
Mälardalen University Doctoral Thesis
No.139

Lightweight Security Solutions
for the Internet of Things

Shahid Raza

June 2013

Department of Computer Science and Engineering
Mälardalen University

Västerås, Sweden

Copyright c© Shahid Raza, 2013
ISSN 1651-4238
ISBN 978-91-7485-110-6
Printed by Mälardalen University, Västerås, Sweden
Distribution: Mälardalen University Press

Swedish Institute of Computer Science
Doctoral Thesis

SICS Dissertation Series 64

Lightweight Security Solutions for the
Internet of Things

Shahid Raza

2013

Swedish Institute of Computer Science(SICS)
SICS Swedish ICT, Kista

Stockholm, Sweden

Copyright c© Shahid Raza, 2013
ISSN 1101-1335
ISRN SICS-D–64–SE
Printed by Mälardalen University, Västerås, Sweden

Abstract

The future Internet will be an IPv6 network interconnecting traditional comput-
ers and a large number of smart objects or networks such as Wireless Sensor
Networks (WSNs). This Internet of Things (IoT) will be the foundation of
many services and our daily life will depend on its availability and reliable op-
erations. Therefore, among many other issues, the challenge of implementing
secure communication in the IoT must be addressed. The traditional Internet
has established and tested ways of securing networks. The IoT is a hybrid
network of the Internet and resource-constrained networks, and it is therefore
reasonable to explore the options of using security mechanisms standardized
for the Internet in the IoT.

The IoT requires multi-faceted security solutions where the communica-
tion is secured with confidentiality, integrity, and authentication services; the
network is protected against intrusions and disruptions; and the data inside a
sensor node is stored in an encrypted form. Using standardized mechanisms,
communication in the IoT can be secured at different layers: at the link layer
with IEEE 802.15.4 security, at the network layer with IP security (IPsec), and
at the transport layer with Datagram Transport Layer Security (DTLS). Even
when the IoT is secured with encryption and authentication, sensor nodes are
exposed to wireless attacks both from inside the WSN and from the Internet.
Hence an Intrusion Detection System (IDS) and firewalls are needed. Since
the nodes inside WSNs can be captured and cloned, protection of stored data
is also important.

This thesis has three main contributions. (i) It enables secure communi-
cation in the IoT using lightweight compressed yet standard compliant IPsec,
DTLS, and IEEE 802.15.4 link layer security; and it discusses the pros and cons
of each of these solutions. The proposed security solutions are implemented
and evaluated in an IoT setup on real hardware. (ii) This thesis also presents the
design, implementation, and evaluation of a novel IDS for the IoT. (iii) Last but

vii

viii

not least, it also provides mechanisms to protect data inside constrained nodes.
The experimental evaluation of the different solutions shows that the resource-
constrained devices in the IoT can be secured with IPsec, DTLS, and 802.15.4
security; can be efficiently protected against intrusions; and the proposed com-
bined secure storage and communication mechanisms can significantly reduce
the security-related operations and energy consumption.

Sammanfattning

Framtidens Internet är ett IPv6-nätverk vilket förbinder traditionella datorer
och ett stort antal smarta objekt eller nätverk som trådlösa sensornätverk (WSN).
Detta Internet of Things (IoT) kommer att vara grunden för många tjänster och
vårt dagliga liv kommer att bero pådess tillgänglighet och säkra drift. Därför
måste man bland många andra frågor adressera utmaningen att skapa säker
kommunikation i Internet of Things. Det traditionella Internet har etablerat
och testat olika sätt att skapa säkra nätverk. IoT är en blandning av nätverk,
av Internet och nät med småresurser, och det är därför viktigt att undersöka
möjligheterna att använda säkerhetsmekanismer standardiserade för Internet i
Internet of Things.

Internet of Things kräver mångfacetterade säkerhetslösningar där kommu-
nikationen är säkrad med sekretess, integritet och autentisering av tjänster,
nätverket skyddas mot intrång och störningar, och data inuti en sensornod la-
gras i krypterad form. Med standardiserade mekanismer kan kommunikatio-
nen säkras i olika skikt: i länkskiktet med IEEE 802.15.4-säkerhet, i nätskiktet
med IP-säkerhet (IPsec), och i transportskiktet med Datagram Transport Layer
Security (DTLS) . ven när kommunikationen är säkrad med kryptering och au-
tentisering är sensornoderna utsatta både för trådlösa attacker inifrån WSN och
från Internet. Därför behövs ett system för att upptäcka intrång (Intrusion De-
tection System, IDS), och även brandväggar behövs. Eftersom noderna inne i
WSN kan stjälas och klonas, är skyddet av lagrade data ocksåviktigt.

Denna avhandling har tre huvudsakliga bidrag. (i) Den möjliggör säker
kommunikation i Internet of Things med lättviktiga, komprimerade, men stan-
dardkompatibla IPsec, DTLS och IEEE 802.15.4-länkskiktssäkerhet, och jämför
för- och nackdelar mellan dessa lösningar. De föreslagna säkerhetslösningarna
implementeras och utvärderas i en IoT-installation påriktig hårdvara. (ii) Denna
avhandling presenterar ocksådesign, implementation och utvärdering av ett
nytt IDS för Internet of Things. (iii) Sist men inte minst, avhandlingen pre-

ix

x

senterar ocksåmekanismer för att skydda data i noder med begränsade resurser.
Den kvantitativa utvärderingen av de olika lösningarna visar att enheter i IoT
med begränsade resurser kan säkras med IPsec, DTLS och 802.15.4-säkerhet,
och kan effektivt skyddas mot intrång, och den föreslagna kombinationen av
säker lagring och mekanismer för säker kommunikation kan avsevärt minska
kostanden för säkerhetsrelaterade operationer och energiförbrukning.

Acknowledgements

First and foremost, I am thankful to Almighty Allah for bestowing me health,
persistence, and knowledge to complete this work. I implore Him to make my
knowledge and skills useful to mankind.

I am obliged to all the people in SICS Swedish ICT, Mälardalen University,
and ABB who were associated with this work and guided me throughout the
thesis period, but it is worth mentioning some of the people who were really
benevolent and supportive. I first express my gratitude to my advisor Prof.
Thiemo Voigt for his unprecedented support, extensive guidance, and personal
involvement in all phases of this research. Without his encouragement, guid-
ance, and keen interest this thesis would not have been completed.

I am deeply indebted and grateful to my supervisors Prof. Mats Björkman,
Dr. Christian Gehrmann, Prof. Seif Haridi, and Thiemo Voigt for providing
me the much needed motivation, inspiration and guidance in achieving this
milestone. Its been pleasure to work with the co-authors around the globe. I
genuinely thank Utz Roedig, Ibrahim Ethem Bagci, and Tony Chung from Lan-
caster University; Krister Landernäs and Mikael Gidlund for ABB; Gianluca
Dini from University of Pisa; Kasun from Uppsala University; René Hummen
from RWTH Aachen University; and Adriaan, Dogan, Hossein, Joel, Linus,
Simon, and Thiemo from SICS.

I am very grateful to Dr. Sverker Janson, head of the Computer Systems
Laboratory (CSL) and a supportive mentor, for helping me in all academic
and non-academic matters whenever needed. I am thankful to my current and
formers co-workers in NES group: Adriaan, Adam, Beshr, Dogan, Fredrik,
Joakim, Joel, Luca, Niclas, Nicolas, Niklas, Prasant, Zhitao, and obviously Si-
mon and Thiemo. I acknowledge all colleagues at SICS particularly Mudassar
Aslam, Eva Gudmundsson, Jerker Berg, Thomas Ringström, Lotta Jörsäter,
Karin Fohlstedt, Vicki Knopf, Bengt Ahlgren, Maria Holm, Oliver Schwarz,
Orc Lönn, Rolf Blom, and of course Janusz Launberg and Christer Norström.

Last, but certainly not least, I cannot thank my family enough for the unend-

xi

xii

ing affection, encouragement, respect and all the exciting and gloomy things I
have shared with them. I express my deepest gratitude to my parents, brothers,
sisters, my wife, and my son for their emotional and moral support throughout
my academic career and also for their tolerance, inspiration, and prayers.

Shahid Raza
Stockholm, May, 2013

This work has been performed in the Networked Embedded Systems (NES) Group that
is a part of the Computer Systems Laboratory in the SICS Swedish ICT. This work is
mainly financed by the Higher Education Commission (HEC) Pakistan in the form of
PhD scholarship, and SICS Center for Networked Systems (CNS). The SICS CNS is
funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab SDS, TeliaSonera, T2Data, Ven-
dolocus, and Peerialism. This work has been partially supported by SSF, Uppsala VINN
Excellence Center for Wireless Sensor Networks (WISENET), and European Commis-
sion with contract FP7-2007-2-224053 (CONET), FP7-2007-2-224282 (GINSENG),
and FP7-ICT-2011.1.3- 288879 (CALIPSO).
The SICS Swedish ICT is sponsored by TeliaSonera, Ericsson, Saab SDS, FMV (De-
fence Materiel Administration), Green Cargo (Swedish freight railway operator), ABB,
and Bombardier Transportation.

List of publications

Publications included in the thesis

1. Shahid Raza, Adriaan Slabbert, Thiemo Voigt, Krister Landernäs. Secu-
rity Considerations for the WirelessHART Protocol. In proceedings of
14th IEEE International Conference on Emerging Technologies and Fac-
tory Automation (ETFA’09), September 22-26, 2009, Mallorca, Spain.

2. Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo
Voigt, Utz Roedig. Securing Communication in 6LoWPAN with Com-
pressed IPsec. In proceedings 7th IEEE International Conference on
Distributed Computing in Sensor Systems (DCOSS ’11), June 27-29
2011, Barcelona, Spain.

3. Shahid Raza, Simon Duquennoy, Joel Hoglund, Utz Roedig, Thiemo
Voigt. Secure Communication for the Internet of Things - A Compari-
son of Link-Layer Security and IPsec for 6LoWPAN. Journal of Security
and Communication Networks, Early View (), Wiley, 2012.

4. Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, Thiemo
Voigt. Lithe: Lightweight Secure CoAP for the Internet of Things. [In
Submission]

5. Shahid Raza, Linus Wallgren, Thiemo Voigt. SVELTE: Real-time In-
trusion Detection in the Internet of Things. Ad Hoc Networks Journal,
Elsevier, 2013. [Accepted]

xiii

xiv

6. Ibrahim Ethem Bagci, Shahid Raza, Tony Chung, Utz Roedig, Thiemo
Voigt. Combined Secure Storage and Communication for the Internet of
Things. In proceedings of 10th IEEE International Conference on Sens-
ing, Communication, and Networking (SECON’13), June 24-27, 2013,
New Orleans, USA.

Other publications
In addition to the papers included in the thesis I have also co-authored the
following papers:

1. René Hummen, Jan H. Ziegeldorf, Hossein Shafagh, Shahid Raza, Klaus
Wehrle. Towards Viable Certificate-based Authentication for the Web of
Things. In proceedings of ACM Workshop on Hot Topics on Wireless
Network Security and Privacy, co-located with ACM WiSec 2013, April
17-19, 2013, Budapest, Hungary.

2. Daniele Trabalza, Shahid Raza, Thiemo Voigt. INDIGO: Secure CoAP
for Smartphones- Enabling E2E Secure Communication in the 6IoT. In
proceedings of International Conference on Wireless Sensor Networks
for Developing Countries (WSN4DC 13), April 24-26 2013, Jamshoro,
Pakistan.

3. Ibrahim E. Bagci, Mohammad R. Pourmirza, Shahid Raza, Utz Roedig,
Thiemo Voigt. Codo: Confidential Data Storage for Wireless Sensor
Networks. In proceedings of 8th IEEE International Workshop on Wire-
less and Sensor Networks Security (WSN’S 2012), in conjunction with
9th IEEE MASS’2012, October 8-12 2012, Las Vegas, Nevada, USA.

4. Shahid Raza, Daniele Trabalza, Thiemo Voigt. Poster Abstract: 6LoW-
PAN Compressed DTLS for CoAP. In proceedings of 8th IEEE Interna-
tional Conference on Distributed Computing in Sensor Systems (DCOSS
’12), 16-18 May 2012, Hangzhou, China.

5. Shahid Raza, Thiemo Voigt, Vilhelm Juvik. Lightweight IKEv2: A Key
Management Solution for both Compressed IPsec and IEEE 802.15.4
Security. In IETF Workshop on Smart Objects Security, March 23, 2012,
Paris, France.

6. Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo
Voigt, Utz Roedig. Demo Abstract: Securing Communication in 6LoW-
PAN with Compressed IPsec. In proceedings 7th IEEE International

xv

Conference on Distributed Computing in Sensor Systems (DCOSS ’11),
27-29 June 2011, Barcelona, Spain.

7. Shahid Raza, Gianluca Dini, Thiemo Voigt, and Mikael Gidlund. Secure
Key Renewal in WirelessHART. In Real-time Wireless for Industrial Ap-
plications (RealWin’11), CPS Week, 11-16 April 2011, Chicago, Illi-
nois, USA.

8. Shahid Raza, Thiemo Voigt, and Utz Roedig. 6LoWPAN Extension for
IPsec. In Interconnecting Smart Objects with the Internet Workshop, 25
March 2011, Prague, Czech Republic.

9. Auriba Raza and Iftikhar A, Raja and Elisabet Lindgren and Shahid
Raza. Land-use Change Analysis of District Abbottabad Pakistan: Tak-
ing Advantage of GIS and Remote Sensing. In proceedings of 4th Inter-
national conference on Environmentally Sustainable Development, June
2011, Pakistan.

10. Shahid Raza and Thiemo Voigt. Interconnecting WirelessHART and
Legacy HART Networks. In proceedings of 1st International Work-
shop on Interconnecting Wireless Sensor Network in conjunction with
DCOSS’10., 21-23 June 2010, UC Santa Barbara, USA.

11. Shahid Raza, Thiemo Voigt, Adriaan Slabbert, Krister Landernäs. De-
sign and Implementation of a Security Manager for WirelessHART Net-
works. In proceedings of 5th IEEE International Workshop on Wire-
less and Sensor Networks Security (WSN’S 2009), in conjunction with
MASS’2009, 12-15 Oct 2009, Macau SAR, P.R.C..

12. Joakim Eriksson, Fredrik Österlind, Thiemo Voigt, Niclas Finne, Shahid
Raza, Nicolas Tsiftes, and Adam Dunkels. Demo abstract: accurate
power profiling of sensornets with the COOJA/MSPSim simulator. In
proceedings of 6th IEEE International Conference on Mobile Ad-hoc
and Sensor Systems (IEEE MASS 2009), 12-15 Oct 2009, Macau SAR,
P.R.C..

Contents

I Thesis 1

1 Introduction 3
1.1 The IPv6-connected Internet of Things 4
1.2 Secure Internet of Things . 6

1.2.1 Communication Security 7
1.2.2 Network Security . 10
1.2.3 Data Security . 10

1.3 Research Methodology . 11
1.4 Thesis Outline . 12

2 Challenges and Contributions 13
2.1 Secure Communication: Message Security 14
2.2 Secure Network: Intrusion Detection 16
2.3 Secure Device: Data Security 17
2.4 Security Analysis of WirelessHART 18
2.5 Standardization of Proposed Solutions 19

3 Summary of Papers 21
3.1 Security Considerations for the WirelessHART Protocol . . . 22
3.2 Securing Communication in 6LoWPAN with Compressed IPsec 23
3.3 Secure Communication for the Internet of Things A Compar-

ison of Link-Layer Security and IPsec for 6LoWPAN 24
3.4 Lithe: Lightweight Secure CoAP for the Internet of Things . . 25
3.5 SVELTE: Real-time Intrusion Detection in the Internet of Things 26
3.6 Combined Secure Storage and Communication for the Internet

of Things . 27

xvii

xviii Contents

4 Related Work 29
4.1 Communication Security . 30

4.1.1 IEEE 802.15.4 Security 30
4.1.2 Transport Layer . 31
4.1.3 IPsec . 32
4.1.4 Key Management in the IoT 33

4.2 Network Security . 33
4.3 Secure Storage . 34

5 Conclusions and Future Work 35
5.1 Conclusions . 35
5.2 Future Work . 36

Bibliography 39

II Included Papers 49

6 Paper A: Security Considerations for the WirelessHART Protocol 51
6.1 Introduction . 53
6.2 WirelessHART Security . 54

6.2.1 End-to-End Security 54
6.2.2 Per-Hop Security . 56
6.2.3 Peer-to-Peer Security 57

6.3 Threat Analysis . 58
6.3.1 Interference . 58
6.3.2 Jamming . 59
6.3.3 Sybil . 59
6.3.4 Traffic Analysis . 60
6.3.5 DOS . 60
6.3.6 De-synchronization 61
6.3.7 Wormhole . 61
6.3.8 Tampering . 62
6.3.9 Eavesdropping . 62
6.3.10 Selective Forwarding Attack 63
6.3.11 Exhaustion . 63
6.3.12 Spoofing . 63
6.3.13 Collision . 64
6.3.14 Summary . 64

Contents xix

6.4 WirelessHART Security Manager 65
6.5 Security Limitations of WirelessHART 68
6.6 Conclusions and Future Work 69
Bibliography . 71

7 Paper B:
Securing Communication in 6LoWPAN with Compressed IPsec 75
7.1 Introduction . 77
7.2 Related Work . 78
7.3 Securing WSN Communications 79
7.4 Background . 80

7.4.1 IPv6 and IPsec . 81
7.4.2 6LoWPAN . 82

7.5 6LoWPAN and IPsec . 83
7.5.1 LOWPAN NHC Extension Header Encoding 83
7.5.2 LOWPAN NHC AH Encoding 84
7.5.3 LOWPAN NHC ESP Encoding 85
7.5.4 Combined Usage of AH and ESP 86
7.5.5 End Host Requirement 86

7.6 Evaluation and Results . 86
7.6.1 Implementation and Experimental Setup 86
7.6.2 Memory footprint . 88
7.6.3 Packet Overhead Comparison 89
7.6.4 Performance of Cryptography 89
7.6.5 System-wide Energy Overhead 91
7.6.6 System-wide Response Time Overhead 91
7.6.7 Improvements Using Hardware Support 93

7.7 Conclusions and Future Work 94
Bibliography . 95

8 Paper C:
Secure Communication for the Internet of Things -
A Comparison of Link-Layer Security and IPsec for 6LoWPAN 99
8.1 Introduction . 101
8.2 Related Work . 103

8.2.1 Embedding Cryptographic Algorithms 103
8.2.2 Securing the IoT at the Link-Layer 103
8.2.3 Securing the IoT at the Transport-Layer 104
8.2.4 Securing the IoT at the Network-Layer 104

xx Contents

8.3 Background . 105
8.3.1 Overview of 6LoWPAN 105
8.3.2 Overview of IEEE 802.15.4 Security 107
8.3.3 Overview of IPsec 107

8.4 6LoWPAN/IPsec Extension 109
8.4.1 LOWPAN NHC Extension Header Encoding 109
8.4.2 LOWPAN NHC AH Encoding 110
8.4.3 LOWPAN NHC ESP Encoding 111

8.5 Implementation . 114
8.5.1 Link-layer Security Implementation 114
8.5.2 IPsec Implementation 114
8.5.3 Concurrent Use . 115

8.6 Evaluation and Results . 115
8.6.1 Experimental Setup 116
8.6.2 Memory Footprint Comparison 117
8.6.3 Header Overhead Comparison 118
8.6.4 Evaluation of Cryptographic Algorithms 120
8.6.5 Energy Consumption Comparison 120
8.6.6 Overall Network Performance 122

8.7 Conclusion . 127
Bibliography . 131

9 Paper D:
Lithe: Lightweight Secure CoAP for the Internet of Things 135
9.1 Introduction . 137
9.2 Background . 139

9.2.1 CoAP and DTLS . 139
9.2.2 6LoWPAN . 140

9.3 DTLS Compression . 142
9.3.1 DTLS-6LoWPAN Integration 142
9.3.2 6LoWPAN-NHC for the Record and Handshake Headers143
9.3.3 6LoWPAN-NHC for ClientHello 145
9.3.4 6LoWPAN-NHC for ServerHello 146
9.3.5 6LoWPAN-NHC for other Handshake Messages . . . 148

9.4 Implementation . 149
9.5 Evaluation . 150

9.5.1 Packet Size Reduction 151
9.5.2 RAM and ROM Requirement 152
9.5.3 Run-time Performance 152

Contents xxi

9.6 Related Work . 157
9.7 Conclusions . 159
Bibliography . 161

10 Paper E:
SVELTE: Real-time Intrusion Detection in the Internet of Things 165
10.1 Introduction . 167
10.2 Background . 169

10.2.1 The Internet of Things 169
10.2.2 RPL . 170
10.2.3 Security in the IoT 171
10.2.4 IDS . 172

10.3 SVELTE: An IDS for the IoT 173
10.3.1 6LoWPAN Mapper 174
10.3.2 Intrusion Detection in SVELTE 177
10.3.3 Distributed Mini-firewall 183

10.4 Implementation . 184
10.5 Evaluation . 185

10.5.1 Experimental Setup 185
10.5.2 SVELTE Detection and True Positive Rate 185
10.5.3 Energy Overhead . 188
10.5.4 Memory Consumption 190

10.6 Related Work . 191
10.7 SVELTE Extensions . 192
10.8 Conclusions . 193
Bibliography . 197

11 Paper F:
Combined Secure Storage and Communication for the Internet of
Things 201
11.1 Introduction . 203
11.2 Related Work . 205
11.3 The Secure Storage and Communication Framework 206

11.3.1 Communication Component 206
11.3.2 Storage Component 208
11.3.3 Framework Usage 210
11.3.4 Implementation . 211
11.3.5 Security Discussions 212

11.4 Evaluation . 213

xxii Contents

11.4.1 Storage Overheads 214
11.4.2 Performance Gains 214
11.4.3 Energy Consumption 221

11.5 Conclusion . 223
11.6 Acknowledgements . 223
Bibliography . 225

I

Thesis

1

Chapter 1

Introduction

The Internet of Things (IoT) is a network of globally identifiable physical ob-
jects (or things), their integration with the Internet, and their representation in
the virtual or digital world. In order to build the IoT, a wide range of technolo-
gies are involved. For example, RFID for location and device identification,
improved personal and wide area networking protocols, web technologies, etc.
These technologies help to build a virtual world of things on top of the phys-
ical world where things through Machine-to-Machine (M2M) communication
talk to each other, through humans-to-machine interactions provide informa-
tion to humans or take actions on human inputs, or act as passive entities to
provide data to intelligent entities. Wireless Sensor Networks (WSN) is one
such technology that connects the virtual world and the physical world where
nodes can autonomously communicate among each other and with intelligent
systems. This thesis focuses on the IoT formed through the interconnection of
IP-connected WSNs and the Internet.

A conventional WSN is a network of sensor devices that sense and collect
environmental data and cooperatively forward it to the sink node for further
processing. These first generation WSNs lack any standardization support, are
mostly used for environmental monitoring, and are deployed in remote areas
such as forests, deserts, volcanos, and battlefields. Current WSNs are deployed
in environments more close to humans and aimed for applications such as
building automation, bridge and tunnel monitoring, industrial automation and
control, and human sensing. The sink in current WSNs, such as WirelessHART
networks, can query data from sensor nodes and/or send control messages to
them. Though some standards are being developed for industrial WSNs such

3

4 Chapter 1. Introduction

as WirelessHART and ISA100.11a, there exists no specific standards for rout-
ing, addressing, security, etc. for such networks. Therefore, building current
WSNs requires specialized skills in software and hardware development and
protocol design. Also, conventional WSNs are not interoperable, require com-
plex gateways, and are not scalable.

Sensor nodes are resource-constrained devices with limited storage and
processing capabilities, are battery powered, and are connected through lossy
links. The Internet Protocol (IP) is also proposed for WSN [1]; until recently IP
has been assumed to be too heavyweight protocol to be used in WSN, as addi-
tional 40 bytes of IPv6 header are added in each packet [2]. However, IP offers
interoperability, scalability, easy of programing, has ready to use hardware,
eliminates the need of complex gateways, and has pool of readily available
experts. Considering these advantages, IPv6 over low-powered Personal Area
Network (6LoWPAN) [3, 4] is standardized. With the advent of 6LoWPAN,
it is possible to use IP in resource-constrained WSNs in an efficient way [5];
such networks are called 6LoWPAN networks.

1.1 The IPv6-connected Internet of Things

With the introduction of 6LoWPAN compressed IPv6 in WSNs, resource con-
strained devices can be connected to the Internet. This hybrid network of the
Internet and the IPv6 connected constrained devices form the IoT. Unlike the
Internet where devices are mostly powerful and unlike typical WSN where
devices are mostly resource constrained, the things in the IoT are extremely
heterogeneous. An IoT device can be a typical sensor node, a light bulb, a
microwave oven, an electricity meter, an automobile part, a smartphone, a PC
or a laptop, a powerful server machine or even a cloud. Hence the number of
potential devices that can be connected to the IoT are in hundreds of billions.
This requires the use of IPv6 [16], a new version of the Internet Protocol that
increases the address size from 32 bits to 128 bits (2128 unique addresses).
Also, a number of protocols are being standardized to fulfill the specific needs
of the IoT.

This section highlights the novel IoT technologies; Section 1.2 specifies the
security requirements for the IoT that is developed based on these technologies;
and Chapter 2 highlights challenges in providing secure communication in the
IoT, and summarizes the contribution of this thesis towards securing the IoT.

1.1 The IPv6-connected Internet of Things 5

6LoWPAN 6LoWPAN integrates IP-based infrastructures and WSNs by spec-
ifying how IPv6 packets are to be routed in constrained networks such as IEEE
802.15.4 networks [6]. To achieve this, the 6LoWPAN standard proposes
context aware header compression mechanisms: the IP Header Compression
(IPHC) for the IPv6 header, and Next Header Compression (NHC) for the IPv6
extension headers and the User Datagram Protocol (UDP) header. Due to the
limited payload size of the link layer in 6LoWPAN networks, the 6LoWPAN
standard also defines fragmentation and reassembly of datagram. 6LoWPAN
defines a fragmentation scheme in which every fragment contains a reassem-
bly tag and an offset. When security is enabled or for big application data size,
the IEEE 802.15.4 frame size may exceed the Maximum Transmission Unit
(MTU) size of 127 bytes; in that case additional fragment(s) are needed.

In order to allow compression of header like structures in the UDP pay-
load and the layers above, an extension to the 6LoWPAN header compres-
sion, called Generic Header Compression (GHC) is also defined [7]. 6LoW-
PAN networks are connected to the Internet through the 6LoWPAN Border
Router (6BR) that is analogous to a sink in a WSN. The 6BR preforms com-
pression/decompression and fragmentation/assembly of IPv6 datagrams.

CoAP Due to the low-powered and lossy nature of wireless networks in the
IoT, connection-less UDP, instead of stream-oriented TCP, is mostly used in
the IoT. The synchronous Hyper Text Transfer Protocol (HTTP) is designed for
TCP and is infeasible to use in the UDP-based IoT. Therefore, the Constrained
Application Protocol (CoAP) [8], a subset of HTTP is being standardized as
a web protocol for the IoT. CoAP is tailored for constrained devices and for
machine-to-machine communication.

RPL Routing in constrained networks in the IoT, with limited energy and
channel capacity, is achieved using the recently standardized the IPv6 Routing
Protocol for Low-power and Lossy Networks (RPL) [9]. The RPL protocol
creates a Destination-Oriented Directed Acyclic Graph (DODAG) that aims to
prune path cost to the DAG root. RPL supports both uni-directional traffic to a
DODAG root (typically the 6BR) and bi-directional traffic between constrained
nodes and a DODAG root. Each node in the DODAG has a node ID (an IPv6
address), one or more parents (except for the DODAG root), and a list of neigh-
bors. Nodes have a rank that determines their location relative to the neighbors
and with respect to the DODAG root. The rank should always increase from
the DODAG root towards nodes. In-network routing tables are maintained to

6 Chapter 1. Introduction








��











�� ��






RPL-enabled 6LoWPAN Network

Conventional Internet
Plain IPv6

CoAP%

UDP%

IPv6,%RPL%

6LoWPAN%

IEEE%802.15.4%

Figure 1.1: An interconnection of the Internet and WSNs using the novel IoT
technologies 6LoWPAN, CoAP, and RPL which provide IPv6 support, web
capabilities, and routing, respectively.

separate packets heading upwards and packets heading downwards in the net-
work; this is called storing mode. RPL also supports non-storing mode where
intermediate nodes do not store any routes.

Figure 1.1 shows an IoT setup that is build upon the novel technologies
discussed in this section; the focus of this thesis is to protect this IoT with
standard-based solutions.

1.2 Secure Internet of Things

IPv6 offers interconnection of almost every physical object with the Internet.
This leads to tremendous possibilities to develop new applications for the IoT,
such as home automation and home security management, smart energy moni-

1.2 Secure Internet of Things 7

toring and management, item and shipment tracking, surveillance and military,
smart cities, health monitoring, logistics monitoring and management. Due to
the global connectivity and sensitivity of applications, security in real deploy-
ments in the IoT is a requirement [10, 11]. The following security services [12]
are necessary in the IoT.
Confidentiality: Messages that flow between a source and a destination could
be easily intercepted by an attacker and secret contents are revealed. There-
for, these messages should be hidden from the intermediate entities; in other
words, End-to-End (E2E) message secrecy is required in the IoT. Also, the
stored data inside an IoT device should be hidden from unauthorized entities.
Confidentiality services ensure this through encryption/decryption.
Data Integrity: No intermediary between a source and a destination should be
able to undetectably change secret contents of messages, for example a med-
ical data of a patient. Also, stored data should not be undetectably modified.
Message Integrity Codes (MIC) are mostly used to provide this service.
Source Integrity or Authentication: Communicating end points should be able
to verify the identities of each other to ensure that they are communicating with
the entities who they claim to be. Different authentication schemes exist [13].
Availability: For smooth working of the IoT and access to data whenever
needed, it is also important that services that applications offer should be al-
ways available and work properly. In other words, intrusions and malicious ac-
tivities should be detected. Intrusion Detection Systems (IDSs) and firewalls,
in addition to the security mechanisms above, are used to ensure availability
security services.
Replay Protection: Last but not least, a compromised intermediate node can
store a data packet and replay it at later stage. The replayed packet can contain
a typical sensor reading (e.g. a temperature reading) or a paid service request.
It is therefore important that there should be mechanisms to detect duplicate
or replayed messages. Replay protection or freshness security services provide
this, which can be achieved through integrity-protected timestamps, sequence
numbers, nonces, etc.

In order to provide multi-faceted security, we need to ensure E2E commu-
nication security in the IoT, network security in 6LoWPAN networks, and also
data-at-rest security to protect stored secrets and data.

1.2.1 Communication Security
Communication in the IoT should be protected by providing the security ser-
vices discussed above. Using standardized Internet security mechanisms we

8 Chapter 1. Introduction

can provide communication security at different layers of the IP stack; each
solution has its own pros and cons. Broadly speaking, the communication se-
curity can be provided E2E between source and destination, or on a per-hop
basis between two neighboring devices. Table 1.1 shows an IoT stack with
standardized security solution at different layers.

Link Layer: IEEE 802.15.4 Security

6LoWPAN networks use the IEEE 802.15.4 protocol [6] as link layer. 802.15.4
link-layer security [14] is the current state- of-the-art security solution for the
IoT. The link layer security protects a communication on a per-hop base where
every node in the communication path has to be trusted. A single pre-shared
key is used to protect all communication. In case an attacker compromises one
device it gains access to the key, and the security of the whole network is com-
promised. Per-hop security can detect the message modification on each hop
unlike E2E where modified packets traverse the entire path up to the destina-
tion to be detected. Per-hop security with at least integrity protection should be
used in 6LoWPAN networks to prevent unauthorized access through the radio
medium, and to defend against effortless attacks launched to waste constrained
resources. Though link-layer security is limited to securing the communication
link between two neighboring devices, it is a flexible option and it can oper-
ate with multiple protocols at the layers above. For example with link-layer
security enabled we can run both IP and non-IP protocols at the network layer.

Network Layer: IP Security

In the Internet and hence in the IoT, security at the network layer is provided
by the IP Security (IPsec) protocol suite [15, 16, 17]. IPsec in transport mode
provides end-to-end security with authentication and replay protection services
in addition to confidentiality and integrity. By operating at the network layer,
IPsec can be used with any transport layer protocol including TCP, UDP, HTTP,
and CoAP. IPsec ensures the confidentiality and integrity of the IP payload us-
ing the Encapsulated Security Payload (ESP) protocol [17], and integrity of the
IP header plus payload using the Authentication Header (AH) protocol [16].
IPsec is mandatory in the IPv6 protocol [2, 18] meaning that all IPv6 ready de-
vices by default have IPsec support, which may be enabled at any time. Being
a network layer solution, IPsec security services are shared among all appli-
cations running on a particular machine. However, being mandatory in IPv6,
IPsec is one of the most suitable options for E2E security in the IoT, as mostly

1.2 Secure Internet of Things 9

IoT Layer IoT Protocol Security Protocol
Application CoAP User-defined
Transport UDP DTLS
Network IPv6, RPL IPsec, RPL security
6LoWPAN 6LoWPAN None
Data-link IEEE 802.15.4 802.15.4 security

Table 1.1: IoT stack with standardized security solutions.

only one application runs on a constrained device and the default security poli-
cies are enough for such scenarios. Furthermore, application developers re-
quire comparatively little effort to enable IPsec on IPv6 hosts, as it is already
implemented at the network layer by device vendors.

Transport Layer: CoAP Security

Although IPsec can be used in the IoT it is not primarily designed for web
protocols such as HTTP or CoAP. For web protocols Transport Layer Security
(TLS) or its predecessor Secure Sockets Layer (SSL) is the most common se-
curity solution. The connection-oriented TLS protocol can only be used over
stream-oriented TCP that is not the preferred method of communication for
smart objects; due to lossy nature of low-power wireless networks it is hard to
maintain a continuous connection in 6LoWPAN networks. An adaptation of
TLS for UDP called Datagram TLS (DTLS) [19] is available. DTLS guar-
antees E2E security of different applications on one machine by operating
between the transport and application layers. DTLS in addition to TLS that
provides authentication, confidentiality, integrity, and replay protection, also
provides protection against Denial of Service (DoS) attacks with the use of
cookies. Though DTLS provides application level E2E security, it can only be
used over the UDP protocol; TLS is used over TCP. The secure web protocol
for the IoT, Secure CoAP (CoAPs), mandates the use of DTLS as the under-
laying security solution for CoAP. Therefore, it is necessary to enable DTLS
support in the IoT.

10 Chapter 1. Introduction

1.2.2 Network Security

Even with the communication security that protects the messages with confi-
dentiality and integrity services, a number of attacks are possible against net-
works mainly to breach availability security services. These attacks are aimed
to disrupt networks by interrupting, for example, the routing topology or by
launching DoS attacks. Intrusion Detection Systems (IDS) are required to de-
tect impostors and malicious activities in the network, and firewalls are neces-
sary to block unauthorized access to networks. In the IoT, 6LoWPAN networks
are vulnerable to a number of attacks from the Internet and from inside the net-
work. Also, 6LoWPAN networks can become source of attacks against Internet
hosts, as it is relatively easier to compromise a resource-constrained wireless
node than a typical Internet host.

RPL [9], a routing protocol for low-power and lossy networks such as
6LoWPAN networks, is also prone to a number of routing attacks aimed to dis-
rupt the topology. The IoT with 6LoWPAN networks running RPL, as shown
in Figure 1.1, forms a network setup different from the typical WSNs. In the
IoT, a 6BR is assumed to be always accessible, end-to-end message security
is a requirement, and sensor nodes are identified by a unique IP address. In
typical WSN there is no centralized manager and controller, security is usually
ignored, and nodes are identifiable only within a WSN. Considering the novel
characteristics of the IoT it is worth investigating the applicability of current
IDS and firewall techniques in the IoT, or designing a novel IDS and firewall
exploiting the contemporary IoT features and protocols.

1.2.3 Data Security

It is important to not only protect communication and networks but to also
safeguard the stored sensitive data in an IoT device. Most of the IoT devices
are tiny wirelessly connected resource-constrained nodes, and practically it
is neither possible to physically guard each device nor to protect them with
hardware-based tamper-resistant technologies such as with the use of smart
cards or Trusted Platform Modules (TPM) [20]. Various software-based solu-
tions exist that can be used to cryptographically secure stored data on nodes.
For example, Codo [21] is a secure storage solution designed for the Contiki’s
Coffee File System [22]. There is also a need to design novel secure storage
mechanisms in the context of IoT.

1.3 Research Methodology 11

1.3 Research Methodology

The research methodology used in this thesis is mainly based on experimen-
tal research though analytical research is also adopted in the beginning of the
thesis work. Experimental research that often starts with a concrete problem
is used to evaluate the impact of one peculiar variable of a phenomenon by
keeping the other variables controlled. Analytical research mainly deals with
the testing of a concept that is not yet verified and specifying and inferring re-
lationships by examining the concepts and information already available. We
apply the analytical research methodology to perform a threat analysis of the
WirelessHART network. We use the already known WirelessHART concepts
and facts about security threats in the wireless medium and examine how the
provided security mechanisms in WirelessHART guard against these threats.

Analyzing WirelessHART, a complex WSN standard, instilled me with a
deep understanding of security mechanisms in low-power wireless networks
and with typical limitations and issues in these networks. Based on the ac-
quired knowledge, we develop lightweight communication, network, and data
security solutions for the IoT where we mainly adapt an experimental research
methodology as we have a concrete problem to solve. In order to build a com-
munication security solution we first develop hypotheses or ideas about the
architecture of IPsec, DTLS, and IEEE 802.15.4 security. We then formulate
a design based on our hypothesis. To validate our hypothesis we implement
and evaluate the proposed security solutions. We later examine the impact of
our designed and implemented mechanisms on the IoT where we perform the
evaluation of these mechanisms in a controlled experimental setup.

Realizing the need for the multi-faceted security in the IoT this thesis also
provides network and data security where we develop a lightweight IDS and a
novel combined secure storage and communication for the IoT. The research
method we adapt here is experimental too. The first step towards solving this
problem is to formulate a hypothesis, i.e., whether a novel IDS is needed for
the IoT and what are the implications of a new storage model. The next step is
to develop an architecture of the IDS and a secure storage mechanism that suits
the IoT. To this end we provides detection techniques in the RPL-based 6LoW-
PAN networks and the new secure storage model. To validate our hypothesis
and proposed algorithms we implement the IDS and the secure storage solution
and perform extensive experiments. In the next step we analyze our experimen-
tal results that show that the proposed IDS suites the IoT and detects routing
attacks in the RPL-based 6LoWPAN networks, and the new secure storage so-
lution is more efficient than the conventional secure storage mechanisms.

12 Chapter 1. Introduction

1.4 Thesis Outline
This dissertation has two parts. The first part is the introduction of the thesis
and second part is a collection of six papers.

Chapter 2 describes the scientific contributions of this thesis and summaries
the results. Chapter 3 highlights the research contributions of this thesis and
references the corresponding publications. Chapter 4 discusses the related
work that motivates the need for new security solutions for the IoT. Chapter
5 concludes the thesis and provides future work; this ends the first part of the
thesis.

Chapter 2

Challenges and
Contributions

On one hand, constrained environments in the IoT have attributes similar to
WSNs such as limited energy, processing, and storage resources, lossy wireless
links, unguarded deployments, and multi-hop communication. On the other
hand, the IoT is expected to have IPv6, UDP, and web support. Providing
security is challenging in the Internet and in typical WSNs. It is even more
challenging to enable security services in the IoT. This is because the devices
are extremely heterogeneous, mostly deployed in unattended environments but
closer to humans than typical WSN nodes, are globally accessible, mostly con-
nected through lossy wireless links, require multi-hop communication, and use
recent IoT protocols such as 6LoWPAN, CoAP, and RPL. This thesis provides
multi-faceted security solutions for the IoT. The main contributions of this the-
sis are:

• It provides lightweight solutions based on standardized protocols to se-
curely connect IoT devices. This enables the devices in the constrained
environments to securely communicate with typical Internet hosts using
lightweight yet standard compliant Internet security protocols such as
IPsec and DTLS.

• It also contributes towards protecting 6LoWPAN networks against intru-
sion attempts and unauthorized access.

• In addition to communication and network security, this thesis also pro-

13

14 Chapter 2. Challenges and Contributions

vides solutions to protect stored data inside a resource-constrained IoT
node.

The previous chapter has highlighted security services and the standard-
based security solutions in the IoT. This chapter highlights the challenges in
providing security in the IoT and summarizes the contributions of this thesis.

2.1 Secure Communication: Message Security
The IoT is a hybrid network of Internet and constrained networks. Communica-
tion in the IoT can be secured with (i) lightweight security protocols proposed
for constrained environments such as WSNs, (ii) novel security protocols that
meet the specific requirements of the IoT, or (iii) established security protocols
already used in the Internet. Security protocols proposed for WSNs are not
designed for IP networks. Therefore, their use in the IoT requires modification
of these protocols and corresponding provisioning in the current Internet. De-
signing novel security protocols for the IoT may result in more efficient and
lightweight solutions; however, these protocols too require changes in the In-
ternet. As the current Internet is huge, consisting of billions of devices, any
security solution that requires modifications or provisions in the current In-
ternet is not practical. It is however worth investigating the applicability of
established Internet security technologies in the IoT. The primary challenge
that may hinder the use of these security solutions in the IoT is that the Internet
protocols are not designed for resource constrained devices but for standard
computers where energy sources, processing capability, and storage space are
not main constraints. One of the contributions in this thesis is to adapt the
communication security protocols standardized for the Internet in the IoT, by
making them lightweight yet standard compliant.

It is important that the messages in the IoT are E2E protected with confi-
dentiality and integrity services. Also, at least integrity protection should be
employed on a per-hop base in the wirelessly connected 6LoWPAN networks.
Towards this end, this thesis presents the first compressed yet standard com-
pliant IPsec for the E2E security between IoT hosts and compressed DTLS for
E2E security between applications in the IoT. In order to protect messages on a
per-hop base between two neighboring devices, implementation and evaluation
of link layer security solutions are also provided.

Lightweight IPsec: This thesis presents the first lightweight design, implemen-
tation, and evaluation of IPsec for resource-constrained devices. With 6LoW-

2.1 Secure Communication: Message Security 15

PAN header compression, the IPsec AH header size is reduced from 24 bytes
to 16 bytes, and the ESP header size is reduced from 18 bytes to 14 bytes. This
results in a lower number of bits being transmitted, more space for application
data, and may avoid 6LoWPAN fragmentation; ultimately, the energy con-
sumption is reduced as the energy consumed by radio on transmission and re-
ception is much higher than used by microprocessor on local processing. Paper
C also shows that with hardware aided crypto processing the energy overhead
is further reduced by 50%. For example, when carrying 512 bytes over 4 hops,
pure software-based IPsec AH involves an overhead of 26%, which is reduced
to 11% with the help of hardware AES. Contrary to the common belief that
IPsec is too heavy for constrained devices [3, 23], IPsec is faster than the IEEE
802.15.4 security as the number of hops grows or the data size increases. This
is because the compression mechanisms substantially reduce the data overhead
on fragmented traffic, and cryptographic operations are only performed at the
end hosts and not at each hop as in the case of 802.15.4 security.

Lightweight DTLS: Though IPsec is a feasible solution for the IoT, it is less
suitable for web-based applications in the IoT. CoAP is being standardized as
a web protocol for the IoT, which mandates the use of DTLS as an underlay-
ing security solution to enable secure CoAP (CoAPs). To provide standard
based E2E security in the CoAPs-enabled IoT applications, this thesis presents
the first lightweight DTLS and hence CoAPs. Like IPsec, DTLS is designed
for the conventional Internet and not for the resource-constrained IoT, as it is a
chatty protocol and requires numerous message exchanges to establish a secure
session. The DTLS header compression is based on 6LoWPAN NHC [4]. Em-
ploying these compression mechanisms significantly reduces the DTLS header
sizes and ultimately results in fast and energy efficient communication com-
pared with plain DTLS. For example, by employing the proposed mechanisms
the DTLS Record header size is reduced by 62% while still maintaining the
E2E standard compliance between two communication end points. The quan-
titative evaluation in Paper D shows that the energy overhead is significantly
reduced especially when the 6LoWPAN fragmentation is employed. The use
of compressed DTLS makes CoAPs considerably lightweight and a feasible
security protocol for the IoT.

Realizing that smartphones with sensing capabilities, human interaction,
Internet connectivity, and relatively powerful processing and storage capaci-
ties, will be an integral part of the IoT, we also provide standard-based design,
implementation, and evaluation CoAPs for Android powered smartphones [24].
This paper is not included in the core contributions of this thesis.

16 Chapter 2. Challenges and Contributions

IEEE 802.15.4 Security: Prior to our work on IPsec and DTLS, 802.15.4
security was the only standard-based security solution available in 6LoWPAN
networks. The IEEE 802.15.4 standard provides the link layer security to pro-
tect communication between two neighboring nodes. Link layer security is
not a replacement of network or transport layer security. For 6LoWPAN net-
works with multiple hops, Paper C recommends that at least integrity protec-
tion should be enabled at the link layer to grand access in the wireless medium
and to detect the effortless data modification attacks as early as possible. How-
ever, there is a tradeoff between the overhead of providing security at the link
layer and the overhead of routing faked packets through multiple hops to the
destination where they are ultimately detected. Therefore, when E2E security
is provided at the network or upper layers, enabling or disabling link layer
security should be carefully decided; the goal is to minimize resource usage.

In order to enable link layer security, this thesis provides an implementation
of IEEE 802.15.4 security for the Contiki OS and evaluates it in a 6LoWPAN
network. For 6LoWPAN networks with less hops and small data size, 802.15.4
link layer security is efficient when compared with the network layer security.
Since it does not provide E2E security, the 802.15.4 security is not a replace-
ment for IPsec or DTLS; it is therefore recommended that either IPsec or DTLS
should be used in conjunction to the 802.15.4 security.

Figure 2.1 shows an IoT setup with the list of lightweight security solutions
in the resource-constrained 6LoWPAN network and the corresponding plain
technologies on the Internet side. The 6BR converts the compressed protocols
in plain protocols and vice versa.

2.2 Secure Network: Intrusion Detection

Though communication security protects messages, networks are still vulner-
able to a number of attacks aimed to disrupt the network. Intrusion Detection
Systems (IDSs) and firewalls guard against such attacks. As the IoT shares
characteristics with WSNs, the available IDSs for WSNs could be used in
the IoT. However, most of these approaches assume that there is no central-
ized management and control point, no message security, and sensor nodes are
uniquely identified only within WSNs. In the IoT, nodes are globally identifi-
able by an IP address, the 6BR is presumed to be always reachable to connect
6LoWPAN networks with the Internet, and E2E message security is a must. It
is therefore worth designing a new IDS for the IoT by exploiting these novel
characteristics. In spite of these characteristics, developing an IDS for the IoT

2.3 Secure Device: Data Security 17

!
6LoWPAN!

Border!Router!
(6BR)!

Com!IPv6!IPv6!
Internet&

CoAPs& CoAPs&

DTLS& com.&DTLS&

IPv6& com.&IPv6&&

IPsec& com.&IPsec&

Ethernet/Wi:Fi& 802.15.4&security&

(RFC:6282)&

(draI:ieJ:core:coap:14)&

(dra56ie86sics66lowpan6dtls600)!

(dra56ie86sics66lowpan6ipsec600)!

6LoWPAN&Network&

Figure 2.1: An IoT setup protected with proposed lightweight security solution,
and a set of operations performed at the 6BR.

is challenging due to global accessibility, constrained resources, lossy links,
and use of recent IoT protocols such as RPL.

In order to protect 6LoWPAN networks against intrusions and unwanted
access this thesis provides an IDS and a mini-firewall. The IDS is designed for
6LoWPAN networks that use RPL as a routing protocol. Paper E develops a
novel architecture based on a hybrid of centralized and distributed approaches.
The detection algorithms in the IDS detect intrusions against RPL networks by
employing contemporary lightweight detection techniques. A mini-firewall,
also based on a hybrid approach, is also developed. The detection techniques
are evaluated against sinkhole and selective forwarding attacks. The results
show that the IDS can detect these attacks with a high true positive and de-
tection rate. Also, the energy and ROM/RAM overhead of the IDS and the
firewall are acceptable in 6LoWPAN networks.

