PROYECTO FIN DE CARRERA

INGENIERÍA INDUSTRIAL

Instalación experimental para el secado de papeles aislantes

AUTOR: Daniel Carrasco Losada
TUTOR: Diego Fernando García Gómez

Leganés, 26 de Abril de 2010
Agradecimientos:

Gracias a mi tutor Diego, por hacer que este proyecto sea posible y ayudarme tanto a acabarlo.

Gracias a Fernando Serrano, por hacer los montajes más difíciles de la forma más fácil y bonita posible.

Gracias a mis padres, por obligarme siempre a estudiar y apoyarme para que siguiera.

Gracias a Rocío, porque tiene mucha paciencia, y si ella no hubiera estado nunca habría acabado.

Gracias a mis amigos de la Universidad porque sin ellos hubiera sido muy aburrido.
ÍNDICE

1. **INTRODUCCIÓN** ... - 9 -
 1.1 Justificación .. - 10 -
 1.2 Objetivos ... - 10 -
 1.3 Metodología ... - 11 -
2. **SECADO EN TRANSFORMADORES** - 13 -
 2.1 Humedad en transformadores - 13 -
 2.2 Métodos de secado en transformadores - 16 -
 2.3 Aporte de calor en el secado de transformadores - 22 -
3. **DISEÑO DE LAS PLANTAS DE SECADO** - 25 -
 3.1 Diseño de la planta de secado por circulación de aceite ... - 26 -
 3.2 Diseño de la planta de secado por vacío - 45 -
 3.3 Diseño de la planta de secado por circulación de gases. .. - 47 -
 3.4 Diseño de la planta de secado por vacío – circulación de gases ... - 48 -
4. **CONCLUSIONES** ... - 69 -
5. **REFERENCIAS BIBLIOGRÁFICAS** ... - 70 -

ANEXO I. Lista de materiales para la planta de secado por circulación de aceite.... - 72 -
ANEXO II. Lista de materiales para la planta de secado por vacío - gases......... - 73 -
ÍNDICE DE FIGURAS

Figura 2.1 Relación entre la humedad en el aceite y papel a varias temperaturas [5] - 14 -
Figura 2.2. Secado en campo por recirculación de aceite ... - 17 -
Figura 2.3. Método de secado por vacío ... - 17 -
Figura 2.4. Punto triple del agua [8] ... - 18 -
Figura 2.5. Curva logarítmica temperatura de ebullición-presión- 19 -
Figura 2.6. Trampa fría .. - 20 -
Figura 2.7. Secado en campo por recirculación de gases [12] - 21 -
Figura 2.8. Calentamiento en el método de vacío mediante Hot Oil Spray - 23 -
Figura 2.9. Calentamiento por LFH en secado de transformadores - 24 -
Figura 3.1. Esquema de funcionamiento de la instalación ... - 26 -
Figura 3.2. Esquema de la planta de secado por circulación de aceite - 28 -
Figura 3.3. Bomba hidráulica [15] ... - 30 -
Figura 3.4. Curvas caudal-presión a varias velocidades [15] .. - 31 -
Figura 3.5. Depósito calefactor disponible .. - 32 -
Figura 3.6. Control de temperatura del aceite ... - 33 -
Figura 3.7. Esquema del depósito calefactor .. - 33 -
Figura 3.8. Esquema del depósito para las muestras de papel - 34 -
Figura 3.9. Olla modificada ... - 35 -
Figura 3.10. Borna de conexión aceite-aire .. - 36 -
Figura 3.11. Cartucho filtrante (izq.) y cuerpo del filtro (der.) [17] - 37 -
Figura 3.12. Estructura para la planta de circulación de aceite - 41 -
Figura 3.13. Sensor de temperatura de fibra óptica .. - 42 -
Figura 3.14. Caudalímetro ... - 43 -
Figura 3.15. Resistencia calefactora para simular LFH .. - 43 -
Figura 3.16. Montaje de la instalación de secado por circulación de aceite - 44 -
Figura 3.17. Variantes en el método de vacío ... - 45 -
Figura 3.18. Esquema de funcionamiento de circulación de gases - 47 -
Figura 3.19. Esquema final de vacío-circulación de gases .. - 48 -
Figura 3.20. Esquema de la instalación en Solidworks™ ... - 49 -
Figura 3.21. Bomba de vacío [23] .. - 52 -
Figura 3.22. Controlador de vacío [23] ... - 53 -
Figura 3.23. Electroválvula. Imagen [23] y situación ... - 53 -
Figura 3.24. Bomba de circulación [23] .. - 54 -
Figura 3.25. Gráfica caudal - presión de la bomba de circulación [23] - 55 -
Figura 3.26. Trampas frías ... - 56 -
Figura 3.27. Manguera calefactora [24] ... - 57 -
Figura 3.28. Manguera calefactora y regulador de temperatura - 60 -
Figura 3.29. Diseño del depósito para las muestras de papel - 61 -
Figura 3.30. Depósito construido para las muestras .. - 62 -
Figura 3.31. Terminales de acero inoxidable (cotas en mm) [23] - 63 -
Figura 3.32. Anillo centrador [23] ... - 63 -
Figura 3.33. Abrazaderas de aluminio (cotas en mm) [23] - 63 -
Figura 3.34. Válvula de bola de acero inoxidable [23] - 64 -
Figura 3.35. Pieza en T para los bypass [23] ... - 64 -
Figura 3.36. Adaptadores KF DN - G3/8" [23] ... - 65 -
Figura 3.37. Adaptadores KF DC - oliva [23] ... - 65 -
Figura 3.38. Válvula de entrada de gases [23] .. - 66 -
Figura 3.39. Estructura para la instalación de vacío-gases - 67 -
Figura 3.40. Planta de secado por vacío-circulación de gases - 68 -
ÍNDICE DE TABLAS

Tabla 2.1 Valores máximos recomendados de agua en transformadores [2]- 15-
Tabla 3.1. Propiedades de los aceites más utilizados [13][14].....................- 27-
Tabla 3.2. Características de la bomba y el accionamiento......................- 30-
Tabla 3.3. Características del filtro y el cuerpo del filtro...........................- 36-
Tabla 3.4. Propiedades físicas del nitrógeno [21]......................................- 51-
Tabla 3.5. Propiedades físicas del aire [21]..- 51-
Tabla 3.6. Características de la bomba de vacío [23]..................................- 52-
Tabla 3.7. Características de la bomba de circulación [23]..........................- 54-
Tabla 3.8. Características manguera y regulador- 59-
Tabla AI.1 Lista de materiales para la planta de secado por circulación de aceite....- 72-
Tabla AII.1 Lista de materiales para la planta de secado por vacío - gases..........- 73-
Resumen del proyecto

Este proyecto fin de carrera se divide en 5 capítulos y 2 anexos, los cuales están distribuidos de la siguiente manera:

- En el capítulo 1 se presenta la introducción del proyecto, justificación, objetivos y la metodología empleada.

- En el capítulo 2 se analiza el problema de la humedad en transformadores, su localización, los tres métodos de secado más frecuentemente utilizados con transformadores en campo y las formas de mejorar esos métodos aportando calor en cada uno de ellos.

- En el capítulo 3 se explica el proceso de diseño, la selección de componentes y el montaje de las plantas que simulan los tres procesos de secado en transformadores (circulación de aceite, vacío y circulación de gases).

- En el capítulo 4 se presentan las conclusiones obtenidas a partir de la realización de este proyecto.

- En el capítulo 5 se muestra la bibliografía utilizada.

ANEXOS:

Anexo I. Contiene la lista de materiales utilizados para la construcción de la instalación de secado por circulación de aceite.

Anexo II. Contiene la lista de materiales utilizados para la construcción de la instalación de secado por vacío – circulación de gases.
Summary of the project

This project is divided in 5 chapters and 2 annexes, which are distributed of the following way:

- In chapter 1 appears the project’s introduction, justification, objectives and the used method.

- In the chapter 2 the problem of transformers moisture is analyzed, its location, three methods of dry-out more frequently used for transformers in field and the ways of improve these methods contributing heat in each of them.

- In chapter 3 the design process, the components selection and the assembly are explained of the plants that should simulate three process of dry-out in transformers (oil circulation, vacuum and air circulation).

- In chapter 4 appear the conclusions obtained by the accomplishment from this project.

- The chapter 5 is the used bibliography.

ANEXXES:

Annex I. This annex contains the list of materials used for the plant of oil circulation construction.

Annex II. This annex contains the list of materials used for the plant of vacuum – air circulation construction.
1. INTRODUCCIÓN

Los transformadores acumulan agua durante su vida útil. Cuando un transformador ha alcanzado un nivel inaceptable de humedad, es hora de extraer esa humedad del aislamiento.

Una vez construido un transformador eléctrico es preciso secar perfectamente el aislamiento sólido de su interior antes de sumergirlo en aceite aislante. Este material aislante sólido está compuesto principalmente por papeles y cartones o pressboard a base de celulosa, la cual a su vez está compuesta por una larga cadena de anillos de glucosa. Si este aislamiento sólido no se seca correctamente, el rendimiento del mismo se deteriora y con ello se reduce la rigidez dieléctrica y la resistencia mecánica del transformador, lo que acelera su degradación [1].

Típicamente, un transformador deja la fábrica con un contenido de humedad que depende de su construcción y del voltaje de servicio. Para transformadores con voltajes inferiores a 69 kV, la humedad que suelen contener es menor del 1% del peso del aislamiento seco. Para transformadores con tensiones superiores a 230kV, la humedad contenida debe ser típicamente de 0,5%. Estos valores pueden ser disminuidos a petición del cliente, pero un nivel de humedad de 0,3% es difícil de conseguir [2].

