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Abstract

We develop two tools to analyze the behavior of multiple-class, or multi-class, classifiers by means of entropic mea-
sures on their confusion matrix or contingency table. First we obtain a balance equation on the entropies that captures
interesting properties of the classifier. Second, by normalizing this balance equation we first obtain a 2-simplex in a
three-dimensional entropy space and then the de Finetti entropy diagram or entropy triangle. We also give examples
of the assessment of classifiers with these tools.
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1. Introduction1

Let VX = {xi}
n
i=1 and VY = {y j}

p
j=1 be sets of input and2

output class identifiers, respectively, in a multiple-class3

classification task. The basic classification event con-4

sists in “presenting a pattern of input class xi to the clas-5

sifier to obtain output class identifier y j,” (X = xi,Y =6

y j) . The behavior of the classifier can be sampled over7

N iterated experiments to obtain a count matrix NXY8

where NXY (xi, y j) = Ni j counts the number of times that9

the joint event (X = xi,Y = y j) occurs. We say that NXY10

is the (count-based) confusion matrix or contingency ta-11

ble of the classifier.12

Since a confusion matrix is an aggregate recording13

of the classifier’s decisions, the characterization of the14

classifier’s performance by means of a measure or set15

of measures over its confusion matrix is an interesting16

goal.17

One often used measure is accuracy, the propor-18

tion of times the classifier takes the correct deci-19

sion A(NXY ) ≈
∑

i NXY (xi, yi)/N. But this has of-20

ten been deemed biased towards classifiers acting on21
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non-uniform prior distributions of input patterns (Ben-22

David, 2007; Sindhwani et al., 2004). For instance, with23

continuous speech corpora, the silence class may ac-24

count for 40–60% percent of input patterns making a25

majority classifier that always decides Y = silence, the26

most prevalent class, quite accurate but useless. Related27

measures based in proportions over the confusion ma-28

trix can be found in Sokolova and Lapalme (2009).29

On these grounds, Kononenko and Bratko (1991)30

have argued for the factoring out of the influence of31

prior class probabilities in similar measures. Yet, Ben-32

David (2007) has argued for the use of measures that33

correct naturally for random decisions, like Cohen’s34

kappa, although this particular measure seems to be af-35

fected by the marginal distributions.36

The Receiver Operating Characteristic (ROC) curve37

(Fawcett, 2006) has often been considered a good visual38

characterization of binary confusion matrices built upon39

proportion measures, but its generalization to higher in-40

put and output set cardinals is not as effective. Likewise,41

an extensive Area Under the Curve, (AUC) for a ROC42

has often been considered an indication of good classi-43

fiers (Bradley, 1997; Fawcett, 2006), but the calculation44

of its higher dimensional analogue, the Volume Under45

the Surface, (VUS) (Hand and Till, 2001) is less man-46

ageable. It may also suffer from comparability issues47

across classifiers (Hand, 2009).48
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A better ground for discussing performance than49

count confusion matrices may be empirical estimates of50

the joint distribution between input and outputs, like the51

maximum likelihood estimate used throughout this let-52

ter PXY (xi, y j) ≈ P̂MLE
XY (xi, y j) = N(xi, y j)/N . The sub-53

sequent consideration of the classifier as an analogue54

of a communication channel between input and output55

class identifiers enables the importing of information-56

theoretic tools to characterize the “classification chan-57

nel”. This technique is already implicit in the work of58

Miller and Nicely (1955).59

With this model in mind, Sindhwani et al. (2004) ar-60

gued for entropic measures that take into account the61

information transfer through the classifier, like the ex-62

pected mutual information between the input and output63

distributions (Fano, 1961)64

MIPXY =
∑
x,y

PX,Y (x, y) log
PX,Y (x, y)

