Análisis mediante el método de elementos finitos de la barra estabilizadora de un camión

AUTOR: RICARDO MONTES DE LA TORRE
Tutores: Dña. Dra. BEATRIZ LOPEZ BOADA
D. Dr. ANTONIO GAUCHIA-BABE
Índice

CAPÍTULO 1 INTRODUCCIÓN .. 1
 1.1 Objetivos .. 1
 1.2 Estructura del proyecto ... 2

CAPÍTULO 2 SISTEMAS DE SUSPENSIÓN .. 3
 2.1 Funcionamiento de los sistemas de suspensión ... 3
 2.2 Componentes de la suspensión .. 5
 2.3 Características de la suspensión .. 5
 2.4 Influencia de la carga en la suspensión .. 6
 2.5 Efectos de un elemento de flexibilidad variable .. 6
 2.6 Elementos de suspensión simples .. 7

CAPÍTULO 3 BARRAS ESTABILIZADORAS ... 9
 3.1 Principio de funcionamiento .. 9
 3.2 Parámetros de cálculo ... 11
 3.3 Efecto del balanceo y eje de balanceo en la adherencia ... 13
 3.4 Silentblocks y cojinetes elásticos ... 20

CAPÍTULO 4 MODELADO CON SOLID EDGE .. 21
 4.1 Introducción al Solid Edge .. 21
 4.2 Herramientas Básicas de Solid Edge .. 25
 4.3 Modelado de las piezas de la barra estabilizadora ... 31
 4.3.1 Barra estabilizadora .. 31
 4.3.2 Conjunto de anclaje de la barra a la columna de suspensión 32
 4.3.3 Conjunto de anclaje de la barra al chasis .. 35

CAPÍTULO 5 ANALISIS DE LOS ESFUERZOS MEDIANTE ANSYS .. 42
 5.1 Programas de elementos finitos ... 42
 5.2 Método de Elementos Finitos (MEF) .. 43
 5.3 Ansys .. 44
 5.3.1 Menú principal ... 45
 5.3.2 Menú de utilidades .. 45
 5.3.3 Barra de herramientas .. 45
 5.3.4 Ventana de entrada ... 46
 5.3.5 Ventana de gráficos ... 46
 5.4 Primer modelo .. 46
 5.5 Segundo modelo .. 49
 5.5.1 Propiedades del material ... 50
 5.5.2 Definición de la geometría ... 53
 5.5.3 Mallado ... 57
 5.5.4 Aplicación de condiciones de contorno y cargas ... 60
 5.5.5 Resultados de la simulación ... 64
 5.6 Ansys LS-DYNA .. 71
 5.6.1 Construcción del modelo .. 72
 5.6.2 Aplicación de las cargas ... 72
 5.6.3 Resultados de la simulación ... 79

CAPÍTULO 6 VERIFICACIÓN DEL MODELO ... 82
 6.1 Resultados teóricos .. 82
 6.2 Comparativa de los resultados ... 86
 6.2.1 Resultados teóricos para el caso de V=50 km/h .. 86
 6.2.2 Resultados teóricos para el caso de V=80 km/h .. 87
Índices

6.3 Análisis de los resultados obtenidos con LS-Dyna .. 88
 6.3.1 Resultados teóricos para una fuerza aplicada P= 2100 N....................... 88
 6.3.2 Resultados teóricos para una fuerza aplicada P= 3600 N....................... 88
6.4 Variabilidad entre los resultados teóricos y los de Ansys 89
6.5 Conclusiones sobre los resultados.. 91

CAPÍTULO 7 CONCLUSIONES Y TRABAJOS FUTUROS 93
CAPÍTULO 8 REFERENCIAS ... 95
CAPÍTULO 9 ANEXOS .. 96
ÍNDICE DE FIGURAS.

<table>
<thead>
<tr>
<th>Fig.</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Elementos del automóvil</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Sistemas de amortiguación</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>Tipos de oscilaciones</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>Influencia de la dureza del muelle</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Balanceo del vehículo en curva</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>Barra estabilizadora</td>
<td>10</td>
</tr>
<tr>
<td>10</td>
<td>Variables de la barra</td>
<td>11</td>
</tr>
<tr>
<td>11</td>
<td>Diagramas tensión-deformación</td>
<td>12</td>
</tr>
<tr>
<td>12</td>
<td>Elementos de balanceo</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>Posición planos de balanceo</td>
<td>13</td>
</tr>
<tr>
<td>14</td>
<td>Posicionamiento del CG respecto del eje de balanceo</td>
<td>14</td>
</tr>
<tr>
<td>15</td>
<td>Geometría de la suspensión</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>Variación de las reacciones a las que esta sometida cada rueda</td>
<td>15</td>
</tr>
<tr>
<td>17</td>
<td>Variación del balanceo dependiendo de la distancia del C.G. al eje de balanceo</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>Influencia de la fuerza centrifuga dependiendo de la posición del C.G.</td>
<td>16</td>
</tr>
<tr>
<td>19</td>
<td>Reacciones del paso por curva del vehículo en un instante</td>
<td>17</td>
</tr>
<tr>
<td>20</td>
<td>Variación del ángulo de balanceo al aumentar la rigidez de los elementos de suspensión</td>
<td>18</td>
</tr>
<tr>
<td>21</td>
<td>Variación del comportamiento en curva al variar la rigidez al balanceo en uno de los ejes</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>Montaje de los silentblocks</td>
<td>20</td>
</tr>
<tr>
<td>23</td>
<td>Ventana de inicio</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>Pantalla del entorno pieza</td>
<td>23</td>
</tr>
<tr>
<td>25</td>
<td>Pantalla del entorno conjunto</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>Pantalla del entorno plano</td>
<td>25</td>
</tr>
<tr>
<td>27</td>
<td>Opciones de barrido</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>Opciones de achaflanado</td>
<td>28</td>
</tr>
<tr>
<td>29</td>
<td>Opciones de redondeo</td>
<td>29</td>
</tr>
<tr>
<td>30</td>
<td>Boceto para la trayectoria</td>
<td>31</td>
</tr>
<tr>
<td>31</td>
<td>Barra estabilizadora</td>
<td>32</td>
</tr>
<tr>
<td>32</td>
<td>Perfil para la primera protusión</td>
<td>32</td>
</tr>
<tr>
<td>33</td>
<td>Cuerpo del anclaje a la columna de suspensión</td>
<td>33</td>
</tr>
<tr>
<td>34</td>
<td>Goma</td>
<td>33</td>
</tr>
<tr>
<td>35</td>
<td>Arandela</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>Tuerca</td>
<td>34</td>
</tr>
<tr>
<td>37</td>
<td>Explosionado del subconjunto de anclaje a la columna de suspensión</td>
<td>35</td>
</tr>
<tr>
<td>38</td>
<td>Soporte de silentblock</td>
<td>36</td>
</tr>
<tr>
<td>39</td>
<td>Silentblock</td>
<td>36</td>
</tr>
<tr>
<td>40</td>
<td>Arco</td>
<td>37</td>
</tr>
<tr>
<td>41</td>
<td>Bulón</td>
<td>37</td>
</tr>
<tr>
<td>42</td>
<td>Arandela</td>
<td>38</td>
</tr>
<tr>
<td>43</td>
<td>Tornillo 1</td>
<td>38</td>
</tr>
<tr>
<td>44</td>
<td>Explosionado del conjunto de anclaje al chasis</td>
<td>39</td>
</tr>
<tr>
<td>45</td>
<td>Montaje del subconjunto</td>
<td>40</td>
</tr>
<tr>
<td>46</td>
<td>Montaje de la barra estabilizadora completa</td>
<td>41</td>
</tr>
<tr>
<td>47</td>
<td>Etapas de desarrollo de un producto</td>
<td>43</td>
</tr>
</tbody>
</table>
Índices

Fig. 48. Menú principal ... 45
Fig. 49. Menú de utilidades .. 45
Fig. 50. Barra de herramientas ... 45
Fig. 51. Ventana de entrada .. 46
Fig. 52. Modelo en Ansys .. 46
Fig. 53. Ventana de preferencias ... 47
Fig. 54. Comandos del preproceso ... 47
Fig. 55. Ventana de elementos seleccionados 48
Fig. 56. Tipos de elementos ... 48
Fig. 57. Elemento tipo sólido ... 49
Fig. 58. Tensión obtenida con el modelo sólido 49
Fig. 59. Características elemento Shell 63 50
Fig. 60. Real constants ... 51
Fig. 61. Tipos de elemento .. 51
Fig. 62. Constantes del material .. 52
Fig. 63. Ventana de comportamiento del material 53
Fig. 64. Ventana para introducir propiedades 53
Fig. 65. Ventana de introducción de coordenadas para los keypoints 54
Fig. 66. Puntos creados ... 54
Fig. 67. Parámetros para los arcos ... 55
Fig. 68. Trayectoria ... 56
Fig. 69. Modelo realizado en Ansys ... 56
Fig. 70. Representación del perfil de la barra estabilizadora 57
Fig. 71. Opciones de mallado ... 58
Fig. 72. Propiedades de las áreas ... 59
Fig. 73. Barra mallada ... 59
Fig. 74. Estado de las fuerzas sobre el camión en paso por curva 60
Fig. 75. Opciones dentro del preproceso 62
Fig. 76. Selección para la representación 63
Fig. 77. Parámetros de aplicación de la carga 64
Fig. 78. Menú de la solución .. 64
Fig. 79. Menú de postproceso ... 65
Fig. 80. Ventana de opciones para la solución 65
Fig. 81. Desplazamiento vertical (mm) a 50 km/h 66
Fig. 82. Desplazamiento vertical (mm) a 80 km/h 67
Fig. 83. Tensión de Von Misses (MPa) para V=50 km/h 68
Fig. 84. Tensión de Von Misses (MPa) para V=80 km/h 68
Fig. 85. Opciones del contorno ... 69
Fig. 86. Opciones de animación .. 70
Fig. 87. Ansys product launcher .. 71
Fig. 88. Ventana de vectores definidos .. 73
Fig. 89. Ventana de definición del vector 73
Fig. 90. Ventana de valores del vector 74
Fig. 91. Opciones de la curva .. 74
Fig. 92. Creación de componente ... 75
Fig. 93. Características de contacto .. 76
Fig. 94. Opciones de contacto .. 76
Fig. 95. Parámetros de la carga .. 77
Fig. 96. Tiempo de aplicación de la carga 78
Fig. 97. Número de pasos .. 78
<table>
<thead>
<tr>
<th>Fig.</th>
<th>Índice</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>98</td>
<td>Opciones de animación</td>
<td>79</td>
</tr>
<tr>
<td>99</td>
<td>Tensión de Von Misses P=2100N</td>
<td>80</td>
</tr>
<tr>
<td>100</td>
<td>Tensión de Von Misses P=3600 N</td>
<td>81</td>
</tr>
<tr>
<td>101</td>
<td>Modelo teórico</td>
<td>83</td>
</tr>
<tr>
<td>102</td>
<td>Barra de sección circular en torsión con estrechamiento</td>
<td>85</td>
</tr>
<tr>
<td>103</td>
<td>Barra estabilizadora simplificada</td>
<td>89</td>
</tr>
<tr>
<td>104</td>
<td>Variación de la tensión con la fuerza</td>
<td>90</td>
</tr>
<tr>
<td>105</td>
<td>Variación del desplazamiento con la fuerza</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>Efecto del cambio de sección en una pieza de sección circular sometida a flexión.</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Efecto del cambio de sección en una pieza de sección circular sometida a tracción.</td>
<td>103</td>
</tr>
<tr>
<td></td>
<td>Efecto del cambio de sección en una pieza de sección circular sometida a torsión.</td>
<td>104</td>
</tr>
</tbody>
</table>
ÍNDICE DE TABLAS.

<table>
<thead>
<tr>
<th>Tabla</th>
<th>Descripción</th>
<th>Página</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tabla 1</td>
<td>Parámetros de la barra</td>
<td>11</td>
</tr>
<tr>
<td>Tabla 2</td>
<td>Características del vehículo</td>
<td>60</td>
</tr>
<tr>
<td>Tabla 3</td>
<td>Variables del equilibrio de fuerzas</td>
<td>61</td>
</tr>
<tr>
<td>Tabla 4</td>
<td>Datos de los vectores</td>
<td>74</td>
</tr>
<tr>
<td>Tabla 5</td>
<td>Variables del cálculo de esfuerzos</td>
<td>83</td>
</tr>
<tr>
<td>Tabla 6</td>
<td>Variación de la tensión de Von Misses con la fuerza</td>
<td>89</td>
</tr>
<tr>
<td>Tabla 7</td>
<td>Variación del desplazamiento con la fuerza</td>
<td>90</td>
</tr>
<tr>
<td>Tabla 8</td>
<td>Comparativa entre los resultados</td>
<td>91</td>
</tr>
</tbody>
</table>
CAPÍTULO 1 INTRODUCCIÓN

Debido a la creciente importancia que presentan los sistemas de transporte en la vida diaria, unido a la necesidad de aumentar la velocidad de los mismos, ha hecho necesario desarrollar mejoras en la seguridad y el confort, para ello se han desarrollado diversos sistemas que reducen las vibraciones provocadas por las irregularidades del terreno por el que se transita, además de mantener estable en todo momento el vehículo y el contacto entre neumático-calzada para mejorar la adherencia. Estos sistemas, denominados sistemas de suspensión constan de numerosos componentes, cada uno de los cuales tiene su propio cometido, en este proyecto en concreto, se va a analizar el comportamiento de uno de ellos, la barra estabilizadora, con la cual se pretende minimizar el efecto del balanceo en la carrocería debido al efecto de la fuerza centrífuga en paso por curva.

1.1 Objetivos

El objetivo de este proyecto es, además de introducir el funcionamiento de los sistemas de suspensión, realizar un estudio del comportamiento bajo carga de la barra estabilizadora con el programa de elementos finitos Ansys, y ver así como trabaja la barra a torsión y donde se producen los mayores esfuerzos para compararlo después con los resultados obtenidos teóricamente.
Capítulo 1: Introducción

1.2 Estructura del proyecto

El presente proyecto se divide principalmente en seis capítulos:

- En el capítulo 1 se introducen los objetivos del proyecto y se presenta la forma en la que se va a estructurar.

- En los capítulos 2 y 3 se desarrolla el funcionamiento de los sistemas de suspensión en general, para después centrarse en uno de sus elementos, la barra estabilizadora, que será el elemento que requiere el análisis.

- En el capítulo 4, se introduce el programa Solid Edge con el cual se va a realizar el diseño de la barra estabilizadora y las herramientas básicas para el uso del mismo, para posteriormente utilizarlas en el modelado. En cuanto al modelado, primero se crean las piezas por separado para después realizar el montaje.

- En el capítulo 5 se realiza una breve introducción a Ansys para analizar después el modelo. La estructura de este capítulo es similar al del anterior ya que primeramente se realiza una breve descripción de Ansys, después se introducen las herramientas básicas que van a ser utilizadas y se realiza el análisis de la barra. El análisis se realiza con varios modelos distintos que se pueden considerar semejantes con el objetivo de encontrar la mejor solución. Una vez analizada la barra de forma estática con Ansys se pasa al análisis dinámico mediante la variante de Ansys LS-Dyna

- En el capítulo 6, se realiza un estudio comparativo entre los resultados obtenidos mediante Ansys y los obtenidos de la aplicación de la teoría, para poder dar una conclusión acerca de esta herramienta.

- En el capítulo 7 se comentan las conclusiones y los trabajos que interesa realizar en el futuro.

- En los capítulos 8 y 9 se exponen las referencias y los anexos respectivamente.
2.1 Funcionamiento de los sistemas de suspensión

Se llama suspensión al conjunto de elementos elásticos que se interponen entre los órganos suspendidos (bastidor, carrocería, pasajeros y carga) y los órganos no suspendidos (ruedas y ejes) de un vehículo, como se muestra en la figura 1.

Fig. 1. Elementos del automóvil
Capítulo 2: Sistemas de suspensión

La misión del sistema de suspensión es absorber las reacciones producidas en las ruedas debido a las desigualdades del terreno, asegurando así la comodidad del conductor y pasajeros del vehículo y, al mismo tiempo, mantener la estabilidad y direccionabilidad del mismo, para que mantenga la trayectoria deseada por el conductor.

Además también es necesario que cumplan con otras funciones complementarias:

- Transmitir las fuerzas de aceleración y de frenada entre los ejes y bastidor.
- Resistir el par motor y de frenada.
- Resistir los efectos de las curvas.
- Conservar el ángulo de dirección en todo el recorrido.
- Conservar el paralelismo entre los ejes y la perpendicularidad del bastidor.
- Proporcionar una estabilidad adecuada al eje de balanceo.
- Aguantar la carga del vehículo.