El proceso de secado de un transformador es caro y consume mucha energía. La duración del proceso y el consumo total de energía son, por consiguiente, factores decisivos al elegir el procedimiento de secado más conveniente [1]. La dinámica del intercambio de agua entre aceite y celulosa en diferentes condiciones es muy importante para un secado óptimo en transformadores de potencia con un largo uso, particularmente cuando el secado se hace en campo.

En este PFC se presenta el resultado y el procedimiento empleado para diseñar y montar unas plantas de secado a escala, donde se puedan recrear los procesos de secado en campo off-line más importantes que se utilizan actualmente en transformadores (circulación de aceite, vacío y circulación de gases).
1.1 Justificación

Este proyecto se enmarca dentro de un trabajo que busca mejorar los procesos de secado en campo off-line existentes, e investigar variaciones en los mismos que permitan un secado del transformador eficiente. Actualmente los procesos de secado no son del todo eficientes y se busca mejorarlos.

Una vez en funcionamiento las plantas de secado a escala, se podrán realizar procesos de secado de manera controlada, y buscar puntos fuertes y débiles de cada uno de ellos. Al ser modelos a escala se podrán evaluar mejoras en los diferentes métodos de secado, que sería difícil de llevar a cabo en transformadores reales debido a la gran cantidad de variables no controlables en campo y al enorme coste que supondría.

1.2 Objetivos

El objetivo principal del presente proyecto es diseñar y construir una planta de secado a escala que permita simular los procesos de secado de un transformador de potencia (secado por circulación de aceite, por vacío y por circulación de gases).

Para ello habrá que determinar qué es lo que se necesita e intentar buscar la mejor solución posible. En un principio será necesario construir depósitos para introducir las muestras de papel aislante con humedad. Habrá que adquirir todos los elementos necesarios para conseguir simular los distintos procesos de secado en estos modelos. También se tendrá en cuenta los elementos de adquisición de datos que habrá que instalar en los montajes para que posteriormente se puedan ir controlando las variables de cada uno de los procesos.
1.3 Metodología

Lo primero que se hizo fue definir el problema en su conjunto para determinar los requerimientos de las plantas de secado. En general se determinó que se necesitaban unos montajes que simularan la cuba de un transformador y los elementos necesarios para realizar los procesos de secado. Antes de nada se realizó un boceto inicial de lo que se necesitaba y los elementos que harían falta. El problema se descompuso en elementos más básicos. Esto facilitó el proceso porque ayudó a descubrir pequeños problemas particulares que se ocultaban tras los problemas principales. Los sub-problemas a solucionar fueron:

- Para circulación de aceite:
 - Método para secar el aceite.
 - Depósito para las muestras de papel.
 - Buscar una forma de circular el aceite con el registro de todos sus parámetros (caudal, presión, temperatura, etc.).
 - Cómo calentar el aceite.
 - Como filtrar el aceite.
 - Estructura para colocar la instalación.
 - Costes del montaje

- Para vacío:
 - Cómo realizar vacío garantizando la estanqueidad de la instalación.
 - Depósito para las muestras de papel.
 - Cómo calentar la atmósfera.
 - Cómo extraer la humedad.
 - Elementos de medida (cuáles usar y donde colocarlos).
 - Estructura para colocar la instalación.
 - Costes del montaje.
- Para circulación de gases:

- Cómo calentar los gases.
- Depósito para las muestras de papel.
- Cómo introducir y circular los gases.
- Cómo extraer la humedad.
- Elementos de medida (cuáles usar y donde colocarlos).
- Estructura para colocar la instalación.
- Costes del montaje.

Una vez resueltos los problemas de uno en uno, se recomposieron de forma coherente a partir de todas las características funcionales de cada una de las partes. Después de esto se realizó la recopilación de datos. Se seleccionaron catálogos de las marcas que producen o trabajan con elementos parecidos a los que se querían utilizar.

Una vez determinados los componentes que cumplían los requerimientos técnicos, se combinó todo lo anterior en un diseño de manera que teóricamente funcionara de forma correcta.
2. SECADO EN TRANSFORMADORES

2.1 Humedad en transformadores

La humedad en el aislamiento (aceite y celulosa) de un transformador puede afectar su rendimiento de varias maneras:

- Provocando descargas parciales.
- Generando burbujas.
- Disminuyendo su rigidez dieléctrica.
- Envejeciendo el aislamiento prematuramente.

Los primeros tres efectos pueden acabar provocando fallos en transformadores en buen estado; el último podría acortar la vida útil de los mismos.

Transformadores que llevan muchos años en servicio suelen tener un alto contenido en humedad. Una vez que el transformador es secado (llevado a valores de humedad entre 0,5% y 1%) y entra en servicio, el nivel de humedad contenida puede incrementarse de varias formas [3]:

- El envejecimiento normal de la celulosa produce agua.
- Posibles fisuras exponen el aislamiento a la humedad atmosférica.
- Una posible exposición al ambiente durante operaciones de mantenimiento o posibles fallos en el secado del aislamiento.
- Humedad residual en los aislamientos gruesos [4].

Existen actualmente métodos de estimación del nivel de humedad en el aislamiento de los transformadores. Debido a su importancia es actualmente una línea activa de investigación [3].

Bajos contenidos de agua en el aislamiento sólido permiten llegar a temperaturas más altas de trabajo, preservar la rigidez dieléctrica del aislamiento y reducir el
envejecimiento de la celulosa sin poner en peligro la integridad del sistema. De ahí la importancia de un buen secado en el papel y en el aceite.

Localización del agua

Si la temperatura en el interior de un transformador permaneciese constante durante un tiempo suficiente, el agua en el transformador encontraría un equilibrio entre la cantidad retenida en el papel y la contenida en el aceite. Existe una relación entre la cantidad de humedad contenida en el aceite y la cantidad que retiene el papel para cada temperatura de trabajo. Se muestra esta relación en la Figura 2.1.

![Figura 2.1 Relación entre la humedad en el aceite y papel a varias temperaturas][1]

El papel tiene una alta tendencia a mantener el agua (hidrófilo), al contrario que el aceite (hidrófobo), por lo que casi toda la humedad en un transformador permanece en el papel [6].

Por ejemplo, un transformador de 400 kVA tiene unos 300 litros de aceite. Si tuviera una cantidad de agua en el aceite de 80 ppm trabajando a 60 ºC y la humedad entre el papel y el aceite estuviese en equilibrio, significa que el transformador tiene un 3,5% de humedad en el papel. Si la masa de papel son 10 kg, entonces la cantidad de agua es:

[1]: https://example.com/image.png
- 24 ml de agua en el aceite.
- 350 ml de agua en el papel.

Hablando de transformadores en términos de MVA pueden tener más de 200 litros de agua en el papel por un litro en el aceite. Los valores máximos de humedad en transformadores según el estándar C57.106-2002 son los siguientes:

<table>
<thead>
<tr>
<th>Temperatura media del aceite</th>
<th>Agua máxima recomendada contenida en aceite y papel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>< 69 kV</td>
</tr>
<tr>
<td>50 °C</td>
<td>27 ppm</td>
</tr>
<tr>
<td>60 °C</td>
<td>35 ppm</td>
</tr>
<tr>
<td>70 °C</td>
<td>55 ppm</td>
</tr>
<tr>
<td>Porcentaje de agua saturada</td>
<td>15%</td>
</tr>
<tr>
<td>Humedad en el papel</td>
<td>3%</td>
</tr>
</tbody>
</table>

Tabla 2.1 Valores máximos recomendados de agua en transformadores [2]

Hay que garantizar que los transformadores no superen estos valores.

Inclusive después de un proceso de secado haciendo pasar el aceite por un filtro de humedad, una gran cantidad de agua puede permanecer en el papel aislante. Cuando el transformador vuelva a entrar en servicio, parte del agua contenida en el papel migrará al aceite seco hasta que se alcance un nuevo un punto de equilibrio, y el transformador volverá a estar húmedo pasado un periodo de tiempo.

Por todo esto es necesario extraer la humedad del interior de los aislamientos en transformadores. Los métodos off-line comúnmente empleados en campo son:

- Secado por circulación de aceite.
- Secado por vacío.
- Secado por circulación de gases.
2.2 Métodos de secado en transformadores

Actualmente existen varios métodos de secado de transformadores, que pueden reunirse en tres grupos de acuerdo a su principio de funcionamiento:

- Secado por circulación de aceite.

- Secado por vacío.

- Secado por circulación de gases.

A continuación se describe el principio de funcionamiento de los métodos mencionados.

2.2.1 Secado por circulación de aceite.

Este método de secado consiste en extraer la humedad del transformador a través del aceite. Para ello es necesario que el aceite tenga una concentración de humedad tal que la concentración de equilibrio entre el papel y el aceite sea menor a la humedad contenida en el papel. Una forma de lograr esto es forzar el aceite a circular a través de un medio poroso con un gran número de aperturas minúsculas, en las cuales el agua y las partículas en suspensión quedan atrapadas; tal medio puede ser un filtro especial de papel, cartón prensado o tela [7]. Este método puede mejorarse si además el aceite es calentado ya que de esta manera puede aceptar mayor cantidad de agua en disolución y además forzar a la celulosa a que sea menos hidrófila. Sin embargo, este es un método muy lento por la condición hidrófoba propia del aceite.

En la Figura 2.2 se muestra el secado de transformadores en campo a través de este método.
2.2.2 Secado por vacío.

Este método de secado consiste en extraer la humedad del aislante del transformador haciendo vacío en el interior del mismo. Se realiza vacío en el interior del transformador para que la humedad contenida en el aislamiento se evapore más fácilmente y pueda ser extraída de la cuba. Se muestra en la Figura 2.3.
El principio por el cual el método de vacío permite una mejor desorción de humedad de los aislamientos se muestra en la Figura 2.4.

