model of neural network with convolutional layers
that calculates the power cepstrum of the input signal
is proposed. To achieve it, the network calculates the
discrete-time short-term Fourier transform internally,
obtaining the spectrogram of the signal as an interme-
diate step. Although the proposed neural networks
weights can be calculated in a direct way, it is nec-
essary to determine if they can be obtained through
training with the gradient descent method. In order
to analyse the training behaviour, tests are made on
the proposed model, as well as on two variants (power
spectrum and autocovariance). Results show that the
calculation model of power cepstrum cannot be trained,
but the analysed variants in fact can.

Keywords: Cepstrum, Discrete Fourier transform,
Spectrogram, Deep learning, Convolutional neural net-
work

Resumen

Se propone un modelo de red neuronal con capas de
convolución que calcula el power cepstrum de una
señal de audio. Para logarlo, la red calcula interna-
mente la Transformada Discreta de Fourier de Tiempo
Reducido, obteniendo el espectrograma de la señal
como paso intermedio. Si bien los pesos de la red neu-
ronal propuesta se pueden calcular de forma directa,
uno de los objetivos de este trabajo es determinar si
esta puede ser entrenada con el método del gradiente
descendiente. Para analizar el comportamiento del
entrenamiento se realizan pruebas sobre el modelo
propuesto y también sobre dos variantes (power spec-
trum y autocovarianza). Los resultados indican que
el modelo de cálculo del power cepstrum no se puede
entrenar, pero las variantes analizadas sı́.

Palabras claves: Cepstrum, Transformada discreta de
Fourier, Espectrograma, Aprendizaje profundo, Red
neuronal convolucional

1 Introduction

In machine learning, it is common to use the spectral
information of data in order to find non-evident fea-
tures in the origin domain. The frequency spectrum of
a signal is obtained through the Fourier transform (FT).
For discrete data, as this work, the discrete Fourier
transform (DFT) is used. The spectrogram is a rep-
resentation of the spectrum variation. This variation
can take place in time (for example, audio), in space
(images) and in other domains.

Considering the frequency spectrum as if it was
a signal, its spectral information can be analysed in
order to find non-evident features in the frequency
domain. Consequently, a new level of spectral analysis
is created, the cepstral analysis, whose representation,
again in the time domain, is called cepstrum.

During the pattern recognition process, the spec-
trum, the spectrogram and the cepstrum are usually
calculated in the feature extraction stage. These fea-
tures will be later used in a classifier.

On the other hand, in deep learning models, the first
layers of the neural network are the ones in charge
of extracting features. It is supposed that it is in this
integration of both stages in one same model where
the advantage of this method lies, since it is possible to
find both the optimal parameters of feature extraction
and classification together [1].

The architecture of a neural network that calculates
the spectrum (power spectrum), the spectrogram and
the cepstrum (power cepstrum) is defined in this work.
Then, training tests with audio data are done, and the
adaptation capability of the proposed model is anal-
ysed with the aim of establishing if it can be used as
layers of feature extraction in a bigger deep learning
model.

As the DFT coefficients are known, the optimal
weights of the network can be calculated in a direct
way (“theoretical weights” hereafter). However, it is
important to know the training capacity of the network.
The ability to adapt to particular needs of classification
depends on its capability.

In section 2, some key concepts for the rest of the
article are enunciated. In section 3 related works are

- ORIGINAL ARTICLE -

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-132-

presented. In section 4 a neural network in order to
calculate the power cepstrum is proposed. In section 5
details of the experiments made are provided. Finally,
results and conclusions are shown in sections 6 and 7
respectively.

2 Background

2.1 Discrete Fourier Transform

The DFT converts a finite sequence of N com-
plex numbers (samples) {xn} := x0,x1, ...,xN−1 in an-
other sequence of K = N complex numbers {Xk} :=
X0,X1, ...,XN−1, where xn is in the time domain and Xk
is in the frequency domain.

Xk =
N−1

∑
n=0

xn e−i2πkn/N (1)

According to Euler’s formula, eiξ = cosξ + isinξ .
Then, equation 1 can be written as:

Xk =
N−1

∑
n=0

xn [cos(−2πkn/N)+ i sin(−2πkn/N)] (2)

It is important to highlight that the DFT is a linear
operator [2]. Then, the DFT can be defined as the
linear map F : CN → CN such that X = F (x) with
the matrix representation below.