2.3 Secure Device: Data Security
In a typical storage model, data is stored in an encrypted form along with its
cryptographic hash [25], and when a remote host requests data, it is decrypted
and its integrity is verified, re-encrypted and integrity protected with commu-

18 Chapter 2. Challenges and Contributions

nication security mechanisms, and transmitted. This way the resource hungry
cryptographic operations are performed twice.

With the recent advancement of flash memory, relatively more storage is
now available in constrained devices. It is therefore worth exploiting the use of
this additional memory in order to minimize energy consumption. Towards this
end this thesis presents combined secure storage and communication mecha-
nisms for the IoT. The proposed combined secure storage and communication
mechanism, presented in Paper F, eliminates these double cryptographic oper-
ations. This work is build upon the IPv6, IPsec, and 6LoWPAN standards as
a standard compliant system is more acceptable than a proprietary solution. In
this new secure storage solution, data is stored on the flash file system such that
it can be directly used for secure transmission. In the current design and imple-
mentation, data is protected with IPsec’s ESP protocol and both the ESP header
and encrypted data are stored on a flash. Prior to this operation, IP datagram
header contents of future transmissions are considered in order to comply with
the IPsec standard. The evaluation shows that an IP based combined secure
storage and communication solution for the IoT is possible and that this can
save up to 71% of a node’s security related processing.

2.4 Security Analysis of WirelessHART

WirelessHART [26], though resource constrained, is a bidirectional network of
relatively powerful devices and has a central network manager and controller.
WirelessHART, currently the only WSN standard, designed primarily for in-
dustrial process automation and control, is well designed for other aspects than
security. The provided security is spread throughout the WirelessHART speci-
fications. The network designers and device vendors have ambiguities regard-
ing the complete security architecture of the WirelessHART, the strength of the
provided security, the security keys needed, and the functionalities and place-
ment of Security Manager. This thesis discusses, in Paper A, the strengths
and weaknesses of the provided security mechanisms in the form of a threat
analysis where we analyze the WirelessHART security against the well-known
threats in the wireless medium and propose recommendations to mitigate the
impact of these threats. It also elaborates the functions of security manager and
its placement in the network. In addition to security analysis of WirelessHART,
we have also developed a WirelessHART security manager [27] and proposed
secure integration of WirelessHART and legacy HART networks [28]. How-
ever, these papers are not included in the core contributions of this thesis.

2.5 Standardization of Proposed Solutions 19

The industrial community is also moving towards IP communication. This
is apparent from the fact that the proposed industrial standard ISA 100.11a is IP
based, and efforts are underway to apply IP communication in WirelessHART,
formally named HART IP, and in ZigBee named ZigBee IP.

2.5 Standardization of Proposed Solutions
The contributions presented in this thesis mainly target HCF WirelessHART,
and IETF 6LoWPAN, CoAP and RPL. During this thesis period, I attended
meetings of both the HCF and IETF standardization bodies. This helped me
to know the current status of the standardization efforts, to make people aware
of our work, and ultimately the standardization of the work proposed in this
thesis. I have attended the WirelessHART Working Group meetings in Flo-
rence and in Naples, the Internet Architecture Board (IAB) official workshop
and tutorial along with the IETF 80th meeting in Prague, the IETF 83rd meet-
ing in Paris and ETSI CoAP Plugtests. Currently, our IETF compressed IPsec
draft is under review and we are working on IETF compressed DTLS draft.
An ultimate aim is the inclusion of the solutions proposed in this thesis in the
standard specifications. I have also published the IPsec work in the IAB work-
shop on Interconnecting Smart Objects with the Internet [29], and the proposed
Internet Key Exchange (IKE) work in the IETF Workshop on Smart Objects
Security [30].

Chapter 3

Summary of Papers

This thesis is a collection of six papers. Paper A studies the security threats in
WirelessHART. Papers B-D investigate the communication security in the IoT.
Paper E explores the network security in the IoT, and Paper F investigates the
protection of stored data inside a node.

Paper A performs a threat analysis of WirelessHART and highlights the im-
portant security aspects of WirelessHART. Also, it stipulates the specifications
of the WirelessHART security manager, its placement in the network and in-
teractions with the other WirelessHART devices. Paper B, C, and D investigate
lightweight communication security in the IoT with standard-based solutions:
IPsec, DTLS, and IEEE 802.15.4. Paper E studies the protection of the IoT
against network and routing attacks, and presents an IDS and firewall for RPL-
based 6LoWPAN networks. Paper F explores the security of stored data inside
a resource-constrained node. It presents a novel combined secure storage and
communication solution for the IoT, with the special focus on minimizing cryp-
tographic operations.

Paper A, B, and F are published in renowned international peer-reviewed
conferences, Paper C and E are published in ISI indexed referenced journals,
and Paper D is under submission to a journal.

21

22 Chapter 3. Summary of Papers

3.1 Security Considerations for the WirelessHART
Protocol

Shahid Raza, Adriaan Slabbert, Thiemo Voigt, Krister Landernäs. Security
Considerations for the WirelessHART Protocol. In Proceedings of 14th IEEE
International Conference on Emerging Technologies and Factory Automation
(ETFA’09), September 22-26, 2009, Mallorca, Spain.

Summary
WirelessHART is a secure and reliable communication standard for industrial
process automation. The WirelessHART specifications are well organized in
all aspects except security: there are no separate specifications of security re-
quirements or features. Rather, security mechanisms are described throughout
the documentation. This impedes implementation of the standard and develop-
ment of applications since it requires close knowledge of all the core specifica-
tions on the part of the developer.

We have thoroughly discussed the security features in the WirelessHART
standard and analyzed the specified security features against the available threats
in the wireless medium. We have also identified some security limitations in
the standard. However, the provided security in the wireless medium, although
subjected to some threats due to its wireless nature, is strong enough to be
used in industrial process control environments. The physical protection of the
WirelessHART devices is very important to avoid device cloning and stealing
security secrets, which will lead to other security attacks. Also, the careful im-
plementation of the Network Manager is very important. The WirelessHART
standard does not enforce security in the core/wired network but the connec-
tions between the wired devices must be secured. The standard provides core
security services including confidentiality, integrity, authentication, and avail-
ability; however, other security services such as non-repudiation, authorization
or access control, and accounting are yet to be provided.

Contribution
In this paper we provide a comprehensive overview of WirelessHART secu-
rity where we analyze the provided security mechanisms against well-known
threats in the wireless medium, and propose recommendations to mitigate short-
comings. Furthermore, we elucidate the specifications of the Security Man-
ager, its placement in the network, and interaction with the Network Manager.

3.2 Securing Communication in 6LoWPAN with Compressed IPsec
23

My Contribution
I reviewed the WirelessHART security, performed the threat analysis of Wire-
lessHART, and wrote the first draft of the paper.

3.2 Securing Communication in 6LoWPAN with
Compressed IPsec

Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo Voigt,
Utz Roedig. Securing Communication in 6LoWPAN with Compressed IPsec.
In Proceedings 7th IEEE International Conference on Distributed Computing
in Sensor Systems (DCOSS ’11), June 27-29 2011, Barcelona, Spain.

Summary
Real-world deployments of wireless sensor networks (WSNs) require secure
communication. It is important that a receiver is able to verify that sensor data
was generated by trusted nodes. It may also be necessary to encrypt sensor data
in transit. WSNs will be an integral part of the Internet and IPv6 and 6LoW-
PAN are the protocol standards that are expected to be used in this context.
IPsec is the standard method to secure Internet communication and we inves-
tigate if IPsec can be extended to sensor networks. Towards this end, we have
presented the first IPsec specification and implementation for 6LoWPAN. We
have extensively evaluated our implementation and demonstrated that it is pos-
sible and feasible to use compressed IPsec to secure communication between
sensor nodes and hosts in the Internet.

Contribution
In this paper we provide End-to-End (E2E) secure communication between
IP enabled sensor networks and the traditional Internet. We present the first
compressed lightweight design, implementation, and evaluation of 6LoWPAN
extension for IPsec. We give a specification of IPsec for 6LoWPAN including
definitions for AH and ESP extension headers. Prior to this work no specifica-
tion for IPsec in the context of 6LoWPAN existed. We present the first imple-
mentation of IPsec for 6LoWPAN networks. We show that it is practical and
feasible to secure WSN communication using IPsec. We evaluate the perfor-
mance of our IPsec 6LoWPAN implementation in terms of code size, packet

24 Chapter 3. Summary of Papers

overheads and communication performance. Our results show that the over-
head comparable to the overhead of generally employed 802.15.4 link-layer
security while offering the benefit of true E2E security.

My Contribution
I am the main author of the paper. I proposed the 6LoWPAN compression,
contributed in implementation, and designed and performed most of the evalu-
ation. I wrote most of the paper.

3.3 Secure Communication for the Internet of Things
A Comparison of Link-Layer Security and IPsec
for 6LoWPAN

Shahid Raza, Simon Duquennoy, Joel Höglund, Utz Roedig, Thiemo Voigt.
Secure Communication for the Internet of Things - A Comparison of Link-
Layer Security and IPsec for 6LoWPAN. Journal of Security and Communica-
tion Networks, DOI: 10.1002/sec.406, Early View (January 12, 2012), Wiley,
2012.

Summary
The future Internet of Things will be an all-IP network. As it will be the founda-
tion of many services, our daily life will depend on its availability and reliable
operation. It is therefore important to find mechanisms providing security in
the IoT. As the existing IEEE 802.15.4 link-layer security does not provide the
required end-to-end security, alternative or complementary mechanisms must
be found. In this paper we have shown that IPsec implemented through 6LoW-
PAN extensions is a feasible option for providing end-to-end security in the
IoT, and IEEE 802.15.4 security, at least integrity protection, is also needed.
This paper presents a thorough evaluation of the proposed IPsec solution and
compares its performance with IEEE 802.15.4 link-layer security.

Contribution
In Paper B we present a 6LoWPAN/IPsec solution and perform a preliminary
performance analysis of the overall system. In this paper we extend our pre-

3.4 Lithe: Lightweight Secure CoAP for the Internet of Things 25

vious work (Paper B) in several aspects. First, we describe in this paper En-
capsulating Security Payload (ESP) for 6LoWPAN/IPsec while our previous
work only discussed in detail the Authentication Header (AH). Second, we
compare the 6LoWPAN/IPsec solution with the commonly employed 802.15.4
link-layer security, where we also implement IEEE 802.15.4 security for the
Contiki OS. Third, we present a thorough testbed performance evaluation of
the 6LoWPAN/IPsec solution and 802.15.4 security. We experimentally show
that 6LoWPAN/IPsec outperforms 802.15.4 link-layer security as the payload
size and/or the number of hops increases.

My Contribution

I designed the 6LoWPAN extension for IPsec’s ESP. I implemented IEEE
802.15.4 security for the Contiki OS, and I performed most of the evaluation.
I wrote the first draft of the paper.

3.4 Lithe: Lightweight Secure CoAP for the In-
ternet of Things

Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, Thiemo Voigt.
Lithe: Lightweight Secure CoAP for the Internet of Things. [In Submission]

Summary

CoAP enabled hosts will be an integral part of the Internet of Things (IoT).
Furthermore, real world deployments of CoAP supported devices require se-
curity solutions. To this end, DTLS is the standard protocol to enable secure
CoAP (CoAPs). In this paper, we investigate if the overhead of DTLS can be
reduced by 6LoWPAN header compression, and present the first DTLS header
compression specification for 6LoWPAN. We quantitatively show that DTLS
can be compressed and its overhead can be significantly reduced using the
6LoWPAN standardized mechanisms. Our implementation and evaluation of
compressed DTLS demonstrate that it is possible to reduce the CoAPs over-
head, as the DTLS compression is efficient in terms of energy consumption
and network- wide response time, when compared with plain CoAPs. The dif-
ference between compressed DTLS and plain DTLS is very significant, if the
use of plain DTLS results in 6LoWPAN fragmentation.

26 Chapter 3. Summary of Papers

Contribution
In this paper, we present Lithe- an integration of DTLS and CoAP for the IoT.
With Lithe, we additionally propose a novel DTLS header compression scheme
that aims to significantly reduce the header overhead of DTLS leveraging the
6LoWPAN standard. Most importantly, our proposed DTLS header compres-
sion scheme does not compromise the end-to-end security properties provided
by DTLS. At the same time, it considerably reduces the number of transmitted
bytes while maintaining DTLS standard compliance. The main contributions
of this paper are: (i) we provide novel and standard compliant DTLS com-
pression mechanisms that aim to increase the applicability of DTLS and, thus,
CoAPs for constrained devices, and (ii) we implement the compressed DTLS
in an OS for the IoT and evaluate it on real hardware; the results quantitatively
show that Lithe is more efficient in many aspects than the plain CoAP/DTLS.

My Contribution
I am the main author of the paper. I proposed the compressed DTLS, and
contributed in the implementation and evaluation of the compressed DTLS. I
wrote most of the paper.

3.5 SVELTE: Real-time Intrusion Detection in the
Internet of Things

Shahid Raza, Linus Wallgren, Thiemo Voigt. SVELTE: Real-time Intrusion
Detection in the Internet of Things. Ad Hoc Networks Journal, Elsevier, 2013
[Accepted].

Summary
In the Internet of Things (IoT), resource-constrained things are connected to
the unreliable and untrusted Internet via IPv6 and 6LoWPAN networks. Even
when they are secured with encryption and authentication, these things are
exposed both to wireless attacks from inside the 6LoWPAN network and from
the Internet. Since these attacks may succeed, Intrusion Detection Systems
(IDS) are necessary. Currently, there are no IDSs that meet the requirements of
the IPv6-connected IoT since the available approaches are either customized
for Wireless Sensor Networks (WSN) or for the conventional Internet. To this

3.6 Combined Secure Storage and Communication for the Internet of
Things 27

end we present SVELTE, the first IDS for the IoT. We implement and evaluate
SVELTE and show that it is indeed feasible to use it in the context of RPL,
6LoWPAN, and the IoT. To guard against global attacks we also design and
implement a mini- firewall.

Contribution
In this paper we design, implement, and evaluate a novel intrusion detection
system for the IoT that we call SVELTE. In our implementation and evalua-
tion we primarily target routing attacks such as spoofed or altered information,
sinkhole, and selective-forwarding. However, our approach can be extended to
detect other attacks. We implement SVELTE in the Contiki OS and thoroughly
evaluate it. Our evaluation shows that in the simulated scenarios, SVELTE de-
tects all malicious nodes that launch our implemented sinkhole and/or selective
forwarding attacks. However, the true positive rate is not 100%, i.e., we have
some false alarms during the detection of malicious nodes. Also, SVELTE’s
overhead is small enough to deploy it on constrained nodes with limited energy
and memory capacity.

My Contribution
I proposed the IDS for the IoT. I contributed in the development of the intrusion
detection infrastructure, detection algorithms, and the 6Mapper. I designed the
evaluation and I wrote the first draft of the paper.

3.6 Combined Secure Storage and Communica-
tion for the Internet of Things

Ibrahim Ethem Bagci, Shahid Raza, Tony Chung, Utz Roedig, Thiemo Voigt.
Combined Secure Storage and Communication for the Internet of Things. In
proceedings of 10th IEEE International Conference on Sensing, Communica-
tion, and Networking (SECON’13), June 24-27, 2013, New Orleans, USA.

Summary
The future Internet of Things (IoT) may be based on the existing and estab-
lished Internet Protocol (IP). Many IoT application scenarios will handle sen-
sitive data. However, as security requirements for storage and communication

28 Chapter 3. Summary of Papers

are addressed separately, work such as key management or cryptographic pro-
cessing is duplicated. Our proposed secure storage and communication frame-
work is based on the established IPv6/6LoWPAN protocols. IPv6/6LoWPAN
defines IPsec/ESP (Encapsulating Security Payload) that provides encryption
and authentication of transmitted data packets. We use the same cryptographic
methods and data formats defined by ESP for data processing before storage.
This requires us to store not only data but also all header information that is
involved in the cryptographic processing. We have shown that this is possible
within the context of the IP protocol family. The described solution requires
additional storage space on nodes. However, we believe that currently avail-
able flash memory sizes can absorb these overheads. Data on nodes must be
secured when stored and transported in order to implement a comprehensive
security solution. As resource-constrained embedded systems are limited in
resources it is necessary to find efficient solutions. The proposed framework
combining security aspects of storage and communication can help to achieve
this goal.

Contribution
In this paper we present a framework that allows us to combine secure stor-
age and secure communication in the IP-based IoT. We show how data can be
stored securely such that it can be delivered securely upon request without fur-
ther cryptographic processing. The main contributions of this paper are: (i) the
definition of a framework for combined secure storage and communication for
IP/6LoWPAN networks, (ii) an implementation of the framework for the Con-
tiki operating system, and (iii) a detailed evaluation of the performance gains
of the framework. Our prototype implementation shows that combined secure
storage and communication can reduce security related real-time processing
on nodes dramatically (up to 71% reduction). As shown, this can be achieved
while decreasing as well a nodes power consumption (up to 32.1%).

My Contribution
I contributed in the idea of this paper, provided the initial IPsec support, and
participated in writing and reviewing the paper.

Chapter 4

Related Work

There is unanimous consensus among the IoT research community that secu-
rity is an important requirement in the IoT [10, 11, 31, 32, 33]. A number
of security protocols has been proposed for resource-constrained WSNs [12].
However, these security protocols are often tailored to the specific application
requirements and do not consider interoperability with Internet protocols. On
the other hand, the IoT security protocols require interoperability with Internet
protocols.

Though Garcia-Morchon et al. [31] provide general security needs in the
IoT and highlight the importance of standard-based security protocols, they do
not propose any adaptations in Internet protocols which make them feasible to
use in the IoT. Also, no quantitative evaluation shows the applicability of stan-
dard Internet security protocols in the IoT. Granjal [32] accentuates the need
for E2E security in the IoT, and shows with empirical evaluation the limitations
of current sensing platforms. The community of IoT security researchers has
analyzed security challenges in the IP-based IoT [33] and solutions that im-
prove or modify standard IP security protocols that meet the requirements of
resource-constrained devices. They conclude that security architectures should
fit device capabilities, that proposed security protocols should ensure scalabil-
ity, that cross layer interactions such as for key management is important in
multi-layered solutions, and that standardization of these security solutions is
important for interoperability.

29

30 Chapter 4. Related Work

4.1 Communication Security
Communication security based on End-to-End (E2E) message protection and
authentication is well-recognized in the research community [10, 11, 32, 34].
Yu et al. [10] propose E2E secure communication between WSNs and Internet.
They use asymmetric cryptography for key management and authentication
and delegate resource hungry operations to a gateway. This leads to a need for
a complex gateway, which also breaks pure E2E security between sensor nodes
and hosts on Internet.

Cryptographic processing is one of the main resource hungry tasks while
providing communication security. These operations include encryption and
decryption, key and hash generation, and sign and verify hashes. Wander et al.
[35] compare two most well-know asymmetric algorithms, RSA and Ellip-
tic Curve Cryptography (ECC) [36], on sensor nodes and conclude that ECC
is more efficient than RSA, and asymmetric cryptography is viable for con-
strained hardware. Later, in order to make ECC viable for WSNs, a lot of re-
search work has focused on reducing complexity of asymmetric cryptographic
algorithms, ultimately improving efficiency of key distribution protocols. For
example, TinyECC [37] and NanoECC [38] use ECC in order to make cryptog-
raphy feasible on resource-constrained devices. Wood et al. [39] and Hu et al.
[40] have demonstrated efficient cryptography for smart objects using dedi-
cated crypto hardware support. We have also shown that use of crypto hard-
ware significantly reduces the overhead of cryptographic operations (Paper C).
Liu et al. [41] and Chung et al. [42] describe key distribution mechanisms that
save scarce bandwidth in resource constrained networks. These improvements
make cryptographic mechanisms in the context of WSNs more viable but an
important issue remains: a standardized way of implementing security services
is missing and for each deployment unique customized solutions are created.
This thesis provides lightweight solutions based on standardized protocols to
securely connect IoT devices.

4.1.1 IEEE 802.15.4 Security

IEEE 802.15.4 security provides standardized mechanisms for message au-
thentication and encryption on a per-hop base in 6LoWPAN networks. How-
ever, these mechanisms are difficult to implement on resource constrained sen-
sor nodes, as cryptographic mechanisms can be expensive in terms of code size
and processing speed. Furthermore, messages leaving the 802.15.4 network
and continuing to travel on an IP network are not protected by link-layer secu-

4.1 Communication Security 31

rity mechanisms. Therefore, in many solutions, a separate security mechanism
is added to protect data traveling between Internet hosts and border routers.
One such example is the ArchRock PhyNET [43] that applies IPsec in tunnel
mode between the border router and Internet hosts. HIP DEX [44] is another
solution that can be used directly as a keying mechanism for a MAC layer secu-
rity protocol. Wood et al. [39] also propose a solution to secure link-layer com-
munication in TinyOS for IEEE 802.15.4-based WSN. Recently, Roman et al.
proposed key management systems for sensor network in the context of the
IoT [45] that are applicable to link-layer security. We also implement standard-
ized 802.15.4 security for 6LoWPAN networks with hardware-aided crypto
operations and show that it is viable to use 802.15.4 security in constrained
environments (Paper C); however, 802.15.4 security only protects communica-
tion between two neighboring devices.

4.1.2 Transport Layer

End-to-end security can be provided by using Transport Layer Security (TLS)
[46], or by its old version SSL. TLS/SSL has been proposed as a security mech-
anism for the IoT by Hong et al. [47]. Their evaluation shows that this security
mechanism is indeed quite costly in terms of time and energy during full SSL
handshake and a data packet transfer. Foulagar et al. propose a TLS implemen-
tation for smart objects [48]. However, this solution involves the border router
to reduce cryptographic computational effort on smart objects and cannot be
considered a full E2E solution. Brachmann et al. [49] propose TLS-DTLS
mapping to protect the IoT. However, their solution requires the presence of a
trusted 6BR that break E2E security at the 6BR. Kothmayr et al. [50] investi-
gate the use of DTLS in 6LoWPANs with a Trusted Platform Module (TPM)
to get hardware support for the RSA algorithm. However, in addition to spe-
cialized hardware requirement, they have used DTLS as it is without using any
compression method which would shorten the lifetime of the entire network
due to the redundancy in transmitted data.

Granjal et al. [34] evaluate the use of DTLS as it is with CoAP for secure
communication. They note that payload space scarcity would be problematic
with applications that require larger payloads. As an alternative, they sug-
gest to employ security at other networking layers such as compressed form
of IPsec. Brachmann et al. [51] provide an overview of state-of-the-art se-
curity solutions for a CoAP-based applications, and discuss the feasibility of
DTSL, TLS, IPsec, or combination of these for E2E security and secure mul-
ticast communication. They assume pre-shared keys in their proposals due to

32 Chapter 4. Related Work

resource-constrained nature of the nodes. Recently, Koeh et al. in an IETF draft
discuss the implications of securing the IP-connected IoT with DTLS [52] and
propose an architecture for secure network access and management of unicast
and multicast keys with extended DTLS. Garcia et al. [11] also propose and
compare pre-shared based Host Identity Protocol (HIP) and DTLS as key man-
agement, secure network access, and secure communication protocols. They
conclude that though HIP is efficient, it is not widely available in the current
Internet; on the other hand DTLS in its current form is heavy for constrained
devices and requires optimizations.

The above solutions either review the use of (D)TLS in the IoT or propose
architectures that break E2E security. We reduce the overhead of DTLS in
CoAP-based IoT by employing 6LoWPAN header compression mechanisms,
and implement and evaluate it in an IoT setup on real hardware (Paper D). Our
solution is DTLS standard complaint and ensures E2E security between CoAP
applications. However, we rely on pre-shared key for initial authentication dur-
ing handshake. In another work [53], we propose design ideas to reduce the
overhead of the two-way certificate-based DTLS handshake. We suggest (i)
pre-validation of certificates at the trusted 6BR, (ii) session resumption to avoid
the overhead of a full handshake, and (iii) handshake delegation to the owner
of the resource-constrained device. This work in making certificate-based au-
thentication viable for the IoT is complementary to our work on compressed
DTLS (Paper D).

Researchers are also investigating vulnerabilities in the DTLS protocol.
Nadhem et al. recently demonstrated successful attacks against the DTLS pro-
tocol [54, 55].

4.1.3 IPsec
IPsec ensures the confidentiality and integrity of transport-layer headers and
integrity of IP headers, which cannot be done with higher-level solutions as
TLS. For these reasons, the research community [56, 57, 58] and 6LoWPAN
and CoRE standardization groups [4, 59] consider IPsec a potential security
solution for the IoT. On the other hand, some have regarded IPsec heavy for
constrained environments [60].

We propose a standard-compliant IPsec extension for 6LoWPAN (Paper B)
and evaluate it on real hardware in an IoT setup. Granjal et al. investigate the
use of IPsec for 6LoWPAN [61]. However, they do not provide exact specifi-
cations of the required 6LoWPAN headers. Furthermore, no implementation is
provided and no detailed evaluation of possible communication performance

4.2 Network Security 33

is given. In their study they analyze the execution times and memory require-
ments of cryptographic algorithms they propose for 6LoWPAN/IPsec integra-
tion. We design, implement, and evaluate 6LoWPAN compressed IPsec for
the IoT, and quantitatively compare it with the 802.15.4 security (Paper C). We
propose to use IPsec in transport mode that enables E2E security between the
communicating endpoints. We implement our compressed IPsec in the Contiki
OS [62]. Recently, Jorge et al. [63] have extended our 6LoWPAN compressed
IPsec (Paper C) and included support for IPsec in tunnel mode. They have
implemented and evaluated their proposal in TinyOS.

4.1.4 Key Management in the IoT

Key Management Systems (KMSs) proposed for WSNs are tailored for specific
scenario [12] and are not interoperable with Internet protocols. The KMS for
the IoT should be based on standard protocols. The standard-complaint secu-
rity protocol DTLS has inherited automatic KMS that the Handshake protocol
provides. For key management in the resource-constrained WSNs and 6LoW-
PANs, pre-shared keying is still the state-of-art mechanism. Recent IETF
proposal on the use of DTLS in the IoT also relies on pre-shared keys [52].
For scalable and automatic key management we have shown the viability of
certificate-based DTLS in the context of IoT [53].

IPsec relies on Internet Key Exchange (IKE) [64] for key management.
Kivinen proposes a lightweight IKEv2 [65] that includes the minimal set of
features and does not include the optional features. This proposal too relies on
shared secret for authentication and considers certificate-based authentication
too heavy for the IoT. Roman et al. propose key management systems for the
IoT [45] that are applicable to link-layer security. The IEEE 804.15.4 protocol
does not provide a KMS. We have proposed an adaptation of the IKE that
extends its key management capabilities to the IEEE 802.15.4 protocol [30].
Recently, Jennings has proposed a transitive trust provisioning for constrained
devices [66], which uses a one-time password to enroll a constrained device in
an IoT.

4.2 Network Security
A number of attacks against the IoT have been identified [67] in addition to
those against WSN [68] that are also applicable to the IoT. Therefore, it is im-
portant to have systems that detect such attacks. The concept of intrusion detec-

34 Chapter 4. Related Work

tion is quite old and extensive research is carried out in this field mostly against
the Internet attacks and attacks against WSN. However, no IDS are specifically
designed in the context of IoT. Most of the IDS approaches for WSN are based
on a distributed architecture and are built on the assumption that there is no cen-
tralized management and control point. A common IDS approach for WSNs
is to utilize several special nodes distributed evenly throughout the network.
These special nodes can either be physically different [69] or dynamically dis-
tributed throughout the network [70, 71]. In real deployments, however, it can-
not be guaranteed that particular nodes are always present in specific locations
in the network; also, the cost of employing mobile agents that move through
the network might be too high. Clustering based approaches have similar is-
sues as each cluster often requires a powerful entity for coordination [72]. The
IoT has a novel architecture where the 6BR is always assumed to be accessible
and is a potential place for centralized management and control.

Many IDS approaches are based upon watchdog techniques [70, 73] which
could be used in the IoT. In addition to being distributed and fully deployed on
sensor nodes, a general problem with watchdog-based approaches is that they
require promiscuous listening, which consumes a lot of power and therefore is
not suitable for constrained devices. Advanced anomaly detection approaches
are proposed [74, 75], not primarily for WSNs, which on one hand can detect
many intrusions efficiently but on the other hand requires intelligent learning,
which is both expensive and difficult in low-power 6LoWPAN networks. Most
current IDS approaches require different routing schemes that are not based on
standardized mechanisms. As far as we are aware, no approach is built around
6LoWPAN and RPL in the context of the IoT. Our solution is the first design,
implementation, and evaluation of the IDS for the IoT (Paper E).

4.3 Secure Storage
Solutions for secure communication and secure storage of data in the IP based
IoT exist, but these functions are generally designed and operated independent
of each other. There are a number of secure storage solutions available [21, 76,
77, 78]. Codo [21] is a security extension for the Coffee filesystem [22] in the
Contiki OS. Codo optimizes performance of security operations by enabling
caching of data for bulk encryption and decryption. We use Codo as a base
and present combined secure storage and communication for the IoT, which is
faster and more energy efficient than the conventional separate secure storage
and communication solutions.

Chapter 5

Conclusions and Future
Work

5.1 Conclusions

The IoT is becoming a reality and serious standardization efforts are underway
to interconnect the IoT devices using the IP protocols such as CoAP, 6LoW-
PAN, RPL, etc. IP networks will be the foundation of many services and our
daily life will depend on their availability. Security is must in the IoT. Due
to the sensitivity of potential applications, not just protection of communi-
cation, but a multi-faceted security is important. This thesis has presented
lightweight yet standard compliant security solutions to protect communica-
tion, constrained networks, as well as stored data in devices in the IoT.

Towards secure communication in the IoT, this thesis has investigated the
use of IPsec, DTLS, and the IEEE 802.15.4 security. For web-based appli-
cations in the IoT, DTLS is well suited for E2E security, and the optimized
DTLS presented in this thesis has lower overhead in terms of energy consump-
tion and response time than the plain DTLS. With currently available hard-
ware capabilities in the IoT devices, pre-shared key authentication during the
DTLS handshake is still an acceptable solution, as proposed by other recent
works on DTLS as well. IPsec, mandated by IPv6, is a security solution to
protect communication at the network layer, which provides security between
two machines. This thesis shows that it is viable to provide E2E security in
the IoT with 6LoWPAN compressed IPsec in transport mode. The evaluation

35

36 Chapter 5. Conclusions and Future Work

of compressed IPsec in transport mode shows that the ROM/RAM, energy, and
response time overhead is acceptable. It is also shown that, contrary to the com-
mon believe, IPsec is more efficient than IEEE 802.15.4 security in 6LoWPAN
networks with multiple hops and for larger message sizes. The IEEE 802.15.4
security at the link layer and upper layer security solutions (e.g. IPsec and
DTLS) are not replacements for reach other. For the early identification of cer-
tain attacks (such as a data modification attack) and hence for the efficient use
of network resources, in addition to E2E security solutions, link-layer security
is also important in multi-hop 6LoWPAN networks.

For multi-faceted security, it is important that the IoT is protected against
internal and external intrusions. Towards this end, this thesis has proposed and
developed a lightweight IDS for 6LoWPAN networks that use RPL as rout-
ing protocol in the IoT. To guard against global attacks we have also designed
and implemented a mini-firewall. The detection algorithms in the proposed
IDS currently target spoofed or altered information, sinkhole and selective for-
warding attacks. However, our IDS infrastructure is extensible and more attack
detection mechanisms can be added.

Most of the IoT devices are tiny wireless devices and it is relatively easier to
capture and clone them. Therefore, this thesis has also proposed a secure stor-
age solution in the context of IoT. Unlike typical secure storage mechanisms
that require separate cryptographic operations for storage and for communi-
cation security, this thesis has presented a combined secure storage and com-
munication. Though this solution requires a little more storage space, it can
reduce security related real-time processing on nodes up to 71%, and power
consumption is reduced up to 32.1% when data is stored in ESP protected for-
mat.

5.2 Future Work

Pre-shared keying is still the state-of-art key management solution in the IoT.
IPsec mandates pre-shared key, and CoAPs that relies on DTLS also proposes
the use of pre-shared key in addition to RawPublicKey and certificate-based
authentication. The communication security solutions presented in this the-
sis rely on shared secret key. However, with the advancement of hardware,
more storage and processing capabilities with efficient energy usage are ex-
pected in the IoT devices. With these increased capabilities it may be wise
to deploy certificate-based cryptography in the IoT. We have already proposed
optimizations in the certificate-based authentication during the DTLS hand-

5.2 Future Work 37

shake to make DTLS a viable solution for automatic key management, secure
network access, and session negotiation. Currently, we are working on the im-
plementation of these proposals, and plan to evaluate the full certificate-based
DTLS on real hardware. Also, we plan to investigate the use of certificate-
based IKEv2 for automatic key management for IPsec. In order to make IKEv2
fit for constrained environments, we have already proposed preliminary adap-
tations in the IKEv2. We plan to implement and evaluate the enhance IKEv2
protocol that, in addition to IPsec, also provides key management solution for
the 802.15.4 security.

In the current work, we have evaluated the proposed solutions in testbeds.
We plan to deploy these security technologies in real IoT deployments and eval-
uate them together. In parallel, we are also working on enhancements in our
IDS and firewall for the IoT and extending it with more detection capabilities.

This thesis focuses on the security aspects of the IoT. Another important
concern in the IoT is privacy. The importance of privacy is well-studied in
the context of IoT [79, 80, 81]. However, the current work on privacy in the
IoT focuses on vision, requirements, and challenges, and lacks the quantitative
analysis of enabling privacy. We plan to investigate the adaptation of Privacy
Enhancing Techniques (PETs) [82, 83] in the context of the IoT with empirical
analysis, and plan to quantify the overhead of providing privacy in constrained
environments. Some of other open security issues and challenges in the IoT
are:

• Use of asymmetric cryptography with certificate-based mutual authenti-
cation in the IoT.

• Secure bootstrapping of things in the IoT with ease-of-use.

• Security and privacy of sensor data inside a cloud environment, in an
integrated system of a cloud and the IoT [84, 85].

• Secure management of IoT domains.

Bibliography

[1] Adam Dunkels. Full tcp/ip for 8-bit architectures. In Proceedings of
the 1st international conference on Mobile systems, applications and ser-
vices, pages 85–98. ACM, 2003.

[2] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifi-
cation. RFC 1883 (Proposed Standard), December 1995. Obsoleted by
RFC 2460.

[3] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals. RFC 4919, August 2007.
http://www.ietf.org/rfc/rfc4919.txt.

[4] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks. RFC 6282, September 2011.
http://www.ietf.org/rfc/rfc6282.txt.

[5] Jonathan W Hui and David E Culler. Ip is dead, long live ip for wireless
sensor networks. In Proceedings of the 6th ACM conference on Embedded
network sensor systems, pages 15–28. ACM, 2008.

[6] IEEE Computer Society. Ieee std. 802.15.4-2006, 2006.

[7] C. Bormann. 6LoWPAN Generic Compression of Headers and Header-
like Payloads, September 2012. http://tools.ietf.org/html/draft-bormann-
6lowpan-ghc-05.

[8] Z. Shelby, K. Hartke, and C. Bormann. Constrained Application Protocol
(CoAP), March 2013. http://tools.ietf.org/html/draft-ietf-core-coap-14.

39

40 Bibliography

[9] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pis-
ter, R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Pro-
tocol for Low-Power and Lossy Networks. RFC 6550, March 2012.
http://www.ietf.org/rfc/rfc6550.txt.

[10] Hong Yu, Jingsha He, Ting Zhang, Peng Xiao, and Yuqiang Zhang. En-
abling end-to-end secure communication between wireless sensor net-
works and the internet. World Wide Web, pages 1–26, 2012.

[11] Oscar Garcia-Morchon, Sye Loong Keoh, Sandeep Kumar, Pedro
Moreno-Sanchez, Francisco Vidal-Meca, and Jan Henrik Ziegeldorf. Se-
curing the ip-based internet of things with hip and dtls. In Proceedings of
the sixth ACM conference on Security and privacy in wireless and mobile
networks, pages 119–124. ACM, 2013.

[12] Javier López and Jianying Zhou. Wireless Sensor Network Security. IOS
Press, 2008.

[13] Richard E Smith. Authentication: from passwords to public keys.
Addison-Wesley Longman Publishing Co., Inc., 2001.

[14] Naveen Sastry and David Wagner. Security considerations for ieee
802.15. 4 networks. In Proceedings of the 3rd ACM workshop on Wireless
security, pages 32–42. ACM, 2004.

[15] S. Kent and R. Atkinson. Security architecture for the internet protocol,
1998. http://www.ietf.org/rfc/rfc2401.txt.

[16] S. Kent. IP Authentication Header. RFC 4302, 2005.
http://tools.ietf.org/html/rfc4302.

[17] S. Kent. IP Encapsulating Security Payload. RFC 4303, 2005.
http://tools.ietf.org/html/rfc4303.

[18] R. Atkinson. Security Architecture for the Internet Protocol. RFC 1825
(Proposed Standard), August 1995. Obsoleted by RFC 2401.

[19] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Ver-
sion 1.2. RFC 6347, January 2012. http://www.ietf.org/rfc/rfc6347.txt.

[20] Trusted Platform Module (TPM) Work Group. TCG
specification architecture overview (TPM 2007), 2007.
http://www.trustedcomputinggroup.org/.

Bibliography 41

[21] Ibrahim Ethem Bagci, Mohammad Reza Pourmirza, Shahid Raza, Utz
Roedig, and Thiemo Voigt. Codo: Confidential data storage for wire-
less sensor networks. In 8th IEEE International Workshop on Wireless
and Sensor Networks Security (WSNS 2012), Las Vegas, Nevada, USA,
October 2012.

[22] Nicolas Tsiftes, Adam Dunkels, He Zhitao, and Thiemo Voigt. Enabling
large-scale storage in sensor networks with the coffee file system. In Pro-
ceedings of the 2009 International Conference on Information Processing
in Sensor Networks, pages 349–360, Washington, DC, USA, 2009. IEEE
Computer Society.

[23] Andrey Khurri, Dmitriy Kuptsov, and Andrei Gurtov. On application
of host identity protocol in wireless sensor networks. In Mobile Adhoc
and Sensor Systems (MASS), 2010 IEEE 7th International Conference on,
pages 358–345. IEEE, 2010.

[24] Thiemo Voigt Daniele Trabalza, Shahid Raza. Indigo: Secure coap for
smartphones- enabling e2e secure communication in the 6iot. In Interna-
tional Conference on Wireless Sensor Networks for Developing Countries
(WSN4DC’13), pages 0–12, Jamshoro, Pakistan, April 2013.

[25] Bart Preneel. Cryptographic hash functions. European Transactions on
Telecommunications, 5(4):431–448, 1994.

[26] Anna N. Kim, Fredrik Hekland, Stig Petersen, and Paula Doyle. When
hart goes wireless: Understanding and implementing the wirelesshart
standard. IEEE International Conference on Emerging Technologies and
Factory Automation, pages 899–907, September 2008.

[27] Shahid Raza, Thiemo Voigt, Adriaan Slabbert, and Krister Landernas.
Design and implementation of a security manager for wirelesshart net-
works. In Proceedings of the IEEE 6th International Conference on Mo-
bile Adhoc and Sensor Systems (IEEE MASS 2009), pages 995–1004,
Macau, China, 2009.

[28] Shahid Raza and Thiemo Voigt. Interconnecting wirelesshart and legacy
hart networks. In Proceedings of the 6th IEEE International Conference
on Distributed Computing in Sensor Systems Workshops (IEEE DCOSSW
2010), Santa Barbara, USA, 2010.

42 Bibliography

[29] Shahid Raza, Thiemo Voigt, and Utz Roedig. 6lowpan extension for
ipsec. Proceedings of the IETF-IAB International Workshop on Inter-
connecting Smart Objects with the Internet, 2011.

[30] Shahid Raza, Thiemo Voigt, and Vilhelm Juvik. Lightweight ikev2: A
key management solution for both compressed ipsec and ieee 802.15.4
security. Proceedings of the IETF International Workshop on Smart Ob-
ject Security, March 2012.

[31] O. Garcia-Morchon, S. Keoh, S. Kumar, R. Hummen, , and R. Struik.
Security Considerations in the IP-based Internet of Things, March 2013.
http://tools.ietf.org/html/draft-garcia-core-security-05.

[32] Jorge Granjal, Edmundo Monteiro, and Jorge Sa Silva. On the effective-
ness of end-to-end security for internet-integrated sensing applications.
In Green Computing and Communications (GreenCom), 2012 IEEE In-
ternational Conference on, pages 87–93. IEEE, 2012.

[33] Tobias Heer, Oscar Garcia-Morchon, René Hummen, Sye Loong Keoh,
Sandeep S Kumar, and Klaus Wehrle. Security challenges in the ip-based
internet of things. Wireless Personal Communications, 61(3):527–542,
2011.

[34] Jorge Granjal, Edmundo Monteiro, and Jorge Sa Silva. On the feasibil-
ity of secure application-layer communications on the web of things. In
Local Computer Networks (LCN), 2012 IEEE 37th Conference on, pages
228–231. IEEE, 2012.

[35] Arvinderpal S Wander, Nils Gura, Hans Eberle, Vipul Gupta, and Sheuel-
ing Chang Shantz. Energy analysis of public-key cryptography for wire-
less sensor networks. In Pervasive Computing and Communications,
2005. PerCom 2005. Third IEEE International Conference on, pages
324–328. IEEE, 2005.

[36] Victor S Miller. Use of elliptic curves in cryptography. In Advances in
CryptologyCRYPTO85 Proceedings, pages 417–426. Springer, 1986.

[37] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In 7th International Confer-
ence on Information Processing in Sensor Networks (IPSN’08), Washing-
ton, DC, USA, 2008.

Bibliography 43

[38] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab.
Nanoecc: Testing the limits of elliptic curve cryptography in sensor
networks. In 5th European conference on Wireless Sensor Networks
(EWSN’08), Bologna, Italy, 2008.

[39] A. Wood and J. Stankovic. Poster abstract: AMSecure - secure link-layer
communication in TinyOS for IEEE 802.15.4-based wireless sensor net-
works. In 4th ACM Conference on Networked Embedded Sensor Systems
(SenSys’06), Boulder, USA, 2006.

[40] W. Hu, P. Corke, W. Shih, and L. Overs. secfleck: A public key technol-
ogy platform for wireless sensor networks. In 6th European conference
on Wireless Sensor Networks (EWSN’09), Cork, Ireland, 2009.

[41] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor net-
works. In 10th ACM conference on Computer and communications secu-
rity (CCS), New York, NY, USA, 2003.

[42] A. Chung and U. Roedig. DHB-KEY: An Efficient Key Distribution
Scheme for Wireless Sensor Networks. In 4th IEEE International Work-
shop on Wireless and Sensor Networks Security (WSNS’08), Atlanta,
USA, 2008.

[43] ArchRock Corporation. Phynet n4x series, 2008.

[44] R. Moskowitz. HIP Diet EXchange (DEX), November 2012.
http://tools.ietf.org/html/draft-moskowitz-hip-rg-dex-06.

[45] Rodrigo Roman, Cristina Alcaraz, Javier Lopez, and Nicolas Sklavos.
Key management systems for sensor networks in the context of the in-
ternet of things. Computers & Electrical Engineering, 37(2):147–159,
2011.

[46] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Pro-
tocol Version 1.2. RFC 5246 (Proposed Standard), August 2008.
http://www.ietf.org/rfc/rfc5246.txt.

[47] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, and J. Kim. Snail:
an ip-based wireless sensor network approach to the internet of things.
Wireless Communications, IEEE, 17(6):34–42, 2010.

44 Bibliography

[48] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi. Tiny 3-tls: A trust
delegation protocol for wireless sensor networks. In 3rd European Work-
shop on Security and Privacy in Ad-Hoc and Sensor Networks (ESAS’03),
Hamburg, Germany, 2006.

[49] M. Brachmann, S. L. Keoh, O. G. Morchon, and S. S. Kumar. End-to-end
transport security in the IP-Based Internet of Things. In Computer Com-
munications and Networks (ICCCN), 2012 21st International Conference
on, pages 1 –5, August 2012.

[50] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle. A DTLS based
end-to-end security architecture for the Internet of Things with two-way
authentication. In Local Computer Networks Workshops, 2012 IEEE 37th
Conference on, pages 956–963. IEEE, 2012.

[51] Martina Brachmann, Oscar Garcia-Morchon, and Michael Kirsche. Se-
curity for practical coap applications: Issues and solution approaches.
GI/ITG KuVS Fachgesprch Sensornetze (FGSN). Universitt Stuttgart,
2011.

[52] S. Keoh, S. Kumar, and O. Garcia-Morchon. Securing the IP-based Inter-
net of Things with DTLS, February 2013. http://tools.ietf.org/html/draft-
keoh-lwig-dtls-iot-01.

[53] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle. Mak-
ing Certificate-based Authentication Viable for the Web of Things. In
Proceedings of the 2nd ACM Workshop on Hot Topics on Wireless Net-
work Security and Privacy (HotWiSec), April 2013.

[54] N.J. AlFardan and K.G. Paterson. Lucky thirteen: Breaking the TLS
and DTLS record protocols. In 34th IEEE Symposium on Security and
Privacy, San Francisco, California, 2013.

[55] Nadhem J AlFardan and Kenneth G Paterson. Plaintext-recovery attacks
against datagram tls. In Network and Distributed System Security Sym-
posium (NDSS 2012), 2012.

[56] J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida. Why
is IPsec a viable option for wireless sensor networks . In WSNS2008,
Atlanta, USA, September 2008.

[57] R. Riaz, Ki-Hyung Kim, and H.F. Ahmed. Security analysis survey and
framework design for ip connected lowpans. In ISADS ’09, mar. 2009.

Bibliography 45

[58] R. Roman and J. Lopez. Integrating wireless sensor networks and the
internet: a security analysis. Internet Research, 19(2):246–259, 2009.

[59] C. Bormann. Using CoAP with IPsec, December 2012.
http://tools.ietf.org/html/draft-bormann-core-ipsec-for-coap-00.

[60] C. Alcaraz, P. Najera, J. Lopez, and R. Roman. Wireless sensor net-
works and the internet of things: Do we need a complete integration?
In 1st International Workshop on the Security of the Internet of Things
(SecIoT’10), Tokyo, Japan, 2010.

[61] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Enabling network-
layer security on ipv6 wireless sensor networks. In IEEE Global Com-
munications Conference (GLOBECOM,10), Miami, USA, 2010.

[62] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a
lightweight and flexible operating system for tiny networked sensors. In
Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, pages 455–462. IEEE Computer Society, 2004.

[63] J. Granjal, E. Monteiro, and J. S. Silva. Network-layer security for the In-
ternet of Things using TinyOS and BLIP. International Journal of Com-
munication Systems, 2012.

[64] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 5996 (Proposed Standard), September
2010. http://www.ietf.org/rfc/rfc5996.txt.

[65] T. Kivinen. Minimal IKEv2, April 2013. http://tools.ietf.org/html/draft-
kivinen-ipsecme-ikev2-minimal-01.

[66] C. Jennings. Transitive Trust Enrollment for Constrained Devices,
April 2013. http://tools.ietf.org/html/draft-jennings-core-transitive-trust-
enrollment-01.

[67] O. Garcia-Morchon, R. Hummen, S.S. Kumar, R. Struik, and S.L. Keoh.
Security Considerations in the IP-based Internet of Things, March 2012.
http://tools.ietf.org/html/draft-garcia-core-security-04.

[68] C. Karlof and D. Wagner. Secure routing in wireless sensor networks:
Attacks and countermeasures. Ad hoc networks, 1(2):293–315, 2003.

46 Bibliography

[69] I.M. Atakli, H. Hu, Y. Chen, W.S. Ku, and Z. Su. Malicious node de-
tection in wireless sensor networks using weighted trust evaluation. In
Proceedings of the 2008 Spring simulation multiconference, pages 836–
843. Society for Computer Simulation International, 2008.

[70] R. Roman, J. Zhou, and J. Lopez. Applying intrusion detection systems
to wireless sensor networks. In Proceedings of IEEE Consumer Commu-
nications and Networking Conference, pages 640–644, 2006.

[71] T.H. Hai, E.N. Huh, and M. Jo. A lightweight intrusion detection frame-
work for wireless sensor networks. Wireless Communications and mobile
computing, 10(4):559–572, 2009.

[72] C. Rong, S. Eggen, and H. Cheng. An efficient intrusion detection scheme
for wireless sensor networks. Secure and Trust Computing, Data Man-
agement, and Applications, 187:116–129, 2011.

