
 

 

 

 

 

 

 

© 2012 IEEE. Personal use of this material is permitted. Permission from IEEE must be 
obtained for all other uses, in any current or future media, including 
reprinting/republishing this material for advertising or promotional purposes, creating 
new collective works, for resale or redistribution to servers or lists, or reuse of any 
copyrighted component of this work in other works. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidad Carlos III de Madrid e-Archivo

https://core.ac.uk/display/30045714?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Creating Evolving User Behavior
Profiles Automatically

Jose Antonio Iglesias, Member, IEEE Computer Society,

Plamen Angelov, Senior Member, IEEE Computer Society,

Agapito Ledezma, Member, IEEE Computer Society, and

Araceli Sanchis, Member, IEEE Computer Society

Abstract Knowledge about computer users is very beneficial for assisting them, predicting their future actions or detecting

masqueraders. In this paper, a new approach for creating and recognizing automatically the behavior profile of a computer user is

presented. In this case, a computer user behavior is represented as the sequence of the commands she/he types during her/his work.

This sequence is transformed into a distribution of relevant subsequences of commands in order to find out a profile that defines its

behavior. Also, because a user profile is not necessarily fixed but rather it evolves/changes, we propose an evolving method to keep up

to date the created profiles using an Evolving Systems approach. In this paper, we combine the evolving classifier with a trie-based

user profiling to obtain a powerful self-learning online scheme. We also develop further the recursive formula of the potential of a data

point to become a cluster center using cosine distance, which is provided in the Appendix. The novel approach proposed in this paper

can be applicable to any problem of dynamic/evolving user behavior modeling where it can be represented as a sequence of actions or

events. It has been evaluated on several real data streams.

Index Terms Evolving fuzzy systems, fuzzy-rule-based (FRB) classifiers, user modeling.

1 INTRODUCTION

RECOGNIZING the behavior of others in real time is a
significant aspect of different human tasks in many

different environments. When this process is carried out by
software agents or robots, it is known as user modeling. The
recognition of users can be very beneficial for assisting them
or predicting their future actions. Most existing techniques
for user recognition assume the availability of handcrafted
user profiles, which encode the a-priori known behavioral
repertoire of the observed user. However, the construction
of effective user profiles is a difficult problem for different
reasons: human behavior is often erratic, and sometimes
humans behave differently because of a change in their
goals. This last problem makes necessary that the user
profiles we create evolve.

There exists several definitions for user profile [1]. It can
be defined as the description of the user interests,
characteristics, behaviors, and preferences. User profiling
is the practice of gathering, organizing, and interpreting the
user profile information. In recent years, significant work
has been carried out for profiling users, but most of the user
profiles do not change according to the environment and
new goals of the user. An example of how to create these
static profiles is proposed in a previous work [2].

In this paper, we propose an adaptive approach for
creating behavior profiles and recognizing computer users.
We call this approach Evolving Agent behavior Classification
based on Distributions of relevant events (EVABCD) and it is
based on representing the observed behavior of an agent
(computer user) as an adaptive distribution of her/his
relevant atomic behaviors (events). Once the model has been
created, EVABCD presents an evolving method for updating
and evolving the user profiles and classifying an observed
user. The approach we present is generalizable to all kinds of
user behaviors represented by a sequence of events.

The UNIX operating system environment is used in this
research for explaining and evaluating EVABCD. A user
behavior is represented in this case by a sequence of UNIX
commands typed by a computer user in a command-line
interface. Previous research studies in this environment [3],
[4] focus on detecting masquerades (individuals who
impersonate other users on computer networks and sys-
tems) from sequences of UNIX commands. However,
EVABCD creates evolving user profiles and classifies new
users into one of the previously created profiles. Thus, the
goal of EVABCD in the UNIX environment can be divided
into two phases:

1. Creating and updating user profiles from the
commands the users typed in a UNIX shell.

2. Classifying a new sequence of commands into the
predefined profiles.

Because we use an evolving classifier, it is constantly
learning and adapting the existing classifier structure to
accommodate the newly observed emerging behaviors.
Once a user is classified, relevant actions can be done;
however, this task is not addressed in this paper.

. J.A. Iglesias, A. Ledezma, and A. Sanchis are with the CAOS Group,
Carlos III University of Madrid, Spain.
E mail: {jiglesia, ledezma, masm}@inf.uc3m.es.

. P. Angelov is with the Department of Communication Systems, InfoLab21,
Lancaster University, United Kingdom.
E mail: p.angelov@lancaster.ac.uk.

1

Cita bibliográfica
Published in: IEEE Transactions on Knowledge and Data Engineering (May 2012), 24(5), 1041-4347



The creation of a user profile from a sequence of UNIX
commands should consider the consecutive order of the
commands typed by the user and the influence of his/her
past experiences. This aspect motivates the idea of auto-
mated sequence learning for computer user behavior
classification; if we do not know the features that influence
the behavior of a user, we can consider a sequence of past
actions to incorporate some of the historical context of the
user. However, it is difficult, or in general, impossible, to
build a classifier that will have a full description of all
possible behaviors of the user, because these behaviors
evolve with time, they are not static and new patterns may
emerge as well as an old habit may be forgotten or stopped to
be used. The descriptions of a particular behavior itself may
also evolve, so we assume that each behavior is described by
one or more fuzzy rules. A conventional system do not
capture the new patterns (behaviors) that could appear in the
data stream once the classifier is built. In addition, the
information produced by a user is often quite large. There-
fore, we need to cope with large amounts of data and process
this information in real time, because storing the complete
data set and analyzing it in an offline (batch) mode, would be
impractical. In order to take into account these aspects,
we use an evolving fuzzy-rule-based system that allows for
the user behaviors to be dynamic, to evolve.

This paper is organized as follows: Section 2 provides an
overview of the background and related work. The overall
structure of our approach, EVABCD, is explained in Section 3.
Section 4 describes the construction of the user behavior
profile. The evolving UNIX user classifier is detailed in
Section 5. Section 6 describes the experimental setting and the
experimental results obtained. Finally, Section 7 contains
future work and concluding remarks.

2 BACKGROUND AND RELATED WORK

Different techniques have been used to find out relevant
information related to the human behavior in many different
areas. The literature in this field is vast; Macedo et al. [5]
propose a system (WebMemex) that provides recommended
information based on the captured history of navigation
from a list of known users. Pepyne et al. [6] describe a method
using queuing theory and logistic regression modeling
methods for profiling computer users based on simple
temporal aspects of their behavior. In this case, the goal is
to create profiles for very specialized groups of users, who
would be expected to use their computers in a very similar
way. Gody and Amandi [7] present a technique to generate
readable user profiles that accurately capture interests by
observing their behavior on the web.

There is a lot of work focusing on user profiling in a
specific environment, but it is not clear that they can be
transferred to other environments. However, the approach
we propose in this paper can be used in any domain in
which a user behavior can be represented as a sequence of
actions or events. Because sequences play a crucial role in
human skill learning and reasoning [8], the problem of user
profile classification is examined as a problem of sequence
classification. According to this aspect, Horman and
Kaminka [9] present a learner with unlabeled sequential
data that discover meaningful patterns of sequential

behavior from example streams. Popular approaches to
such learning include statistical analysis and frequency-
based methods. Lane and Brodley [10] present an approach
based on the basis of instance-based learning (IBL)
techniques, and several techniques for reducing data
storage requirements of the user profile.

Although the proposed approach can be applied to any
behavior represented by a sequence of events, we focus in
this research in a command-line interface environment.
Related to this environment, Schonlau et al. [3] investigate a
number of statistical approaches for detecting masquer-
aders. Coull et al. [11] propose an effective algorithm that
uses pairwise sequence alignment to characterize similarity
between sequences of commands. Recently, Angelov and
Zhou propose in [12] to use evolving fuzzy classifiers for
this detection task.