PX(x)PY (y)
(1)65

66

and provided a contrived example with three confusion67

matrices with the same accuracy but clearly differing68

performances, in their opinion due to differences in mu-69

tual information. Such examples are alike those put70

forth by Ben-David (2007) to argue for Cohen’s kappa71

as an evaluation metric for classifiers.72

For the related task of clustering, Meila (2007) used73

the Variation of Information, that actually amounts to74

the sum of their mutually conditioned entropies as a true75

distance between the two random variables76

VIPXY = HPX|Y + HPY |X .77
78

In this letter we first try to reach a more complete79

understanding of what is a good classifier by develop-80

ing an overall constraint on the total entropy balance81

attached to its joint distribution. Generalizing over the82

input and output class set cardinalities will allow us to83

present a visualization tool in section 2.2 for classifier84

evaluation that we will further explore in some exam-85

ples both from real and synthetic data in section 2.3. In86

section 2.4 we try to extend the tools to unmask major-87

ity classifiers as bad classifiers. Finally we discuss the88

affordances of these tools in the context of previously89

used techniques.90

2. Information-Theoretic Analysis of Confusion91

Matrices92

2.1. The Balance equation and the 2-simplex93

Let PXY (x, y) be an estimate of the joint proba-94

bility mass function (pmf) between input and output95

with marginals PX(x) =
∑

y j∈Y PX,Y (x, y j) and PY (y) =96 ∑
xi∈X PX,Y (xi, y) .97

Let QXY = PX · PY be the pmf1 with the same98

marginals as PXY considering them to be independent99

(that is, describing independent variables). Let UXY =100

UX · UY be the product of the uniform, maximally en-101

tropic pmfs over X and Y , UX(x) = 1/n and UY (y) =102

1/p . Then the loss in uncertainty from UXY to QXY is103

the difference in entropies:104

∆HPX ·PY = HUX ·UY − HPX ·PY (2)105
106

Intuitively, ∆HPX ·PY measures how far the classifier107

is operating from the most general situation possible108

where all inputs are equally probable, which prevents109

the classifier from specializing in an overrepresented110

class to the detriment of classification accuracy in oth-111

ers. Since HUX = log n and HUY = log p , ∆HPX ·PY may112

vary from ∆H min
PX ·PY

= 0 , when the marginals themselves113

are uniform PX = UX and PY = UY , to a maximum114

value ∆H max
PX ·PY

= log n+ log p , when they are Kronecker115

delta distributions.116

We would like to relate this entropy decrement to the117

expected mutual information MIPXY of a joint distribu-118

tion. For that purpose, we realize that the mutual in-119

formation formula (1) describes the decrease in entropy120

when passing from distribution QXY = PX · PY to PXY121

MIPXY = HPX ·PY − HPXY . (3)122
123

And finally we invoke the well-known formula relating124

the joint entropy HPXY and the expected mutual infor-125

mation MIPXY to the conditional entropies of X given Y ,126

HPX|Y (Y given X , HPY |X respectively):127

HPXY = HPX|Y + HPY |X +MIPXY (4)128
129

Therefore MIPXY may range from MI min
PXY
= 0 when130

PXY = PX · PY , a bad classifier, to a theoretical max-131

imum MI max
PXY
= (log n + log p)/2 in the case where the132

marginals are uniform and input and output are com-133

pletely dependent, an excellent classifier.134

Recall the variation of information definition in Eq.135

(5).136

VIPXY = HPX|Y + HPY |X (5)137
138

For optimal classifiers with deterministic relation from139

the input to the output, and diagonal confusion matrices140

VI min
PXY
= 0 , e.g., all the information about X is borne by141

1We drop the explicit variable notation in the distributions from
now on.
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Y and vice versa. On the contrary, when they are inde-142

