
Distributed Decision Making in Checkers

J. Ignacio Giráldez and Daniel Borrajo

Universidad Carlos III de Madrid
c/ Butarque, 15

28911 Leganés, Madrid, Spain
{giraldez,dborrajo}@ia.uc3m.es

Abstract. The game of checkers can be played by machines running
either heuristic search algorithms or complex decision making programs
trained using machine learning techniques. The first approach has been
used with remarkable success. The latter approach yielded encouraging
results in the past, but later results were not so useful, partly because
of the limitations of current machine learning algorithms. The focus of
this work is the study of techniques for distributed decision making and
learning by Multi-Agent DEcision Systems (MADES), by means of their
application to the development of a checkers playing program. In this
paper, we propose a new architecture for knowledge based systems ded-
icated to checkers playing. Our aim is to show how the combination
of several known models for checkers playing can be integrated into a
MADES, that learns how to combine individual decisions, so that the
MADES plays better than any of them, without “a priori” knowledge
of the quality or area of expertise of each model. In our MADES, we
integrate well known search algorithms along standard machine learning
algorithms. We present results that clearly show that the team as a single
entity plays better than any of its components working in isolation.

1 Introduction

Computer programs for checkers play have been traditionally built using quite
different approaches and paradigms. Heuristic search combined with database
lookups has yielded impressive results [13], while machine learning algorithms
have fared poorly. As it is stated in [13], some methods like genetic algorithms,
neural nets and function optimization have been tried for the task of learning
to classify checkers situations (as either win, loss, or draw for a given color),
but were discarded because of unacceptably high error rates. The authors of
the present paper have experimented with several machine learning paradigms
(ID3 [7], C4.5 [8], bayesian learning [14], and backpropagation [10]) and have
obtained similar results. In section 2 we discuss this issue and report on our own
experience.

On the one hand, heuristic search combined with database lookup requires
the use of huge resources and takes a limited advantage of available knowl-
edge, but performs satisfactorily. On the other hand, machine learning programs

H.J. van den Herik, H. Iida (Eds.): CG’98, LNCS 1558, pp. 183–194, 1999.
c© Springer-Verlag Berlin Heidelberg 1999 1

Cita bibliográfica
Published in: Computers and Games. Proceedings of the First International Conference, CG'98. Tsukuba (Japan), November 1998, p. 183-194

184 J. Ignacio Giráldez and Daniel Borrajo

should provide a satisfactory solution to a problem that is full of learning oppor-
tunities, but they fail to do so in the general setting given the huge hypothesis
spaces. Since we believe that you can take advantage of both approaches, we pro-
pose to integrate them in a distributed checkers playing system. With this aim,
we built autonomous decision making and learning systems for playing checkers,
based on heuristic search and different machine learning paradigms. Each one
of these systems is built as an autonomous agent using a single paradigm, and
is able to play checkers. We have organized them as a Multi Agent DEcision
System (MADES) [4].

The MADES decides which move to make on the checkers board by means
of a distributed decision making procedure as explained in section 3. The idea
of building a distributed decision making and learning system to play checkers
is based on the following belief: given appropriate conditions, a group of agents
forming a MADES is expected to play better than any of them playing in iso-
lation. The aforementioned conditions were discussed at length in [3] by the
authors, in a general context. The purpose of integrating individual monolithic
systems into a MADES is to obtain a team performance unattainable when the
individual systems work in isolation. We believe this to be an issue of paramount
importance since it provides a performance enhancement mechanism (again, only
when certain conditions are met).

A similar approach was used by Epstein [2]. In that case, she built a set
of game-independent Advisors, some of them could also learn using different
learning techniques. Her system had a meta-theory on how to play independent
of the actual game that was been played. In our case, we differentiate between
the agents that propose a decision (move in the case of game playing) and the
advisors that decide on which agent is more appropriate for that decision. This
allows us to learn two different concepts: how to make a decision, and how to give
credit to someone making a decision. Also, her meta-theory depends very much
on the game playing paradigm, while our architecture is domain-independent.1

Finally, her advisors did not collaborate for making decisions, while our agents
are allowed to ask for advice to the rest.