La línea verde marca el punto de congelación, la azul, el punto de ebullición y la roja el de sublimación. El punto de unión entre las líneas mencionadas es el punto triple. La única combinación de presión y temperatura a la que el agua, hielo y vapor de agua pueden coexistir en un equilibrio estable se produce exactamente a una temperatura de 0.0098 ºC y a una presión parcial de vapor de agua de 6.1173 mbar [8].

En la Figura 2.4 se observa cómo a bajas presiones el agua requiere menos temperatura para pasar a fase gaseosa. Se puede aprovechar esta situación haciendo vacío en un sistema, lo que permite que no se tenga que calentar excesivamente para que la humedad entre en fase de vapor. Se puede jugar con los valores de presión y temperatura del agua para alcanzar el estado deseado.

La ecuación de Antoine (1) es una ecuación empírica que permite interpolar datos experimentales de presión de vapor en función de la temperatura para una sustancia pura, es decir, permite conocer el punto de ebullición de un líquido puro a diferentes presiones. La ecuación para el caso del agua es la siguiente [9] [10]:

Figura 2.4. Punto triple del agua [8]
log \(P \) = 7,96681 − \(\frac{1,668,21}{228 + T} \) \hspace{1cm} (1)

donde:

\(P \) \hspace{1cm} \text{presión de la sustancia (mmHg)}

\(T \) \hspace{1cm} \text{temperatura de la sustancia (°C)}

En la Figura 2.5 se presentan las temperaturas de ebullición del agua a diferentes presiones. La curva se ha dibujado a partir de los valores de presión obtenidos con la ecuación de Antoine.

Figura 2.5. Curva logarítmica temperatura de ebullición-presión

Se puede observar como a presión atmosférica (aproximadamente 1000 mbar) el agua hiere a 100°C. Por ejemplo, si se consigue hacer un vacío de 100 mbar, con calentar el aislamiento hasta 50°C sería suficiente para que empiece a evaporarse la humedad.

La humedad contenida en el aislamiento se puede sacar directamente a través de la bomba de vacío o añadiendo antes de la misma una trampa fría (cold trap). Aportando calor se acelera el proceso de desorción de humedad.
En aplicaciones de secado por vacío, la trampa fría (cold trap) condensa los gases que circulan a través de ella, previniendo que lleguen a la bomba vapores de aceite y humedad que la puedan deteriorar [11]. Adicionalmente, la trampa fría aumenta la desorción de humedad desde el interior del transformador al crear un mayor gradiente de concentración de humedad entre el aislamiento sólido y la atmósfera que le rodea; también sirve para estimar la cantidad de humedad extraída del transformador.

![Diagrama de trampa fría](image)

Figura 2.6. Trampa fría

En la Figura 2.6 se muestra el funcionamiento de la trampa fría; el gas entra a la trampa fría y antes de salir pasa por una zona muy fría con nitrógeno líquido o hielo seco. El vapor condensa y se queda en el fondo. El aire sale por el otro conducto para pasar por la bomba de vacío ya sin humedad.
2.2.3 Secado por circulación de gases

El secado por recirculación de gases consiste en extraer la humedad del aislante haciendo circular un gas de secado dentro de la cuba del transformador. Este gas puede ser cualquiera que tenga una buena transferencia de calor y un aceptable valor de saturación de humedad. En secado de transformadores se suele utilizar aire seco y en otras aplicaciones de secado también se emplean gases como el nitrógeno.

Este método de secado tiene la ventaja de que puede ser aplicado en transformadores que por su condición mecánica no soportan el vacío, pero no es muy eficiente. Además en el caso del aire seco el contacto del aislamiento con el oxígeno deteriora el mismo [12].

Tras extraer el aceite del transformador se introduce aire seco en el mismo, y se recircula calentándolo hasta unos 100 °C. Esto provoca la desorción de la humedad contenida en el aislamiento. Opcionalmente se puede intercalar una trampa fría en la recirculación del aire caliente. Se muestra el secado de transformadores por circulación de aire caliente en campo en la Figura 2.7.

![Figura 2.7. Secado en campo por recirculación de gases [12]](image)
2.3 Aporte de calor en el secado de transformadores

Para mejorar el proceso de secado en el aislamiento de un transformador se aplica calor al aislamiento, lo que acelera la desorción de humedad; así mismo el medio de secado como el aceite o los gases aumentan la capacidad de transportar humedad si su temperatura es mayor.

Cuando el agua contenida en el aislamiento se evapora, el calor utilizado para el cambio de fase sale del transformador con el vapor. Esto provoca que la temperatura del transformador baje bruscamente. Es necesario seguir aportando calor continuamente dentro del transformador. Si el calor no es reemplazado, se podrían ocasionar congelamientos parciales en el agua que queda dentro del transformador. Una vez ocurrido el congelamiento, el agua debe ir desde la fase sólida a la gaseosa. Esto requiere mucho más calor por lo que la temperatura continúa cayendo hasta que el proceso se atasca. Cuando esto sucede los sensores de humedad indicarían que no hay más agua en el transformador. Al entrar de nuevo en servicio el hielo se derretiría y el transformador volvería a estar húmedo.

Tampoco se puede añadir todo el calor que se quiera para garantizar que no ocurren congelamientos. Por las características constructivas de los materiales hay que tener cuidado para no dañarlos en el calentamiento. Hay que buscar un punto intermedio de aporte de calor entre estos dos extremos [12].

Para aportar calor al secado por circulación de aceite se calienta mientras se bombea dentro del transformador como muestra la Figura 2.2 (página 17). Una solución puede ser pasar el aceite por una resistencia calefactora.

En el método de vacío el calentamiento de la atmósfera es más complicado. Se suele utilizar lo que se llama hot oil spray. El aceite del transformador se calienta y filtra en un depósito externo como se hace en la recirculación de aceite. Se devuelve al transformador esparciéndolo en forma de aerosol sobre los devanados a altas temperaturas para calentarlos. Se muestra en la Figura 2.8.
Figura 2.8. Calentamiento en el método de vacío mediante Hot Oil Spray

En el método de circulación de gases, para calentar el aire interno del transformador una vez se ha vaciado de aceite, basta con pasar el gas de secado por una resistencia calefactora igual que en el método del aceite como se ve en la Figura 2.7 (página 21).

Otra forma de aportar calor es mediante el calentamiento del aislamiento al hacer circular corrientes por los devanados. La temperatura del material secante y el nivel de vacío son los principales factores que influyen en la velocidad y calidad del secado. El proceso calienta uniformemente desde el interior los devanados de alta y baja tensión del transformador, aplicando una corriente a través de los devanados de alta tensión, mientras los devanados de baja tensión permanecen cortocircuitados. Una mejora a estos métodos es el LFH.

El LFH (Low Frequency Heating) a baja frecuencia (0,4 – 2 Hz) disminuye la impedancia de cortocircuito del transformador, y las fuentes requeridas para hacer circular corrientes por los devanados requieren menor potencia, evitando además problemas de alta tensión. El acoplamiento magnético asegura una corriente controlable en el devanado de baja tensión, que puede calentarse hasta las temperaturas de secado. Se necesitan controles especiales para supervisar minuciosamente el proceso de secado, especialmente la temperatura de los devanados, para evitar así la formación de puntos calientes y daños en el aislamiento. Si el LFH se usa para secado por vacío es necesario
controlar los niveles de vacío debido a que en este entorno las tensiones de ruptura son menores.

La razón de la eficiencia de este proceso de calentamiento está en que el calor se genera en los devanados, el lugar perfecto para difundir la humedad fuera del aislamiento. Además la temperatura en los devanados se puede controlar con precisión. Se pueden conseguir tiempos de proceso considerablemente más cortos que con las técnicas convencionales de secado que utilizan aire caliente y vacío, y se consiguen ahorros de energía de hasta el 50 % [1]. En la Figura 2.9 se muestra el esquema del calentamiento por LFH en el método de circulación de aceite.

Figura 2.9. Calentamiento por LFH en secado de transformadores
3. DISEÑO DE LAS PLANTAS DE SECADO

Como se mencionó anteriormente, este proyecto se enmarca dentro de un trabajo que busca mejorar los procesos de secado existentes e investigar otras variaciones en los mismos que permitan un secado del transformador eficiente. Por tal razón se construyeron dos plantas de secado para recrear los tres métodos de secado de transformadores en campo más empleados:

- Circulación de aceite.
- Secado por vacío.
- Secado por circulación de gases.

Para ello se realizaron unos diseños que permitieron construir los modelos a escala que simularán los tres principales tipos de secado que se realizan en los transformadores. Se necesitaba que las plantas secaran el aceite en el método de circulación de aceite, y las muestras de papel de celulosa utilizado en transformadores para los otros dos métodos. Se buscó la solución óptima en esfuerzo y coste de montaje.

Para los tres métodos se va a simular el calor que aportaría el LFH en los procesos de secado de un transformador. Para ello se utilizan unas resistencias calefactoras que calienten las muestras como lo haría el LFH. Se compraron los materiales necesarios para el montaje y se construyeron las plantas diseñadas.

Por afinidad se unieron en una misma instalación los procesos de secado por vacío y circulación de gases.
3.1 Diseño de la planta de secado por circulación de aceite

Introducción

El primer método de secado de transformadores es la recirculación de aceite. La idea es introducir muestras de papel aislante dentro de un depósito con aceite previamente calentado y desecado. El aceite seco forzará la desorción de humedad desde el aislamiento de papel hacia el aceite, que se encargará de llevar el agua fuera del depósito. Un filtro de papel extraerá la humedad contenida en el aceite. En la Figura 3.1 se presenta el esquema de la instalación.