X = Fx

where

x =
[
x0 x1 x2 . . . xN−1

]ᵀ ,

X =
[
X0 X1 X2 . . . XN−1

]ᵀ
and from equation 1,

F =



1 1 1 . . . 1
1 e−

i2π
N e−2 i2π

N . . . e−(N−1) i2π
N

1 e−2 i2π
N e−4 i2π

N . . . e−2(N−1) i2π
N

1
...

...
. . .

...
1 e−(N−1) i2π

N e−2(N−1) i2π
N . . . e−(N−1)2 i2π

N


For the case of equation 2,

F = FC + iFS

where

FC =


1 1 1 . . . 1
1 θ1 θ2 . . . θN−1
1 θ2 θ4 . . . θ2(N−1)

1
...

...
. . .

...
1 θN−1 θ2(N−1) . . . θ(N−1)2



FS =


0 0 0 . . . 0
0 ρ1 ρ2 . . . ρN−1
0 ρ2 ρ4 . . . ρ2(N−1)

0
...

...
. . .

...
0 ρN−1 ρ2(N−1) . . . ρ(N−1)2


for

θ j = cos(− j i2π

N)

ρ j = sin(− j i2π

N)

2.2 Spectrogram

The spectrogram is the outcome of the application of
the short-term Fourier transform (STFT). For the case
of a discrete signal of length L, the STFT is simply
the DFT of segments of length N, for N < L, of the
signal. The result is a matrix S of complex values with
the signal magnitude and phase for each frequency in
each segment (time). Generally, the time dimension is
represented in the matrix columns and the frequency,
in the matrix rows. The choice of the value of N de-
pends on the objective of the spectral representation
of the data. For small values of N , high definition in
the time dimension and low definition in the frequency
dimension are obtained; whereas for high values of
N, the effect is reversed. The segments can be over-
lapped in a number of samples m between 0 and N−1.
Frequently, instead of using the Xk elements of the
spectrum, the spectrogram is made with the spectrum
magnitude, |Xk|, or with the square of the magnitude
(power spectrum), |Xk|2.

2.3 Cepstrum

The power cepstrum, or just cepstrum, is the power
spectrum of the logarithm of the power spectrum of the
signal [3]. It is mainly used in signal analysis to find
the “frequency” of the occurrence of harmonics in the
spectrum. The independent variable of the cepstrum
represents a new frequency in the frequency domain,
which results in a variable in temporal domain. In
order to avoid confusions, but emphasising on the con-
nection with familiar concepts, Bogert et al. called
this variable quefrency (frequency changing the order
of the first syllables), using the same criterion that was
chosen for the name cepstrum, spectrum with the first
letters reversed [4].

The cepstrum was defined in [5] as

C =
∣∣∣F−1

{
log
(
|F{ f (x)}|2

)}∣∣∣2 (3)

Note that, as log
(
|F{ f (x)}|2

)
is an even function

of the frequency, the sine (imaginary part) of F−1

is voided and, therefore, the cepstrum is equal to the
square of the cosine transform of log

(
|F{ f (x)}|2

)

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-133-

multiplied by 1/N. For the same reason, it is also
frequent to calculate the cepstrum as

C =
1
N

∣∣∣F {
log
(
|F{ f (x)}|2

)}∣∣∣2
Factor 1/N comes from the inverse DFT (IDFT).

For the most common applications of the cepstrum,
which imply the detection of its highest peak, or the
calculation of the relationship between the energy of
the peak and the total energy, this factor can be elimi-
nated.

Although the power cepstrum is calculated in this
article, other versions of cepstrum there exist, such
as real cepstrum, complex cepstrum, phase cepstrum
and autocovariance, The basis of the calculation of
abovementioned versions is the same; therefore, they
could also be calculated with neural networks. The
calculation expression of autocovariance is the same as
that of the power cepstrum, but without the logarithm
[3].