[73] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating rout-
ing misbehavior in mobile ad hoc networks. In Proceedings of the 6th
annual international conference on Mobile computing and networking,
MobiCom ’00, pages 255–265, New York, NY, USA, 2000. ACM.

[74] Amitabh Mishra, Ketan Nadkarni, and Animesh Patcha. Intrusion de-
tection in wireless ad hoc networks. Wireless Communications, IEEE,
11(1):48–60, 2004.

[75] Kai Hwang, Min Cai, Ying Chen, and Min Qin. Hybrid intrusion
detection with weighted signature generation over anomalous internet
episodes. Dependable and Secure Computing, IEEE Transactions on,
4(1):41–55, 2007.

[76] Neerja Bhatnagar and Ethan L. Miller. Designing a secure reliable file
system for sensor networks. In Proceedings of the 2007 ACM workshop
on Storage security and survivability, pages 19–24, 2007.

[77] Joao Girao, Dirk Westhoff, Einar Mykletun, and Toshinori Araki.
Tinypeds: Tiny persistent encrypted data storage in asynchronous wire-
less sensor networks. Ad Hoc Netw., 5:1073–1089, September 2007.

[78] Wei Ren, Yi Ren, and Hui Zhang. Hybrids: A scheme for secure dis-
tributed data storage in wsns. In Proceedings of the 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing - Vol-
ume 02, pages 318–323. IEEE Computer Society, 2008.

[79] Rolf H Weber. Internet of things–new security and privacy challenges.
Computer Law & Security Review, 26(1):23–30, 2010.

[80] Vladimir Oleshchuk. Internet of things and privacy preserving technolo-
gies. In Wireless Communication, Vehicular Technology, Information
Theory and Aerospace & Electronic Systems Technology, 2009. Wire-
less VITAE 2009. 1st International Conference on, pages 336–340. IEEE,
2009.

[81] Carlo Maria Medaglia and Alexandru Serbanati. An overview of privacy
and security issues in the internet of things. In The Internet of Things,
pages 389–395. Springer, 2010.

[82] Peter Langendörfer, Michael Maaser, Krzysztof Piotrowski, and Steffen
Peter. Privacy enhancing techniques: A survey and classification. Hand-
book of Research on Wireless Security, 1, 2008.

[83] G De Moor, B Claerhout, and F De Meyer. Privacy enhancing techniques.
Meth Info Med, 42:148–153, 2003.

[84] Simon Duquennoy et. al. SicsthSense. http://www.sense.sics.se.

[85] Cosm - connect to your world. https://cosm.com.

II

Included Papers

49

Chapter 6

Paper A: Security
Considerations for the
WirelessHART Protocol

Shahid Raza, Adriaan Slabbert, Thiemo Voigt, Krister Landernäs.
14th IEEE International Conference on Emerging Technologies and Factory
Automation (ETFA’09), September 22-26, 2009, Mallorca, Spain.
c© Reprinted with the permission from IEEE.

51

Abstract

WirelessHART is a secure and reliable communication standard for indus-
trial process automation. The WirelessHART specifications are well organized
in all aspects except security: there are no separate specifications of security re-
quirements or features. Rather, security mechanisms are described throughout
the documentation. This impedes implementation of the standard and devel-
opment of applications since it requires profound knowledge of all the core
specifications on the part of the developer.

In this paper we provide a comprehensive overview of WirelessHART secu-
rity: we analyze the provided security mechanisms against well known threats
in the wireless medium, and propose recommendations to mitigate shortcom-
ings. Furthermore, we elucidate the specifications of the Security Manager, its
placement in the network, and interaction with the Network Manager.

6.1 Introduction 53

6.1 Introduction

WirelessHART [1] is the first IEC approved [2] open standard for Wireless
Sensor Networks (WSNs) designed primarily for industrial process automa-
tion and control systems. The applications of WirelessHART include process
and equipment monitoring, environment and energy monitoring, asset manage-
ment, and advanced diagnostics. The WirelessHART network is a collection of
wired entities: Network Manager, Gateway, Security Manager, and Plant Au-
tomation Hosts (PAH); and wireless devices: Field devices, Adapters, Routers,
Access Points, and Handheld devices [3]. The Network Manager provides
overall management, network initialization functions, network scheduling and
monitoring, and resource management. The Network Manager collaborates
with the Security Manager for the management and distribution of security
keys. The wireless devices are connected using a mesh network where each
device acts as a router and must be directly connected with at least two neigh-
boring devices to provide path diversity. The protocol stack is based on a seven
layer OSI stack with additional Security and MAC sub layers. WirelessHART
is a self healing and self organizing wireless protocol, in that the devices are
able to find neighbors and establish paths with them, and detect network out-
rages and reroute.

The WirelessHART standard is developed by the HART Communication
Foundation (HCF) [4] consisting of authorities in process automation and con-
trol. The WirelessHART specifications are very well designed and almost com-
plete in all aspects except security. The provided security is spread through-
out the WirelessHART specifications and the standard lacks a comprehensive
document that explains and specifies the security. The network designers and
device vendors encounter ambiguities regarding the complete security archi-
tecture of the WirelessHART, the strength of the provided security, the security
keys needed, and the functionalities and placement of Security Manager.

The WirelessHART standard has been recently released and we are the first
to analyze and clarify its security features. Our main contribution is to provide
a thorough understanding of the security features in WirelessHART. We dis-
cuss the strengths and weaknesses of the provided security mechanisms in the
form of threat analysis: we analyze the WirelessHART security against the
well known threats in the wireless medium and propose recommendations to
mitigate the impact of these threats. We also explain the security keys and their
usage as the standard does not illustrate them clearly. Finally, we elaborate
the functions of the Security Manager, its placement in the network, and its
interaction with the Network Manager.

54 Paper A

6.2 WirelessHART Security
The legacy HART protocol (HART 6 and earlier) uses only single parity check
coding schemes [5] to detect communication errors. However, WirelessHART
(HART 7) is a secure and reliable protocol for industrial automation. The field
devices collect data about processes and securely send it, as an input, to other
field devices. The routing information, security keys, and the timing informa-
tion are sent to the devices in a secure way. In short, all data in the Wire-
lessHART network travel in the form of WirelessHART commands and the
confidentiality, integrity, and the authenticity of the commands are ensured.
We can divide the provided security in the WirelessHART standard into three
levels: End-to-End, Per-hop, and Peer-to-Peer.

6.2.1 End-to-End Security
End-to-end security is enforced to secure the communication between the source
and destination from malevolent insiders.The Network Layer is used to provide
end-to-end security; any data that is passed from the network layer to the data-
link layer is enciphered (except for the NPDU header) and only the destination
device is able to decipher it. All field devices in the WirelessHART network
have unicast and broadcast sessions with the Gateway and Network Manager.
Two field devices always communicate via the Gateway 1. The Network Pro-
tocol Data Unit (NPDU) is shown in the Table 6.1.

NPDU Header Security Sublayer NPDU Payload

Table 6.1: WirelessHART Network Layer PDU

The NPDU payload in Table 6.1 is a Transport Layer PDU (TPDU) that is
always encrypted using the Advanced Encryption Standard (AES) with a 128
bit key. The Security Sub-layer consists of the Message Integrity Code (MIC),
the Counter, and the Security Control Byte. The NPDU header is needed for
routing of data; its details can be found in the specifications [6]. The three
fields in the Security Sub-layer are used as follows:

i. Security Control Byte: It is used to define the type of the security em-
ployed. The first four bits are reserved for future security enhancement

1It is possible to create peer-to-peer session between the two field devices but the Wire-
lessHART standard prohibits such direct connections due to security reasons.

6.2 WirelessHART Security 55

and the next four bits define the security types. In HART 7.1, only three
types are identified, see Figure 6.1 for details.

Figure 6.1: Security Control Byte

ii. Counter: A four-byte counter that is used to create the nonce.

iii. MIC: Keyed MIC is used for data integrity and source integrity (authen-
tication) between source and destination. The MIC is calculated on the
whole NPDU by setting the Time To Live (TTL), Counter, and MIC
to zero. Four byte-strings are needed to calculate the MIC, including:
NPDU header (a) - from control byte to MIC, NPDU payload (m) - the
encrypted TPDU, Nonce - 13 byte long and provides defense against re-
ply attacks, AES key - a 128 bit key needed for calculating the MIC. The
same key is used for encrypting NPDU payload.

The Network Layer in the WirelessHART protocol stack provides three
security services: confidentiality, integrity, and authentication. The AES in
Counter with CBC-MAC (CCM) mode [7] is used for calculating the MIC to
provide authentication and data integrity, and encrypting the NPDU payload
to provide confidentiality. The same key is used for both encryption and MIC
calculation. The CCM mode is the combination of Cipher Block Chaining-
Message Authentication Code (CBC-MAC) and Counter modes. The two
methods are highlighted below:

i. AES-CCM in CBC-MAC mode

In CBC-MAC, the message is enciphered using a block cipher algorithm
in CBC mode and the last cipher block called MAC/MIC is constructed.
In WirelessHART, the CBC-MAC mode is used to calculate the MIC at

56 Paper A

the network and the data-link layers. CBC-MAC can be used for both
plain text and cipher text. This mode needs the exact number of blocks
and padding is used to equalize the last block. Only Encryption is used
for calculating and verifying the MIC. A formatting function is applied
on the unencrypted NPUD header, the encrypted NDPU payload, and
the Nonce to produce the blocks B0, B1, B2...Bi; for details about this
formatting function and block formation please refer to [8]. Figure 6.2
shows the operations to calculate MIC using CBC-MAC mode.

Figure 6.2: CBC-MAC mode for calculating MIC

ii. AES-CCM in Counter mode

The Counter mode is used for the encryption/decryption of the Wire-
lessHART NPDU payload. Here too, the message blocks are created in
the same fashion as above, but no padding is required and blocks can
be manipulated in parallel. The cipher text C0, C1, C2,... will form an
encrypted NPDU payload. The counter mode is shown in the Figure 6.3.

6.2.2 Per-Hop Security
The Data-Link Layer (DLL) is used to provide per-hop security between the
two neighboring wireless devices using the Network key. Per-hop security is
a defense against outsiders, i.e. devices that are not part of WirelessHART
network. The Network key is known to all authenticated devices in the Wire-
lessHART network. The keyed MIC is calculated on the entire Data Link-layer
PDU (DLPDU) using the AES-CCM mode as discussed above. The four pa-
rameters for the AES CCM mode are:

6.2 WirelessHART Security 57

Figure 6.3: Counter mode for enciphering NPDU payload

- m: the encrypted message; but as the DLPDU is not encrypted the length
of this byte-string is zero in WirelessHART.

- a: the DLPDU from 0x41 to DLPDU payload [9].

- N: a 13 bytes byte-string that is formed by concatenating the Absolute
Slot Number (ASN) and source address [9].

- K: the 128 bit Network Key.

The DLL ensures source integrity (authentication) of the message between
the two neighboring devices. The DLL also offers data integrity using Cyclic
Redundancy Check (CRC) 2 . The WirelessHART standard uses the 16-bits
ITU-T polynomial [10] to calculate the CRC.

6.2.3 Peer-to-Peer Security
All traffic in the WirelessHART network flows through the gateway, but a
Handheld device can create a direct one-to-one session with the field devices
using the Handheld key [3]. In order to establish such connections, the Hand-
held device first joins the WirelessHART network using its Join key; after

2CRC is not a cryptographic way to enforce integrity; rather it is a way to check communication
errors.

58 Paper A

successful joining, the Handheld device requests the Handheld key from the
Network Manager. The received Handheld key is used to create a peer-to-peer
session with the field device that also receives Handheld key.

Summary
The WirelessHART standard provides data confidentiality, data integrity, au-
thentication (source integrity), and availability (using FHSS [11] and time slot-
ting [6]) but the standard does not enforce authorization, non-repudiation, and
accounting services.

6.3 Threat Analysis
A threat is an indication of a potential undesirable event [12]. The use of the
wireless interface makes WirelessHART more vulnerable than legacy HART.
We list possible threats against a WirelessHART network and discuss which
threats are addressed by WirelessHART and which threats must be addressed.
We propose recommendations to reduce the impact of the threat. The threat
analysis will help developers, manufactures, and protocol designers to mitigate
the impact of the threat in the design solutions.

6.3.1 Interference
Interference is an unintentional disruption of a radio signal; a signal with the
same frequency and modulation technique can override the actual signal at the
receiver. WirelessHART operates at the 2450 (2400-2483.5) MHz frequency
band spectrum and has 16 channels; this spectrum can be shared with e.g.
Wi-Fi, Bluetooth, WibRee (Bluetooth Low Energy Technology), ZigBee, and
ISA100.11.a.

The WirelessHART standard uses Frequency-Hopping Spread Spectrum
(FHSS) [11], uniquely assigned time slots using Time Division Multiple Ac-
cess (TDMA), and path diversity which reduces the chances that interference
causes actual harm to the operation of the network. With the reliability greater
than 3-sigma (99.7300204%) [6] WirelessHART is the most reliable protocol
among the current available solutions for industrial process automation espe-
cially if we compare it with ZigBee [13]. Nevertheless the strict and sensitive
nature of a process automation system requires fail proof (100%) reliability

6.3 Threat Analysis 59

and failure may produce catastrophic results. The growing number of Wi-Fi,
ZigBee, Bluetooth etc. devices can make the WirelessHART frequency band
more vulnerable to interference in the future.

6.3.2 Jamming
Jamming is normally considered an intentional interruption of radio signal
when purposely introducing noise or signal with same frequency and modula-
tion technique as used in the target network. WirelessHART is more vulnerable
to jamming attacks than interference; the attacker can deliberately introduce ra-
dio signals using commonly used Bluetooth devices like cell phones or laptops.

WirelessHART uses the concept of channel Blacklisting. If a certain fre-
quency channel is jammed or is a continuous source of interference, then it
can be blacklisted. Blacklisting enhances the reliability of the WirelessHART
network but at the same time it limits the number of channels available to
send/receive traffic. In spite of FHSS with 15 available channels, the active
attacker can jam the WirelessHART network. The switching of channels in the
FHSS is based on a pseudorandom sequence. Now if,

a. An attacker has knowledge of pseudorandom sequence (which is hard to
find), he/she can calculate the actual channel. (ActualChannel = (Chan-
nelOffset + ASN) % NumChannels) [9]

b. There are sufficient number of 2.4 GHz (Bluetooth, ZigBee, etc) devices
in the range of the WirelessHART network

c. The manufacturing plant has legally deployed Wi-Fi networks in and
around the WirelessHART network

d. The manufacturing plant produces sufficient amount of noise signals
(which is very common there)

e. Some of the channels are already blacklisted,

then the active attacker can jam the WirelessHART network [14]. This jam-
ming of the whole or a part of the WirelessHART network can block or even
damage the machinery or plant assets.

6.3.3 Sybil
In a Sybil attack [15], an antagonist can hold multiple identities by introducing
an adverse entity such as a node or piece of software into a network. The

60 Paper A

lack of a trusted central authority in the traditional wireless ad hoc and sensor
networks make it possible for the adversary to own multiple identities.

The Network Manager in the WirelessHART network binds an entity with
a unique identity. The Network Manager assigns a unique Nickname to all the
connected devices. Also, every device has a globally unique ID where the ID
is a combination of Device Type and Device ID. The WirelessHART Gateway
maintains the list of the Unique IDs and the Network Manager maintains the
list of the Nicknames; the wireless devices use these Unique IDs and Nick-
names along with the session keys to maintain sessions with the Gateway and
Network Manager respectively. This makes Sybil attacks almost impossible in
WirelessHART networks.

6.3.4 Traffic Analysis

The broadcast nature of the wireless signals make them more prone to the traf-
fic analysis than wired signals where the attacker should be physically con-
nected to the network.

In WirelessHART networks, the NPDU header and the whole DLPDU are
unencrypted and the adversary can easily analyze the WirelessHART traffic.
The NPDU header fields e.g. source/Destination addresses, Security Control
byte, Nonce counter, etc. are all sent in clear. These fields provide enough
information to the rival to perform analysis of the network: finding new devices
by analyzing join requests, work peak hours, device usage that can help to make
other attacks more effective etc.

If the DLPDU payload were allowed to be encrypted with the Network key
(which is also used to calculate the MIC over DLPDU) then the traffic analysis
could be minimized, but then all the intermediate devices have to decrypt the
NPDU at the DLL to find the destination address, routing information, etc; this
will make it difficult to meet the timing requirement of 10ms which is already
hard as pointed out by Song [16]. This trade off between the security and
system performance makes traffic analysis attack relatively easy.

6.3.5 DOS

Denial-of-Service (DOS) is a common attack on all networked systems; it is
against the Availability security service. The wireless nature of WirelessHART
makes it more prone to the DOS attack than legacy HART. DOS attacks against
a WirelessHART network can be launched by:

6.3 Threat Analysis 61

- Flooding the network with join requests as the join message is encrypted
with the Well-known key at the DLL.

- Sending the fake Advertisements to the neighbors (also encrypted with
the Well-known key).

- Continuously modifying the DLPDU and re-computing the CRC: Now
the receiving device has to verify the message integrity by calculating
the MIC (as the CRC is verified); the WirelessHART protocol uses AES
in CCM for calculating MIC which is an expensive operation and re-
quires strict timing (TsTxAckDelay =1ms) requirements [16] to verify
the MIC. The unverified packet will be discarded, which results in the
retransmission of the packet and consumption of network resources.

- Launching a jamming attack (see section 3.2).

6.3.6 De-synchronization
The attacker can disrupt the communication between two nodes by introducing
false timing information in the network and engaging the devices to waste their
resources in time synchronization.

The WirelessHART standard has strict timing requirements, and the Timer [1]
is one of the primary modules in the network. The Timer module has to meet
the timing requirements and keep the time slots (10ms) in synchronization. The
MAC sub-layer is responsible for time slotting. Each time a node receives an
ACK from its time source, it adjusts its clock. The timing source for a node
can be a sender [16], and if the sender is compromised it can disrupt the timing
between the two nodes. Hence the participating nodes waste their resources in
time synchronization.

6.3.7 Wormhole
In a wormhole attack [17] the adversary creates a tunnel between two legitimate
devices by connecting them through the stronger wireless (by inaugurating ra-
dio transceivers at both ends) or wired links.

The potential WirelessHART devices that the attacker can use to launch
wormhole attack are HART devices (wired) connected to WirelessHART net-
work through the Adapters; the adversary can create a tunnel by connecting
two field devices using their maintenance port. A tunnel can also be created by
a wireless connection if the Network or Session keys are compromised.

62 Paper A

WirelessHART can be subjected to wormhole attack if it uses graph routing
(that supports redundant paths). However, if source routing is used then the
device must use device-by-device route from source to destination. Source
routing provides defense against wormhole attacks but is not reliable, since if
any of the intermediate links fail a packet will be lost. One of the recommended
solutions to prevent wormhole attack is packet leashing [18]. The physical
protection of devices can avoid wired connected wormholes.

6.3.8 Tampering

Tampering or modification attack is the changing of stored secrets or data in
transit. If the message is protected with CRC or hash, the attacker usually
modifies the data and recalculates the hash or CRC. The stored secrets can be
tampered by physically capturing the device and changing the data.

The WirelessHART standard uses the keyed MIC at the Network and Data-
link layer to enforce integrity and provide defense against a data tampering
attack. Without the knowledge of this specific key the attacker is unable to
perform this attack. It is easier to perform a modification attack in the DLL
than in the Network layer as the Network key is shared among all the devices
and hence easy to find while session keys are device specific. Knowing the
Network key and the unencrypted DLPDU, an adversary can seriously damage
the normal operations of the WirelessHART network by tampering with the
DLPDU and re-calculating the MIC to make it authentic.

Regular changing of the Network key is highly recommended. The phys-
ical protection of the device provides defense against the tampering of stored
secrets.

6.3.9 Eavesdropping

Eavesdropping refers to the surreptitious listening of private communication.
The Confidentiality security service is used to protect data from eavesdroppers.

The actual WirelessHART message consists of aggregated commands. These
Commands, the Transport Byte, and the Device Status collectively form a
NPDU payload that is encrypted with an AES 128 algorithm using unicast ses-
sion key. Although some attacks [19] [20] have been identified against AES,
none of them are able to crack it and AES is still a NIST USA recommended
standard. For an attacker it is very hard to find a session key as it is short lived
and unique for each device; hence message eavesdropping is difficult in the

6.3 Threat Analysis 63

WirelessHART network. Also, the use of FHSS does not allow the eavesdrop-
per to intercept the signal without having the pseudorandom sequence [11].

6.3.10 Selective Forwarding Attack
Here the compromised node selectively drops packets; the worst form is when
the node does not forward any packet and creates a black-hole [21], but nor-
mally the node selectively discards packets so that it is considered as legitimate
and cannot be detected by the recovering mechanisms. The Selective Forward
attack is more effective if it is backed by traffic analysis.

The Network Manager in the WirelessHART network is responsible for
general monitoring of the network; the Handheld device is used to monitor
the specific device. They should collectively monitor the network on regular
basis to detect and eliminate these attacks. The WirelessHART command 779
(Report Device Health) can be useful in detecting this attack.

6.3.11 Exhaustion
Any device that supports the WirelessHART protocol stack and has knowledge
of network parameters (Network ID, Device ID, etc.) can send messages to
the neighboring devices using the Well-known key. A fake device can use the
Well-known key for calculating the MIC over the DLPDU and can use a fake
Join key to encrypt and authenticate the NPDU. Although this message will
be discarded when received by the Network Manager (as it uses a faked Join
key) it consumes network resources along the route from the field device to the
Network Manager. If a series of such join attempts are initiated by an active
attacker then it can give rise to a serious DOS effect/risk.

In WirelessHART networks, the attacker can only send these messages us-
ing the join slot which will not affect the communication among other net-
worked devices. The protection of non-cryptographic secrets (Network ID,
Device ID, etc.) can also eliminate this attack.

6.3.12 Spoofing
Field devices in the WirelessHART network use the Well-known key not only
for joining the network but also for advertisements 3. The adversary can spoof
the new joining device by sending fake advertisements and on receipt of the

3 WirelessHART devices have Advertisement slots that are used to publish the device presence
to the new potential devices who wish to join the network.

64 Paper A

join request it can simply discard it. If the fake device has access to the valid
Network key then the spoofing attack is more effective since the device can
announce its presence to the other legitimate networked devices. Moreover,
this can result in a serious blockage of network traffic.

The use of different devices while joining the network can overcome this
attack. The regular monitoring and changing of the Network key by the Net-
work Manager can minimize this attack as well.

6.3.13 Collision

Collisions can occur when two or more devices try to access the same fre-
quency channel at exactly the same time; collision can be intentional or un-
intentional. An attacker can also introduce collision in small portion of the
packet [21].

The combination of time diversity and frequency diversity is used to min-
imize the collision and CRC-16 is used to detect the collision in the Wire-
lessHART network. To minimize the collision, the WirelessHART protocol
provides scheduled data transmission based on time slotting; TDMA and chan-
nel hopping is used to control access to the network [9]. The CRC is used to
detect the collision based on ITU-T polynomial (aka CRC-16) [10].

The CRC-16 might not be able to detect the insertion attack (see security
consideration in [10]). This attack can be avoided by better implementation
and active coordination between the Physical and Data-link layer especially
when the physical layer connection state changes.

6.3.14 Summary

The WirelessHART standard is secure enough to provide defense against most
of the attacks. However, wormhole, de-synchronization, jamming, traffic anal-
ysis, spoofing, and exhaustion attacks need more attention.

Other than these attacks, the physical protection of the WirelessHART de-
vices is very important. If the device is captured by the attacker it should self
destruct because otherwise it can be cloned and the secret contents can be re-
vealed. When a device is disconnected from the network, it should wipe out its
volatile memory.

6.4 WirelessHART Security Manager 65

6.4 WirelessHART Security Manager

The Security Manager is an integral wired device in the WirelessHART net-
work. Some of the critical points about the WirelessHART Security Manager
are:

- One Security Manager can serve more than one WirelessHART network
but there is only one active Security Manager per network.

- The Security manager is an application that meets the security needs of
the wireless network. It can reside in a standalone device; it can be a
function in the PAH; and it can be integrated in the black box consisting
of Gateway, Network Manager, and Security Manager.

- The Security Manager cannot create sessions with the wireless devices;
also, it is completely hidden from the Gateway.

- The interface between the Security Manager and Network Manager is
not defined by the standard.

- The Security Manager provides security keys to the Network Manager
that distributes them to the respective wireless devices.

Based on these prerequisites, we propose that the Security Manager should
be directly connected using a dedicated link with the Network Manager at one
end and with the wired/core network at the other end. This way, the Security
Manager is capable of serving both the wired and wireless networks. Also, the
Security Manager can serve more than one Network Manager, but the other
Network Managers should be connected to the core network at one end (the
other end may be connected with the Gateway). Figure 6.4 shows the place-
ment of the Security Manager (SM) in the WirelessHART network.

According to the WirelessHART standard, the core responsibility of the
Security Manager is to manage security keys. However, as a key manager the
Security Manager is responsible for generation, storage, revocation, and re-
newal of keys. The Security Manager is not responsible for the distribution
of keys to the wireless devices; instead the Security Manager provides keys to
the Network Manager that in turn distributes them to the devices. The com-
mands [22] for the key distribution are listed the Table 6.2.

As of other security functionalities, the security keys are not clearly men-
tioned in the WirelessHART standard and therefore we elucidate them. In a

66 Paper A

Figure 6.4: Our Proposed Placement of Security Manager in the network

WirelessHART network at maximum eight different keys can be used to en-
crypt/decrypt the NPDU payload and to calculate the MIC at the Network and
the Data-link layer. These are:

1. Network Key: Used to calculate the MIC over the DLPDU. It is also used
for changing the broadcast session keys.

2. Join Key: Used to secure the NPDU 4 during the joining process. It is
also used when changing the unicast session keys both of the Network
Manager and the Gateway.

3. Unicast-NM: Used to secure the NPDU during the communication be-
tween the Network Manager and a specific Field device. It is also used

4 For encrypting/decrypting the NPDU payload and calculating the MIC over entire NPDU.

6.4 WirelessHART Security Manager 67

Keys Commands
Session Keys Command 963 (Write Session)
Network Key Command 961 (Write Network Key)
Handheld Key Command 823 (Request Session)

Join key Command 768 (Write Join Key)

Table 6.2: Key Distribution Commands in WirelessHART

for changing the Join key.

4. Unicast-Gateway: Used to secure the NPDU during the communication
between the Gateway and a specific Field device.

5. Broadcast-NM: Used to secure the NPDU during a Network Manager
broadcast to all the field devices. It is also used for changing the Network
key.

6. Broadcast-Gateway: Used to secure the NPDU during Gateway broad-
cast to all field devices.

7. Handheld key: Used to secure the NPDU during the communication be-
tween the Handheld device and the connected Field device.

8. Well-known key: Used to calculate the MIC over the DLPDU during the
join process and while sending advertisements. The value of the Well-
known key is always 772E 6861 7274 636F 6D6D 2E6F 7267.

All wireless devices have a pre-shared Join key; the Security Manager
stores all the Join keys as well. During the joining process the Network Man-
ager asks the Security Manager for the Join key of a new joining device. This
key is used to authenticate the NPDU payload and verify the MIC of the join-
ing request. On successful authentication, all other keys are distributed to the
devices.

Another important aspect the standard lacks is the interaction between the
Security Manager and the Network Manager. The Security Manager manages
the keys and the Network Manager uses or distributes them to the Field devices
and the Gateway. The Network Manager can request a specific key from the
Security Manager by providing the following parameter over a secure channel.

68 Paper A

1. Network ID: As one Security Manager can serve more than one Wire-
lessHART network each network is uniquely identified by the Network
ID.

2. Nickname: The Network Manager maintains a list of 2-bytes Nicknames
that are used to uniquely identify the WirelessHART devices. The Unique
ID (UID) can be used but UIDs are maintained by the Gateway and
the Security Manager cannot cannot communicate with the Gateway di-
rectly.

3. Key Type:The key type can be one of the seven key types listed above.
The Well-known key is always the same and can be hardcoded in the
Network Manager.

The WirelessHART standard does not specify the security in the wired part
of the network. However, the capabilities of the Security Manager can be ex-
tended to secure the connection between the wired devices based on asymmet-
ric or public key cryptography [23].

6.5 Security Limitations of WirelessHART
Although the WirelessHART standard is designed to be a secure and reliable
protocol intended to be used for industrial process automation the current re-
lease of the standard has some security limitations. These include:

- The WirelessHART protocol does not support public key cryptography
which makes it unable to provide certain security services such as non-
repudiation. Strong authentication, i.e. authentication without sending
the security secrets over the network is not possible either.

- No mechanisms have been specified to provide authorization and ac-
counting security services. We need accounting when the cost of Wire-
lessHART device is attached to its usage.

- The complete key management system is not specified; however, the
commands for distribution of keys have been specified.

- Security in the wired part of the network is neither specified nor en-
forced.

- Secure multicast communication among the Field devices is not sup-
ported.

6.6 Conclusions and Future Work 69

- Secure integration of wireless and legacy HART is not specified in the
WirelessHART standard.

- The architecture of the Security Manager and the interface between the
Security Manager and the Network Manager is not specified in the stan-
dard.

6.6 Conclusions and Future Work
We have thoroughly discussed the security features in the WirelessHART stan-
dard and analyzed the specified security features against the available threats
in the wireless medium. We have also identified some security limitations in
the standard. However, the provided security in the wireless medium, although
subjected to some threats due to its wireless nature, is strong enough to be
used in the industrial process control environment. The physical protection
of the WirelessHART devices is very important to avoid device cloning and
stealing security secrets which will lead to other security attacks. Also, the
careful implementation of the Network Manager is very important. The Wire-
lessHART standard does not enforce security in the core/wired network but the
connections between the wired devices must be secured. The standard provides
core security services including Confidentiality, Integrity, Authentication, and
Availability; however, other necessary services such as Non-repudiation, Au-
thorization or Access Control, and Accounting are yet to be provided.

The reserved security bits (see Security control byte [6]) can be used to
enhance WirelessHART security with public key cryptography [24] [25]. Al-
though PKI is avoided in embedded devices, having a central trusted authority
(Network Manager/Security Manager) and relatively high processing power
and energy resources makes WirelessHART devices different from traditional
sensor devices. Research in implementing ECC and RSA on sensor nodes have
shown the potential for PKI in WSNs [26]. The WirelessHART’s counterpart
ISA100.11.a:2008 [27] also uses public key cryptography. One way to enrich
the standard with security features is to identify and specify ways to provide ad-
ditional security services such as accounting and access control/authorization.

Acknowledgments
This work has been performed within the SICS Center for Networked Systems
funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab Systems, TeliaSonera

70 Paper A

and T2Data. This work has been partially supported by CONET, the Coop-
erating Objects Network of Excellence, funded by the European Commission
under FP7 with contract number FP7-2007-2-224053.

Bibliography

[1] Anna N. Kim, Fredrik Hekland, Stig Petersen, and Paula Doyle. When
hart goes wireless: Understanding and implementing the wirelesshart
standard. IEEE International Conference on Emerging Technologies and
Factory Automation, pages 899–907, September 2008.

[2] IEC approves WirelessHART. Control Engineering, Vol. 55 Issue 10
Pages 34-34, October 2008.

[3] WirelessHART Device Specification,HCF SPEC-290, Revision 1.1.
HART Communication Foundation, May 2008.

[4] HART Communication Foundation (HCF). 9390 Research Blvd., Suit
I-350 Austin TX 78759 USA. http://www.hartcomm2.org/index.html.

[5] Cyril Leung. Evaluation of the undetected error probability of single
parity-check product codes. IEEE Transactions on Communications,
31(2):250–253, 1983.

[6] Network Management Specification,HCF SPEC-085, Revision 1.1.
HART Communication Foundation, May 2008.

[7] D. Whiting, R. Housley, and N. Ferguson. Counter with CBC-MAC
(CCM), RFC 3610. IETF, Network Working Group, Fremont, Califor-
nia 94538 USA, September 2003.

[8] Morris Dworkin. Recommendation for Block Cipher Modes of Operation:
The CCM Mode for Authentication and Confidentiality. NIST Special
Publication 800-38C, May 2004.

[9] TDMA Data Link Layer Specification, HCF SPEC-075, Revision 1.1.
HART Communication Foundation, May 2008.

71

72 Bibliography

[10] W. Simpson. PPP in HDLC Framing, RFC 1549. IETF, Network Work-
ing Group, Fremont, California 94538 USA, December 1993.

[11] William Stallings. Data and Computer Communications, pages 277–282.
Prentice Hall, eighth edition, 2006.

[12] Christopher Alberts and Audrey Dorofee. Managing Information Secu-
rity Risks: The OCTAVE Approach. Addison Wesley, 09 July 2002.

[13] Tomas Lennvall, Stefan Svensson, and Fredrik Heklan. A comparison of
wirelesshart and zigbee for industrial applications. IEEE International
Workshop on Factory Communication Systems, pages 85–88, May 2008.

[14] Yee Wei Law, Marimuthu Palaniswami, Lodewijk Van Hoesel, Jeroen
Doumen, Pieter Hartel, and Paul Havinga. Energy-efficient link-layer
jamming attacks against wireless sensor network mac protocols. ACM
Transactions on Sensor Networks (TOSN), 1(5):71–80, February 2009.

[15] John R. Douceur. The sybil attack. 1st International workshop on Peer-
To-Peer Systems (IPTPS), March 2002.

[16] Jianping Song, Song Han, Aloysius K. Mok, Deji Chen, Mike Lucas,
and Mark Nixon. Wirelesshart: Applying wireless technology in real-
time industrial process control. Real-Time and Embedded Technology
and Applications Symposium, 2008(RTAS-08), pages 377 – 386, April
2008.

[17] Levente Buttyan and Jean-Pierre Hubaux. Security and Cooperation in
Wireless Network. Cambridge University Press, 2007.

[18] Yih-Chun Hu, Adrian Perrig, and David B. Johnson. Wormhole attacks in
wireless networks. IEEE Journal on Selected Areas in Communications,
24(2):370– 380, February 2006.

[19] Andrey Bogdanoy. Multiple-differential side-channel collision attacks on
aes, lecture notes in computer science. 10th international workshop on
Cryptographic Hardware and Embedded Systems, 5154(2):30–44, 2008.

[20] Raphael Chung-Wei Phan. Impossible differential cryptanalysis of 7-
round aes. Information Processing Letters, 91(1):33–38, 2004.

[21] Hiran Kumar Deva Sarma and Avijit Kar. Security threats in wireless
sensor networks. IEEE A&E Systems Magazine, June 2008.

[22] Wireless Command Specification, HCF SPEC-155, Revision 1.1. HART
Communication Foundation, May 2008.

[23] Harold F. Tipton and Micki Krause. Information Security Manage-
ment Handbook, pages 1129–1135. Auerbach Publications, sixth edition,
2007.

[24] An Liu and Peng Ning. Tinyecc: A configurable library for elliptic curve
cryptography in wireless sensor networks. International Conference on
Information Processing in Sensor Networks, 2008. IPSN ’08, pages 245–
256, April 2008.

[25] Haodong Wang, Bo Sheng, and Qun Li. Elliptic curve cryptography-
based access control in sensor networks. International Journal of Security
and Networks, 1(3/4):127–137, 2006.

[26] Haodong Wang and Qun Li. Efficient implementation of public key
cryptosystems on mote sensors. In Proceedings of International Confer-
ence on Information and Communication Security (ICICS), pages 33–38,
2004.

[27] The ISA100 Standards: Overview & Status.
http://www.isa.org/source/ISA100.11a Release1 Status.ppt.

Chapter 7

Paper B:
Securing Communication in
6LoWPAN with Compressed
IPsec

Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo Voigt,
Utz Roedig
7th IEEE International Conference on Distributed Computing in Sensor Sys-
tems (IEEE DCOSS ’11), 27-29 June 2011, Barcelona, Spain.
c© Reprinted with the permission from IEEE.

75

Abstract

Real-world deployments of wireless sensor networks (WSNs) require se-
cure communication. It is important that a receiver is able to verify that sensor
data was generated by trusted nodes. It may also be necessary to encrypt sensor
data in transit. Recently, WSNs and traditional IP networks are more tightly
integrated using IPv6 and 6LoWPAN. Available IPv6 protocol stacks can use
IPsec to secure data exchange. Thus, it is desirable to extend 6LoWPAN such
that IPsec communication with IPv6 nodes is possible. It is beneficial to use
IPsec because the existing end-points on the Internet do not need to be modified
to communicate securely with the WSN. Moreover, using IPsec, true end-to-
end security is implemented and the need for a trustworthy gateway is removed.

In this paper we provide End-to-End (E2E) secure communication between
IP enabled sensor networks and the traditional Internet. This is the first com-
pressed lightweight design, implementation, and evaluation of 6LoWPAN ex-
tension for IPsec. Our extension supports both IPsec’s Authentication Header
(AH) and Encapsulation Security Payload (ESP). Thus, communication end-
points are able to authenticate, encrypt and check the integrity of messages
using standardized and established IPv6 mechanisms.

7.1 Introduction 77

7.1 Introduction
Wireless Sensor Networks can be tightly integrated with existing IP based in-
frastructures using IPv6 over Low Power Wireless Personal Area Networks
(6LoWPAN). Sensor nodes using 6LoWPAN can directly communicate with
IPv6 enabled hosts and, for example, sensor data processing can be performed
by standard servers. Thus, 6LoWPAN greatly simplifies operation and integra-
tion of WSNs in existing IT infrastructures.

Real-world deployments of wireless sensor networks (WSNs) require se-
cure communication. For instance, in a smart meter application, the provider
and the meters would need to authenticate one another and encryption would
be desirable to ensure data confidentiality. IPv6 hosts in the Internet support by
default IPsec for secure communication. Therefore, if data flows between IPv6
hosts and 6LoWPAN sensor nodes it is desirable to take advantage of existing
capabilities and to secure traffic using IPsec. Thus, we propose to add IPsec
support to 6LoWPAN as illustrated by Figure 7.1.

IPsec defines an Authentication Header (AH) and an Encapsulating Se-
curity Payload (ESP). The AH provides data integrity and authentication while
ESP provides data confidentiality, integrity and authentication. Either AH, ESP
or both can be used to secure IPv6 packets in transit. It is up to the application
to specify which security services are required. 6LoWPAN uses header com-
pression techniques to ensure that the large IPv6 and transport-layer headers
(UDP/TCP) are reduced. By supporting IPsec’s AH and ESP, additional IPv6
extension headers have to be included in each datagram. Thus, it is important
to ensure that compression techniques are as well applied to these extension
headers.

Independent of the achieved compression rates of AH and ESP it is obvious
that IPsec support in 6LoWPAN will increase packet sizes as additional head-
ers must be included. Note, however, that by using IPsec we do not need to
use existing 802.15.4 link-layer security mechanisms which in turn frees some
header space.

The main contributions of this paper are:

• 6LoWPAN-IPsec Specification: We give a specification of IPsec for 6LoW-
PAN including definitions for AH and ESP extension headers. Prior to
this work no specification for IPsec in the context of 6LoWPAN existed;

• 6LoWPAN-IPsec Implementation: We present the first implementation
of IPsec for 6LoWPAN networks. We show that it is practical and feasi-
ble to secure WSN communication using IPsec;

78 Paper B

IPsec: end-to-end security

6LowPAN Router

Senor node

Figure 7.1: We propose to use IPsec to secure the communication between sen-
sor nodes in 6LoWPANs and hosts in an IPv6-enabled Internet. IPsec provides
E2E security using existing methods and infrastructures.

• 6LoWPAN-IPsec Evaluation: We evaluate the performance of our IPsec
6LoWPAN implementation in terms of code size, packet overheads and
communication performance. Our results show that overheads are com-
parable to overheads of generally employed 802.15.4 link-layer security
while offering the benefit of true E2E security.

The paper proceeds by discussing related work followed by a further mo-
tivating of using of IPsec. Then we present background knowledge on IPv6,
IPsec and 6LoWPAN. Section 7.5 describes our proposed integration of 6LoW-
PAN and IPsec. After a thorough experimental evaluation of the performance
of our IPsec implementation, we conclude the paper.

7.2 Related Work

Message authentication and encryption in WSNs is generally performed us-
ing well known cryptographic mechanisms such as block ciphers as part of
standards-based protocols such as IEEE 802.15.4. However, these mecha-
nisms are difficult to implement on resource constrained sensor nodes as cryp-
tographic mechanisms can be expensive in terms of code size and process-
ing speed. Furthermore, it is necessary to distribute and maintain keys and it
is difficult to implement efficient key distribution protocols for resource con-
strained sensor nodes. Thus, a lot of research work aims to reduce complexity
of cryptographic mechanisms, for example, TinyEEC [1] and NanoEEC [2], or
to simplify key distribution, for example, Liu and Ning’s proposal for pairwise
key predistribution [3] and DHB-KEY [4]. These improvements make cryp-
tographic mechanisms in the context of WSNs more viable but an important

7.3 Securing WSN Communications 79

issue remains: a standardized way of implementing security services is miss-
ing and for each deployment unique customized solutions are created. Using
the standardized 6LoWPAN as a vehicle to implement security services in form
of the proven and standardized IPsec offers a solution to this problem. IPsec
is currently available as part of some WSN products, but does not provide a
full E2E security solution. One such example is the ArchRock PhyNET [5]
that applies IPsec in tunnel mode between the gateway and Internet hosts, but
still relies on link-layer security within the sensor network thus breaking true
E2E assurance. We are not aware of a complete E2E implementation nor an
evaluation of a working system which we present in this paper.

The IEEE 802.15.4 [6] standard defines Advanced Encryption Standard
(AES) message encryption and authentication on the link-layer. The cryp-
tographic algorithms could be executed by specialized hardware within the
transceiver chip. However, link-layer security only protects messages while
they travel from one hop to the next as we discuss in Section 7.3. Wood and
Stankovic [7] as well as Hu et al. [8] have demonstrated performance gains
when security operations are performed in hardware. We expect similar per-
formance gains when IPsec operations are implemented in hardware. Gran-
jal et al. argue that IPsec is generally feasible in the context of WSN [9]. In
their study they analyze the execution times and memory requirements of cryp-
tographic algorithms. Their work only discusses performance of cryptographic
algorithms but does not describe how IPsec is actually integrated with 6LoW-
PAN. In our work, we implement 6LoWPAN with compressed IPsec and we
analyze the performance of the overall system, not only the performance of the
cryptographic algorithms.

———————————————

7.3 Securing WSN Communications

Researchers have unanimous consensus that security is very important for the
future IP based WSN and its integration with the traditional Internet. IPv6
with potentially unlimited address space is the obvious choice for these net-
works [10]. However, security support for IP-based low power networks is still
an open issue, as mentioned in the 6LoWPAN specifications [11, 12]. Actually,
security can be guaranteed at different layers of the IP protocol stack, resulting
in solutions with various compromises..

6LoWPAN today relies on the IEEE 802.15.4 (referred to as 802.15.4 in
the following) link-layer which provides data encryption and integrity check-

80 Paper B

ing. This solution is appealing since it is independent of the network protocols
and is currently supported by the hardware of 802.15.4 radio chips. How-
ever, such link-layer mechanism only ensures hop-by-hop security where every
node in the communication path (including the 6LoWPAN gateway) has to be
be trusted, and where neither host authentication nor key management is sup-
ported. Furthermore, messages leaving the sensor network and continuing to
travel on an IP network are not protected by link-layer security mechanisms.

End-to-end security can be provided by the widely used Transport Layer
Security (TLS) standard. By operating between the transport-layer and the
application-layer, it guarantees security between applications, includes a key
exchange mechanism and provides authentication between Internet hosts in
addition to confidentiality and integrity. As a counterpart, TLS can only be
used over TCP, which is rarely used in wireless sensor networks. An adaptation
of TLS for UDP called DTLS is available, but it is not widely used.

The IPsec protocol suite, mandated by IPv6, provides end-to-end security
for any IP communication [13]. Like TLS and unlike hop-by-hop solutions, it
includes a key exchange mechanism and provides authentication in addition to
confidentiality and integrity. By operating at the network-layer, it can be used
with any transport protocols, including potential future ones. Furthermore,
it ensures the confidentiality and integrity of the transport-layer headers (as
well as the integrity of IP headers), which cannot be done with a higher-level
solution like TLS. For these reasons, researchers [9, 14, 15] and 6LoWPAN
standardizations groups [12] consider IPsec a potential security solution for IP
based WSN.

In this paper we show that compressed IPsec is a sensible and viable choice
for 6LoWPANs. The key advantage of using IPsec in WSN is that we achieve
end-to-end IP based communication between a sensor device and Internet hosts.
When using IPsec, the IEEE 802.15.4 security features can be disabled as se-
curity services are provided in the IP layer. We show later that when comparing
link-layer security with IPsec, packet sizes are similar.

——————————-

7.4 Background

In this section we briefly outline core functionality of IPv6, IPsec and 6LoW-
PAN that is relevant for the work presented in this paper. For more informa-
tion we refer to the corresponding RFCs: RFC2460 [16], RFC4301 [17] and
RFC4944 [12].

7.4 Background 81

7.4.1 IPv6 and IPsec

With the vision of the Internet of Things and Smart Objects all kind of physical
devices such as wireless sensors are expected to be connected to the Internet
via IP [10]. This requires the use of IPv6 [16], a new version of the Internet
Protocol that increases the address size from 32 bits to 128 bits. Besides the in-
creased address space IPv6 provides in comparison to IPv4 a simplified header
format, improved support for extensions and options, flow labeling capability
and authentication and privacy capabilities.

Authentication and privacy in IPv6 is provided by IPsec [17]. IPsec defines
a set of protocols for securing IP communication: the security protocols Au-
thentication Header (AH) [18] and Encapsulating Security Payload (ESP) [19],
the algorithms for authentication and encryption, key exchange mechanisms
and so called security associations (SA) [17]. An SA specifies how a particular
IP flow should be treated in terms of security. To establish SAs, IPSec stan-
dard specifies both pre-shared key and Internet Key Exchange (IKE) protocol.
This means that every node on IPv6 enabled conventional Internet supports
pre-shared key. In other words an implementation with pre-shared based SA
establishment works with any IPv6 node on Internet. Also, IKE uses asymmet-
ric cryptography that is assumed to be heavy weight for small sensor nodes.
However, it would be worth investigating IKE with ECC for 6LoWPANs; we
intend to do it in future.

The task of the AH is to provide connectionless integrity and data origin au-
thentication for IP datagrams and protection against replays. A keyed Message
Authentication Code (MAC) is used to produce authentication data. The MAC
is applied to the IP header, AH header and IP payload. The authentication
header is shown in Figure 7.2. All hosts must support at least the hash-based
message authentication code algorithm AES-XCBC-MAC-96 [20] to calculate
authentication data that has a size of 12 bytes. Thus, as shown in Figure 7.2, a
basic AH header has a size of 24 bytes.

ESP [19] provides origin authenticity, integrity, and confidentiality protec-
tion of IP packets. ESP is used to encrypt the payload of an IP packet but in
contrast to AH it does not secure the IP header. If ESP is applied the IP header
is followed by the ESP IP extension header which contains the encrypted pay-
load. ESP includes an SPI that identifies the SA used, a sequence number to
prevent replay attacks, the encrypted payload, padding which may be required
by some block ciphers, a reference to the next header and optional authenti-
cation data. Encryption in ESP includes Payload Data, Padding, Pad Length
and Next Header;Authentication, if selected, includes all header fields in the

82 Paper B

Figure 7.2: IPsec AH headers

ESP. If we assume mandatory AES-CBC as encryption algorithm an ESP with
perfect block alignment will have an overhead of 18 bytes (10 bytes for ESP
and 8 bytes for Initialization Vector). If additional authentication using AES-
XCBC-MAC-96 is used the ESP overhead is 30 bytes, as the minimum length
of AES-XCBC-MAC-96 is 12 bytes.

The protocols AH and ESP support two different modes: transport mode
and tunnel mode. In transport mode IP header and payload are directly secured
as previously described. In tunnel mode, a new IP header is placed in front
of the original IP packet and security functions are applied to the encapsulated
(tunneled) IP packet. In the context of 6LoWPAN tunnel mode seems not
practical as the additional headers would further increase the packet size.