![Diagrama de funcionamiento de la instalación](image)

Figura 3.1. Esquema de funcionamiento de la instalación

Requerimientos

Se necesita una bomba para recircular el aceite, un filtro para secarlo y una resistencia para calentarlo. Además se requieren de mangueras o tuberías para la circulación de un elemento a otro y los elementos de conexión necesarios. Todos estos elementos tienen que soportar la temperatura máxima de trabajo, que se establece en 120 ºC (en la zona de calentamiento).
La planta debe funcionar para cualquier tipo de aceite que se utiliza comúnmente en transformadores. Los más utilizados se muestran en la Tabla 3.1 con sus características más importantes:

<table>
<thead>
<tr>
<th>Aceite</th>
<th>Propiedades</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aceite mineral</td>
<td>Menor viscosidad a temperaturas más bajas.</td>
</tr>
<tr>
<td></td>
<td>Mayor vida útil.</td>
</tr>
<tr>
<td></td>
<td>Punto de combustión relativamente bajo.</td>
</tr>
<tr>
<td></td>
<td>Viscosidad cinemática a 40 ºC ≈ 12 cSt.</td>
</tr>
<tr>
<td></td>
<td>Viscosidad cinemática a 100 ºC ≈ 3 cSt.</td>
</tr>
<tr>
<td></td>
<td>Densidad a 30ºC ≈ 880 Kg/m3.</td>
</tr>
<tr>
<td>Éster natural (FR3®)</td>
<td>Excelente dieléctrico.</td>
</tr>
<tr>
<td></td>
<td>Mejora 5-8 veces la vida del papel Kraft.</td>
</tr>
<tr>
<td></td>
<td>No tóxico.</td>
</tr>
<tr>
<td></td>
<td>Punto de combustión > 300 ºC.</td>
</tr>
<tr>
<td></td>
<td>Más caro.</td>
</tr>
<tr>
<td></td>
<td>Viscosidad cinemática a 40 ºC ≈ 34 cSt.</td>
</tr>
<tr>
<td></td>
<td>Viscosidad cinemática a 100 ºC ≈ 8 cSt.</td>
</tr>
<tr>
<td></td>
<td>Densidad a 25ºC ≈ 920 Kg/m3.</td>
</tr>
<tr>
<td>Éster sintético</td>
<td>Excelente dieléctrico.</td>
</tr>
<tr>
<td></td>
<td>No tóxico.</td>
</tr>
<tr>
<td></td>
<td>Gran vida útil.</td>
</tr>
<tr>
<td></td>
<td>Muy caro.</td>
</tr>
<tr>
<td></td>
<td>Viscosidad cinemática a 40 ºC ≈ 28 cSt.</td>
</tr>
<tr>
<td></td>
<td>Densidad a 25ºC ≈ 970 Kg/m3.</td>
</tr>
</tbody>
</table>

Tabla 3.1. Propiedades de los aceites más utilizados [13][14]

Es necesario también medir y controlar todo lo relativo al aceite que pueda afectar al proceso de secado. Se colocaron sensores de temperatura, un sensor de humedad y un caudalímetro para hacer las medidas de sus respectivas variables.
3.1.1 Funcionamiento

En la Figura 3.2 se muestra el esquema de la instalación realizado en el programa de diseño asistido por computador SolidWorks™.

![Figura 3.2. Esquema de la planta de secado por circulación de aceite](image)

El aceite calentado en el depósito con la resistencia calefactora es aspirado por la bomba. Atraviesa un tramo de manguera hasta llegar al depósito con las muestras de papel. Se colocó un sensor de humedad en el interior de este depósito para calcular la humedad contenida en el aceite. Así mismo se colocaron varios sensores de fibra óptica para verificar que el aceite tenga la temperatura adecuada. El aceite pasa por el cartucho filtrante para extraer la humedad, volviendo al depósito calefactor y cerrando el circuito. El depósito para las muestras de papel tiene válvulas a la entrada y la salida para permitir el cambio de muestras. Debido a dilatación del aceite con la temperatura se ha colocado un vaso de expansión en el punto más alto del circuito. Se han instalado también válvulas de drenaje en el filtro y en el depósito para las muestras.
A continuación se detallan los factores involucrados en la elección de cada uno de los elementos del sistema.

3.1.2 Selección de la bomba hidráulica

Para realizar los cálculos de la bomba hidráulica que se necesitaba en la instalación se utilizaron los valores más restrictivos de fluidez y densidad, de acuerdo a los posibles tipos de aceite a usar. El fluido más viscoso es el éster natural, y el más denso el éster sintético (ver Tabla 3.1, página - 27 -).

Como se puede observar en el esquema de la instalación (Figura 3.2, página - 28 -), se necesitaba montar un circuito cerrado de aceite, por lo que fue necesaria una bomba hidráulica que soportara la viscosidad del aceite, la presión de las tuberías y la temperatura máxima en el circuito (120 ºC).

La temperatura juega un papel muy importante en las propiedades del aceite. El aceite circula por la bomba después de pasar por la resistencia calefactora y se enfriará a lo largo del circuito. Se estimó una viscosidad media. Como el aceite disminuye su densidad con la temperatura también se utilizó una densidad más baja. Los valores considerados para los cálculos fueron los siguientes:

Viscosidad cinemática: 20 cSt.
Densidad: 850 Kg/m³.

El caudal no tiene porque ser un valor fijo. Se requería que todo el aceite de la instalación recorriera todo el circuito por lo menos en una hora. Estimando la capacidad de todos los elementos del circuito hay aproximadamente 50 litros, por lo que se escogió un valor inicial de unos 50 litros por hora.
La bomba seleccionada se muestra en la Figura 3.3.

![Figura 3.3. Bomba hidráulica [15]](image)

Las características de la bomba y del accionamiento seleccionado se muestran en la Tabla 3.2.

<table>
<thead>
<tr>
<th>Bomba</th>
<th>Accionamiento</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca: FLUID-O-TEC</td>
<td>Tipo: Electro-motor trifásico</td>
</tr>
<tr>
<td>Modelo: MG-209XPS17</td>
<td>Potencia nominal: 0.18 kW</td>
</tr>
<tr>
<td>Tipo de bomba: Engranajes arrastre magnético</td>
<td>Tensión: 400 V</td>
</tr>
<tr>
<td>Conexión de aspiración: Roscada 1/8`` NPT</td>
<td>Frecuencia: 50 Hz</td>
</tr>
<tr>
<td>Conexión de impulsión: Roscada 1/8`` NPT</td>
<td>Velocidad: 1.500 rpm</td>
</tr>
<tr>
<td>Materiales de construcción: Acero Inoxidable AISI 316</td>
<td>Protección: IP-55</td>
</tr>
</tbody>
</table>

Tabla 3.2. Características de la bomba y el accionamiento
En la Figura 3.4 se pueden observar las curvas caudal-presión a diferentes velocidades de la bomba seleccionada.

Figura 3.4. Curvas caudal-presión a varias velocidades [15]

La viscosidad supuesta del aceite (20 cSt) corresponde a la curva B. La estimación realizada anteriormente sobre la viscosidad del aceite no es muy importante, ya que la curva C (70 cSt, valor muy superior al máximo del aceite) es prácticamente igual a la B. Con esta viscosidad soporta una presión aproximada de 4 bares.

La bomba va a trabajar sobre la grafica izquierda-superior de la Figura 3.4. A una velocidad de giro de 1450 rpm, se obtiene un caudal de 60 litros por hora. No es el valor exacto que se buscaba al principio pero es válido. Utilizando un variador de frecuencia para el accionamiento trifásico se puede obtener cualquier caudal hasta el nominal.
3.1.3 **Depósito para el calentamiento del aceite**

El Departamento de Electricidad de la Universidad Carlos III disponía de un depósito de aceite de transformador de unos 20 litros con una resistencia sumergida (Figura 3.5), el cual se aprovechó para calentar el aceite en la instalación.

![Figura 3.5. Depósito calefactor disponible](image)

Para que no se dañen las muestras ni afecte al sensor de humedad, es necesario calentar el aceite en otro depósito distinto al de las muestras de papel. Para calentar el aceite hasta la temperatura deseada se utiliza la resistencia.

Este sistema tiene la ventaja de que su control es simple. El control de potencia se implementó mediante triacs, que controlan la corriente que circula por la resistencia calefactora, y con ello la temperatura que alcanza el aceite. Para medir la temperatura del aceite se empleó un sensor de fibra óptica. Se muestra el esquema de control de temperatura en la Figura 3.6.
Figura 3.6. Control de temperatura del aceite

Se realizaron las modificaciones necesarias para poder acoplarle las válvulas, sensores y mangueras que se utilizan en el circuito cerrado. Al ser el punto más alto del circuito también se colocó un vaso de expansión que permite la dilatación del aceite con la temperatura. Se muestra el esquema del depósito calefactor en la Figura 3.7.
3.1.4 Depósito para las muestras de celulosa

3.1.4.1 Requisitos

Para secar las muestras de celulosa es necesario un depósito donde introducirlas. Se tuvo que diseñar el depósito y las conexiones para que los cambios de muestras se hicierean de forma rápida, garantizando la estanqueidad del sistema. Mediante un enchufe rápido se conectan y desconectan las mangueras de entrada y salida al depósito. Para introducir o retirar las muestras, el depósito debe abrirse y cerrarse rápidamente.

El tamaño del depósito donde van a estar las muestras de papel se estimó de unos 20 litros, igual que el depósito de calentamiento de la instalación. Por facilidad de construcción se prefería un depósito de forma cilíndrica, asemejándolo lo máximo posible al que ya estaba construido para calentar el aceite. Se muestra el esquema del depósito para las muestras en la Figura 3.8.