The use of the cepstrum is common in the automatic
analysis of voice. The location of its highest peak
(in a certain range) is used to detect the fundamental
frequency of voice, in other words, the frequency at
which vocal cords vibrate [6]. The ratio between the
peak magnitude and the rest of the cepstrum is used to
determine certain features of vocal quality. This ratio
also allows the classification of voices according to
their level of noise, breathiness and nasality [7, 8]. On
the other hand, the mel frequency cepstral coefficients
(MFCC) are very useful for speech recognition [1].

2.4 Convolutional Neural Networks

Every neuron in a convolutional network (CNN) makes
a linear transformation of its inputs before applying the
activation function. The output of neuron j is defined
as:

y j = g(
N

∑
i=0

wi j xi)

where g() is the activation function, xi is input i, wi j is
the synaptic weight corresponding to input i of neuron
j and w0 j is the bias (x0 = 1).

Every layer of a CNN is made up of kernels. Each
kernel has the same amount of neurons. Inside each
kernel, the neurons share the synaptic weights, but
each neuron has its own receptive field (they are not
connected to all the inputs but to a subset of them).
The neurons in the same position as every kernel share
the receptive field, i.e., they are connected to the same
inputs. Therefore, the output of a CNN layer is the dis-
crete convolution between the inputs and the weights
of each of the kernels. Once the network is trained,
each kernel specialises in recognising or transforming
a certain pattern of the input data.

3 Related Work

In the year 2018, this team presented a neural model
able to calculate the spectrogram of an audio signal [9].
In this current work, a change is made in such model,
since the power spectrum instead of the spectrum mag-
nitude is calculated, and it is extended to calculate the
cepstrum.

There are many works on deep learning that use
spectral information as input [10, 11, 12, 13]. In this
article, it is shown that it is possible to calculate the
same data by adding layers at the beginning of the
network, with the advantage that the calculation of the
spectrum can be adapted to the particular case.

The calculation of the spectral representation
through neural networks was proposed by Moreira
et al. [14]. In their study, they propose the calculation
of the DFT with Cellular Neural Networks by sepa-
rating the weights into groups that represent the real
and imaginary parts. Training is not done, weights are
assigned in a direct way. Velik, in [15], predicts the
DFT with weights calculated from complex exponen-
tial functions also directly assigned, but she reports
that the network is not able to be trained. Hoshen et
al. show in [16] that a convolutional layer is able to
approximate (through training) a filterbank that con-
tains values comparable to the DFT coefficients. In
[17], Sainath et al. are able to improve the state of the
art in speech recognition by using filters learnt with a
convolutional layer. Although the number of studies
that use the original signal as input of the deep learning
models continues to grow, neither the calculation of
the cepstrum with neural networks nor the training of
a network that predicts the power spectrum has been
studied.

On the other hand, Anderson and Mallat [18] pro-
pose to replace the DFT by the Deep Scattering Spec-
trum (DSS) technique based on wavelet transforms,
because DSS is able to represent invariant features
in time (or space in the case of images). On some
occasions, these deviations in time are significant for
recognition. The current research is done in the vocal
quality classification domain, where deviations in the
frequency of vocal cords vibration are important [19].

4 Proposed Neural Network

In this section, the proposed neural network in order
to calculate the cepstrum is presented. Further training
tests will be performed later both on this model and
on its modifications. The neural network predicts the
cepstrum of two-second-long audio signals. The input
is a vector of size L = 50000. The expected output
for every audio file is a matrix, where each column
contains the power cepstrum of a time segment. Note
that the output values are elements of R.

In order to obtain the defined output, the neural
network must be made up of two parts: one part that

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-134-

calculates the power spectrum and another one that
calculates the power cepstrum. In turn, each part has to
fulfil two functions, the calculation of the DFT and that
of the other operations (module, square and logarithm).
To train the network, it is necessary to calculate the
error gradient. As a consequence, the abovementioned
operations are included in the network as layers. Back
error propagation goes through the layers considering
the derivatives of represented functions.

The calculation of the STFT of the power spectrum
is made with a convolutional layer, where synaptic
weights are the elements of matrix F and the activa-
tion function is linear. This is possible since both the
DFT and the operation made by each neuron are linear
transformations. It is important to note that the values
of matrix F are constant.