Cuando el vehículo circula por un terreno irregular, las ruedas están sometidas a una serie de impactos que se transmiten a la carrocería a través de los elementos de unión. Si el terreno es llano, las pequeñas irregularidades del mismo son absorbidas por la elasticidad de los neumáticos. Cuando las irregularidades son grandes, los impactos producidos serían acusados por los ocupantes del vehículo, de no ser por la actuación de la suspensión. La absorción de estas reacciones se consigue por la acción combinada de los neumáticos, la elasticidad de los asientos y el sistema de suspensión (Figura 2).

![Fig. 2. Sistemas de amortiguación.](image)

Cuando un automóvil pasa sobre un resalte o sobre un agujero, se produce un golpe sobre la rueda que se transmite por medio de los ejes al chasis y que se traduce en oscilaciones.

Una mala conducción o un reparto desequilibrado de las cargas pueden también originar "oscilaciones". Estos movimientos se generan en el centro de gravedad del vehículo y se propagan en distintos sentidos. Los tres tipos de oscilaciones existentes (Figura 3) son:
Capítulo 2: Sistemas de suspensión

- **Empuje**: se produce al pasar por terreno ondulado.
- **Cabeceo**: debido a las frenadas bruscas.
- **Balanceo**: se genera al tomar curvas a alta velocidad.

![Fig. 3. Tipos de oscilaciones.](image)

2.2 **Componentes de la suspensión**

El sistema de suspensión está compuesto por un elemento flexible o elástico (muelle de ballesta o helicoidal, barra de torsión, muelle de goma, gas o aire) y un elemento amortiguación (amortiguador), cuya misión es neutralizar las oscilaciones de la masa suspendida originadas por el elemento flexible al adaptarse a las irregularidades del terreno.

2.3 **Características de la suspensión**

Como los elementos de suspensión han de soportar todo el peso del vehículo, deben ser lo suficientemente fuertes para que las cargas que actúan sobre ellos no produzcan deformaciones permanentes.

A su vez, deben ser muy elásticos, para permitir que las ruedas se adapten continuamente al terreno sin separarse de él. Esta elasticidad en los elementos de unión produce una serie de oscilaciones de intensidad decreciente que no cesan hasta que se ha devuelto la energía absorbida, lo que coincide con la posición de equilibrio de los elementos en cuestión; dichas oscilaciones deben ser amortiguadas hasta un nivel razonable que no ocasione molestias a los usuarios del vehículo.

La experiencia demuestra que el margen de comodidad para una persona es de 1 a 2 oscilaciones por segundo; una cifra superior excita el sistema nervioso, aunque tampoco conviene bajar el valor mínimo porque se favorece el mareo.
Un muelle blando tiene gran recorrido y pequeño número de oscilaciones bajo la carga, mientras que un muelle duro tiene menor recorrido y mayor número de oscilaciones (Figura 4). Este mismo efecto se manifiesta al variar la carga que gravita sobre el muelle.

![Fig. 4. Influencia de la dureza del muelle.](image)

2.4 **Influencia de la carga en la suspensión**

Si en los vehículos las cargas fueran constantes resultaría fácil adaptar una suspensión ideal, pero como esto no se da en ningún caso (al ser la carga variable, especialmente en vehículos de transporte) los elementos elásticos deben calcularse para que aguanten el peso máximo sin pérdida de elasticidad.

En estas condiciones es imposible obtener una suspensión ideal ya que, si se calcula para un peso mínimo, la suspensión resulta blanda en exceso cuando aquel aumenta; si se calcula para el peso máximo, entonces resulta dura cuando el vehículo marcha en vacío o con poca carga.

2.5 **Efectos de un elemento de flexibilidad variable**

Se ha visto que las oscilaciones de la suspensión aumentan y disminuyen en función de la carga y el grado de dureza de los muelles. Por tanto, si se mantiene la oscilación constante, se conseguiría, una suspensión que se acerca a la ideal.

Para ello se tiene que colocar un elemento de unión cuya flexibilidad sea variable, de modo que, al aumentar la carga, aumente asimismo su rigidez para mantener constante la deformación.

Esto es muy difícil de conseguir con resortes convencionales; por tanto, las suspensiones basadas en este tipo de elementos (ballestas, muelles, barras de torsión, etcétera.) necesitan llevar acoplado un sistema amortiguador de oscilaciones que recoja la energía mecánica producida y evite su transmisión a la carrocería.

2.6 Elementos de suspensión simples

En las suspensiones simples se utilizan como elementos de unión, unos resortes de acero elástico en forma de:

- **Ballesta (Figura 5).** Las ballestas están constituidas por un conjunto de hojas o láminas de acero especial para muelles, unidas mediante unas abrazaderas que permiten el deslizamiento entre las hojas cuando éstas se deforman por el peso que soportan. La hoja superior, llamada hoja maestra, va curvada en sus extremos formando unos arcos en los que se montan unos casquillos de bronce para su acoplamiento al soporte del bastidor por medio de unos pernos o bulones. El número de hojas y el espesor de las mismas está en función de la carga que han de soportar. Funcionan como los muelles de suspensión, haciendo de enlace entre el eje de las ruedas y el bastidor.

Fig. 5. Ballesta.

- **Muelle helicoidal (Figura 6).** Los muelles helicoidales se utilizan modernamente en casi todos los turismos en sustitución de las ballestas, pues tienen la ventaja de conseguir una elasticidad blanda debido al gran recorrido del resorte sin apenas ocupar espacio ni sumar peso. Consistien en un arrollamiento helicoidal de acero elástico formado con hilo de diámetro variable (de 10 a 15 mm), este diámetro varía en función de la carga que tienen que soportar, las últimas espiras son planas para facilitar el asiento del muelle sobre sus bases de apoyo.

Fig. 6. Muelle helicoidal.
Capítulo 2: Sistemas de suspensión

- Barras de torsión (*Figura 7*). Las barras de torsión se utilizan en algunos turismos con suspensión independiente, está basado en el principio de que si a una varilla de acero elástico sujeta por uno de sus extremos se le aplica por el otro un esfuerzo de torsión, esta varilla tenderá a retorcerse, volviendo a su forma primitiva por su elasticidad cuando cesa el esfuerzo de torsión. El montaje de estas barras sobre el vehículo se realiza fijando uno de sus extremos al chasis o carrocería, de forma que no pueda girar en su soporte, y en el otro extremo se coloca una palanca solidaria a la barra unida en su extremo libre al eje de la rueda. Cuando la rueda suba o baje por efecto de las desigualdades del terreno, se producirá en la barra un esfuerzo de torsión cuya deformación elástica permite el movimiento de la rueda.

![Fig. 7. Barra de torsión](image)

Estos elementos, como todos los muelles, tienen excelentes propiedades elásticas pero poca capacidad de absorción de energía mecánica, por lo que no pueden ser montados solos en la suspensión; necesitan el montaje de un elemento que frene las oscilaciones producidas en su deformación. Debido a esto, los resortes se montan siempre con un amortiguador de doble efecto que frene tanto su compresión como expansión.
CAPITULO 3 BARRAS ESTABILIZADORAS

3.1 Principio de funcionamiento

Cuando un vehículo toma una curva, por la acción de la fuerza centrífuga se carga el peso del coche sobre las ruedas exteriores (Figura 8), con lo cual la carrocería tiende a inclinarse hacia ese lado con peligro de vuelco y la correspondiente molestia para sus ocupantes.

Fig. 8. Balanceo del vehículo en curva.
Para evitar estos inconvenientes se montan sobre los ejes delantero y trasero las barras estabilizadoras, que consisten esencialmente en una barra de acero elástico cuyos extremos se fijan a los soportes de suspensión de las ruedas (Figura 9); de esta forma, al tomar una curva, como una de las ruedas tiende a bajar y la otra a subir, se crea un par de torsión en la barra que absorbe el esfuerzo y se opone a que esto ocurra, e impide, por tanto, que la carrocería se incline a un lado, manteniéndola estable. El mismo efecto se produce cuando una de las ruedas encuentra un bache u obstáculo, creando, al bajar o subir la rueda, un par de torsión en la barra que hace que la carrocería se mantenga en posición horizontal. En caso de circular en línea recta y en condiciones normales la acción de la barra es nula [1].

Fig. 9. Barra estabilizadora.
3.2 Parámetros de cálculo

Las variables utilizadas para la obtención de los parámetros de cálculo son las que se muestran en la figura 10.

En la tabla 1 se muestran el significado de cada una de las variables mostradas anteriormente con sus respectivas unidades.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Variable</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>L</td>
<td>Longitud de la barra</td>
<td>mm</td>
</tr>
<tr>
<td>R</td>
<td>Longitud del brazo</td>
<td>mm</td>
</tr>
<tr>
<td>D</td>
<td>Diámetro de la barra</td>
<td>mm</td>
</tr>
<tr>
<td>P</td>
<td>Fuerza</td>
<td>N</td>
</tr>
<tr>
<td>α</td>
<td>Angulo de balanceo</td>
<td>Rad</td>
</tr>
<tr>
<td>φ</td>
<td>Angulo de giro del brazo</td>
<td>Rad</td>
</tr>
</tbody>
</table>

Tabla 1. Parámetros de la barra

Los parámetros de cálculo básicos son los siguientes:

- La barra estabilizadora tiene como función estabilizar la caja del vehículo frente a acciones que produzcan un movimiento de balanceo. Cuando la carrocería se inclina α grados (Figura 10), la barra estabilizadora se torsiona contrarrestando el movimiento. Los brazos de los extremos unidos a la columna de la suspensión giraran un ángulo φ. Para desplazamientos angulares pequeños puede plantearse la siguiente ecuación (ver tabla 1) [5]:

\[
\phi = \frac{L \cdot \alpha}{2 \cdot R}
\]
• El par de reacción en función del ángulo de balanceo del vehículo será (ver tabla 1):

\[N_r = \frac{G J L}{R^2} \alpha \]

Donde G es el módulo de cortadura del material en Mpa y J el momento polar de inercia en mm^4.

• La rigidez es la capacidad de un objeto sólido o elemento estructural para soportar esfuerzos sin adquirir grandes deformaciones o desplazamientos. Para un elemento cualquiera la rigidez será mayor cuanto mayor sea la pendiente de la recta de comportamiento elástico en el diagrama tensión-deformación. Para el caso del acero, el diagrama tensión deformación se muestra en la figura 11. Además se incluye también el diagrama del aluminio, con el objetivo de comparar sus rigideces.

![Fig. 11. Diagramas tensión-deformación.](image)

Como se puede observar, para un mismo valor de tensión, el desplazamiento que sufre la aleación de aluminio es aproximadamente cuatro veces mayor que el del acero, lo que implica que la rigidez del acero mayor que la del aluminio.

Para el caso de una barra maciza, la rigidez se calcula del siguiente modo:

\[K = \frac{P_i}{\partial_i} \]

Donde \(P_i \) es la fuerza aplicada sobre la barra en Newton y \(\partial_i \), el desplazamiento producido por dicha carga en mm.
3.3 Efecto del balanceo y el eje de balanceo en la adherencia

Como todo objeto que rota, cuando la carrocería de un vehículo balancea lo hace alrededor de un eje, denominado eje de balanceo. El eje de balanceo viene definido por la unión de dos puntos, los centros de balanceo, uno en cada eje del vehículo. La figura 12 muestra una localización aproximada de estos elementos en un vehículo automóvil.

Fig. 12. Elementos de balanceo.

Los centros de balanceo están determinados por la suspensión. Se consideran localizados en el plano vertical que pasa por el centro de la ruedas de cada eje. En un automóvil, en estático, están en el plano vertical que parte el vehículo en dos visto desde frente, y a una altura típica al suelo entre 3 y 15 cm con el trasero ligeramente más elevado que el delantero (Figura 13).

En otras palabras, el eje de balanceo se encuentra ligeramente inclinado en sentido descendente hacia la parte delantera del automóvil, por encima del suelo, y por debajo del centro de gravedad.

Fig. 13. Posición planos de balanceo.

Cinemáticamente hablando, el centro de gravedad se encuentra unido firmemente al eje de balanceo. Cualquier fuerza transversal que se aplique al centro de gravedad intentará provocar un movimiento de rotación de toda la carrocería alrededor del eje de balanceo (Figura 14).
Capítulo 3: Barras estabilizadoras

Fig. 14. Posicionamiento del CG respecto del eje de balanceo.

Aunque por simplificar se considera que los centros de balanceo no cambian su posición, la realidad es que pueden desplazarse tanto lateral como verticalmente. Su posición depende únicamente de la localización del centro de la rueda (tanto por altura al suelo como por anchura de vías) y de la posición instantánea de los elementos de la suspensión. Puesto que la posición de estos varía cuando la carrocería se desplaza verticalmente o rota, la localización de los centros de balanceo está en continuo movimiento conforme el vehículo acelera, frena, gira, o pasa por irregularidades de la carretera. Que lo hagan de manera controlada y acompasada es una tarea fundamental en el diseño de la geometría de la suspensión (Figura 15).

Fig. 15. Geometría de la suspensión.

Cuando un vehículo toma una curva, la fuerza centrífuga es aplicada en el centro de gravedad de la carrocería y con sentido hacia el exterior de la misma, haciéndola rotar alrededor del eje de balanceo. Esto ocurre porque, al encontrarse el centro de gravedad a una cierta distancia del eje, la fuerza genera un momento proporcional a esa distancia.
Capítulo 3: Barras estabilizadoras

Con el balanceo, se comprimen los muelles de la suspensión del lado exterior de la curva y se extienden los del otro lado; la barra estabilizadora o el eje torsional, si los hay, se retuerzen.

Al mismo tiempo, la fuerza vertical (flechas azules en la Figura 16) que soportan las ruedas exteriores se incrementa mientras la de las interiores se reduce. El equilibrio se alcanza cuando la asimetría de cargas existente entre las ruedas exteriores y las interiores compense el momento de rotación asociado a la fuerza centrífuga que actúa sobre el centro de gravedad.

Fig. 16. Variación de las reacciones a las que está sometida cada rueda.

Cuanto mayor es esta fuerza centrífuga (o lo que es lo mismo, cuánto mayor es la aceleración lateral a la que se le somete), y cuánto menos rígidos son las barras estabilizadoras, mayor es el ángulo de balanceo en el que se alcanza este equilibrio.

La Tercera Ley de Newton viene a decir que a toda fuerza aplicada por un cuerpo a otro le corresponde una de la misma intensidad y de sentido contrario. En realidad, lo que acaba de ocurrir es una sucesión de ejemplos de esta ley. Desde el centro de gravedad de la carrocería hasta la huella de los neumáticos, distintos elementos del chasis se han comprimido (los muelles de la suspensión), retorcido (las barras estabilizadoras), cambiado de forma (los neumáticos) o tensionado (el resto de los elementos de la suspensión), para contraponer a la fuerza centrífuga, de un extremo, la fuerza lateral de los neumáticos, del otro, un apoyo en el único punto donde esto es posible: el suelo.

En curva, hay una disminución de carga en las ruedas interiores y un aumento en las exteriores. Parte de esta diferencia de carga afecta a los muelles de la suspensión y a las barras estabilizadoras provocando el balanceo. Otra parte se debe a la conexión con el bastidor de los elementos de suspensión y no afecta al balanceo.

Cuanto más cerca esté el eje de balanceo del centro de gravedad, menor es la diferencia de carga que afecta a los elementos elásticos, porque también es menor el brazo de palanca de la fuerza centrífuga alrededor del eje de balanceo. En consecuencia, el balanceo disminuye, aunque la diferencia de carga es aproximadamente la misma (Figura 17).
Capítulo 3: Barras estabilizadoras

Fig. 17. Variación del balanceo dependiendo de la distancia del C.G. al eje de balanceo.

En un caso extremo, si se eleva el eje de balanceo hasta hacerlo coincidir con el centro de gravedad, el momento generado por la fuerza centrífuga sería nulo, pues está siendo aplicada en el mismo eje alrededor del que la carrocería puede rotar (Figura 18). En ese caso no habrá momento de giro alrededor del eje de balanceo. En ese caso (o en un kart) todas las variaciones de carga en las ruedas se deben a fuerzas que se transmiten a través del bastidor. Puesto que el momento que los muelles de la suspensión y las barras estabilizadoras deben transmitir es nulo, no existe ninguna fuerza que los pueda comprimir o retorcer, y la carrocería no se balancea nada por muy blandos que sean estos elementos.

Fig. 18. Influencia de la fuerza centrífuga dependiendo de la posición del C.G.