![Esquema del depósito para las muestras de papel](image)

Figura 3.8. Esquema del depósito para las muestras de papel
3.1.4.2 Selección

Se decidió modificar una olla a presión de acero inoxidable para construir el depósito con las muestras. Sellando las válvulas de seguridad que trae la olla; realizando los agujeros para las entradas y salidas de mangueras, sensores y válvulas; y poniendo una tapa recta con mordazas se tiene un depósito resistente, estanco y mucho más económico que un depósito hecho a medida. Al dilatarse la junta a causa de su incompatibilidad con el aceite, se tuvo que cambiar la tapa original. Se muestra la olla modificada en la Figura 3.9.

Figura 3.9. Olla modificada

Se instalan dos bornas de conexión aceite-aire como la mostrada en la Figura 3.10 para simular el LFH en el interior de la olla.
Es posible extraer la humedad del aceite aislante mediante la utilización de filtros, que en su mayoría requieren que el aceite se caliente y desgasifique antes de pasar a través de ellos. Se podría haber implementado un sistema más complejo, pero se encontró un filtro de humedad que no requería calentamiento. El filtro de humedad y su correspondiente envoltura tienen las siguientes características:

<table>
<thead>
<tr>
<th>Filtro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca y modelo:</td>
<td>VELCON Superdri ® SD-718</td>
</tr>
<tr>
<td>Cantidad de aceite procesado:</td>
<td>Hasta 20,000 litros / cartucho</td>
</tr>
<tr>
<td>Capacidad de agua absorbida:</td>
<td>Más de 1,1 litros / cartucho</td>
</tr>
<tr>
<td>Cantidad de humedad remanente:</td>
<td>Menor de 10 ppm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cuerpo del filtro</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca:</td>
<td>VELCON</td>
</tr>
<tr>
<td>Modelo:</td>
<td>VF-71E</td>
</tr>
<tr>
<td>Presión máxima:</td>
<td>10 bares</td>
</tr>
<tr>
<td>Temperatura máxima:</td>
<td>121 ºC</td>
</tr>
<tr>
<td>Conexión de entrada / salida:</td>
<td>¼” NPT</td>
</tr>
<tr>
<td>Volumen sin cartucho:</td>
<td>14,4 litros</td>
</tr>
</tbody>
</table>

Tabla 3.3. Características del filtro y del cuerpo del filtro
Como se ve en la Tabla 3.3, la humedad que absorbe este filtro permite dejar el aceite con menos de 10 partes por millón, que es un buen valor para el secado.

3.1.6 Circuito de aceite

Para el circuito cerrado de aceite se utilizaron mangueras de teflón, dado que pierden menos calor al ambiente que las tuberías de cobre y no hace falta que las distancias entre los distintos elementos del circuito sean exactas. Otra ventaja importante es que si se necesita conectar y desconectar las vías del primer depósito para introducir o sacar muestras de papel del aceite, es mucho más fácil hacerlo mediante acoples rápidos y válvulas a presión con mangueras de goma.

Para elegir el diámetro interior de las mangueras, se determinó la pérdida de carga a lo largo de las mismas. La pérdida de carga que tiene lugar en una conducción representa la pérdida de energía de un flujo hidráulico a lo largo de la misma por efecto del rozamiento [18]. Se seleccionaron para el circuito mangueras de ¼” de diámetro.

El número de Reynolds se utiliza para ver si en un conducto se está en flujo laminar o turbulento. Para un conducto circular el número de Reynolds es:
\[Re = \frac{4 \cdot Q}{\pi \cdot D \cdot \nu} \]

(2)

donde:

- \(Re \): número de Reynolds (adimensional)
- \(Q \): caudal (m\(^3\)/s)
- \(D \): diámetro interior de las tuberías (m)
- \(\nu \): viscosidad cinemática (m\(^2\)/s)

El caudal lo proporcionaba la bomba: \(Q = 60\ell / h = 1,67 \cdot 10^{-5} \) m\(^3\)/s

El diámetro interior es de \(\frac{1}{4}'' = 6,35 \) mm = 0,00635 m

La viscosidad cinemática se estimó en 20 cSt = 2 \cdot 10^{-5} m\(^2\)/s

Sustituyendo cada valor en (2) se obtiene:

\[Re = \frac{4 \cdot 1,67 \cdot 10^{-5}}{\pi \cdot 0,00635 \cdot 2 \cdot 10^{-5}} = 167,43 \]

Como el número de Reynolds es menor de 2.000 el sistema trabaja a régimen laminar.

Para calcular la pérdida de carga en las mangueras se pueden utilizar varias fórmulas empíricas. Una de ellas es la llamada ecuación de Hagen-Poiseuille [19]. Esta ecuación (3) permite determinar la pérdida de carga de un líquido incompresible y uniformemente viscoso con flujo laminar estacionario a través de un tubo cilíndrico de sección circular constante. Se pueden obtener las pérdidas de carga lineales con la siguiente ecuación:

\[h = \frac{32 \cdot \mu \cdot L \cdot u}{\rho \cdot g \cdot D^2} = \frac{128 \cdot \mu \cdot L \cdot Q}{\rho \cdot g \cdot \pi \cdot D^4} \]

(3)
donde:

\[\begin{align*}
 h_{pl} & \quad \text{pérdida de carga lineal (m)} \\
 \mu & \quad \text{viscosidad estática (kg/m} \cdot \text{s)} \\
 L & \quad \text{longitud de la tubería (m)} \\
 u & \quad \text{velocidad en el conducto (m/s)} \\
 Q & \quad \text{caudal (m}^3/\text{s)} \\
 \rho & \quad \text{densidad (kg/m}^3) \\
 g & \quad \text{gravedad (m/s}^2) \\
 D & \quad \text{diámetro interior de las tuberías (m)}
\end{align*} \]

Se estima una longitud máxima de 6 metros a lo largo de todo el circuito. \(L = 6 \, \text{m} \).
La densidad del aceite se estimó en \(850 \, \text{Kg/m}^3 \).

Se puede obtener la viscosidad estática (\(\mu \)) a partir de la viscosidad dinámica (\(\nu \)) y la densidad (\(\rho \)):

\[\mu = \nu \cdot \rho \quad (4) \]

Se conocen todos los valores por tanto:

\[\mu = 2 \cdot 10^{-5} \cdot 850 = 0,017 \, \text{kg/m} \cdot \text{s} \]

Obtenidas todas las variables ya se puede sustituir en (2):

\[h = \frac{128 \cdot 0,017 \cdot 6 \cdot 1,67 \cdot 10^{-5}}{850 \cdot 9,8 \cdot \pi \cdot 0,00635^4} = 5,12 \, \text{m} \]

La presión se puede relacionar con la altura que alcanza un fluido mediante:

\[P = \rho \cdot g \cdot h \quad (4) \]
Por tanto

\[P = 850 \cdot 9,8 \cdot 5,12 = 42,650 \text{ Pa} = 0,43 \text{ bar} \]

Utilizando mangueras de ¼” se pierde una presión de casi medio bar en todo el circuito, que es soportado sin problemas por la bomba. Utilizando el siguiente diámetro interior de manguera más pequeño que se fabrica (1/8’’) y sustituyendo en (2) se obtiene una pérdida de carga de 81,8 metros. Utilizando este valor en (4) resulta una pérdida de carga de 681,727 Pa = 6,81 bares, valor que supera los límites de trabajo indicados por el fabricante de la bomba.

Aunque la caída de presión generada en las mangueras de ¼” era soportada por la bomba sin problemas, se cambiaron las dos mangueras que entran y salen al filtro de humedad a un diámetro interno de ¾”, ya que la unión tapa-olla construida a medida no soportaba la presión y tenía fugas de aceite por la junta.

Se encargaron 4 mangueras con las siguientes características.

- Manguera de teflón D= ¼”, L= 1 m. 1 enchufe rápido ¼” con anti-retorno (depósito con muestras), 1 racor macho de 1/8’’ NPT (bomba de circulación).
- Manguera de teflón D= ¾”, L= 1,5 m. 1 enchufe rápido ¼” con anti-retorno (depósito con las muestras), 1 racor macho de ¾’’ NPT (filtro de humedad).
- Manguera de teflón D= ¾”, L= 2 m. 1 racor macho de ¾’’ NPT (filtro de humedad), 1 racor macho de ¼’’ NPT (depósito calefactor).
- Manguera de teflón D= ¼”, L= 1 m. 1 racor macho de 1/8’’ NPT (bomba de circulación), 1 racor macho de ¼’’ NPT (depósito calefactor).
3.1.7 **Estructura de soporte**

Se ha construido una estructura para colocar todo el montaje. Esta estructura debía soportar el peso de todo el sistema y mantener el depósito calefactor con el vaso de expansión por encima del depósito para las muestras de papel. Se muestra en la Figura 3.12.

![Estructura para la planta de circulación de aceite](image)

Figura 3.12. Estructura para la planta de circulación de aceite
3.1.8 Sistema de adquisición de datos.

Se necesita medir la temperatura en el depósito con la resistencia calefactora para hacer el control; y en el depósito con las muestras de papel para realizar los ensayos. Se colocaron sensores de temperatura de fibra óptica (Figura 3.13) en estos puntos.

![Sensor de temperatura de fibra óptica](image)

Figura 3.13. Sensor de temperatura de fibra óptica.

Es necesario medir la humedad del aceite. Para ello se colocó un sensor de humedad dentro del depósito para las muestras de papel. Se consigue medir el caudal proporcionado por la bomba hidráulica mediante un caudalímetro (Figura 3.14), que proporciona una señal eléctrica que puede ser procesada por un ordenador.
El control del LFH se implementó mediante un sensor de temperatura dentro de las probetas que soportan las muestras de papel y las resistencias calefactoras (Figura 3.15).