pendent VI max
PXY
= HPX + HPY , the case with inaccurate143

classifiers which uniformly redistribute inputs among144

all outputs.145

Collecting Eqs. (2)–(5) results in the balance equa-146

tion for information related to a joint distribution, our147

first result,148

HUXY = ∆HPX ·PY + 2MIPXY + VIPXY (6)149
150

The balance equation suggests an information dia-151

gram somewhat more complete than what is normally152

used for the relations between the entropies of two vari-153

ables as depicted in Fig. 1(a) (compare to Yeung, 1991,154

Fig. 1). In this diagram we distinguish the familiar de-155

composition of the joint entropy HPXY as the two en-156

tropies HPX and HPY whose intersection is MIPXY . But157

notice that the increment between HPXY and HPX ·PY is158

yet again MIPXY , hence the expected mutual informa-159

tion appears twice in the diagram. Further, the interior160

of the outer rectangle represents HUX ·UY , the interior of161

the inner rectangle HPX ·PY and ∆HPX ·PY represents their162

difference in areas. The absence of the encompassing163

outer rectangle in Fig. 1a was specifically puzzled at by164

Yeung (1991).165

Notice that, since both UX and UY on the one hand166

and PX and PY are independent as marginals of UXY and167

QXY , respectively, we may write:168

∆HPX PY = (HUX − HPX ) + (HUY − HPY ) = ∆HPX + ∆HPY

(7)
169

170

where171

∆HPX = HUX − HPX ∆HPY = HUY − HPY (8)172
173

This and the occurrence of twice the expected mutual174

information in Eq. (6) suggests a different information175

diagram, depicted in Fig. 1(b). Both variables X and176

Y now appear somehow decoupled—in the sense that177

the areas representing them are disjoint—yet there is a178

strong coupling in that the expected mutual information179

appears in both HPX and HPY . This suggests writing180

separate balance equations for each variable, to be used181

in Sec. 2.4,182

HUX = ∆HPX +MIPXY + HPX|Y HUY = ∆HPY +MIPXY + HPY |X .
(9)

183

184

Our interpretation for the balance equation is that the185

”raw” uncertainty available in UXY minus the deviation186

of the input data from the uniform distribution ∆HPX , a187

given, is redistributed in the classifier-building process188

to the information being transferred from input to out-189

put MIPXY . This requires as much mutual information to190

stochastically bind the input to the output, thereby trans-191

forming PX ṖY into PXY , and incurs in an uncertainty192

decrease at the output equal to ∆HPY . The residual un-193

certainty HPX|Y + HPY |X should measure how efficient the194

process is: the smaller, the better.195

To gain further understanding of the entropy decom-196

position suggested by the balance equation, from Eq.197

(6) and the paragraphs following Eqs. (2)–(5), we ob-198

tain199

HUXY = ∆HPX ·PY + 2MIPXY + VIPXY200

0 ≤ ∆HPX ·PY , 2MIPXY ,VIPXY ≤ HUXY201
202

imposing severe constraints on the values the quantities203

may take, the most conspicuous of which is that given204

two of the quantities the third one is fixed. Normalizing205

by HUXY we get206

1 = ∆H′PX ·PY + 2MI ′PXY + VI ′vPXY (10)207

0 ≤ ∆H′PX ·PY , 2MI ′PXY ,VI ′PXY ≤ 1 .208
209

This is the 2-simplex in normalized ∆H′PX ·PY ×210

2MI ′PXY × VI ′PXY space depicted in Fig. 2(a), a three-211

dimensional representation of classifier performance:212

each classifier with joint distribution PXY can be char-213

acterized by its joint entropy fractions, FXY (PXY ) =214

[∆H′PXY
, 2 ×MI ′PXY

,VI ′PXY
] .215

2.2. De Finetti entropy diagrams216

Since the ROC curve is a bi-dimensional character-217

ization of binary confusion matrices we might wonder218

if the constrained plane above has a simpler visualiza-219

tion. Consider the 2-simplex in Eq. (10) and Fig. 2(a).220

Its projection onto the plane with director vector is221

(1, 1, 1) is its de Finetti (entropy) diagram, represented222

in Fig. 2(b). Alternatively to the three-dimensional rep-223

resentation, each classifier can be represented as a point224

at coordinates FXY in the de Finetti diagram.225

The de Finetti entropy diagram shows as an equilat-226

eral triangle, hence the alternative name entropy trian-227

gle, each of whose sides and vertices represents classi-228

fier performance-related qualities:229

• If PX and PY are independent in QXY = PX ·PY then230

FXY (QXY ) = [·, 0, ·]. The lower side is the geomet-231

ric locus of distributions with no mutual informa-232

tion transfer between input and output: the closer233

a classifier is to this side, the more unreliable the234

classifier decisions are.235
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Figure 1: Extended information diagrams of entropies related to a bivariate distribution: the expected mutual information appears twice. (a)
Extended diagram, and (b) Modified extended diagram.
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Figure 2: (color on-line) Entropic representations for bivariate distribution of the synthetic examples of Fig. 3: (a) The 2-simplex in three-
dimensional, normalized entropy space ∆H’PX ·PY ×VI′PXY × 2MI′PXY and (b) the de Finetti entropy diagram or entropy triangle, a projection of the
2-simplex onto a two-dimensional space (explanations in Sec. 2.3).