7.4.2 6LoWPAN
6LoWPAN [12] aims at integrating existing IP based infrastructures and sen-
sor networks by specifying how IPv6 packets are to be transmitted over an
IEEE 802.15.4 network. The maximum physical-layer packet size of 802.15.4
packet is 127 bytes and the maximum frame header size is 25 bytes. An IPv6
packet has therefore to fit in 102 bytes. Given that packet headers of a packet
would already consume 48 bytes of the available 102 bytes it is obvious that
header compression mechanisms are an essential component of the 6LoWPAN
standard.

HC13[21] proposes context aware header compression mechanisms: the
LOWPAN IPHC (referred to as IPHC in the following) encoding for IPv6
header compression and the LOWPAN NHC (referred to as NHC in the fol-
lowing) encoding for the next header compression. The IPHC header is shown
in Figure 7.3.

For efficient IPv6 header compression, IPHC removes safely IPv6 header

7.5 6LoWPAN and IPsec 83

Figure 7.3: The LOWPAN IPHC Header.

fields that are implicitly known to all nodes in the 6LoWPAN network. The
IPHC has a length of 2 byte of which 13 bits are used for header compression
as shown in Figure 7.3. Uncompressed IPv6 header fields follow directly the
IPHC encoding in the same order as they would appear in the normal IPv6
header. In a multihop scenario IPHC can compress the IPv6 header to 7 bytes
The NH field in the IPHC indicates whether the next header following the basic
IPv6 header is encoded. If NH is 1, NHC is used to compress the next header.
6LoWPAN specifies that the size of NHC should be multiple of octets, usually
1 byte where first variable length bits represents a NHC ID and the remaining
bits are used to encode/compress headers. 6LoWPAN already defines NHC for
UDP and IP Extension Header [21].

7.5 6LoWPAN and IPsec
IPsec requires header compression to keep packet sizes reasonable in 6LoW-
PAN. Unfortunately, there are no header encodings specified for AH and ESP
extension headers. In this section we therefore propose these extension header
encodings. We evaluate our savings in terms of packet size later in Section 7.6.
At the end of this section, we also discuss further improvements that would
be possible by small, standard-compliant modifications of the end hosts where
there is need for cryptographic algorithms that could handle 6LoWPAN UDP
compression.

7.5.1 LOWPAN NHC Extension Header Encoding
As previously described, HC13 defines context aware header compression us-
ing IPHC for IP header compression and NHC for the next header compression.
The already defined NHC encoding form for IP extension headers can be used
to encode AH and ESP extension headers. NHC encodings for the IPv6 Ex-
tension Headers consist of a NHC octet where three bits (bits 4,5,6) are used

84 Paper B

0BIT

LOWPAN_NHC_EH 1 1

1

1

2

0

3 4

NH

6 7

EID

5

EID: Extension Header

 ID (EID)

NH: Next Header

Figure 7.4: LOWPAN NHC EH: NHC encoding for IPv6 Extension Header

0BIT

LOWPAN_NHC_AH 1 1

1

0

2

1

3 4

NH

6 7

PL

5

PL: Payload Length
SPI: Security Parameter
 Index
SN: Sequence Number
NH: Next Header

SPI SN

Figure 7.5: NHC AH: NHC encoding for IPv6 Authentication Header

to encode the IPv6 Extension Header ID (EID). This NHC EH encoding for
extension headers is shown in Figure 7.4.

Out of eight possible values for the EID, six are specified by the HC13 draft.
The remaining two slots (101 and 110) are currently reserved. We propose to
use the two free slots to encode AH and ESP. Also, it is necessary to set the
last bit in IPv6 extension header encoding to 1 to specify that the next header
(AH or ESP) is encoded as well using NHC.

7.5.2 LOWPAN NHC AH Encoding
We define the NHC encoding for the AH. Our proposed NHC for AH is shown
in Figure 7.5.

We describe the function of each header field:

• The first four bits in the NHC AH represent the NHC ID we define for
AH, and are set to 1101. These are needed to comply with 6loWPAN
standard.

• PL: If 0, the payload lengths is omitted. This length can be obtained
from the SPI value because the length of the authenticating data depend
on the algorithm used and are fixed for any input size. If 1, the length is
carried inline after the NHC AH header

• SPI: If 0, the default SPI for the sensor network is used and the SPI field
is omitted. We set the default SPI value to 1. This does not mean that all
nodes use the same security association (SA), but that every node has its
own preferred SA, identified by SPI 1. If 1, the SPI is carried inline

7.5 6LoWPAN and IPsec 85

Source Address

Octet 0 Octet 1 Octet 2 Octet 3

Destination Address

Source Port

6Low

PAN

Header

Dest Port

DATA Payload (Variable)

LOWPAN_IPHC Hop Limit

Source Address LOWPAN_NHC_EH

LOWPAN_NHC_AH Sequence Number

LOWPAN_NHC_UDP

ICV

Figure 7.6: Example of a compressed IPv6/UDP packet using AH

• SN: If 0, a 16 bit sequence number is used and the left most 16 bits are
assumed to be zero. If 1, all 32 bits of the sequence number are carried
inline.

• NH: If 0, the next header field in AH will be used to specify the next
header and it is carried inline. If 1, the next header field in AH is skipped.
The next header will be encoded using NHC.

The minimum length of a standard AH supporting the mandatory HMAC-
SHA1-96 is 24 bytes. After optimal compression we obtain a header size of
16 bytes. Figure 7.6 shows compressed IPv6/UDP packet secured with AH
with HMAC-SHA1-96.

7.5.3 LOWPAN NHC ESP Encoding

Also the NHC encoding for ESP encodes the security parameter index, the
sequence number, the next header fields and the NHC ID for ESP. In the case
of ESP, we propose 1110 as NHC ID while we propose 1101 as NHC for AH as
shown in Figure 7.6. Due to space limitation, we do not detail these encoding
for ESP which are available in full details in a technical report [22].

Recall that the minimum ESP overhead without authentication, AES-CBC
and perfect block alignment is 18 bytes. After optimal compression this header
overhead is reduced to 12 bytes. ESP with authentication (HMAC-SHA1-96)

86 Paper B

has an overhead of 30 bytes which is reduced to 24 bytes using the outlined
ESP compression.

7.5.4 Combined Usage of AH and ESP
It is possible to use AH and ESP in combination; obviously the defined AH
and ESP compression headers can be used in succession. However, it is more
efficient in terms of header sizes to use ESP with authentication option than to
apply AH and ESP to a packet. As packet sizes are important in the context of
WSNs we expect that this IPsec option will not be used in practice.

7.5.5 End Host Requirement
AH capable 6LoWPAN nodes can directly communicate with unmodified IPsec
hosts on conventional Internet. When ESP is used 6LoWPAN nodes can as well
communicate directly with unmodified IPsec hosts. However, if ESP is used
it is not possible to compress upper layer headers such as UDP. A 6LoWPAN
gateway between sensor network and IP network cannot access and expand
the encrypted UDP header. To enable UDP compression with ESP we need
to specify a new encryption algorithm for ESP which is able to perform UDP
header compression and encryption. Again, if this optimization is used IPsec
hosts must include and support this encryption protocol.

7.6 Evaluation and Results
In this section we quantify performance of the proposed IPSec extensions for
6LowPAN. After describing our implementation and experimental setup, we
evaluate the impact of IPsec in terms of memory footprint, packet size, energy
consumption and performances under different configurations.

7.6.1 Implementation and Experimental Setup
We implement IPsec AH and ESP for the Contiki operating system [23]. The
implementation required the modification of the existing Contiki µIP stack
which already provides 6LoWPAN functionality. The Contiki µIP stack is used
on the sensor nodes and on a so called soft bridge connecting WSN and the In-
ternet. In addition to the IPsec protocol, we implement the IPsec/6LoWPAN
compression mechanisms as outlined in the previous section. We support the

7.6 Evaluation and Results 87

System
ROM (kB) RAM (kB)

overall diff overall diff

Without IPsec 32.9 – 8.0 –
AH with HMAC-SHA1-96 36.8 3.9 9.1 1.1
AH with XCBC-MAC-96 38.4 5.5 8.5 0.5
ESP with AES-CBC 41.4 8.5 8.3 0.3
ESP with AES-CTR 39.8 6.9 9.1 0.3
ESP with AES-XCBC-MAC-96 39.8 6.9 8.3 0.3
ESP with AES-CBC +

AES-XCBC-MAC-96 41.9 9.0 8.3 0.3
ESP with AES-CBC +

AES-XCBC-MAC-96 41.9 9.0 8.3 0.3

Table 7.1: Memory footprints show that AH and ESP consumes just 3.9kB and
9kB for mandatory IPsec algorithms

Service Uncompressed IPsec Compressed IPsec 802.15.4
Mode Bytes Mode Bytes Mode Bytes

AH Authen-
tication

HMAC-
SHA1-96

24 HMAC-
SHA1-96

16 AES-CBC-
MAC-96

12

ESP
Encryption

AES-CBC 18 AES-CBC 12 AES-CTR 5

ESP
Encryption

and Authen-
tication

AES-CBC
and HMAC-

SHA1-96

30 AES-CBC
and HMAC-

SHA1-96

24 AES-CCM-
128

21

Table 7.2: With compressed IPsec, packet sizes are similar to 802.15.4 while
IPsec provides end-to-end security.

NHC EH, NHC AH, and NHC ESP encodings (see Section 7.5) at the SIC-
SLoWPAN layer, the 6LoWPAN component of the µIP stack.

We use the SHA1 and AES implementations from MIRACL [24], an open
source library, and implement all cryptographic modes of operation needed for
authentication and encryption in IPsec. For AH, we implement the manda-
tory HMAC-SHA1-96 and AES-XCBC-MAC-96. For ESP, we implement the
mandatory AES-CBC for encryption and HMAC-SHA1-96 for authentication.
Additionally, in ESP, we implement the optional AES-CTR for encryption and
AES-XCBC-MAC-96 for authentication. Our Contiki IPsec 6LoWPAN im-
plementation uses pre-shared keys to establish SAs which work with any IPv6
node on Internet as a pre-shared mechanism is mandatory in IPsec. Manual key

88 Paper B

distribution, however, is currently also used for traditional 802.15.4 link-layer
security.

Our evaluation setup shown in Figure 7.1 consists of four Tmote Sky [25]
sensor nodes, a 6LoWPAN soft bridge (implemented by a fifth Tmote) nd a
Linux machine running Ubuntu OS with IPsec enabled. The four sensor nodes
on the right side in Figure 7.1 form a multihop network. They execute a single
application that listens to a fixed UDP port. When a packet is received, it is
processed by the 6LoWPAN layer, interpreted by the IPsec layer and by µIP.
Then its payload is forwarded to the application. As a reply, a new datagram
of the same size is sent back, following the opposite process. Thus, IPsec is
used to secure the end-to-end (E2E) communication between the sensor node
and the Internet host. To avoid the delay of a duty-cycled MAC layer, we use
Contiki’s NullMAC in the experiments and hence all nodes keep their radio
turned on all the time.

7.6.2 Memory footprint

We measure the ROM and RAM footprint of our IPsec implementation. Ta-
ble 8.1 compares IPsec AH and IPsec ESP using the multiple modes of oper-
ation we implemented. The footprints are compared with a reference Contiki
system including uIP and SICSLoWPAN.

The ROM footprint overhead ranges from 3.8 kB (AH with HMAC-SHA1)
to 9 kB (ESP with AES-CBC + AES-XCBC-MAC). This always keeps the sys-
tem footprint under 48 kB, the Flash ROM size of the Tmote Sky. It is worth
mentioning that unlike AES-CBC, the AES-CTR mode of operation only relies
on AES encryption. Thus, the AES-CTR + AES-XCBC-MAC-96 configura-
tion can be implemented without AES decryption, resulting in a particularly
low memory footprint.

The RAM footprint is calculated as the sum of the global data and the
runtime stack usage that we measure by running Contiki in the MSPSim em-
ulator [26]. With an additional footprint of 1.1 kB, the AH HMAC-SHA1
configuration is the most RAM-consuming configuration. When using other
modes of operation, the RAM usage lies between only 0.3 and 0.5 kB. These
results show that both IPsec AH and ESP can be embedded in constrained de-
vices while leaving space for applications.

7.6 Evaluation and Results 89

7.6.3 Packet Overhead Comparison

Currently WSN communication is secured using 802.15.4 link-layer security.
This security mechanism can only provide hop-by-hop security and, in contrast
to IPsec, lacks the ability to provide proper E2E security. Nevertheless, we
provide here a comparison of packet overheads between 802.15.4 link-layer
security and IPsec security. Table 7.2 summarizes the packet overhead when
using uncompressed IPsec, compressed IPsec and 802.15.4 link-layer security.

When using link-layer security, the packet overhead for the authentication
scheme is exactly the length of the MAC. In IPsec when using AES-XCBC-
MAC-96, the MAC has a length of 12 bytes. The additional AH header fields
increase the overhead to 24 bytes. Thanks to the IPsec header compression
we defined, this overhead is reduced to 16 bytes. The ability to provide E2E
authentication with IPsec has hence a cost of 4 bytes compared to the 802.15.4
baseline which provides only hop-by-hop security.

If only message encryption is required, the 802.15.4 link-layer security pro-
vides AES-CTR which has a 5 bytes overhead. In comparison, IPsec with ESP
and AES-CBC leads to an overhead of 18 bytes, reduced to 12 bytes thanks
to header compression. Here, the ability to provide E2E encryption with IPsec
has a cost of 7 bytes compared to the 802.15.4 baseline.

With AES-CCM-128, the overhead for 802.15.4 is 21 bytes while IPsec
ESP has an overhead of 30 bytes, reduced to 24 bytes when using our 6LoW-
PAN compression extension. The ability to provide E2E encryption and au-
thentication with IPsec has hence a cost of 3 bytes compared to the 802.15.4
baseline.

Moreover, when carrying large IP datagrams, link-layer fragmentation has
to be used. With link-layer security, one pays the header overheads for every
fragment. In contrast, the IPsec header is included only once for all the frag-
ments of a single datagram. This means that as soon as two or more fragments
are needed, IPsec offers a lower header overhead than 802.15.4 link-layer se-
curity.

7.6.4 Performance of Cryptography

We evaluate the efficiency of the different cryptographic algorithms and modes
supported by our IPsec implementation. Figure 7.7 details the performances
and energy consumption for each mode of operation and depending on the size
of the IP payload. The authentication algorithms are compared separately for
AH and ESP: with AH the MAC is calculated over the IP header and payload

90 Paper B

 0

 10

 20

 30

 40

 50

 60

 70

4 8 16 32 64

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
im

e
 [

m
s
]

E
n

e
rg

y
 [

m
J
]

No of Data Bytes

AES-CBC for ESP
AES-CTR for ESP

AES-XCBC-MAC-96 for ESP
HMAC-SHA1-96 for ESP

AES-XCBC-MAC-96 for AH
HMAC-SHA1-96 for AH

Figure 7.7: The comparison of our implemented algorithms shows that among
the ones specified in the standards, AES-CBC and AES-XCBC-MAC-96 are
the most efficient in terms of processing time and energy consumption. They
are also mandatory and the most secure.

7.6 Evaluation and Results 91

packet, while in ESP the IP header is neither encrypted nor authenticated.
Our results show that for encryption, AES-CBC and AES-CTR have simi-

lar performances and energy consumption. Regarding authentication, the cost
is as expected higher for AH than for ESP because of the processing of the
40 byte IP header. In all cases, the energy consumption has a fixed-cost and
grows linearly with the data size. HMAC-SHA1-96 is not as efficient as other
solutions because of its particularly high fixed-cost when data sizes are small.

The proposed standard for Cryptographic Suites for IPsec specifies that the
future IPsec systems will use AES-CBC-128 for encryption and AES-XCBC-
MAC-96 mode for authentication [27]. Figure 7.7 shows that these are also

7.6.5 System-wide Energy Overhead
Securing the Internet of Things has a cost in terms of added energy usage. We
measure the energy overhead of the available security options on the Tmote Sky
using Contiki’s integrated energy estimator. We measure the total number of
CPU ticks from the reception of the first fragment of a message, when starting
link layer decryption. We stop counting when the link layer encryption of the
last packet is finished, but we ignore the network time between the packets. In
total we the link layer processing, 6LoWPAN processing, µIP stack handling,
and application-layer processing. These experiments are run with and without
hardware support. For the

Figure 7.8 shows the energy consumption of Link Layer security only,
IPsec using either AH or ESP, and without using any security. Since the vari-
ance of the 20 runs was very low, it is not not shown. The results show that
ESP consumes more energy than AH; this is because for ESP we use both au-
thentication and encryption. Although the energy consumption with IPsec is
significantly higher than without IPsec we argue that this is negligible when
compared to the consumption of typical radio chips. In the worst measured
case, AH on 64 bytes, the energy consumed is around 0.5 mJ. The radio chip
of the Tmote Sky consumes the same amount of energy after 8 ms of idle lis-
tening.

7.6.6 System-wide Response Time Overhead
We measure and evaluate the response time for different data sizes with IPsec
and without IPsec. The response time is the time it takes to send a message
from an IP connected Linux machine to a sensor node and to receive a response.
We conduct experiments using a routing distance in the WSN ranging from 1

92 Paper B

 0

 0.1

 0.2

 0.3

 0.4

 0.5

4 8 16 32 64

E
n
e
rg

y
 [
m

J
]

No of Data Bytes

Without IPsec
With IPsec AH

With IPsec ESP

Figure 7.8: Node energy consumption is lower without IPsec and higher for
ESP than for AH. Compared to other activities e.g. idle listening it is not
significant.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

1632 64 128 256 512

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of Bytes

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(a) Single Hop with different data sizes

 0

 200

 400

 600

 800

 1000

1632 64 128 256 512

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of Bytes

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(b) Multi Hop (4) with different data sizes

Figure 7.9: Response time versus datagram size with AH, ESP and without
IPsec. ESP is faster than AH for small datagrams because it does not process
the 40 bytes IP header. AH is faster than ESP for large datagrams because it
processes authentication but no encryption.

7.6 Evaluation and Results 93

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of hops

AH
ESP

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(a) Multi Hop with 16 bytes data size

 0

 200

 400

 600

 800

 1000

1 2 3 4

A
v
e

ra
g

e
 R

e
s
p

o
n

s
e

 T
im

e
 [

m
s
]

No of hops

ESP
AH

ESP with Hardware AES
AH with Haraware AES

Without IPsec

(b) Multi Hop with 512 byte data size

Figure 7.10: Response time versus number of hops with AH, ESP and without
IPsec. The overhead of IPsec is constant across a single hop and a multihop
network.

to 4 hops and for IP datagrams with a size ranging from 16 to 512 bytes. We
execute every experiment 10 times.

Figure 7.9 shows the response time in dependency of the IP datagram size.
When the datagram size is too large to fit a single 802.15.4 packet, the data are
fragmented according to the 6LoWPAN standard. Consistently with the mirco-
benchmarks in Figure 7.7, the overhead of IPsec grows linearly with datagram
sizes. We observe that for small sizes, ESP is faster than AH. This is because
unlike AH, ESP does not process the full 40 bytes IP header. With larger
sizes, AH is faster than ESP, because it ensures authentication only, while ESP
authenticates plus encrypts and decrypts the messages.

Figure 7.10 shows the response times obtained in dependence of hop dis-
tance. For a given data size, we observe that the overhead of either AH or ESP
is constant, whatever the number of hops. This is because, for the intermedi-
ate nodes, the cost of forwarding the data with and without IPsec is the same;
the overhead is only due to computation on the end nodes. In the worst case
(512 bytes), we measured an overhead of 261 ms.

7.6.7 Improvements Using Hardware Support

The efficiency of IPSec can be improved by employing cryptographic func-
tions provided by sensor node hardware. For example, the CC2420 radio chip
present on many sensor node platforms provides such functionality. To inves-

94 Paper B

tigate possible improvements we extend our prototype implementation to use
this hardware for the required AES computations. Figure 7.9 and Figure 7.10
show the impact of hardware supported cryptography on the achievable re-
sponse time. In all cases hardware-based implementations are faster than pure
software implementations. When processing 512 byte datagrams over a single
hop the overhead of pure software AH is 65 % which decreases to 12 % with
the help of the cryptographic coprocessor. For ESP the decrease ranges from
64 % to 37 %.

7.7 Conclusions and Future Work
WSNs will be an integral part of the Internet and IPv6 and 6LoWPAN are the
protocol standards that are expected to be used in this context. IPsec is the stan-
dard method to secure Internet communication and we investigate if IPsec can
be extended to sensor networks. Towards this end, we have presented the first
IPsec specification and implementation for 6LoWPAN. We have extensively
evaluated our implementation and demonstrated that it is possible and feasible
to use compressed IPsec to secure communication between sensor nodes and
hosts in the Internet.

To securely communicate with any IPv6 enabled node on the Internet pre-
shared keys are sufficient but not very flexible. Therefore, we plan to investi-
gate if an automatic key exchange protocol for 6LoWPANs based on IPsec’s
Internet Key Exchange protocol (IKE) is feasible.

Acknowledgments
This work has been performed within the SICS Center for Networked Sys-
tems funded by VINNOVA, SSF, KKS, ABB, Ericsson, Saab SDS, TeliaSon-
era, T2Data, Vendolocus and Peerialism. This work has been supported by
VINNOVA, SSF and by the European Commission with contract FP7-2007-2-
224053 (CONET). This work was also partially funded by ERCIM through the
Alain Bensoussan postdoc fellowship program.

Bibliography

[1] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In IPSN 2008, Washington,
DC, USA, 2008.

[2] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab. Na-
noecc: Testing the limits of elliptic curve cryptography in sensor net-
works. In EWSN 2008, February 2008.

[3] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor net-
works. In 10th ACM conference on Computer and communications secu-
rity (CCS), New York, NY, USA, 2003.

[4] A. Chung and U. Roedig. DHB-KEY: An Efficient Key Distribution
Scheme for Wireless Sensor Networks. In WSNS2008, Atlanta, USA,
September 2008.

[5] ArchRock Corporation. Phynet n4x series, 2008.

[6] IEEE Computer Society. Ieee std. 802.15.4-2006, 2006.

[7] A. Wood and J. Stankovic. Poster abstract: AMSecure - secure link-
layer communication in TinyOS for IEEE 802.15.4-based wireless sensor
networks. In ACM SenSys, Boulder, USA, November 2006.

[8] W. Hu, P. Corke, W. Shih, and L. Overs. secfleck: A public key technol-
ogy platform for wireless sensor networks. In EWSN 2009, Cork, Ireland,
February 2009.

[9] J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida. Why
is IPsec a viable option for wireless sensor networks . In WSNS2008,
Atlanta, USA, September 2008.

95

96 Bibliography

[10] J. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP - The
Next Internet. Morgan Kaufmann, 2010.

[11] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals. RFC 4919, August 2007.

[12] G. Deloche, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944, September 2007.

[13] S. Kent and R. Atkinson. Security architecture for the internet protocol,
1998.

[14] R. Riaz, Ki-Hyung Kim, and H.F. Ahmed. Security analysis survey and
framework design for ip connected lowpans. In ISADS ’09, mar. 2009.

[15] R. Roman and J. Lopez. Integrating wireless sensor networks and the
internet: a security analysis. Internet Research, 19(2):246–259, 2009.

[16] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460, December 1998.

[17] S. Kent and K. Seo. Security architecture for the internet protocol. RFC
4301, 2005.

[18] Stephen Kent. IP Authentication Header. RFC 4302, 2005.

[19] S. Kent. IP Encapsulating Security Payload. RFC 4303, 2005.

[20] V. Manral. Cryptographic algorithm implementation requirements for
encapsulating security payload (esp) and authentication header (ah). RFC
4835, 2007.

[21] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams in 6LoW-
PAN Networks. draft-ietf-6lowpan-hc-13, September 2010.

[22] Shahid Raza, Tony Chung, Simon Duquennoy, Dogan Yazar, Thiemo
Voigt, and Utz Roedig. Securing internet of things with lightweight ipsec.
Technical Report T2010:08, SICS, 2010.

[23] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexi-
ble operating system for tiny networked sensors. In EMNets’04, Tampa,
USA, November 2004.

[24] Shamus Software. Multiprecision Integer and Rational Arithmetic C/C++
Library. Web page. Visited 2010-04-17.

[25] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN’05, apr. 2005.

[26] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt. Mspsim
– an extensible simulator for msp430-equipped sensor boards. In Demo
session at EWSN 2007, Delft, The Netherlands, January 2007.

[27] P. Hoffman. Cryptographic Suites for IPsec. RFC 4308, December 2005.

Chapter 8

Paper C:
Secure Communication for
the Internet of Things -
A Comparison of Link-Layer
Security and IPsec for
6LoWPAN

Shahid Raza, Simon Duquennoy, Joel Höglund, Utz Roedig, Thiemo Voigt
Journal of Security and Communication Networks, DOI: 10.1002/sec.406, Early
View (January 12, 201), Wiley, 2012.
c©Reprinted with the permission from Wiley under License Number 3138290635590.

99

Abstract

The future Internet is an IPv6 network interconnecting traditional computers
and a large number of smart objects. This Internet of Things (IoT) will be
the foundation of many services and our daily life will depend on its avail-
ability and reliable operation. Therefore, among many other issues, the chal-
lenge of implementing secure communication in the IoT must be addressed.
In the traditional Internet IPsec is the established and tested way of securing
networks. It is therefore reasonable to explore the option of using IPsec as
security mechanism for the IoT. Smart objects are generally added to the Inter-
net using 6LoWPAN which defines IP communication for resource constrained
networks. Thus, to provide security for the IoT based on the trusted and tested
IPsec mechanism it is necessary to define an IPsec extension of 6LoWPAN. In
this paper we present such a 6LoWPAN/IPsec extension and show the viabil-
ity of this approach. We describe our 6LoWPAN/IPsec implementation which
we evaluate and compare with our implementation of IEEE 802.15.4 link-layer
security. We also show that it is possible to reuse crypto hardware within ex-
isting IEEE 802.15.4 transceivers for 6LoWPAN/IPsec. The evaluation results
show that IPsec is a feasible option for securing the IoT in terms of packet
size, energy consumption, memory usage, and processing time. Furthermore,
we demonstrate that in contrast to common belief IPsec scales better than link-
layer security as the data size and the number of hops grow, resulting in time
and energy savings.

8.1 Introduction 101

8.1 Introduction

The future Internet is an IPv6 network interconnecting traditional computers
and a large number of smart objects [1]. Smart objects, often referred to as
things, usually feature small embedded computers with communication, sens-
ing and actuation capabilities. The resulting Internet of Things (IoT) will be
the foundation for many services and will enable communication between tra-
ditional computers and smart objects on a global scale. It is therefore important
to address the traditional security requirements, i.e. authentication, integrity,
nonrepudiation and confidentiality in the context of the IoT.

Smart objects are commonly interconnected using a wireless IEEE 802.15.4 [2]
(referred to as 802.15.4 in the remaining paper) network. A border router can
be used to connect an 802.15.4 network to the Internet to enable IPv6 com-
munication between smart objects and Internet hosts. However, IPv6 packets
travelling on 802.15.4 networks use compressed header formats as defined by
6LoWPAN [3] to conserve scarce bandwidth resources. The border router has
to compress/decompress IP packet headers when forwarding packets to ensure
compatibility with the existing Internet.

6LoWPAN today relies on 802.15.4 security mechanisms. A single key is
used in the network to secure data transfer on a hop-by-hop basis. This pre-
vents, as long as the key is kept secure, unauthorised access to the 802.15.4
network. In situations where the 802.15.4 network is isolated and without con-
nection to the Internet such a mechanism may be considered adequate. How-
ever, in the context of the IoT such an approach fails to provide end-to-end
security in terms of authentication, integrity, nonrepudiation and confidential-
ity. Clearly, additional or alternative mechanisms are required.

The established and tested method to implement generic end-to-end secu-
rity in the Internet is IPsec [4]. IPsec defines security extensions to the IP
protocol for the implementation of security services. Thus, it seems reasonable
to explore the option of using IPsec in the context of 6LoWPAN networks. In
this paper we present a 6LoWPAN/IPsec extension and show the viability of
this approach.

Our 6LoWPAN/IPsec extension to implement true end-to-end secure com-
munication between smart objects and Internet hosts is illustrated in Figure 8.1.
We define header compression for the IPsec-related IPv6 Extension Headers:
Authentication Header (AH) and Encapsulating Security Payload (ESP). We
present an implementation and evaluation of our 6LoWPAN/IPsec extension
for smart objects running the well known Contiki operating system [5]. This
implementation exploits the cryptographic functionality provided by standard

102 Paper C

Border Router

6LoWPAN Network

End-to-End IPsec

802.15.4 Link-layer

Security

802.15.4 Link-layer

Security

802.15.4 Link-layer

Security

Network of

Networks

Conventional Internet

IP-connected Internet of Things

IPsec/TLS

Figure 8.1: 802.15.4 security can secure communication within 6LoWPAN
devices with a shared network key. IPsec/TLS can be used to secure the com-
munication between the border router and an Internet host. We rather propose
to use IPsec in an end-to-end manner, i.e., between 6LoWPAN devices and
IPv6 Internet hosts.

802.15.4 transceivers. The hardware support is intended to be used for 802.15.4
link-layer security but we show that it is possible to reuse this hardware for
6LoWPAN/IPsec. A particular focus of this paper is the comparison of 6LoW-
PAN/IPsec security with traditional 802.15.4 link-layer security. For this pur-
pose we also implement 802.15.4 link-layer security for Contiki which allows
us to compare both security mechanisms in a testbed. Our experiments show
that traditional 802.15.4 link-layer security does not provide significantly bet-
ter network performance than our proposed 6LoWPAN/IPsec security. This is
particularly true when the crypto hardware support of 802.15.4 transceivers is
used for 6LoWPAN/IPsec security. Furthermore, as the size of the secured data
increases and as the data is being carried over more hops, the end-to-end nature
of IPsec leads to better performance than hop-by-hop link-layer security.

The core contributions of this paper are:

• We present a definition of a 6LoWPAN extension for IPsec, supporting
both Authentication Header (AH) and Encapsulating Security Payload
(ESP);

• We present an implementation and a thorough testbed performance eval-
uation of the 6LoWPAN/IPsec extension. We show the performance
gains obtained from the usage of cryptographic hardware support of
802.15.4 transceivers;

• We experimentally show that 6LoWPAN/IPsec outperforms 802.15.4

8.2 Related Work 103

link-layer security as the payload size and/or the number of hops in-
creases.

The next section of this paper discusses the state-of-the-art in security for
the Internet of Things. Section 8.3 gives an overview of 6LoWPAN, 802.15.4
link-layer security and IPsec. Section 8.4 describes our 6LoWPAN/IPsec ex-
tension. Section 8.5 details our 6LoWPAN/IPsec and 802.15.4 link-layer se-
curity implementation for the Contiki OS. Section 8.6 presents our perfor-
mance evaluation of the 6LoWPAN/IPsec extension and its comparison with
the 802.15.4 security mechanisms. Section 8.7 concludes the paper.

8.2 Related Work
We present research work related to security in the Internet of Things. After
reviewing works aiming at designing cryptographic algorithms for constrained
devices, we discuss the different layers at which security can take place in IP-
based IoT.

8.2.1 Embedding Cryptographic Algorithms
A lot of research work has focused on reducing complexity of cryptographic al-
gorithms or on improving efficiency of key distribution protocols. For example,
TinyECC [6] and NanoECC [7] provide elliptic curve cryptography in order to
make cryptography feasible on resource constrained devices. Wood et al. [8]
and Hu et al. [9] have demonstrated efficient cryptography for smart objects
using dedicated crypto hardware support. For example, Liu et al. [10] and
Chung et al. [11] describe key distribution mechanisms that save scarce band-
width in resource constrained networks.

8.2.2 Securing the IoT at the Link-Layer
IP communication among smart objects uses 6LoWPAN [3] which in turn
builds on the IEEE 802.15.4 [2] link-layer. 802.15.4 link-layer security is the
current state-of-the-art security solution for IP-connected IoT. 802.15.4 defines
data encryption and integrity verification. Benefits are network protocol inde-
pendence and hardware support for the cryptographic functions by currently
used 802.15.4 radio chips. Link-layer security provides hop-by-hop security
where every node in the communication path (including the 6LoWPAN border
router; see Figure 8.1) has to be trusted, and where neither host authentication

104 Paper C

nor key management is supported. A single pre-shared key is used to protect
all communication. Furthermore, messages leaving the 802.15.4 network and
continuing to travel on an IP network are not protected by link-layer security
mechanisms. Therefore, in many solutions, a separate security mechanism is
added to protect data travelling between Internet hosts and border routers. One
such example is the ArchRock PhyNET [12] that applies IPsec in tunnel mode
between the border router and Internet hosts. HIP DEX [13] is another solution
that can be used directly as a keying mechanism for a MAC layer security pro-
tocol. Recently, Roman et al. proposed key management systems for sensor
network [14] that are applicable to link-layer security.

Since every node in the path has to be trusted, end-to-end security in the
IoT cannot be achieved using the outlined approach.

8.2.3 Securing the IoT at the Transport-Layer
End-to-end security can be provided by using Transport Layer Security (TLS) [15]
or its predecessor Secure Sockets Layer (SSL). TLS and SSL are widely used
in the Internet to secure communication between hosts. TLS and SSL include
key exchange mechanisms and provide authentication between Internet hosts
in addition to confidentiality and integrity. There are some drawbacks which
make it difficult to use these protocols for securing the IoT. TLS can only be
used over TCP which is not the preferred method of communication for smart
objects as TCP connection setup consumes scarce resources. Furthermore, the
TLS/SSL session setup and key exchange requires a number of message ex-
changes.

Nevertheless, SSL has been proposed as security mechanism for the IoT
by Hong et al. [16]. Their evaluation shows that this security mechanism is
indeed quite costly as a full SSL handshake and a data packet transfer requires
2 seconds to complete. Foulagar et al. propose a TLS implementation for smart
objects [17]. However, this solution involves the border router to reduce com-
putational effort on smart objects and cannot be considered a full end-to-end
solution. The UDP version of TLS named DTLS could be used in 6LoWPAN
networks. However, the 6LoWPAN specifications neither provide compression
for DTLS nor hooks in the specifications that can be used to compress DTLS.

8.2.4 Securing the IoT at the Network-Layer
The IPsec [4] protocol suite, mandated by IPv6, provides end-to-end security
for any IP communication. Like TLS and unlike link-layer solutions, it in-

8.3 Background 105

cludes a key exchange mechanism and provides authentication in addition to
confidentiality and integrity. By operating at the network-layer, it can be used
with any transport protocol, including potential future ones. Furthermore, it en-
sures the confidentiality and integrity of transport-layer headers and integrity
of IP headers, which cannot be done with higher-level solutions as TLS. For
these reasons, the research community [18, 19, 20] and 6LoWPAN standard-
izations groups [3] consider IPsec a potential security solution for the IoT. On
the other hand, some have regarded it as a too heavy-weight option [21].

Granjal et al. discuss the use of IPsec for 6LoWPAN [22]. However, exact
specifications of the required 6LoWPAN headers are not given. Furthermore,
no implementation is provided and no detailed evaluation of possible com-
munication performance is given. In their study they analyze the execution
times and memory requirements of cryptographic algorithms they propose for
a 6LoWPAN/IPsec integration.

In our previous work we have presented a 6LoWPAN/IPsec solution and
have made a preliminary performance analysis of the overall system [23]. In
this paper we extend our previous work in several aspects. First, we describe in
this paper Encapsulating Security Payload (ESP) for 6LoWPAN/IPsec while
our previous work only discussed in detail the Authentication Header (AH).
Second, we compare the 6LoWPAN/IPsec solution with the commonly em-
ployed 802.15.4 link-layer security. Third, we present a thorough testbed per-
formance evaluation of the 6LoWPAN/IPsec solution and 802.15.4 security.

8.3 Background
In this section we give an overview of technologies relevant for the work pre-
sented in this paper. We give background information on IPv6 [24] and 6LoW-
PAN [3], IPsec [4], and 802.15.4 [2] security. More detailed information can
be found in the corresponding RFCs and standard documents.

8.3.1 Overview of 6LoWPAN

IPv6 over Low-power Personal Area Network (6LoWPAN) [3] is used to tightly
interconnect existing Internet and smart objects by specifying how IPv6 data-
grams are to be transmitted over an IEEE 802.15.4 network. 6LoWPAN acts as
a layer between the IP-layer and the link-layer that compresses IP headers and
performs fragmentation when necessary. The Maximum Transmission Unit
(MTU) of 802.15.4 is 127 bytes. If 802.15.4 security is enabled the maximum

106 Paper C

0BIT

0 1

1

1

2

TF

3 4

NLIM

6 7

NH

5

CID

8

SAC

9

SAM

10 11

M

12

DAC

13

DAM

14 15

TF: Traffic Class

NH: Next Header

HLIM: Hop Limit

CID: Context Identifier

SAC: Source Address Compression

SAM: Source Address Mode

M: Multicast Compression

DAC: Destination Address Compression

DAM: Destination Address Mode

(a) LOWPAN IPHC encodings for basic IP header

Var-len ID Compressed Next Header...

(b) General Format of LOWPAN NHC Encodings for
Next Header

Figure 8.2: 6LoWPAN context-aware compression mechanisms

payload is reduced to 81 bytes, of which 40 would be consumed with uncom-
pressed IPv6 headers. By compressing IPv6 header, 6LoWPAN increases the
payload carried in 802.15.4 frames. When data cannot fit in a single frame
6LoWPAN performs fragmentation. All nodes in a 6LoWPAN network per-
form compression/decompression and fragmentation/reassembly. One specific
node referred to as border router acts as a gateway between the 6LoWPAN and
the conventional Internet.

The 6LoWPAN compression mechanisms [25] define header compression
using LOWPAN IPHC for IP header compression and LOWPAN NHC for the
next header compression. The IPHC 1 reduces the IP header length to 2 byte
for a single hop network and 7 bytes in a multihop case. The IPHC header
is shown in Figure 8.2a. The NH field when set to 1 indicates that the next
header following the compressed IPv6 header is encoded with NHC. The gen-
eral format of NHC is shown in Figure 8.2b. NHC has a length of 1 or more
octets, where the first variable length bits identify the next header type and the
remaining bits are used to encode header information. Currently, 6LoWPAN

1In the rest of this article LOWPAN IPHC is referred to as IPHC and LOWPAN NHC is re-
ferred to as NHC

8.3 Background 107

defines NHC for the IP extension header and the UDP header.

8.3.2 Overview of IEEE 802.15.4 Security
Currently, 6LoWPAN relies on 802.15.4 [2] security to protect the commu-
nication between neighboring nodes. The standard supports access control,
message integrity, confidentiality and replay protection. Message integrity is
achieved by including a Message Authentication Code (MAC) in packets. If the
receiver cannot verify the MAC the packet will be discarded. Confidentiality is
provided by applying symmetric cryptography to outgoing packets. Through
the inclusion of a monotonically increasing counter in messages, nodes can
discard packets being resent by malicious nodes, achieving replay protection.

Figure 8.3 shows the structure of a 802.15.4 packet with optional security
headers. The packet overhead with link-layer security varies between 4 and 21
byte depending on the scheme used.

The security modes supported by the 802.15.4 standard include AES-CTR
for encryption only, AES-CBC for message authentication only and AES-CCM
which combines encryption and message authentication. For the MAC-modes
the included authentication code is either 4, 8 or 16 byte. Besides the null-
mode (security features turned off) AES-CCM is the only mode mandated by
the standard, which must be available on all standard compliant devices. It has
been pointed out that the security suite with encryption, AES-CTR, should not
be used on its own. Networks with only encryption and no authentication are
open to insertion of false packets and have been shown vulnerable [26].

The IEEE 802.15.4 standard currently uses pre-shared keys for encryption
and integrity verification.

8.3.3 Overview of IPsec
IPv6 with potentially unlimited address space of 2128 addresses makes it pos-
sible to assign a unique address to each physical device on earth. Besides
increased address space, IPv6, as compared to IPv4, also provides a simplified
header format, better support for extensions and mandates IP security.

IPv6 uses IPsec [4] to secure IP communication between two end points.
IPsec is a collection of protocols which includes Authentication Header (AH) [27]
that provides authentication services, Encapsulating Security Payload (ESP) [28]
that provides both authentication and privacy services, and set of encryption
and authentication algorithms [29]. A node keeps track of the so called secu-
rity associations (SA) that specify how a particular IP flow should be treated in

108 Paper C

2B

SN DA

1B

SA

0-10B 0-10B

CRC

2B

Data+opt.sec.fields

XB

FC: Frame Control

SN: Sequence Number

DA: Destination Address

SA: Source Address

FC

KCFCr

1B4B

FCr: Frame Counter

KC: Key Control

MAC: Message Authentication Code

Data payload

XB - 5B

AES-CTR

Data payload

XB - (5+m)B

AES-CCM-m

m=4/8/16B

MAC

Data payload

XB - mB

AES-CBC-MAC-m

m=4/8/16B

MAC

KCFCr

1B4B

Figure 8.3: 802.15.4 frame with security headers

terms of security.
AH provides connectionless integrity, data origin authentication for IP data-

grams, and protection against replay attacks. AH uses a keyed Message In-
tegrity Code (MIC) to protect the complete IP packet including IP header, AH
header and IP payload. The IP header fields that are mutable while the packet
in transit are set to zero while calculating the MIC. AH includes a reference to
the next header (for example, ESP, TCP or UDP), a length field, the SPI that
identifies the SA used, a sequence number to prevent replay attacks and the In-
tegrity Check Value (ICV) that is a MIC. The ICV must be an integral multiple
of 32 bits for IPv6. For MIC calculation, all IPsec enabled IPv6 hosts support
at least AES-XCBC-MAC-96 and HMAC-SHA1-96 [29] that have sizes of 12
bytes each. A basic AH header has a total size of 24 bytes.

ESP provides origin authenticity, data integrity, and confidentiality protec-
tion of IP datagram. In contrast to AH, ESP operates on the IP payload but
not on the header. ESP has common fields with AH and also contains the en-
crypted payload and padding required by block ciphers. ESP only encrypts
payload data, padding, pad length and next header; the ICV calculation, if

8.4 6LoWPAN/IPsec Extension 109

selected, includes all header fields in the ESP. If we consider AES-CTR as en-
cryption algorithm, ESP, with perfect block alignment, will have an overhead
of 18 bytes (10 bytes for ESP and 8 bytes for Initialization Vector). If addi-
tional authentication using AES-XCBC-MAC-96 is used the ESP size grows
to 30 bytes, as the minimum length of AES-XCBC-MAC-96 is 12 bytes.

Both AH and ESP support two different modes: transport mode and tunnel
mode. In transport mode the IP header and payload are directly secured as
previously described. In tunnel mode, a new IP header is placed in front of
the original IP packet and security functions are applied to the encapsulated
(tunnelled) IP packet. In the context of 6LoWPAN tunnel mode would be very
inefficient, as the additional headers further increase the packet size.

An IPsec security association can be established using protocols such as
Kerberized Internet Negotiation of Keys (KINK) [30], Internet Key Exchange
(IKE) [31] or a DNS based solution [32]. IPsec requires that nodes support
authentication based on either certificates or pre-shared keys [4]. Thus, the
usage of pre-shared keys in the context of IPsec is possible.

8.4 6LoWPAN/IPsec Extension
The 6LoWPAN [25] standard specifies compression schemes for IP and UDP,
but not for IPsec AH and ESP. In this section we address this shortcoming and
provide an appropriate 6LoWPAN/IPsec extension. In our previous work [23]
we have specified how IPsec AH can be compressed and connected to the
6LoWPAN compression system. We extend that solution and provide a speci-
fication for ESP and improved methods to compress IPsec headers.

8.4.1 LOWPAN NHC Extension Header Encoding

As discussed in the background section the 6LoWPAN draft defines the general
format of NHC that can be used to encode IP next header. We define NHC
encodings for the two IP extension headers namely AH and ESP. 6LoWPAN
already defines NHC encodings for IP extension headers (NHC EH) that can
be used to link AH and ESP extension headers. NHC encodings for the IPv6
Extension Headers consist of a NHC octet where three bits (bits 4, 5 and 6) are
used to encode the IPv6 Extension Header ID (EID). The NHC EH encoding
for extension headers is shown in Figure 8.4.

Out of eight possible values for the EID, six are assigned by the HC15 [25]
specification. The remaining two slots (101 and 110) are currently reserved.

110 Paper C

0BIT

1 1

1

1

2

0

3 4

NH

6 7

EID

5

EID: Extension Header

 ID (EID)

NH: Next Header

Figure 8.4: LOWPAN NHC EH: NHC encoding for IPv6 Extension Header

As AH and ESP are IP extension headers it makes sense to use one of these
reserved slots for AH and ESP compression. We propose to use one of the
reserved slots, say 101, to identify that the next header is an AH or ESP header.
The ID bits in the proposed NHC for AH and ESP identify that the current
header is AH or ESP, see Section 8.4.2 and 8.4.3. It is also necessary to set the
last bit in NHC EH to 1 to specify that the next header is NHC encoded.

8.4.2 LOWPAN NHC AH Encoding
Figure 8.6 describes our NHC encoding for AH. Next, we describe the role of
all fields:

• The first four bits in the NHC AH represent the NHC ID we define for
AH. These are set to 1101.

• If PL = 0: The payload length (length of the IPsec header) field in AH
is omitted. This length can be obtained from the SPI value because the
length of the authenticating data depend on the algorithm used and are
fixed for any input size.

If PL = 1: The payload value is carried inline after the NHC AH
header.

• If SPI = 0: the default SPI for the 802.15.4 network is used and the SPI
field is omitted. We set the default SPI value to 1. This does not mean
that all nodes use the same security association (SA), but that every node
has a single preferred SA, identified by SPI 1.

If SPI = 1: All 32 bits indicating the SPI are carried inline.

• If SN = 0: First 16 bits of sequence number are elided. The remaining
bits are carried inline.

8.4 6LoWPAN/IPsec Extension 111

Source Address

Octet 0 Octet 1 Octet 2 Octet 3

Destination Address

S Port D Port

Payload (Variable)

LOWPAN_IPHC Hop Limit

Source Address LOWPAN_NHC_EH

Sequence Number

LOWPAN_NHC_UDP

Integrity Check Value-ICV (Variable)

LOWPAN_NHC_AH

Checksum

Figure 8.5: A compressed and AH secured IPv6/UDP packet.

If SN = 1: All 32 bits of the sequence number are carried inline.

• If NH = 0: The next header field in AH will be used to specify the next
header and it is carried inline.

If NH = 1: The next header field in AH is elided. The next header is
encoded using NHC.

Note that even when used in 6LoWPAN, AH calculates the MIC on the
uncompressed IP header, thus allowing authenticated communication with In-
ternet hosts. The minimum length of a standard AH, supporting the mandatory
HMAC-SHA1-96 and AES-XCBC-MAC-96, consists of 12 bytes of header
fields plus 12 bytes of ICV. After optimal compression we obtain a header size
of 4 byte plus 12 bytes of ICV. Figure 8.5 shows compressed IPv6/UDP packet
secured with AH using HMAC-SHA1-96.

8.4.3 LOWPAN NHC ESP Encoding
Figure 8.8 shows the NHC encodings we propose for ESP. Next, we describe
the function of each header field:

112 Paper C

0BIT

1 1

1

0

2

1

3 4

NH

6 7

PL

5

SPI SN

PL: Payload Length

SPI: Security Parameter Index

SN: Sequence Number

NH: Next Header

Figure 8.6: LOWPAN NHC AH: NHC encodings for IPv6 AH.

Source Address

Octet 0 Octet 1 Octet 2 Octet 3

Destination Address

LOWPAN_IPHC Hop Limit

Source Address LOWPAN_NHC_EH

LOWPAN_NHC_ESP

Integrity Check Value (ICV)

Source Port Dest Port

UDP Payload (Variable)

Length

Length

Source PortSequence Number

Checksum

Pad Length Next Header

Figure 8.7: A compressed and ESP secured IPv6/UDP packet.

0BIT

1 1

1

1

2

0

3 4

NH

6 75

-: Unused

SPI: Security Parameter Index

SN: Sequence Number

NH: Next Header

SPI SN-

Figure 8.8: LOWPAN NHC ESP: NHC encoding for IPv6 ESP.

8.4 6LoWPAN/IPsec Extension 113

• The first four bits in the NHC ESP represent the NHC ID we define for
ESP. These are set to 1110.

• The next bit is unused. We leave this field empty to achieve coding
similarity between AH and ESP (ESP does not have a payload length
field). However, this field could be used to increase SPI coding to two
bits if required.