También es posible localizar el eje de balanceo por encima del centro de gravedad, en ese caso la carrocería tiende a balancear en sentido contrario, es decir hacia el interior de la curva. En este caso, y dependiendo de la geometría empleada, se puede dar la situación en la que los muelles de la suspensión de las ruedas interiores se compriman, y los de las exteriores se extiendan (como ocurre en algunos vagones de tren).

En ese caso, la diferencia de carga es la misma: hay un incremento de carga en las ruedas exteriores y una disminución en las interiores. La fuerza centrífuga sigue tirando de la carrocería hacia el exterior de la curva, su compensación requiere que se siga incrementando la carga de las ruedas exteriores, a costa de las interiores.

Hay que tener en cuenta que la transferencia total de carga es proporcional a la masa suspendida, la aceleración a que se somete y la altura del centro de gravedad al suelo.
Todo lo que ocurre con los centros y eje de balanceo, únicamente determina como se reparten los muelles y las barras estabilizadoras, por un lado, y los brazos de la suspensión, por el otro, el esfuerzo de transmitir estas cargas.

Cuanta mayor diferencia de carga se produzca entre las ruedas de un eje, menor es su agarre total.

No hay nada que se pueda hacer con los elementos de la suspensión para reducir la variación de carga total. Como ya se ha dicho, ésta depende de la masa total suspendida, de la aceleración lateral a que se le somete y de la altura del centro de gravedad. Como mucho, se puede reducir ligeramente aumentando el ancho de vías, pero este parámetro está limitado por la anchura total del coche, en los vehículos convencionales, y por la propia normativa, en los de competición.

Lo que sí se puede controlar es en qué proporción participa cada uno de los ejes en ese reparto. Y se puede hacer tanto a través de los muelles y las barras estabilizadoras, como de la altura de los centros de balanceo.

Analizando primeramente los muelles y las barras estabilizadoras se observa que su rigidez determina la resistencia al balanceo que proporciona el eje en el que están instalados. La suma de las resistencias al balanceo da lugar a la resistencia al balanceo total del vehículo.

Se imagina un automóvil trazando una curva a velocidad constante, que ha adoptado un determinado ángulo de balanceo, y cuyo movimiento se puede congelar para modificar sus elementos de suspensión, mientras está apoyado (Figura 19).

![Fig. 19. Reacciones del paso por curva del vehículo en un instante.](image)

Si se incrementa la resistencia al balanceo de los dos ejes en la misma proporción, cambiando sus muelles y/o barras estabilizadoras, y se vuelve a dejar rodar, en unos instantes el vehículo adopta un ángulo de balanceo menor: para compensar el momento de balanceo causado por la misma fuerza centrífuga que antes, los muelles y las barras estabilizadoras (más rígidos que antes) necesitan una deformación menor (Figura 20).
Capítulo 3: Barras estabilizadoras

Fig. 20. Variación del ángulo de balanceo al aumentar la rigidez de los elementos de suspensión.

Si este cambio de rigidez se realiza en la misma proporción en los ejes delantero y trasero, lo que no cambia es el modo en que ambos ejes participan en la variación de la carga. Puesto que la carga final es la misma que antes en las cuatro ruedas, la adherencia de ninguno de los ejes cambia.

Si se cambia la proporción de resistencia al balanceo de uno de los ejes, por ejemplo si se reduce la rigidez al balanceo únicamente del eje delantero con unos muelles o una barra estabilizadora más flexibles (Figura 21), cuando se deja rodar de nuevo, como la resistencia al balanceo total ha descendido (la del eje trasero sigue igual pero la del delantero es menor), la carrocería balanceará más.

Fig. 21. Variación del comportamiento en curva al variar la rigidez al balanceo en uno de los ejes.

Pero, si los elementos del eje trasero son igual de rígidos que antes y su deformación es mayor (porque la carrocería balancea más), esto sólo puede significar que, entre las ruedas traseras, se está produciendo una mayor diferencia de carga que antes. Ese aumento de la diferencia en las ruedas traseras es aproximadamente igual que la disminución en la diferencia que hay entre las ruedas delanteras.

Puesto que, a mayor diferencia de carga entre las ruedas de un eje, menor es su adherencia, se ha reducido la capacidad máxima de agarre lateral del eje trasero e
incrementado la del delantero: en consecuencia el vehículo se ha hecho más sobrevirador.

Como regla general, cuanto mayor es la resistencia al balanceo de un eje respecto al otro, menor es su máximo agarre lateral.

Con objeto de impedir que el coche sea sobrevirador, hace años era frecuente que en el eje trasero no hubiera barra estabilizadora y, actualmente, lo normal es que la trasera sea más flexible que la delantera.

También por este motivo en coches que corren en muchas competiciones el conductor puede modificar sobre la marcha la rigidez de al menos una de las barras estabilizadoras. Esto le permite compensar el cambio de posición del centro de gravedad asociado a la progresiva disminución de la carga de combustible conforme éste va desapareciendo, o simplemente realizar pequeñas correcciones del comportamiento del vehículo en función de la situación de la carrera, el estado de las ruedas u otros factores.

La posición de los centros de balanceo también tiene una influencia notable en lo que ocurre cuando el vehículo toma una curva, si bien, en automóviles convencionales suele dársele una importancia secundaria y, por lo general, su modificación suele ser un efecto no buscado del cambio de altura de la carrocería asociado a la instalación de unos muelles más cortos y rígidos (en cuyo caso los centros de balanceo también bajan). De nuevo, lo que importa es la altura relativa entre los centros de balanceo de los dos ejes. Rebajar la altura de uno de ellos respecto al otro tiende a aumentar la adherencia de ese eje y a disminuirla en el eje contrario.

 Esto es así por lo siguiente: si se desciende el centro de balanceo de un eje, se aumenta la diferencia de carga que produce balanceo y, en consecuencia, se disminuye la adherencia en ese eje y a disminuirla en el eje contrario.

Por tanto, la diferencia de carga en el eje que se ha modificado acaba siendo menor, porque parte de esa diferencia ocurre en el eje contrario. Dado que, cuanto menor es la adherencia en ese eje, mayor es su adherencia, bajar el centro de balanceo en un eje aumenta la adherencia en ese eje, en la misma proporción que disminuye en el eje contrario (en el que aumenta la diferencia de carga).

Cabe decir que, en la práctica, tan importante o más como la posición de los centros de balanceo en estático, es el modo en que estos se desplazan conforme las suspensiones hacen su trabajo. El control de este detalle proporciona otro factor de decisión sobre las reacciones del vehículo en una curva, si bien esto suele ser un parámetro mucho más importante en competición que en vehículos convencionales. No obstante, tanto en unos como en otros, un criterio general es que los centros de balanceo tengan un movimiento limitado y, en cualquier caso, acompasado entre ambos ejes. Lo contrario es sentido por el piloto como un comportamiento errático y poco predecible, lo que le resta confianza.
3.4 **Silentblocks y cojinetes elásticos**

Los *silentblocks* son aislantes de caucho u otro material elastómero que se encargan de amortiguar las reacciones en los apoyos de la suspensión. Su misión es amortiguar los golpes existentes entre dos elementos en los que existe movimiento. Suelen montarse a presión o atornillados. Su sustitución debe realizarse cuando el caucho esté deteriorado o exista holgura en la unión.

Los cojinetes elásticos son elementos de caucho que permiten la unión de los componentes de la suspensión facilitando un pequeño desplazamiento. Su montaje suele realizarse mediante bridas o casquillos elásticos. Estos cojinetes son muy utilizados para el montaje de las barras estabilizadoras (*Figura 22*).

Fig. 22. Montaje de los silentblocks.
CAPITULO 4 MODELADO CON SOLID EDGE

4.1 Introducción al Solid Edge

Desde que Intergraph decidió crear una línea propia y moderna de aplicaciones dirigidas al CAD basadas en Windows, en poco tiempo han aparecido numerosas versiones de su modelador de sólidos Solid Edge, añadiendo en cada una de ellas nuevas prestaciones, sin modificar su enfoque general ni su interfaz [2].

Solid Edge es el primer producto que se creó basado en la tecnología Júpiter, o sea, la solución de Intergraph para trabajar con el CAD/CAM/ CAE/GIS aprovechando todas las posibilidades del entorno Windows, esto es, la compartición de objetos provenientes de diversos programas, el trabajo con aplicaciones complejas constituidas por módulos complementarios, la facilidad de uso, la interfaz común, etc. La idea es combinar las ventajas de Windows con las de los múltiples programas de CAD existentes en el mercado, ya que la tecnología Júpiter permite que las aplicaciones sean nativas Windows y estén enfocadas al software tradicional, lo que admite que desarrolladores independientes puedan diseñar aplicaciones especializadas que se complementen entre sí.

Las posibilidades de este sistema son muy variadas, ya que por ejemplo permite trabajar con modelos provenientes de otros programas de CAD, como MicroStation o AutoCAD. También hace posible que se puedan integrar los proyectos CAD en
documentos de negocios o de gestión sin perder sus características de exactitud o tridimensionalidad, haciendo posible que el CAD salga de las oficinas técnicas y entre en el entorno de la ofimática.

Solid Edge es una aplicación compuesta por tres módulos principales que permiten al usuario diseñar piezas y conjuntos mecánicos con todas las facilidades de los programas más actuales, con capacities paramétricas y basados en operaciones. Dichos módulos están diseñados especialmente para crear piezas, construir conjuntos y producir planos (Figura 23), lo que evita tener cargadas todas las herramientas del programa constantemente, presentando sólo las opciones necesarias en cada ocasión, ya que los usuarios hacen una u otra labor separadamente, aunque puedan pasar de un entorno a otro fácil y rápidamente. Trabajar con entornos independientes no sólo tiene la ventaja de que simplifica el entorno de trabajo, sino que también reduce los recursos del sistema.

Fig. 23. Ventana de inicio.
Los tres entornos de los que se compone el programa son:

- El módulo pieza, permite construir modelos sólidos 3D a partir de piezas existentes o con operaciones básicas, como rectángulos o cilindros, combinadas mediante operaciones de fabricación mecánicas (protusiones, vaciados, refuerzos, agujeros, ángulos de desmoldeo, chaflanes, etc.) (Figura 24). Entre sus variadas funciones, son de destacar: SmartStep, que guía al usuario por los pasos necesarios para realizar una operación determinada, permitiendo volver a un paso anterior para modificar algún dato; SmartSketch, que proporciona información instantánea en la pantalla sobre la relación de los elementos que se están utilizando, haciendo muy fácil conseguir relaciones geométricas del tipo de paralelismo, perpendicularidad o conexiones de borde; PickQuick, que facilita el proceso de localizar un elemento determinado entre una multitud de ellos.

![Fig. 24. Pantalla del entorno pieza.](image)

- El módulo Conjunto contiene las órdenes necesarias para manejar conjuntos mecánicos formados por numerosas piezas y subconjuntos (Figura 25), permitiendo que éstas se acoplen con técnicas de montaje naturales, como hacer coincidir o alinear. Solid Edge asume el hecho de que casi todas las piezas se diseñan en el contexto de un conjunto, por lo que proporciona una estrecha relación con el módulo de modelado de piezas y con las herramientas de visualización, administración de datos y de relaciones entre los componentes. Se contemplan todas las fases del proyecto, desde la planificación, hasta los ciclos...
Capítulo 4: Modelado con Solid Edge

de revisión, fabricación, mantenimiento y archivo. Entre las múltiples características del módulo Conjunto se tienen como más destacables: *PathFinder*, que contiene una relación de los componentes, permitiendo gestionar las piezas y sus relaciones espaciales; *PickQuick*, es una herramienta de selección que facilita la localización de piezas dentro de conjuntos complicados mediante simples movimientos del ratón; el análisis de interferencias, para comprobar si el espacio está ocupado por más de un sólido; las relaciones de conjunto, que permite crear relaciones asociativas entre las piezas que se mantienen durante todo el proceso de diseño, conservando la finalidad general; la administración de relaciones, que muestra un esquema de texto y símbolos de las relaciones entre las piezas de un conjunto determinado; y por último, el administrador de documentos, que hace posible su control durante todo el ciclo de vida del proyecto.

![Pantalla del entorno conjunto.](image)

- El módulo Plano de *Solid Edge* proporciona un entorno de dibujo para elaborar planos directamente a partir de modelos 3D (*Figura 26*), ya sea de piezas o de conjuntos. Los planos realizados están asociados con los modelos 3D, y por lo tanto, reflejan los cambios a medida que se modifica el diseño, reduciendo el mantenimiento de los dibujos y asegurando su actualización constante. Es posible crear dibujos que presenten varias vistas, secciones, detalles, cotas y anotaciones, admitiendo símbolos de referencia, soldadura, acabados superficiales, etc., ajustados siempre a las normas internacionales o de la propia empresa.
Se puede decir que Solid Edge es una potente herramienta capaz de diseñar cualquier modelo del entorno del diseño mecánico, la cual está especialmente pensada para el trabajo con conjuntos [2].

4.2 Herramientas Básicas de Solid Edge

Para el modelado de la barra estabilizadora se han utilizado las siguientes herramientas básicas:

- **Protusión por proyección**: Se trata de la más simple de las operaciones, extruye un perfil o boceto perpendicularmente al plano seleccionado.

 Dentro de esta operación se encuentran las siguientes opciones:

 - **Plano o boceto**: define si la operación se crea desde un boceto o si se selecciona un plano para la creación del perfil
 - **Dibujar perfil**: permite dibujar el perfil en el plano seleccionado.
 - **Seleccionar de un boceto**: se utiliza un boceto creado con anterioridad para extruir la pieza.
Plano: Define el plano sobre el que se dibuja el perfil.

Extensión: define la profundidad de la operación. Los tipos de extensión son:

- Pasante: atraviesa la pieza desde el plano donde fue creado hasta el lado opuesto.
- Hasta siguiente: la operación se extiende hasta que se encuentre con otra pieza o cara.
- Desde-hasta: permite definir la extensión de la operación especificando dos caras, la de inicio de la operación y la del final.
- Limitado: operación con extensión limitada.

Cada vez que se selecciona una operación ya realizada, aparecen en la barra de herramientas las siguientes opciones:

- Editar definición: Permite editar todos los pasos utilizados en la definición de la operación.
- Editar perfil: permite editar el perfil para modificarlo.
- Edición dinámica: permite modificar la operación a través de sus cotas

Protusión por barrido

Para modelar la barra estabilizadora se utiliza como operación principal la protusión por barrido.

Esta operación permite extruir un perfil a lo largo de una trayectoria definida anteriormente. El perfil debe ser cerrado y la trayectoria continua y tangente en el caso de que conste de varios elementos.

Una vez se pincha el icono de protusión por barrido aparece una ventana de opciones, en la que se permite seleccionar entre “trayectoria y sección transversal simples” y “trayectorias y secciones transversales múltiples” (Figura 27) dependiendo de si la sección es constante o no a lo largo de la trayectoria.
En el caso que nos ocupa se escoge la opción de trayectoria y sección transversal simples ya que la sección de la barra es constante.

Otras opciones que aparecen una vez aceptadas las opciones de barrido son las siguientes:

- **Trayectoria**: permite dibujar el perfil (o perfiles) para la trayectoria o bien seleccionar uno o varios de un boceto.

- **Sección trasversal**: Permite dibujar las secciones o bien seleccionarlas a partir de un boceto.

- **Orientación relativa**: La sección siempre permanecerá perpendicular a la trayectoria.

- **Orientación fija**: La sección se proyectará siempre en planos paralelos a la misma.

- **Protusión por secciones**:

Con la protusión por secciones se consigue extruir una superficie a través de varias secciones. Las opciones que da a elegir el programa son las siguientes:

- **Sección transversal (como en herramienta anterior)**.

- **Seleccionar curvas guía**: Permite seleccionar una curva tangente a todos los elementos que nos sirva de guía para la sección transversal.

- **Extensión**: Define la profundidad de la operación o la distancia para extender el perfil y construir la operación.
• Vaciados:

Los vaciados presentan las mismas opciones que las protusiones con diferencia del efecto que producen dos operaciones que se pueden considerar opuestas. Los vaciados que permite realizar el programa son los siguientes:

- **Vaciado.** Realiza un agujero mediante un perfil o boceto perpendicularmente al plano seleccionado.
- **Vaciado por barrido.** Realiza un agujero a lo largo de una trayectoria definida anteriormente.
- **Vaciado por secciones.** Realiza un agujero a través de varias secciones

• Chaflán:

Mediante esta operación se consigue realizar un chaflán o bisel de los bordes seleccionados.

Entre las opciones de esta operación se encuentran las siguientes:

- **Opciones de achaflanado (Figura 28).**

![Opciones de achaflanado](image)

Fig. 28. Opciones de achaflanado.