There are two ways of implementing the calculation,
depending on whether equation 1 or equation 2 of the
DFT is chosen. If matrix F from equation 1 is used,
weight matrix W made by complex coefficients wi j,
will have a size N×K. In the case of equation 2, W ,
sized N × 2K, will be made by the (real) values of
matrices FC and FS. In terms of efficiency, there is no
difference between the two alternatives. For this work,
the second one is chosen because, as the output only
retains information about the spectrum magnitude, it
is possible to avoid the use of operations with complex
numbers. This could be a practical advantage since,
among the software libraries for neural networks, the
support to complex numbers is still not general [20].

4.1 First Convolutional Layer

In order to calculate the STFT with a convolutional
layer, it is convenient to write equation 2 in the follow-
ing way:

Xk =
N−1

∑
n=0

xn φ(k,n)+
N−1

∑
n=0

i xn ψ(k,n) (4)

were

φ(k,n) = cos(−2πkn/N)

ψ(k,n) = sin(−2πkn/N)

If this is the case, complex numbers operations can be
avoided in section 4.2. Ecuation 4 can be written in
matrix form as:

X = FCx+ iFSx

Figure 1 shows the proposed neural model. It can
be noted that the output of the first convolutional layer
contains the values of FCx and FSx. These values are
obtained by making the convolution of the input by
each of the 2K (1760) kernels.

In the case of direct assignment of synaptic weights
(without training), the first K kernels are assigned the
elements of the K rows of matrix FC and the rest, those
of matrix FS, in order. In this model, neurons do not

Figure 1: Model of artificial neural network that re-
ceives audio as input and predicts the power cepstrum.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-135-

use the w0 j weight because the DFT does not have
an independent term. Formally, weight assignment is
done in the following way:

wi jk = fCik (5)

wi j(k+K) = fSik (6)

where wi jk is the synaptic weight of input i of neuron
j of kernel k. fCik is the element of row i and column
k of FC. fSik is the element of row i and column k of
FS.

As weights are shared by the neurons of the same
kernel, only a set of weights for every kernel is stored.
Note that sub index j is not found in the second terms
of equations 5 and 6. Weight matrix W is then sized
N×2K (880×1760).

4.2 Square of the Frequency Spectrum Mag-
nitude

Starting from equation 4, the frequency spectrum mag-
nitude is as follows:

|Xk|=

∣∣∣∣∣N−1

∑
n=0

xn φ(k,n)+
N−1

∑
n=0

i xn ψ(k,n)

∣∣∣∣∣
=

√√√√(N−1

∑
n=0

xn φ(k,n)

)2

+

(
N−1

∑
n=0

xn ψ(k,n)

)2

(7)

Note that complex numbers operations have been
avoided in equation 7.

The results of the summations of equation 7 are the
scalars in position k of vectors FCx and FSx. Then,

|Xk|=
√
(FCx)2

k +(FSx)2
k

where (FCx)k and (FSx)k are the elements of position
k in vectors FCx and FSx respectively. Then, the power
spectrum is calculated as

|Xk|2 = (FCx)2
k +(FSx)2

k

The output of the convolutional layer of the model
in figure 1 is an array that contains vectors FCx and
FSx corresponding to all the segments of the input
signal. After convolution, three operations located in
layers are performed. 1) A change in the shape of the
array in order to simplify the third operation (layer
2), 2) the square of each element (layer 3) and 3) the
sum of the pairs of values corresponding to the same
frequency (k) and to the same time segment (layer 4).
The result is a 880×224 matrix with the elements of
the spectrogram.

4.3 Second Convolutional Layer

The function of the second convolutional layer is the
calculation of the IDFT of the logarithm of the power
spectrum. As its input, it receives the output of layer
5, that calculates the logarithm of the elements of the
spectrogram (880×224). Different from the first con-
volution, the input has two dimensions in this layer:
frequency× time. Each kernel has the size of a column
of the input matrix, 880 (complete power spectrum)
×1. In this way, for each time segment the calculation
is:

C∗k =
1
N

N−1

∑
n=0
|Xn|2 cos(−2πkn/N)

and it can be expressed in matrix form as:

C∗ =
1
N

FC|X |2

where C∗ is the result of the inverse transform. In
section 2.3 it was explained that, for this case, the
IDFT can be replaced by the discrete cosine transform
(DCT).