• If SPI = 0: the default SPI for the 802.15.4 network is used and the SPI
field is omitted. We set the default SPI value to 1. This does not mean
that all nodes use the same security association (SA), but that every node
has a single preferred SA, identified by SPI 1.

If SPI = 1: All 32 bits indicating the SPI are carried inline.

• If SN = 0: First 16 bits of sequence number are used. The remaining
16 bits are assumed to be zero.

If SN = 1: All 32 bits of the sequence number are carried inline.

• If NH = 0: The next header field in ESP will be used to specify the
next header and it is carried inline.

If NH = 1: The next header will be encoded using NHC. In case of
ESP we cannot skip the next header unless the end hosts are able to exe-
cute 6LoWPAN compression/decompression and encryption/decryption
jointly. The nodes in the 6LoWPAN network make their decision about
the next header based on the NH value not the actual header that is car-
ried inline.

Recall that the minimum ESP overhead without authentication, AES-CBC
and perfect block alignment is 18 bytes. After optimal compression this header
overhead is reduced to 14 bytes. ESP with authentication contains additional
12 bytes of ICV. Figure 8.7 shows an UDP/IP packet secured with compressed
ESP. The shaded portion represents cipher-text.

When ESP is used the UDP header is encrypted and therefore cannot be
compressed. One solution to enable UDP header compression when ESP is
used is to specify a new encryption algorithm for ESP which is able to per-
form 6LoWPAN UDP header compression plus encryption at the source and
destination. As such a solution would not be viable until massive adoption of
6LoWPAN, we do not specify its details. In the rest of the paper, we focus on
the case were the UDP header remain uncompressed.

114 Paper C

8.5 Implementation
We implement 802.15.4 link-layer security and the 6LoWPAN/IPsec extension
described in the previous section for the Contiki operating system [5]. The
implementation of both security mechanisms makes use of the hardware secu-
rity functions provided by the CC2420 radio chip available on many platforms.
Our implementations are for the Tmote Sky platform that features a CC2420
radio chip [33].

8.5.1 Link-layer Security Implementation
Our IEEE 802.15.4 link-layer security implementation supports header con-
struction for all security modes described in the standard. The construction of
the 802.15.4 frame is performed in software while the cryptographic operations
are performed by the CC2420 radio chip. Manual key distribution is used as
key management is not standardized in 802.15.4. Hence, one pre-defined key
is used on all nodes in the network.

802.15.4 link-layer security is applied after a message is compressed and
fragmented at the 6LoWPAN layer. It is important to note that when fragmen-
tation is necessary and link-layer security is enabled the security header and/or
MIC is added to each fragment. Thus, as the payload increases, so does the
overhead of link-layer security headers.

8.5.2 IPsec Implementation
Contiki includes a well tested and widely used IPv6 stack, named µIP. Con-
tiki also has an implementation for 6LoWPAN compression and fragmentation
mechanisms called SICSLoWPAN. We extend µIP to support IPsec, and ex-
tend SICSLoWPAN to support our AH and ESP compression schemes.

We use the SHA1 and AES implementations from MIRACL [34], an open
source library. For AH and ESP we implement all cryptographic modes of
operation needed for authentication and encryption. For AH, we implement
the mandatory HMAC-SHA1-96 and AES-XCBC-MAC-96. For ESP, we im-
plement the mandatory AES-CBC for encryption and HMAC-SHA1-96 for
authentication. Additionally, in ESP, we implement the optional AES-CTR for
encryption and AES-XCBC-MAC-96 for authentication.

We propose an alternate implementation of AES-based modes of operation
leveraging the cryptographic capabilities of the CC2420 radio chip. Though the
mode of operations are still implemented in software, they rely on the CC2420

8.6 Evaluation and Results 115

to perform 128-bit AES block encryption/decryption. We use this hardware-
aided operation for both authentication and encryption in IPsec.

Our Contiki 6LoWPAN/IPsec implementation uses pre-shared keys to es-
tablish security associations, which is a standard-compliant way to set keys. In
future work we plan to add support for automatic key distribution, for instance
with the Internet Key Exchange protocol (IKE) [31] with certificates. This
would provide dynamic key allocation to various IP hosts, and would allow pe-
riodic key renewal. Also, current research in WSN adds database support for
sensor networks [35] which can be used to create IPsec/IKE databases such as
security policy database (SPD), security association database (SAD), etc. [4]..

8.5.3 Concurrent Use

Security at network-layer and at link-layer security are not interchangeable.
IPsec is used to implement true end-to-end security. Link-layer security is
often used for controlling access to the wireless medium. Link-layer security
can also be used when we need to encrypt the IP headers as IPsec only encrypts
the IP payload. The two previously outlined security implementations can be
executed concurrently. When IPsec is used in ESP mode the data is already
encrypted and authenticated at the network layer and it does not add more
security to re-encrypt the data at the link-layer. However, it is important to
detect the data modification attack as early as possible in the wireless medium.
With IPsec the integrity of the data is verified at the end nodes as IPsec is
end-to-end. For this reason link-layer security with authentication service is
important even though we already use IPsec at the network layer. In this case
full CCM-128 at the link-layer may be unnecessary and CBC-128 is sufficient.

8.6 Evaluation and Results

In this section we evaluate our 6LoWPAN/IPsec extensions and compare it
to 802.15.4 link-layer security. After describing our experimental setup, we
compare link-layer security to IPsec in terms of memory footprint, packet size,
energy consumption and communication performance in a variety of network
settings.

116 Paper C

System ROM (kB) RAM (kB)
overall diff overall diff

Without Security 26.1 – 8.0 –
802.15.4 Link-Layer (all modes) 27.3 1.2 8.0 -
AH with HMAC-SHA1-96 30.7 4.6 9.1 1.1
AH with XCBC-MAC-96 32.3 6.2 8.5 0.5
AH with XCBC-MAC-96 (with hardware) 27.6 1.5 8.3 0.3
ESP with AES-CBC 34.8 8.7 8.3 0.3
ESP with AES-CBC (with hardware) 30.0 3.9 8.3 0.3
ESP with AES-CTR 33.2 7.1 9.1 0.3
ESP with AES-CTR (with hardware) 28.4 2.3 9.1 0.3
ESP with AES-XCBC-MAC-96 32.7 6.6 8.3 0.3
ESP with AES-XCBC-MAC-96 (with hardware) 28.0 1.9 8.3 0.3
ESP with AES-CBC + AES-XCBC-MAC-96 35.3 9.2 8.3 0.3
ESP with AES-CBC + AES-XCBC-MAC-96 (with hardware) 30.5 4.4 8.3 0.3
ESP with AES-CTR + AES-XCBC-MAC-96 33.7 7.6 8.3 0.3
ESP with AES-CTR + AES-XCBC-MAC-96 (with hardware) 28.9 2.8 8.3 0.3

Table 8.1: Memory footprints show that AH and ESP consume just 1.5Kb and
4.4Kb for standard recommended IPsec algorithms using hardware-aided AES.

8.6.1 Experimental Setup

Our experimental setup shown in Figure 8.1 consists of four Tmote Sky [33]
nodes, one Tmote Sky acting as a 6LoWPAN border router and a Internet host
running Ubuntu OS. The Internet host runs the IPsec stack of the Linux kernel
(version 2.6.38). The four smart objects (nodes) on the right side in Figure 8.1
form a multihop network. Using this setup we test different security configura-
tions. In all experiments the nodes execute a single application that listens to a
fixed UDP port. Messages are generated by a client program on the Linux host
and are forwarded over the multihop network to the destination node. Depend-
ing on the experiment different nodes on the 6LoWPAN network are selected
as destination. Every node needs to process packets using the 6LoWPAN-layer
and µIP. If IPsec is used the Linux host and the destination node must perform
cryptographic processing. If link-layer security is used all wireless nodes in
the transmission path are involved in cryptographic processing. The message
payload is forwarded to the application on the node that generates a new data-
gram of the same size as response. This reply is sent back to the Linux host
following the reverse transmission path. For some of the experiments, IPsec is
used to provide secure end-to-end (E2E) communication between the destina-
tion node and the Internet host, while in other experiments hop-to-hop security
is provided at the link-layer.

8.6 Evaluation and Results 117

As we aim to evaluate security related performance aspects we use Con-
tiki’s NullMAC which does not apply any power saving mechanisms. There-
fore, we avoid measuring security-unrelated performance aspects of the exper-
imental setup.

8.6.2 Memory Footprint Comparison

We measure the ROM and RAM footprint of our link-layer security and IPsec
implementation (see Table 8.1). The memory footprints are compared with a
reference Contiki system including µIP and SICSLoWPAN.

The memory footprint overhead of the link-layer security implementation
is very small. Most of the processing is performed by the CC2420 radio chip
and little functionality has to be added to the Contiki operating system.

The memory footprint overhead of the IPsec implementation is compar-
atively larger as most cryptographic algorithms have to be implemented in
software. However, with hardware AES support the overhead is significantly
decreased. A pure software implementation of ESP with AES-CBC + AES-
XCBC-MAC consumes 35.3 Kb of ROM that can be reduced to 30.5 Kb with
hardware support. Table 8.1 shows a full comparison of memory footprints
with no security, with link-layer security, with software implemented IPsec,
and with hybrid implementation of IPsec when AES is performed in hardware
and modes of operations are performed in software. It is worth mentioning
that unlike AES-CBC, the AES-CTR mode of operation only relies on AES
encryption. Thus, the AES-CTR + AES-XCBC-MAC-96 configuration can be
implemented without AES decryption, resulting in a particularly low memory
footprint. The ROM additional overhead is 2.8 Kb that is comparable with the
1.2 Kb overhead of the link-layer footprint. The RAM footprint is calculated
as the sum of the global data segments and the runtime stack usage that we
measure by running Contiki in the MSPSim emulator [36]. With an additional
footprint of 1.1 kB, the AH HMAC-SHA1 configuration is the most RAM-
consuming configuration. When using other modes of operation, the RAM
usage lies between only 0.3 and 0.5 kB.

These results show that there is always significant space for the application
layer programs as the Flash ROM size of the Tmote Sky is 48 Kb. Hence link-
layer security and IPsec (with AH and ESP) can be embedded in constrained
devices.

118 Paper C

Service Compressed IPsec 802.15.4 link-layer security
Mode Overhead Mode Overhead

Integrity HMAC-SHA1-
96

16 B AES-CBC-
MAC-96

12 B × nfrags

Confidentiality AES-CBC 12 B AES-CTR 5 B × nfrags
Integrity and

Confidentiality
AES-CBC and
HMAC-SHA1-

96

26 B AES-CCM-128 21 B × nfrags

Table 8.2: The header overhead of compressed IPsec is slightly larger than that
of 802.15.4, while IPsec provides end-to-end security. As soon as fragmenta-
tion is needed, IPsec has a lower header overhead than link-layer security.

8.6.3 Header Overhead Comparison
Both link-layer security and IPsec require additional headers which increases
header overhead. In this section we compare the header overhead of IPsec and
802.15.4 link-layer security.

6LoWPAN link-layer fragmentation has to be used when large packets have
to be carried. 6LoWPAN defines a fragmentation scheme in which every frag-
ment contains a reassembly tag and an offset. When security is enabled, ei-
ther IPsec or link-layer security, the IEEE 802.15.4 frame size may exceed the
MTU size of 127. In that case addition fragment(s) are needed which result in
energy/network overhead.

As IPsec operates at the network-layer, its header is added to every IP data-
gram. However, no additional header related to security has to be added to
potential 6LoWPAN link-layer fragments. When using 802.15.4 link-layer se-
curity, every frame is secured independently. Thus, security related header in-
formation has to be added to every single 6LoWPAN link-layer fragment and
the overall header overhead is dependent on the number of fragments trans-
ported. Table 8.2 shows the per message header overhead incurred using IPsec
and link-layer security for different security services.

Integrity Only When using link-layer security, the packet overhead for the
authentication scheme is exactly the length of the MAC, i.e. 12 bytes per frag-
ment when using AES-CBC-MAC-96. With IPsec and AES-XCBC-MAC-96,
the AH header involves an overhead of 24 bytes per IP packet. Thanks to the
IPsec header compression we defined, this overhead is reduced to 16 bytes. As
soon as the IP datagram requires more than a single fragment, IPsec provides
a lower header overhead than link-layer security.

8.6 Evaluation and Results 119

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

8 16 32 64 128 256 512

T
im

e
 [

m
s
]

Message size in bytes

AES-CTR/ESP, sw
AES-CTR/ESP, hw

AES-XCBC-MAC-96/ESP, sw
AES-XCBC-MAC-96/ESP, hw

HMAC-SHA1-96/ESP
AES-XCBC-MAC-96/AH, sw
AES-XCBC-MAC-96/AH, hw

HMAC-SHA1-96/AH

Figure 8.9: Micro-benchmarks for the supported security algorithms. Also
pure link-layer encryption was evaluated but is not shown, as the maximum
overhead, the time for 512 bytes, was 0.27 ms, which would not be visible
in the graph. The comparison shows that AES-CTR and AES-XCBC-MAC-
96 are the most efficient in terms of processing time and energy consumption,
especially if hardware encryption is available. Together they provide the best
level of security among the standardized algorithms.

Confidentiality Only If only message encryption is required, the 802.15.4
link-layer security provides AES-CTR which has a 5 bytes overhead per frag-
ment. In comparison, IPsec with ESP and AES-CBC leads to an overhead of
18 bytes per packet, reduced to 14 bytes thanks to header compression. Here,
the data overhead of IPsec is amortized for datagrams of 3 or more fragments.

Integrity and Confidentiality With AES-CCM-128, the overhead for 802.15.4
is 21 bytes per fragment while IPsec ESP has an overhead of 30 bytes per
packet, reduced to 26 bytes when using our 6LoWPAN compression exten-
sion. Again IPsec offers a lower header overhead than link-layer security if
fragmentation is required.

120 Paper C

8.6.4 Evaluation of Cryptographic Algorithms

In this section we analyze cryptographic algorithms used in IPsec and 802.15.4
link-layer security. We investigate only the time necessary to perform encryp-
tion and do not take packet processing within the communication stack into
account. We carry out the analysis in the next paragraph.

The purely hardware based encryption used for link-layer security is ex-
tremely efficient. Compared to IPsec, processing times and energy consump-
tion are very small when looking at a single node. The link-layer processing
time for a message of 512 bytes is less than 0.3 ms which corresponds to an
energy consumption of 2 µJ. Figure 8.9 shows the IPsec overhead in time for
different message sizes, with or without hardware encryption. The authentica-
tion algorithms are compared separately for AH and ESP: with AH the MAC
is calculated over the IP header and payload packet, while in ESP the IP header
is neither encrypted nor authenticated.

Regarding authentication, the cost is higher for AH than for ESP because
AH needs to process the 40 byte IP header. HMAC-SHA1-96 is not as efficient
as the other solutions as it has a high fixed-cost for small data sizes and poor
scalability.

The efficiency of IPsec calculation can be improved by employing crypto-
graphic functions provided by node hardware. For example, the CC2420 radio
chip present on many node platforms provides such functionality. This allows
part of the encryption and decryption to be done faster, using less energy. In
the benchmark it can be seen that by using hardware encryption, the overhead
is reduced with up to 60% in time, with corresponding reduction in energy.

We have also evaluated AES-CBC but since the performance is very similar
to AES-CTR, we omit the results from the graph. The proposed standard for
Cryptographic Suites for IPsec [37] specifies that future IPsec systems will
need to provide at least AES-CBC-128 for encryption and AES-XCBC-MAC-
96 mode for authentication [37]. Since AES-CTR gives equivalent or better
results (and is also part of the suggested standard) we use AES-CTR together
with AES-XCBC-MAC in the following energy experiments.

8.6.5 Energy Consumption Comparison

Securing the Internet of Things has a cost in terms of added energy usage.
We measure the energy overhead using 802.15.4 link-layer security with AES-
CCM and IPsec with AES-CTR + AES-XCBC-MAC. Measurements are car-
ried out on a Tmote Sky using Powertrace, Contiki’s integrated power profiler

8.6 Evaluation and Results 121

[38]. To provide a fair comparison across different experiments, we consider a
constant voltage of 3V, and we report energy rather than mote lifetime – life-
time cannot be estimated accurately because the way battery discharge varies
with the environmental settings and across different instances of a same hard-
ware [39].

Powertrace provides an estimation of the energy consumption using power
state tracking. This technique allows to compare different experiments in fair
way that is difficult to achieve with hardware energy measurement, due to the
properties of battery [39].

For the experiments we start counting of CPU ticks on the destination node
(communication endpoint in the wireless network) from when the first frag-
ment of the incoming message is received and decryption is started. We stop
counting when the link-layer processing of the last fragment of the response
message is finished. We ignore network processing times; the time the node
spends on waiting for an incoming fragment or for the completion of a fragment
transmission. In total we include in the measurements the link-layer process-
ing, 6LoWPAN processing, µIP stack handling, and application-layer process-
ing. These experiments are run with and without hardware support.

Figure 8.10 shows the energy consumption of a client node using only link-
layer security, IPsec using either AH or ESP, and with no security. The results
show that the energy consumption with IPsec is clearly increased compared
with using no security, or when just using link-layer security. Still we argue
that the overhead is acceptable in cases where end-to-end security is needed.
Moreover, the overhead is small if compared with the energy consumption of
the radio chip when it is turned on. In a radio duty cycled network with one
percent listening time, in less than 2 sec of listening the radio consumes as
much energy as the maximum measured security overhead, around 1.2 mJ for
ESP software processing of a 512 byte message.

Whenever supported by the hardware, the overhead can be reduced by em-
ploying hardware aided cryptographic processing. As can be seen in the Figure
8.10, hardware aided encryption reduces the energy consumption by 50%.

Although the IPsec overhead seems large for a destination node, we get a
different picture if we focus on a forwarding node. With IPsec, only end-nodes
have to perform security operations. With link-layer security, every node in
the path has to process encryption/decryption and/or authentication, because
it needs to access (protected) IP header fields in order to perform routing. As
a result, IPsec has no overhead for forwarding nodes, besides a small added
amount of 6LoWPAN header processing. For link-layer security on the other
hand, the energy consumption grows with every node on the path between two

122 Paper C

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

8 16 32 64 128 256 512

E
n

e
rg

y
 [

m
J
]

Message size in bytes

With IPsec AH in sw
With IPsec AH in hw

With IPsec ESP in sw
With IPsec ESP in hw

With link-layer sec
With no security

Figure 8.10: The node energy consumption is lower without IPsec and higher
for ESP than for AH.

end-nodes. Unlike link-layer security, IPsec can thereby be used together with
nodes that do not support any security at all. The measurements for nodes
acting as forwarders in the multihop network are consistent with the micro-
benchmarks, with a security processing time overhead of 0.3 ms for forwarding
a 512 bytes message. This does not include the radio transmission times -
added link-layer security headers can cause a message to be fragmented in
more packets, in which case the system total energy overhead will increase
noticeably. This is further discussed below.

8.6.6 Overall Network Performance
We evaluate the system response time for different security solutions and ser-
vices with different network diameters and different payload sizes. The re-
sponse time in this case is the time an IP datagram takes to travel from an IP
connected Linux machine to a smart object plus the travel time of the response
back to the sender. We let the size of the IP datagrams vary between 16 and
512 bytes. The number of hops ranges from 1 to 4 hops. We conduct every
experiment 10 times and display the mean values using error bars for the stan-
dard deviation. We measure response time with 802.15.4 link-layer security
enabled, with IPsec, and with no security. There are different modes of opera-

8.6 Evaluation and Results 123

tion in both IPsec and link-layer security which correspond to different security
services. We present our results in accordance with the security services needs.

Performance Impact of Integrity

We first focus on the case where data integrity is required. IEEE 802.15.4
provides integrity services with AES-CBC-MAC with MIC sizes of 4, 8, and
16 bytes. IPsec provides integrity services with AH and optionally with ESP
with a MIC size of 12 bytes.

Figure 8.11 shows the response time in relation to the network diameter
for link-layer AES-CBC-MAC with minimum and maximum MIC sizes, IPsec
AH with XCBC-MAC-SHA1-96, and without security. For small data sizes
the overhead of link-layer security is negligible. When carrying 512 bytes over
4 hops, pure software AH involves an overhead of 26 %, which is reduced to
11 % with the help of hardware AES. A point worth mentioning is that for
a given data size, the overhead of IPsec is constant over the number of hops.
For intermediate nodes the cost of forwarding the data with and without IPsec
is the same; the overhead is only incurred for computation on the end nodes.
With large data sizes (512 bytes), the overhead of link-layer security increases
with the number of hops, due to the per-fragment header overhead. As a result,
with 2 hops or more, AH is faster than link-layer security.

Figure 8.12 shows the response time, depending on the IP payload size,
of link-layer AES-CBC-MAC with minimum and maximum MIC sizes, IPsec
AH overhead with XCBC-MAC-SHA1-96, and with no security. Consistently
with the mirco-benchmarks in Figure 8.9, the overhead of IPsec grows linearly
with datagram sizes. In the 4-hops case, we observe that hardware-aided AH
is faster than link-layer security for data sizes of 256 bytes and more.

Performance Impact of Integrity and Confidentiality

We now focus on the case where both integrity and confidentiality are required.
These services are supported by 802.15.4 through the AES-CCM mode. IPsec
ESP provides a combined integrity and confidentiality service – in this experi-
ment we use AES-CTR together with AES-XCBC-MAC.

Figures 8.13 and 8.14 show the response times obtained with different
IPsec, link-layer security and with no security. For small data sizes, the over-
head of link-layer security is very small. Over 4 hops and with a data size of
512 bytes, ESP incurs an overhead of 46 %, lowered to 19 % with hardware-
aided AES. As the number of hops grows or the data size increases, ESP be-

124 Paper C

 0

 50

 100

 150

 200

1 2 3 4

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Hops

AH
AH Hardware AES

AES-CBC-MAC-128 Link Layer
AES-CBC-MAC-32 Link Layer

No Security

(a) Multi hops with 16 bytes data size

 0

 200

 400

 600

 800

 1000

1 2 3 4

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Hops

AH
AH Hardware AES

AES-CBC-MAC-128 Link Layer
AES-CBC-MAC-32 Link Layer

No Security

(b) Multi hops with 512 byte data size

Figure 8.11: Response time versus number of hops when integrity is enabled.
The 802.15.4 link-layer security is better for small data sizes while IPsec gets
better for large data sizes across multiple hops. The overhead of IPsec is con-
stant across a single hop and a multihop network while link-layer security over-
head increases with the number of hops.

8.6 Evaluation and Results 125

 0

 100

 200

 300

 400

 500

 600

 700

1632 64 128 256 512

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Bytes

AH
AH with Hardware

AES-CBC-128 Link Layer Security
AES-CBC-32 Link Layer Security

No Security

(a) Single hop with different data sizes

 0

 200

 400

 600

 800

 1000

1632 64 128 256 512

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Bytes

AH
AH with Hardware

AES-CBC-128 Link Layer Security
AES-CBC-32 Link Layer Security

No Security

(b) Four hops with different data sizes

Figure 8.12: Response time versus datagram size when integrity is enabled.
The 802.15.4 link-layer Security is better for single hop while IPsec gets bet-
ter for multihop networks. The overhead of IPsec is constant across a single
hop and a multihop for different data sizes while link-layer security overhead
increases with the increasing data sizes.

126 Paper C

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1 2 3 4

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Hops

ESP
ESP with Hardware AES

AES-CCM-128 Link Layer Security
AES-CCM-32 Link Layer Security

No Security

(a) Multi hops with 16 bytes data size

 0

 200

 400

 600

 800

 1000

1 2 3 4

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Hops

ESP
ESP with Hardware AES

AES-CCM-128 Link Layer Security
AES-CCM-32 Link Layer Security

No Security

(b) Multi hops with 512 byte data size

Figure 8.13: Response time versus number of hops when integrity and confi-
dentiality is enabled. The 802.15.4 link-layer security is better for small data
sizes while IPsec gets better for large data sizes across multiple hops.

8.7 Conclusion 127

comes faster than link-layer security. This result is opposed to the common
belief that link-layer security is the fastest solution in all cases.

Summary

Our evaluation shows that IPsec fits in a tiny node (e.g. Tmote Sky) with room
still available for applications. Our cryptographic algorithms analysis show
that our implementation of AES-CTR and AES-XBC-MAC-96 are the fastest
and most energy efficient. We showed that link-layer security is more efficient
for the end-node in our experiment while IPsec is more efficient for forward-
ing nodes. In absolute terms, the energy overheads we measured are not sig-
nificant when compared to the energy consumption of a node in steady-state
operation. The system-wide response time shows a counter-intuitive result: in
spite of its higher software complexity, IPsec provides a better scalability than
link-layer security. By raising the level at which the security is guaranteed, it
substantially reduces the data overhead on fragmented traffic. Thus, for large
IP packets and/or a large number of hops, IPsec is faster than link-layer secu-
rity. Our results also show that IPsec can be substantially accelerated with the
help of the cryptographic co-processor included in modern radio chips such as
the CC2420.

8.7 Conclusion

The future Internet of Things will be an all-IP network. As it will be the founda-
tion of many services, our daily life will depend on its availability and reliable
operation. It is therefore important to find mechanisms providing security in
the IoT. As the existing IEEE 802.15.4 link-layer security does not provide the
required end-to-end security, alternative or complementary mechanisms must
be found. In this paper we have shown that IPsec implemented through 6LoW-
PAN extensions is a feasible option for providing end-to-end security in the
IoT. This paper has presented a thorough evaluation of the proposed IPsec solu-
tion and has compared its performance with currently employed IEEE 802.15.4
link-layer security.

We plan to extend our IPsec solution with the Internet Key Exchange mech-
anism, and to investigate the full system in larger deployments to evaluate scal-
ability and usability of the approach. We also plan to research the 6LoWPAN
compression mechanisms for TLS/DTLS and implement and evaluate it.

128 Paper C

 0

 100

 200

 300

 400

 500

 600

1632 64 128 256 512

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Bytes

ESP
ESP with Hardware AES

AES-CCM-128 Link Layer Security
AES-CCM-32 Link Layer Security

No Security

(a) Single hop with different data sizes

 0

 200

 400

 600

 800

 1000

1632 64 128 256 512

A
v
e
ra

g
e
 R

e
s
p
o
n
s
e
 T

im
e
 [
m

s
]

No of Bytes

ESP
ESP with Hardware AES

AES-CCM-128 Link Layer Security
AES-CCM-32 Link Layer Security

No Security

(b) Four hops with different data sizes

Figure 8.14: Response time versus datagram size when integrity and confi-
dentiality is enabled. The 802.15.4 link-layer Security is better for single hop
while IPsec gets better for multihop networks. The overhead of IPsec is con-
stant across a single hop and a multihop network for different data sizes while
link-layer security overhead increases with the increasing data sizes.

8.7 Conclusion 129

Acknowledgments
This work has been supported by the VINNOVA. This work has been partly
performed within the SICS Center for Networked Systems funded by VIN-
NOVA, SSF, KKS, ABB, Ericsson, Saab SDS, TeliaSonera, T2Data, Vendolo-
cus and Peerialism. The Contiki IPsec/6LoWPAN extensions and the Contiki
802.15.4 link-layer security extensions described in this paper are available on
request. Please email shahid@sics.se to request a copy.

mailto:shahid@sics.se

Bibliography

[1] J. Vasseur and A. Dunkels. Interconnecting Smart Objects with IP - The
Next Internet. Morgan Kaufmann, 2010.

[2] IEEE std. 802.15.4 - 2003: Wireless Medium Access Control (MAC) and
Physical Layer (PHY) specifications for Low Rate Wireless Personal Area
Networks (LR-WPANs). IEEE, 2003.

[3] G. Deloche, N. Kushalnagar, J. Hui, and D. Culler. Transmission of IPv6
Packets over IEEE 802.15.4 Networks. RFC 4944, 2007.

[4] S. Kent and K. Seo. Security architecture for the internet protocol. RFC
4301, 2005.

[5] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In 1st IEEE Workshop on
Embedded Networked Sensors (EmNetS’04), Tampa, USA, 2004.

[6] A. Liu and P. Ning. TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks. In 7th International Confer-
ence on Information Processing in Sensor Networks (IPSN’08), Washing-
ton, DC, USA, 2008.

[7] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab.
Nanoecc: Testing the limits of elliptic curve cryptography in sensor
networks. In 5th European conference on Wireless Sensor Networks
(EWSN’08), Bologna, Italy, 2008.

[8] A. Wood and J. Stankovic. Poster abstract: AMSecure - secure link-layer
communication in TinyOS for IEEE 802.15.4-based wireless sensor net-
works. In 4th ACM Conference on Networked Embedded Sensor Systems
(SenSys’06), Boulder, USA, 2006.

131

132 Bibliography

[9] W. Hu, P. Corke, W. Shih, and L. Overs. secfleck: A public key technol-
ogy platform for wireless sensor networks. In 6th European conference
on Wireless Sensor Networks (EWSN’09), Cork, Ireland, 2009.

[10] D. Liu and P. Ning. Establishing pairwise keys in distributed sensor net-
works. In 10th ACM conference on Computer and communications secu-
rity (CCS), New York, NY, USA, 2003.

[11] A. Chung and U. Roedig. DHB-KEY: An Efficient Key Distribution
Scheme for Wireless Sensor Networks. In 4th IEEE International Work-
shop on Wireless and Sensor Networks Security (WSNS’08), Atlanta,
USA, 2008.

[12] ArchRock Corporation. Phynet n4x series, 2008.

[13] R. Moskowitz. HIP Diet EXchange (DEX). draft-moskowitz-hip-rg-dex-
05, 2011.

[14] Rodrigo Roman, Cristina Alcaraz, Javier Lopez, and Nicolas Sklavos.
Key management systems for sensor networks in the context of the inter-
net of things. Computers and Electrical Engineering, 37(2):147 – 159,
2011.

[15] T. Dierks and C. Allen. The tls protocol version 1.0. RFC 2246, 1999.

[16] S. Hong, D. Kim, M. Ha, S. Bae, S. J. Park, W. Jung, and J. Kim. Snail:
an ip-based wireless sensor network approach to the internet of things.
Wireless Communications, IEEE, 17(6):34–42, 2010.

[17] S. Fouladgar, B. Mainaud, K. Masmoudi, and H. Afifi. Tiny 3-tls: A trust
delegation protocol for wireless sensor networks. In 3rd European Work-
shop on Security and Privacy in Ad-Hoc and Sensor Networks (ESAS’03),
Hamburg, Germany, 2006.

[18] J. Granjal, R. Silva, E. Monteiro, J. Sa Silva, and F. Boavida. Why is
IPsec a viable option for wireless sensor networks . In 4th IEEE Interna-
tional Workshop on Wireless and Sensor Networks Security (WSNS’08),
Atlanta, USA, 2008.

[19] R. Riaz, Ki-Hyung Kim, and H.F. Ahmed. Security analysis survey and
framework design for ip connected lowpans. In 9th International Sympo-
sium on Autonomous Decentralized Systems (ISADS’09), Athens, Greece,
2009.

Bibliography 133

[20] R. Roman and J. Lopez. Integrating wireless sensor networks and the
internet: a security analysis. Internet Research, 19(2):246–259, 2009.

[21] C. Alcaraz, P. Najera, J. Lopez, and R. Roman. Wireless sensor net-
works and the internet of things: Do we need a complete integration?
In 1st International Workshop on the Security of the Internet of Things
(SecIoT’10), Tokyo, Japan, 2010.

[22] Jorge Granjal, Edmundo Monteiro, and Jorge Sá Silva. Enabling network-
layer security on ipv6 wireless sensor networks. In IEEE Global Com-
munications Conference (GLOBECOM,10), Miami, USA, 2010.

[23] Shahid Raza, Simon Duquennoy, Tony Chung, Dogan Yazar, Thiemo
Voigt, and Utz Roedig. Securing Communication in 6LoWPAN with
Compressed IPsec. In Proceedings of the 7th IEEE International Confer-
ence on Distributed Computing in Sensor Systems (IEEE DCOSS 2011),
Barcelona, Spain, June 2011.

[24] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specifica-
tion. RFC 2460, 1998.

[25] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams in Low
Power and Lossy Networks. draft-ietf-6lowpan-hc-15, 2011.

[26] Naveen Sastry and David Wagner. Security considerations for ieee
802.15.4 networks. In Proceedings of the 3rd ACM workshop on Wireless
security, WiSe ’04, pages 32–42, New York, NY, USA, 2004. ACM.

[27] S. Kent. IP Authentication Header. RFC 4302, 2005.

[28] S. Kent. IP Encapsulating Security Payload. RFC 4303, 2005.

[29] V. Manral. Cryptographic algorithm implementation requirements for
encapsulating security payload (esp) and authentication header (ah). RFC
4835, 2007.

[30] S. Sakane, K. Kamada, M. Thomas, and J. Vilhuber. Kerberized Internet
Negotiation of Keys (KINK). RFC 4430, 2006.

[31] C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen. Internet Key Exchange
Protocol Version 2 (IKEv2). RFC 5996 (Proposed Standard), 2010. Up-
dated by RFC 5998.

[32] M. Richardson. A Method for Storing IPsec Keying Material in DNS.
RFC 4025 (Proposed Standard), 2005.

[33] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In 4th International Conference on Information Pro-
cessing in Sensor Networks (IPSN’05), Los Angeles, USA, 2005.

[34] Shamus Software. Multiprecision Integer and Rational Arithmetic C/C++
Library.

[35] N. Tsiftes and A. Dunkels. A database in every sensor. In Proceedings
of the International Conference on Embedded Networked Sensor Systems
(ACM SenSys), Seattle, WA, USA, 2011.

[36] J. Eriksson, A. Dunkels, N. Finne, F. Österlind, and T. Voigt. Mspsim –
an extensible simulator for msp430-equipped sensor boards. In 4th Eu-
ropean conference on Wireless Sensor Networks (EWSN’07), Delft, The
Netherlands, 2007. Demo Session.

[37] P. Hoffman. Cryptographic Suites for IPsec. RFC 4308, 2005.

[38] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes. Powertrace: Network-
level power profiling for low-power wireless networks. Technical Report
T2011:05, Swedish Institute of Computer Science, 2011.

[39] C. Park, K. Lahiri, and A. Raghunathan. Battery discharge characteristics
of wireless sensor nodes: An experimental analysis. In Proceedings of
the IEEE Conf. on Sensor and Ad-hoc Communications and Networks
(SECON), Santa Clara, California, USA, September 2005.

Chapter 9

Paper D:
Lithe: Lightweight Secure
CoAP for the Internet of
Things

Shahid Raza, Hossein Shafagh, Kasun Hewage, René Hummen, Thiemo Voigt.
In Submission, 2013.

135

Abstract

The Internet of Things (IoT) enables a wide range of application scenar-
ios with potentially critical actuating and sensing tasks, e.g., in the e-health
domain. For communication at the application layer, resource-constrained de-
vices are expected to employ the Constrained Application Protocol (CoAP) that
is currently being standardized at the IETF. To protect the transmission of sen-
sitive information, secure CoAP (CoAPs) mandates the use of Datagram TLS
(DTLS) as the underlying security protocol for authenticated and confiden-
tial communication. DTLS, however, was originally designed for comparably
powerful devices that are interconnected via reliable, high-bandwidth links.

In this paper, we present Lithe– an integration of DTLS and CoAP for the
IoT. With Lithe, we additionally propose a novel DTLS header compression
scheme that aims to significantly reduce the header overhead of DTLS lever-
aging the 6LoWPAN standard. Most importantly, our proposed DTLS header
compression scheme does not compromise the end-to-end security properties
provided by DTLS. At the same time, it considerably reduces the number of
transmitted bytes while maintaining DTLS standard compliance. We evalu-
ate our approach based on a DTLS implementation for the Contiki operating
system. Our evaluation results show significant gains in terms of packet size,
energy consumption, processing time, and network-wide response times, when
compressed DTLS is enabled.

9.1 Introduction 137

9.1 Introduction
IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) [1] en-
ables the use of IP in low-power and lossy wireless networks such as Wire-
less Sensor Networks (WSNs). Such IP-connected smart devices (Things) are
becoming part of the Internet hence forming the Internet of Things (IoT) or
strictly speaking IP-connected IoT. TCP performance is known to be bad in
wireless networks and the situation is exacerbated with the low power radios
and lossy links found in sensor networks. Therefore, the connection-less UDP
is mostly used in the IoT. Also HTTP, which is primarily designed to run over
TCP, is inefficient in lossy and constrained environments. Therefore, a new
connection-less lightweight Constrained Application Protocol (CoAP) [2] is
being standardized for the IoT. Security is particularly important for the Things
as they are connected to the untrusted Internet. Medical monitoring denotes a
typical security-sensitive application scenario. Here, a smart device, such as
an insulin pump1, may be attached to the patient’s body and periodically report
the condition of the patient to a back-end service in the Internet. In emergency
cases, a physician may additionally be able to trigger instant injection of med-
ication into the patient’s body.

CoAP proposes to use the Datagram Transport Layer Security (DTLS) [2]
as the security protocol for automatic key management and for data encryp-
tion and integrity protection, as well as for authentication. CoAP with DTLS
support is termed secure CoAP (CoAPs). While DTLS supports a wide range
of cryptographic primitives for peer authentication and payload protection, it
was originally designed for network scenarios where message length was not
a critical design criterion. As such, DTLS is a chatty protocol and requires
numerous message exchanges to establish a secure session. Therefore, it is in-
efficient to use the DTLS protocol, as it is, for constrained IoT devices. To cope
with constrained resources and the size limitations of IEEE 802.15.4-based net-
works2, 6LoWPAN header compression mechanisms are defined. The 6LoW-
PAN standard already defines the header compression format for the IP header,
IP extension headers, and the UDP header. We believe, it is particularly advan-
tageous to apply the 6LoWPAN header compression mechanism to compress
other protocols having well-defined header fields, such as DTLS.

In this paper we provide lightweight CoAPs by compressing the under-
neath DTLS protocol [3] with 6LoWPAN header compression mechanisms.
We call our lightweight 6LoWPAN compressed CoAPs Lithe. The purpose

1Medtronic probes insulin pump risks, Reuters, October 2011.
2The Maximum Transmission Unit (MTU) size of the IEEE 802.15.4 protocol is 127 bytes.

138 Paper D

The IPv6-connected Internet of Things (6IoT)

End-to-End Secure Communication with secure CoAP

Compressed
DTLS

Smartphone
coaps://mysite:port/

DTLS

6LoWPAN Conventional Internet

CoAPs Node
coaps://mysite:port/

6LBR

Figure 9.1: An IoT setup that uses CoAPs to secure communication between
sensor nodes in 6LoWPANs and hosts in the Internet.

of DTLS header compression is twofold. First, to achieve energy efficiency
reducing the message size, since communication requires more energy than
computation. Second, to avoid 6LoWPAN fragmentation that is applied when
the size of datagram is larger than the link layer MTU. Avoiding fragmen-
tation, whenever possible, is also important from the security point of view
as the 6LoWPAN protocol is vulnerable to fragmentation attacks [4]. Our
compressed DTLS maintains true End-to-End (E2E) security between Lithe
enabled hosts in 6LoWPAN networks and typical Internet hosts that use un-
compressed CoAPs. Figure 9.1 shows a typical IoT setup, where a 6LoWPAN
network consisting of CoAPs enabled nodes is connected through a 6LoWPAN
Border Router (6BR) with the Internet. In this network setup, the CoAPs en-
abled devices can securely communicate with Internet hosts, such as standard
computers, smartphones, etc., which support the CoAPs protocol.

To the best of our knowledge we are the first to propose 6LoWPAN com-
pressed DTLS and enable lightweight CoAPs support for the IoT. We imple-
ment our DTLS header compression mechanisms in the Contiki OS [5], an
open source and widely used operating system for constrained devices. We
evaluate Lithe in an IoT setup and show the gains in terms of packet size
reduction, energy consumption, processing time, and network-wide response
time, without compromising security properties of DTLS and by maintaining
standard compliant E2E security.
The main contributions of this paper are:

• We provide novel and standard compliant DTLS compression mecha-
nisms that aim to increase the applicability of DTLS and, thus, CoAPs

9.2 Background 139

for constrained devices.

• We implement the compressed DTLS in an OS for the IoT and evaluate
it on real hardware; the results quantitatively show that Lithe is in many
aspects more efficient compared to the uncompressed CoAP/DTLS.

The rest of the paper is organized as follows. We first give a brief overview
of the technologies used in this paper in Section 9.2. In Section 9.3, we in-
troduce our DTLS header compression mechanisms. Our implementation is
outlined in Section 9.4. In Section 9.5, we describe our network setup and dis-
cuss the evaluation results. Finally, Section 9.6 summarizes the related work
and Section 9.7 concludes this paper.

9.2 Background
Due to the heterogeneity in the IoT, it is challenging to connect resource-
constrained devices in a secure and reliable way. Currently, different proto-
cols such as CoAP [2], 6LoWPAN [6], IPv6 Routing Protocol (RPL) [7] for
Low-power and Lossy Networks (LLNs) are being standardized by the Inter-
net Engineering Task Force (IETF) to enable the IoT. The focus of this paper
is to enable secure yet efficient communication among IoT devices that utilize
the CoAP protocol. In this section we highlight the technologies involved in
the development of the lightweight CoAPs, the HTTPs variant for the IoT.

9.2.1 CoAP and DTLS
CoAP is a web protocol that runs over the unreliable UDP protocol and is de-
signed primarily for the IoT. CoAP is a subset of the most used synchronous
web protocol HTTP and is tailored for constrained devices and machine-to-
machine communication. However, while CoAP provides a REST interface
similar to HTTP, it focuses on being more lightweight and cost-effective than
its variant for today’s Internet. To protect CoAP transmissions, Datagram TLS
(DTLS) has been proposed as the primary security protocol by standardiza-
tion [3]. Analogous to TLS-protected HTTP (HTTPs), the DTLS-secured
CoAP protocol is termed CoAPs. As a basis for the discussion of our pro-
posed DTLS compression mechanisms, we now give a brief overview of the
DTLS protocol.

DTLS consists of two layers: the lower layer contains the Record protocol
and the upper layer contains either of the three protocols namely Handshake,

140 Paper D

Alert and ChangeCipherSpec, or application data. The ChangeCipherSpec is
used during the handshake process to merely indicate that the Record protocol
should protect the subsequent messages with the newly negotiated cipher suite
and security keys. DTLS uses the Alert protocol to communicate the error
messages between the DTLS peers. Figure 9.2 shows the structure of a DTLS
message in a IP/UDP datagram.

The Record protocol [3] is a carrier for the upper layer protocols. The
Record header contains among others content type and fragment fields.
Based on the value in the content type the fragment field contains ei-
ther the Handshake protocol, Alert protocol, ChangeCipherSpec protocol, or
application data. The Record header is primarily responsible to cryptographi-
cally protect the upper layer protocols or application data once the handshake
process is completed. The Record protocol’s protection includes, confidential-
ity, integrity protection and authenticity.

The DTLS Record is a rather simple protocol whereas the Handshake pro-
tocol is a complex chatty process and contains numerous message exchanges
in an asynchronous fashion. Figure 9.3 shows a full handshake process. The
handshake messages, usually organized in flights, are used to negotiate secu-
rity keys, cipher suites and compression methods. The scope of this paper is
limited to the header compression only and not the cryptographic processing
of Record and Handshake protocols. For details of the individual handshake
messages we refer to TLS[8] and DTLS [3].

DTLS guarantees E2E security of different applications on a single ma-
chine by operating between the transport and application layers. A secure ver-
sion of CoAP (CoAPs) that uses DTLS as the underlying security protocol is
already being standardized. A web resource on an IoT device can then be ac-
cessed securely via CoAPs protocol as:
coaps://myIPv6Address:port/MyResource.xml

9.2.2 6LoWPAN
The 6LoWPAN standard [1] defines the header compression and fragmenta-
tion of IPv6 datagrams within IPv6-connected WSNs, also called 6LoWPAN
networks. The compression mechanism consists of IP Header Compression
(IPHC) and Next Header Compression (NHC). The IPHC encodings can com-
press the IPv6 header length to 2 bytes for a single hop network and 7 bytes in
a multi-hop case. Among other encoding bits in the IPHC is the NH bit that,
when set, indicates the next header is compressed using NHC. The NHC is
used to encode the IPv6 extension headers and UDP header. The NHC encod-

9.2 Background 141

Preamble FC
S

UDP Payload

Change
CipherSpec

Alert Handshake

Record
Header

Record Payload

Data

Hello
Request

ClientHello
HelloVerify
Request

ServerHello

Certificate
ServerKey
Exchange

Client Certificate
Request

ServerHello
Done

Certificate
Verify

ClientKey
Exchange

Finished

Handshake
Header

Handshake
Payload

802.15.4 MAC Header

D
S

P

IPv6 Header UDP
Header

IPv6
Extension
Headers

Figure 9.2: A layout of a packet secured with DTLS.

ings size is multiple of octets (mostly one byte) which contain variable length
ID field and the encoding bits for a specific header. The 6LoWPAN standard
defined NHC encoding can be used to compress headers up to UDP, and not
the upper layer. This is because the NHC encodings for UDP do not contain
NH bit that indicates that the UDP payload is also compressed. There are pro-
tocols that are part of UDP payload and have header-like structures similar to
IP and UDP, such as DTLS, IKE. It is therefore worth applying the 6LoW-
PAN header compression mechanisms to compress these protocol headers. We
provide 6LoWPAN NHCs to compress DTLS. Recently, Generic Header Com-
pression (GHC) [9], analogous to NHC, is defined to allow upper layer (UDP
payload and above) header compression. 6LoWPAN-GHC, a less flexible ap-
proach, is an alternative to our solution.

As depicted in Figure 9.1, the header compression is applied within the
6LoWPAN network only i.e. between constrained nodes and the 6LoWPAN
border Router (6BR). A 6BR is used between 6LoWPAN networks and the
Internet to compress/decompress or/and fragment/reassemble messages before
routing to the two realms. In order to adapt chatty security protocols, such as
DTLS, for the resource constrained IoT devices, it is wise to apply 6LoWPAN

142 Paper D

Client Server

? ?

tim
e

ClientHello -
HelloVerifyRequest�

ClientHello -
ServerHello, Certificate*, CertificateRequest*, ServerKeyExchange*, ServerHelloDone�

Certificate*, ClientKeyExchange, CertificatVerify*, [ChangeCipherSpec], Finished-
[ChangeCipherSpec], Finished�

Flight 1

Flight 3

Flight 5

Flight 2

Flight 4

Flight 6

Figure 9.3: Full DTLS handshake protocol. Messages marked with a * are
optional.

header compression mechanisms to these protocols as well. In Section 9.3
we propose 6LoWPAN header compression for DTLS. It is very important to
design these header compression mechanisms in a way that complies with the
plain DTLS standard, to be interoperable with existing and new DTLS enabled
hosts on the conventional Internet.

The 6LoWPAN fragmentation part provides the schemes to fragment the
datagrams when the packet size is bigger than the data-link layer Maximum
Transmission Unit (MTU). The widely used data-link layer protocol in the
6LoWPAN networks is IEEE 802.15.4 that has MTU size of 127 bytes.

9.3 DTLS Compression
DTLS header compression, like IPHC, is applied only within 6LoWPAN net-
works, i.e., between sensor nodes and the 6BR. This is because DTLS is a
part of the UDP payload and all information required for routing is already
extracted at the IP layer. In this section, in addition to describing 6LoWPAN
header compression for DTLS, we detail how our compressed DTLS can be
linked to 6LoWPAN in a standard compliant way.

9.3.1 DTLS-6LoWPAN Integration
To cope with the size limitations of IEEE 802.15.4 link layer frames, we pro-
pose to compress the DTLS headers. The 6LoWPAN standard [1] does not
provide ways to compress the UDP payload and the layers above. In order to
apply 6LoWPAN header compression mechanisms to compress headers in the
UDP payload, we either require a modification in the current NHC encoding
for UDP in the 6LoWPAN standard, or need to define a new NHC for UDP

9.3 DTLS Compression 143

!
!
1 1 0 1 1 C P

!
!
!
!

Figure 9.4: Our proposed 6LoWPAN-NHC for UDP, which allows compres-
sion of UDP payload.

with different ID bits. The first solution requires modification is the current
standard and hence not a favorable solution. The second solution is an ex-
tension to the 6LoWPAN standard; similar approach is adapted to distinguish
NHC from GHC [9].