• If the marginals of PXY are uniform PX = UX and236

PY = UY then FXY (PXY ) = [0, ·, ·] . This is the237

locus of classifiers that are not trained with over-238

represented classes and therefore cannot specialize239

in any of them: the closer to this side, the more240

generic the classifier.241

• Finally, if PXY is a diagonal matrix, then PX = PY242

and FXY (PXY ) = [·, ·, 0]. The right-hand side is243

the region of classifiers with no variation of in-244

formation, that is, no remanent information in the245

conditional entropies: this characterizes classifiers246

which transfer as much information from HPX to247

HPY as they can.248

Moving away from these sides the corresponding mag-249

nitudes grow until saturating at the opposite vertices,250

which therefore represent ideal, prototypical classifier251

loci:252

• The upper vertex FXY (optimal) = [0, 1, 0] repre-253

sents optimal classifiers with the highest informa-254

tion transfer from input to output and highly en-255

tropic priors.256

• The vertex to the left FXY (inaccurate) =257

[0, 0, 1] represents inaccurate classifiers, with low258
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information-transfer with highly entropic priors.259

• The vertex to the right FXY (underperforming) =260

[0, 0, 1] represents underperforming classifiers,261

with low information transfer and low-entropic pri-262

ors either at an easy task or refusing to deliver per-263

formance.264

In the next section we develop intuitions over the de265

Finetti diagram by observing how typical examples, real266

and synthetic appear in it.267

But first we would like to extend it theoretically268

to cope with the separate information balances of the269

marginal distributions. Recall that the modified infor-270

mation diagram in Fig. 1(b) suggest a decoupling of the271

information flow from input to output further supported272

by eq. 9. These describe the marginal fractions of en-273

tropy when the normalization is done with HUX and HUY274

respectively275

FX(PXY ) = [∆H′PX ,MI ′PXY
,VI ′X = H′PX|Y ] (11)276

FY (PXY ) = [∆H′PY ,MI ′PXY
,VI ′Y = H′PY |X ]277

278

hence we may consider the de Finetti marginal entropy279

diagrams for both FX and FY to visualize the entropy280

changes from input to output.281

Furthermore, since the normalization factors involved282

are directly related to those in the joint entropy balance,283

and the MI ′PXY
has the same value in both marginal di-284

agrams when n = p, we may represent the fractions for285

FX and FY side by side those of FXY in an extended de286

Finetti entropy diagram: the point FXY , being and aver-287

age of FX and FY , will appear in the diagram flanked by288

the latter two. We show in Sec. 2.4 examples of such289

extended diagrams and their use.290

2.3. Examples291

To clarify the usefulness of our tools in assessing292

classifier performance we explored data from real clas-293

sifiers and synthetic examples to highlight special be-294

haviors.295

First, consider:296

• matrices a, b, and c from Sindhwani et al. (2004),297

reproduced with the same name in Fig. 3,298

• a matrix whose marginals are closer to a uniform299

distribution, a matrix whose marginals are closer300

to a Kronecker delta, and the confusion matrix of a301

majority classifier, with a delta output distribution302

but a more spread input distribution—matrices d, e303

and f in Fig. 3 respectively—, and304

• a series of distributions obtained by convex combi-305

nation PXY = (1 − λ) · (PX · PY ) + λ · (PX=Y ) from306

a uniform bivariate (PX · PY ) to a uniform diagonal307

(PX=Y ) distribution as the combination coefficient308

λ ranges in [0, 1] .309

The contrived examples in Sindhwani et al. (2004),310

matrices a, b, and c—represented in both diagrams in311

Fig. 2 as a diamond, a pentagram, and a hexagram,312

respectively—pointed out there at a need for new per-313

formance metrics, since they all showed the same accu-314

racy. The diagrams support the intuition that matrix a315

describes a slightly better classifier than matrix b which316

describes a better classifier than matrix c (see Sec. 2.4317

for a further analysis of the behavior of c).318

Figs. 2(a) and 2(b) demonstrate that there are clear319

differences in performance between a classifier with320

more uniform marginals and one with marginals more321

alike Kronecker deltas (matrices d and e in Fig. 3, the322

circle and square, respectively). Furthermore, an exam-323

ple of a majority classifier (matrix f , the downwards324