In the case of direct assignment of weights, wi jk =
1
N fCik.

4.4 Square of the Second Convolution

Finally, the power cepstrum is obtained in the layer
8. It calculates the square of the output of the second
convolutional layer. Ck =C∗k

2.

5 Experiments

5.1 Training

As it was mentioned before, instead of having weights
assigned in a direct way, it is possible to train the net-
work. This possibility is important since it implies that
the network can be initialized with assigned weights
(random or not) and can adapt to new needs.

The proposed neural network will be trained through
the gradient descent method of the mean squared er-
ror (MSE) function. The calculation of the gradient
includes the derivatives of the logarithm, addition and
squares.

5.1.1 Variants of the model

Layer 5 calculates the logarithm of the output of layer
4. Discontinuity in the derivative of the logarithm is an
issue when back propagating error gradient. Therefore,
difficulties can be found when weights of the first
convolutional layer are trained. In order to analyse
the neural network training capacity considering the
situation explained above, three variants of the model
are trained, namely:

• Model I. Calculates the power spectrum (|Xk|2).
Uses layers 1 through 5 of the proposed model.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-136-

• Model II. Calculates the power cepstrum. It is the
complete model proposed in section 4.

• Model III. The model proposed in section 4 is
modified by having layer 5 removed (logarithm).
The model that results from eliminating the loga-
rithm returns the autocovariance, another transfor-
mation used in signal analysis which is useful for
determining resonance frequency by identifying
the highest peak.

5.1.2 Initial Conditions

In [9] we showed that a neural network of similar
complexity to that of model I can calculate spectrum
magnitude |Xk|. In this work, the weights of model I
are initialised with random values, as in [9].

Models II and III ave two layers with weights, so
training should be more difficult than the one for model
I. In order to make a more detailed analysis of the
training of models II and III, training is held with three
different initial conditions:

• Starting from random weights (R). This condi-
tion supposes a greater difficulty than the next
conditions, as initial weights are farther from op-
timal weights than the weights in the other two
conditions.

• Starting from theoretical weights with an addition
of 10% of noise (N).

• Starting from theoretical weights, but replacing
the expected output by the power cepstrum of
the audio multiplied by a Tukey window (tapered
cosine window) with r = 0.25 (W).

Figure 2 shows an example of an audio, of the win-
dow function and of the audio multiplied by the win-
dow corresponding to conditions W.

Additionally, the following tests are made for every
initial condition of models II and III:

• Training the complete model (TCM).

• Just training the first convolutional layer (CL1).
The complete model is used. The second convolu-
tional layer is initialised with theoretical weights.
Then, the model is trained without any modifica-
tion in the weights of the second convolutional
layer.

• Just training the second convolutional layer
(CL2). The complete model is used. The first
convolutional layer is initialised with theoretical
weights. Then, the model is trained without any
modification in the weights of the first convolu-
tional layer.

The aim of these three tests is to determine, in case
the complete model cannot be trained, whether each

of the convolutional layers can reach optimal weights
when the other layer is already adapted.

In all the cases, when weights are initialised with
random values, they have a uniform distribution be-
tween -0.001 and 0.001. Adam (Adaptive Moment
Estimation), the optimisation method [21], was used.
It is a variant of the gradient descent method, with
α = 0.001, β1 = 0.9 and β2 = 0.999. Weights were
updated in batchs sized 300 (the total training data).
The calculations were made on a GPU NVIDIA Titan
Xp.

In section 6, the results of this process are presented
and compared to those obtained through direct assign-
ment.

5.2 Data

Audios are taken from the Voice Disorders Database
(VDD) [22], recorded by the Polytechnic University
of Madrid in collaboration with Prı́ncipe de Asturias
University Hospital. Healthy people and people with
vocal pathologies who pronounce a sustained vowel
/a/ for approximately two seconds were recorded.

The audios are in WAV format with a rate of 25000
samples per second. For all files with a duration longer
than 2 seconds, the 50000 central samples were taken.
The input data were then defined by 430 vectors of size
L = 50000, from which 300 and 130 were randomly
chosen for training and for validation respectively.