In [13], Panda and Patra compared the performance of
different classification algorithms—Naive Bayesian (NB),
C4.5 and Iterative Dichotomizer 3 (ID3)—for network
intrusion detection. According to the authors, ID3 and
C4.5 are robust in detecting new intrusions, but NB
performs better to overall classification accuracy. Cufoglu
et al. [14] evaluated the classification accuracy of NB, IB1,
SimpleCART, NBTree, ID3, J48, and Sequential Minimal
Optimization (SMO) algorithms with large user profile data.
According to the simulation results, NBTree classifier
performs the best classification on user-related information.

It should be emphasized that all of the above approaches
ignore the fact that user behaviors can change and evolve.
However, this aspect needs to be taken into account in the
proposed approach. In addition, owing to the characteristics
of the proposed environment, we need to extract some sort of
knowledge from a continuous stream of data. Thus, it is
necessary that the approach deals with the problem of
classification of streaming data. Incremental algorithms
build and refine the model at different points in time, in
contrast to the traditional algorithms which perform the
model in a batch manner. It is more efficient to revise an
existing hypothesis than it is to generate hypothesis each time
a new instance is observed. Therefore, one of the solution to
the proposed scenario is the incremental classifiers.

An incremental learning algorithm can be defined as one
that meets the following criteria [15]:

1. It should be able to learn additional information
from new data.

2. It should not require access to the original data, used
to train the existing classifier.

3. It should preserve previously acquired knowledge.
4. It should be able to accommodate new classes that

may be introduced with new data.

Several incremental classifiers have been implemented
using different frameworks

. Decision trees. The problem of processing streaming
data in online has motivated the development of
many algorithms which were designed to learn
decision trees incrementally [16], [17]. Some exam-
ples of the algorithms which construct incremental
decision trees are: ID4 [18], ID5 [19], and ID5R [20].

2



. Artificial neural networks (ANN). Adaptive Reso-
nance Theory (ART) networks [21] are unsupervised
ANNs proposed by Carpenter that dynamically
determine the number of clusters based on a
vigilance parameter [22]. In addition, Kasabov
proposed another incremental learning neural net-
work architecture, called Evolving Fuzzy Neural
Network (EFuNN) [23]. This architecture does not
require access to previously seen data and can
accommodate new classes. A new approach to
incremental learning using evolving neural net-
works is proposed by Seipone and Bullinaria [24].
This approach uses an evolutionary algorithm to
evolve some MLP parameters. This process aims at
evolving the parameters to produce networks with
better incremental abilities.

. Prototype-based supervised algorithms. Learning
Vector Quantization (LVQ) is one of the well-known
nearest prototype learning algorithms [25]. LVQ can
be considered to be a supervised clustering algo-
rithm, in which each weight vector can be inter-
preted as a cluster center. Using this algorithm, the
number of reference vectors has to be set by the user.
For this reason, Poirier and Ferrieux proposed a
method to generate new prototypes dynamically.
This incremental LVQ is known as Dynamic Vector
Quantization (DVQ) [26]. However, this method
lacks the generalizing capability, resulting in the
generation of many prototype neurons for applica-
tions with noisy data.

. Bayesian. Bayesian classifier is an effective metho-
dology for solving classification problems when all
features are considered simultaneously. However,
when the features are added one by one in Bayesian
classifier in batch mode in forward selection method,
huge computation is involved. For this reason,
Agrawal and Bala [27] proposed an incremental
Bayesian classifier for multivariate normal distribu-
tion data sets. Several incremental versions of
Bayesian classifiers are proposed in [28]

. Support Vector Machine (SVM). A Support Vector
Machine performs classification by constructing an
N-dimensional hyperplane that optimally separates
the data into two categories. Training an SVM
“incrementally” on new data by discarding all
previous data except their support vectors, gives
only approximate results. Cauwenberghs et al.
consider incremental learning as an exact online
method to construct the solution recursively, one
point at a time. In addition, Xiao et al. [29] propose
an incremental algorithm which utilizes the proper-
ties of SV set, and accumulates the distribution
knowledge of the sample space through the adjus-
table parameters.

However, as this research focus in a command-line
interface environment, it is necessary an approach able to
process streaming data in real time and also cope with huge
amounts of data. Several incremental classifiers do not
considered this last aspect. In addition, the structure of the
incremental classifiers is assumed to be fixed, and they can
not address the problem of so-called concept drift and shift

[30]. By drift, they refer to a modification of the concept over
time, and shift usually refers to a sudden and abrupt
changes in the streaming data. To capture these changes, it
is necessary not only tuning parameters of the classifiers,
but also a change in its structure. A simple incremental
algorithm does not evolve the structure of the classifier. The
interpretation of the results is also an important character-
istic in a classifier, and several incremental classifiers (such
as ANN or SVM) are not good in terms of interpretation of
the results. Finally, the computational efficiency of the
proposed classifier is very important, and some incremental
algorithms (such SVM) have to solve quadratic optimiza-
tion problems many times.

Taking all these aspects into account, we propose in this
paper an evolving fuzzy-rule-base system which satisfies all
of the criteria of the incremental classifiers. However, the
approach has also important advantages which make it
very useful in real environments

1. It can cope with huge amounts and data.
2. Its evolving structure can capture sudden and

abrupt changes in the stream of data.
3. Its structure meaning is very clear, as we propose a

rule-based classifier.
4. It is noniterative and single pass; therefore, it is

computationally very efficient and fast.
5. Its classifier structure is simple and interpretable.

Thus, an approach for creating and recognizing auto-
matically the behavior profile of a computer user with the
time evolving in a very effective way. To the best of our
knowledge, this is the first publication where user behavior
is considered, treated, and modeled as a dynamic and
evolving phenomenon. This is the most important con-
tribution of this paper.

3 THE PROPOSED APPROACH

This section introduces the proposed approach for auto-
matic clustering, classifier design, and classification of the
behavior profiles of users. The novel evolving user behavior
classifier is based on Evolving Fuzzy Systems and it takes into
account the fact that the behavior of any user is not fixed,
but is rather changing. Although the proposed approach
can be applied to any behavior represented by a sequence of
events, we detail it using a command-line interface (UNIX
commands) environment.

In order to classify an observed behavior, our approach, as
many other agent modeling methods [31], creates a library
which contains the different expected behaviors. However,
in our case, this library is not a prefixed one, but is evolving,
learning from the observations of the users real behaviors
and, moreover, it starts to be filled in “from scratch” by
assigning temporarily to the library the first observed user as
a prototype. The library, called Evolving-Profile-Library
(EPLib), is continuously changing, evolving influenced by
the changing user behaviors observed in the environment.

Thus, the proposed approach includes at each step the
following two main actions:

1. Creating and evolving the classifier. This action
involves in itself two subactions:

3



a. Creating the user behavior profiles. This sub-
action analyzes the sequences of commands
typed by different UNIX users online (data
stream), and creates the corresponding profiles.
This process is detailed in Section 4.

b. Evolving the classifier. This subaction includes
online learning and update of the classifier,
including the potential of each behavior to be a
prototype, stored in the EPLib. The whole
process is explained in Section 5.

2. User classification. The user profiles created in the
previous action are associated with one of the
prototypes from the EPLib, and they are classified
into one of the classes formed by the prototypes.
This action is also detailed in Section 5.