- **Seleccionar cara.**
- **Seleccionar borde.** Permite seleccionar el borde a achaflanar.
Capítulo 4: Modelado con Solid Edge

- **Redondeo**:
 Con esta operación se consigue redondear la arista o aristas seleccionadas.
 Las opciones de redondeo se muestran en la figura 29.

![Fig. 29. Opciones de redondeo.](image)

- **Copia simétrica de la operación**:
 Esta operación, como su nombre indica, realiza una copia simétrica a un plano que se designará para el caso. Algunas de las opciones que se encuentran en ella son:
 - Seleccionar operaciones. Este comando permite seleccionar las operaciones de las que se quiere realizar la copia simétrica.
 - Plano. Mediante este comando se establece el plano de simetría.
 - Rápido. Crea ocurrencias que se ajustan a la geometría de la pieza calculando solo la primera.
 - Inteligente. Crea ocurrencias que se ajustan a la geometría de la pieza calculando cada una.

- **Copia simétrica de pieza**:
 Esta operación a diferencia de la anterior realiza copias simétricas de piezas completas. Es necesario definir el plano de simetría.

- **Dar espesor**:
 Hace un vaciado sobre todas las caras de una pieza dejando un espesor finito en la misma.
 Las opciones que da el programa para esta operación son:
 - Grosor común. Define el grosor de las paredes de la pieza. Las formas de dar el grosor son:
Desplazar hacia fuera. Desplaza o modifica el perfil de la pieza, según el valor del grosor, hacia el exterior de la pieza.

Desplazar hacia dentro. Mantiene los valores de la pieza y añade el grosor hacia el interior.

Desplazamiento simétrico. Añade la mitad del grosor hacia dentro y la otra mitad hacia fuera.

Abrir caras. Permite seleccionar las caras que se quieren abrir en la operación.

Grosor único. Las caras seleccionadas podrán tener un grosor distinto del común.

En este apartado se introducen además herramientas de visualización de conjuntos:

- **Explosionado automático**: Mediante la herramienta de explosionado automático se consigue explosionar el conjunto aplicando un desplazamiento entre las piezas. También pueden ser explosionadas las piezas de los subconjuntos. Dependiendo de las relaciones entre las piezas, el explosionado puede no generarse o bien dar resultados inesperados.

- **Explosionar (manual)**: Realiza la explosión del conjunto según los parámetros introducidos:
 - **Pieza**: Selecciona la pieza o piezas que serán explosionadas.
 - **Pieza fija**: Selecciona la pieza fija, a partir de la cual se generará el explosionado.
 - **Cara**: Selecciona la cara de la pieza fija. La dirección de explosionado será la normal a esta cara.
 - **Dirección**: Selecciona la dirección de explosionado.
4.3 **Modelado de las piezas de la barra estabilizadora**

La barra estabilizadora que se quiere modelar tiene básicamente tres subconjuntos: la barra estabilizadora propiamente dicha, el conjunto de anclaje de la barra al chasis y el conjunto de anclaje de la barra a la columna de la suspensión.

4.3.1 **Barra estabilizadora**

Para modelar la barra estabilizadora, primeramente se realiza un boceto mediante el cual se indica la trayectoria que debe seguir la sección en su movimiento de barrido, para ello se escoge un plano cualquiera (**Figura 30**).

![Fig. 30. Boceto para la trayectoria.](image)

Seguidamente se pincha el icono de protusión por barrido y se selecciona la opción de trayectoria y sección transversal simples, se escoge la trayectoria definida mediante el boceto, se dibuja la sección transversal en uno de los extremos de la trayectoria y en un plano perpendicular al del boceto de la misma, seleccionando además el icono de orientación relativa, finalmente se pulsa el icono de terminar.

Una vez que se tiene el cuerpo de la barra, es necesario modelar las partes de la misma en los que irán montados los anclajes. Los anclajes a la suspensión van montados sobre dos arcos en los extremos de la barra, para ello es necesario pasar de la sección circular que posee la barra a la rectangular de la base de los arcos, esto se consigue mediante una protusión por secciones y dos bocetos, mediante los cuales, se va cambiando la sección más suavemente. Los arcos se modelan con una protusión por proyección.

Los anclajes al chasis o silentblocks van montados sobre unos rebajes realizados en el cuerpo de la barra, que se consiguen mediante simples vaciados (**Figura 31**).
4.3.2 \textit{Conjunto de anclaje de la barra a la columna de suspensión}

El conjunto de anclaje a la columna de la suspensión va montado en cada extremo de la barra estabilizadora. Está compuesto a su vez por 4 piezas simples:

1. **Cuerpo del conjunto:**

 El cuerpo del anclaje a la columna de la suspensión se modela básicamente con tres protusiones simples; un vaciado y una rosca. Con la primera de las protusiones se consigue la parte heptagonal (\textit{Figura 32}).
La segunda y tercera protusiones son de forma cilíndrica. Sobre una de ellas van montadas las gomas, mientras que la otra es la parte roscada en la que se coloca la tuerca.

Por último el vaciado se realiza sobre una de las caras laterales del heptágono, estableciendo la cara de mayor anchura como base (*Figura 33).*

![Figura 33. Cuerpo del anclaje a la columna de suspensión.](image)

2. Gomas:

Las gomas se modelan mediante dos protusiones para conseguir el cambio de sección (*Figura 34).*

![Figura 34. Goma.](image)
Capítulo 4: Modelado con Solid Edge

3. Arandela:

El modelado de la arandela se consigue con una protusión y dos chaflanes, uno de ellos en la arista interior y otro en la exterior (*Figura 35*).

![Fig. 35. Arandela.](image)

4. Tuerca:

El modelado de la tuerca se obtiene mediante dos protusiones y un redondeo (*Figura 36*).

![Fig. 36. Tuerca.](image)
Así se tienen todas las piezas que componen el conjunto de anclaje de la barra estabilizadora a la columna de la suspensión. El conjunto explosionado se muestra en la figura 37.

![Fig. 37. Explosionado del subconjunto de anclaje a la columna de suspensión.]

4.3.3 Conjunto de anclaje de la barra al chasis

El conjunto de anclaje de la barra al chasis va montado sobre cada uno de los dos rebajes realizados en el cuerpo de la barra estabilizadora, mediante gomas denominadas silentblocks, los cuales permiten amortiguar los posibles impactos que se producirían entre dos piezas metálicas.

Las piezas que componen el conjunto de anclaje al chasis son las siguientes:

1. Soporte de silentblock:

 Sobre esta pieza va montado el resto del conjunto.

 El modelado se realiza mediante una serie de protusiones y simetrías (*Figura 38*).
Capítulo 4: Modelado con Solid Edge

Fig. 38. Soporte de silentblock.

Los agujeros no son realizados mediante vaciados sino que se modelan con la propia sección de la protusión, así se consigue disminuir el número de operaciones utilizadas simplificando el modelo.

2. Silentblock:

El modelado del silentblock se consigue mediante protusiones y un redondeo. Esta pieza va en contacto con la barra estabilizadora y el soporte del silentblock (Figura 39).

Fig. 39. Silentblock.

3. Arco:

Esta pieza es la encargada de fijar el silentblock con su soporte.

Va montada sobre el soporte del silentblock mediante un tornillo roscado con su correspondiente tuerca y arandela. Para modelar esta pieza se realiza una protusión maciza para posteriormente dar un espesor común a todas las caras, desplazando el grosor hacia dentro (Figura 40).
Capítulo 4: Modelado con Solid Edge

4. Bulón:

El bulón es una pieza metálica en forma de casquillo cilíndrico que va montado entre las dos patas del soporte del silentblock encima de la parte no roscada del tornillo. Se modela mediante una protusión y un chaflán realizado en sus dos aristas exteriores (Figura 41).

5. Goma:

La goma es la misma que la del conjunto de anclaje a la columna de suspensión.
6. Arandela:

En este caso la arandela se modela mediante una protusión, al contrario que la otra arandela del subconjunto anterior, esta no va achaflanada (*Figura 42*).

![Fig. 42. Arandela.](image)

7. Tornillo 1:

Este tornillo se introduce por los agujeros de las patas del soporte del silentblock y por el interior del bulón, además va fijado mediante una tuerca y una arandela (*Figura 43*).

![Fig. 43. Tornillo 1.](image)

8. Tornillo 2:

Es el encargado de sujetar el silentblock al soporte por medio del arco, en este caso también va fijado mediante una tuerca y una arandela, a simple vista es igual que el tornillo 1 pero su longitud es mayor.
9. Tuerca:

La tuerca es igual que la del subconjunto de anclaje a la columna de suspensión.

De esta forma el explosionado del conjunto queda como se muestra en la figura 44.
En la figura 45 se muestra el conjunto de anclaje al chasis ensamblado independientemente.

Fig. 45. Montaje del subconjunto.
Una vez que se tienen diseñados la barra y los dos subconjuntos se puede realizar el montaje de la barra estabilizadora completa (Figura 46).

Fig. 46. Montaje de la barra estabilizadora completa.
CAPITULO 5 ANALISIS DE LOS ESFUERZOS MEDIANTE ANSYS

5.1 Programas de elementos finitos

Los programas de AEF (Análisis de Elementos Finitos) permiten obtener soluciones aproximadas de problemas que son susceptibles de ser representados por un sistema de ecuaciones diferenciales.

En ingeniería, la mayoría de los procesos actuales están definidos de dicha forma, por lo que dichos programas permiten obtener productos de calidad superior a un menor coste, mejorar procesos existentes, o estudiar el fallo de un componente estructural.

Si se utiliza un programa de AEF se puede ayudar a reducir el tiempo total de desarrollo de un producto, reduciendo el número de ciclos prototipo-pruebas-ensayos-evaluación (Figura 47)
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 47. Etapas de desarrollo de un producto.

5.2 Método de Elementos Finitos (MEF)

La transformación de un sistema de ingeniería (con infinitas incógnitas) en un modelo de elementos finitos es, quizás, uno de los métodos más importantes y requiere un conocimiento profundo del MEF.

En realidad dicho modelo es una idealización matemática de un sistema real cuyo comportamiento debe, al menos, ser intuido, pues de otro modo la modelización puede ser muy laboriosa o imposible.

El término elemento finito resume el concepto básico del método: la transformación de un sistema físico, con un número infinito de incógnitas, a uno que tiene un número finito de incógnitas relacionadas entre sí por elementos de un tamaño finito.

Un nodo es una localización en el espacio de un punto en el que se considera que existen ciertos grados de libertad (desplazamientos, potenciales, temperaturas…) y acciones (fuerzas, corrientes, condiciones de contorno…) del sistema físico.

Un elemento es una representación matemática matricial, denominada matriz de rigidez, de la interacción entre los grados de libertad de un conjunto de nodos. Los elementos pueden ser puntuales, lineales, superficiales, volumétricos, etc. y pueden estar en espacios bi y tridimensionales.

Cada nodo tiene ciertos grados de libertad (GDL’s) que caracterizan la respuesta del campo (las ecuaciones diferenciales representan el problema que se quiere resolver).

En un sistema estructural, el conjunto de grados de libertad incluye tres traslaciones y tres rotaciones [3].
5.3 Ansys

Ansys es un programa creado para la resolución de diversos tipos del análisis en el ámbito ingenieril, mediante el uso del método de elementos finitos (MEF). Las capacidades de Ansys incluyen la habilidad para resolver problemas estructurales tanto estáticos como dinámicos, problemas de transferencia de calor, continuos y transitorios, problemas magnéticos, etc.

El menú de Ansys dispone de tres procesadores principales [8]:

1. El preprocesador (PREP7) el cual contiene todos los comandos necesarios para la construcción del modelo:
 - Definición de tipos de elemento y sus opciones.
 - Definición de las constantes reales.
 - Definición de las propiedades de los materiales.
 - Creación de la geometría del modelo.
 - Controles de mallado.
 - Mallado de los objetos creados.

2. El procesador de la solución (SOLUTION) dispone de los comandos que permiten la aplicación de las condiciones de contorno y las cargas. Una vez que se introducen todos los datos necesarios para el análisis, este procesador calcula la solución.

3. El postprocesador general (POST1) contiene los comandos que permiten la visualización de los resultados.

La forma más simple para comunicarse con Ansys es mediante el uso de su menú, llamado Graphical User Interface (GUI). El GUI proporciona un interfaz entre el usuario y el programa. El programa es regido internamente por comandos Ansys. Sin embargo, se puede desarrollar un análisis sin necesidad de saber programar con dichos comandos. Esto se puede llevar a cabo debido a que, mediante la función GUI, los comandos son ejecutados directamente por el programa.

El GUI de Ansys consiste en cinco espacios mediante las cuales se puede dirigir todo el proceso de análisis.
5.3.1 **Menú principal**

El menú principal (**Figura 48**) contiene todas las funciones principales de Ansys, como son el preprocesador, la solución y el postprocesador.

Cada función del menú abre bien un submenú o un cuadro de diálogo para realizar una operación.

![Fig. 48. Menú principal.](image)

5.3.2 **Menú de utilidades**

El menú de utilidades (**Figura 49**) contiene funciones de Ansys como control de archivos, selección o controles gráficos. Estas funciones pueden ser utilizadas en cualquier momento. Cada tema del menú abre a su vez un desplegable.

![Fig. 49. Menú de utilidades.](image)

5.3.3 **Barra de herramientas**

La barra de herramientas contiene botones que se usan frecuentemente. Se pueden añadir botones personalizados con las opciones más utilizadas (**Figura 50**).

![Fig. 50. Barra de herramientas.](image)
Capítulo 5: Análisis de los esfuerzos mediante Ansys

5.3.4 **Ventana de entrada**

La ventana de entrada permite introducir comandos de Ansys directamente utilizando su lenguaje específico (**Figura 51**). Todos los comandos utilizados anteriormente aparecen en esta ventana para una mayor comodidad.

![Fig. 51. Ventana de entrada.](image)

5.3.5 **Ventana de gráficos**

La ventana de gráficos es la parte principal del menú de Ansys, en la cual es posible dibujar y visualizar los objetos y posteriormente mostrar gráficamente los resultados.

5.4 **Primer modelo**

Para exportar el modelo de la barra estabilizadora realizado en Solid Edge a Ansys es necesario guardar el archivo desde Solid Edge con la extensión .igs.

El modelo de la barra estabilizadora abierto en Ansys se muestra en la **figura 52**.

![Fig. 52. Modelo en Ansys.](image)
Una vez que se tiene el modelo en Ansys es necesario introducir todas las variables necesarias para obtener los resultados. Para ello se procede de la siguiente forma:

- Se pulsa el botón *preferences* situado en el menú principal, el cual abre una ventana en la que se elige la opción estructural (*Figura 53*).

![Fig. 53. Ventana de preferencias](image)

- Seguidamente se hace click en *preprocessor* abriendo un menú desplegable con todos los comandos que se encuentran en ese nivel (*Figura 54*).

![Fig. 54. Comandos del preproceso.](image)

- Para seleccionar el tipo de elemento que se va a utilizar posteriormente en el mallado se pincha en *element type* → *Add/Edit/Delete* apareciendo una ventana en la que se muestran los tipos de elementos elegidos (*Figura 55*). Para seleccionar tipos de elemento hay que pulsar *Add*, apareciendo otra ventana en la que se muestran todos los elementos de que dispone Ansys (*Figura 56*).
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 55. Ventana de elementos seleccionados.

El elemento a seleccionar debe ser tipo sólido debido, ya que se trata de una barra de sección maciza y debe tener seis grados de libertad en cada nodo (Ux, Uy, Uz, ROTx, ROTy, ROTz), ya que al aplicarle los esfuerzos a la barra estabilizadora se producirá una deformación lineal en los brazos y una rotación en el cuerpo de la misma.

Después de revisar todos los elementos tipo sólido que tiene Ansys se llega a la conclusión de que no dispone de ninguno que tenga las características necesarias para este análisis ya que ninguno de ellos presenta los seis grados de libertad que se requieren. Los resultados obtenidos utilizando el elemento solid 45 Brick 8 node (Figura 57) corroboran la afirmación realizada anteriormente (Figura 58).

Fig. 56. Tipos de elementos.
En la figura se puede observar como, al no poseer los seis grados de libertad necesarios, no se transmite la torsión producida por las fuerzas aplicadas en los extremos de la barra.

Sin embargo revisando ciertos manuales (ver ANEXO I) se puede ver como si hay elementos tipo sólido, como son el solid72 o solid73 que poseen los seis grados de libertad necesarios (Ux, Uy, Uz, Rotx, Roty, Rotz), lo que hace pensar que la versión utilizada está limitada o es anterior a la mostrada en el manual. Por ello se desecha la opción de utilizar el modelo creado en Solid Edge y se prefiere volverlo a crear en Ansys utilizando un tipo de elemento diferente.