For outputs, the calculation is made according to
equation 3 in the following way:

Firstly, the spectrogram is calculated as the square of
the absolute value of the STFT of the inputs with seg-
ments sized N = 880 and overlap m = 660 elements,
which implies a displacement of 220 elements in each
transformation. The spectrogram calculated in this
way has 224 columns (time) by 880 rows (frequency).

The output is calculated as the square of the absolute
value of the IDFT of the logarithm of each of the power
spectrum (columns) of the spectrogram.

The outputs are defined by vectors of size 880×224.

6 Results

6.1 Model I

The results of 30000 training cycles of the model that
calculates the power spectrum are presented hereafter.

The validation MSE reached was 1.63 × 10−6

(9.45 × 10−6% of the mean value of the expected
output), whereas an MSE < 10−9 is obtained for the
same model with weights assigned in a direct way.

The output obtained through training is very near
the expected one. Figure 3 shows the expected output
for one element of the validation dataset and the output
obtained after training. As it can be seen, there are no
visual differences between them.

Despite obtained results are good, it can be observed
that trained weights are very different from theoretical

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-137-

Figure 2: Amplitude (A) in time (t) of 880 samples (0.0352 seconds) of a sustained vowel /a/ (top). Tukey window
for r = 0.25 (middle). Audio multiplied by Tukey window (bottom).

weights. It is important to analyse these differences
in order to gain further understanding about how the
neural network calculates the DFT. A comparison be-
tween the theoretical weights calculated from the DFT
equations and trained weights is presented below.

In figure 4, the values of FC and FS for weights
assigned in a direct way (theoretical) and for trained
weights can be seen. In all the cases, it is clearly
observed that the left rows of the transposed matrices
represent low frequencies, and the right ones, high
frequencies.

It is also evident that both groups, theoretical
and trained weights, present different image patterns.
Trained weights look more “untidy”. The origin of
this phenomenon is that the DFT decomposes the in-
put into a weighted sum of sinusoidal signals found
in matrices FC and FS. The training method for every
value of k, finds a pair FC and FS made by sinusoidal
waves outphased in 90◦ that allows the desired decom-
position. However, this solution is not necessarily the
same as in equation 4.

Figure 5 shows some examples of trained weights
vs. theoretical weights for particular values of k. Note
that the 90◦ outphase between FC and FS is always
respected, both among the pairs of theoretical weights
and among the pairs of trained weights. This can

be proved by calculating mod =
√

F2
C +F2

S for any
value of k. For theoretical weights, obviously mod = 1,
whereas for trained weights, a value very near to 1 is
always obtained. Therefore, an orthogonal base is
found to make the decomposition.

6.2 Models II and III

Tables 1 and 2 show the errors obtained during the
trainings of both calculation models, that of the power
cepstrum and that of the variant without the logarithm
respectively.

As the output values are not standardised and the
outputs of the models compared have different magni-
tudes, instead of showing the MSE, the ratio between
the mean absolute error (MAE) and the output mean
value is shown. The empty spaces show that the train-
ing was not successful.

Table 1: Ratio between the mean absolute error (MAE)
and the output mean value for model II according to
the conditions defined in section 5.1.2.

R N W

TCM - - -
CL1 - - -
CL2 1.17 10−5 5.27 10−6 -

6.2.1 Model II

For the model II, only cases CL2-R and CL2-N could
be trained. In the first case, the weights of the first
convolutional layer were initialised with theoretical
weights and remained fixed, whereas those of the sec-
ond convolutional layer were initialised with random
values and were trained. The second case is similar,
but the weights of the second layer are initialised with

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-138-

Figure 3: Spectrograms (first 200 rows) of output of
the model I, where k is the row number and t is time.
Expected output (top) and obtained output with trained
weights (bottom).

Figure 4: Weights of model I. Kernels 0 to 200 of co-
efficient matrices FC with theoretical weights (a), FS
with theoretical weights (b), FC with trained weights
(c) and FS with trained weights (d).

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-139-

Figure 5: Trained weights vs. theoretical weights for k = 3, k = 5 and k = 7 in model I.

Table 2: Ratio between the mean absolute error (MAE)
and the output mean value for model III according to
the conditions defined in section 5.1.2.