The ID bits 11110 in the NHC for UDP, as defined in the 6LoWPAN stan-
dard, indicate that the UDP payload is not compressed. We define ID bits
11011 to indicate that the UDP payload is compressed with 6LoWPAN NHC.
These ID bits are currently unassigned in the 6LoWPAN standard. Figure 9.4
shows our proposed NHC for UDP that allows compression of UDP payload.
In the following section we define 6LoWPAN-NHC for the DTLS Record
header, Handshake header, and handshake messages where applicable.

9.3.2 6LoWPAN-NHC for the Record and Handshake Head-
ers

The Record protocol adds 13 bytes long header fields to each packet that is
sent throughout the lifetime of a device that uses DTLS/CoAPs. The Hand-
shake protocol, on the other hand, adds 12 bytes of header to handshake mes-
sages. We propose 6LoWPAN-NHC for compressing the Record and Hand-
shake headers, and reduce the header length to 5 and 3 bytes, respectively.
In case of Handshake, only during the first handshake process the Handshake
header and messages are compressed. This is because the successive re-handshake
messages are encrypted using the negotiated cipher suite, and it is not possi-
ble to inspect payload of the DTLS record for compression at the 6LoWPAN
layer. However, in all cases the Record header remains un-encrypted. Thus it
is always compressed by using the mechanism explained in this section.

In order to provide header compression for the Record and Handshake
header, we consider two cases. In the first case, where the Record header frag-
ment field (see Section 9.2) contains a handshake message, we compress both
the Record header and the Handshake header using a single encoding byte and
we define 6LoWPAN-NHC for Record+Handshake (6LoWPAN-NHC-RHS).
In the second case we define 6LoWPAN-NHC for the Record header (6LoWPAN-

144 Paper D

0BIT

1 0

1

0

2

0

3 4

F

6 7

V

5

EC SN

V : Version

EC: Epoch

SN: Sequence Number

F : Fragment

1 0 0 1 V EC SN

Record+Handshake (LOWPAN_NHC_RHS)

Record only (LOWPAN_NHC_R)

(a) Record and the Handshake
header.

0BIT

1 0

1

1

2

0

3 4

CM

6 7

SI

5

C CS

SI: Session ID

C : Cookie

CS: Cipher Suites

CM: Compression Method

(b) ClientHello message.

0BIT

1 0

1

1

2

1

3 4

CM

6 7

V

5

SI CS

V : Server Version

SI: Session ID

CS: Cipher Suite

CM: Compression Method

(c) ServerHello message.

Figure 9.5: Our proposed 6LoWPAN-NHC encodings for different DTLS
headers.

NHC-R) where the fragment field in the Record header is application data
and not a Handshake message as in the first case. The 6LoWPAN-NHC-R
is applied after the DTLS handshake has been performed successfully, and
the subsequently messages are encrypted and integrity protected. Figure 9.5a
shows 6LoWPAN-NHC encodings for the Record+Handshake header and for
the Record header. The encoded bits have the following functions:
The first four bits represent the ID field that is used to distinguish 6LoWPAN-
NHC-RHS from other encodings, and to comply with 6LoWPAN-NHC encod-
ing scheme. In case of 6LoWPAN-NHC-RHS we set the ID bits to 1000, and
in case of 6LoWPAN-NHC-R we set the ID bits to 1001.
Version (V): If 0, the version is the DTLS latest version which is 1.2, and the
field is omitted. If 1, the version field is carried inline.
Epoch (EC): If 0, an 8 bit epoch is used and the left most 8 bits are omitted.
If 1, all 16 bits of the epoch are carried inline. In most cases the actual epoch
is either 0 or 1. Therefore, an 8 bit epoch is used most of the time, allowing a
higher compression ratio.
Sequence Number (SN): The sequence number consists of 48 bits, of which
some are leading zeros. If SN is set to 0, a 16 bit sequence number is used and
the left most 32 bits are omitted. If 1, all 48 bits of the sequence number are
carried inline. In case of 6LoWPAN-NHC-R, as shown in Figure 9.5a, we use
two bits for SN and can more efficiently compress the sequence number
field. Here if SN is set to 00, a 16 bit sequence number is used and the left
most 32 bits are omitted. If 01, a 32 bit sequence number is used and the left
most 16 bits are omitted. If 10, a 24 bit sequence number is used and the left
most 24 bits are omitted. If 11, all 48 bits of the sequence number are carried

9.3 DTLS Compression 145

inline.
Fragment (F): If 0, the handshake message is not fragmented and the fields
fragment offset and fragment length are omitted. This is the com-
mon case, which occurs when the handshake message is not larger than the
maximum record size. If 1, the fields fragment offset and fragment length
are carried inline.

In case of 6LoWPAN-NHC-R, content type field is always carried in-
line, and in case of 6LoWPAN-NHC-RHS, content type field is alway
omitted as it is obvious from the NHC encoding that the content type is Hand-
shake. Furthermore, message type and message seq fields of the Hand-
shake header are always carried inline. The length field in the Record and
Handshake headers is always omitted as they can be deduced from the lower
layers: either from the 6LoWPAN header or the IEEE 802.15.4 header. We
have to uncompress layer-wise from lower to higher layers until the the UDP
header is uncompressed. Then the length of the UDP payload is known and the
DTLS payload length can be calculated.

9.3.3 6LoWPAN-NHC for ClientHello
We propose 6LoWPAN-NHC for the ClientHello message (6LoWPAN-
NHC-CH). During the handshake process the ClientHello message is sent
twice, the first time without cookie and the second time with the server’s
cookie. Figure 9.5b shows 6LoWPAN-NHC encoding for the ClientHello
message. The function of each compressed header field is described below:
The first four bits in the 6LoWPAN-NHC-CH represent the ID field which are
set to 1010.
Session ID (SI): If 0, the session id is not available and this field and 8 bits
of the prefixed length field are omitted. In the (D)TLS protocol, session id
is empty if no session is available, or if the client wishes to generate new se-
curity parameters. The actual session id field in the ClientHello
contains 0 to 255 bits. However, it is always prefixed with an 8 bit field that
contains the size of the session id. The ClientHello message uses
session id only if the DTLS client wants to resume the old session. If SI is
set 1, the session id field is carried inline.
Cookie (C): If 0, the cookie field is not available and this field and its prefixed 8
bits length field are omitted. The actual cookie field in the ClientHello contains
0 to 255 bits3. However, it always has an 8 bits length field that contains the

3DTLS 1.2 specification increases the cookie size limit to 255 bytes; however, our implemen-
tation uses 255 bits.

146 Paper D

size of the cookie. If C is set 1, the cookie field is carried inline.
Cipher Suite (CS): If 0, the default (mandatory) cipher suite for CoAP
that supports automatic key management is used and this field and the prefixed
16 bits length field are omitted. In the current CoAP draft [2]
TLS ECDHE ECDSA WITH AES 128 CCM 8
is a mandatory cipher suite. The actual cipher suites field contains 16
to 216− 16 bits and is always prefixed with a 16 bits field that contains the size
of the cipher suites. If CS is set 1, the cipher suites field is carried
inline. Compression Method (CM): If 0, the default compression method, i.e.,
COMPRESSION NULL is used and this field and the prefixed 8 bits length field
are omitted. The actual compression methods field contains 8 to 28 − 8
bits. It is always prefixed with an 8 bits field that contains the size of the
compression methods. If CM is set 1, the compression methods
field is carried inline.

The random field in the ClientHello is always carried inline whereas
the version field is always omitted. The version contains the same value as
in the DTLS Record header. In case of TLS/SSL the version field was de-
fined to let a TLS client specify an older version to be compatible with an SSL
client, which is rarely used in practice. All current versions of web browsers
use the same TLS version in the Record header and in the ClientHello
message. DTLS 1.2 (adapted from TLS 1.2) [8] mentions that the client sends
its latest supported version in the ClientHello. All DTLS versions (1.0 and
1.2) have compatible ClientHello messages. If the server does not support
this version, then the ServerHello message contains its supported version.
If the client is not capable of handling the server’s version, it terminates the
connection with a protocol version alert.

Using 6LoWPAN-NHC-CH, usually only the random field in the ClientHello
message is transmitted and all the other fields are omitted. The ClientHello
with cookie may also contain the compressible cookie filed. Figure 9.6
shows an uncompressed IP/UDP datagram that contains a ClientHello.
A 6LoWPAN compressed IP/UDP datagram, with our proposed compressed
DTLS, containing the ClientHello message is depicted in Figure 9.7. Af-
ter applying IPHC and 6LoWPAN-NHC header compression, the datagram
size is significantly reduced.

9.3.4 6LoWPAN-NHC for ServerHello
We propose 6LoWPAN-NHC for the ServerHello message (6LoWPAN-
NHC-SH). ServerHello is very similar to ClientHello except that the

9.3 DTLS Compression 147

Source Address (128 bits)

Octet 0 Octet 1 Octet 2 Octet 3

Destination Port

Versioin

Hop Limit

Source Port

ChecksumLength

Version Epoch

Message Type

Message Sequence Fragment Offset

Fragment Offset

Session_ID Length Cookie Length Cipher Suites Length

Cipher Suites Comp_method Length Comp_method

Client Random (32 bytes)

Fragment Length

Traffic Class Flow Label

Payload Length Next Header

Destination Address (128 bits)

Epoch

Content_type

Sequence Number

Length_Record

Length_Record Length_Handshake

Length_Handshake

Fragment Length Version

Figure 9.6: An un-compressed full IP/UDP datagram containing a DTLS
ClientHello Message.

148 Paper D

Source Address

Octet 0 Octet 1 Octet 2 Octet 3

Destination Address

S Port D Port

LOWPAN_IPHC Hop Limit

Source Address

Checksum

LOWPAN_NHC_UDP

LOWPAN_NHC_RHS

Content Type Epoch Sequence Number

Message Type LOWPAN_NHC_CH.

.

.
Client Random (32 bytes)

Message Sequence

Figure 9.7: A 6LoWPAN compressed full IP/UDP datagram containing a
DTLS ClientHello Message.

length of the cipher suites and compression methods fields are fixed
to 16 and 8 bits, respectively. Figure 9.5c shows the 6LoWPAN-NHC encod-
ing for the ServerHello message. The function of each compressed header
field is described below:
The first four bits in the 6LoWPAN-NHC-SH represent the ID field set to 1011.
Version (V): In order to avoid version negotiation in the initial handshake, the
DTLS 1.2 standard suggests that the server implementation should use DTLS
version 1.0. If V is set to 0, the version is DTLS 1.0 and the version field is
omitted. However the DTLS 1.2 clients must not assume that the server does
not support higher versions or it will eventually negotiate DTLS 1.0 rather than
DTLS 1.2 [3]. If V is set to 1, the version field is carried inline.
Session ID (SI), Cipher Suite (CS), and Compression Method (CM) are encoded
in a similar fashion as discussed in Section 9.3.3. In order to not compromise
security the random field in the ServerHello is always carried inline.

9.3.5 6LoWPAN-NHC for other Handshake Messages
The remaining mandatory handshake messages ClientKeyExchange,
ServerHelloDone, and Finish have no fields that could be compressed,
hence all fields are carried inline. The optional handshake messages Certificate
that contains the chain of certificates and CertificateVerify that con-
tains the digital signature of the handshake message are as well carried inline.

9.4 Implementation 149

However, it is possible to compress some of the fields inside a Certificate
message which is out of the scope of this paper. Pritikin et al. propose a scheme
to compress X.509 certificates [10].

The ServerKeyExchange message is mostly not sent, either due to
crypto export restrictions or because the server’s Certificate message
contains enough information to concede the client to exchange the premaster
secret. However, if it is sent, all fields are carried inline. In case of the optional
message CertificateRequest all fields can be omitted. This is possi-
ble since the values for the fields supported signature algorithms,
certificate types, and certificate authorities can be pre-
defined to a single set of supported and preferred values for a 6LoWPAN net-
work and all nodes in the network use the same set of values. The 6BR can
populate the empty CertificateRequest message with the default set of
values before sending the message to the destination in the conventional Inter-
net. If no default set of values is defined for the 6LoWPAN network, all fields
are carried inline.

9.4 Implementation

We implement Lithe in Contiki [5], an open source operating system for the
IoT. However, our proposed header compression mechanisms in Lithe can be
implemented in any OS that supports 6LoWPAN. The Lithe implementation
consists of four main components: (i) DTLS, (ii) CoAP, (iii) integration mod-
ule, (iv) DTLS header compression. For DTLS we use the open source tiny-
DTLS [11] implementation which supports the basic cipher suite based on pre-
shared keys:
TLS PSK WITH AES 128 CCM 8.
We adapt tinyDTLS for the WiSMote platform and for the 20-bit address sup-
port of msp430-gcc [12] (version of 4.7.0). For CoAP, we use the default CoAP
implementation in the Contiki OS. We develop the integration module that
connects the CoAP and DTLS implementations and enables the CoAPs pro-
tocol. This integration allows the application independent access to CoAPs
where outgoing CoAP messages are transparently handed to DTLS that trans-
mits the protected messages to the destination. All incoming CoAP messages
are protected through DTLS and therefore are processed first at DTLS layer
and handed transparently to CoAP, which resides in the application layer.

We implement our proposed header compression as an extension to the
6LoWPAN implementation in the Contiki OS. The 6LoWPAN layer resides

150 Paper D

DTLS Header Without With Comp.
Comp. [Bit] Comp. [Bit] rate

Record 104 401 62%
Handshake 96 241 75%
ClientHello 3362 2642 23%
ServerHello 304 2643 14%
CertificateRequest 40 0 100%

Table 9.1: We send significantly less bits when the DTLS header compression
is enabled.
1An additional byte is required to encode both the Record and Handshake headers.
2Some fields have a variable length. Here we only consider bits that are always sent.
3We do not compromise on security and send full size random. All other fields can be omitted.

between the IP and Medium Access Control (MAC) layers. The packets from
the IP layer are considered as input packets and the packets from the MAC
layer are considered as output packets. The 6LoWPAN layer processes all UDP
packets from both directions. Therefore, we use two ways to distinguish UDP
packets that carry DTLS messages as payload from other UDP packets. In the
case of input packets, the pre-configured default DTLS port is used to identify
CoAPs messages. In the second case when the packet is received from the
MAC layer, the DTLS port and the ID bits in our proposed NHC-for-UDP and
in the NHC for DTLS headers are used to distinguish the compressed headers
from the uncompressed. Details are provided in Section 9.3.

Furthermore, it is important to emphasize, that while applying header com-
pression, the E2E security of DTLS is by no means compromised. This is due
to the design of DTLS and our effort to remain standard-compliant. The header
fields are, after final negotiation of the cipher suite, integrity protected within
the Record layer. During the compression/decompression process the origi-
nal headers are not modified and the integrity protection is maintained. After
decompression in the 6LoWPAN layer, the packets integrity is checked in the
DTLS layer. The correctness of integrity protection serves as well a proof of
correct decompression.

9.5 Evaluation

We evaluate Lithe on real sensor nodes running the Contiki OS. We use WiS-
Mote [13] as our hardware platform. WiSMotes are equipped with (i) a 16
MHz, MSP430 5-Series, 16-bit RISC microcontroller, (ii) 16kB of RAM, (iii)

9.5 Evaluation 151

128kB of ROM, and (iv) an IEEE 802.15.4 (CC2520) transceiver. We select
WiSMotes because of the RAM and ROM requirements of the DTLS imple-
mentation, which is discussed in more details in Section 9.5.2. The network
setup consists of two WiSMotes which communicate directly through the ra-
dio. The CC2520 transceiver provides an AES-128 security module. However,
for our evaluation we do not use the AES hardware support and rely on soft-
ware AES. Leveraging the AES hardware support for the cryptographic com-
putations involved in DTLS would lead to higher performance. The focus of
our evaluation is on the impact of DTLS header compression on response time
and energy consumption of nodes. Therefore, the performance loss due to soft-
ware AES is not affecting our evaluation. Furthermore, we do not enable link
layer security support, in order to be able to analyze the compression gain sep-
arately. In our previous work [14], we have evaluated the performance gains
when using the AES support in hardware. There, we implement and evaluate
the 802.15.4 link layer security.

9.5.1 Packet Size Reduction

Using 6LoWPAN-NHC compression mechanisms we can significantly reduce
the length of DTLS headers. Table 9.1 shows that our proposed DTLS header
compression significantly reduces the number of header bits which results in a
similar reduction of radio transmission time.

The Record header, included in all DTLS messages, can be compressed
by 64 bits (62%) for each message. In the case of the Handshake header, a
compression rate of 75% is achieved. Application data constitutes the high-
est amount of DTLS message. Reducing the Record header from 104 to 40
bits, allows for transmission of 64 bits more payload per packet. Packets that
are larger than the link layer MTU are fragmented. Fragmentation does not
only introduce more burden to the node and the network, it also brings security
vulnerabilities [4] along. Therefore, it is preferable to avoid fragmentation,
whenever possible. Using compression we avoid fragmentation or decrease
the number of fragments when the payload is slightly above the fragmentation
threshold. Furthermore, reducing the transmitted bits in constrained networks
has a huge impact on the performance and lifetime of the network. Radio com-
munication has in general about 10 times higher energy consumption than in-
node computations [13]. The tradeoff with compression is additional in-node
computation overhead for compression/decompression, and in return reducing
the radio transmissions. The impact of this tradeoff is discussed in more detail
in Section 9.5.3.

152 Paper D

Feature ROM [Byte] RAM [Byte]

DTLS Crypto (SHA-256, CCM, AES) 6590 2868
DTLS 10662 989
Contiki OS 32145 4979
CoAP 8632 582
DTLS Compression 2820 1
Total 60849 9419

Table 9.2: ROM and RAM requirements for Lithe.

9.5.2 RAM and ROM Requirement

We analyze RAM and ROM with the msp430-size and msp430- objdump tools
in the MSP430 toolchain. As depicted in Table 9.2, in total 60kB of ROM and
9.2kB of stationary RAM are required for Lithe.

The DTLS implementation including the cryptographic functionalities and
the DTLS state-machine requires 16.8kB of ROM and 3.7kB of stationary
RAM. This makes DTLS to the major contributor of ROM after the OS. The
CoAP-Server requires 8kB of ROM and 0.5kB of stationary RAM. Our CoAP-
server provides a single resource, that upon a CoAP GET request, sends back a
response message with variable payload lengths. This is used in our evaluation
to analyze the effect of compression on CoAPs messages with different pay-
load lengths. The footprint of the CoAP depends on the offered resources. The
implementation of our DTLS header compression mechanism requires only
2820B of ROM and 1B of RAM. The total ROM used by 6LoWPAN in Con-
tiki for compression and fragmentation (without DTLS compression) is 3782B.
This verifies that the compressed DTLS uses the same order of ROM as stan-
dard 6LoWPAN. Today’s sensor nodes, such as WiSMote, with 128kB of ROM
can surely accommodate compressed CoAPs along with other operating sys-
tem components, and still offer significant space to applications.

9.5.3 Run-time Performance

We look at the run-time performance gains that we achieve when compressed
DTLS is used and compare it with uncompressed DTLS. We perform these ex-
periments in a 6LoWPAN network with enabled Radio Duty Cycling (RDC)
and respectively with no RDC. When RDC is used, the radio is off most of the
time and is turned on either in certain intervals to check the medium for in-

9.5 Evaluation 153

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

CH (C) CH CKE HV SH SHD

En
er

gy
 [u

J]

DTLS Handshake Messages

DTLS Compression Overhead

Figure 9.8: Energy consumption of individual compressed DTLS messages:
ClientHello (CH), ClientKeyExchange (CKE), HelloVerify (HV), ServerHello
(SH), ServerHelloDone (SHD)

coming packets or to transmit packets. We use the duty cycled MAC protocol,
X-MAC [15] with its default settings, provided in the Contiki OS. In our run-
time performance evaluation we focus on sensor node’s energy consumption
and network-wide round trip time. For the evaluation of energy consumption
we use the energy estimation module [16] provided by Contiki OS. This mod-
ule provides the usage time of CPU, LPM, Transmitter and Transceiver for a
certain function call. The absolute timer values for each of these components
can be converted to energy with the following equation:

Energy [mJ] =
ticks × I [mA] × Voltage [V]

ticks per second
(9.1)

DTLS Compression Overhead

The overhead caused through in-node computation for compression and de-
compression of DTLS headers is almost negligible. However, we measure

154 Paper D

Compression Client-side [uJ] Server-side [uJ] Total [uJ]

Without 1756.66 1311.65 3068.31
With 1467.54 1143.47 2611.01

Table 9.3: Average energy consumption for packet transmission during DTLS
handshake for the PSK cipher suite with no RDC. In average 15% energy sav-
ing for the transmission is achieved by compression.

and show it for the sake of completeness. Figure 9.8 shows the additional
overhead for compression/decompression for the handshake messages. Each
handshake message consists of the both Record and Handshake headers. For a
DTLS handshake based on pre-shared keys, on average, an overhead of 4.2 uJ
is caused with compression.

CoAPs Initialization

During the CoAPs initialization phase a secure session is established between
the two communicating end points using the DTLS handshake protocol. The
handshake process uses both the Record and Handshake headers, which means
that both of these headers can be compressed. The tradeoff between additional
in-node computation vs. reduced packet sizes shows itself in the energy con-
sumption for packet compression in a DTLS handshake. Table 9.3 compares
the energy consumption for overall transmission for the case compression is
applied and respectively for the case transmission is not applied. On average
15% less energy is used to transmit (and receive) packets with compression.
This is due to smaller packets sizes achieved through compression.

CoAPs Request-Response

Once the CoAPs initialization phase is completed, i.e. the handshake has been
performed, a sensor node can send/receive secure CoAP messages using the
DTLS Record protocol. Although the Handshake protocol is, compared to the
Record protocol, a more resource hungry protocol, it is performed only once
during the initialization phase and/or later (rarely) for re-handshake.

In order to measure the performance of compression within Record Header,
we measure the energy consumption and the round trip time (RTT) for the pro-
cessing of CoAP request-response messages. We start our measurements when
the client prepares the CoAP request, and stop after the server’s response is

9.5 Evaluation 155

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0 1 2 4 8 16 32 48

E
ne

rg
y

[u
J]

No of Data Bytes

Client-side with RH Compression
Server-side with RH Compression

Client-side without RH Compression
Server-side without RH Compression

(a) Energy consumed by client and server on transmission while sending com-
pressed and uncompressed CoAPs messages of different data sizes

 400

 450

 500

 550

 600

 650

 700

012 4 8 16 32 48

En
er

gy
 [u

J]

No of Data Bytes

With RH Compression
Without RH Compression

(b) Combined energy consumed by client and server on transmission while
sending compressed and uncompressed CoAPs messages of different data sizes

Figure 9.9: The energy consumption of CoAPs messages when radio duty cy-
cling is off shows that the compressed CoAPs message consumes less energy;
the difference is significant when the messages are fragmented at the 6LoW-
PAN layer

156 Paper D

received and processed. The corresponding CoAP response contains varying
payload lengths. To be more precise, eight different payload sizes in the range
of 0 to 48 bytes are used. We select 48 bytes, because with 48 byte CoAP pay-
load 6LoWPAN fragmentation is performed in case of plain CoAPs. However,
Lithe does not trigger fragmentation, due to the reduced bits by the means
of compression. This effect is visible in Figure 9.9a, which shows the aver-
age in-node energy consumption on CoAPs’ client and server for transmitting
compressed and uncompressed CoAPs request and response pairs of different
sizes with no RDC. The transmission of CaAP GET requests have the same
amount of energy consumption since the size of request messages are always
constant. Hence, energy consumption for CoAPs requests is always reduced by
10% using compression. The energy savings for the CoAPs response messages
depend on the payload length and whether compression can prevent fragmen-
tation. The latter is the case for a payload length of 48 Byte. Hence, the energy
saving is in the range of 4-26%, where the highest energy saving is for 48 Byte.

For analyzing the overall energy consumption savings for CoAP request-
responses, we sum up energy consumption for packet transmission on the
server and the client as depicted in Figure 9.9b. We observe that in average
energy savings of about 7% are achieved. However, in the case where fragmen-
tation is avoided through compression, the savings increase to 20.6%. This is
due the fact, that with 48 Byte payload, 6LoWPAN transmits the packet within
two fragments, whereas with compression the packet is transmitted without
fragmentation.

The reduced transmission time affects as well the RTT for a CoAP request-
response message. In case of no RDC, as shown in Figure 9.10b, the RTT is in
average 1.5% smaller, except for 48 Byte payload. There, the RTT with com-
pression is even 77% smaller, since fragmentation is avoided. In order to assess
the overall overhead caused through security, we have as well added values for
CoAP without security. The RTT in CoAP without security is in average 1/3
of the CoAPs, as long as no fragmentation due to CoAPs is caused. Looking
at the RTT with RDC, as shown in Figure 9.10b we see that for all three cases
of: a) CoAP without any security, b) plain CoAPs, and c) CoAPs with DTLS
compression (Lithe), RTT values are in the same range, expect for CoAP re-
sponse messages with 48 Byte payload. This is a side-effect of RDC. RDC
saves energy, by putting the radio in sleep for the most of the time. However,
this happens at the cost of higher latency. Packets in RDC networks are not
transmitted directly. The sender has to wait until the receiver wakes up and
in the worst case this might be the whole sleeping interval of the receiver. As
a result, the overall RTT is higher than when no RDC is used. We observe

9.6 Related Work 157

that in networks with RDC, in the case compression prevents fragmentation or
decreases the number of fragments, the RTT is significantly reduced. For ex-
ample, in Figure 9.10b for 48 bytes Payload, compression leads to 50% shorter
RTT.

9.6 Related Work

Providing E2E security is a widely explored area in conventional Internet com-
munication. However, there has been comparatively less research conducted in
E2E security considering 6LoWPANs. The resource constraints of the devices
and the lossy nature of wireless links are among the major reasons that hinder
to apply general E2E security mechanisms to 6LoWPANs. Recently, the com-
munity has presented works on analyzing security challenges in the IP-based
IoT [17] and solutions that improve or modify standard IP security protocols
for the requirements of resource-constrained devices. In our discussion of re-
lated work, we focus on approaches that aim to enable E2E security solutions
in the IoT.

In our previous work [18], we propose a header compression method to
use IPsec to secure the communication between nodes in 6LoWPAN networks
and hosts in the Internet. We define NHC encodings to compress Authentica-
tion Header (AH) and Encapsulating Security Payload (ESP) extension head-
ers. Jorge at al. [19] extend our solution and include IPsec in tunnel mode.
They implement and evaluate their proposal in TinyOS. In [20], Brachmann et
al. propose TLS-DTLS mapping to secure the IoT. However, this requires the
presence of a trusted 6BR, and E2E security breaks at the 6BR.

Kothmayr et al. [21] investigate the use of DTLS in 6LoWPANs with a
Trusted Platform Module (TPM) to get hardware support for the RSA algo-
rithm. However, they have used DTLS as it is without using any compression
method which would shorten the lifetime of the entire network due to the re-
dundant bits in DTLS messages. Granjal et al. [22] evaluate the use of DTLS
as it is with CoAP for secure communication. They note that payload space
scarcity would be problematic with applications that require larger payloads.
As an alternative, they suggest to employ security at other networking layers
such as compressed form of IPsec.

In another work [23], we propose design ideas to reduce the energy con-
sumption of the two-way certificate-based DTLS handshake. We suggest (i)
pre-validation of certificates at the trusted 6BR, (ii) session resumption to avoid
the overhead of a full handshake, and (iii) handshake delegation to the owner of

158 Paper D

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

0 1 2 4 8 16 32 48

R
ou

nd
 T

rip
 T

im
e

[m
s]

No of Data Bytes

CoAP message
CoAPs message with Compression

CoAPs message without Compression

(a) With Radio Duty Cycling

 0

 20

 40

 60

 80

 100

 120

 140

 160

0 1 2 4 8 16 32 48

R
ou

nd
 T

rip
 T

im
e

[m
s]

No of Data Bytes

CoAP message
CoAPs message with Compression

CoAPs message without Compression

(b) Without Radio Duty Cycling

Figure 9.10: Comparison of Round Trip Time for Lithe, plain CoAPs, and
CoAP.

9.7 Conclusions 159

the resource-constrained device. That work in making certificate-based authen-
tication viable for the IoT is complementary to this one. We plan to combine
DTLS header compression with those ideas to make the mutual certificate-
based handshake more efficient.

9.7 Conclusions
CoAP enabled hosts will be an integral part of the Internet of Things (IoT). Fur-
thermore, real world deployments of CoAP supported devices require security
solutions. To this end, DTLS is the standard protocol to enable secure CoAP
(CoAPs). In this paper, we investigate if the overhead of DTLS can be reduced
by 6LoWPAN header compression, and present the first DTLS header com-
pression specification for 6LoWPAN. We quantitatively show that DTLS can
be compressed and its overhead can be significantly reduced using 6LoWPAN
standardized mechanisms. Our implementation and evaluation of compressed
DTLS demonstrate that it is possible to reduce the CoAPs overhead as the
DTLS compression is efficient in terms of energy consumption and network-
wide response time, when compared with plain CoAPs. The difference be-
tween compressed DTLS and plain DTLS is very significant, if the use of plain
DTLS results in 6LoWPAN fragmentation.

As future work we plan to deploy Lithe in a real world IoT system with a
real application scenario. Such an IoT consists of constrained devices, standard
computers, and smartphones. A real world deployment helps us to throughly
evaluate Lithe in an heterogeneous IoT, and ultimately demonstrate the use of
Lithe in security sensitive applications.

Bibliography

[1] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams
over IEEE 802.15.4-Based Networks. RFC 6282 (Proposed Standard),
September 2011.

[2] Z. Shelby, K. Hartke, C. Bormann, and B. Frank. Constrained Application
Protocol (CoAP), December 2012.

[3] E. Rescorla and N. Modadugu. Datagram Transport Layer Security Ver-
sion 1.2. RFC 6347 (Proposed Standard), January 2012.

[4] R. Hummen, J. Hiller, H. Wirtz, M. Henze, H. Shafagh, and K. Wehrle.
6LoWPAN Fragmentation Attacks and Mitigation Mechanisms. In Pro-
ceedings of the 6th ACM Conference on Security and Privacy in Wireless
and Mobile Networks (WiSec), April 2013.

[5] A. Dunkels. The Contiki Operating System. Web page:
http://www.contiki-os.org/. Visited 2013-02-15.

[6] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals. RFC 4919, August 2007.

[7] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550, March 2012.

[8] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246 (Proposed Standard), August 2008. Updated by
RFCs 5746, 5878, 6176.

161

162 Bibliography

[9] C. Bormann. 6LoWPAN Generic Compression of Headers and Header-
like Payloads. draft-bormann-6lowpan-ghc-04, March 2012.

[10] D. McGrew and M. Pritikin. The Compressed X.509 Certificate Format.
draft-pritikin-comp-x509-00, May 2010.

[11] O. Bergmann and C. Bormann. tinyDTLS. Web page:
http://tinydtls.sourceforge.net/. Visited 2013-02-15.

[12] Texas Instruments and Red Hat. mspgcc.
http://sourceforge.net/projects/mspgcc/. Visited 2013-02-15.

[13] LCIS and Aragosystems. WiSMote Sensor Node. Web page:
http://wismote.org/. Visited 2013-02-15.

[14] S. Raza, S. Duquennoy, J. Höglund, U. Roedig, and T. Voigt. Secure
Communication for the Internet of Things - A Comparison of Link-Layer
Security and IPsec for 6LoWPAN. Security and Communication Net-
works, Wiley, January 2012.

[15] M. Buettner, G. V. Yee, E. Anderson, and R. Han. X-MAC: a short pream-
ble mac protocol for duty-cycled wireless sensor networks. In Proceed-
ings of the 4th international conference on Embedded networked sensor
systems, SenSys ’06, pages 307–320, New York, NY, USA, 2006. ACM.

[16] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He. Software-based on-line
energy estimation for sensor nodes. In Proceedings of the 4th workshop
on Embedded networked sensors, EmNets ’07, pages 28–32, New York,
NY, USA, 2007. ACM.

[17] T. Heer, O. Garcia-Morchon, R. Hummen, S. Keoh, S. S. Kumar, and
K. Wehrle. Security Challenges in the IP-based Internet of Things.
Springer Wireless Personal Communications Journal, 2011.

[18] S. Raza, S. Duquennoy, A. Chung, D. Yazar, T. Voigt, and U. Roedig.
Securing communication in 6LoWPAN with compressed IPsec. In 7th
International Conference on Distributed Computing in Sensor Systems
(DCOSS’11), Barcelona, Spain, 2011.

[19] J. Granjal, E. Monteiro, and J. S. Silva. Network-layer security for the In-
ternet of Things using TinyOS and BLIP. International Journal of Com-
munication Systems, 2012.

[20] M. Brachmann, S. L. Keoh, O. G. Morchon, and S. S. Kumar. End-to-end
transport security in the IP-Based Internet of Things. In Computer Com-
munications and Networks (ICCCN), 2012 21st International Conference
on, pages 1 –5, August 2012.

[21] T. Kothmayr, C. Schmitt, W. Hu, M. Brunig, and G. Carle. A DTLS based
end-to-end security architecture for the Internet of Things with two-way
authentication. In Local Computer Networks Workshops, 2012 IEEE 37th
Conference on, pages 956–963. IEEE, 2012.

[22] J. Granjal, E. Monteiro, and J. S. Silva. On the feasibility of secure
application-layer communications on the Web of Things. In Local Com-
puter Networks (LCN), 2012 IEEE 37th Conference on, pages 228 –231,
October 2012.

[23] R. Hummen, J. H. Ziegeldorf, H. Shafagh, S. Raza, and K. Wehrle. Mak-
ing Certificate-based Authentication Viable for the Web of Things. In
Proceedings of the 2nd ACM Workshop on Hot Topics on Wireless Net-
work Security and Privacy (HotWiSec), April 2013.

Chapter 10

Paper E:
SVELTE: Real-time
Intrusion Detection in the
Internet of Things

Shahid Raza, Linus Wallgren, Thiemo Voigt.
Ad Hoc Networks Journal, Elsevier, 2013 [Accepted]

165

Abstract

In the Internet of Things (IoT), resource-constrained things are connected to
the unreliable and untrusted Internet via IPv6 and 6LoWPAN networks. Even
when they are secured with encryption and authentication, these things are
exposed both to wireless attacks from inside the 6LoWPAN network and from
the Internet. Since these attacks may succeed, Intrusion Detection Systems
(IDS) are necessary. Currently, there are no IDSs that meet the requirements of
the IPv6-connected IoT since the available approaches are either customized
for Wireless Sensor Networks (WSN) or for the conventional Internet.

In this paper we design, implement, and evaluate a novel intrusion detection
system for the IoT that we call SVELTE. In our implementation and evalua-
tion we primarily target routing attacks such as spoofed or altered information,
sinkhole, and selective-forwarding. However, our approach can be extended to
detect other attacks. We implement SVELTE in the Contiki OS and thoroughly
evaluate it. Our evaluation shows that in the simulated scenarios, SVELTE de-
tects all malicious nodes that launch our implemented sinkhole and/or selective
forwarding attacks. However, the true positive rate is not 100%, i.e., we have
some false alarms during the detection of malicious nodes. Also, SVELTE’s
overhead is small enough to deploy it on constrained nodes with limited energy
and memory capacity.

10.1 Introduction 167

10.1 Introduction

With IPv6 over Low-power Wireless Personal Area Network (6LoWPAN) [1,
2] it is possible to connect resource constrained devices, such as sensor nodes,
with the global Internet using the standardized compressed IPv6 protocol. These
networks of resource constrained devices, also called 6LoWPAN networks, and
the conventional Internet form the Internet of Things or strictly speaking the IP-
connected Internet of Things (IoT). A 6LoWPAN Border Router (6BR) is an
edge node that connects 6LoWPAN networks with the Internet. Due to the re-
source constrained nature of the devices or things, 6LoWPAN networks mostly
use IEEE 802.15.4 as link and physical layer protocol.

Unlike typical wireless sensor networks (WSN), 6LoWPAN networks or
IP-connected WSN are directly connected to the untrusted Internet and an at-
tacker can get access to the resource-constrained things from anywhere on the
Internet. This global access makes the things vulnerable to intrusions from the
Internet in addition to the wireless attacks originating inside 6LoWPAN net-
works. Potential applications of the IoT are smart metering, home or building
automation, smart cities, logistics monitoring and management, etc. These ap-
plications and services are usually charged and the revenue is based on data or
services used. Hence, the confidentiality and integrity of the data and timely
availability of services is very important.

Researchers have already investigated message security for the IoT using
lightweight DTLS [3], IPsec [4], and IEEE 802.15.4 link-layer security [5].
Even with message security that enables encryption and authentication, net-
works are vulnerable to a number of attacks aimed to disrupt the network.
Hence, an Intrusion Detection System (IDS) is necessary to detect intruders
that are trying to disrupt the network.

The available IDSs for WSNs could be used in the IoT. However, most
of these approaches are built on the assumptions that (i) there is no central
management point and controller, (ii) there exists no message security, and (iii)
nodes cannot be identified globally. The IoT has a novel architecture where
the 6BR is assumed to be always accessible, end-to-end message security is
a requirement [5], and sensor nodes are globally identified by an IP address.
Besides these opportunistic features, an IDS for the IoT is still challenging
since the things (i) are globally accessible, (ii) are resource constrained, (iii)
are connected through lossy links, and (iv) use recent IoT protocols such as
CoAP [6], RPL [7], or 6LoWPAN [2]. Therefore, it is worth investigating and
providing an IDS for the IoT exploiting these opportunities and threats.

To this end, we design, implement, and evaluate a novel Intrusion Detection

168 Paper E

Border-router

- 6Mapper
- Spoofing or Alteration
 Detection
- Node Availability
- Graph Validity
- End-to-end Packet Loss
- Mini-Firewall

IEEE 802.15.4

6LoWPAN

TCP/TLS UDP/DTLS

Network Stack

IPv6
IPSec

RPL

 IDS-modules
 - Packet loss
 - Firewall notification
 - 6Mapper client

Figure 10.1: An IoT setup where IDS modules are placed in 6BR and also in
individual nodes.

system for the IoT that we call SVELTE1. To the best of our knowledge this is
the first attempt to develop an IDS specifically designed for the IoT. Network
layer and routing attacks are the most common attacks in low power wireless
networks [8], and in this paper we primarily target these attacks. SVELTE is
also inherently protected against sybil and clone ID attacks; we discuss these
attacks in Section 10.3.2. We evaluate SVELTE against sinkhole and selective-
forwarding attacks. Our approach is, however, extensible and can be used to
detect other attacks as we discuss in Section 10.7.

The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [7]
is a novel standardized routing protocol primarily designed to meet the specific
routing requirements of the IoT. SVELTE uses RPL as a routing protocol. It
has two main components: the 6LoWPAN Mapper (6Mapper), and intrusion
detection modules. The 6Mapper reconstructs RPL’s current routing state, i.e.,
its directed acyclic graph, at the 6BR and extends it with additional intrusion
detection parameters.

One of the important decisions in intrusion detection is the placement of
the IDS in the network. We use a hybrid approach, see Section 10.3, and
place the processing intensive SVELTE modules in the 6BR and the corre-
sponding lightweight modules in the constrained nodes. Figure 10.1 presents
an overview of our IDS that we explain in more detail in Section 10.3. One of
our main design goals is that the IDS should be lightweight and comply with
the processing capabilities of the constrained nodes.

In addition to the 6Mapper and the intrusion detection techniques, we also

1SVELTE literary means elegantly slim.

10.2 Background 169

propose and implement a distributed mini-firewall to protect 6LoWPAN net-
works against global attackers from Internet. We implement SVELTE in the
Contiki operating system [9].

The main contributions of this paper are:

• We present SVELTE, a novel IDS with an integrated mini-firewall for
the IP-connected IoT that uses RPL as a routing protocol in 6LoWPAN
networks.

• We implement SVELTE and thoroughly evaluate it for 6LoWPAN net-
works that consist of resource-constrained things and have lossy com-
munication links.

The next section of this paper gives an overview of the technologies used
in SVELTE. Section 10.3 describes SVELTE that includes 6Mapper, the ac-
tual intrusion detection techniques, and the firewall. In Section 10.4 we detail
SVELTE’s implementation for the Contiki OS. Section 10.5 presents our de-
tailed performance evaluation of SVELTE. We highlight the current IDSs and
their applicability in the IoT in Section 10.6. Section 10.7 discusses the possi-
ble extensions in SVELTE, and finally we conclude the paper in Section 10.8.

10.2 Background
In this section we briefly discuss the technologies involved in SVELTE for the
IoT.

10.2.1 The Internet of Things
The Internet of Things (IoT) or strictly speaking IP-connected IoT is a hybrid
network of tiny devices, typically WSNs, and the conventional Internet. Unlike
typical WSN where devices are mostly resource constrained and unlike in the
Internet where devices are mostly powerful, the nodes or things in the IoT
are heterogeneous devices. An IoT device can be a light bulb, a microwave,
an electricity meter, an automobile part, a smartphone, a PC or a laptop, a
powerful server machine or a cloud, or potentially anything. Hence the number
of potential devices that can be connected to the IoT are in hundreds of billion.
IPv6’s huge address space has been designed to address this issue.

To connect resource constrained nodes such as WSN with the Internet using
IPv6, a compressed version of the IPv6 called 6LoWPAN has been standard-
ized [1, 2]. The 6LoWPAN protocol enables the routing of IPv6 packets in the

170 Paper E

IP-connected WSN (also called 6LoWPAN network) in a compressed and/or
fragmented form. Compression is needed since 6LoWPAN’s link and physical
layer protocol, IEEE 802.15.4, has a Maximum Transmission Unit (MTU) of
127 bytes. 6LoWPAN supports multi-hop enabling nodes to forward packets
on behalf of other nodes that are not directly connected to the 6LoWPAN bor-
der router (6BR). The 6BR is an end device that connects 6LoWPAN networks
with the Internet.

A 6LoWPAN network is a multi-hop wireless network where communi-
cation links are usually lossy and devices are resource-constrained and of-
ten battery powered. Therefore, the connection-less User Datagram Protocol
(UDP) is mostly used in 6LoWPAN networks. Further, connection oriented
web protocols such as HTTP are not feasible and a new protocol, the Con-
strained Application Protocol (CoAP), is being standardized for the IoT. Fur-
ther, a new routing protocol, IPv6 Routing Protocol for Low-Power and Lossy
Networks (RPL) [7], is standardized. SVELTE is primarily designed for RPL-
based 6LoWPAN networks.

10.2.2 RPL

The IPv6 Routing Protocol for Low-Power and Lossy Networks (RPL) [7] is
a standardized routing protocol for the IP-connected IoT. RPL is a versatile
protocol that enables many-to-one, one-to-many, and one-to-one communica-
tion. It creates a Destination-Oriented Directed Acyclic Graph (DODAG) and
supports different modes of operation: uni-directional traffic to a DODAG root
(typically the 6BR), and bi-directional traffic between constrained nodes and
a DODAG root. A typical RPL DODAG is shown in Figure 10.2 where each
node has a node ID (an IPv6 address), one or more parents (except for the
DODAG root), and a list of neighbors. Nodes also have a rank that determines
their individual position with respect to the DODAG root and relative to other
nodes. Ranks strictly increase from the DODAG root to nodes and strictly
decrease in the direction towards the DODAG root.

Every node in the RPL network must be able to determine whether packets
are to be forwarded to its parents, i.e., upwards, or to its children. The most
simple way for a node to accomplish this is to know all its descendants and use
the route to its parent as default route for all other packets. In-network rout-
ing tables are required to separate packets heading upwards and the packets
heading downwards in the network. This is the mechanism in the RPL im-
plementation in the Contiki operating system [9], that we use in this paper to
evaluate SVELTE.

10.2 Background 171

�������

�������

�������

�������

�������-3

�������

�������

������	

�������

������

�������-2 �������-1

�������

�����

	
��

��

Figure 10.2: A sample RPL DODAG that has N nodes with IPv6 addresses
from aaaa::1 to aaaa::N.

10.2.3 Security in the IoT

Real world IoT deployments require security. The communication between de-
vices in the IoT can be protected on an end-to-end or on a hop-by-hop basis.
IPsec [4] in transport mode provides end-to-end security between two hosts
in the IoT. In IPv6 networks and hence in 6LoWPAN, IPsec is mandatory to
implement, meaning that each IPv6-enabled device must have IPsec capabil-
ities. IPsec’s ESP protocol [10] ensures application data confidentiality and
optionally data integrity and authentication, and AH [11] protocol ensures the
integrity of whole IPv6 datagram that includes application data and IPv6 head-
ers.

If the Constrained Application Protocol (CoAP) [6] is used in the IoT as

172 Paper E

an application protocol then end-to-end security between two applications can
be provided with the Datagram Transport Layer Security (DTLS). Also, IEEE
802.15.14 link-layer security can be used for per hop security.

Besides having message security, the IoT is vulnerable to a number of at-
tacks [12] aimed to disrupt the network; hence intrusion detection mechanisms
are important in real world IoT deployments, e.g., in building automation, in-
dustrial automation, smart metering and smart grids.

10.2.4 IDS
An Intrusion Detection System (IDS) is a tool or mechanism to detect attacks
against a system or a network by analyzing the activity in the network or in the
system itself. Once an attack is detected an IDS may log information about it
and/or report an alarm. Broadly speaking, the detection mechanisms in an IDS
are either signature based or anomaly based.

Signature based detections match the current behavior of the network
against predefined attack patterns. Signatures are pre-configured and stored
on the device and each signature matches a certain attack. In general signature
based techniques are simpler to use. They need, however, a signature of each
attack and must also store it. This requires specific knowledge of each attack
and storage costs grow with the number of attacks. This approach is more static
and cannot detect new attacks unless their signature is manually added into the
IDS.

Anomaly based detection tries to detect anomalies in the system by deter-
mining the ordinary behavior and using it as baseline. Any deviations from
that baseline is considered an anomaly. On one hand, anomaly based systems
have the ability to detect almost any attack and adapt to new environments,
but on the other hand these techniques have rather high false positive rates (to
raise an alarm when there is no attack) as deviations from the baseline might
be ordinary. Also, they have comparatively high false negative rates (no alarm
when there is an attack) as attacks might only show a small deviation that is
considered within the norm.

Keeping in view the novel requirements of the IoT, in this paper we use a
hybrid of signature and anomaly based detections. We try to balance between
the storage cost of the signature based detection and the computing cost of the
anomaly based techniques. In SVELTE the detection techniques mostly target
routing attacks such as sink-hole, selective forwarding, and spoofed or altered
routing information [12]; however, SVELTE is extensible and can be used to
detect other attacks as we discuss in Section 10.7.

10.3 SVELTE: An IDS for the IoT 173

In sinkhole attacks [12] an attacker advertises a beneficial routing path and
thus makes many nodes route traffic through it. In RPL, an attacker can launch
a sinkhole attack by advertising a better rank thus making nodes down in the
DODAG select it as parent. In selective forwarding attacks [12], an attacker
forwards only selected packets. For example, an attacker could forward only
routing messages and drop all other packets to disrupt part of the network.

Once an attack is detected, the goal is to mitigate its effect and remove the
attacker from the network. The simplest approach to remove an attacker is to
ignore it. This requires the identification of the attacking node. Neither MAC
nor IP addresses are trustworthy as they can be easily spoofed. One possible
way to ignore a node is to use either a blacklist or a whitelist. A blacklist
would include all malicious nodes and a whitelist would include all valid nodes.
Maintaining a whitelist is easier in the presence of many attackers. In either
way it is necessary that an attacker cannot obtain another valid identity, with
sybil or clone ID attacks [12], as otherwise the attacker could restart the attack
without effort. In SVELTE we use a whitelist.

10.3 SVELTE: An IDS for the IoT
Recall that a 6LoWPAN network is a lossy and wireless network of resource
constrained nodes which uses IPv6 as networking protocol and often RPL as
a routing protocol. One of the design goals of any protocol for the IoT is
its ability to be deployed and run on constrained nodes in 6LoWPAN net-
works. Based on the novel requirements of the IoT, we propose SVELTE: a
lightweight yet effective intrusion detection system for the IoT. We also com-
pliment SVELTE with a distributed mini-firewall in order to filter malicious
traffic before it reaches the resource constrained nodes.

We design SVELTE for a 6LoWPAN network that uses message security
technologies, such as IPsec [4] and DTLS [3] to provide end-to-end message
security. In the rest of this section we present our intrusion detection system.

Placement of SVELTE The placement of an IDS is an important decision
that reflects the design of an IDS and the detection approaches. Keeping in
view the resource constrained nature of the devices and the IoT setup shown in
Figure 10.1, we use a hybrid, centralized and distributed, approach and place
IDS modules both in the 6BR and in constrained nodes.