5.5 Segundo modelo

Debido a que no se puede utilizar el modelo descrito por las razones comentadas anteriormente se decide realizar uno nuevo con características similares. Para ello se modela nuevamente la barra estabilizadora pero esta vez directamente en Ansys.
5.5.1 **Propiedades del material**

Igual que en el caso anterior se escoge la opción *structural* en la opción *preferences* del menú principal.

Seguidamente se programa el preproceso, para ello se hace *click* en *preprocessor*→*element type*→*Add/Edit/Delete*, se escoge como tipo de elemento un *Shell* (elemento tipo placa), más concretamente el *Shell63*.

Este elemento, tipo placa tridimensional, se caracteriza por estar constituido por 4 nodos, cada uno de ellos con seis grados de libertad, los tres movimientos en el espacio y las tres rotaciones (*Figura 59*).

![Elastic Shell](image)

Fig. 59. Características elemento Shell 63.

Después se pincha en *real constants*→*Add/Edit/Delete*, desplegándose una nueva ventana (*Figura 60*) en la que se pulsa el botón *Add*, apareciendo así otra que permite elegir el tipo de elemento en el que se quieren introducir las constantes (*Figura 61*) y abriéndose una nueva ventana (*Figura 62*) en la cual hay que introducir el espesor de la placa. Para introducir el espesor hay que tener en cuenta que Ansys crea una placa con la mitad del grosor definido a cada lado de la superficie creada, así pues, se debe dibujar el contorno de la barra por la línea media de la sección de la misma, para que cuando se introduzca el espesor quede como si se tratara de un elemento macizo con las dimensiones reales de la barra.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 60. Real constants.

Fig. 61. Tipos de elemento.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 62. Constantes del material.

El espesor que se introduce es de 13 mm para que el modelo, a pesar de ser tipo placa, quede macizo. Una vez introducido, se pulsa apply, con lo que aparece la ventana de la figura 62, pero con el número 2 en la casilla superior para poder introducir nuevas constantes, así se introduce también el espesor para la zona del rebaje, en este caso 12 mm.

Una vez que se han introducido las constantes reales del modelo, el siguiente paso consiste en introducir las propiedades del material, para ello se pulsa material props→material models, abriendo una ventana en la que se pueden elegir las propiedades y en la que se selecciona Structural→Linear→Elastic→Isotropic (Figura 63). Una vez seleccionadas estas opciones aparece una nueva ventana en la que hay que introducir el módulo de elasticidad y el coeficiente de Poisson (Figura 64). Los valores a introducir para el acero son los siguientes:

Módulo de Young → E=2.1e5 N/mm²
Coef. Poisson → ν = 0.3 (adimensional)
Densidad → ρ = 7.85e−9 Tm/mm³
5.5.2 Definición de la geometría

Una vez que se han introducido las propiedades del material se procede al modelado de la barra. Para ello, se pincha dentro del menú preprocessor la opción modeling→create→keypoints→In active CS (Figura 65), de esta forma se crean los puntos por los que después se define la trayectoria que sigue el perfil de la barra a partir del sistema de coordenadas que se encuentra definido por defecto. Los puntos que se crean son los siguientes (Figura 66):

1. 0,0,0.
2. 0,190,0.
3. 50,190,0.
4. 50,240,0.
5. 102,6,240,0.
6. 677,4,240,0.
7. 730,240,0.
8. 730,190,0.
9. 780,190,0
10. 780,0,0.

 Fig. 65. Ventana de introducción de coordenadas para los keypoints.

 Fig. 66. Puntos creados.
De este modo se tienen todos los puntos necesarios para definir la trayectoria que debe seguir el perfil. Los puntos 3 y 8 son los centros de las curvas de 50 mm de radio de la barra, mientras que los pares (4,5) y (6,7) son el principio y el final de los dos rebajes de cada lado de la barra.

Después de definir los puntos hay que crear las líneas que los unen, para ello se pincha en `Modeling→create→lines→straight line`. De esta forma se crean todas las líneas rectas necesarias seleccionando el punto de inicio y el final de cada barra y pulsando `apply`.

Para crear los arcos se procede de la siguiente forma: se pincha en `modeling→create→lines→arcs→By end KPs&radius`, aparece así una ventana en la que se debe introducir primero los puntos de inicio y fin del arco, se pulsa OK y posteriormente el centro. Volviendo a pulsar OK aparece una nueva ventana en la que además de los puntos introducidos hay una casilla en la que se debe insertar la medida del radio (Figura 67).

Una vez que se tiene la trayectoria (Figura 68), hay que dibujar el perfil que se va a crear a lo largo de la misma. Como ya se indicó anteriormente, al crearse la mitad del espesor hacia cada lado de la línea definida, se debe dibujar una circunferencia de diámetro 13 para la sección de diámetro 26 y una de 12 para la de 24.

Para dibujar estas circunferencias hay que proceder del mismo modo que se ha hecho anteriormente, es decir, primero se crean los puntos para después definir los arcos.

Ansys posee una herramienta mediante la cual se puede cambiar la posición de los ejes coordenados para facilitar la creación de los puntos, para ello se pulsa en el menú de utilidades la pestaña de `Workplane` apareciendo un desplegable en el que hay que seleccionar `Offset WP to++ Keypoints`, de esta forma se puede escoger el punto sobre el que se quiere poner el nuevo sistema de ejes cartesianos. Una vez definido el nuevo sistema de ejes hay que activarlo, para ello se pulsa `Workplane→Change active CS to→Workingplane`, de este modo las coordenadas que se introduzcan a partir de ese momento están referidas al nuevo sistema.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Una vez que se han definido todas las circunferencias necesarias, se procede a la creación del perfil, para ello se pincha en modeling→operate→extrude→lines→along lines. Se selecciona la circunferencia que se quiere extruir, se pulsa OK y seguidamente se selecciona la trayectoria que se quiere que siga, obteniendo así un modelo bastante aproximado de la barra estabilizadora (Figura 69).

Fig. 68. Trayectoria.

Fig. 69. Modelo realizado en Ansys.
Se puede observar que la representación de la barra que da Ansys es más delgada que el modelo real, esto se debe a que la representación no es de la barra en sí, sino de la línea media que se ha definido para darle espesor. Si se quiere ver el modelo con el diámetro real, hay que introducir en la ventana de entrada el comando /eshape, 1 y pulsar replot, de este modo representa el contorno a tamaño real como se puede ver en la figura 70. Para volver a la representación anterior hay que introducir en la ventana de entrada /eshape.

![Fig. 70. Representación del perfil de la barra estabilizadora.](image)

5.5.3 **Mallado**

Después de crear el modelo, el siguiente paso consiste en realizar el mallado. La creación de un mallado adecuado es fundamental a la hora de obtener buenos resultados. Cuanto más fina sea la malla más aproximados serán los resultados obtenidos, sin embargo, mayor será el tiempo de procesado.

Para realizar el mallado, se deben seguir los siguientes pasos:

- Dentro del menú *preprocessor* se selecciona *Meshing→mesh tool* apareciendo una ventana en la que se van a introducir las opciones de mallado (*Figura 71*).
Fig. 71. Opciones de mallado.

- En la parte superior de las opciones de mallado (*Element attributes*) se selecciona la opción *areas* y se pulsa el botón *set*. Se seleccionan las áreas con propiedades iguales y se pulsa OK apareciendo una ventana (*Figura 72*) en la que se debe seleccionar el número del material (en este caso toda la barra es del mismo material por lo que solo aparecerá uno), las constantes reales (dependiendo si se trata de la parte de diámetro 26 ó 24) y el tipo de elemento.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 72. Propiedades de las áreas

- Una vez hechas estas operaciones se pulsa el botón *mesh* en la ventana de opciones de mallado (*Figura 71*) y se seleccionan todas las áreas que se desean mallar realizándose de este modo un mallado automático (*Figura 73*).
5.5.4 Aplicación de condiciones de contorno y cargas

Después de realizar el mallado, el siguiente paso consiste en la aplicación de las condiciones de contorno y de las cargas. Para ello es necesario analizar el comportamiento de la barra una vez montada. Se propone un ejemplo real en el cual se supone que un vehículo, totalmente cargado (3500 kg de peso), describe una curva de radio 500 m con un coeficiente de rozamiento entre el asfalto y los neumáticos de 0.75 (pavimento seco) y un peralte de 15°. En la tabla 2 se indican las características del vehículo al que pertenece la barra estabilizadora.

<table>
<thead>
<tr>
<th>Carga útil (Kg)</th>
<th>1723</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso máximo autorizado (Kg)</td>
<td>3500</td>
</tr>
<tr>
<td>Largo (mm)</td>
<td>5188</td>
</tr>
<tr>
<td>Alto (mm)</td>
<td>2116</td>
</tr>
<tr>
<td>Ancho (mm)</td>
<td>1870</td>
</tr>
</tbody>
</table>

Tabla 2. Características del vehículo.

Una vez que se tienen todos los datos se procede a analizar el comportamiento de la barra estabilizadora a dos velocidades del vehículo distintas, 50 y 80 km/h. Así pues se realiza el equilibrio de fuerzas del vehículo en paso por curva, con el fin de obtener las reacciones verticales en cada uno de los neumáticos, para ver la diferencia de cargas entre uno y otro (**Figura 72**).

En la **figura 74** se muestran las fuerzas que actúan sobre el vehículo en su paso por curva.

![Fig. 74. Estado de las fuerzas sobre el camión en paso por curva.](image-url)
Las variables utilizadas en el equilibrio de fuerzas se muestran en la tabla 3.

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Masa del vehículo</td>
</tr>
<tr>
<td>g</td>
<td>Gravedad</td>
</tr>
<tr>
<td>V</td>
<td>Velocidad del vehículo</td>
</tr>
<tr>
<td>R</td>
<td>Radio de la curva</td>
</tr>
<tr>
<td>ß</td>
<td>Ángulo de peralte</td>
</tr>
<tr>
<td>Fr₁</td>
<td>Fuerza de rozamiento en el neumático exterior a la curva</td>
</tr>
<tr>
<td>Fr₂</td>
<td>Fuerza de rozamiento en el neumático interior a la curva</td>
</tr>
<tr>
<td>N₁</td>
<td>Reacción sobre el neumático exterior</td>
</tr>
<tr>
<td>N₂</td>
<td>Reacción sobre el neumático interior</td>
</tr>
</tbody>
</table>

Tabla 3. Variables del equilibrio de fuerzas.

El sistema de ecuaciones que representa el equilibrio de fuerzas es el siguiente:

- Sumatorio de fuerzas horizontales.
 \[\sum F_H = 0 \rightarrow M \frac{V^2}{R} \cos \beta - Mg \cdot \operatorname{sen} \beta - Fr₁ - Fr₂ = 0 \]
 (ecu. 5.1)

- Sumatorio de fuerzas verticales.
 \[\sum F_v = 0 \rightarrow Mg \cdot \cos \beta + M \frac{V^2}{R} \operatorname{sen} \beta - N₁ - N₂ = 0 \]
 (ecu. 5.2)

- Sumatorio de momentos.
 \[\sum M_i = 0 \rightarrow Mg \cdot \operatorname{sen} \beta \left(\frac{h}{2} \right) + Mg \cdot \cos \beta \left(\frac{h}{2} \right) + M \frac{V^2}{R} \cdot \operatorname{sen} \beta \left(\frac{h}{2} \right) - M \frac{V^2}{R} \cdot \cos \beta \left(\frac{h}{2} \right) - N₂ \cdot (b) = 0 \]
 (ecu. 5.3)

Dependiendo de si el vehículo circula a 50 o a 80 km/h se obtienen los siguientes valores para las reacciones en cada una de las dos ruedas del mismo eje:

- Introduciendo los valores correspondientes para una velocidad de 50 km/h (y despejando en las ecuaciones 5.1, 5.2 y 5.3), se obtienen los siguientes resultados:

 \[N₁(50\text{Km/h}) = 12454.5N \]
 \[N₂(50\text{Km/h}) = 21025.8N \]

Una vez que se tienen estos resultados, se calcula la diferencia para conocer la fuerza en cada uno de los extremos de la barra.

\[\Delta N_{(50\text{Km/h})} = N₂ - N₁ = 21025.8 - 12454.5 = 8571.3N \]

Esta fuerza es la diferencia de fuerzas total entre los dos extremos de la barra. Debido a que en Ansys se deben introducir los datos de tal manera que el modelo se encuentre en equilibrio, se introducen en cada extremo de la barra...
Capítulo 5: Análisis de los esfuerzos mediante Ansys

estabilizadora dos cargas iguales de sentido contrario cuya suma sea 8571.3 N, por lo que en cada extremo se introduce una carga de 4285.65 N.

- Para el caso en el que el vehículo circula a una velocidad de 80 km/h se obtienen los siguientes resultados (despejando de las ecuaciones 5.1, 5.2, 5.3):

\[N_{1(80\text{Km/h})} = 13879N \]

\[N_{2(80\text{Km/h})} = 20146N \]

Tal que:

\[\Delta N_{(80\text{Km/h})} = N_2 - N_1 = 20146 - 13879 = 6267N \]

En este caso hay que poner una carga de 3133.5 N en cada uno de los extremos de la barra.

Para introducir las condiciones de contorno en Ansys se pulsa en el menú principal, Preprocessor → Loads → Define loads → Apply → Structural → Displacement → On nodes (Figura 75) y seguidamente se escogen los nodos en los que se quiere restringir el movimiento. En este caso, se restringe el desplazamiento en las tres direcciones del espacio de la zona de rebaje, la cual va anclada al chasis.

![Fig. 75. Opciones dentro del preproceso.](image-url)
Con el fin de que sea más fácil escoger los nodos adecuados y no uno adyacente debido a la gran densidad que hay de ellos, se representan en la ventana de gráficos solamente los nodos que coinciden con las líneas del contorno de la barra. Para ello, se pulsa select→Entities, aparece una ventana (Figura 76) en la que hay que seleccionar Nodes→Attached to→Lines, all y se pulsa OK. A continuación se activa la representación, para ello se pulsa plot→nodes, de este modo solo se representan los nodos seleccionados.

Fig. 76. Selección para la representación.

Una vez restringido el movimiento, el siguiente paso consiste en la aplicación de las cargas. En este caso se simula el comportamiento de la barra estabilizadora en curva imponiendo dos cargas iguales y de sentido contrario en cada uno de los extremos, con los valores obtenidos anteriormente dependiendo de si el vehículo circula a 50 u 80 km/h. Para ello se pulsa en el menú principal Preprocessor→Loads→Define loads→Apply→Structural→Force/Moment→On nodes, se escoge el nodo sobre el que se quiere aplicar la carga y se pulsa OK. Aparece así una ventana (Figura 77) en la que
Capítulo 5: Análisis de los esfuerzos mediante Ansys

hay que introducir las propiedades de la carga, tanto la dirección como el módulo de la misma, en este caso la dirección de aplicación es FZ.

![Image of Apply Force/Moment on Nodes dialog box]

Después de aplicar las cargas requeridas, se tienen completas todas las condiciones de contorno necesarias para el análisis, por lo que ya se puede pasar a solucionar el problema.

Para obtener la solución del modelo se pulsa en el menú principal Solution→Solve→Current LS (Figura 78). Una vez que el programa ha obtenido la solución aparece una ventana en la que pone Solution is done.

![Image of Solution menu]

5.5.5 Resultados de la simulación

Para representar los resultados, una vez que el programa ha obtenido la solución, se hace click sobre la opción General postproc ubicada en el menú principal (Figura 79), apareciendo un menú desplegable en el que hay que pulsar Plot results→Contour
plot → Nodal solution. De esta forma aparece una nueva ventana en la que se pueden escoger las opciones que se quieren mostrar en el resultado (Figura 80), dependiendo si se quieren representar desplazamientos, giros, esfuerzos, etc.

Fig. 79. Menú de postproceso.

En este caso es interesante obtener tanto los desplazamientos verticales como la tensión de Von Misses en cada una de las secciones para dar una idea de por donde rompería la barra estabilizadora en caso de falla.

Fig. 80. Ventana de opciones para la solución.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Para obtener los desplazamientos verticales debido a la actuación de las fuerzas, es decir en el eje Z, se selecciona, en la parte superior de la ventana de la figura 71, item to be contoured, la opción DOF solution→UZ y se pulsa OK, apareciendo así la representación de los desplazamientos verticales (Figuras 81 y 82) en la ventana de gráficos.