Figura 3.14. Caudalímetro

Figura 3.15. Resistencia calefactora para simular LFH
3.1.9 Montaje resultante

Se muestra en la siguiente figura el resultado del montaje.

Figura 3.16. Montaje de la instalación de secado por circulación de aceite

Se adjunta en el anexo 1 la lista de materiales adquiridos para este montaje.
3.2 Diseño de la planta de secado por vacío

El segundo método de secado es la aplicación de vacío en el interior del transformador. La idea es introducir muestras de papel aislante dentro de un depósito, simulando la cuba del transformador. Se extraerá el aire dentro del depósito, creando un vacío parcial con una bomba de vacío de la misma manera que se realiza en los transformadores al extraer el aceite, mientras se simula el LFH en las muestras. La trampa fría condensará la humedad que se obtenga antes de llegar a la bomba.

Como lo que se va a construir es un modelo de pruebas, se va a realizar una modificación en el diseño que permita probar posibles mejoras en el método. Se muestran las dos otras variantes de trabajo que se van a utilizar en la Figura 3.17.

Figura 3.17. Variantes en el método de vacío
El proceso de extracción de humedad puede ser de dos formas.

Si se coloca la trampa fría en el circuito calefactor (Figura 3.17-a) se realizaría primero el vacío moderado (alrededor de 0,6 bares de presión absoluta), y luego se recircularía el aire interior restante. Al estar la trampa fría en el circuito calefactor, el vapor extraído de las muestras se condensa en la misma.

Otra opción es colocar la trampa fría antes de la bomba de vacío (Figura 3.17-b). Se calentaría primero el aire contenido en el depósito con las muestras, y después al hacer el vacío el vapor iría directamente a la trampa fría.

El aire que quede dentro del depósito se recirculará mientras se calienta, lo que sumado al efecto del LFH acelerará la desorción de la humedad contenida en las muestras.

Como el método de secado por vacío y el de circulación de gases son tan parecidos en el diseño, se decidió unificar los dos montajes en una sola instalación.
3.3 Diseño de la planta de secado por circulación de gases.

El tercer método de secado de transformadores es la recirculación de gases calientes en su interior. Se introducirán muestras de papel aislante dentro de un depósito que simulará la cuba del transformador. Se muestra el funcionamiento de la instalación en la Figura 3.18.

![Figura 3.18. Esquema de funcionamiento de circulación de gases](image)

Primero se extraerá el aire contenido en el depósito mediante una bomba de vacío, y posteriormente se introducirá el gas de secado a utilizar hasta alcanzar la presión atmosférica. Se recirculará el gas contenido a la vez que se calienta mediante una resistencia calefactora y se calientan las muestras simulando LFH. Se dará la opción de colocar la trampa fría a lo largo del circuito calefactor para extraer la humedad.

Definidas las necesidades de los métodos de vacío y circulación de gases, se aplicarán para construir los dos sistemas en una sola instalación.
3.4 Diseño de la planta de secado por vacío – circulación de gases.

Introducción

Como se dijo en el apartado anterior se ha unificado el diseño y montaje de la instalación de vacío y la de circulación de gases. El esquema final se muestra en la Figura 3.19.

![Figura 3.19. Esquema final de vacío-circulación de gases](image)

Con esta instalación y las válvulas oportunas se van a conseguir realizar las pruebas de vacío y de circulación de gases, además de algunas variaciones para probar su efectividad. Se ha hecho un bypass a cada trampa fría para tener siempre la opción de utilizarlas sin tener que desmontar el circuito.

Se muestra el diseño realizado con el programa de diseño asistido por computador Solidworks™ en la Figura 3.20.
3.4.1 Funcionamiento

3.4.1.1 Para el método de vacío:

Se hará un vacío parcial (máximo de 0,6 bares) dentro del depósito con las muestras utilizando la bomba de vacío, a la vez que se calientan las muestras simulando LFH. Cuando se alcance el nivel de vacío deseado, el vacúmetro ordenará el cierre de la electroválvula. Se podrá probar este método con la opción de utilizar o no la trampa fría.

Otra opción es realizar el vacío, y a través del bypass recircular la poca cantidad de aire que quede dentro del depósito utilizando la bomba de circulación. El tubo calefactor calentará el aire hasta unos 90 ºC, que entrará al depósito y volverá a salir acompañado de la humedad que haya absorbido de las muestras de papel, pasando luego por la trampa fría de la recirculación. Esto bajará la temperatura del aire hasta unos 0 ºC, volviendo a pasar por la bomba y la manguera calefactora, repitiendo el proceso el tiempo que sea necesario.
3.4.1.2 Para el método de circulación de gases:

Se hará vacío en el depósito utilizando la bomba de vacío a través del bypass. Después se introducirá el gas a utilizar a través de una válvula especial, hasta que la presión dentro del depósito sea la misma que fuera de él.

Se recirculará el gas con la bomba para calentarlo con la manguera calefactora y hacerlo pasar por la trampa fría, igual que la segunda variante del método de vacío. La trampa fría condensará la humedad absorbida por el gas caliente.

Es necesario definir cada una de las partes del esquema.

3.4.2 Requerimientos

Se necesitaba un depósito de unos 20 litros de capacidad aproximadamente para introducir las muestras de papel, similar a la olla utilizada para el método del aceite.

Como ya se ha dicho se va a hacer vacío en la instalación o se van a usar gases que absorban bien la humedad, como son el nitrógeno y el aire sintético. Las propiedades de estos gases son las siguientes.

- **Nitrógeno.**

 Es un gas incoloro, inodoro, insípido y no tóxico, y existe como gas no inflamable a temperatura y presión atmosférica. Una densidad relativa de 0,9669 hace que el nitrógeno sea más ligero que el aire. Es además ligeramente soluble en agua, y otros muchos líquidos, y es un conductor pobre de calor y electricidad. Se obtiene industrialmente por destilación fraccionada del aire líquido [20].

 Sus propiedades físicas son las siguientes:
Aire sintético.

Es un gas incoloro, inodoro e insípido que se obtiene mediante la comprensión de aire atmosférico o a partir de una mezcla elaborada de sus componentes mediante destilación criogénica [21]. El aire respirable está compuesto aproximadamente por un 78,08% de nitrógeno (N$_2$), un 20,94% de oxígeno (O$_2$), un 0,035% de dióxido de carbono (CO$_2$) y un 0,93% de gases inertes como el argón y el neón [22].

<table>
<thead>
<tr>
<th>Fórmula química</th>
<th>N$_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peso molecular</td>
<td>28,013 g/mol</td>
</tr>
<tr>
<td>Temperatura de ebullición (1 atm)</td>
<td>-195,8 ºC</td>
</tr>
<tr>
<td>Temperatura crítica</td>
<td>-146,9 ºC</td>
</tr>
<tr>
<td>Presión crítica</td>
<td>33,9 bar</td>
</tr>
<tr>
<td>Densidad gas (20 ºC, 1 atm)</td>
<td>1,161 kg/m3</td>
</tr>
<tr>
<td>Densidad líquido (1 atm)</td>
<td>0,808 kg/m3</td>
</tr>
<tr>
<td>Peso específico (aire=1)</td>
<td>0,967</td>
</tr>
<tr>
<td>Conductividad térmica (25 ºC, 1 atm)</td>
<td>0,02598 w/m ºK</td>
</tr>
<tr>
<td>Calor específico C$_p$</td>
<td>1.040 J/kg ºK (a P constante)</td>
</tr>
<tr>
<td>Solubilidad en el agua (0 ºC, 1 atm)</td>
<td>2,33 cm3 N$_2$/100 l H$_2$O</td>
</tr>
</tbody>
</table>

Tabla 3.4. Propiedades físicas del nitrógeno [21]

Tabla 3.5. Propiedades físicas del aire [21]

Estos datos se utilizarán más adelante para calcular transferencias de calor.
3.4.3 Seleción de la bomba de vacío

El Departamento de Electricidad de la Universidad Carlos III dispone de una bomba de vacío que se va a utilizar en este proyecto para hacer el vacío en el depósito. Es el siguiente modelo:

![Bomba de vacío](image)

Figura 3.21. Bomba de vacío [23]

<table>
<thead>
<tr>
<th>Bomba</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca:</td>
<td>VACUUBRAND</td>
</tr>
<tr>
<td>Modelo:</td>
<td>RE 2.5</td>
</tr>
<tr>
<td>Tipo de bomba:</td>
<td>Bomba rotativa a paletas</td>
</tr>
<tr>
<td>Conexión de aspiración:</td>
<td>KF DN 16</td>
</tr>
<tr>
<td>Conexión de impulsión:</td>
<td>Oliva DN 10</td>
</tr>
<tr>
<td>Capacidad de aspiración:</td>
<td>2,3 m³/h</td>
</tr>
<tr>
<td>Vacío máximo:</td>
<td>0,3 mbar</td>
</tr>
<tr>
<td>Tensión:</td>
<td>220-380 V</td>
</tr>
<tr>
<td>Frecuencia:</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Velocidad:</td>
<td>1.500 rpm</td>
</tr>
<tr>
<td>Protección:</td>
<td>IP-40</td>
</tr>
</tbody>
</table>

Tabla 3.6. Características de la bomba de vacío [23]
Para controlar el vacío que se va a hacer en el sistema se instaló en el depósito un vacuómetro con control de vacío. Se muestra el seleccionado en la Figura 3.22.

![Vacuómetro con control de vacío](image1)

Figura 3.22. Controlador de vacío [23]

Este modelo además de medir el nivel de vacío permite el control de una electroválvula, abriéndola y cerrándola mientras trabaja la bomba, para así mantener el nivel de presión en un valor preestablecido. Se muestra la electroválvula que se utilizó y donde se colocó en la instalación en la Figura 3.23.