In section 4 we explain the experiments we have carried out and give the
results obtained. We evaluate these results and draw some conclusions in sec-
tion 5.

2 Machine Learning and the Game of Checkers

The game of checkers, like most games, is full of learning opportunities for ma-
chine learning systems. The pioneering work of Arthur Samuel [11], demonstrated
the use of two learning mechanisms which noticeably improved the behaviour
of his checkers program. The learning mechanisms he used in his program were
very primitive, compared to the range of machine learning formalisms available
nowadays. Nonetheless, these formalisms have not yet provided a satisfactory
1 We are currently applying it to a hard induction problem, with very encouraging

results.
2

Distributed Decision Making in Checkers 185

machine learning solution to checkers. The focus of Samuel’s work was the study
of machine learning techniques in the context of checkers, so he resisted the temp-
tation of hardwiring expert knowledge into his program, because he insisted in
letting the program discover that knowledge by itself.

Supervised machine learning paradigms can be used to build game playing
programs [6]. These learning systems use past play experience, and create a sum-
marised representation of it, that forms the basis for decision making systems,
that can make the decision of which move to make. Past play experience is con-
tained in a training set, usually as a series of board descriptions, each followed
by the final outcome (class). Supervised machine learning paradigms try to find
common patterns in the boards that belong to the same class, and the collection
of patterns encountered is used to build a class membership criterium that is
used to classify (possibly) unseen checkers situations.

The authors have built for their experiments four different supervised learn-
ing systems, based on the following paradigms: ID3, C4.5, bayesian learning and
backpropagation. The training set used was a subset of 29000 randomly chosen
elements from the DB5 database [12]. The target concepts were win, draw and
loss for white (white to move in all the situations). For selecting which move
to make next, the successors of the current situation are presented to these pro-
grams. The program classifies every successor and gives it a score; the successor
that scores highest is the preferred one, and indicates which move to make next.
The situations of DB5 are endgames of 5 pieces at most, so the four systems
were trained with endgames of 5 pieces or less.2 Nonetheless, since we expected
to obtain a powerful generalization as a result of the inductive nature of the
algorithms involved, we tested the four systems with endgames of 8 pieces or
less.

The four programs showed a very selective performance: a given program of
the four may play certain endgames very well, but it plays others poorly (the set
of checkers problems that an agent plays satisfactorily is known as its competence
region). Moreover, the endgames that were played well by one program did not
coincide with those played well by another3 except for, as one would expect, in
the case of ID3 and C4.5, given that C4.5 uses the same basic techniques as ID3.
Since C4.5 handled well most of the situations that ID3 handled well, plus many
others, we stopped using ID3 and used C4.5 instead.

With the aim of improving the overall performance of the programs, a sec-
ond training set with 100, 000 situations, randomly taken from DB5, was built.
The four systems were trained with this new training set. Surprisingly, the back-
propagation system performed worse with this second training set. We modified
the topology of the neural network with the purpose of making more expressive
power available for internal representation, but none of the enlarged nets per-

2 Examples were randomly selected from the database. In case the database examples
have any kind of bias towards a specific type of position, this does not affect to our
goal; our aim is not to build the best machine learning system out of that data, but
to learn how to better combine it with other systems.

3 The reasons of this behaviour are explained in [3].
3

186 J. Ignacio Giráldez and Daniel Borrajo

formed any better than the one trained with the first training set; the neural
network did not scale up well. On the other hand, the Bayes and C4.5 systems
improved remarkably, but still showed the same highly selective behaviour.