SVELTE has three main centralized modules that we place in the 6BR. The
first module, called 6LoWPAN Mapper (6Mapper), gathers information about

174 Paper E

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Node
ID II

D DAG
ID V

er T
s Rank Parent

ID Neighbors . . .

Neighbors
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N Nbr ID Rank Nbr ID Rank . . . Nbr ID Rank

Figure 10.3: Packet format of the Mapping Response

the RPL network and reconstructs the network in the 6BR, as we describe
in Section 10.3.1. The second module is the intrusion detection component
that analyzes the mapped data and detects intrusion; Section 10.3.2 discusses
this. The third module, a distributed mini-firewall, is designed to offload nodes
by filtering unwanted traffic before it enters the resource constrained network;
Section 10.3.3 details this. The centralized modules have two corresponding
lightweight modules in each constrained node. The first module provides map-
ping information to the 6BR so it can perform intrusion detection. The sec-
ond module works with the centralized firewall. Each constrained node also
has a third module to handle end-to-end packet loss; this is discussed in Sec-
tion 10.3.2.

10.3.1 6LoWPAN Mapper
A vital component of SVELTE is the 6LoWPAN Mapper (6Mapper) that re-
constructs the RPL DODAG in the 6BR and complements it with each node’s
neighbor and parent information. To reconstruct the DODAG, the 6Mapper
sends mapping requests to nodes in the 6LoWPAN network at regular inter-
vals. The request packet contains the information necessary to identify an
RPL DODAG. It includes the RPL Instance ID (IID), the DODAG ID, and
the DODAG Version Number [7]. It also includes a timestamp (Ts) to know
the recency of the mapping information received. The total size of a mapping
request packet is 5 bytes.

Each node responds to the mapping request by perpending a Node ID to
the request packet and by appending node rank, parent ID, and all neighbor
IDs and ranks. An illustration of the mapping response packet format is shown
in Figure 10.3. The basic response packet is 13 bytes long and requires an
additional four bytes for each neighbor.

10.3 SVELTE: An IDS for the IoT 175

6Mapper with Authentic and Reliable Communication It is likely that
IPsec Authentication Header (AH) [4] or IEEE 802.15.4 link-layer security
are enabled in the IoT to protect the integrity of the IP headers. In this case
there is no need to include the node ID in the response packet, as that would
be the source address in the IP header. When the 6Mapper host, i.e., 6BR, has
the same IPv6 address as the DODAG root it is also unnecessary to include the
DODAGID that corresponds to the destination IP in the IP header. In the re-
quest packet the source and destination fields in the IP header have the opposite
meaning, i.e., the IP source corresponds to the DODAGID and the destination
corresponds to the node ID.

If mapping-packets are transferred reliably, for example, by using CoAP
that employs acknowledgements, there is no need to send a timestamp with the
mapping data as we can be sure that the packets arrive within the timeout spec-
ified for the underlying protocol. When the communication in the 6LoWPAN
is authentic and reliable, the size of the 6Mapper request and response packets
is reduced to 1 byte and 8 bytes, respectively.

Unidirectional RPL 6Mapper Some RPL implementations only support traf-
fic destined to the DODAG root, typically the 6BR. To provide network map-
ping for these 6LoWPAN networks it is possible to alter the 6Mapper and let it
wait for the periodic mapping response packets from each node without send-
ing the explicit request packet. This solution has the additional advantage that
it reduces traffic in the network which reduces power consumption. However,
slightly more logic has to be added in each node which increases the memory
consumption.

Valid inconsistencies in 6Mapper In our 6Mapper there is a possibility that
mapping responses are inconsistent with each other, which can lead to false
positives if not handled properly. This can happen if the information a node
sends to the network mapper has become outdated or when an attacker de-
liberately changes the information. Below we show how valid routing graph
inconsistencies occur. Consider a RPL DODAG where Node P is the parent
of node C, the function Ra(Node) represents the actual rank of Node and
Rm(Node) represents the rank known to the 6Mapper.
- Node P sends its rank to the 6Mapper, Ra(P) = 1024 and Rm(P) = 1024
- Node P recalculates its rank and advertises it,
Ra(P) = 512 and Rm(P) = 1024
- Node C receives the updated rank from P

176 Paper E

- Node C recalculates its rank. Ra(C) = 768
- Node C sends its rank to the 6Mapper, Ra(C) = 768 and Rm(C) = 768

As can be seen the state of the network is:
Ra(P) = 512
Ra(C) = 768
Rm(P) = 1024
Rm(C) = 768
This state is perfectly valid as node P has a better rank than node C, Ra(P) <
Ra(C). However, the 6Mapper assumes that the child, node C, has a better
rank than its parent, which is inconsistent as Rm(P) > Rm(C).

This is a problem which needs to be taken into consideration when design-
ing methods for analyzing the mapped data. Leveraging the amount of sensors
in a 6LoWPAN we improve the accuracy when faced with both natural and
artificial inconsistencies; Section 10.3.2 discusses methods to overcome such
inconsistencies.

Mapping requirements For our 6Mapper to be fully effective the packets
used to map the network need to be indistinguishable from other packets. If an
adversary can distinguish the traffic used by the 6Mapper from other traffic it
is possible for an adversary to perform selective forwarding and only forward
traffic necessary for the mapper, while dropping other traffic.

The first step to prevent this is to encrypt the data, to avoid that the packet
content is revealed to an eavesdropping adversary. As mentioned earlier we
assume that the message contents are protected with upper-layer security pro-
tocols such as IPsec or DTLS. Secondly, headers should not reveal any infor-
mation that enables an eavesdropper to determine that the packet is used by
the 6Mapper. Therefore it can be problematic if the source of the 6Mapper is
the same for all nodes, as the IP header must be readable for all nodes. The
adversary could use the IP header and the knowledge about the 6Mapper’s
host address to identify network mapping traffic. A simple solution to prevent
this is to assign as many IPv6 addresses to the 6Mapper as there are nodes in
the network. This is possible for RPL as IPv6 has a potentially unlimited ad-
dress space of 2128 addresses. Thus, when an adversary compromises a node
it will only know the node’s mapping address and no other mapping addresses.
Hence, it is not able to distinguish between ordinary traffic and mapping traffic
for other nodes.

However, if the attacked node has more resources it may use more advanced
traffic patterns and node behavior analysis techniques, and it might still be

10.3 SVELTE: An IDS for the IoT 177

possible for an adversary to distinguish between ordinary and mapper-related
traffic.

10.3.2 Intrusion Detection in SVELTE
We design and implement three detection techniques which use the 6Mapper.
The detection techniques primarily detect spoofed or altered information, sink-
hole, and selective forwarding attacks. However, our approach is extensible
and more attacks can be detected; we discuss some of the possible extensions
in Section 10.7.

Network Graph Inconsistency Detection

In the IoT individual nodes may be compromised by an attacker and later used
to launch multiple attacks. For example, in RPL-based 6LoWPAN networks
the attacker can use compromised nodes to send wrong information about their
rank or one of their neighbor’s rank to the 6Mapper. It is also possible to
get an incorrect or inconsistent view of the network because of the lossy links
in the IoT. It is therefore important to detect the inconsistencies, distinguish
between valid and invalid consistencies, and correct the invalid information.
The complete algorithm to detect and correct the routing graph inconsistencies
is described in Algorithm 1.

In order to detect incorrect information and to make sure that information
is consistent across the network, each edge in the network is checked. The
6Mapper provides node ID and rank of each node, of its parents, and of its
neighbors. We iterate over each edge in the network, checking that both nodes
agree with each other about their rank and detect the inconsistencies. It is
possible that a false alarm is raised because the detected incorrect information
is a result of valid mapping inconsistencies described in Section 10.3.1.

In order to distinguish between valid and invalid inconsistencies, or to avoid
false positives, we rely on (i) the number of reported faulty ranks and (ii) the
difference between the two reported ranks. We use a simple threshold, referred
to as FaultThreshold in Algorithm 1, and classify a node as faulty if the
number of disagreements this node has with other nodes are larger than the
threshold. Most of the disagreements between two nodes are small and a result
of varying link quality and ultimate RPL adjustments. To accommodate valid
inconsistencies, we only consider disagreements where the difference of the
two nodes ranks is greater than 20% of the ranks average; this value is based
on our empirical evaluation of SVELTE.

178 Paper E

Algorithm 1 Detect and Correct the RPL DODAG Inconsistencies
Require: N - A list of nodes

for Node in N do
for Neighbor in Node.neighbors do

Diff = |Node.neighborRank(Neighbor)−Neighbor.rank|
Avg = (Node.neighborRank(Neighbor)+Neighbor.rank)/2 {If the absolute difference
is greater than 20% of the ranks average}
if Diff > Avg ∗ 0.2 then

Node.fault = Node.fault+ 1
Neighbor.fault = Neighbor.fault+ 1

end if
end for

end for
for Node in N do

if Node.fault > FaultThreshold then
Node.rank = Rank reported for Node by any neighbor
for Neighbor in Node.neighbors do

Node.neighborRank(Neighbor)= Neighbor.rank
end for

end if
end for

We correct the faulty information when both of the above conditions are
met, i.e., once we have large inconsistencies towards a node. The faulty in-
formation corresponding to a node is corrected by changing the rank known to
6Mapper by substituting it with the information reported by one of its neigh-
bors. The neighbor information is updated with the information reported di-
rectly by its neighbors.

Once it is detected that a routing inconsistency is a result of a deliberate
attack, SVELTE either removes the faulty node or corrects the inconsistency.
SVELTE keeps track of inconsistencies and if it is the first time a node is de-
tected as malicious it is not immediately removed as it may be a false alarm
or result of a passive attack; in this case the faulty information is corrected as
described above. However, if the same node is detected as faulty again it is
removed by deleting its entry from the whitelist maintained in the 6Mapper.

Checking Node Availability

It is important to detect if a node or set of nodes are available and operating
properly. When a particular node is compromised it may launch multiple at-
tacks to disrupt the network. For example, it may launch a selective forwarding
attack and intelligently drop messages. If an RPL network uses CoAP to send

10.3 SVELTE: An IDS for the IoT 179

Algorithm 2 Detect Filtered Nodes
Require: W - Set of whitelisted nodes
Require: M - Set of nodes known to the 6Mapper

F = [] {F will contain the filtered nodes}
for Node in W do

if Node in M and M [Node].lastUpdate() > RecencyThreshold then
F .add(Node)

end if
end for
return F

application data the attacker could forward RPL traffic but drop CoAP traffic.
This would result in a seemingly working network even though no useful traffic
gets through.

Depending on the RPL implementation and the configuration, we can use
the RPL routing table in the RPL DODAG root as a basis for available nodes in
the network. As we require a whitelist of valid nodes in the network for access
control we could also use that list as a basis for detection.

When we compare the whitelisted nodes with the nodes in our RPL DODAG
all differences are offline nodes or unauthorized nodes. Let W be a set of all
whitelisted nodes and let R be the nodes known to RPL in the RPL DODAG
root, the offline nodes, O are thus:

W \R = O

where O is the relative complement (\) between two sets W and R meaning
that O contains all elements of W that are not in R.

It is however not possible to determine if nodes excluded from O are be-
ing filtered or are simply offline. That is, if an attacker performs a selective
forwarding attack and filters everything but RPL messages it would with the
previous method appear as if the nodes are still online, even though all applica-
tion data is being filtered. By extending the above method with the information
available through 6Mapper it is also possible to detect selective forwarding at-
tacks. Let M represent nodes known to 6Mapper and F be the filtered nodes
we get the following relationship:

W \M = F

As the 6Mapper for each node keeps track of the last time it received a
packet from a node we can detect filtered nodes by simply checking if we have
not recently received any packets from them. In order to mitigate the effects

180 Paper E

of packet loss or other similar events common in lossy networks we introduce
a threshold on the time since our last packet. We define the threshold as a
number of mapping-requests allowed to be unanswered. With this threshold
it is possible to alter the sensitivity of the filtered node detection to be easily
adaptable to specific deployments. Algorithm 2 describes this behavior and
finds all filtered nodes F in a network.

Routing Graph Validity

By artificially altering the routing graph, an attacker can reshape the topology
of the network and can control the traffic flow to his advantage. For example,
an attacker performs a sinkhole attack by advertising a very good rank to its
neighbors. The problem becomes more severe if the sinkhole attack is coupled
with other attacks. A sinkhole attack can, for example, enable the attacker to
intercept and potentially alter more traffic than otherwise. If combined with a
selective forwarding attack a much larger part of the network can be controlled.
It is therefore important to detect such attacks.

With SVELTE, it is possible to detect most sinkhole attacks by analyzing
the network topology. If the routing graph is inconsistent it is likely an attack
is in place. In RPL, the rank in the network should be decreasing towards the
root, i.e., in any child-parent relation the parent should always have a lower
rank than the child. All cases where a child has a better rank than its parent is
an indication of routing graph incoherency, as specified in [7].

When an incoherency is found the child in the relation is at fault, as a node
should never have a lower rank than its parent. With such a simple approach
false positives are likely to arise, i.e., we detect inconsistencies while in fact all
nodes are working properly.

In order to minimize the effects of valid inconsistencies, that can raise false
positives, we require several consecutive inconsistencies to be reported for the
same nodes. That is we require more than one sample of the network to have
the same incoherency to raise an alarm. This is described in the Algorithm 3
as FaultThreshold which is a global state kept between consecutive runs of
the detection algorithm. In RPL the rank between any host and its parent is at
least MinHopRankIncrease [7]. We utilize this in our algorithm to better
conform to the RPL standard.

A sinkhole attack would in most cases be detected by this algorithm. As the
attacker advertises a beneficial rank it will most likely have to advertise a better
rank than its parent and as such would be detected by the detection scheme
described above. If a sinkhole attack is to remain undetected the advertised

10.3 SVELTE: An IDS for the IoT 181

Algorithm 3 Finding Rank Inconsistencies
Require: N - A list of nodes

for Node in N do
if Node.rank +MinHopRankIncrease < Node.parent.rank then

Node.fault = Node.fault+ 1
end if

end for
for Node in N do

if Node.fault > FaultThreshold then
Raise alarm

end if
end for

Algorithm 4 Adapt to End-to-end Losses
Require: dest - The destination with packet loss

nexthop =getNexthop(dest)
nexthop.metric = nexthop.metric ∗ 0.8

rank of a malicious node must not be better than that of its parent. This would
in turn result in the adversary’s rank only being slightly improved over a non-
adversarial node and thus yield little benefit.

In RPL, the rank as well as the parent selection is calculated via an objec-
tive function, which might use factors such as link quality in its calculation;
for example when the Expected Transmission Count (ETX) [13] is used to cal-
culate rank. The ETX is an approximation of the link quality and as such a
bad link might affect the choice of parent more than a slight difference in rank.
This would further lower the impact of a sinkhole attack that is undetectable
by Algorithm 3.

End-to-end Packet Loss Adaptation

We design an intentionally simple system to take end to end losses into account
when calculating the route and to mitigate the effects of filtering hosts. If a
reliable higher layer protocol such as TCP or CoAP (with confirmable messag-
ing) is used, packet loss can be detected using the protocol’s acknowledgement
mechanism. The reasoning behind a host-to-host packet loss indication is that
if an attacker is filtering packets some hops down the path we want to be able
to adapt to it. In the RPL-based network, if a packet is filtered somewhere on
the path a new parent should eventually be tried.

The approach is not able to adapt to every form of filtering, for example,

182 Paper E

(a) 8 nodes with 1 (ID 1) ma-
licious node.

(b) 16 nodes with 2 (ID 2 and
3) malicious nodes.

(c) 32 nodes with 4 (ID 2, 3, 4,
5) malicious nodes.

Figure 10.4: Network configurations and node placement that are used in the
experiments in this section

when the attacker is located such that all packets have to go through it. If
however a collection-scheme with acknowledgements is also running in the
network all data losses should be corrected for. Since all nodes will try to send
data to the sink all nodes with a path through the attacker will also notice the
losses and correct for them, given that the attacker filters all application data. If
a packet is not able to reach its destination, we slightly alter the route metric of
the route, that is the next-hop neighbor for that packet, (20% in Algorithm 4)
to reflect that there might be an attacker along the path. Algorithm 4 describes
end-to-end packet loss adaptation.

Sybil and CloneID Attacks Protection

In a Sybil attack an attacker copies several logical identities on one physical
node whereas in a cloned identity (CloneID) attack the attacker copies the same
logical identity on several physical nodes. Both attacks are aimed to gain access
to a large part of the network or in order to overcome a voting scheme. The
6Mapper only considers the latest information received from each host in the
network where a host is identified by an IP address. A sybil attack has no
direct effect on the 6Mapper as it makes no difference if the identities are on
the same physical node as if they are separate physical entities, each host is
treated individually in both cases. While cloned identities can interrupt the
routing in a network it does not affect the 6Mapper directly as the 6Mapper only
considers the latest information received from one of the identity. As a result
if two cloned nodes send information to the 6Mapper there is no difference
compared to if one node sends the information twice, thus not directly affecting

10.3 SVELTE: An IDS for the IoT 183

Algorithm 5 Mini-firewall
Require: Host - The host to report
Require: Source - The node that sent the report
Require: GlobalF ilter - A set of external hosts to filter towards all nodes
Require: LocalF ilter - A map mapping an external host to a set of local nodes. The set describes

all nodes that have reported that specific external host.
if Host in GlobalF ilter then

return Host already filtered
end if
if Host in LocalF ilter then

Filter = LocalF ilter.get(Host)
{Add Source to the list of nodes blaming Host}
Filter.add(Source)
if Filter.size() ≥ ReportThreshold then

GlobalF ilter.add(Host)
LocalF ilter.remove(Host)

end if
end if

the operations of the 6Mapper. Sybil attacks and cloned identities are both
often used to disrupt different voting schemes by giving an attacker more votes.
Voting schemes based upon 6Mapper collected data will be unhindered by both
sybil attacks and cloned identities.

10.3.3 Distributed Mini-firewall

Though SVELTE can protect 6LoWPAN networks against in-network in-
trusion, it is also important that the resource constrained nodes are protected
against global attackers that are much more powerful. For example, it is easier
for hosts on the Internet than constrained nodes in 6LoWPAN networks to per-
form denial of service attacks. Firewalls are usually used to filter external hosts
and/or messages destined to local networks. As the end-to-end message confi-
dentiality and integrity is necessary in the IoT, the SVELTE module in the 6BR
or a firewall cannot inspect the contents of the encrypted messages; therefore,
it is hard to distinguish between the legitimate and malicious external traffic.

We propose a distributed mini-firewall that protects a 6LoWPAN network
from external hosts. The firewall has a module in the 6BR and in the con-
strained nodes, and is integrated with SVELTE. Our firewall, besides providing
typical blocking functionally against well-known external attackers specified
manually by the network administrator, can block the external malicious hosts
specified in real-time by the nodes inside a 6LoWPAN network.

184 Paper E

The destination host inside a 6LoWPAN node can see the encrypted con-
tents and hence analyze the malicious traffic and notify the 6BR in real-time to
filter traffic coming from the compromised host, therefore stopping the traffic
before it reaches the constrained nodes. When a constrained node notices an
external host being abusive it sends a packet with the host IP to the firewall
module in the 6BR. As is the case with the 6Mapper, if IPsec with Authenti-
cation Header is used the nodes own ID can be omitted. Otherwise, the nodes
own ID need to be included. If the node ID is included it can be compressed
down to 2 bytes using 6LoWPAN header compression mechanisms. The exter-
nal host however can neither be compressed nor omitted as it can be any valid
IPv6 address. Therefore the minimal size of the filtering-request packet is 16
bytes. With the node ID the size of the packet is 18 bytes.

In order to make sure that no internal compromised node can abuse this
mechanism by requesting filtering of traffic from a legitimate external host,
both the source and the destination is taken into account when filtering. The
node inside a 6LoWPAN network can only choose to filter the traffic destined
to itself. Such a firewall is still easy to circumvent as the attacker can simply
target another node in the network and start the attack again; therefore, we
extend the firewall to adapt and block any external host if a minimum set of
nodes complain about the same external host. Our mini-firewall is described in
Algorithm 5.

To be more preventive against global attackers, our mini-firewall can be
extended with AEGIS [14], a rule-based firewall for wireless sensor networks.

10.4 Implementation

We implement SVELTE and the mini-firewall in the Contiki OS [9], a well
known operating system for the IoT. Contiki has a well tested implementation
of RPL (ContikiRPL). As SVELTE is primarily designed to detect routing at-
tacks we make use of the RPL implementation in the Contiki operating system
to develop the 6Mapper, the firewall, and the intrusion detection modules. The
RPL implementation in Contiki utilizes in-network routing where each node
keeps track of all its descendants. We borrow this feature to detect which
nodes should be available in the network. To provide IP communication in
6LoWPAN we use µIP, an IP stack in Contiki, and SICSLoWPAN- the Contiki
implementation of 6LoWPAN header compression. We also implement the
sinkhole and selective forwarding attacks against RPL to evaluate SVELTE.

10.5 Evaluation 185

SVELTE is open source2 and is available to researchers and industry.

10.5 Evaluation
In this section we present the empirical evaluation of SVELTE. After describ-
ing our experimental setup, we quantitatively evaluate the detection rate and the
true positives for each experiment. We also measure the overhead of SVELTE
both at the node-level and network-wide. We evaluate the overhead in terms of
energy consumption and the memory footprint.

10.5.1 Experimental Setup

We run our experiments in Contiki’s network simulator Cooja [15] that has
shown to produce realistic results [16]. Cooja runs deployable Contiki code.
In our simulations, we use emulated Tmote Sky [17] nodes.

In general, we expect that the 6BR is not a constrained node and it can be a
PC or a laptop; however, currently there exists no PC equivalent 802.15.4 de-
vices, therefore we run the 6Mapper natively, i.e., on Linux, and communicate
with Cooja using a serial socket. For RPL with 6Mapper we run each test 10
times, and calculate the average and standard deviation to show the accuracy
and precision of our results. On the other hand, the experiments with RPL only
(without the 6Mapper) have no processing intensive components and hence re-
quire no native parts. Therefore, the experiments with RPL-only yield the same
results for all experiments as we use the same seed.

10.5.2 SVELTE Detection and True Positive Rate

Here we quantitatively evaluate the detection rate, i.e., the number of malicious
nodes successfully detected against the total number of malicious nodes present
in the system, and the true positives rate, i.e., the total number of successful
alarms divided by the total number of alarms. We use three different config-
urations shown in Figure 10.4a, 10.4b and 10.4c. In each configuration node
no 1 (green) is the 6BR. Using these settings, we run experiments for 5, 10,
20, and 30 minutes. In all experiments, the 6Mapper is configured to request
data and to perform analysis every two minutes. Therefore, the first 6Mapper
request will be sent after two minutes. The first analysis is also performed

2For the source code visit: http://www.shahidraza.info

186 Paper E

after 2 minutes but will however not yield any results as no data is yet gath-
ered. Therefore the earliest possible detection time is after four minutes. It is
important to note that these are the settings in our experiments and not the re-
quirements for SVELTE. The malicious nodes can spoof or alter information,
and/or can perform sinkhole or selective forwarding attacks. In the following
experiments SVELTE first performs network graph inconsistency detection as
described in Section 10.3.2, before detecting sinkhole or selective forwarding
attacks. Each experiment is run in a lossy and in a lossless network. Lossless
links provide the perfect scenario for 6Mapper, as all requests and responses
return without delay and loss, and we get a true picture of the network. This is
further improved by the fact that nodes more quickly can propagate their ranks
down in the network graph. The real 6LoWPAN networks are mostly lossy,
therefore we consider both cases in our evaluation. The loss model is Cooja’s
default radio model that uses a Unit Disk Graph Medium (UDGM): Distance
Loss [15]. UDGM models the transmission range as a circle in which only the
nodes inside the circle receive packets. The UDGM Distance Loss model, an
extension of UDGM, also considers interference.

0 %

20 %

40 %

60 %

80 %

100 %

5 10 20 30

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

Runtime (minutes)

8 Nodes
16 Nodes
32 Nodes

Figure 10.5: For the smaller lossy network, SVELTE has 90% true positive
rate against sinkhole attacks which decreases for larger networks but gets better
when RPL becomes stable.

10.5 Evaluation 187

Sinkhole Attacks with and without losses The results for the sinkhole at-
tack in a lossless network scenario show almost 100% true positive rate on the
first possible attempt to analyze the network and no false positives are detected
during the simulations. A lossless network configuration means that all re-
quested data is gathered quickly and without losses, which implies that the map
of the network is a perfect representation of the actual network. Because of this
it is very easy to detect all sinkhole attacks without any false positives. In the
lossy network configuration, Figure 10.4a, the true alarm rate is approximately
90%, as shown in Figure 10.5. However, with the increase in network size the
true alarm rate decreases; this is because for the larger network configurations
it takes some time before the RPL network and our map of the network become
stable and complete enough to arrive at a higher true positive rate. For exam-
ple, in the scenario with 16 nodes it takes 30 minutes to arrive at the same true
positive rate as is done with 8 nodes after 10 minutes. The reason Figure 10.5
shows a non-existent detection rate for the case of 5 minutes is because we
only raise an alarm if the same node has been misbehaving for more than two
consecutive executions of our algorithm. Hence, the current configuration im-
plies that a sinkhole attack can be detected after 6 minutes. Our approach does
not require collection of two consecutive messages or executions to work. Col-
lecting multiple messages is advantageous to make sure that it was actually an
attack and not a sudden link fluctuations, for example due to interference. If
the attack persists for two consecutive executions of our algorithms then we
raise an alarm; this is done primarily to reduce false positives.

From these results it is evident that SVELTE is very effective against sink-
hole attacks in a network with no or few losses, and in lossy networks it is more
effective when the RPL network has become stable.

Selective Forwarding Attack with and without losses In a selective for-
warding attack a malicious node filters traffic going through it. Hence, the
6Mapper will not be able to get any data from any children of the malicious
nodes in the network. This in turn has the effect that the results of the 6Map-
per depend on the actual network topology, i.e., in the lossless case, unlike
with sinkhole attacks, the results are not always 100%. We can see the effects
of this phenomenon in Figure 10.6a. In a lossy network, as shown in Fig-
ure 10.6b, there is a gradual increase in the true positive rate going towards a
bit over 80% in all cases. As the network is lossy messages are naturally lost,
and if that happens several consecutive times when mapping we are going to
get more false positives. If we raise the various thresholds in our detection al-
gorithms it is possible to lower the number of false alarms, possibly at the cost

188 Paper E

Typical Conditions MIN NOM MAX UNIT
Voltage 2.1 3.6 V
Free air Temperature -40 85 C
MCU on, Radio RX 21.8 23 mA
MCU on, Radio TX 19.5 21 mA
MCU on, Radio off 1800 2400 µA
MCU idle, Radio off 54.5 1200 µA
MCU standby 5.1 21.0 µA

Table 10.1: Operating Conditions in Tmote sky

of a decreased detection rate. In order to reduce number of false positives we
may use location information of the nodes as discussed in Section 10.7.
We also measure the detection rate during all of the above experiments. We

achieve 100% detection rate meaning that we can detect all malicious nodes
that launch sinkhole and/or selective forwarding attacks. It should be noted
that the 100% detection rate is for the current set of experiments with the cur-
rent setting; we do not claim that SVELTE should achieve 100% detection rate
in all settings. As can be seen in Figure 10.5 and 10.6 the true positive rate
is not 100%, i.e., we have some false alarms during the detection of malicious
nodes. This is mostly caused by our configuration. It might be possible to alter
the behavior of our detection algorithm, for example, by changing the thresh-
old used in Algorithm 2 and thus possibly get a different result with regards to
detection rate and/or false alarm rate.

10.5.3 Energy Overhead

The nodes in the IoT are usually battery powered and hence energy is a scarce
resource. Here we measure SVELTE’s power consumption both at node-level
and at system-level. We use Contiki Powertrace [18] to measure the power
consumption. The output from the Powertrace application is the total time the
different parts of the system were on.

We calculate the energy usage and power consumption using the nominal
values, the typical operating conditions of the Tmote sky, shown in Table 10.1.
We use 3V in our calculations. In the rest of this paper MCU idle while the
radio is off is referred to as low power mode, or LPM . The time the MCU
is on and the radio is off is referred to as CPU time. The time the radio
is receiving and transmitting with the MCU on is referred to as listen and
transmit respectively. We measure energy in both duty cycled 6LoWPAN

10.5 Evaluation 189

networks, where the radio is mostly off, and in non duty cycled networks where
the radio is always on for listening and transmitting.

Network-wide with Duty Cycling

Here we evaluate network-wide energy consumption of an RPL network with
and without the 6Mapper and intrusion detection mechanisms in a duty cycled
network. We use ContikiMAC [19], a duty cycling MAC protocol in Contiki.
We use the default ContikiMAC setting that has 8 wakeups per second and
without traffic the radio is on for 0.6% of the time. We run each experiment in
a network of 8, 16, 32 and 64 emulated Tmote sky nodes, with nodes placed at
the same locations.

Figure 10.7a shows the network-wide energy usage for 30 minutes by all
the nodes, calculated as follows

Energy(mJ) = (transmit ∗ 19.5mA+ listen ∗ 21.8mA+ CPU∗
1.8mA+ LPM ∗ 0.0545mA) ∗ 3V/4096 ∗ 8

From the network wide energy usage, we calculate the average power as,

Power(mW) =
Energy(mJ)

T ime(s)

which when divided by the total number of nodes gives us the per node aver-
age power consumption during the experiment. Figure 10.7b shows the power
consumption per node. As can be seen in Figure 10.7a and 10.7b the overhead
of the 6Mapper is negligible for small networks (up to 16 nodes) and increases
with the number of nodes. The total overhead of SVELTE is approximately
30% more than running RPL only for networks with 64 nodes. Recall that with
duty cycling the radio is off for approximately 99% of the time.

Network-wide without Duty Cycling

We use the same network settings as in Section 10.5.3 and run the experiments
in a non duty cycled network where the radio is always turned on to receive
and transmit packets. When we compare the results of RPL with the 6Mapper
plus intrusion detection algorithms we see that the overhead is negligible. This
is because the radio is always on and most of the nodes’ energy is consumed
on idle listening.

In-node Energy Overhead

Here we measure the energy consumption of handling a single event of the
6Mapper and the firewall inside a constrained node. Table 10.2 lists the energy

190 Paper E

Event Energy (mJ)
6Mapper Response Handling 0.1465
Firewall handling 0.0478
Packet lost correction 0.0483

Table 10.2: Energy consumption for handling a single event inside a con-
strained node.

Configuration Total ROM (byte) Overhead (byte)
6Mapper client 44 264 1 414
Firewall client 43 556 0 246
Packet loss improvement 43 264 0 122
6Mapper server (1 node, 1 neighbor) 46 798 3 580
6Mapper server (8 node, 1 neighbor) 46 798 3 846
6Mapper server (16 nodes, 1 neighbor) 46 800 4 152
6Mapper server (16 nodes, 8 neighbors) 46 924 4 724

Table 10.3: Out of total 48k of ROM size in a constrained device (Tmoke sky),
SVELTE requires 1.76k. However, in the 6BR (typically a PC) the size grows
when the number of nodes increases.

required to perform different tasks; this does not include the energy needed
to send/receive packets which we have included in Section 10.5.3 and 10.5.3.
As can be seen in Table 10.2, a constrained node consumes very little energy
for local processing as most of the processing intensive tasks are performed in
the 6BR where the 6Mapper and the main SVELTE detection modules reside.
Therefore, the energy consumed for in-node processing is clearly negligible.

10.5.4 Memory Consumption

In Table 10.3 we show the extra ROM requirements of SVELTE’s different
modules. The baseline for each configuration is different as some depend on
different parts of the Contiki system. For example, the 6Mapper that resides in
the 6BR (typically a PC) requires more ROM than other nodes. However, the
total additional ROM required to host SVELTE’s modules inside a constrained
node is 1.76k which is well below the total available ROM in constrained de-
vices such as 48k in Tmote sky. In Table 10.3 it is important to note the over-
head column which shows the pure overhead of SVELTE modules in Contiki.
Even though 6Mapper is not targeted towards running on constrained nodes it

10.6 Related Work 191

Event RAM (byte)
6Mapper Response Handling 162
Firewall handling 24
Packet lost correction 188

Table 10.4: Additional RAM usage by SVELTE for handling a single event
inside a constrained node.

is still lightweight enough and can be used for small networks.
We also measure the RAM size of 6Mapper response handling, firewall,

and packet loss correction which we show in Table 10.4. The total RAM size
in the Tmoke sky is 10kb, hence SVELTE modules with 0.365k additional
RAM requirement can easily run in constrained nodes.

10.6 Related Work
The IoT is a rather old concept and for many years RFID-based sensors were
considered as things in the IoT. With the inception of 6LoWPAN, lightweight
IP is being standardized and used in the IoT for the unique identification and
global connectivity of the things. Even when confidentiality and integrity are
enforced by message security solutions such as IPsec [4] it is possible to disrupt
the IoT. A number of attacks against the IoT have been identified [8] in addition
to those against WSN [12] that are also applicable to the IoT. Therefore, it is
important to have systems that detect such attacks.

The concept of intrusion detection is quite old and extensive research is
carried out in this field mostly against the Internet attacks and attacks against
WSN. However, no IDS are specifically designed in the context of IoT. Most
of the IDS approaches for WSN are based on a distributed architecture and
are built on the limitation that there is no centralized management and con-
trol point. A common IDS approach for WSNs is to utilize several special
nodes distributed evenly throughout the network. These special nodes can
either be physically different [20] or dynamically distributed throughout the
network [21, 22]. In real deployments, however, it cannot be guaranteed that
particular nodes are always present in specific locations in the network; also,
the cost of employing mobile agents that move through the network might be
too high. Clustering based approaches have similar issues as each cluster often
requires a powerful entity for coordination [23]. The IoT has a novel architec-
ture where the 6BR is always assumed to be accessible and is a potential place

192 Paper E

for centralized management and control. SVELTE make use of this novel IoT
architecture and presents a new placement for IDS. Using a mix of centralized
and distributed architecture SVELTE takes advantage of both realms.

Many IDS approaches are based upon watchdog techniques [21, 24] which
could be used in the IoT. In addition to being distributed and fully deployed on
sensor nodes, a general problem with watchdog based approaches is that they
require promiscuous listening, which consumes a lot of power and therefore is
not suitable for constrained devices. Advanced anomaly detection approaches
are proposed [25, 26], not primarily for WSNs, which on one hand can detect
many intrusions efficiently but on the other hand requires intelligent learning,
which is both expensive and difficult in low powered 6LoWPAN networks.

Most current IDS approaches require different routing schemes that are not
based on standardized mechanisms. As far as we are aware, no approach is built
around 6LoWPAN and RPL in the context of the IoT. Our approach considers
RPL to decrease the cost of performing intrusion detection. Likewise, we have
taken into account the fact that there is a central entity, the 6BR, that connects
the sensor network with the conventional Internet, which is a standard based
networking solution [1, 2, 7].

We do not claim that no other IDS approach can be used in the RPL-
connected IoT. Rather we argue that these approaches are built on different
assumptions that do not fully hold in the IoT architecture. Also, the IoT gives
rise to new challenges that do not exist in typical WSNs. However, there is a
potential to incorporate already available approaches in the SVELTE architec-
ture. We discuss below the possibilities to integrate available lightweight IDS
approaches in SVELTE.

10.7 SVELTE Extensions

One of the main advantages of our approach to intrusion detection is that the
proposed and developed system is very easy to extend. There are a number
of potential attacks against the Internet of Things and it is likely that more at-
tacks will be discovered. As such extendability is very important for an IDS.
The 6Mapper is easy to extend both conceptually and in practice. If a new
detection scheme requires more data to be added to the network graph the re-
sponse packets can easily be extended. Also, using the already available data
that we collect through the 6Mapper it is possible to apply anomaly detection
techniques, for example via the use of Support Vector Machines [27], feature
vectors [28], or automata based approach [29].

10.8 Conclusions 193

Wormhole Detection One of the important to detect attacks in wireless net-
works is wormhole [30]. If the 6Mapper is extended with the signal strength of
each node’s neighbor it is also possible to detect wormhole attacks [31].
Pinpointing filtering node If a node is filtering traffic it is beneficial to be able
to pinpoint more accurately which node is performing the filtering. The most
straight forward approach is to perform a traceroute [32] towards one of the
missing nodes.
Location Information RPL is primarily designed for static networks, though
it can be extended to support mobility [33], it is possible to add node’s loca-
tion in the 6Mapper at the deployment time. The location of a node can also
be estimated in real-time using localization techniques [34]. These location
information help SVELTE to build a physical map of the network that will
ultimately enhance its intrusion detection capabilities. For instance, with this
physical map rank modification and hence the sink-hole attack can be detected
with even lesser false positives alarms. The location information of nodes will
also help SVELTE to mitigate the sybil and CloneID attacks aimed to disrupt
the routing information [35].

10.8 Conclusions

6LoWPAN networks will be an integral part of the IoT. Considering the po-
tential applications of the IoT it is important that 6LoWPAN networks are pro-
tected against internal and external intrusions. To this end we present SVELTE,
the first IDS for the IoT which consists of a novel architecture and intrusion
detection algorithms. We implement and evaluate SVELTE and show that it
is indeed feasible to use it in the context of RPL, 6LoWPAN, and the IoT. To
guard against global attacks we also design and implement a mini-firewall.

The detection algorithms in SVELTE currently target spoofed or altered
information, sinkhole and selective forwarding attacks. However, it is flexible
and can be extended to detect more attacks. Therefore, we plan to comple-
ment SVELTE with novel and/or available intrusion detection techniques that
are feasible to use in the context of the IoT.

Acknowledgements

This work was financed by the SICS Center for Networked Systems (CNS),
SSF through the Promos project, and CALIPSO, Connect All IP-based Smart

194 Paper E

Objects, funded by the European Commission under FP7 with contract number
FP7-ICT-2011.1.3-288879.

0 %

20 %

40 %

60 %

80 %

100 %

5 10 20 30

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

Runtime (minutes)

8 Nodes
16 Nodes
32 Nodes

(a) Lossy network suffering from selective forwarding attack

0 %

20 %

40 %

60 %

80 %

100 %

5 10 20 30

Tr
u
e
 P

o
si

ti
v
e
 R

a
te

Runtime (minutes)

8 Nodes
16 Nodes
32 Nodes

(b) Lossless network suffering from selective forwarding attack

Figure 10.6: SVELTE has acceptable true positive rate in both lossy and loss-
less network considering that we have almost 100% detection rate for selective
forwarding attacks.

 0

 50000

 100000

 150000

 200000

8 16 32 64

E
n
e
rg

y
 (

m
J)

Number of Nodes

RPL Only
RPL-Collect

RPL & Network mapper
RPL-collect & Network mapper

(a) Energy usage for the entire network (with duty cycling) in 30 minutes.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

8 16 32 64

A
v
a
ra

g
e
 P

o
w

e
r

p
e
r

N
o
d
e
 (

m
W

)

Number of Nodes

RPL Only
RPL-Collect

RPL & Network mapper
RPL-collect & Network mapper

(b) Average power consumption per node in a duty cycled RPL-based network

Figure 10.7: Network-wide energy usage in a duty cycled RPL-based network
of different sizes shows that for network with less nodes SVELTE overhead is
very small; however, per node overhead grows with the increase in number of
nodes as more and more nodes act as routers.

Bibliography

[1] J. Hui and P. Thubert. Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks. RFC 6282, September 2011.

[2] N. Kushalnagar, G. Montenegro, and C. Schumacher. IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs): Overview, As-
sumptions, Problem Statement, and Goals. RFC 4919, August 2007.

[3] T. Kothmayr, W. Hu, C. Schmitt, M. Bruenig, and G. Carle. Securing the
internet of things with dtls. In Proceedings of the 9th ACM Conference
on Embedded Networked Sensor Systems, pages 345–346. ACM, 2011.

[4] Shahid Raza, Simon Duquennoy, A. Chung, Dogan Yazar, Thimo Voigt,
and Utz Roedig. Securing communication in 6lowpan with compressed
ipsec. In 7th International Conference on Distributed Computing in Sen-
sor Systems (DCOSS’11), pages 1–8, Barcelona, Spain, 2011.

[5] Shahid Raza, Simon Duquennoy, Joel Höglund, Utz Roedig, and Thiemo
Voigt. Secure Communication for the Internet of Things - A Comparison
of Link-Layer Security and IPsec for 6LoWPAN. Security and Commu-
nication Networks, Wiley., January 2012.

[6] Z. Shelby, K. Kartke, C. Bormann, and B. Frank. Constrained Applica-
tion Protocol (CoAP). draft-ietf-core-coap-12, October 2012.

[7] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister,
R. Struik, J. Vasseur, and R. Alexander. RPL: IPv6 Routing Protocol for
Low-Power and Lossy Networks. RFC 6550, March 2012.

[8] O. Garcia-Morchon, R. Hummen, S.S. Kumar, R. Struik, and S.L. Keoh.
Security Considerations in the IP-based Internet of Things. draft-garcia-
core-security-04, March 2012.

197

198 Bibliography

[9] A. Dunkels, B. Grönvall, and T. Voigt. Contiki - a lightweight and flexible
operating system for tiny networked sensors. In EMNets’04, pages 455–
462, Tampa, USA, November 2004.

[10] S. Kent and R. Atkinson. IP Encapsulating Security Payload (ESP). RFC
2406, November 1998. Obsoleted by RFCs 4303, 4305.

[11] S. Kent and R. Atkinson. IP Authentication Header. RFC 2402, Novem-
ber 1998. Obsoleted by RFCs 4302, 4305.

[12] C. Karlof and D. Wagner. Secure routing in wireless sensor networks:
Attacks and countermeasures. Ad hoc networks, 1(2):293–315, 2003.

[13] D.S.J.D. Couto, D. Aguayo, J. Bicket, and R. Morris. A high-
throughput path metric for multi-hop wireless routing. Wireless Net-
works, 11(4):419–434, 2005.

[14] M. Hossain and V. Raghunathan. Aegis: A lightweight firewall for wire-
less sensor networks. Distributed Computing in Sensor Systems, pages
258–272, 2010.

[15] Fredrik Österlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and
Thiemo Voigt. Cross-level sensor network simulation with cooja. In Pro-
ceedings of 31st IEEE Conference on Local Computer Networks, pages
641–648. IEEE, 2006.

[16] F. Österlind. Improving Low-Power Wireless Protocols with Timing-
Accurate Simulation. PhD thesis, Uppsala University, 2011.

[17] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power
wireless research. In IPSN’05, pages 364–369, April 2005.

[18] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes. Powertrace: Network-
level power profiling for low-power wireless networks, 2011.

[19] Adam Dunkels. The contikimac radio duty cycling protocol, 2011.

[20] I.M. Atakli, H. Hu, Y. Chen, W.S. Ku, and Z. Su. Malicious node de-
tection in wireless sensor networks using weighted trust evaluation. In
Proceedings of the 2008 Spring simulation multiconference, pages 836–
843. Society for Computer Simulation International, 2008.

Bibliography 199

[21] R. Roman, J. Zhou, and J. Lopez. Applying intrusion detection systems
to wireless sensor networks. In Proceedings of IEEE Consumer Commu-
nications and Networking Conference, pages 640–644, 2006.

[22] T.H. Hai, E.N. Huh, and M. Jo. A lightweight intrusion detection frame-
work for wireless sensor networks. Wireless Communications and mobile
computing, 10(4):559–572, 2009.

[23] C. Rong, S. Eggen, and H. Cheng. An efficient intrusion detection scheme
for wireless sensor networks. Secure and Trust Computing, Data Man-
agement, and Applications, 187:116–129, 2011.

[24] Sergio Marti, T. J. Giuli, Kevin Lai, and Mary Baker. Mitigating rout-
ing misbehavior in mobile ad hoc networks. In Proceedings of the 6th
annual international conference on Mobile computing and networking,
MobiCom ’00, pages 255–265, New York, NY, USA, 2000. ACM.

[25] Amitabh Mishra, Ketan Nadkarni, and Animesh Patcha. Intrusion de-
tection in wireless ad hoc networks. Wireless Communications, IEEE,
11(1):48–60, 2004.

[26] Kai Hwang, Min Cai, Ying Chen, and Min Qin. Hybrid intrusion
detection with weighted signature generation over anomalous internet
episodes. Dependable and Secure Computing, IEEE Transactions on,
4(1):41–55, 2007.

[27] S. Kaplantzis, A. Shilton, N. Mani, and Y.A. Sekercioglu. Detecting se-
lective forwarding attacks in wireless sensor networks using support vec-
tor machines. In Intelligent Sensors, Sensor Networks and Information,
2007. ISSNIP 2007. 3rd International Conference on, pages 335–340.
IEEE, 2007.

[28] M.A. Livani and M. Abadi. A pca-based distributed approach for intru-
sion detection in wireless sensor networks. In International Symposium
on Computer Networks and Distributed Systems (CNDS), pages 55–60.
IEEE, 2011.

[29] S. Misra, K.I. Abraham, M.S. Obaidat, and P.V. Krishna. Laid: a learn-
ing automata-based scheme for intrusion detection in wireless sensor net-
works. Security and Communication Networks, 2(2):105–115, 2008.

[30] Y.C. Hu, A. Perrig, and D.B. Johnson. Wormhole attacks in wireless net-
works. Selected Areas in Communications, IEEE Journal on, 24(2):370–
380, 2006.

[31] W. Wang and B. Bhargava. Visualization of wormholes in sensor net-
works. In Proceedings of the 3rd ACM workshop on Wireless security,
pages 51–60. ACM, 2004.

[32] G. Malkin. Traceroute Using an IP Option. RFC 1393 (Experimental),
January 1993.

[33] Kevin C Lee, Raghuram Sudhaakar, Lillian Dai, Sateesh Addepalli, and
Mario Gerla. Rpl under mobility. In Consumer Communications and Net-
working Conference (CCNC), 2012 IEEE, pages 300–304. IEEE, 2012.

[34] Yin Chen, Dimitrios Lymberopoulos, Jie Liu, and Bodhi Priyantha. Fm-
based indoor localization. In Proceedings of the 10th international con-
ference on Mobile systems, applications, and services, pages 169–182.
ACM, 2012.

[35] J. Newsome, E. Shi, D. Song, and A. Perrig. The sybil attack in sensor
networks: analysis & defenses. In Proceedings of the 3rd international
symposium on Information processing in sensor networks, pages 259–
268. ACM, 2004.

Chapter 11

Paper F:
Combined Secure Storage
and Communication for the
Internet of Things

Ibrahim Ethem Bagci, Shahid Raza, Tony Chung, Utz Roedig, Thiemo Voigt.
10th IEEE International Conference on Sensing, Communication, and Net-
working (SECON13), June 24-27, 2013, New Orleans, USA.
c© Reprinted with the permission from IEEE.

201

Abstract

The future Internet of Things (IoT) may be based on the existing and es-
tablished Internet Protocol (IP). Many IoT application scenarios will handle
sensitive data. However, as security requirements for storage and communica-
tion are addressed separately, work such as key management or cryptographic
processing is duplicated. In this paper we present a framework that allows us
to combine secure storage and secure communication in the IP-based IoT. We
show how data can be stored securely such that it can be delivered securely
upon request without further cryptographic processing. Our prototype imple-
mentation shows that combined secure storage and communication can reduce
the security-related processing on nodes by up to 71% and energy consumption
by up to 32.1%.

11.1 Introduction 203

11.1 Introduction

The Internet of Things (IoT) is becoming a reality and vast numbers of smart
objects are interconnected via the Internet Protocol (IP). A number of applica-
tions in this context handle sensitive information. For example, smart objects
may be used for patient monitoring in hospitals, implementations of security
systems in airports or to monitor crucial business processes in factories. Thus,
security mechanisms are required to ensure confidentiality, integrity and au-
thenticity of the collected information.

Due to resource limitations of smart objects it is not feasible to use the ex-
isting IP protocol throughout the entire IoT. IP header compression, as defined
in the 6LoWPAN [1] framework, is used in wireless IEEE 802.15.4 networks
which smart objects generally use for interconnectivity. 6LoWPAN header
compression and decompression is carried out by gateway nodes when relay-
ing packets between IEEE 802.15.4 networks and the existing IP network in-
frastructure.