4 CONSTRUCTION OF THE USER BEHAVIOR PROFILE

In order to construct a user behavior profile in online mode
from a data stream, we need to extract an ordered sequence
of recognized events; in this case, UNIX commands. These
commands are inherently sequential, and this sequentiality
is considered in the modeling process. According to this
aspect and based on the work done in [2], in order to get the
most representative set of subsequences from a sequence,
we propose the use of a trie data structure [32]. This
structure was also used in [33] to classify different
sequences and in [34], [35] to classify the behavior patterns
of a RoboCup soccer simulation team.

The construction of a user profile from a single sequence
of commands is done by a three step process:

1. Segmentation of the sequence of commands.
2. Storage of the subsequences in a trie.
3. Creation of the user profile.

These steps are detailed in the following three sections.
For the sake of simplicity, let us consider the following
sequence of commands as an example: fls! date!
ls! date! catg.

4.1 Segmentation of the Sequence of Commands

First, the sequence is segmented into subsequences of equal
length from the first to the last element. Thus, the sequence
A ¼ A1A2 . . .An (where n is the number of commands of the
sequence) will be segmented in the subsequences described
by Ai . . .Aiþlength 8i; i ¼ ½1; n� lengthþ 1�, where length is

the size of the subsequences created. In the remainder of
the paper, we will use the term subsequence length to denote
the value of this length. This value determines how many
commands are considered as dependent.

In the proposed sample sequence (fls! date!
ls! date! catg), let 3 be the subsequence length, then
we obtain
fLS ! DATE ! LSg, fdate! ls! dateg, fls! date!

catg:

4.2 Storage of the Subsequences in a trie

The subsequences of commands are stored in a trie data
structure. When a new model needs to be constructed, we
create an empty trie, and insert each subsequence of events
into it, such that all possible subsequences are accessible
and explicitly represented. Every trie node represents an
event appearing at the end of a subsequence, and the nodes
children represent the events that have appeared following
this event. Also, each node keeps track of the number of
times a command has been recorded into it. When a new
subsequence is inserted into a trie, the existing nodes are
modified and/or new nodes are created. As the dependen-
cies of the commands are relevant in the user profile, the
subsequence suffixes (subsequences that extend to the end
of the given sequence) are also inserted.

Considering the previous example, the first subsequence
(fls! date! lsg) is added as the first branch of the empty
trie (Fig. 1a). Each node is labeled with the number 1 which
indicates that the command has been inserted in the node
once (in Fig. 1, this number is enclosed in square brackets).
Then, the suffixes of the subsequence (fdate! lsg and {ls})
are also inserted (Fig. 1b). Finally, after inserting the three
subsequences and its corresponding suffixes, the completed
trie is obtained (Fig. 1c).

4.3 Creation of the User Profile

Once the trie is created, the subsequences that characterize
the user profile and its relevance are calculated by
traversing the trie. For this purpose, frequency-based

methods are used. In particular, in EVABCD, to evaluate
the relevance of a subsequence, its relative frequency or
support [36] is calculated. In this case, the support of a
subsequence is defined as the ratio of the number of times
the subsequence has been inserted into the trie and the total
number of subsequences of equal size inserted.

Fig. 1. Steps of creating an example trie.

4



In this step, the trie can be transformed into a set of
subsequences labeled by its support value. In EVABCD, this
set of subsequences is represented as a distribution of
relevant subsequences. Thus, we assume that user profiles
are n-dimensional matrices, where each dimension of the
matrix will represent a particular subsequence of commands.

In the previous example, the trie consists of nine nodes;
therefore, the corresponding profile consists of nine
different subsequences which are labeled with its support.
Fig. 2 shows the distribution of these subsequences.

Once a user behavior profile has been created, it is
classified and used to update the Evolving-Profile-Library, as
explained in the next section.

5 EVOLVING UNIX USER CLASSIFIER

A classifier is a mapping from the feature space to the class
label space. In the proposed classifier, the feature space is
defined by distributions of subsequences of events. On the
other hand, the class label space is represented by the most
representative distributions. Thus, a distribution in the class
label space represents a specific behavior which is one of
the prototypes of the EPLib. The prototypes are not fixed
and evolve taking into account the new information
collected online from the data stream—this is what makes
the classifier Evolving. The number of these prototypes is
not prefixed but it depends on the homogeneity of the
observed behaviors. The following sections describes how a
user behavior is represented by the proposed classifier, and
how this classifier is created in an evolving manner.

5.1 User Behavior Representation

EVABCD receives observations in real time from the
environment to analyze. In our case, these observations
are UNIX commands and they are converted into the
corresponding distribution of subsequences online. In order
to classify a UNIX user behavior, these distributions must
be represented in a data space. For this reason, each
distribution is considered as a data vector that defines a
point that can be represented in the data space.

The data space in which we can represent these points
should consist of n dimensions, where n is the number of
the different subsequences that could be observed. It means
that we should know all the different subsequences of the
environment a priori. However, this value is unknown and
the creation of this data space from the beginning is not
efficient. For this reason, in EVABCD, the dimension of the
data space also evolves, it is incrementally growing

according to the different subsequences that are repre-

sented in it.
Fig. 3 explains graphically this novel idea. In this example,

the distribution of the first user consists of five subsequences

of commands (ls, ls-date, date, cat, and date-cat); therefore, we

need a five-dimensional data space to represent this distribu-

tion because each different subsequence is represented by one

dimension. If we consider the second user, we can see that

three of the five previous subsequences have not been typed

by this user (ls-date, date, and date-cat), so these values are not

available. Also, the values of the two new subsequences (cp

and ls-cp) need to be represented in the same data space; thus,

it is necessary to increase the dimensionality of the data space

from five to seven. To sum up, the dimensions of the data

space represent the different subsequences typed by the users

and they will increase according to the different new

subsequences obtained.

5.2 Structure of the EVABCD

Once the corresponding distribution has been created from

the stream, it is processed by the classifier. The structure of

this classifier includes

1. Classify the new sample in a class represented by a
prototype. Section 5.6.

2. Calculate the potential of the new data sample to be
a prototype. Section 5.3.

3. Update all the prototypes considering the new data
sample. It is done because the density of the data space
surrounding certain data sample changes with the

Fig. 2. Distribution of subsequences of commands Example.

Fig. 3. Distributions of subsequences of events in an evolving system
approach Example.

5



insertion of each new data sample. Insert the new
data sample as a new prototype if needed. Section 5.4.

4. Remove any prototype if needed. Section 5.5.

Therefore, as we can see, the classifier does not need to
be configured according to the environment where it is used
because it can start “from scratch.” Also, the relevant
information of the obtained samples is necessary to update
the library, but, as we will explain in the next section, there
is no need to store all the samples in it.

5.3 Calculating the Potential of a Data Sample

As in [12], a prototype is a data sample (a behavior
represented by a distribution of subsequences of com-
mands) that represents several samples which represent a
certain class.

The classifier is initialized with the first data sample,
which is stored in EPLib. Then, each data sample is
classified to one of the prototypes (classes) defined in the
classifier. Finally, based on the potential of the new data
sample to become a prototype [37], it could form a new
prototype or replace an existing one.

The potential (P) of the kth data sample ðxkÞ is calculated
by (1) which represents a function of the accumulated
distance between a sample and all the other k� 1 samples
in the data space [12]. The result of this function represents
the density of the data that surrounds a certain data sample

P ðxkÞ ¼
1

1þ
Pk 1

i 1
distance2ðxk;xiÞ
k 1

; ð1Þ

where distance represents the distance between two samples
in the data space.