None of the four systems that were tested performed satisfactorily. We be-
lieve that this is because of the effect of the representation formalism used to
represent the checkers situations in the training set. The use of an inadequate
representation formalism can cause an unacceptable error rate. Sometimes this
is due to the difficulty of expressing the target concept in terms of adequate
input attributes or combinations of them. The use of meaningful intermediate
concepts, with a more direct relation to the target concept, can alleviate this
problem. We will illustrate this point with an example. Suppose that having
one more king is to some extent determinant in some situations. Using the raw
board description, the machine learning program will only notice that having
some men in certain locations leads to some advantage (because of the existence
of a crowning chance). To identify the boards that lead to that advantage, raw
features will have to be combined, and many such combinations will have to be
remembered, and in some way related to that advantage. The feature combina-
tions that are thus grouped will be quite dissimilar. Now, let us imagine a higher
level description for the checkers situations, using intermediate concepts (e.g.
crowning chance in next move, crowning chance in n moves, capture chance in n
moves, dominance of the center, victory chance in n moves, and so on), besides
a raw description. The prior series of combinations of raw features is expressed
now more easily, because more descriptive features are being used. This means
that we are making the work easier for the machine learning program, because
the common pattern is now expressed in a simpler way (that involves less fea-
tures of the checkers situation description, combined more simply). This could
be achieved by careful hand writing of the input features, or by use of automatic
methods, such as constructive induction [9].

Other learning approaches applied to game playing have ranged from chunk-
ing in chess [1], temporal differences in backgammon [15], or bayesian learning
of evaluation functions in Othello [5]. A similar multi-agent approach applied to
game playing was followed by Wiering [17] by learning game evaluation func-
tions using hierarchical neural networks architectures. In his case, all the agents
implement the same paradigm (they are all neural networks). All the expert
networks used by Wiering are equally suitable for being specialized to deal with
any subset of the domain, as opposed to MADES hybrid approaches like ours,
where some agents are more likely to correctly classify some situations, given
that the paradigm they implement is better suited for that task.

3 Multi Agent Decision Systems for Checkers Play

In this section we describe how the overall architecture works as a problem
solving (decision making) and learning model.

4

Distributed Decision Making in Checkers 187

INTERNET

worker 1 worker n

advisor m

advisor 1

trainer

referee

.

.

.

. . .

Fig. 1. The Intelligent Agents Organisation.

3.1 The Composition of a MADES

The Intelligent Agents Organization is a model composed by multiple intelligent
heterogeneous agents that cooperate to attain a common overall goal. The IAO
structure, is shown in Figure 1.

– One agent, known as the referee, is in charge of the overall system con-
trol. It broadcasts problem instance descriptions (in our application they
are checkers situations), and control signals to the rest of the team. It then
receives the respective replies from the rest of the agents. These replies may
be either advice, or problem solving proposals (move proposals in our ap-
plication). The services the referee may request to an agent are: solution
proposal synthesis (only to worker agents), execution of a learning session
(if the agent has learning capabilities), and advice request (only to selected
agents). These service requests are scheduled in a way that maximizes par-
allellism (every agent runs on a different machine), so the MADES response
time is minimized.

– The worker agents receive problem descriptions (checkers situations) from
either the referee, or another worker, and reply with solution proposals. They
work in parallel on a solution proposal to the same problem instance, are
capable of autonomous decision making, and, some of them, have learning
capabilities. Any of them could be the basis of a monolithic system aimed
to solve each problem. The MADES should learn how to organize these
worker agents to obtain a joint performance superior to the one that would
be obtained in case we built a monolithic system with just one of the worker
agents. The learning mechanism that accomplishes this task is distributed
reinforcement learning of workers competencies [4].

– Several agents may play the role of advisors. They are contacted by other
agents that wish to know who is the worker that is expected to handle best
a given problem instance. The advisor replies with the identification of the
worker that is expected to solve best the problem instance. The advice is used

5

188 J. Ignacio Giráldez and Daniel Borrajo

by the referee as an aid for conflict resolution,4 and it is also used by workers
who wish to know which worker is the most appropriate for collaborating in
the solution of a problem instance.

– A trainer agent produces problem instances that are used for training and
testing. The criteria for problem synthesis affects the success of the learning
effort. We are currently working on procedures to determine how to produce
problems that speedup learning, and to force the learning of knowledge to
handle the worst solved problem instances.

3.2 IAO Decision Making

When a problem instance arrives at the referee, it consults the advisors to deter-
mine whether any worker agent is expected to solve that instance of the problem
satisfactorily. In that case, the proposal that this agent provides will be given a
privileged status when it has to compete with the proposals of its fellow workers.
The problem instance description is broadcast to the workers, so that they can
work on it, and reply with a solution proposal. One advantage IAO presents, is
that the advisors and the workers work in parallel, so the IAO response time
is a very small overhead longer than the one that would be obtained from a
monolithic system built from the most time consuming IAO worker.