Como se puede observar en la figura 81, los mayores desplazamientos se producen en el punto de aplicación de la carga, lo cual es bastante lógico. El desplazamiento relativo máximo (57,8 mm) corresponde a un movimiento provocado por una carga de 4285,65 N sobre una barra de acero macizo.
El mismo análisis se realiza para el vehículo tomando la curva a 80 km/h, en este caso, se puede observar un menor desplazamiento relativo (42,3 mm frente a los 57,8 mm obtenidos en el caso en el que circula a 50 km/h), debido a que al aumentar la velocidad, la fuerza centrífuga ayuda a equilibrar la diferencia de reacciones en ambas ruedas del mismo eje, provocada por la inclinación del peralte.

Para obtener los esfuerzos a los que está sometida la barra, dependiendo de la sección, se sigue el mismo procedimiento que en el caso anterior, pero en este caso se pulsa la opción Stress→Von Misses y se pulsa OK apareciendo así los resultados mostrados en las figuras 83 y 84.

Fig. 82. Desplazamiento vertical (mm) a 80 km/h.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 83. Tensión de Von Misses (MPa) para V=50 km/h.

Fig. 84. Tensión de Von Misses (MPa) para V=80 km/h.
Los valores máximos de tensión obtenidos mediante el análisis realizado con Ansys se encuentran en los cambios de sección, debido a que toda la parte de la barra que trabaja a torsión está sometida al mismo par torsor, la máxima tensión se localiza en los puntos de concentración de tensiones.

Los valores máximos de tensión para cada uno de los casos son las siguientes:

- Para el caso en el que el vehículo circula a una velocidad de 50 km/h la tensión máxima obtenida está entorno a los 880 MPa.
- Para el caso en el que el vehículo toma la curva a 80 km/h, la tensión máxima es aproximadamente de 650 MPa.

En este caso también se puede observar una disminución de la tensión al aumentar la velocidad, debido a que como se ha indicado anteriormente, el desequilibrio de las reacciones entre ambas ruedas disminuye al aumentar la velocidad.

Hay veces en las que surge una tensión pico en una región muy pequeña del modelo por lo que no se pueden apreciar bien las tensiones producidas en el resto de la barra mediante el gráfico, esto se debe a que Ansys toma por defecto las tensiones máxima y mínima para hacer la representación. En estos casos es necesario acotar los esfuerzos que se quieren mostrar y despreciar otros que se pueden considerar puntuales para obtener una mejor representación visual. Para ello es necesario pulsar en la barra del menú de utilidades `Plot controls→Style→Contours→Uniform contours` apareciendo así una ventana como la mostrada en la figura 85.

![Uniform Contours](image)

Fig. 85. Opciones del contorno.
Para ello, hay que activar la opción *User specified* e introducir en las casillas de *user specified intervals* los valores máximo y mínimo que se quieren representar.

Para los casos analizados se han acotado los esfuerzos entre 0 y 880 MPa, para el caso en el que el vehículo circula a 50 km/h y entre 0 y 650 MPa, para el caso de 80 km/h.

Ansys permite realizar además una visualización del modelo en el tiempo para ver cómo va variando tanto su posición como cualquiera de los parámetros elegidos (tensiones, giros, etc.), para ello hay que pulsar en la barra del menú de utilidades la opción *Plot controls*→*Animate*→*Mode shape* y aparece una ventana como la mostrada en la figura 86.

![Animate Mode Shape](image)

Fig. 86. Opciones de animación.

La parte superior contiene los datos de animación, con ellos se puede variar el número de posiciones que se quiere que tenga la animación, así como el tiempo que tarda en cambiar de una a otra. La parte central contiene el tipo de aceleración, pero en este caso no se usa, por último la parte inferior contiene todos los parámetros que se pueden visualizar.
Capítulo 5: Análisis de los esfuerzos mediante Ansys

5.6 Ansys LS-DYNA

El programa Ansys LS-Dyna es un código de elementos multi-propósito que analiza grandes deformaciones de problemas estáticos y dinámicos. Fue creado en la década de los setenta por la compañía Lawrence Livermore Nacional Lab., a partir del software “DYNA3D”. La primera versión del mismo fue estrenada en 1976 [9].

LS-DYNA combina el análisis explícito de los elementos finitos con el pre y postprocesado típicos de Ansys.

El proceso a seguir para realizar un estudio dinámico presenta tres pasos principales [10]:

1. Construcción del modelo. Para ello se siguen las mismas pautas que en el caso de Ansys: Se define el tipo de elemento y sus constantes, se especifica el modelo del material, se define la geometría y se malla.

2. Aplicación de las cargas, condiciones de contorno y obtención de la solución.

3. Revisión de los resultados.

En cuanto a la forma de arrancar el programa Ansys LS-Dyna, presenta una peculiaridad: hay que entrar en el menú Configure Ansys Product, de esta forma aparece la ventana que se muestra en la figura 87.

![Fig. 87. Ansys product launcher](image-url)
En ella se selecciona la opción ANSYS LS-DYNA PC situada en el desplegable License y se pulsa run, de esta forma se ejecuta el programa.

5.6.1 Construcción del modelo

Para realizar la construcción del modelo se siguen los mismos pasos que en el caso de Ansys. En este caso se escoge el modelo más simple posible, debido a que interesa obtener una malla poco complicada, ya que de lo contrario se alargaría demasiado el tiempo para obtener la solución, además de dar problemas de memoria insuficiente.

Para diseñar el modelo se siguen los siguientes pasos:

- Primeramente se identifican todas las propiedades del material, así como el elemento escogido para realizar el mallado. Hay que tener en cuenta que LS-Dyna utiliza elementos distintos a los de Ansys, por ello es necesario escoger el nuevo elemento con el que realizar el mallado. El nuevo elemento escogido es el shell 163 que tiene las siguientes características, se trata de un elemento de cuatro nodos los cuales tienen doce grados de libertad cada uno (translaciones, aceleraciones y velocidades en las direcciones x, y, z de los nodos, además de las rotaciones en los ejes x, y, z).

- Una vez que se han definido todas las propiedades del material, así como el elemento de mallado se procede a la creación del modelo. En primer lugar se crean los keypoints para después unirlos mediante líneas y crear así la trayectoria que va a seguir el perfil. Una vez que se tienen la trayectoria y el perfil, se pulsa preprocessor→modeling→operate→extrude→lines→along lines, se escoge primero la línea del perfil, se pulsa OK y se selecciona después la trayectoria. De esta forma el programa genera la superficie.

- El siguiente paso consiste en la creación del mallado, esta operación se realiza del mismo modo que para el caso explicado en el apartado de Ansys. Se deja que el programa elija libremente el tamaño de la malla, ya que de esta forma se obtiene un mallado correcto y a la vez simple.

Una vez que se termina con el mallado, se tiene el modelo completo por lo que hay que pasar al proceso de aplicación de las cargas.

5.6.2 Aplicación de las cargas

El proceso de aplicación de las cargas difiere bastante con respecto al seguido en el análisis con Ansys:

- En primer lugar, al tratarse de un análisis dinámico transitorio, las fuerzas tienen que ser introducidas en función del tiempo. Para ello, se crea un vector con los datos de cada fuerza que se quiere aplicar y otro con los del tiempo, teniendo en cuenta que deben tener el mismo tamaño. Para introducir los vectores, hay que pulsar en el menú de utilidades la opción Parameters→Array parameters→Define/Edit. Aparece así una ventana en la que se muestran los
Capítulo 5: Análisis de los esfuerzos mediante Ansys

vectores definidos (Figura 88) y permite a su vez introducir nuevos vectores pulsando Add.

Fig. 88. Ventana de vectores definidos.

Si se pulsa el botón Add aparece una nueva ventana (Figura 89) en la que se introducen los datos del vector, el nombre que se le quiere asignar y el tamaño.

Fig. 89. Ventana de definición del vector.

Una vez que se tienen definidos todos los vectores, hay que introducir los valores de los mismos, para ello se pulsa en la ventana de vectores el que se quiere editar y seleccionar Edit. De esta manera, aparece la ventana en la cual se introducen los valores del vector (Figura 90). Esta ventana ya tiene el número
Capítulo 5: Análisis de los esfuerzos mediante Ansys

de casillas necesario según el tamaño introducido anteriormente. Los valores de los vectores se muestran en la tabla 4.

<table>
<thead>
<tr>
<th>Tiempo (s)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuerza 1 (N)</td>
<td>0</td>
<td>2100</td>
</tr>
<tr>
<td>Fuerza 2 (N)</td>
<td>0</td>
<td>-2100</td>
</tr>
</tbody>
</table>

Tabla 4. Datos de los vectores

Después de introducir todos los datos del vector, se pulsa en la parte superior de la ventana *File→Apply/Quit.*

- Una vez que se tienen definidos todos los vectores necesarios, hay que crear una curva para cada una de las fuerzas, poniendo en el eje de abscisas la variable tiempo y en el de ordenadas la fuerza en cuestión, para ello se procede del siguiente modo, en el menú principal se pulsa *Preprocessor→LS-Dyna options→Loading options→Curve options→Add curve,* de esta forma aparece una ventana en la que hay que introducir las variables en ordenadas y abscisas de entre los vectores creados con anterioridad, imponiendo a su vez un número característico para cada curva (*Figura 91*).

Fig. 90. Ventana de valores del vector

Fig. 91. Opciones de la curva.
En este tipo de análisis, para aplicar las cargas es necesario crear varios componentes, uno como punto de aplicación de cada carga y otro como objetivo de las mismas. Para crear estos componentes se procede del siguiente modo:

1. Los componentes sobre los que se aplican las cargas constan de un único nodo. Para crear cada uno de ellos se pulsa en el menú de utilidades la opción Select→Entities, en la ventana que aparece se pulsa Nodes→By num pick y se pulsa OK, de esta forma permite seleccionar el nodo requerido. Una vez escogido el nodo se procede a crear el componente seleccionando Select→Comp/Assembly→Create component, así aparece una ventana en la que se introduce el nombre del componente y el elemento del cual está formado (Figura 92). Este procedimiento se sigue para cada uno de los componentes en los que se van a colocar las cargas.

![Figura 92. Creación de componente](image)

2. El último componente esta formado por el resto de los nodos que componen el modelo, el cual es objeto de la aplicación de la carga. Para seleccionar todos los nodos menos los que ya han sido utilizados se pulsa Select→Entities y en la ventana se escoge Nodes→Attached to→→Invert. Una vez seleccionados se crea este componente del mismo modo que los anteriores.

Los componentes creados son el NODOCARGA1 y NODOCARGA2, para los nodos en los que se establece la carga y BARRA para el resto del modelo.

Después de crear los componentes hay que establecer el contacto entre ellos, seleccionando en el menú principal preprocessor→LS-Dyna options→→Contact→Define contact, así aparece una ventana en la que hay que introducir las características del contacto (Figura 93).
Capítulo 5: Análisis de los esfuerzos mediante Ansys

Fig. 93. Características de contacto

En la sección tipo de contacto se selecciona *Nodes to surface→Automatic* dejando el resto de las opciones por defecto y se pulsa OK. De esta forma aparece una segunda ventana en la que hay que seleccionar el nombre de los componentes creados anteriormente, que forman el contacto (*Figura 94*).

Fig. 94. Opciones de contacto
Para este caso, en el que se quieren aplicar dos cargas, hay que crear dos contactos, uno de ellos para los componentes NODOCARGA1 y BARRA y otro para NODOCARGA2 y BARRA.

- El siguiente paso consiste en la aplicación de las condiciones de contorno. En este caso se restringe el movimiento vertical en una serie de puntos, para ello se pulsa en el menú principal la opción Preprocessor→LS-Dyna options→Constraints→Apply→On nodes, se seleccionan los nodos sobre los que se quiere restringir el movimiento y se pulsa OK. De esta forma aparece una ventana en la que se escogen los grados de libertad a restringir y se pulsa OK nuevamente.

- Una vez que se tiene el movimiento restringido se aplican las cargas ya creadas, para ello se pulsa Preprocessor→LS-Dyna options→Loading options→Specify loads, así se abre una ventana en la que hay que introducir la dirección de la carga, el componente sobre el que se ha puesto y el número de identificación de la curva. Este paso se realiza para cada una de las cargas (Figura 95).

![Fig. 95. Parámetros de la carga](image)

77
Como se puede observar en la figura 95 los nombres de los parámetros para tiempo y datos no se indican, ya que están definidos en la curva mediante su número de identificación ID.

- Por último, hay que introducir las opciones temporales, es decir, el tiempo de aplicación de las cargas, además del número de pasos en que se quiere dividir el análisis.

 1. Para introducir el tiempo de aplicación de la carga se pulsa en el menú principal la opción Solution→Time controls→Solution time. De esta forma aparece una ventana en la que introducir el tiempo que va a estar aplicada la carga (Figura 96).

 ![Fig. 96. Tiempo de aplicación de la carga](image)

 2. Para establecer el número de pasos en los que se quiere dividir el análisis, al igual que el tiempo que dura cada paso (tiempo total/número de pasos) se pulsa en el menú principal la opción Solution→Output controls→File Output Freq Number of Steps. De este modo aparece una ventana en la que introducir el número de pasos (Figura 97).

 ![Fig. 97. Número de pasos](image)
• Una vez que se han introducido todos los datos se procede a la obtención de la solución pulsando Solution→Solve. El proceso de resolución puede durar varias horas.

5.6.3 Resultados de la simulación

Para obtener una secuencia de animación del modelo sometido a los esfuerzos y condiciones de contorno requeridos por el usuario hay que pulsar en el menú principal la opción General postprocessor→Read results→First set. Una vez hecho esto se pulsa en el menú de utilidades la opción PlotCtrls→Animate→Over Results, de esta manera aparece una ventana en la que se permite seleccionar las opciones de animación, como los esfuerzos o movimientos de los que se quiere obtener la animación, o la velocidad de la misma (Figura 98).

![Fig. 98. Opciones de animación](image-url)
Las animaciones obtenidas para la tensión de Von Misses son las que se detallan en la figura 99.

Fig. 99. Tensión de Von Misses P=2100N

Con el fin de dar una mayor validez a la posterior verificación del modelo, se realiza un segundo ejemplo variando tan solo el módulo de las cargas. En este segundo ejemplo se establece un valor de las cargas de 3600 N.

Para este segundo ejemplo, los valores de tensión de Von Misses obtenidos se representan en la figura 100.
Fig. 100. Tensión de Von Misses $P=3600\ N$
Para verificar si los resultados de los modelos realizados con Ansys y LS-Dyna son o no fiables se comparan con los resultados calculados teóricamente.

6.1 Resultados teóricos

Para obtener los resultados teóricos se utiliza el modelo representado en la figura 101. En la tabla 5 se muestran las variables utilizadas.
Fig. 101. Modelo teórico

<table>
<thead>
<tr>
<th>Símbolo</th>
<th>Variable</th>
<th>Unidades</th>
</tr>
</thead>
<tbody>
<tr>
<td>G</td>
<td>Módulo de cortadura</td>
<td>Mpa</td>
</tr>
<tr>
<td>E</td>
<td>Módulo de elasticidad</td>
<td>Mpa</td>
</tr>
<tr>
<td>ν</td>
<td>Coeficiente de Poisson</td>
<td>Adimensional</td>
</tr>
<tr>
<td>δ</td>
<td>Desplazamiento relativo</td>
<td>mm</td>
</tr>
<tr>
<td>ϕ</td>
<td>Ángulo girado</td>
<td>rad</td>
</tr>
<tr>
<td>τ</td>
<td>Esfuerzo de corte</td>
<td>MPa</td>
</tr>
<tr>
<td>R</td>
<td>Longitud del brazo</td>
<td>mm</td>
</tr>
<tr>
<td>L</td>
<td>Longitud del cuerpo</td>
<td>mm</td>
</tr>
<tr>
<td>P</td>
<td>Módulo de la fuerza</td>
<td>N</td>
</tr>
<tr>
<td>T</td>
<td>Momento torsor</td>
<td>N·mm</td>
</tr>
<tr>
<td>J</td>
<td>Momento polar de inercia</td>
<td>mm4</td>
</tr>
<tr>
<td>I</td>
<td>Momento de inercia</td>
<td>mm3</td>
</tr>
</tbody>
</table>

Tabla 5. Variables del cálculo de esfuerzos.
Capítulo 6: Verificación del modelo

Sabiendo que G es el módulo de cortadura del material de la barra:

$$ G = \frac{E}{2(1+\nu)} \quad (\text{ecu. 6.1}) $$

Se puede obtener el desplazamiento relativo como:

$$ \delta = \phi R = \frac{L\cdot P\cdot R^2}{G\cdot J} \quad (\text{ecu. 6.2}) $$

Siendo δ el desplazamiento vertical, de los extremos de la barra.