In [38], the potential is calculated using the euclidean
distance and in [12] it is calculated using the cosine
distance. Cosine distance has the advantage that it tolerates
different samples to have different number of attributes; in
this case, an attribute is the support value of a subsequence
of commands. Also, cosine distance tolerates that the value
of several subsequences in a sample can be null (null is
different than zero). Therefore, EVABCD uses the cosine
distance (cosDist) to measure the similarity between two
samples, as it is described below

cosDistðxk; xpÞ ¼ 1�
Pn

j 1 xkjxpjPn
j 1 x

2
kj

Pn
j 1 x

2
pj

q ; ð2Þ

where xk and xp represent the two samples to measure its
distance and n represents the number of different attributes
in both samples.

5.3.1 Calculating the Potential Recursively

Note that the expression in (1) requires all the accumulated
data sample available to be calculated, which contradicts to
the requirement for real time and online application needed
in the proposed approach. For this reason, we need to
develop a recursive expression of the potential, in which it
is not needed to store the history of all the data.

In (3), the potential is calculated in the input-output
joint data space, where z ¼ ½x; Label�; therefore, the
kth data sample (xk) with its corresponding label is

represented as zk. Each sample is represented by a set of
values; the value of the ith attribute (element) of the zk
sample is represented as zik.

As it is detailed in the Appendix, this derivation is
proposed as a novel contribution and the result is as follows:

PkðzkÞ ¼
1

2þ
�

1
hðk 1Þ

��
�2BK

�
þ
�

1
hDk

���
k ¼ 2; 3 . . . ;P1ðz1Þ ¼ 1
where:

Bk ¼
Xn
j 1

zjkb
j
k; b

j
k ¼ b

j
ðk 1Þ þ

�
zjk
�2Pn

l 1

�
zlk
�2

vuut

bj1 ¼
�
zj1
�2Pn

l 1

�
zl1
�2

vuut ; j ¼ ½1; nþ 1�

Dk ¼
Xn
j 1

zjk

Xn
p 1

zpkd
jp
k ; djpk ¼ d

jp
ðk 1Þ þ

zjkz
p
kPn

l 1ðzlkÞ
2

dj11 ¼
zj1z

1
1Pn

l 1

�
zl1
�2

; j ¼ ½1; nþ 1�;

ð3Þ

where dijk represents this accumulated value for the kth data
sample considering the multiplication of the ith and jth
attributes of the data sample. Thus, to get recursively the
value of the potential of a sample using (1), it is necessary to
calculate k� k different accumulated values which store the
result of the multiplication of an attribute value of the data
sample by all the other attribute values of the data sample.

However, since the number of needed accumulated
values is very large, we simplify this expression in order to
calculate it faster and with less memory.

5.3.2 Simplifying the Potential Expression

In our particular application, the data are represented by a
set of support values and are thus positive. To simplify the
recursive calculation of the expression (1), we can use
simply the distance instead of square of the distance. For
this reason, we use in this case (4) instead of (1)

PkðzkÞ ¼
1

1þ
Pk 1

i 1
cosDistðxk;xiÞ
k 1

: ð4Þ

Using (4), we develop a recursive expression similar to
the recursive expressions developed in [37], [38] using
euclidean distance and in [12] using cosine distance. This
formula is as follows:

PkðzkÞ ¼
1

2� 1
k 1

1Pn

j 1

�
zj
k

�2
q Bk

; k ¼ 2; 3; . . . ;P1ðz1Þ ¼ 1

where:

Bk ¼
Xn
j 1

zjkb
j
k; b

j
k ¼ b

j
ðk 1Þ þ

�
zjk
�2Pn

l 1

�
zlk
�2

vuut

bj1 ¼
�
zj1
�2Pn

l 1

�
zl1
�2

vuut ; j ¼ ½1; nþ 1�;

ð5Þ

Using this expression, it is only necessary to calculate
ðnþ 1Þ values where n is the number of different
obtained subsequences; this value is represented by b,

6



where bjk; j ¼ ½1; n� represents the accumulated value for

the kth data sample.

5.4 Creating New Prototypes

The proposed evolving user behavior classifier, EVABCD,

can start “from scratch” (without prototypes in the library) in

a similar manner as eClass evolving fuzzy rule-based

classifier proposed in [38], used in [39] for robotics and

further developed in [12]. The potential of each new data

sample is calculated recursively and the potential of the

other prototypes is updated. Then, the potential of the new

sample (zk) is compared with the potential of the existing

prototypes. A new prototype is created if its value is higher

than any other existing prototype, as shown in (6)

9i; i ¼ ½1; NumPrototypes� : P ðzkÞ > P ðProtiÞ: ð6Þ

Thus, if the new data sample is not relevant, the overall

structure of the classifier is not changed. Otherwise, if the

new data sample has high descriptive power and general-

ization potential, the classifier evolves by adding a new

prototype which represents a part of the observed data

samples.

5.5 Removing Existing Prototypes

After adding a new prototype, we check whether any of the

already existing prototypes are described well by the newly

added prototype [12]. By well, we mean that the value of the

membership function that describes the closeness to the

prototype is a Gaussian bell function chosen due to its

generalization capabilities

9i; i ¼ ½1; NumPrototypes� : �iðzkÞ > e 1: ð7Þ

For this reason, we calculate the membership function

between a data sample and a prototype which is defined as

�iðzkÞ ¼ e
1
2½
cosDistðzk;ProtiÞ

�i
�
; i ¼ ½1; NumPrototypes�; ð8Þ

where cosDist(zk; ProtiÞ represents the cosine distance

between a data sample (zk) and the ith prototype (Proti);

�i represents the spread of the membership function, which

also symbolizes the radius of the zone of influence of the

prototype. This spread is determined based on the scatter

[40] of the data. The equation to get the spread of the kth

data sample is defined as

�iðkÞ ¼
1

k

Xk
j 1

cosDistðProti; zkÞ

vuut ; �ið0Þ ¼ 1; ð9Þ

where k is the number of data samples inserted in the data

space; cosDist(Proti; zk) is the cosine distance between the

new data sample (zk) and the ith prototype.
However, to calculate the scatter without storing all the

received samples, this value can be updated recursively (as

shown in [38]) by

�iðkÞ ¼ ½�iðk� 1Þ�2 þ 1

k
½cosDist2ðProti; zkÞ � ½�iðk� 1Þ�2�

r
:

ð10Þ

5.6 Classification Method

In order to classify a new data sample, we compare it with
all the prototypes stored in EPLib. This comparison is done
using cosine distance and the smallest distance determines
the closest similarity. This comparison is shown as

ClassðxzÞ ¼ ClassðProt�Þ;
Prot� ¼MINNumProt

i 1 ðcosDistðxPrototypei
; xzÞÞ:

ð11Þ

The time consumed for classifying a new sample
depends on the number of prototypes and its number of
attributes. However, we can consider, in general terms, that
both the time consumed and the computational complexity
are reduced and acceptable for real-time applications (in
order of milliseconds per data sample).

5.7 Supervised and Unsupervised Learning

The proposed classifier has been explained taking into
account that the observed data samples do not have labels;
thus, using unsupervised learning. In this case, the classes
are created based on the existing prototypes and, thus, any
prototype represents a different class (label). Such a
technique is used, for example, in eClass0 [12], [38] which
is a clustering-based classification.

However, the observed data samples can have a label
assigned to them a priori. In this case, using EVABCD, a
specific class is represented by several prototypes, because
the previous process is done for each different class. Thus,
each class has a number of prototypes that depends on how
heterogeneous are the samples of the same class. In this
case, a new data sample is classified in the class which
belongs the closest prototype. This technique is used, for
example, in eClass1 [12], [38].