R N W

TCM - 1.33 10−4 6.46 10−4

CL1 1.46 10−4 7.89 10−5 1.73 10−5

CL2 1.22 10−5 5.50 10−6 -

theoretical weights, and noise is added. It is not sur-
prising that these cases are trainable, as the calculation
is similar to that of the power spectrum because they
make the square of the DFT magnitude.

In none of the TCM and CL1 cases model II could
be trained. For these cases, it is necessary to modify
the weights of the first convolutional layer. In order
to do this, error has to be propagated through layer 5
(logarithm). Due to discontinuity in the derivative of
the logarithm, propagated information does not allow
a proper search by gradient descent. Hence, TCM and
CL1 cases cannot be trained.

Case CL2-W cannot be trained either. In the next
section the reason for this is described.

6.2.2 Model III

For model III (without logarithm), case TCM-R could
not be trained. This is the complete model in which all
the weights are initialised randomly. The rest of the
cases (except for CL2-W) could be trained. This means
that, in case model III is initialised with weights near
the optimal ones (for example, theoretical weights), it
can be trained to adapt to particular problems. This

also confirms that the problem of model II is the deriva-
tive of the logarithm.

Note that case CL2-W cannot be trained because
the solution requires modifying the first convolutional
layer. Figure 6 shows some of the weights of the first
convolutional layer for case CL1-W. It can be clearly
seen that weights tend towards the product between
theoretical weights and the window used. Therefore, if
modifying the weights of the first convolutional layer
is not allowed, case CL2-W (both in model III as in
model II) cannot be trained.

7 Conclusions

One conclusion is that a neural model is able to cal-
culate the DFT, both for theoretical and for trained
weights, and that the latter do not necessarily tend to-
wards the former, although they share frequency and
the condition of orthogonality.

Another conclusion drawn is that the complete
model presented is able to calculate the cepstrum cor-
rectly, but neither can it be trained nor it has the ca-
pacity to adapt to other problems through training,
since the derivative of the logarithm function is not
adequate to backpropagate the error towards the first
convolutional layer.

As future work, it is planned to create a neural net-
work to calculate the fundamental frequency (F0) of
voice based on model III and initialised with theoreti-
cal weights. This model, equivalent to the autocovari-
ance function, keeps some of the advantages of the
cepstrum, such as information to detect the fundamen-
tal frequency of the signal. F0 can be obtained from
the location of the autocovariance highest peak.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-140-

Figure 6: Trained weights vs. initial weights for case CL1-W in model III.

Acknowledgements

We gratefully acknowledge the support of NVIDIA
Corporation through the NVIDIA GPU Grant Pro-
gram.

Competing interests

No competing interests exist.

References

[1] L. D. Dong Yu, Automatic speech recognition, a
deep learning approach. Springer-Verlag Lon-
don, 1 ed., 2014.

[2] J. McClellan and T. Parks, “Eigenvalue and
eigenvector decomposition of the discrete fourier
transform,” IEEE Transactions on Audio and
Electroacoustics, vol. 20, no. 1, pp. 66–74, 1972.

[3] A. M. Noll, “Cepstrum pitch determination,” The
journal of the acoustical society of America,
vol. 41, no. 2, pp. 293–309, 1967.

[4] A. V. Oppenheim and R. W. Schafer, “From fre-
quency to quefrency: A history of the cepstrum,”
IEEE signal processing Magazine, vol. 21, no. 5,
pp. 95–106, 2004.

[5] B. P. Bogert, “The quefrency alanysis of
time series for echoes; cepstrum, pseudo-
autocovariance, cross-cepstrum and saphe crack-
ing,” Time series analysis, pp. 209–243, 1963.

[6] R. Randall, J. Antoni, and W. Smith, “A survey
of the application of the cepstrum to structural

modal analysis,” Mechanical Systems and Signal
Processing, vol. 118, pp. 716–741, 2019.

[7] C. Madill, D. D. Nguyen, K. Yick-Ning Cham,
D. Novakovic, and P. McCabe, “The impact
of nasalance on cepstral peak prominence and
harmonics-to-noise ratio,” The Laryngoscope,
2018.