triangle) shows in the diagram as underperforming: it325

will be further analyzed in Sec. 2.4.326

From the convex combination we plotted the line of327

asterisks at ∆H′PX ·PY = 0 in Figs. 2(a) and (b). When328

the interpolation coefficient for the diagonal is null, we329

obtain the point at ∆H′PX ·PY = 0,VI′PX ·PY = 0 for the330

worst classifier. As the coefficient increases, the aster-331

isks denote better and better hypothetical classifiers un-332

til reaching the apex of the triangle, the best. We sim-333

ulated in this guise the estimation of classifiers in im-334

proving SNR ratios for each point in the line, as shown335

below on real data.336

In order to appraise the usefulness of the representa-337

tion on real data we visualized in Fig. 4(a) the perfor-338

mance of several series of classifiers. The circles to the339

right describe a classical example of the performance of340

human listeners in a 16-consonant human-speech recog-341

nition task at different SNR (Miller and Nicely, 1955).342

They evidence the outstanding recognition capabilities343

of humans, always close to maximum available infor-344

mation transfer at VI ′PXY = 0, with a graceful degrada-345

tion as the available information decreases with decreas-346

ing SNR—from 12dB at the top of the line to −18dB at347

the bottom. And they also testify to the punctiliousness348

of those authors’ in keeping to maximally generic input349

and output distributions at ∆H′PX PY ≈ 0.350

On the other hand, the asterisks, plus signs and351

crosses are series of automatic speech recognizers us-352

ing the SpeechDat database (Moreno, 1997). They mo-353

tivated this work in characterizing classifiers by means354

of entropic measures.355
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a =

15 0 5
0 15 5
0 0 20

 b =

16 2 2
2 16 2
1 1 18

 c =

1 0 4
0 1 4
1 1 48


d =

15 0 0
0 18 0
0 0 27

 e =

1 0 0
0 2 0
0 0 57

 f =

0 0 5
0 0 5
0 0 50


Figure 3: Examples of synthetic confusion matrices with varied behavior: a, b and c from (Sindhwani et al., 2004), d a matrix whose marginals
tend towards uniformity, e a matrix whose marginals tend to Kronecker’s delta and f the confusion matrix of a majority classifier.
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Figure 4: (color on-line) Examples of use of the de Finetti entropy diagram to assess classifiers: (a) human and machine classifier performance
in consonant recognition tasks, and (b) the performance of some prototypical communication channel models.

• The series of squares describes a 18-class phonetic356

recognition task with worsening SNR that does not357

use any lexical information. This is roughly com-358

parable to the experiments in Miller and Nicely359

(1955) and highlights the wide gap at present be-360

tween human and machine performance in pho-361

netic recognition.362

• The series of plus signs describes phonetic confu-363

sions on the same phonetic recognition task when364

lexical information is incorporated. Notice that365

the tendency in either series is not towards the366

apex of the entropy triangle, but towards increasing367

∆H′PX PY , suggesting that the learning technique368

used to build the classifiers is not making a good369

job of extracting all the phonetic information avail-370

able from the data, choosing to specialize the clas-371

sifier instead. Further, the additional lexical con-372

straints on their own do not seem to be able to span373

the gap with human performance.374

• Finally, the asterisks describe a series of classifiers375

for a 10-digit recognition task on the same data.376

The very high values of all the coordinates suggest377

that this is a well-solved task at all those noise con-378

ditions.379

Notice that, although all these tasks have different380

class set cardinalities, they can be equally well com-381

pared in the same entropy triangle.382

Since the simplex was developed for joint distribu-383

tions, other objects characterized by these, such as com-384

munication channel models, may also be explored with385

the technique. These are high level descriptions of the386

end-to-end input and output-symbol classification capa-387

bilities of a communication system. Fig. 4(b) depicts388

three types of channels from MacKay (2003):389

• the binary symmetric channel with n = p = 2390

where we have made the probability of error range391
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in pe ∈ [0, 0.5] in 0.05 steps to obtain the series392