6 EXPERIMENTAL SETUP AND RESULTS

In order to evaluate EVABCD in the UNIX environment, we
use a data set with the UNIX commands typed by 168 real
users and labeled in four different groups. Therefore, in
these experiments, we use supervised learning. The ex-
plained process is applied for each of the four group
(classes) and one or more prototypes will be created for
each group. EVABCD is applied in these experiments
considering the data set as pseudo-online streams. How-
ever, only using data sets in an offline mode, the proposed
classifier can be compared with other incremental and
nonincremental classifiers.

6.1 Data Set

In these experiments, we use the command-line data
collected by Greenberg [41] using UNIX csh command
interpreter. This data are identified in four target groups
which represent a total of 168 male and female users with a
wide cross section of computer experience and needs.
Salient features of each group are described below

. Novice programmers. The users of this group had little
or no previous exposure to programming, operating
systems, or UNIX-like command-based interfaces.
These users spent most of their time learning how to
program and use the basic system facilities.

7



. Experienced programmers. These group members
were senior Computer Science undergraduates,
expected to have a fair knowledge of the UNIX
environment. These users used the system for
coding, word processing, employing more advanced
UNIX facilities to fulfill course requirements, and
social and exploratory purposes.

. Computer scientist. This group, graduates and re-
searchers from the Department of Computer Science,
had varying experience with UNIX, although all were
experts with computers. Tasks performed were less
predictable and more varied than other groups,
research investigations, social communication, word
processing, maintaining databases, and so on.

. Nonprogrammers. Word processing and document
preparation was the dominant activity of the
members of this group, made up of office staff and
members of the Faculty of Environmental Design.
Knowledge of UNIX was the minimum necessary to
get the job done.

The sample sizes (the number of people observed) and
the total number of command lines are indicated in Table 1.

6.2 Comparison with Other Classifiers

In order to evaluate the performance of EVABCD, it is
compared with several different types of classifiers. This
experiment focuses on using the well-established batch
classifiers described as follows:

. The C5.0 algorithm [42] is a commercial version of
the C4.5 [43] decision-tree-based classifier.

. The Naive Bayes classifier (NB) is a simple
probabilistic classifier based on applying Bayes
theorem with strong (naive) independence assump-
tions [44]. In this case, the numeric estimator
precision values are chosen based on analysis of
the training data. For this reason, the classifier is no-
incremental [45].

. The K Nearest Neighbor classifier (kNN) is an
instance-based learning technique for classifying
objects based on closest training examples in the
feature space [46]. The parameter k affects the
performance of the kNN classifier significantly. In
these experiments, the value with which better
results are obtained is k ¼ 1; thus, a sample is
assigned to the class of its nearest neighbor.
However, using this value, the corresponding
classifier may not be robust enough to the noise in
the data sample.

. The AdaBoost (adaptive boosting) classifier [47]
combines multiple weak learners in order to form
an efficient and strong classifier. Each weak classifier

uses a different distribution of training samples.
Combining weak classifiers take advantage of the so-
called instability of the weak classifier. This instabil-
ity causes the classifier to construct sufficiently
different decision surfaces for minor modifications
in their training data sets. In these experiments, we
use a decision stump as a weak learner. A decision
stump is advantageous over other weak learners
because it can be calculated very quickly. In
addition, there is a one-to-one correspondence
between a weak learner and a feature when a
decision stump is used [48].

. The Support Vector Machine classifier relies on the
statistical learning theory. In this case, the algo-
rithm Sequential Minimal Optimization is used for
training support vector machines by breaking a
large quadratic programming (QP) optimization
problem into a series of smallest possible QP
problems [49]. In addition, in order to determine
the best kernel type for this task, we have
performed several experiments using polynomial
kernel function with various degrees and radial
basis function. In this case, the polynomial kernel
function results performed best in all experiments.
Therefore, we use polynomial kernel function of
degree 1 for proposed experiments.

. The Learning Vector Quantization classifier is a
supervised version of vector quantization, which
defines class boundaries based on prototypes, a
nearest-neighbor rule and a winner-takes-it-all para-
digm. The performance of LVQ depends on the
algorithm implementation. In these experiments, it is
used the enhanced version of LVQ1, the OLVQ1
implementation [50].

In addition, we compare EVABCD with two incremental
classifiers which share a common theoretical basis with
batch classifiers. However, they can be incrementally
updated as new training instances arrive; they do not have
to process all the data in one batch. Therefore, most of the
incremental learning algorithms can process data files that
are too large to fit in memory. The incremental classifiers
used in these experiments are detailed as follows:

. Incremental naive bayes. This classifier uses a
default precision of 0.1 for numeric attributes when
it is created with zero training instances.

. Incremental kNN. The kNN classifier adopts an
instance-based approach whose conceptual simpli-
city makes its adaptation to an incremental
classifier straightforward. There is an algorithm
called incremental kNN as the number of nearest
neighbors k needs not be known in advance and it
is calculated incrementally. However, in this case,
the difference between Incremental kNN and
nonincremental kNN is the way all the data are
processed. Unlike other incremental algorithms,
kNN stores entire data set internally. In this case,
the parameter k with which better results are
obtained is k ¼ 1.

In these experiments, the classifiers were trained using a
feature vector for each of the 168 users. This vector consists
of the support value of all the different subsequences of
commands obtained for all the users; thus, there are

TABLE 1
Sample Group Sizes and Command Lines Recorded

8



subsequences which do not have a value because the
corresponding user has not typed those commands. In this
case, in order to be able to use this data for training the
classifiers, we consider this value as 0 (although its real
value is null).

6.3 Experimental Design

In order to measure the performance of the proposed
classifier using the above data set, the well-established
technique of 10-fold cross validation is chosen. Thus, all
the users (training set) are divided into 10 disjoint subsets
with equal size. Each of the 10 subsets is left out in turn
for evaluation. It should be emphasized that EVABCD
does not need to work in this mode; this is done mainly
in order to have comparable results with the established
offline techniques.

The number of UNIX commands typed by a user and
used for creating his/her profile is very relevant in the
classification process. When EVABCD is carried out in the
field, the behavior of a user is classified (and the evolving
behavior library updated) after she/he types a limited
number of commands. In order to show the relevance of
this value using the data set already described, we consider
different number of UNIX commands for creating the
classifier: 100, 500, and 1.000 commands per user.

In the phase of behavior model creation, the length of the
subsequences in which the original sequence is segmented
(used for creating the trie) is an important parameter: using
long subsequences, the time consumed for creating the trie
and the number of relevant subsequences of the corre-
sponding distribution increase drastically. In the experi-
ments presented in this paper, the subsequence length
varies from 2 to 6.

Before showing the results, we should consider that the
number of subsequences obtained using different streams
of data is often very large. To get an idea of how this
number increases, Table 2 shows the number of different
subsequences obtained using different number of com-
mands for training (100, 500, and 1.000 commands per user)
and subsequence lengths (3 and 5).

Using EVABCD, the number of prototypes per class is
not fixed, it varies automatically depending on the hetero-
geneity of the data. To get an idea about it, Table 3 tabulates
the number of prototypes created per group in each of the
10 runs using 1.000 commands per user as training data set
and a subsequence length of 3.

6.4 Results

Results are listed in Table 4. Each major row corresponds to
a training-set size (100, 500, and 1.000 commands) and each
such row is further subdivided into experiments with

TABLE 2
Total Number of Different Subsequences Obtained

TABLE 3
EvABCD: Number of Prototypes Created per Group

Using 10-Fold Cross Validation

TABLE 4
Classification Rate (Percent) of Different Classifiers in the UNIX Users Environments Using Different Size of

Training Data Set and Different Subsequence Lengths

9



different subsequence lengths for segmenting the initial
sequence (from two to six commands). The columns show
the average classification success using the proposed
approach (EvABCD) and the other (incremental and
nonincremental) classification algorithms.