![Electroválvula](image2)

Figura 3.23. Electroválvula. Imagen [23] y situación

Es la válvula marcada con las letras ‘ev’. Controla todo el aire que se saca del depósito. Las otras válvulas de la instalación son manuales.
3.4.4 Selección de la bomba de circulación

Se necesita una bomba para recircular la atmósfera que queda al hacer vacío y los gases que se introduzcan para el método de circulación de gases. Se ha escogido la siguiente:

![Bomba de circulación](image)

Figura 3.24. Bomba de circulación [23]

<table>
<thead>
<tr>
<th>Bomba</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca: VACUUBRAND</td>
</tr>
<tr>
<td>Modelo: ME 2</td>
</tr>
<tr>
<td>Tipo de bomba: Bomba a membrana</td>
</tr>
<tr>
<td>Conexión de aspiración: Oliva DN 10</td>
</tr>
<tr>
<td>Conexión de impulsión: Oliva DN 10</td>
</tr>
<tr>
<td>Capacidad de aspiración: 1.9 m³/h</td>
</tr>
<tr>
<td>Vacío máximo: 80 mbar</td>
</tr>
<tr>
<td>Tensión: 220-380 V</td>
</tr>
<tr>
<td>Frecuencia: 50 Hz</td>
</tr>
<tr>
<td>Velocidad: 1.500 rpm</td>
</tr>
<tr>
<td>Protección: IP-54</td>
</tr>
</tbody>
</table>

Tabla 3.7. Características de la bomba de circulación [23]
Se escogió otra bomba de vacío para recircular los gases, por si surgieran problemas con otras bombas convencionales al trabajar a presiones menores, como es la atmósfera que queda al hacer vacío. La bomba de vacío normalmente absorbe aire por la entrada y lo expulsa por la salida, preparada para seguir trabajando hasta unos límites de vacío. Se conectó la salida otra vez al depósito, lo que consigue una circulación constante del aire interior. No se requiere que esta bomba tenga características especiales en cuanto a la presión (nivel máximo de vacío), ni a la temperatura (trabajará después de la trampa fría). Se escogió la que menor caudal utilizaba (1,9 m3/h a presión atmosférica), para que diera tiempo a calentar el gas a la temperatura deseada al pasar por el tubo calefactor. Se muestra su relación caudal – presión en la Figura 3.25.

![Figura 3.25. Gráfica caudal - presión de la bomba de circulación [23]](image)

Sobre los valores de vacío que se trabajarán en este modelo (máx 600 mbar) la bomba circulará siempre entre 1,5 y 1,9 m3/h.
3.4.5 Trampa fría

El departamento de Electricidad de la Universidad Carlos III de Madrid dispone de dos trampas frías que se van a utilizar en este montaje. Se muestran en la Figura 3.26.

![Trampas frías](image)

Figura 3.26. Trampas frías

Se estima que el aire salga de la trampa fría a una temperatura aproximada de 0 ºC antes de pasar por las bombas.
3.4.6 Manguera calefactora

Se necesitaba calentar el gas lo suficiente para que entrara a unos 90 ºC dentro del depósito, y con la ayuda del LFH absorbiera la humedad contenida en las muestras. La manera más fácil de calentar el gas es utilizando una manguera calefactora. Se muestra en la Figura 3.27:

![Diagrama de manguera calefactora]

Figura 3.27. Manguera calefactora [24]

Esta manguera está dotada de un sensor de temperatura y un controlador PID, con el que se puede ajustar la temperatura de salida de los gases. Según la indicación del sensor, la manguera calentará automáticamente lo necesario para mantener esa temperatura.

Se ha escogido una manguera calefactora de 8 mm de diámetro interno, que se ajusta bastante bien a la conexión con la que se va a unir al circuito y no reduce demasiado la sección de conexión de la bomba (10 mm). Como se estimó que los gases salieran a una temperatura aproximada de 0 ºC de la trampa fría es necesario que la variación de temperatura entre la entrada y la salida de la manguera sea por lo menos de 100 ºC.

En un conducto con transferencia de calor, y en el caso de flujo uniforme de calor en las paredes del conducto, realizando un balance energético se obtiene la siguiente ecuación [25]:

\[
\frac{dT}{dx} = \frac{q' \cdot x}{m \cdot c_p} = cte \rightarrow \Delta T = \frac{q' \cdot x}{m \cdot c_p}
\]
donde:

\(\Delta T \)
variación de temperatura (ºK ó ºC)

\(q' \)
flujo de calor por unidad de longitud (W/m)

\(x \)
longitud del conducto (m)

\(\dot{m} \)
flujo másico del fluido (kg/s)

\(c_p \)
calor específico a presión constante (J/kg ºK)

Mirando las Tabla 3.4 y 3.5 (página 51) de propiedades de los gases, el flujo másico lo determina la bomba de circulación y la densidad del gas a utilizar:

-Para el nitrógeno

\[
\dot{m}_{N_2} = \frac{1.9 m^3}{h} \cdot \frac{1.161 kg}{m^3} \cdot \frac{1 h}{3600 s} = 6.1275 \cdot 10^{-4} kg/s
\]

-Para el aire

\[
\dot{m}_{aire} = \frac{1.9 m^3}{h} \cdot \frac{1.293 kg}{m^3} \cdot \frac{1 h}{3600 s} = 6.8242 \cdot 10^{-4} kg/s
\]

El calor específico a presión constante es \(C_{pN_2} = 1.040 \) J/kg ºK y \(C_{p aire} = 1.012 \) J/kg ºK.

El flujo de calor viene dado por el fabricante, para esa manguera \(q' = 120 \) W/m. Sustituyendo todos los valores en la ecuación (5) y poniendo una longitud inicial de 1 metro se obtiene:

\[
\Delta T_{N_2} = \frac{q' \cdot x}{\dot{m}_{N_2} \cdot C_{pN_2}} = \frac{120 W/m \cdot 1 m}{6.1275 \cdot 10^{-4} kg/s \cdot 1.040 J/kg \cdot K} = 188.3 K
\]
\[\Delta T_{aire} = \frac{q' \cdot x}{\dot{m}_{aire} \cdot C_{p_{aire}}} = \frac{120 \frac{W}{m} \cdot 1m}{6,824 \cdot 10^{-4} \frac{kJ}{s} \cdot 1.012 \frac{J}{kg \cdot K}} = 173,7 \, K \]

Se consigue calentar lo suficiente con un metro de manguera. Como todos estos cálculos son en condiciones ideales se determinó usar dos metros de manguera para asegurar que el gas salga a la temperatura deseada al depósito.

Características de la manguera calefactora:

Manguera calefactora

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marca</td>
<td>ISOPAD</td>
</tr>
<tr>
<td>Modelo</td>
<td>IHH 200</td>
</tr>
<tr>
<td>Tipo de manguera</td>
<td>PTFE con malla trenzada de acero inox.</td>
</tr>
<tr>
<td>Conexión</td>
<td>AGR G 3/8” macho</td>
</tr>
<tr>
<td>Sistema de protección</td>
<td>IP 65</td>
</tr>
<tr>
<td>Temperatura máxima</td>
<td>200 ºC</td>
</tr>
<tr>
<td>Voltaje nominal</td>
<td>230 V.</td>
</tr>
<tr>
<td>Diámetro nominal</td>
<td>8 mm</td>
</tr>
<tr>
<td>Presión máx. a 200 ºC:</td>
<td>10 bar</td>
</tr>
<tr>
<td>Potencia</td>
<td>120 W/m</td>
</tr>
<tr>
<td>Sensor de temperatura</td>
<td>PT 100</td>
</tr>
<tr>
<td>Longitud</td>
<td>2 m</td>
</tr>
</tbody>
</table>

Regulador de temperatura

<table>
<thead>
<tr>
<th>Característica</th>
<th>Valor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tipo</td>
<td>Analógico IconT 7020</td>
</tr>
<tr>
<td>Bucle de regulación</td>
<td>PID</td>
</tr>
<tr>
<td>Voltaje nominal</td>
<td>230 V.</td>
</tr>
<tr>
<td>Intensidad</td>
<td>10 A</td>
</tr>
</tbody>
</table>

Tabla 3.8. Características manguera y regulador
Se muestra la manguera calefactora y el regulador en la Figura 3.28.

![Manguera calefactora y regulador de temperatura](image)

Figura 3.28. Manguera calefactora y regulador de temperatura.

3.4.7 Depósito para las muestras

Se construyó un depósito de acero inoxidable para las muestras de celulosa. Se valoró utilizar otra olla a presión como en el montaje de circulación de aceite, pero al tener unas paredes delgadas podría no soportar el vacío, por lo que se descartó su utilización y se determinó construirlo de manera íntegra.

Se necesita un depósito de unos 20 litros de capacidad aproximadamente, parecido a la olla de circulación de aceite. Se puede tomar un diámetro interior de 300 mm. Se puede calcular la altura del depósito con el volumen del cilindro de la siguiente forma:

\[
V = \pi \cdot r^2 \cdot h
\]

(2)
donde:

V \quad \text{volumen del cilindro (mm3).} \\
\text{r} \quad \text{radio de la base (mm).} \\
\text{h} \quad \text{altura del cilindro (mm).}

El volumen es unos 20 litros, y el radio de la base tomado es de 150 mm. Por tanto sustituyendo en (2):

\[
V = 20 \cdot l = 20.000.000 \text{ mm}^3 = \pi \cdot (150 \text{ mm})^2 \cdot h
\]

despejando h:

\[
h = \frac{20.000.000}{\pi \cdot 150^2} = 283 \text{ mm}
\]

Tomando un diámetro de 300 mm se necesita una altura aproximada de 300 mm para tener 20 l de capacidad. La forma más rápida para abrir y cerrar el depósito para cambiar las muestras garantizando la estanqueidad del mismo puede ser utilizando un tornillo de apertura en la tapa y juntas de goma. Se muestra el diseño del depósito construido en la Figura 3.29:

![Diseño del depósito para las muestras de papel](image-url)
El depósito construido se muestra en la Figura 3.30.