plotted with asterisks,393

• the binary erasure channel with n = 2; p = 3 with394

the erasure probability ranging in pe ∈ [0, 1.0] in395

0.01 steps plotted with circles, and396

• the noisy typewriter with n = p = 27 describing a397

typewriter with a convention on the errors it com-398

mits, plotted as a pentagram.399

As channels are actually defined by conditional distribu-400

tions PY |X(y|x) we multiplied them with a uniform prior401

PX = UX to plot them. Although PX = UX the same402

cannot be said of PY what accounts for the fact that on403

most of the sample points in the binary erasure channel404

we have ∆H′PX ·PY , 0 . On the other hand, the sym-405

metries in the binary symmetric channel and the noisy406

typewriter account for ∆H′PX ·PY = 0 .407

Notice how in the entropy triangle we can even make408

sense of a communication channel with different input409

and output symbol set cardinalities, e.g. the binary era-410

sure channel.411

2.4. De Finetti diagram analysis of majority classifiers412

Majority classifiers are capable of achieving a very413

high accuracy rate but are of limited interest. It is often414

required that good performance evaluation measures for415

classifiers show a baseline both for random and major-416

ity classifiers (Ben-David, 2007). For instance, majority417

classifiers should:418

• have a low output entropy, a high ∆H′PY
, whatever419

its ∆H′PX
value.420

• have a low information transfer MI ′PXY
.421

• have some output conditional entropy, hence some422

VI ′PXY
.423

Matrix f in Fig. 3 is the confusion matrix of majority424

classifier with a non-uniform input marginal. We would425

like to know whether this behavior could be gleaned426

from a de Finetti diagram.427

In Fig. 5(a) we have plotted again the joint entropy428

fractions for the synthetic cases analyzed above, to-429

gether with the entropy fractions of their marginals. For430

most of the cases, all three points coincide—showing as431

a crosses within circles.432

But matrices a, c and f —diamond, hexagram and433

downwards triangle in Fig. 5(a)—show differences in434

joint and marginal fractions. The most striking cases are435

those of matrices c and f , whose uncertainty diminishes436

dramatically from input to output.437

Matrix f in Fig. 3 models the behavior of a ma-438

jority classifier with the same input marginal as a–e.439

The marginal fraction points appear flanking this, at440

FX( f ) = [0.45, 0, 0.55] and FY ( f ) = [1, 0, 0]. The accu-441

racy for this classifier would be around 0.83.442

In a sense, this classifier is cheating: without any443

knowledge of the actual classification instances it has444

optimized the average accuracy, but will be defeated445

if the input distribution gets biased towards a different446

class in the deployment (test) phase. It is now quite clear447

that c, being close to a majority classifier, attains its ac-448

curacy by specialization too.449

Indeed, observing matrix a we may pinpoint the fact450

that its zero-pattern seems to be the interpolation of451

a diagonal confusion matrix and the confusion matrix452

of a majority classifier. This fact shows as the two453

flanking marginal fractions to the diamond at approx-454

imately FXY (a) = [0.03, 0.6, 0.37] in Fig. 5. How-455

ever, since PX was wisely kept uniform, ∆H′PX
= 0 at456

FY (a) = [0, 0.6, 0.4] the classifier could only specialize457

to FY (a) = [0.06, 0.6, 0.34].458

These examples suggest that:459

• Specialization is a reduction in VI ′PXY
caused by the460

reduction in VI ′PY
brought about by the increase in461

∆H′PY , that is manipulation of the output marginal462

distribution.463

• Classifiers with diagonal matrices VI ′PXY
= 0464

need not (and classifiers with uniform marginals465

∆H′PXY = 0 cannot) specialize.466

• Maintaining uniform input marginals amounts to a467

sort of regularization preventing specialization fur-468

ther from transforming all ∆H′PY into a decrement469

of VI ′PXY
.470

For real classifiers, we have plotted in Fig. 5(b) the471

marginal fractions of all the classifiers in Fig. 4(a).472

Again, for most of them, the marginal fractions coincide473

with the joint fractions. But for the phonetic SpeechDat474

task plotted with squares we observe how with decreas-475

ing SNR the classifier has to resort to specialization.476

With increasing SNR it can concentrate on increasing477

the expected mutual information transmitted from input478

to output.479

3. Discussion and conclusions480

We have provided a mathematical tool to analyze the481

behavior of multi-class classifiers by means of the bal-482

ance of entropies of the joint probability mass distribu-483

tion of input and output classes as estimated from their484

confusion matrix or contingency table.485
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Figure 5: (color on-line) Extended de Finetti entropy diagrams for synthetic and real examples: (a) for the synthetic confusion matrices of
Fig. 2(b), and (b) for the real confusion matrices of Fig. 4(a). The expected mutual information coordinate is maintained in the three points for each
confusion matrix.