According to these data, SVM and Nonincremental
Naive Bayes perform slightly better than the Incremental
NB and C5.0 classifiers in terms of accuracy. The percen-
tages of users correctly classified by EVABCD are higher to
the results obtained by LVQ and lower than the percentages
obtained by NB, C5.0, and SVM. Incremental and Non-
incremental kNN classifiers perform much worse than the
others. Note that the changes in the subsequence length do
not modify the classification results obtained by AdaBoost.
This is due to the fact that the classifier creates the same
classification rule (weak hypotheses) although the subse-
quence length varies.

In general, the difference between EVABCD and the
algorithms NB and SVM is considerable for small sub-
sequence lengths (two or three commands), but this
difference decreases when this length is longer (five or six
commands). These results show that using an appropriate
subsequence length, the proposed classifier can compete
well with offline approaches.

Nevertheless, the proposed environment needs a classi-
fier able to process streaming data in online and in real
time. Only the incremental classifiers satisfy this require-
ment, but unlike EVABCD, they assume a fixed structure. In
spite of this, taking into account the incremental classifiers,
it can be noticed that the difference in the results is not very
significant; besides, EVABCD can cope with huge amounts
of data because its structure is open and the rule-base
evolves in terms of creating new prototypes as they occur
automatically. In addition, the learning in EVABCD is
performed in single pass and a significantly smaller
memory is used. Spending too much time for training is
clearly not adequate for this purpose.

In short, EVABCD needs an appropriate subsequence
length to get a classification rate similar to the obtained by
other classifiers which use different techniques. However,
EVABCD does not need to store the entire data stream in
the memory and disregards any sample after being used.
EVABCD is one pass (each sample is proceeded once at the
time of its arrival), while other offline algorithms require a
batch set of training data in the memory and make many
iterations. Thus, EVABCD is computationally more simple
and efficient as it is recursive and one pass. Unlike other
incremental classifiers, EVABCD does not assume a
prefixed structure and it changes according to the samples
obtained. In addition, as EVABCD uses a recursive
expression for calculating the potential of a sample, it is
also computationally very efficient. In fact, since the
number of attributes is very large in the proposed
environment and it changes frequently, EVABCD is the
most suitable alternative. Finally, the EVABCD structure is
simple and interpretable.

6.5 Scenario: A New Class Appears

In addition to the advantage that EVABCD is an online
classifier, we want to prove the ability of our approach to
adapt to new data; in this case, new users or a different
behavior of a user. This aspect is especially relevant in
the proposed environment since a user profile changes

constantly. For this purpose, we design a new experi-
mental scenario in which the number of users of a class is
incrementing in the training data in order to detect how
the different classifiers recognize the users of a new class.

In this case, EVABCD is compared with three nonincre-
mental classifiers and 10-fold cross validation is used. This
experiment consists of four parts:

1. One of the four classes is chosen to detect how
EVABCD can adapt to it. The chosen class is named
as new class.

2. Initially, the training data set is composed by a
sample of the new class and all the samples of the
other three classes. The test data set is composed of
several samples of the four classes.

3. EVABCD is applied and the classification rate of the
samples of the new class is calculated.

4. The number of samples of the new class in the
training data set is increasing one by one and step 3
is repeated. Thus, the classification rate of the new
class samples is calculated in each increase.

Fig. 4 shows the four graphic results of this experiment
considering in each graph one of the four classes as the
new class:

. x-axis represents the number of users of the new class
that contains the training data set.

. y-axis represents the percentage of users of the new
class correctly classified.

In the different graphs, we can see how quickly
EVABCD evolves and adapts to the new class. If we
consider the class Novice Programmers, it is remarkable that
after analyzing three users of this class, the proposed
classifier is able to create a new prototype in which almost
90 percent of the test users are correctly classified.
However, the other classifiers need a larger number of
samples for recognizing the users of this new class. Similar
performance has been observed for the other three classes.
Specially, C5.0 needs several samples for creating a
suitable decision tree. As we can see in the graph which
represents the class Computer scientist as the new class, the
percentages of users correctly in the 1-NN classifier is
always 0 because all the users of this class are classified in
the Novice programmers class. The increase in the classifica-
tion rate is not perfectly smooth because the new data
bring useful information but also noise.

Taking into account these results, we would like to
remark that the proposed approach is able to adapt to a
new user behavior extremely quick. In a changing and
real-time environment, as the proposed in this paper, this
property is essential.

7 CONCLUSIONS

In this paper, we propose a generic approach, EVABCD, to
model and classify user behaviors from a sequence of
events. The underlying assumption in this approach is that
the data collected from the corresponding environment can
be transformed into a sequence of events. This sequence is
segmented and stored in a trie and the relevant sub-
sequences are evaluated by using a frequency-based
method. Then, a distribution of relevant subsequences is

10



created. However, as a user behavior is not fixed but rather
it changes and evolves, the proposed classifier is able to
keep up to date the created profiles using an Evolving
Systems approach. EVABCD is one pass, noniterative,
recursive, and it has the potential to be used in an
interactive mode; therefore, it is computationally very
efficient and fast. In addition, its structure is simple and
interpretable.

The proposed evolving classifier is evaluated in an
environment in which each user behavior is represented as
a sequence of UNIX commands. Although EVABCD has
been developed to be used online, the experiments have
been performed using a batch data set in order to compare
the performance to established (incremental and nonincre-
mental) classifiers. The test results with a data set of
168 real UNIX users demonstrates that, using an appro-
priate subsequence length, EVABCD can perform almost
as well as other well-established offline classifiers in terms
of correct classification on validation data. However,
taking into account that EVABCD is able to adapt
extremely quickly to new data, and that this classifier
can cope with huge amounts of data in a real environment
which changes rapidly, the proposed approach is the most
suitable alternative.

Although, it is not addressed in this paper, EVABCD
can also be used to monitor, analyze, and detect
abnormalities based on a time-varying behavior of same
users and to detect masqueraders. It can also be applied

to other type of users such as users of e-services, digital

communications, etc.

APPENDIX A

CALCULATION OF THE USING COSINE DISTANCE

POTENTIAL RECURSIVELY

In this appendix the expression of the potential is trans-

formed into a recursive expression in which it is calculated

using only the current data sample (zk). For this novel

derivation we combine the expression of the potential for a

sample data (1) represented by a vector of elements and the

distance cosine expression (2).

PkðzkÞ ¼
1

1þ 1
k 1

Pk 1
i 1 1�

Pn

j 1
zj
k
zjiPn

j 1

�
zj
k

�2Pn

j 1

�
zj
i

�2
q

2
4

3
5

22
4

3
5
ð12Þ

where zk denotes the kth sample inserted in the data

space. Each sample is represented by a set of values; the

value of the ith attribute (element) of the zk sample is

represented as zik.
In order to explain the derivation of the expression step

by step; firstly, we consider the denominator of the (12)

which is named as den:P ðzkÞ.

Fig. 4. Evolution of the classification rate during online learning with a subset of UNIX users data set.