![Figura 3.30. Depósito construido para las muestras](image)

3.4.8 Mangueras y conexiones

Es necesario determinar todas las conexiones que se van a realizar en el montaje, como se van a hacer, y garantizar éstas soporten presiones de vacío y la temperatura de trabajo. Se intentó que todos los elementos que estén en contacto con el gas fueran de acero inoxidable como el depósito, exceptuando las mangueras de caucho.

Para hacer cualquier conexión al depósito se van a soldar unas piezas de acero inoxidable (Figura 3.31).
Estas piezas tienen en un lado la conexión de vacío que se va a utilizar en todo el montaje (KF DN). Para unir dos conexiones KF DN hace falta un anillo centrador y una abrazadera. El anillo normalmente es de goma, y garantiza la estanqueidad en todas las conexiones. Se muestra en la Figura 3.32.

Figura 3.32. Anillo centrador [23]

Las abrazaderas son de aluminio, se muestran en la Figura 3.33.

Figura 3.33. Abrazaderas de aluminio (cotas en mm) [23]
La electroválvula ya se eligió anteriormente (Figura 3.23, página - 53 -). Como se puede observar también tiene conexión KF DN, con lo que se pueden ajustar perfectamente a los terminales. Las válvulas manuales que se utilizaron fueron válvulas de bola de acero inoxidable con conexión KF DN. Se muestran en la Figura 3.34.

![Válvula de bola de acero inoxidable](image1)

Figura 3.34. Válvula de bola de acero inoxidable [23]

Para los bypass son necesarias unas piezas en T de acero inoxidable con conexión KF DN. Se muestra en la Figura 3.35.

![Pieza en T para los bypass](image2)

Figura 3.35. Pieza en T para los bypass [23]
La manguera calefactora se encargó con conexión G 3/8”. Se necesitaba un adaptador que pasara de esta conexión a KF DN. Se muestra en la Figura 3.36.

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF DN 10 / G3/8”</td>
<td>35</td>
<td>15.5</td>
<td>G3/8”</td>
<td>20</td>
</tr>
<tr>
<td>KF DN 16 / G1/2”</td>
<td>35</td>
<td>16</td>
<td>G1/2”</td>
<td>25</td>
</tr>
<tr>
<td>KF DN 25 / G1”</td>
<td>45</td>
<td>22</td>
<td>G1”</td>
<td>38</td>
</tr>
</tbody>
</table>

Figura 3.36. Adaptadores KF DN - G3/8” [23]

Como la bomba de circulación y las trampas frías tienen conexión de oliva (a presión), son necesarios también adaptadores que pasen esta conexión a KF DN. Se muestran en la Figura 3.37.

<table>
<thead>
<tr>
<th>Size</th>
<th>A</th>
<th>B</th>
<th>d₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>KF DN 10 / DN 6 mm</td>
<td>40</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>KF DN 16 / DN 6 mm</td>
<td>40</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>KF DN 16 / DN 10 mm</td>
<td>40</td>
<td>7</td>
<td>12</td>
</tr>
<tr>
<td>KF DN 25 / DN 8 mm</td>
<td>40</td>
<td>6</td>
<td>10</td>
</tr>
</tbody>
</table>

Figura 3.37. Adaptadores KF DC - oliva [23]

Para introducir el nitrógeno o el aire sintético en la instalación, es necesaria una válvula especial de entrada de gases en sistemas de vacío. Se muestra en la Figura 3.38.
Los tramos de manguera que se utilizaron fueron 6 con conexión de oliva a presión (bomba y trampas frías). Para los bypass se conectaron directamente las piezas en T y las válvulas. Para las conexiones a presión se utilizaron tramos cortos de manguera de caucho especialmente diseñada para soportar el vacío.
3.4.9 Estructura de soporte

Se ha construido una estructura que soporte todo el peso de la planta y fije todos los componentes. Se muestra en la Figura 3.39.

![Estructura de soporte](image)

Figura 3.39. Estructura para la instalación de vacío-gases

3.4.10 Sistema de adquisición de datos

La manguera calefactora ya tiene un sensor de temperatura con control PID. Es necesario medir la temperatura dentro del depósito con las muestras de papel. Se han colocado unos sensores de temperatura dentro del depósito como los mostrados en la Figura 3.13 (página- 42 -).
3.4.11 Montaje resultante

Se muestra la siguiente fotografía con el resultado del montaje.

Figura 3.40. Planta de secado por vacío-circulación de gases

Se puede establecer una lista de los materiales empleados. Se muestra en el Anexo 2.
4. CONCLUSIONES

Para llevar a cabo este proyecto fin de carrera se hizo necesario aplicar e integrar los distintos conocimientos adquiridos en la formación como ingeniero industrial. Como resultado de ello se construyeron dos plantas experimentales para secado a escala de papeles aislantes (secado por circulación de líquidos, secado por gases y vacío).

Con las plantas experimentales se podrán llevar a cabo experimentos de secado de papeles aislantes a escala, con la posibilidad de controlar y registrar las diferentes variables involucradas en los procesos de secado en campo de transformadores de potencia.

La investigación de los procesos de secado en campo sobre transformadores de potencia reales es más compleja que los experimentos a realizar en una planta de secado a escala ya que muchas de las variables involucradas en los secados son difíciles de controlar o registrar de manera fiable. Se espera que con el diseño y construcción de estas plantas de secado a escala se recreen de manera fiable los procesos de secado de los papeles aislantes de un transformador de potencia, facilitando así las labores de investigación encaminadas a mejorar este tipo de mantenimiento sobre un equipo indispensable en los sistemas eléctricos de potencia como lo es el transformador.

Adicionalmente el uso de las plantas permitirá además la reducción de costes asociados a llevar a cabo experimentos sobre transformadores reales porque se disminuirá la necesidad de descarga de estos equipos para fines experimentales, limitándose la desconexión solamente a las etapas de comprobación de los procedimientos desarrollados.
5. REFERENCIAS BIBLIOGRÁFICAS

Anexo I. Lista de materiales para la planta de secado por circulación de aceite

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Fabricante</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bomba MG-209XPS17 con motor monofásico</td>
<td>FLUID-O-TEC</td>
<td>1</td>
</tr>
<tr>
<td>Cartucho filtrante Superdri® SD-718</td>
<td>VELCON</td>
<td>1</td>
</tr>
<tr>
<td>Cuerpo del filtro VF-71E</td>
<td>VELCON</td>
<td>1</td>
</tr>
<tr>
<td>Mangueras y elementos de conexión</td>
<td>HIDRÁULICA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CARRERA</td>
<td></td>
</tr>
<tr>
<td>Bornas de conexión aire-aceite</td>
<td>ELECTROTRANS</td>
<td>2</td>
</tr>
<tr>
<td>Olla a presión de acero inoxidable</td>
<td>LACER</td>
<td>1</td>
</tr>
<tr>
<td>Caudalímetro</td>
<td>TRIMEC</td>
<td>1</td>
</tr>
<tr>
<td>Estructura de nikai con ruedas</td>
<td>A medida</td>
<td>1</td>
</tr>
</tbody>
</table>

Tabla Al.1. Lista de materiales para la planta de secado por circulación de aceite.
Anexo II. Lista de materiales para la planta de secado por vacío – gases.

<table>
<thead>
<tr>
<th>Nombre</th>
<th>Fabricante</th>
<th>Cantidad</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depósito de acero inoxidable</td>
<td>A medida</td>
<td>1</td>
</tr>
<tr>
<td>Bomba de circulación</td>
<td>VACUUBRAND</td>
<td>1</td>
</tr>
<tr>
<td>Controlador de vacío</td>
<td>VACUUBRAND</td>
<td>1</td>
</tr>
<tr>
<td>Bornas de conexión</td>
<td>ELECTROTRANS</td>
<td>2</td>
</tr>
<tr>
<td>Estructura de nikai</td>
<td>A medida</td>
<td>1</td>
</tr>
<tr>
<td>Manguera calefactora con PID</td>
<td>ISOPAD</td>
<td>1</td>
</tr>
<tr>
<td>Anillo centrador de goma</td>
<td>VACUUBRAND</td>
<td>23</td>
</tr>
<tr>
<td>Abrazaderas de aluminio</td>
<td>VACUUBRAND</td>
<td>23</td>
</tr>
<tr>
<td>Electroválvula</td>
<td>VACUUBRAND</td>
<td>1</td>
</tr>
<tr>
<td>Terminales largos de acero inox.</td>
<td>VACUUBRAND</td>
<td>4</td>
</tr>
<tr>
<td>Piezas en T de acero inox.</td>
<td>VACUUBRAND</td>
<td>5</td>
</tr>
<tr>
<td>Válvula de bola de acero inox.</td>
<td>VACUUBRAND</td>
<td>5</td>
</tr>
<tr>
<td>Adaptadores KF DN - oliva</td>
<td>VACUUBRAND</td>
<td>6</td>
</tr>
<tr>
<td>Adaptadores KF DN – G3/8’’</td>
<td>VACUUBRAND</td>
<td>2</td>
</tr>
<tr>
<td>Válvula de entrada de gas</td>
<td>VACUUBRAND</td>
<td>1</td>
</tr>
<tr>
<td>Tramos de mang. L=500 mm con KF DN</td>
<td>VACUUBRAND</td>
<td>2</td>
</tr>
<tr>
<td>Tramos de manguera L=500 mm</td>
<td>VACUUBRAND</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabla AII.1. Lista de materiales para la planta de secado por vacío – gases.