[8] V. S. McKenna and C. E. Stepp, “The relation-
ship between acoustical and perceptual measures
of vocal effort,” The Journal of the Acoustical So-
ciety of America, vol. 144, no. 3, pp. 1643–1658,
2018.

[9] M. A. Garcı́a and E. A. Destéfanis, “Spectrogram
prediction with neural networks,” in XXIV Con-
greso Argentino de Ciencias de la Computación
(Tandil, 2018)., 2018.

[10] R. Collobert, C. Puhrsch, and G. Synnaeve,
“Wav2letter: an end-to-end convnet-based
speech recognition system,” arXiv preprint
arXiv:1609.03193, 2016.

[11] Y. Xu, J. Du, L.-R. Dai, and C.-H. Lee, “An ex-
perimental study on speech enhancement based
on deep neural networks,” IEEE Signal process-
ing letters, vol. 21, no. 1, pp. 65–68, 2014.

[12] M. J. Putten, S. Olbrich, and M. Arns, “Predict-
ing sex from brain rhythms with deep learning,”
Scientific reports, vol. 8, no. 1, p. 3069, 2018.

[13] A. M. Badshah, J. Ahmad, N. Rahim, and S. W.
Baik, “Speech emotion recognition from spectro-
grams with deep convolutional neural network,”
in Platform Technology and Service (PlatCon),

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-141-

2017 International Conference on, pp. 1–5, IEEE,
2017.

[14] O. Moreira-Tamayo and J. P. De Gyvez, “Filter-
ing and spectral processing of 1-d signals using
cellular neural networks,” in Circuits and Sys-
tems, 1996. ISCAS’96., Connecting the World.,
1996 IEEE International Symposium on, vol. 3,
pp. 76–79, IEEE, 1996.

[15] R. Velik, “Discrete fourier transform computa-
tion using neural networks,” in 2008 Interna-
tional Conference on Computational Intelligence
and Security, pp. 120–123, IEEE, 2008.

[16] Y. Hoshen, R. J. Weiss, and K. W. Wilson,
“Speech acoustic modeling from raw multichan-
nel waveforms,” in Acoustics, Speech and Signal
Processing (ICASSP), 2015 IEEE International
Conference on, pp. 4624–4628, IEEE, 2015.

[17] T. N. Sainath, R. J. Weiss, A. Senior, K. W. Wil-
son, and O. Vinyals, “Learning the speech front-
end with raw waveform cldnns,” in Sixteenth
Annual Conference of the International Speech
Communication Association, 2015.

[18] J. Andén and S. Mallat, “Deep scattering spec-
trum,” IEEE Transactions on Signal Processing,
vol. 62, no. 16, pp. 4114–4128, 2014.

[19] M. A. Garcı́a and E. A. Destéfanis, “Deep neural
networks for shimmer approximation in synthe-
sized audio signal,” in Argentine Congress of
Computer Science, pp. 3–12, Springer, 2017.

[20] C. Trabelsi, O. Bilaniuk, Y. Zhang, D. Serdyuk,
S. Subramanian, J. F. Santos, S. Mehri,
N. Rostamzadeh, Y. Bengio, and C. J. Pal,
“Deep complex networks,” arXiv preprint
arXiv:1705.09792, 2017.

[21] D. P. Kingma and J. Ba, “Adam: A method
for stochastic optimization,” arXiv preprint
arXiv:1412.6980, 2014.

[22] J. D. Arias-Londoño, J. I. Godino-Llorente,
M. Markaki, and Y. Stylianou, “On combining
information from modulation spectra and mel-
frequency cepstral coefficients for automatic de-
tection of pathological voices,” Logopedics Pho-
niatrics Vocology, vol. 36, no. 2, pp. 60–69,
2011.

�

�

�

�

Citation: M. García and E. Destéfanis. Power
Cepstrum Calculation with Convolutional Neural
Networks. Journal of Computer Science &
Technology, vol. 19, no. 2, pp. 132–142, 2019.
DOI: 10.24215/16666038.19.e13
Received: March 15, 2019 Accepted: July 04,
2019.
Copyright: This article is distributed under the
terms of the Creative Commons License CC-BY-
NC.

Journal of Computer Science & Technology, Volume 19, Number 2, October 2019

-142-