11



den:PkðzkÞ

¼ 1þ 1

k� 1

Xk 1

i 1

1�
Pn

j 1 z
j
kz
j
iPn

j 1ðz
j
kÞ

2Pn
j 1ðz

j
iÞ

2
q

2
64

3
75

22
64

3
75

den:PkðzkÞ ¼ 1þ 1

k� 1

Xk 1

i 1

1� fi
h gi

� �2
" #

where:

fi ¼
Xn
j 1

zjkz
j
i ; h ¼

Xn
j 1

�
zjk
�2

vuut and gi ¼
Xn
j 1

�
zji
�2

vuut : ð13Þ

We can observe that the variables fi and gi depend on the

sum of all the data samples (all these data samples are

represented by i); but the variable h represents the sum of

the attribute values of the sample. Therefore, den:PkðzkÞ can

be simplified further into:

den:PkðzkÞ ¼ 1þ 1

ðk� 1Þ þ
Xk 1

i 1

1� �2fi
hgi

� �
þ fi

hgi

� �2
" #" #

;

den:PkðzkÞ ¼ 1þ 1

ðk� 1Þ ðk� 1Þ þ
Xk 1

i 1

�2fi
hgi
þ f2

i

h2g2
i

� �" #" #
:

ð14Þ

And finally, into:

den:PkðzkÞ ¼ 2þ 1

hðk� 1Þ �2
Xk 1

i 1

fi
gi

" #
þ 1

h

Xk 1

i 1

fi
gi

	 
2
" #" #" #

:

ð15Þ

In order to obtain an expression for the potential from

(15), we rename it as follows:

den:PkðzkÞ ¼ 2þ 1

hðk� 1Þ ½�2BK � þ
1

h
Dk

� �� �� �

where: Bk ¼
Xk 1

i 1

fi
gi
and Dk ¼

Xk 1

i 1

fi
gi

	 
2

:

ð16Þ

If we analyze each variable (Bk and Dk) separately

(considering the renaming done in (13)):
Firstly, we consider Bk

Bk ¼
Xk 1

i 1

Pn
j 1 z

j
kz
j
iPn

j 1

�
zji
�2

q ¼
Xn
j 1

zjk

Xk 1

i 1

�
zji
�2Pn

l 1

�
zli
�2
:

vuut ð17Þ

If we define each attribute of the sample Bk by:

bjk ¼
Xk 1

i 1

�
zji
�2Pn

l 1

�
zli
�2
:

vuut ð18Þ

Thus, the value of Bk can be calculated as a recursive

expression:

Bk ¼
Xn
j 1

zjkb
j
k; b

j
k ¼ b

j
ðk 1Þ þ

�
zjk
�2Pn

l 1

�
zlk
�2

vuut
bj1 ¼

�
zj

1

�2Pn

l 1

�
zl

1

�2

s
:

ð19Þ

Secondly, considering Dk with the renaming done in

(13), we get:

Dk ¼
Xk 1

i 1

Pn
j 1 z

j
kz
j
iPn

j 1

�
zji
�2

q
0
B@

1
CA

2

¼
Xk 1

i 1

1Pn
l 1

�
zli
�2

Xn
j 1

zjkz
j
i

" #2

Dk ¼
Xn
j 1

zjk

Xn
p 1

zpk

Xk 1

i 1

zijk z
ip
k

1Pn
l 1

�
zli
�2
:

ð20Þ

If we define djpk as each attribute of the sample Dk, we

get:

djpk ¼
Xk 1

i 1

zijk z
ip
k

1Pn
l 1

�
zli
�2

ð21Þ

Therefore:

Dk ¼
Xn
j 1

zjk

Xn
p 1

zpkd
jp
k ; djpk ¼ d

jp
ðk 1Þ þ

zjkz
p
kPn

l 1

�
zlk
�2

;

d1j
1 ¼

zj1z
1
1Pn

l 1

�
zl1
�2

; j ¼ ½1; nþ 1�:
ð22Þ

Finally:

PkðzkÞ ¼
1

2þ ½ 1
hðk 1Þ ½½�2BK � þ ½1hDk���

k ¼ 2; 3 . . . ; P1ðz1Þ ¼ 1;

ð23Þ

where Bk is obtained as in (19), and Dk is described in (22).
Note that to get recursively the value of Bk, it is

necessary to calculate n accumulated values (in this case,

n is the number of the different subsequences obtained).

However, to get recursively the value of Dk we need to

calculate n� n different accumulated values which store

the result of multiply a value by all the other different

values (these values are represented as dijk ).

ACKNOWLEDGMENTS

This work is partially supported by the Spanish Govern-

ment under project TRA2007-67374-C02-02.

REFERENCES

[1] D. Godoy and A. Amandi, “User Profiling in Personal Information
Agents: A Survey,” Knowledge Eng. Rev., vol. 20, no. 4, pp. 329 361,
2005.

[2] J.A. Iglesias, A. Ledezma, and A. Sanchis, “Creating User Profiles
from a Command Line Interface: A Statistical Approach,” Proc.
Int’l Conf. User Modeling, Adaptation, and Personalization (UMAP),
pp. 90 101, 2009.

[3] M. Schonlau, W. Dumouchel, W.H. Ju, A.F. Karr, and Theus,
“Computer Intrusion: Detecting Masquerades,” Statistical Science,
vol. 16, pp. 58 74, 2001.

12



[4] R.A. Maxion and T.N. Townsend, “Masquerade Detection Using
Truncated Command Lines,” Proc. Int’l Conf. Dependable Systems
and Networks (DSN), pp. 219 228, 2002.

[5] A. Alaniz Macedo, K.N. Truong, J.A. Camacho Guerrero, and M.
Graca Pimentel, “Automatically Sharing Web Experiences
through a Hyperdocument Recommender System,” Proc. ACM
Conf. Hypertext and Hypermedia (HYPERTEXT ’03), pp. 48 56, 2003.

[6] D.L. Pepyne, J. Hu, and W. Gong, “User Profiling for Computer
Security,” Proc. Am. Control Conf., pp. 982 987, 2004.

[7] D. Godoy and A. Amandi, “User Profiling for Web Page
Filtering,” IEEE Internet Computing, vol. 9, no. 4, pp. 56 64, July/
Aug. 2005.

[8] J. Anderson, Learning and Memory: An Integrated Approach. John
Wiley and Sons, 1995.

[9] Y. Horman and G.A. Kaminka, “Removing Biases in Unsuper
vised Learning of Sequential Patterns,” Intelligent Data Analysis,
vol. 11, no. 5, pp. 457 480, 2007.

[10] T. Lane and C.E. Brodley, “Temporal Sequence Learning and Data
Reduction for Anomaly Detection,” Proc. ACM Conf. Computer and
Comm. Security (CCS), pp. 150 158, 1998.

[11] S.E. Coull, J.W. Branch, B.K. Szymanski, and E. Breimer,
“Intrusion Detection: A Bioinformatics Approach,” Proc. Ann.
Computer Security Applications Conf. (ACSAC), pp. 24 33, 2003.

[12] P. Angelov and X. Zhou, “Evolving Fuzzy Rule Based Classifiers
from Data Streams,” IEEE Trans. Fuzzy Systems: Special Issue on
Evolving Fuzzy Systems, vol. 16, no. 6, pp. 1462 1475, Dec. 2008.

[13] M. Panda and M.R. Patra, “A Comparative Study of Data Mining
Algorithms for Network Intrusion Detection,” Proc. Int’l Conf.
Emerging Trends in Eng. and Technology, pp. 504 507, 2008.

[14] A. Cufoglu, M. Lohi, and K. Madani, “A Comparative Study of
Selected Classifiers with Classification Accuracy in User Profil
ing,” Proc. WRI World Congress on Computer Science and Information
Eng. (CSIE), pp. 708 712, 2009.

[15] R. Polikar, L. Upda, S.S. Upda, and V. Honavar, “Learn++: An
Incremental Learning Algorithm for Supervised Neural Net
works,” IEEE Trans. Systems, Man and Cybernetics, Part C
(Applications and Rev.), vol. 31, no. 4, pp. 497 508, http://
dx.doi.org/10.1109/5326.983933, Nov. 2001.