The balance equation takes into consideration the486

Kullback-Leibler divergence between the uniform and487

independent distributions with the same marginals as488

the original one, twice the expected mutual infor-489

mation between the independent and joint distribu-490

tions with identical marginals—also a Kullback-Leibler491

divergence—and the variation of information, the differ-492

ence between the joint entropy and the expected mutual493

information.494

This balance equation can either be visualized as495

the 2-simplex in three-dimensional entropy space, with496

dimensions being normalized instances of those men-497

tioned above; or it can be projected to obtain a ternary498

plot, a conceptual diagram for classifiers resembling a499

triangle whose vertices characterize optimal, inaccurate,500

or underperforming classifiers.501

Motivated by the need to explain the accuracy-502

improving behavior of majority classifiers we also in-503

troduced the extended de Finetti entropy diagram where504

input and output marginal entropy fractions are visual-505

ized side by side the joint entropy fractions. This al-506

lows us to detect those classifiers resorting to special-507

ization to increase their accuracy without increasing the508

mutual information. It also shows how this behavior509

can be limited by maintaining adequately uniform input510

marginals.511

We have used these tools to visualize confusion ma-512

trices for both human and machine performance in sev-513

eral tasks of different complexities. The balance equa-514

tion and de Finetti diagrams highlight the following515

facts:516

• The expected mutual information transmitted from517

input to output is limited by the need to use as518

much entropy to bind together in stochastic depen-519

dency both variables MIPXY ≤ HPX ·PY /2 .520

• Even when the mutual information between in-521

put and output is low, if the marginals have in-522

between uncertainty 0 < ∆HPXY < log n+ log p and523

PX , PY , a classifier may become specific—e.g.524

specialize in overrepresented classes– to decrease525

the variation of information, effectively increasing526

its accuracy.527

• The variation of information is actually the infor-528

mation not being transmitted by the classifier, that529

is, the uncoupled information between input and530

output. This is a good target for improving accu-531

racy without decreasing the genericity of the result-532

ing classifier, e.g., its non-specificity.533

All in all the three leading assertions contextualize534

and nuance the assertion in Sindhwani et al. (2004), viz.535

the higher the mutual information, the more generic and536

accurate (less specialized and inaccurate) a classifier’s537

performance will be.538

The generality and applicability of the techniques539

have been improved by using information-theoretic540

measures that pertain not only to the study of confu-541

sion matrices but, in general, to bivariate distributions542
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such as communication channel models. However, the543

influence of the probability estimation method is as yet544

unexplored. Unlike Meila (2007), we have not had to545

suppose equality of sets of events in the input or output546

spaces or symmetric confusion matrices.547

Comparing the de Finetti entropy diagram and the548

ROC is, at best, risky for the time being. On the one549

hand, the ROC is a well-established technique that af-550

fords a number of intuitions in which practitioners are551

well-versed, including a rather direct relation to accu-552

racy. Also, the VUS shows promise of actually be-553

coming a figure-of-merit for multi-class classifiers. For554

a more widespread use, the entropy triangle should555

offer such succinct, intuitive affordances too. In the556

case of accuracy, we intend to use Fano’s inequality557

to bridge our understanding of proportion- and entropy-558

based measures.559

On the other hand, the ROC only takes into consid-560

eration those judgments of the classifier within the joint561

entropy area in the Information Diagram and is thus un-562

able to judge how close to genericity is the classifier,563

unlike the ∆H′PX ·PY coordinate of the entropy triangle.564

Likewise, the ROC has so far been unable to obtain the565

result that as much information as actually transmitted566

from input to output must go into creating the stochastic567

dependency between them.568

To conclude, however suggestive aggregate measures569

like entropy or mutual information may be for captur-570

ing at a glance the behavior of classifiers, they offer lit-571

tle in the way of analyzing the actual classification er-572

rors populating their confusion matrices. We believe the573

analysis of mutual information as a random variable of a574

bivariate distribution (Fano, 1961, pp. 27–31) may offer575

more opportunities for improving classifiers as opposed576

to assessing them.577
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