As the IoT relies on the established and tested IP protocol it is reasonable
to also use security mechanisms defined in this context. The IPsec [2] frame-
work defines security mechanisms for IP networks and it is supported by nearly
all hosts currently in use. A definition of IPsec 6LoWPAN extensions [3] ex-
ists which allows smart objects to participate in IPsec secured communication.
Thus, secure communication in the IoT using standardised mechanisms is fea-
sible.

Smart objects now provide vast amounts of storage space due to the recent
advances in flash memory technology. IoT applications rely on this storage
space in order to improve system performance [4]. It is therefore becoming
more important to not only secure communication but to also protect sensitive
data while it is stored on smart objects. Various secure storage solutions exist
that can be used to protect data on nodes. For example, [5] is an extension of
the Contiki [6] CFS [7] filesystem that provides security services.

The previously outlined secure communication and storage solutions have
been developed individually. It is not taken into account that tasks such as
key exchange or cryptographic processing are executed for both system com-
ponents. Thus, in many situations cryptographic work performed by smart
objects is unnecessarily carried out twice or more. Given that smart objects
are very resource limited devices it is desirable to prevent such process dupli-
cation. Freed resources may be used to reduce hardware complexity, improve
energy consumption or to add additional application features.

We address the previously outlined shortcoming of existing solutions and

204 Paper F

Application

DATA

DATA

DECRYPTENCRYPT

1

2
4

3

5

IP-Stack File System

Application

DATA

DATA
1

2

4

IP-Stack File System

DATA

DATA

DATADATA

3

DATA

Node NodeA: B:

Figure 11.1: A: Traditional Operation: 1 - Data is requested from the node. 2 -
The application forwards the request to the filesystem. 3 - The data is decrypted
and passed to the application. 4 - The application sends data for transmission
to the IP stack which secures the data. 5 - The data is transmitted.
B: Combined Secure Storage and Communication: 1 - Data is requested from
the node. 2 - The application forwards the request to the filesystem. 3 - The
secured data is directly passed into the IP stack. 4 - Data is transmitted without
cryptographic processing.

provide a design of a combined secure storage and communication frame-
work that allows us to reduce security related processing on smart objects (see
Fig 11.1). In particular we consider the IP, 6LoWPAN and IPsec standards
as the base for our work. We believe that a standard compliant solution is
more desirable than a proprietary system. Furthermore, it is safer to build on
tested and trusted security mechanisms rather than designing an entirely novel
mechanisms. Data is stored securely on the flash file system such that it can
be directly used for secure transmission. This is not a trivial task as packet
header content of future transmissions must be considered when securing data
for storage. We show in this paper that an IP based combined secure storage
and communication solution is possible and that this can save up to 71% of a
node’s security related processing effort. A cost in regards to additional stor-
age space is incurred as a result of the secure storage; however, given that smart
objects can now provide ample amounts of storage space we do not see this as
limiting factor. The specific contributions of this paper are:

• The definition of a framework for combined secure storage and commu-
nication for IP/6LoWPAN networks.

• An implementation of the framework for the Contiki operating system.

• A detailed evaluation of the performance gains of the framework.

11.2 Related Work 205

The next section of the paper discusses related work in the area of secure
communication and storage for smart objects. Section 11.3 describes the pro-
posed combined secure storage and communication framework and its imple-
mentation for the Contiki OS, which is then evaluated in detail in Section 11.4.
Section 11.5 discusses our findings and concludes the paper.

11.2 Related Work

Security in the IoT is a research topic that has attracted a lot of interest. Work
has been carried out to improve efficiency of cryptographic algorithms [8], to
provide specialised hardware support [9], to organize key distribution [10], to
define secure communication protocols [3] and to organise secure data storage
[11]. Solutions for secure communication and secure storage of data in the
IP based IoT exist, but these functions are generally designed and operated
independent of each other. To the best of our knowledge, this is the first work
which aims to combine both aspects. Thus, the following shall discuss these
IoT security aspects separately.

Secure Communication for the IoT: Communication in the IoT can be se-
cured on different layers. The IoT uses the IEEE 802.15.4 [12] link-layer. IEEE
802.15.4 link-layer security is the current state-of-the-art security solution for
the IP-connected IoT; it defines data encryption and integrity verification.

IEEE 802.15.4 security does not provide end-to-end security when con-
necting a IEEE 802.15.4 network via a gateway router to the existing Internet.
Thus, additional solutions exist which protect data traveling from Internet hosts
to the border router. For example, ArchRock PhyNET [13] applies IPsec in
tunnel mode between the gateway router and Internet hosts.

To achieve true end-to-end security between Internet hosts and smart ob-
jects an IPsec extension for 6LoWPAN has been proposed [3]. Unmodified
Internet hosts can communicate directly with smart objects. The border router
applies 6LoWPAN header compression in order to enable efficient transport
of IPsec packets in IEEE 802.15.4 networks. We use this mechanism for our
framework.

End-to-end security can be provided by using Transport Layer Security
(TLS) or its predecessor Secure Sockets Layer (SSL). SSL has been proposed
as security mechanism for the IoT by Hong et al. [14]. Foulagar et al. propose
a TLS implementation for smart objects [15].

206 Paper F

Secure Storage in the IoT There are a number of secure storage solutions
available [5], [11], [16] and [17]. codo is a security extension for the Coffee [7]
filesystem in the Contiki [6] OS. ptimises performance of security operations
by enabling caching of data for bulk encryption and decryption. We use s a
base for the work presented in this paper.

11.3 The Secure Storage and Communication Frame-
work

Our proposed secure storage and communication framework is based on the es-
tablished IPv6/6LoWPAN protocols. IPv6/6LoWPAN defines IPsec/ESP (En-
capsulating Security Payload) that provides encryption and authentication of
transmitted data packets. We use the same cryptographic methods and data
formats defined by ESP for data processing before storage. This requires us to
store not only data but also all header information that is involved in the cryp-
tographic processing. Encrypted data must be stored in ESP compatible form
such that requested data can be transmitted over the network without further
cryptographic processing. This requires us to anticipate content of communi-
cation protocol header fields such as IP destination addresses, sequence num-
bers and checksums at storage time. As IPsec is the base for communication
and storage, the existing key exchange mechanisms defined for IPsec can be
reused for the storage element of the framework.

The next subsection describes IPsec/ESP usage in 6LoWPAN networks.
This represents the communication element of our framework. Thereafter fol-
lows a description of the storage element of the framework. We then briefly
discuss application layer protocols that may be used with the framework and
describe our Contiki based implementation. Finally we discuss expected per-
formance gains and cost in terms of storage overhead and provide a security
analysis.

11.3.1 Communication Component
IPv6 uses IPsec [2] to secure IP communication between two end points. IPsec
is a collection of protocols that include Authentication Header (AH), which
provides authentication services, and Encapsulating Security Payload (ESP),
which provides both authentication and privacy services. A suite of encryption
and authentication algorithms are also defined. A node keeps track of security
associations (SA) that specify how IP flows are treated in terms of security.

11.3 The Secure Storage and Communication Framework 207

In an ESP [18] packet data (for example, a UDP packet), padding, pad
length and next header information are encrypted. All header information may
be authenticated using the optional Integrity Check Value (ICV). In an 802.15.4
network an ESP header will not be transmitted directly. Its compressed form
as defined by 6LoWPAN is used instead to reduce header overheads.

6LoWPAN defines header compression mechanisms. LOWPAN IPHC is
used for IP header compression and LOWPAN NHC for the next header com-
pression. The NH field in LOWPAN IPHC when set to 1 indicates that the
next header following the compressed IPv6 header is encoded with LOW-
PAN NHC. LOWPAN NHC has a length of 1 or more octets, where the first
variable length bits identify the next header type and the remaining bits are used
to encode header information. Currently, 6LoWPAN defines LOWPAN NHC
for the IP extension header (LOWPAN NHC EH) and the UDP header (LOW-
PAN NHC UDP). A definition for ESP encoding (LOWPAN NHC ESP) is
provided in [3] and its fields are defined as:

• The first four bits in the LOWPAN NHC ESP represent the NHC ID
defined for ESP. These are set to 1110.

• If SPI = 00: the default SPI for the 802.15.4 network is used and
the SPI field is omitted. We set the default SPI value to 1. This does
not mean that all nodes use the same security association (SA), but that
every node has a single preferred SA, identified by SPI 1.

If SPI = 01: First 8 bits of the SPI are carried inline; the remaining 24
bits are elided.

If SPI = 10: First 16 bits of the SPI are carried inline; the remaining
16 bits are elided.

If SPI = 11: All 32 bits of the SPI are carried inline.

• If SN = 0: The first 16 bits of sequence number are used. The remain-
ing 16 bits are assumed to be zero.

If SN = 1: All 32 bits of the sequence number are carried inline.

• If NH = 0: The next header field in ESP will be used to specify the
next header and it is carried inline.

If NH = 1: The next header will be encoded using LOWPAN NHC. In
case of ESP this would require the end systems to perform 6LoWPAN
compression/decompression and encryption/decryption jointly.

208 Paper F

Octet 0 Octet 1 Octet 2 Octet 3

Integrity Check Value (ICV)

LOWPAN_IPHC Hop Limit Source Address

Destination Address LOWPAN_NHC_EH

LOWPAN_NHC_ESP Sequence Number

Initialization Vector (IV)

Source Port

Destination Port Length

Checksum

Source Address

Source Port

Length

UDP Payload (Variable)

Pad Length Next Header

Figure 11.2: A compressed and ESP secured IPv6/UDP packet.

Figure 11.2 shows a UDP/IP packet secured with compressed ESP. An ini-
tialisation vector (IV) may be carried in the ESP packet if the selected en-
cryption algorithm requires transmission of this information with every packet.
The shaded portion represents encrypted data. Authentication can be provided
using the ICV.

11.3.2 Storage Component
Data is stored securely such that it can be transmitted as ESP compliant packets
on request without additional cryptographic processing. This requires storage
of all cryptographically processed elements of the ESP packet within the file
system. ESP header elements that are not cryptographically processed and can
be constructed with little effort when data is requested and therefore do not
have to be stored.

Data is stored as blocks representing the shaded part (and the ICV if au-
thentication is required) shown in Figure 11.2. If data stored within a block is
requested the block is read from the file system and the full packet, as shown in
Figure 11.2, is assembled and transmitted. The receiver may only be interested

11.3 The Secure Storage and Communication Framework 209

in part of the received data and some undesirable transmission overhead may
occur. However, typical applications will require bulk data transfer (large parts
of a file) in which case such overheads do not occur. For example, for fur-
ther data analysis an application may request recorded sensor samples within
a particular time frame or, for performance debugging purposes, recorded link
quality metrics over a longer time period may be requested.

Some stored information is dependant on the communication relationship.
At the time of storage, assumptions regarding the forthcoming communication
relationship must be made in order to enable cryptographic processing. Ele-
ments to be considered are:

• UDP Header: A UDP header is stored within the encrypted ESP pay-
load. Assumptions regarding destination and source UDP port must be
made at time of storage. The destination IP address of packets is used
within the IPv6 UDP checksum calculation. Thus, IP source and desti-
nation address assumptions must be made as well.

• Initialisation Vector IV: The IV (if required) is used for ESP encryption.
Most protocols allow a counter mode where the IV for each packet is
constructed by adding a transmission sequence number to an initial IV.

• Sequence Number: The ESP header includes a sequence number. This
sequence number is not encrypted but it is included in the ICV calcula-
tion. If ESP authentication is used a sequence number must be selected
at time of storage in order to generate a ICV for storage alongside the
data.

UDP Header Construction: A UDP header has to be prepared at time of
data storage. The header consists of 4 fields of 2byte length: Source Port,
Destination Port, Length and Checksum.

The Length field is defined by the amount of data contained in the UDP
packet. To reduce packet overheads the amount of data contained in each UDP
packet is selected such that the maximum 802.15.4 frame size of 127byte is
utilised.

The selection of a Source and Destination Port is not problematical. It can
be assumed that well known ports can be used for data retreival.

The calculation of the Checksum field is challenging. The checksum is
mandatory in IPv6 and is calculated using a pseudo header. This pseudo header
contains the IP Source Address, the IP Destination Address, UDP Length and
IP Next Header field. As the IP Destination Address is included assumptions

210 Paper F

regarding the IP address requesting stored information must be made. The
checksum is calculated as the 16-bit one’s complement of the one’s comple-
ment sum of the pseudo header, the UDP header, and the data.

It is a reasonable assumption that a particular host is used most of the time
to request information from nodes (e.g. the sink). The IP address of this node
may be used for storage preparation.

In some cases data may be requested from a different node and the IP des-
tination address used for checksum calculation does not match the destination
of the data requestor. In this situation it is possible to correct the checksum in a
way that does not require the decryption and encryption of all of the data again.
Thus, performance is reduced as part of the stored data must be cryptographi-
cally processed before transmission but it is still beneficial in comparison with
a system that does not combine secure storage and transmission (See Evalua-
tion).

ESP can use encryption algorithms which operate on blocks (e.g. AES us-
ing 16byte blocks). It is possible to decrypt only the first block of a larger
stored ESP packet which will contain the UDP header and its checksum. Since
the UDP checksum algorithm is a simple summation checksum re-calculation
is trivial. By substituting the old destination address for the new destination ad-
dress, a new checksum can be calculated. Now the first block of the ESP packet
can be encrypted and it is ready for transmission to an alternative destination.

IV Construction: The IV does not have to be stored in the file system to-
gether with the encrypted ESP fields. An initial IV can be used and the storage
block number is added to construct the IV.

Sequence Number Construction: If authentication is required it is possible
to also store the ICV. As the ESP header includes a sequence number which is
included in the ICV calculation, it is necessary to predict at storage time what
sequence numbers will be used during communication.

Data belonging to a file is stored as sequence of ESP encrypted blocks and
we can use the block number as ESP sequence number. IPsec allows us to reset
the sequence number counters at the start of a communication relationship by
establishing a new SA. Thereafter, data from the file can be delivered sequen-
tially. In this setting we ensure that the communication uses sequence numbers
that were selected at time of data storage.

11.3.3 Framework Usage
Application Layer Protocol: Nodes store data securely which may be requested
by Internet hosts. Stored data has an application specific semantic. For exam-

11.3 The Secure Storage and Communication Framework 211

ple, sensor values may be stored as a 4byte sensor value together with a 4byte
time stamp and 2byte sequence number. Nodes execute a storage application
that is able to respond to queries such as “send sensor samples recorded be-
tween 12:00:00 and 13:00:00”. A host executes a storage application that is
able to send these requests and to process arriving data. Host and node stor-
age applications use UDP for communication. Similar to the well known FTP
protocol, separate flows are used for command and data transfer which makes
different IPsec security settings (including keys and security mechanisms) for
both channels possible.

Security Configuration: The IPsec Security Association (SA) defines how
data flows are protected. The SA holds secret keys, encryption algorithm de-
scriptions and IP addresses to identify flows. Each SA holds a security pa-
rameters index (SPI), which is a 32-bit value used by a receiver to identify the
correct SA.

If each file should be encrypted with a different key it is necessary to spec-
ify distinct SAs that each use a unique SPI. The SPI is transmitted in the 6LoW-
PAN header in compressed form (See Section 11.3.1). However, compression
is only possible when the default SPI value is used; otherwise SPI information
must be carried within the packet. Thus, the most frequently used file should
use the default SPI in order to improve efficiency. In a practical setting this is
not an issue as most nodes are using a single large file for storage of sensor
data.

11.3.4 Implementation
We implemented the outlined framework for the Contiki [6] operating system.
The implementation uses Contiki’s µIP stack with 6LoWPAN/IPsec extensions
as defined in [3] as the communication component. The storage component
uses Contiki’s Coffee filesystem (CFS) [7] with [5] to provide filesystem secu-
rity extensions. The µIP stack was modified in order to enable direct passing
of ESP encrypted packets from the filesystem to the communication stack. On
the host side we used a standard Ubuntu Linux host.

For encryption/decryption we used AES in counter mode (CTR), with a
128bit key, in either hardware (e.g. via the CC2420 radio chip present on
many sensor node platforms) or the MIRACL [19] library if hardware support
is not available. If authentication is required, AES-XCBC-MAC-96 is used
to calculate the necessary ICV (Provided via cryptographic processor or the
MIRACL library).

The maximum 802.15.4 payload is 127byte and the available MAC layer

212 Paper F

payload size is 102byte. As seen in Figure 11.2, 7byte are required for the
compressed 6LoWPAN header, 12byte are required for the compressed ESP
header fields, 2byte are required for the ESP trailer fields, 12byte are required
for the ICV if it is used and 8byte are required for the UDP header. This leaves
a maximum payload of 61byte. The AES algorithm requires a minimum block
size of 16byte. Thus, the maximum feasible amount of data that can be stored
per block before fragmentation must occur is 54byte. Storage blocks contain
64byte of encrypted data (8byte encrypted elements of the UDP header, 2byte
encrypted ESP trailer and 54byte payload). Other feasible payload sizes are 6,
22 and 38. To avoid padding an application should align write operations with
these payload sizes.

At this point in time, our Contiki IPsec implementation does not support
key exchange mechanisms such as the Internet Key Exchange (IKE) protocol.
Keys are set manually before deployment. However, for most application sce-
narios this would not be an issue limiting the frameworks usability.

11.3.5 Security Discussions
In this section we briefly discuss the security of the combined storage and com-
munication system. We consider key management, cryptographic algorithms,
message encryption and message authentication. In particular, we determine if
the combination of secure storage and secure communication provides weaker
security than systems treating both subsystems individually.

Confidentiality - Communication is secured using IPsec’s ESP procedures.
The solution does not deviate from procedures defined in the IPsec framework.
An attacker with access to the communication channel has access to the same
information as an attacker on any other ESP secured communication. If we
consider IPsec a secure solution the provided solution can be considered secure
as well.

Our implementation uses AES in counter mode (CTR) with 128bit keys.
The best known AES attack for this key length is four times better than ex-
haustive search [20], and does not adversely affect its security.

Integrity and Authentication - When authentication is required, the ICV is
calculated and appended to the ESP. Here we have to balance security and per-
formance needs. Storing the ICV along with the ESP will ensure data integrity
and authentication for storage and communication. However, when storing
ICVs along with the encrypted payload it is necessary to select sequence num-
bers at the time data is stored. Hence, sequence numbers are predictable and
will repeat when stored file content is transmitted repeatedly. Thus, protection

11.4 Evaluation 213

against replay attacks in the communication channel is weakened. On the other
hand, we will have performance gains as the ICV does not have to be computed
at transmission time. If we decide to calculate the ICV before each transmis-
sion the replay protection is strongly enforced while the performance gains are
reduced and stored data is missing integrity and authentication data.

To provide both, strong data integrity and relatively weaker anti-replay,
functionalies when the ESP authentication field (ICV) is also stored in flash
memory, sequence numbers should be in order before calculating ICVs for all
the stored packets in a file, and the sender’s and receiver’s counter should be
reset (by establishing a new SA) prior to the transmission of a file.

Storage - Data is stored in the same format as it is later transmitted. An
attacker with access to the file system has the same information available as an
attacker with access to the communication channel. If transmitted information
secured using ESP is considered to be secure then information stored in the file
system must be considered secure as well.

Key Management - Data in flash memory is secured using the same key that
is later used for communication. Hence, transmission of the same stored data
requires usage of the same key on the communication link. It is not possible to
negotiate a fresh key for each communication relationship compared to when
IPsec is used on its own. However, many practical IPsec deployments use pre-
shared fixed keys so we consider this a secure option.

Similarly, if multiple nodes have to be able to access the same stored in-
formation they will also have to use the same key for communication. This is
similar to practical situations where IPsec is used with a single pre-shared key.

The proposed system has difficulties with revocation of keys; if a new key
is selected data already stored in the flash file system must be re-encrypted,
which is costly on resource constrained systems.

11.4 Evaluation

In this section we first discuss the costs in terms of storage overhead that are
associated with the proposed scheme of combined storage and communication.
Thereafter we analyse the processing performance and energy consumption
gains associated with our scheme. We use our Contiki implementation for the
Telos B platform.

214 Paper F

 0

 50

 100

 150

 200

 250

 300

 350

 400

 6 22 38 54

E
x
tr

a
 s

to
ra

g
e

 (
%

)

Payload size (byte)

Storing Encrypted Fields
Storing Encrypted Fields and ICV

Figure 11.3: Storage overheads for different payload sizes.

11.4.1 Storage Overheads
Storing encrypted data together with the ESP fields that demand cryptographic
processing requires additional storage space compared to a solution which
would only store encrypted data.

If only encryption is used an extra 10byte per stored data block is required.
Thus, it is better to store large blocks (large ESP packets) as this reduces the
overhead. Figure 11.3 shows the overhead in dependency of the payload size.
We show overheads for payload sizes which align with the AES encryption
block size of 16byte and that do not require fragmentation when transmitted.

If authentication is also required then overheads increase as the ICV data
of 12byte has to be stored alongside the other encrypted information.

The results show that the proposed framework reduces the effective stor-
age size of the available flash storage space on nodes by 40.7% when using
a payload size of 54byte and use of ICV. However, if we consider a common
flash memory size of 16GB in which an 10byte sensor reading is recorded
every minute the time until the storage capacity is exceeded is reduced from
3266years to 1329years. Both values are acceptable in any deployment con-
text and it can be concluded that the necessary storage overhead is not a limiting
factor of the proposed framework.

11.4.2 Performance Gains
The combined storage and communication framework provides performance
improvements. To analyse performance benefits in detail we use 4 different
experiments. In all 4 experiments, ESP encryption and authentication is pro-
vided. The different experiments are used to show increasing performance

11.4 Evaluation 215

benefits with increasing integration of storage and communication. Experi-
ment A uses a system without the combining storage and communication. In
these experiments (Experiment B, C, D) the framework is used in different con-
figurations.

Experiment A is the baseline experiment where data is read from flash
memory, decrypted and re-encrypted for IPsec conform transmission. In ad-
dition, authentication is provided and an ESP ICV is constructed. In Exper-
iment B, ESP encrypted fields are stored in the flash memory and can be di-
rectly transmitted upon request. The ICV for authentication is still constructed
at transmission time. Experiment C differs from Experiment B in terms of
UDP checksum calculation. A non-matching IP address was used at storage
time and a re-calculated before transmission is necessary. In Experiment D,
ESP encrypted fields and the ESP authentication field (ICV) are stored in flash
memory and can be transmitted directly upon request. All of the experiments
are carried out with both software and hardware encryption. Table 11.1 sum-
marises the experiment settings.

Encryption Authentication UDP
checksum

re-calculation
Experiment A individual individual -
Experiment B combined individual not required
Experiment C combined individual required
Experiment D combined combined not required

Table 11.1: Experiment setup details used for evaluation. All experiments use
ESP encryption and authentication. The combined storage and communica-
tion framework is used for different aspects. UDP checksum re-calculation is
assumed in some settings.

Experiment A: Baseline experiment

In this experiment, data is read from a file and sent using conventional methods.
ESP conform AES encryption is used for the storage component and commu-
nication component to allow for comparison with the other experiments. Pay-
load data is read in blocks of 6, 22, 38 and 54bytes. The payload is decrypted
and then re-encrypted for IPsec transmission. ICV authentication data is con-
structed before transmission. Decryption is carried out within the Contiki CFS;
encryption and ICV calculation is carried out within the Contiki µIP stack.

216 Paper F

Figure 11.6 shows the time that is necessary on a node to process one pay-
load. The processing time is measured from the start of the file system read
operation to the completion of the packet transmission. The total processing
time is broken down to show the contribution of significant individual opera-
tions:

• CFS reading is the time required to read data from the file system.

• CFS decryption represents the time necessary to perform data decryp-
tion.

• ESP encryption represents the time necessary to encrypt the ESP pay-
load.

• ESP ICV calculation is the time required to produce authentication data.

• Other operations summarises the duration of all other operations.

Figure 11.4 shows the processing duration breakdown when cryptographic
processing is carried out in software. The total time to prepare a single packet
is 19.1ms, 25.2ms, 31.4ms and 37.6ms for 6byte, 22byte, 38byte and 54byte
payload data, respectively. CFS reading time is 8%, CFS decryption time is
21.3%, ESP encryption time is 21.5% and ESP ICV calculation time is 25.1%
of the overall processing time for 54byte payload.

Figure 11.5 shows the duration of operations when using hardware sup-
ported cryptographic processing. Total times for preparing a single packet are
11.8ms, 14.5ms, 17.1ms and 19.7ms for the different payload sizes. CFS
reading time is 15.1%, CFS decryption time is 12.5%, ESP encryption time
is 12.7% and ESP ICV calculation time is 13.8% of the overall time when
preparing 54byte of data.

Enabling hardware support improves performance by 38.1%, 42.6%, 45.5%
and 47.5% for 6byte, 22byte, 38byte and 54byte payloads, respectively.

The experiments show that when a 54byte payload is transmitted process-
ing the node spends 67.9% of the preparation time on cryptographic processing
(software supported). This cryptographic processing time can be avoided by
the proposed framework as we show in the following experiments.

Experiment B: Storing ESP fields
In this experiment, ESP encrypted fields are stored in flash memory with the
payload data. 6, 22, 38 and 54byte payloads are used. As additional stored

11.4 Evaluation 217

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

Figure 11.4: With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

Figure 11.5: With hardware encryption.

Figure 11.6: Duration of different operations involved in preparing single
packet for transmission with software and hardware encryption.

218 Paper F

ESP fields are 10byte length 16byte, 32byte, 48byte and 64byte must be read
from the file system. Compared to Experiment A CFS decryption and ESP
encryption is now not necessary, so processing time is saved.

Figure 11.7 shows the duration for different operations when preparing a
single packet for transmission with software encryption. Total times for prepar-
ing a single packet are 12.5ms, 15ms, 17.6ms and 20.2ms; and improvements
in system performance when it is compared to the baseline experiment with
software encryption are 34.6%, 40.4%, 43.9% and 46.3%.

Figure 11.8 shows processing times when using hardware encryption. Total
times for preparing a single packet are 9.3ms, 10.7ms, 12.1ms and 13.5ms;
and improvements in system performance when it is compared to the baseline
experiment with software encryption are 51.3%, 57.7%, 61.6% and 64.1%.

It is notable that the CFS read time is less than in Experiment A even though
more data has to be read from the file system (e.g. instead of 54byte, 64byte are
read as ESP information is included). This is due to the fact that elements of the
CFS can be bypassed when directly reading encrypted data for transmission.

Experiment C: Using a non-matching IP address
This experiment is similar to Experiment B. The difference is the IP address
of the destination when carrying out ESP encryption for storage. The UDP
checksum enclosed in ESP packets must be corrected before transmission. The
time necessary to perform decryption of the 16byte block containing the check-
sum, its correction and encryption of the 16byte block containing the corrected
checksum is referred to as UDP checksum preparation.

Figure 11.10 shows results using software encryption. The total time for
preparing a single packet is 15.3ms, 17.9ms, 20.4ms and 23ms; and improve-
ments in system performance when it is compared to the baseline experiment
with software encryption are 20.1%, 29.1%, 35.1% and 38.9% for the different
payload sizes.

Figure 11.11 shows results when using cryptographic hardware support.
Total times are 10ms, 11.4ms, 12.8ms and 14.2ms; and improvements in
system performance when it is compared to the baseline experiment with soft-
ware encryption are 47.6%, 54.7%, 59.2% and 62.1% for 6, 22, 38 and 54byte
data.

The correction of the UDP checksum, which may be necessary in cases
we cannot anticipate the endpoint to which stored data must be delivered, is
not very costly. For a 54byte payload using hardware support the performance
gain is only reduced from 64.1% to 62.1%.

11.4 Evaluation 219

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading
ESP ICV calculation

Other operations

Figure 11.7: With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading
ESP ICV calculation

Other operations

Figure 11.8: With hardware encryption.

Figure 11.9: Duration of different operations involved in preparing single
packet for transmission with software and hardware encryption when storing
ESP encrypted fields.

220 Paper F

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

UDP checksum preparation
CFS reading

ESP ICV calculation
Other operations

Figure 11.10: With software encryption.

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

UDP checksum preparation
CFS reading

ESP ICV calculation
Other operations

Figure 11.11: With hardware encryption.

Figure 11.12: Duration of different operations involved in preparing single
packet for transmission with software and hardware encryption when using a
non-matching IP address.

11.4 Evaluation 221

Experiment D: Storing ESP and ICV fields

In this experiment all options of the proposed framework are in use. Data is
stored in ESP compatible form alongside the ICV authentication data. In this
case no encryption processing is required when data is requested, and thus pro-
cessing times are independent from cryptographic algorithm implementations
(hardware or software). The results are shown in Figure 11.13. For direct com-
parison we again show the results of Experiment A (software encryption) in
Figure 11.14.

In this experiment, ESP encrypted fields and ESP authentication field (ICV)
are stored in flash memory together with the payload data. As encrypted fields
have a length of 10bytes and the authentication field (ICV) is 12bytes long,
blocks of 28byte, 44byte, 60byte and 76byte have to be read for different pay-
load sizes.

Compared to the previous two experiments, CFS read times increase as
the additional ICV has to be read. Total time for preparing a single packet is
8.1ms, 9.1ms, 10ms and 10.9ms. Improvements in system performance when
compared with the baseline experiment with software encryption are 57.5%,
64.1%, 68.3% and 71% for 6, 22, 38 and 54byte payload data.

These results show that the proposed framework of combined storage and
communication can achieve significant performance gains. When the frame-
work is used, requested data can be delivered approximately 3 times faster as
cryptographic processing is not required at the time when data is prepared for
delivery.

11.4.3 Energy Consumption

We have shown that combining secure storage and communication reduces
processing time on sensor nodes. However, it is not immediatly clear if sav-
ings in processing time translate to energy savings as the proposed mechanism
changes usage patterns of hardware components such as flash memory and
hardware encryption.

We therefore compare energy consumption of the conventional storage
method with our combined storage and communication method. We use the
setups previously described as Experiment A and Experiment B. We use en-
ergy consumption values for CC2420 radio operations and ST M25P80 flash
operations from the Tmote Sky datasheet [21], and for CC2420 hardware cryp-
tographic support from [22].

If 54byte data is required to be stored and transmitted later using the con-

222 Paper F

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading Other operations

Figure 11.13: Combined storage and communication

 0

 5

 10

 15

 20

 25

 30

 35

 40

6 22 38 54

T
im

e
 (

m
s
)

Payload size (byte)

CFS reading
CFS decryption
ESP encryption

ESP ICV calculation
Other operations

Figure 11.14: Individual security processing

Figure 11.15: Duration of different operations necessary to prepare a single
packet for transmission when using the combined storage and communication
framework and when using individual storage and communication security so-
lutions.

11.5 Conclusion 223

ventional method, 54byte data has to be encrypted and written to the flash
memory for storage; 54byte data has to be read from the flash memory and
has to be decrypted; 64byte data has to be encrypted in IPsec; 80byte data
has to be authenticated in IPsec and the packet has to be transmitted, respec-
tively. In case that 54byte of data is required to be stored and transmitted using
combined storage and communication method, 64byte data has to be encrypted
and written to flash memory for storage; 64byte data has to be read from the
flash memory; 80byte of data has to be authenticated and the packet has to be
transmitted.

The system is able to skip two cryptographic operations when using com-
bined secure storage and communication. Therefore, the energy consumption
decreases by 32.1%, even when additional 10byte have to be written to and
read from flash memory. Due to space restrictions we do not detail energy
savings for all other experiment combinations as discussed in the previous sec-
tion. However, in all cases our proposed method leads to energy savings. In
the worst-case, energy consumption decreases by 18.7% (in Experiment D with
6byte data size).

11.5 Conclusion
We have shown that combined secure storage and communication can reduce
security related real-time processing on nodes dramatically (up to 71% reduc-
tion). As shown, this can be achieved while decreasing as well a nodes power
consumption (up to 32.1%). Furthermore, we have shown that this is possi-
ble within the context of the IP protocol family which we believe will be used
in the future IoT. The described solution requires additional storage space on
nodes. However, we believe that currently available flash memory sizes can
absorb these overheads.

Data on nodes must be secured when stored and transported in order to im-
plement a comprehensive security solution. As resource-constrained embed-
ded systems are limited in resources it is necessary to find efficient solutions.
As shown, the proposed framework combining security aspects of storage and
communication can help to achieve this goal.

11.6 Acknowledgements
This work has been partially supported by SSF.

Bibliography

[1] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler. Transmission of
IPv6 Packets over IEEE 802.15.4 Networks. RFC 4944, 2007.

[2] S. Kent and K. Seo. Security Architecture for the Internet Protocol. RFC
4301, 2005.

[3] Shahid Raza, Simon Duquennoy, Joel Hglund, Utz Roedig, and Thiemo
Voigt. Secure communication for the internet of things - a comparison of
link-layer security and ipsec for 6lowpan. Security and Communication
Networks, 2012.

[4] Nicolas Tsiftes and Adam Dunkels. A database in every sensor. In Pro-
ceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems, pages 316–332. ACM, 2011.

[5] Ibrahim Ethem Bagci, Mohammad Reza Pourmirza, Shahid Raza, Utz
Roedig, and Thiemo Voigt. Codo: Confidential data storage for wire-
less sensor networks. In 8th IEEE International Workshop on Wireless
and Sensor Networks Security (WSNS 2012), Las Vegas, Nevada, USA,
October 2012.

[6] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki - a
lightweight and flexible operating system for tiny networked sensors. In
Proceedings of the 29th Annual IEEE International Conference on Local
Computer Networks, pages 455–462. IEEE Computer Society, 2004.

[7] Nicolas Tsiftes, Adam Dunkels, He Zhitao, and Thiemo Voigt. Enabling
large-scale storage in sensor networks with the coffee file system. In Pro-
ceedings of the 2009 International Conference on Information Processing
in Sensor Networks, pages 349–360, Washington, DC, USA, 2009. IEEE
Computer Society.

225

226 Bibliography

[8] Piotr Szczechowiak, Leonardo B. Oliveira, Michael Scott, Martin Collier,
and Ricardo Dahab. Nanoecc: testing the limits of elliptic curve cryptog-
raphy in sensor networks. In Proceedings of the 5th European conference
on Wireless sensor networks, pages 305–320. Springer-Verlag, 2008.

[9] Wen Hu, Peter Corke, Wen Chan Shih, and Leslie Overs. secfleck: A
public key technology platform for wireless sensor networks. In Pro-
ceedings of the 6th European Conference on Wireless Sensor Networks,
pages 296–311. Springer-Verlag, 2009.

[10] Donggang Liu and Peng Ning. Establishing pairwise keys in distributed
sensor networks. In Proceedings of the 10th ACM conference on Com-
puter and communications security, CCS ’03, pages 52–61. ACM, 2003.

[11] Neerja Bhatnagar and Ethan L. Miller. Designing a secure reliable file
system for sensor networks. In Proceedings of the 2007 ACM workshop
on Storage security and survivability, pages 19–24, 2007.

[12] IEEE std. 802.15.4 - 2003. Wireless medium access control (mac) and
physical layer (phy) specifications for low rate wireless personal area net-
works (lr-wpans). IEEE, 2003.

[13] ArchRock Corporation. Phynet n4x series, 2008.

[14] Sungmin Hong, Daeyoung Kim, Minkeun Ha, Sungho Bae, Sang Jun
Park, Wooyoung Jung, and Jae-Eon Kim. Snail: an ip-based wireless
sensor network approach to the internet of things. Wireless Communica-
tions, IEEE, 17(6):34 –42, december 2010.

[15] Sepideh Fouladgar, Bastien Mainaud, Khaled Masmoudi, and Hossam
Afifi. Tiny 3-tls: a trust delegation protocol for wireless sensor networks.
In Proceedings of the Third European conference on Security and Privacy
in Ad-Hoc and Sensor Networks, pages 32–42. Springer-Verlag, 2006.

[16] Joao Girao, Dirk Westhoff, Einar Mykletun, and Toshinori Araki.
Tinypeds: Tiny persistent encrypted data storage in asynchronous wire-
less sensor networks. Ad Hoc Netw., 5:1073–1089, September 2007.

[17] Wei Ren, Yi Ren, and Hui Zhang. Hybrids: A scheme for secure dis-
tributed data storage in wsns. In Proceedings of the 2008 IEEE/IFIP
International Conference on Embedded and Ubiquitous Computing - Vol-
ume 02, pages 318–323. IEEE Computer Society, 2008.

[18] S. Kent. IP Encapsulating Security Payload (ESP). RFC 4303, 2005.

[19] CertiVox. MIRACL - Multiprecision Integer and Rational Arithmetic
C/C++ Library.

[20] Andrey Bogdanov, Dmitry Khovratovich, and Christian Rechberger. Bi-
clique cryptanalysis of the full aes. In Proceedings of the 17th inter-
national conference on The Theory and Application of Cryptology and
Information Security, pages 344–371. Springer-Verlag, 2011.

[21] Tmote Sky datasheet, 2006. http://www.eecs.harvard.
edu/˜konrad/projects/shimmer/references/
tmote-sky-datasheet.pdf.

[22] Fan Zhang, Reiner Dojen, and Tom Coffey. Comparative performance
and energy consumption analysis of different aes implementations on a
wireless sensor network node. International Journal of Sensor Networks,
10(4):192–201, 2011.

http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf
http://www.eecs.harvard.edu/~konrad/projects/shimmer/references/tmote-sky-datasheet.pdf

Swedish Institute of Computer Science

SICS Dissertation Series

01: Bogumil Hausman, Pruning and Speculative Work in OR-
Parallel PROLOG, 1990.

02: Mats Carlsson, Design and Implementation of an OR-Parallel
Prolog Engine, 1990.

03: Nabiel A. Elshiewy, Robust Coordinated Reactive Comput-
ing in SANDRA, 1990.

04: Dan Sahlin, An Automatic Partial Evaluator for Full Prolog,
1991.

05: Hans A. Hansson, Time and Probability in Formal Design of
Distributed Systems, 1991.

06: Peter Sjödin, From LOTOS Specifications to Distributed Im-
plementations, 1991.

07: Roland Karlsson, A High Performance OR-parallel Prolog
System, 1992.

08: Erik Hagersten, Toward Scalable Cache Only Memory Ar-
chitectures, 1992.

09: Lars-Henrik Eriksson, Finitary Partial Inductive Definitions
and General Logic, 1993.

10: Mats Björkman, Architectures for High Performance Com-
munication, 1993.

11: Stephen Pink, Measurement, Implementation, and Optimiza-
tion of Internet Protocols, 1993.

12: Martin Aronsson, GCLA. The Design, Use, and Implemen-
tation of a Program Development System, 1993.

13: Christer Samuelsson, Fast Natural-Language Parsing Using
Explanation-Based Learning, 1994.

14: Sverker Jansson, AKL - - A Multiparadigm Programming
Language, 1994.

15: Fredrik Orava, On the Formal Analysis of Telecommunica-
tion Protocols, 1994.

16: Torbjörn Keisu, Tree Constraints, 1994.

17: Olof Hagsand, Computer and Communication Support for
Interactive Distributed Applications, 1995.

18: Björn Carlsson, Compiling and Executing Finite Domain
Constraints, 1995.

19: Per Kreuger, Computational Issues in Calculi of Partial In-
ductive Definitions, 1995.

20: Annika Waern, Recognising Human Plans: Issues for Plan
Recognition in Human-Computer Interaction, 1996.

21: Björn Gambäck, Processing Swedish Sentences: A Unification-
Based Grammar and Some Applications, 1997.

22: Klas Orsvärn, Knowledge Modelling with Libraries of Task
Decomposition Methods, 1996.

23: Kia Höök, A Glass Box Approach to Adaptive Hypermedia,
1996.

24: Bengt Ahlgren, Improving Computer Communication Per-
formance by Reducing Memory Bandwidth Consumption,
1997.

25: Johan Montelius, Exploiting Fine-grain Parallelism in Con-
current Constraint Languages, 1997.

26: Jussi Karlgren, Stylistic experiments in information retrieval,
2000.

27: Ashley Saulsbury, Attacking Latency Bottlenecks in Dis-
tributed Shared Memory Systems, 1999.

28: Kristian Simsarian, Toward Human Robot Collaboration,
2000.

29: Lars-Åke Fredlund, A Framework for Reasoning about Er-
lang Code, 2001.

30: Thiemo Voigt, Architectures for Service Differentiation in
Overloaded Internet Servers, 2002.

31: Fredrik Espinoza, Individual Service Provisioning, 2003.

32: Lars Rasmusson, Network capacity sharing with QoS as a fi-
nancial derivative pricing problem: algorithms and network
design, 2002.

33: Martin Svensson, Defining, Designing and Evaluating Social
Navigation, 2003.

34: Joe Armstrong, Making reliable distributed systems in the
presence of software errors, 2003.

35: Emmanuel Frécon, DIVE on the Internet, 2004.

36: Rickard Cöster, Algorithms and Representations for Person-
alised Information Access, 2005.

37: Per Brand, The Design Philosophy of Distributed Program-
ming Systems: the Mozart Experience, 2005.

38: Sameh El-Ansary, Designs and Analyses in Structured Peer-
to-Peer Systems, 2005.

39: Erik Klintskog, Generic Distribution Support for Program-
ming Systems, 2005.

40: Markus Bylund, A Design Rationale for Pervasive Comput-
ing User Experience, Contextual Change, and Technical Re-
quirements, 2005.

41: Åsa Rudström, Co-Construction of hybrid spaces, 2005.

42: Babak Sadighi Firozabadi, Decentralised Privilege Manage-
ment for Access Control, 2005.

43: Marie Sjölinder, Age-related Cognitive Decline and Naviga-
tion in Electronic Environments, 2006.

44: Magnus Sahlgren, The Word-Space Model: Using Distribu-
tional Analysis to Represent Syntagmatic and Paradigmatic
Relations between Words in High-dimensional Vector Spaces,
2006.

45: Ali Ghodsi, Distributed k-ary System: Algorithms for Dis-
tributed Hash Tables, 2006.

46: Stina Nylander, Design and Implementation of Multi-Device
Services, 2007.

47: Adam Dunkels, Programming Memory-Constrained Net-
worked Embedded Systems, 2007.

48: Jarmo Laaksolahti, Plot, Spectacle, and Experience: Con-
tributions to the Design and Evaluation of Interactive Story-
telling, 2008.

49: Daniel Gillblad, On Practical Machine Learning and Data
Analysis, 2008.

50: Fredrik Olsson, Bootstrapping Named Entity Annotation by
Means of Active Machine Learning: a Method for Creating
Corpora, 2008.

51: Ian Marsh, Quality Aspects of Internet Telephony, 2009.

52: Markus Bohlin, A Study of Combinatorial Optimization Prob-
lems in Industrial Computer Systems, 2009.

53: Petra Sundström, Designing Affective Loop Experiences,
2010.

54: Anders Gunnar, Aspects of Proactive Traffic Engineering in
IP Networks, 2011.

55: Preben Hansen, Task-based Information Seeking and Re-
trieval in the Patent Domain: Process and Relationships,
2011.

56: Fredrik Österlind, Improving Low-Power Wireless Protocols
with Timing-Accurate Simulation, 2011.

57: Ahmad Al-Shishtawy, Self-Management for Large-Scale Dis-
tributed Systems, 2012.

58: Henrik Abrahamsson, Network Overload Avoidance by Traf-
fic Engineering and Content Caching, 2012.

59: Mattias Rost, Mobility is the Message: Experiment with Mo-
bile Media Sharing, 2013

60: Amir H. Payberah, Live Streaming in P2P and Hybrid P2P-
Cloud Environments for the open Internet, 2013

61: Oscar Täckstrm, Predicting Linguistic Structure with Incom-
plete and Cross-Lingual Supervision, 2013

62: Cosmin Arad, Programming Model and Protocols for Re-
configurable Distributed Systems, 2013

63: Tallat M. Shafaat, Partition Tolerance and Data Consistency
in Structured Overlay Networks, 2013

64: Shahid Raza, Lightweight Security Solutions for the Internet
of Things, 2013

	Thesis
	Introduction
	The IPv6-connected Internet of Things
	Secure Internet of Things
	Communication Security
	Network Security
	Data Security

	Research Methodology
	Thesis Outline

	Challenges and Contributions
	Secure Communication: Message Security
	Secure Network: Intrusion Detection
	Secure Device: Data Security
	Security Analysis of WirelessHART
	Standardization of Proposed Solutions

	Summary of Papers
	Security Considerations for the WirelessHART Protocol
	Securing Communication in 6LoWPAN with Compressed IPsec
	Secure Communication for the Internet of Things Ð A Comparison of Link-Layer Security and IPsec for 6LoWPAN
	Lithe: Lightweight Secure CoAP for the Internet of Things
	SVELTE: Real-time Intrusion Detection in the Internet of Things
	Combined Secure Storage and Communication for the Internet of Things

	Related Work
	Communication Security
	IEEE 802.15.4 Security
	Transport Layer
	IPsec
	Key Management in the IoT

	Network Security
	Secure Storage

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography

	Included Papers
	Paper A: Security Considerations for the WirelessHART Protocol
	Introduction
	WirelessHART Security
	End-to-End Security
	Per-Hop Security
	Peer-to-Peer Security

	Threat Analysis
	Interference
	Jamming
	Sybil
	Traffic Analysis
	DOS
	De-synchronization
	Wormhole
	Tampering
	Eavesdropping
	Selective Forwarding Attack
	Exhaustion
	Spoofing
	Collision
	Summary

	WirelessHART Security Manager
	Security Limitations of WirelessHART
	Conclusions and Future Work
	Bibliography

	Paper B: Securing Communication in 6LoWPAN with Compressed IPsec
	Introduction
	Related Work
	Securing WSN Communications
	Background
	IPv6 and IPsec
	6LoWPAN

	6LoWPAN and IPsec
	LOWPAN_NHC Extension Header Encoding
	LOWPAN_NHC_AH Encoding
	LOWPAN_NHC_ESP Encoding
	Combined Usage of AH and ESP
	End Host Requirement

	Evaluation and Results
	Implementation and Experimental Setup
	Memory footprint
	Packet Overhead Comparison
	Performance of Cryptography
	System-wide Energy Overhead
	System-wide Response Time Overhead
	Improvements Using Hardware Support

	Conclusions and Future Work
	Bibliography

	Paper C: Secure Communication for the Internet of Things - A Comparison of Link-Layer Security and IPsec for 6LoWPAN
	Introduction
	Related Work
	Embedding Cryptographic Algorithms
	Securing the IoT at the Link-Layer
	Securing the IoT at the Transport-Layer
	Securing the IoT at the Network-Layer

	Background
	Overview of 6LoWPAN
	Overview of IEEE 802.15.4 Security
	Overview of IPsec

	6LoWPAN/IPsec Extension
	LOWPAN_NHC Extension Header Encoding
	LOWPAN_NHC_AH Encoding
	LOWPAN_NHC_ESP Encoding

	Implementation
	Link-layer Security Implementation
	IPsec Implementation
	Concurrent Use

	Evaluation and Results
	Experimental Setup
	Memory Footprint Comparison
	Header Overhead Comparison
	Evaluation of Cryptographic Algorithms
	Energy Consumption Comparison
	Overall Network Performance

	Conclusion
	Bibliography

	Paper D: Lithe: Lightweight Secure CoAP for the Internet of Things
	Introduction
	Background
	CoAP and DTLS
	6LoWPAN

	DTLS Compression
	DTLS-6LoWPAN Integration
	6LoWPAN-NHC for the Record and Handshake Headers
	6LoWPAN-NHC for ClientHello
	6LoWPAN-NHC for ServerHello
	6LoWPAN-NHC for other Handshake Messages

	Implementation
	Evaluation
	Packet Size Reduction
	RAM and ROM Requirement
	Run-time Performance

	Related Work
	Conclusions
	Bibliography

	Paper E: SVELTE: Real-time Intrusion Detection in the Internet of Things
	Introduction
	Background
	The Internet of Things
	RPL
	Security in the IoT
	IDS

	SVELTE: An IDS for the IoT
	6LoWPAN Mapper
	Intrusion Detection in SVELTE
	Distributed Mini-firewall

	Implementation
	Evaluation
	Experimental Setup
	SVELTE Detection and True Positive Rate
	Energy Overhead
	Memory Consumption

	Related Work
	SVELTE Extensions
	Conclusions
	Bibliography

	Paper F: Combined Secure Storage and Communication for the Internet of Things
	Introduction
	Related Work
	The Secure Storage and Communication Framework
	Communication Component
	Storage Component
	Framework Usage
	Implementation
	Security Discussions

	Evaluation
	Storage Overheads
	Performance Gains
	Energy Consumption

	Conclusion
	Acknowledgements
	Bibliography