[16] D. Kalles and T. Morris, “Efficient Incremental Induction of
Decision Trees,” Machine Learning, vol. 24, no. 3, pp. 231 242, 1996.

[17] F.J. Ferrer Troyano, J.S. Aguilar Ruiz, and J.C.R. Santos, “Data
Streams Classification by Incremental Rule Learning with Para
meterized Generalization,” Proc. ACM Symp. Applied Computing
(SAC), pp. 657 661, 2006.

[18] J.C. Schlimmer and D.H. Fisher, “A Case Study of Incremental
Concept Induction,” Proc. Fifth Nat’l Conf. Artificial Intelligence
(AAAI), pp. 496 501, 1986.

[19] P.E. Utgoff, “Id5: An Incremental Id3,” Proc. Int’l Conf. Machine
Learning, pp. 107 120, 1988.

[20] P.E. Utgoff, “Incremental Induction of Decision Trees,” Machine
Learning, vol. 4, no. 2, pp. 161 186, 1989.

[21] G.A. Carpenter, S. Grossberg, and D.B. Rosen, “Art2 a: An
Adaptive Resonance Algorithm for Rapid Category Learning
and Recognition,” Neural Networks, vol. 4, pp. 493 504, 1991.

[22] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and
D.B. Rosen, “Fuzzy Artmap: A Neural Network Architecture for
Incremental Supervised Learning of Analog Multidimensional
Maps,” IEEE Trans. Neural Networks, vol. 3, no. 5, pp. 698 713, Sept.
1992.

[23] N. Kasabov, “Evolving Fuzzy Neural Networks for Supervised/
Unsupervised Online Knowledge Based Learning,” IEEE Trans.
Systems, Man and Cybernetics Part B: Cybernetics, vol. 31, no. 6,
pp. 902 918, Dec. 2001.

[24] T. Seipone and J.A. Bullinaria, “Evolving Improved Incremental
Learning Schemes for Neural Network Systems,” Proc. IEEE
Congress on Evolutionary Computation, pp. 2002 2009, 2005.

[25] T. Kohonen, J. Kangas, J. Laaksonen, and K. Torkkola, “Lvq pak: A
Program Package for the Correct Application of Learning Vector
Quantization Algorithms,” Proc. IEEE Int’l Conf. Neural Networks,
pp. 725 730, 1992.

[26] F. Poirier and A. Ferrieux, “Dvq: Dynamic Vector Quantization
An Incremental Lvq,” Proc. Int’l Conf. Artificial Neural Networks,

pp. 1333 1336, 1991.
[27] R.K. Agrawal and R. Bala, “Incremental Bayesian Classification

for Multivariate Normal Distribution Data,” Pattern Recognition
Letters, vol. 29, no. 13, pp. 1873 1876, http://dx.doi.org/10.1016/
j.patrec.2008.06.010, 2008.

[28] K. M, A. Chai, H.L. Chieu, and H.T. Ng, “Bayesian Online
Classifiers for Text Classification and Filtering,” Proc. Int’l Conf.
Research and Development in Information Retrieval (SIGIR), pp. 97
104, 2002.

[29] R. Xiao, J. Wang, and F. Zhang, “An Approach to Incremental
SVM Learning Algorithm,” Proc. IEEE Int’l Conf. Tools with
Artificial Intelligence, pp. 268 278, 2000.

[30] G. Widmer and M. Kubat, “Learning in the Presence of Concept
Drift and Hidden Contexts,” Machine Learning, vol. 23, pp. 69 101,
1996.

[31] P. Riley and M.M. Veloso, “On Behavior Classification in
Adversarial Environments,” Proc. Int’l Symp. Distributed Autono
mous Robotic Systems (DARS), pp. 371 380, 2000.

[32] E. Fredkin, “Trie Memory,” Comm. ACM, vol. 3, no. 9, pp. 490 499,
1960.

[33] J.A. Iglesias, A. Ledezma, and A. Sanchis, “Sequence Classifica
tion Using Statistical Pattern Recognition,” Proc. Int’l Conf.
Intelligent Data Analysis (IDA), pp. 207 218, 2007.

[34] G.A. Kaminka, M. Fidanboylu, A. Chang, and M.M. Veloso,
“Learning the Sequential Coordinated Behavior of Teams from
Observations,” Proc. RoboCup Symp., pp. 111 125, 2002.

[35] J.A. Iglesias, A. Ledezma, and A. Sanchis, “A Comparing Method
of Two Team Behaviours in the Simulation Coach Competition,”
Proc. Int’l Conf. Modeling Decisions for Artificial Intelligence (MDAI),
pp. 117 128, 2006.

[36] R. Agrawal and R. Srikant, “Mining Sequential Patterns,” Proc.
Int’l Conf. Data Eng., pp. 3 14, 1995.

[37] P. Angelov and D. Filev, “An Approach to Online Identification of
Takagi Sugeno Fuzzy Models,” IEEE Trans. Systems, Man, and
Cybernetics, Part B, vol. 34, no. 1, pp. 484 498, Feb. 2004.

[38] P. Angelov, X. Zhou, and F. Klawonn, “Evolving Fuzzy Rule
Based Classifiers,” Proc. IEEE Symp. Computational Intelligence in
Image and Signal Processing (CIISP ’07), pp. 220 225, 2007.

[39] X. Zhou and P. Angelov, “Autonomous Visual Self Localization in
Completely Unknown Environment Using Evolving Fuzzy Rule
Based Classifier,” Proc. IEEE Symp. Computational Intelligence in
Security and Defense Applications (CISDA), pp. 131 138, 2007.

[40] P. Angelov and D. Filev, “Simpl ets: A Simplified Method for
Learning Evolving Takagi Sugeno Fuzzy Models,” Proc. IEEE Int’l
Conf. Fuzzy Systems (IEEE FUZZ), pp. 1068 1073, 2005.

[41] S. Greenberg, “Using Unix: Collected Traces of 168 Users,”
master’s thesis, Dept. of Computer Science, Univ. of Calgary,
Alberta, Canada, 1988.

[42] J. Quinlan, “Data Mining Tools See5 and c5.0,” http://
www.rulequest.com/see5 info.html, 2003.

[43] J.R. Quinlan, C4.5: Programs for Machine Learning. Morgan
Kaufmann, 1993.

[44] R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis.
John Wiley & Sons, 1973.

[45] G. John and P. Langley, “Estimating Continuous Distributions in
Bayesian Classifiers,” Proc. Conf. Uncertainty in Artificial Intelligence,
pp. 338 345, 1995.

[46] T. Cover and P. Hart, “Nearest Neighbor Pattern Classification,”
IEEE Trans. Information Theory, vol. 13, no. 1, pp. 21 27, Jan. 1967.

[47] Y. Freund and R.E. Schapire, “A Decision Theoretic General
ization of On Line Learning and an Application to Boosting,”
J. Computer and System Sciences, vol. 55, no. 1, pp. 119 139, 1997.

[48] J.H. Morra, Z. Tu, L.G. Apostolova, A. Green, A.W. Toga, and
P.M. Thompson, “Comparison of Adaboost and Support Vector
Machines for Detecting Alzheimer’s Disease through Automated
Hippocampal Segmentation,” IEEE Trans. Medical Imaging, vol. 29,
no. 1, pp. 30 43, Jan. 2010.

[49] J. Platt, “Machines Using Sequential Minimal Optimization,”
Advances in Kernel Methods Support Vector Learning, B. Schoelkopf,
C. Burges, and A. Smola, eds., MIT Press, 1998.

[50] Self Organizing Maps, T. Kohonen, M.R. Schroeder and
T.S. Huang, eds. Springer Verlag, 2001.

13