Para una sección circular sólida el momento polar de inercia es:

$$ J = \frac{\pi D^4}{32} \quad (\text{ecu. 6.3}) $$

El esfuerzo de corte debido sólo a la torsión es proporcional a la distancia desde el centro de la barra. El máximo valor ocurre sobre la superficie, su valor es:

$$ \tau_{(T)} = \frac{T\cdot D}{2J} = \frac{16\cdot P\cdot R}{\pi\cdot D^3} $$

Para la parte de la barra que no está entre los soportes, es decir para los brazos, se tiene una carga directa de corte P y un esfuerzo de corte directo promedio P/A para el área A de la sección transversal. Para la carga vertical P, el esfuerzo de corte por torsión y el esfuerzo de corte directo se combinan para dar el esfuerzo de corte máximo en el extremo de un diámetro horizontal cerca del punto de aplicación de la carga. En ese punto el esfuerzo de corte directo es algo mayor que el valor promedio. Basado en la teoría de elasticidad, su valor es:

$$ \tau_{(D)} = \frac{(1+2\nu)\cdot P\cdot D}{16(1+\nu)\cdot I} $$

Donde, para una sección sólida, el momento de inercia es:

$$ I = \frac{\pi D^4}{64} $$

Sumando las ecuaciones anteriores (correspondientes a $\tau_{(T)}$ y $\tau_{(D)}$) y usando $\nu = 0.3$ (valor para el acero), se obtiene el esfuerzo de corte máximo, sin tener en cuenta las discontinuidades:

$$ \tau_0 = \frac{16\cdot P\cdot R}{\pi\cdot D^3} \left(1 + \frac{0.3075\cdot D}{R}\right) \quad (\text{ecu. 6.4}) $$
En esta expresión se desprecian los efectos de curvatura en el extremo así como los efectos por flexión [6].

Además hay que tener en cuenta los efectos de concentración de tensiones producidos por la presencia de un cambio de sección, para ello es necesario obtener el coeficiente K_t de la figura 102 [7].

![Fig. 102. Barra de sección circular en torsión con estrechamiento.](image)

Para poder obtener el valor de K_t, primeramente hay que obtener los siguientes valores:

\[
\frac{D}{d} = \frac{26}{25} = 1.04\\
\frac{r}{d} = \frac{1}{25} = 0.04
\]

Donde D es el diámetro mayor del cambio de sección, d es el diámetro menor y r el radio de curvatura, medidos todos ellos en mm.

Se supone que el valor del radio de curvatura de la zona del estrechamiento es igual a uno. Además, al no haber una curva para el valor 1.04 se escoge la más cercana dando un valor de $K_t = 1.35$.

La tensión de cortadura máxima en el estrechamiento será:

\[
\tau_{\text{max}} = \tau_0 \cdot K_t \quad (\text{ecu. 6.5})
\]

Donde τ_0 es el esfuerzo de corte máximo sin tener en cuenta las discontinuidades, medido en MPa y K_t el coeficiente de ponderación para las tensiones en el estrechamiento (adimensional).

Según la teoría de Von Misses, la tensión equivalente será:

\[
\sigma_{\text{equiv}} = \sqrt{\sigma^2 + 3\tau^2}
\]
Donde σ es la tensión normal de la sección analizada, medida en MPa y τ la tensión tangencial, también en MPa.

En este caso se desprecian los efectos de tensión normal por lo que $\sigma = 0$, luego se tiene que:

$$\sigma_{eqVM} = \sqrt{3} \cdot \tau \quad (ecu. 6.6)$$

6.2 Comparativa de los resultados

En el presente apartado se realiza una comparativa entre los resultados obtenidos con el modelo realizado en Ansys y los obtenidos de forma teórica.

6.2.1 Resultados teóricos para el caso de $V=50$ km/h

Introduciendo los datos relativos al caso en el que el vehículo circula por una curva de 500 m de radio a una velocidad de 50 km/h; es decir para una fuerza aplicada a cada uno de los extremos del brazo de 4285,65 N y de sentido contrario, una longitud del brazo de 240 mm y un diámetro de la barra de 26 mm, se obtiene la siguiente tensión de cortadura (ecu. 6.4):

$$\tau_0 = 307,97 \text{ MPa}$$

Además, teniendo en cuenta el factor de corrección que hay que introducir debido al estrechamiento de la sección $K_t=1,35$ (figura 102), se obtiene una tensión de corte máxima:

$$\tau_{\text{max}} = \tau_0 \cdot K_t = 415,76 \text{ MPa}$$

El resultado obtenido es una tensión de tangencial, sin embargo, los resultados que ofrece Ansys son los de tensión de Von Misses. Según esta teoría se tiene que (ecu. 6.6):

$$\sigma_{eqMV} = \sqrt{3} \cdot \tau = 720,11 \text{ MPa}$$

Para el caso del desplazamiento primeramente hay que obtener el módulo de cortadura del material, sabiendo que el módulo de elasticidad $E= 2,1e5$ MPa y el coeficiente de Poisson $\nu= 0,3$ para el acero, se obtiene (ecu. 6.1):

$$G = 0,807 \cdot 10^5 \text{ MPa}$$

En cuanto al momento polar de inercia (ecu. 6.3):

$$J = 44863,51 \text{ mm}^4$$
Una vez obtenidos estos valores se puede calcular el desplazamiento relativo (ecu. 6.2) sabiendo que L= 780 mm, P=4285,65 N y R=240 mm:

\[\delta = 53,18 \text{ mm} \]

El valor de tensión máxima de la barra obtenido con Ansys es de 880 MPa. Este valor se encuentra en la zona de curvatura. El resultado obtenido teóricamente es 720 MPa. Algo menor que el obtenido con Ansys debido posiblemente a que se han despreciado los efectos de curvatura. La tensión en la zona recta se encuentra en un rango de entre 600 y 880 MPa con lo que el resultado teórico se encuentra dentro del mismo, aunque la tensión máxima sigue siendo algo mayor, posiblemente por haber despreciado los efectos de tensión normal provocados por la flexión en los brazos de la barra.

En cuanto al desplazamiento relativo de los extremos, Ansys da unos valores de Uz de 57.8 mm, bastante cercano a los 53.18 mm obtenidos teóricamente.

6.2.2 Resultados teóricos para el caso de \(V=80 \text{ km/h} \).

Para el caso en el que el vehículo circula a 80 km/h; es decir para una fuerza aplicada de 3133,5 N en cada uno de los extremos y en sentido contrario, una longitud del brazo de 240 mm, un diámetro de 26 mm y aplicando la (ecu. 6.4), se obtiene una tensión de cortadura:

\[\tau_0 = 225,18 \text{ MPa} \]

Teniendo en cuenta el factor de corrección debido al estrechamiento \(K_t=1,35 \), se obtiene una tensión de corte máxima:

\[\tau_{\text{max}} = \tau_0 \cdot K_t = 303,99 \text{ MPa} \]

Para obtener la tensión de Von Misses (ecu. 6.6):

\[\sigma_{eqMV} = \sqrt{3} \cdot \tau = 526,52 \text{ MPa} \]

En cuanto al desplazamiento (ecu. 6.2), sabiendo que L= 780 mm, P= 3133,5 N y R= 240 mm:

\[\delta = 38,88 \text{ mm} \]

Como ha ocurrido en el caso anterior, la tensión de Von Misses obtenida de forma teórica 526.52 MPa es menor que los 650 MPa de máxima obtenidos con Ansys, sin embargo se encuentra dentro del rango de valores de tensión obtenidos en la parte de la barra sometida a torsión, por lo que se considera una buena aproximación.

En cuanto al desplazamiento relativo de los extremos, Ansys da un valor de 42.3 mm muy cercano a los 38.88 mm obtenidos de forma teórica.

Se puede concluir que el modelo utilizado es bastante aproximado a la realidad.
6.3 **Análisis de los resultados obtenidos con LS-Dyna**

En este apartado se pretende demostrar la validez del modelo creado con LS-Dyna, para ello se comparan los resultados obtenidos con los hallados teóricamente.

6.3.1 **Resultados teóricos para una fuerza aplicada \(P = 2100 \, N \)**

Suponiendo que se aplica una fuerza \(P= 2100 \, N \) en cada uno de los extremos de los brazos y en sentido contrario, se obtiene el valor de tensión de cortadura que se detalla a continuación (ecu. 6.4):

\[
\tau_0 = 150,91 \, \text{MPa}
\]

Luego la tensión de Von Misses (ecu. 6.6) es:

\[
\sigma_{eqV} = \sqrt{3} \cdot \tau = 261,38 \, \text{MPa}
\]

El valor obtenido mediante el análisis realizado con LS-Dyna para la máxima tensión de Von Misses es de 284,6 MPa muy cercano a los 261,38 MPa obtenidos teóricamente.

6.3.2 **Resultados teóricos para una fuerza aplicada \(P = 3600 \, N \)**

En este apartado se siguen los mismos pasos que en el apartado anterior, primeramente se obtiene el valor de tensión de cortadura (ecu. 6.4):

\[
\tau_0 = 261,21 \, \text{MPa}
\]

Luego la tensión de Von Misses (ecu. 6.6) es:

\[
\sigma_{eqV} = \sqrt{3} \cdot \tau = 447,79 \, \text{MPa}
\]

El valor para la máxima tensión de Von Misses obtenido mediante la simulación con LS-Dyna es de 515,8 MPa, muy próximos a los 447,8 obtenidos de forma teórica, luego se puede concluir que el modelo creado es bastante fiable.
6.4 Variabilidad entre los resultados teóricos y los de Ansys

Para este análisis se crea un modelo lo más simple posible, es decir, una barra de acero maciza sin rebajes (**Figura 103**).

Fig. 103. Barra estabilizadora simplificada

Se pretende comparar los resultados, tanto de tensión como desplazamiento obtenidos teóricamente con los de Ansys, variando la fuerza aplicada en cada uno de los extremos del los brazos de la barra:

- En la tabla 6 se muestran los valores de tensión de Von Misses que aparecen en la barra estabilizadora, dependiendo de la fuerza aplicada y manteniendo constantes la longitud de la barra (L), la longitud del brazo (R) y el diámetro de la misma (D).

<table>
<thead>
<tr>
<th>Fuerza (N)</th>
<th>Tensión Von Misses teórica (MPa)</th>
<th>Tensión de Von Misses con Ansys (MPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>37,32</td>
<td>53,83</td>
</tr>
<tr>
<td>600</td>
<td>74,63</td>
<td>107,65</td>
</tr>
<tr>
<td>900</td>
<td>111,95</td>
<td>161,48</td>
</tr>
<tr>
<td>1200</td>
<td>149,26</td>
<td>215,31</td>
</tr>
<tr>
<td>1500</td>
<td>186,58</td>
<td>269,14</td>
</tr>
<tr>
<td>1800</td>
<td>223,89</td>
<td>322,96</td>
</tr>
<tr>
<td>2100</td>
<td>261,21</td>
<td>376,79</td>
</tr>
<tr>
<td>2400</td>
<td>298,53</td>
<td>430,62</td>
</tr>
<tr>
<td>2700</td>
<td>335,84</td>
<td>484,45</td>
</tr>
<tr>
<td>3000</td>
<td>373,16</td>
<td>538,28</td>
</tr>
<tr>
<td>3300</td>
<td>410,47</td>
<td>592,11</td>
</tr>
<tr>
<td>3600</td>
<td>447,79</td>
<td>645,94</td>
</tr>
<tr>
<td>3900</td>
<td>485,11</td>
<td>699,77</td>
</tr>
<tr>
<td>4200</td>
<td>522,42</td>
<td>753,6</td>
</tr>
<tr>
<td>4500</td>
<td>559,74</td>
<td>807,43</td>
</tr>
</tbody>
</table>

Tabla 6. Variación de la tensión de Von Misses con la fuerza.
Capítulo 6: Verificación del modelo

![Fuerza VS Tensión de Von Misses](image)

Fig. 104. Variación de la tensión con la fuerza.

Como se puede observar en la **figura 104**, la variación de la tensión de Von Misses con respecto de la fuerza sigue una distribución lineal en ambos casos, sin embargo se puede observar una diferencia en la pendiente, por lo que los dos métodos se asemejan mas para valores de fuerza pequeños. Esta diferencia en la pendiente puede ser debida, tanto a la influencia de la zona de curvatura de la barra estabilizadora, como al afecto de la tensión de cortadura provocada por la flexión de los brazos, los cuales se han despreciado en los cálculos teóricos.

- En la tabla 7 se muestran los valores del desplazamiento obtenidos tanto de forma teórica como con Ansys.

<table>
<thead>
<tr>
<th>Fuerza (N)</th>
<th>Desplazamiento teórico (mm)</th>
<th>Desplazamiento con Ansys (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>3,72</td>
<td>3,94</td>
</tr>
<tr>
<td>600</td>
<td>7,44</td>
<td>7,88</td>
</tr>
<tr>
<td>900</td>
<td>11,16</td>
<td>11,82</td>
</tr>
<tr>
<td>1200</td>
<td>14,88</td>
<td>15,75</td>
</tr>
<tr>
<td>1500</td>
<td>18,6</td>
<td>19,7</td>
</tr>
<tr>
<td>1800</td>
<td>22,32</td>
<td>23,64</td>
</tr>
<tr>
<td>2100</td>
<td>26,04</td>
<td>27,58</td>
</tr>
<tr>
<td>2400</td>
<td>29,76</td>
<td>31,53</td>
</tr>
<tr>
<td>2700</td>
<td>33,48</td>
<td>35,46</td>
</tr>
<tr>
<td>3000</td>
<td>37,2</td>
<td>39,4</td>
</tr>
<tr>
<td>3300</td>
<td>40,92</td>
<td>43,34</td>
</tr>
<tr>
<td>3600</td>
<td>44,64</td>
<td>47,28</td>
</tr>
<tr>
<td>3900</td>
<td>48,36</td>
<td>51,22</td>
</tr>
<tr>
<td>4200</td>
<td>52,08</td>
<td>55,16</td>
</tr>
<tr>
<td>4500</td>
<td>55,8</td>
<td>59,1</td>
</tr>
</tbody>
</table>

Tabla 7. Variación del desplazamiento con la fuerza
Para el caso mostrado en la figura 105, se puede observar la linealidad de ambas distribuciones de datos, sin embargo, al igual que para el caso de las tensiones de Von Misses la pendiente de ambas rectas es distinta aunque mucho mas próxima en este caso.

6.5 Conclusiones sobre los resultados

En la tabla 8 se muestran los resultados obtenidos mediante los métodos teórico y de software de cálculo, además de porcentaje de diferencia entre ambos métodos.

<table>
<thead>
<tr>
<th>Análisis</th>
<th>Resultados teóricos</th>
<th>Resultados software cálculo (Programa utilizado)</th>
<th>% diferencia métodos teórico y software de cálculo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensión de Von Misses para P= 3133.5 N</td>
<td>$\sigma_{VM}= 526.5$ MPa</td>
<td>$\sigma_{VM}= 650$ MPa (Ansys)</td>
<td>19%</td>
</tr>
<tr>
<td>Desplazamiento para P= 3133.5 N</td>
<td>$\delta= 38.8$ mm</td>
<td>$\delta= 42.3$ mm (Ansys)</td>
<td>8.2%</td>
</tr>
<tr>
<td>Tensión de Von Misses para P= 4285.65 N</td>
<td>$\sigma_{VM}= 720.11$ MPa</td>
<td>$\sigma_{VM}= 880$ MPa (Ansys)</td>
<td>18.2%</td>
</tr>
<tr>
<td>Desplazamiento para P= 4285.65 N</td>
<td>$\delta= 53.18$ mm</td>
<td>$\delta= 57.8$ mm (Ansys)</td>
<td>8%</td>
</tr>
<tr>
<td>Tensión de Von Misses para P= 2100 N</td>
<td>$\sigma_{VM}= 261.38$ MPa</td>
<td>$\sigma_{VM}= 284.6$ MPa (LS-Dyna)</td>
<td>8.1%</td>
</tr>
<tr>
<td>Tensión de Von Misses para P= 3600 N</td>
<td>$\sigma_{VM}= 447.79$ MPa</td>
<td>$\sigma_{VM}= 515.8$ MPa (LS-Dyna)</td>
<td>13.2%</td>
</tr>
</tbody>
</table>
Como se puede observar en la tabla 8, los resultados obtenidos mediante Ansys para la tensión de Von Misses son del orden de un 19% mayor que los obtenidos de forma teórica. En cuanto a los desplazamientos verticales, los resultados teóricos son prácticamente iguales a los obtenidos mediante el software de cálculo, con una diferencia entre ambos métodos del 8%.

Los resultados obtenidos mediante LS-Dyna presentan una diferencia de alrededor del 10% con respecto a los obtenidos de forma teórica, por lo que el modelo utilizado con LS-Dyna da resultados más próximos a los teóricos que el de Ansys.

Sin embargo en ambos casos, tanto en el análisis con Ansys como con LS-Dyna se puede observar una divergencia de los resultados a medida que aumenta la magnitud de la carga, por lo que los modelos son mas fiables cuanto menor es la carga.
En este proyecto se ha realizado una simulación del funcionamiento de una barra estabilizadora montada en un camión aplicándole un par de fuerzas iguales y de sentido contrario en sus extremos, de esta forma se asemeja al comportamiento que tendría la barra debido al cambio de dirección de la trayectoria del vehículo o a la variación del firme de la calzada. Para ello se ha realizado la construcción del modelo, el procesado y posterior análisis de los resultados.

La mayor dificultad que se ha tenido en la realización del proyecto se encuentra en la obtención de un modelo que de resultados lo más reales posibles, ya que Ansys presenta una incompatibilidad con los modelos de tipo sólido de seis grados de libertad, es decir, que tengan tanto rotaciones como traslaciones. Esto se debe a que carece de elementos con estas características, sin embargo, se trata de un programa tan potente que permite la realización de modelos equivalentes mediante la utilización de elementos tipo placa a los cuales se les aplica un espesor tal que ocupan todo el volumen, simulando un objeto macizo y dando de esta forma resultados bastante veraces.

En los apartados de análisis de los resultados, se puede observar como las mayores tensiones se concentran en la zona de curvatura de la barra, así como en los estrechamientos, lo cual es bastante lógico teniendo en cuenta que son puntos de concentración de tensiones. En ellos, se observan valores de entre 780 y 880 MPa para el caso en que el vehículo toma la curva peraltada a 50 km/h y de entre 550 y 650 MPa
Cuando lo hace a 80 km/h, luego en caso de querer analizar la falla del elemento estas serían las zonas principales de análisis.

Los resultados obtenidos mediante Ansys son alrededor de un 19% mayores a los teóricos, debido a que, en los cálculos teóricos, se han pasado por alto tanto los efectos de la zona de curvatura de la barra, como la influencia de la flexión provocada por la carga P en la tensión de la barra. Por ello se consideran más reales los resultados obtenidos con Ansys, sin embargo, el modelo teórico sirve para verificar la validez del modelo de Ansys ya que en ambos casos la distribución de los resultados es lineal.

En cuanto a los desplazamientos relativos entre los extremos de la barra, Ansys da unos valores de 57,8 mm para el caso en el que el vehículo circula a 50 km/h y de 42,3 mm cuando lo hace a 80 km/h. Estos valores, pueden considerarse prácticamente iguales a los obtenidos de forma teórica, ya que existe una diferencia de tan solo el 8% entre ambos métodos.

Los resultados obtenidos con LS-Dyna son más próximos a los teóricos debido a que se ha suprimido la zona del estrechamiento por motivos de complejidad en el procesado de los datos.

A partir del estudio de este proyecto surgen nuevas preguntas e inquietudes, como son el estudio del comportamiento de los demás componentes de la suspensión, como los muelles, los amortiguadores, los silentblocks, etc. De este modo, se ampliaría el modelo básico estableciendo la influencia de cada uno de estos componentes en la variación de las tensiones producidas en la barra debido al amortiguamiento.

Otro posible estudio futuro, consiste en la influencia de la distancia del centro de gravedad del vehículo al eje de balanceo en los sistemas de amortiguación, además del comportamiento del bastidor del vehículo, en el caso en el que se eleva el eje de balanceo hasta hacerlo coincidir con el centro de gravedad. De este modo, como se ha introducido en el capítulo 3, no se produce momento generado por la fuerza centrifuga debido a que la distancia entre centro de gravedad y el eje es nula, luego las variaciones de carga entre las ruedas serían absorbidas por el bastidor con sus consiguientes esfuerzos. Además en el caso límite en que se eleva aun mas el eje de balanceo hasta quedar por encima del centro de gravedad, las oscilaciones se producirían en sentido contrario al estudiado, por lo que los sistemas de suspensión trabajarían de forma opuesta.
CAPÍTULO 8 REFERENCIAS

ANEXO A. TIPOS DE ELEMENTO.

En el presente anexo se indican todos los tipos de elementos que contiene Ansys, su designación, así como el número de nodos y de grados de libertad que contiene cada uno de ellos [4]:

<table>
<thead>
<tr>
<th>Structural Point</th>
<th>Structural 2-D Line</th>
<th>Structural 2-D Beam</th>
<th>Offset Tapered Unsymmetric Beam</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural Mass</td>
<td>Spar</td>
<td>Elastic Beam</td>
<td></td>
</tr>
<tr>
<td>MASS21 1 node 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>LINK1 2 nodes 2-D space DOF: UX, UY</td>
<td>BEAM23 2 nodes 2-D space DOF: UX, UY, ROTZ</td>
<td></td>
</tr>
<tr>
<td>Structural 3-D Line</td>
<td>Tension-Only Spar</td>
<td>Linear Actuator</td>
<td></td>
</tr>
<tr>
<td>Spar</td>
<td>LINK8 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td>LINK10 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td></td>
</tr>
<tr>
<td>LINK11 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td>LINK11 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td>BEAM44 2 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td></td>
</tr>
<tr>
<td>BEAM44 2 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>PIPE16 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td>PIPE17 4 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td></td>
</tr>
<tr>
<td>Plastic Straight Pipe</td>
<td>Plastic Curved Pipe</td>
<td>Triangular Solid</td>
<td></td>
</tr>
<tr>
<td>Immersed Pipe</td>
<td>PLANE2 6 nodes 2-D space DOF: UX, UY</td>
<td>AXISYMMETRIC Harmonic Struct. Solid</td>
<td></td>
</tr>
<tr>
<td>PLANE59 2 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>PLANE60 2 nodes 3-D space DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>PLANE25 4 nodes 2-D space DOF: UX, UY, UZ</td>
<td></td>
</tr>
<tr>
<td>Structural Solid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Structural Solid</td>
<td>Axisymmetric Harmonic Struct. Solid</td>
<td>Structural 3-D Solid</td>
<td>Layered Solid</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>PLAN82</td>
<td>PLAN83</td>
<td>SOLID45</td>
<td>SOLID46</td>
</tr>
<tr>
<td>8 nodes 2-D space</td>
<td>8 nodes 2-D space</td>
<td>8 nodes 3-D space</td>
<td>8 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: UX, UY</td>
<td>DOF: UX, UY, UZ</td>
<td>DOF: UX, UY, UZ</td>
<td>DOF: UX, UY, UZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Reinforced Solid</th>
<th>Solid with Rotations</th>
<th>Solid with Rotations</th>
<th>Tetrahedral Solid</th>
<th>Structural Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>SOLID65</td>
<td>SOLID72</td>
<td>SOLID73</td>
<td>SOLID92</td>
<td>SOLID95</td>
</tr>
<tr>
<td>8 nodes 3-D space</td>
<td>4 nodes 3-D space</td>
<td>8 nodes 3-D space</td>
<td>10 nodes 3-D space</td>
<td>20 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: UX, UY, UZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ</td>
<td>DOF: UX, UY, UZ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Structural 2-D Shell</th>
<th>Plastic Axisymmetric Shell with Torsion</th>
<th>Aaxisymmetric Harmonic Struct. Shell</th>
<th>Structural 3-D Shell</th>
<th>Structural Shell</th>
<th>Membrane Shell</th>
<th>Plastic Shell</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHELL51</td>
<td>SHELL61</td>
<td>SHELL48</td>
<td>SHELL41</td>
<td>SHELL43</td>
<td>SHELL63</td>
<td>SHELL99</td>
</tr>
<tr>
<td>2 nodes 2-D space</td>
<td>2 nodes 2-D space</td>
<td>4 nodes 3-D space</td>
<td>4 nodes 3-D space</td>
<td>4 nodes 3-D space</td>
<td>4 nodes 3-D space</td>
<td>8 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: UX, UY, UZ, ROTZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>-------------------</td>
<td>-------------------</td>
<td></td>
</tr>
<tr>
<td>HYPER56</td>
<td>HYPER58</td>
<td>HYPER74</td>
<td>HYPER84</td>
<td>HYPER86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 nodes 2-D space</td>
<td>8 nodes 3-D space</td>
<td>8 nodes 2-D space</td>
<td>8 nodes 2-D space</td>
<td>8 nodes 3-D space</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DOF: UX, UY, UZ</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Visco Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Viscoelastic Solid</td>
</tr>
<tr>
<td>VISCO088</td>
</tr>
<tr>
<td>8 nodes 2-D space</td>
</tr>
<tr>
<td>DOF: UX, UY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal Point</th>
<th>Thermal Line</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Mass</td>
<td>Radiation Link</td>
</tr>
<tr>
<td>MASS71</td>
<td>LINK31</td>
</tr>
<tr>
<td>1 node 3-D space</td>
<td>2 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: TEMP</td>
<td>DOF: TEMP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thermal 2-D Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Triangular Thermal Solid</td>
</tr>
<tr>
<td>LANE35</td>
</tr>
<tr>
<td>6 nodes 2-D space</td>
</tr>
<tr>
<td>DOF: TEMP</td>
</tr>
</tbody>
</table>

Capítulo 9: Anexos

99
<table>
<thead>
<tr>
<th>Thermal 3-D Solid</th>
<th>Tetrahedral Thermal Solid</th>
<th>Thermal Solid</th>
<th>Thermal Shell</th>
<th>Fluid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thermal Solid</td>
<td>SOLID87</td>
<td>SOLID90</td>
<td>Thermal Shell</td>
<td>Acoustic Fluid</td>
</tr>
<tr>
<td>SOLID70 8 nodes 3-D space DOF: TEMP</td>
<td>10 nodes 3-D space DOF: TEMP</td>
<td>20 nodes 3-D space DOF: TEMP</td>
<td>SHELL57 4 nodes 3-D space DOF: TEMP</td>
<td>FLUID29 4 nodes 2-D space DOF: UX, UY, PRES</td>
</tr>
<tr>
<td>Acoustic Fluid</td>
<td>Dynamic Fluid Coupling</td>
<td>Thermal-Fluid Pipe</td>
<td>Contained Fluid</td>
<td>Contained Fluid</td>
</tr>
<tr>
<td>FLUID30 8 nodes 3-D space DOF: UX, UY, UZ</td>
<td>FLUID38 2 nodes 3-D space DOF: UX, UY, UZ</td>
<td>FLUID66 2 nodes 3-D space DOF: PRES, TEMP</td>
<td>FLUID79 4 nodes 2-D space DOF: UX, UY</td>
<td>FLUID80 8 nodes 3-D space DOF: UX, UY, UZ</td>
</tr>
<tr>
<td>Axisymmetric Harmonic Contained Fluid</td>
<td>FLOTRAN CFD Fluid-Thermal</td>
<td>FLOTRAN CFD Fluid-Thermal</td>
<td>Thermal-Electric Solid</td>
<td>Thermal-Electric Line</td>
</tr>
<tr>
<td>FLUID81 4 nodes 2-D space DOF: UX, UY, UZ</td>
<td>FLUID141 4 nodes 2-D space DOF: VX, VY, VZ, PRES, TEMP, ENKE, ENDS</td>
<td>FLUID142 8 nodes 3-D space DOF: VX, VY, VZ, PRES, TEMP, ENKE, ENDS</td>
<td>PLANE67 4 nodes 2-D space DOF: TEMP, VOLT</td>
<td>LINK68 2 nodes 3-D space DOF: TEMP, VOLT</td>
</tr>
<tr>
<td>Thermal-Electric Solid</td>
<td>Current Source</td>
<td>Magnetic Solid</td>
<td>Magnetic-Scalar Solid</td>
<td>Magnetic Solid</td>
</tr>
<tr>
<td>SOLID69 8 nodes 3-D space DOF: TEMP, VOLT</td>
<td>SOURC36 3 nodes 3-D space DOF: MAG</td>
<td>PLANE53 8 nodes 2-D space DOF: VOLT, AZ</td>
<td>SOLID96 8 nodes 3-D space DOF: MAG</td>
<td>SOLID97 8 nodes 3-D space DOF: VOLT, AX, AY, AZ</td>
</tr>
</tbody>
</table>
Capítulo 9: Anexos

<table>
<thead>
<tr>
<th>Magnetic Interface</th>
<th>Electrostatic Solid</th>
<th>Electrostatic Solid</th>
<th>Tetrahedral Electrostatic Solid</th>
<th>Coupled-field Solid</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTER115</td>
<td>PLANE121</td>
<td>SOLID122</td>
<td>SOLID123</td>
<td>SOLIDS5</td>
</tr>
<tr>
<td>4 nodes 3-D space</td>
<td>8 nodes 2-D space</td>
<td>20 nodes 3-D space</td>
<td>10 nodes 3-D space</td>
<td>8 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: AX, AY, AZ, MAG</td>
<td>DOF: VOLT</td>
<td>DOF: VOLT</td>
<td>DOF: VOLT</td>
<td>DOF: UX, UY, UZ, TEMP, VOLT, MAG</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Coupled-field Solid</th>
<th>Coupled-field Solid</th>
<th>Tetrahedral Couple-field Solid</th>
<th>Point-to-Point</th>
<th>Point-to-Ground</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLANE13</td>
<td>SOLID62</td>
<td>SOLID98</td>
<td>CONTAC12</td>
<td>CONTAC26</td>
</tr>
<tr>
<td>4 nodes 2-D space</td>
<td>8 nodes 3-D space</td>
<td>10 nodes 3-D space</td>
<td>2 nodes 2-D space</td>
<td>3 nodes 2-D space</td>
</tr>
<tr>
<td>DOF: UX, UY, TEMP, VOLT, AZ</td>
<td>DOF: UX, UY, UZ, AX, AY, AZ, VOLT</td>
<td>DOF: UX, UY, UZ, TEMP, VOLT, MAG</td>
<td>DOF: UX, UY</td>
<td>DOF: UX, UY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Point-to-Surface</th>
<th>Point-to-Surface</th>
<th>Point-to-Point</th>
<th>Revolute Joint</th>
<th>Spring-Damper</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTAC48</td>
<td>CONTAC49</td>
<td>CONTAC52</td>
<td>COMBIN7</td>
<td>COMBIN14</td>
</tr>
<tr>
<td>3 nodes 2-D space</td>
<td>5 nodes 3-D space</td>
<td>2 nodes 3-D space</td>
<td>5 nodes 3-D space</td>
<td>2 nodes 3-D space</td>
</tr>
<tr>
<td>DOF: UX, UY, TEMP</td>
<td>DOF: UX, UY, UZ, TEMP</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Control</th>
<th>Nonlinear Spring</th>
<th>Combination</th>
<th>Stiffness, Mass or Damping Matrix</th>
<th>Superelement</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMBIN37</td>
<td>COMBIN39</td>
<td>COMBIN40</td>
<td>MATRIX27</td>
<td>MATRIX50</td>
</tr>
<tr>
<td>4 nodes 3-D space</td>
<td>2 nodes 3-D space</td>
<td>2 nodes 3-D space</td>
<td>2 nodes 3-D space</td>
<td>2-D or 3-D space</td>
</tr>
<tr>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP</td>
<td>DOF: UX, UY, UZ, ROTX, ROTY, ROTZ, PRES, TEMP</td>
<td>DOF: Any</td>
<td></td>
</tr>
<tr>
<td>Infinite</td>
<td>Infinite Boundary</td>
<td>Infinite Boundary</td>
<td>Infinite Boundary</td>
<td>Infinite Boundary</td>
</tr>
<tr>
<td>----------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>INFIN9
2 nodes 2-D space
DOF: AZ, TEMP</td>
<td>INFIN47
4 nodes 3-D space
DOF: MAG, TEMP</td>
<td>INFIN110
4 nodes 2-D space
DOF: AZ, VOLT, TEMP</td>
<td>INFIN111
8 nodes 3-D space
DOF: MAG, AX, AY, AZ, VOLT, TEMP</td>
<td>SURF19
3 nodes 2-D space
DOF: UX, UY, TEMP</td>
</tr>
</tbody>
</table>
ANEXO B. FACTORES DE CONCENTRACIÓN DE ESFUERZO.

En este anexo se incluyen las gráficas mediante las cuales se pondera la tensión sufrida por una barra de sección circular, debido a cambios de sección en la misma y actuando sobre ellas diferentes tipos de esfuerzo (figuras B.1, B.2, B.3).

Fig. B.1. Efecto del cambio de sección en una pieza de sección circular sometida a flexión.

Fig. B.2. Efecto del cambio de sección en una pieza de sección circular sometida a tracción.
Fig. B.3. Efecto del cambio de sección en una pieza de sección circular sometida a torsión.