When the referee receives the proposals of all the worker agents, and the
advice from its advisors, it has to decide which proposal to use (most of the
times this proposals will be incompatible and contradictory). The referee uses
a poll mechanism for conflict resolution: the proposal that gets the greatest
support is the one the referee will follow. The advisors’ candidates receive extra
votes in this poll, so they have some advantage over less credited workers.

One of the problems we perceived in previous experiments was that when the
number of classifier workers was greater than the number of searcher workers, the
system biased towards decisions made by classifiers, producing undesired results.
So, we defined an automatic weighting mechanism that equals the maximum
number of votes attainable by classifiers, and the maximum number of votes
attainable by searchers.

3.3 Learning in IAO

Two different kinds of learning take place in IAO. First, the autonomous worker
agents with learning capabilities can learn on their own about how to do their
respective work. This is usually called centralized learning [16]. And, second, the
advisors learn the workers competencies. This is a form of distributed learning.
Centralized learning deals with knowledge about solutions, that will permit a
worker agent to solve the problems it is presented, so it can be carried out locally
by the agent, isolated from the rest of the team. Conversely, distributed learning
of agents competencies requires the use of global information, because it is based
4 For instance, when the agents disagree about which move should be made, the referee

uses this advice to decide about which alternative to take.
6

Distributed Decision Making in Checkers 189

on distributed credit assignment, that analyzes the performance of the MADES
as a whole and of the workers individually, with the goal to learn competencies.
This kind of learning will be used to make the synergetic effect possible.

The centralized learning algorithms are the same ones used in monolithic
systems. Distributed learning is actually what will allow the team of agents to
perform better than the individuals on their own. In this process, the advisors
analyze how satisfactory the solution the MAS produced is.

We have designed an algorithm to learn workers competencies under the
following hypothesis: if a worker is the most competent in the solution of a
certain problem, it is also expected to be the most competent in the solution of
another problem of the same difficulty and appearance. If the problem space is
partitioned in subsets that contain similar problem instances, the competence
data known for a certain problem instance, is expected to be also valid for the
rest of the problem instances lying in the same subset of the partition. This is
a generalization mechanism whose success depends on the similarity measure
used.

How many subsets are used, and what the similarity metric is, depend on
the kind of problem. The goal of this partition is to enclose, in a single subset,
problem instances for which any worker agent deserves the same credit. The in-
tended learning will be as reliable as the degree of fulfillment to this requirement.
A reinforcement table is associated to every subset. In such a table, a reinforce-
ment is associated to every worker agent, whose meaning is how adequate is
the worker agent for the solution of problem instances lying in the subset. This
tables are used by a reinforcement advisor agent: once a problem instance ar-
rives to it, it locates the subset of the partition the problem belongs to, and the
associated reinforcement table. Then, it determines who is the most adequate
worker according to the table. If such a worker exists, the advisor replies to the
referee with the worker’s identification. Otherwise, it informs the referee about
the lack of discerning data. As a result of “a posteriori” problem solving episode
analysis, the participation of workers in the solution is determined, and they
are consequently reinforced. The analysis and the reinforcement learning effort
are carried out by the reinforcement advisor (the referee has been collecting and
preparing data for this process during the problem solving episode).

4 Implementation and Experiments

To evaluate the IAO model, we have built a MADES composed of 8 agents (see
Figure 2):

– The referee agent.
– An advisor agent, known as reinfAG, that builds and consults the appro-

priate reinforcement table, in order to advise other agents about the agent
that is expected to solve most satisfactorily a given problem instance.

– The C4.5AG agent, based on Quinlan’s C4.5 running in C trained on
100,000 instances randomly taken from the Schaeffer’s DB5 database of
checkers endgames [12].

7

190 J. Ignacio Giráldez and Daniel Borrajo

referee

INTERNET

trainer

alphaAG

C4.5AG

bayesAG

hybridAG

backpropAG

reinfAG

Fig. 2. Architecture of the checkers Multi-Agent System.

– backpropAG, a connectionist worker agent. We have built a neural net-
work that learns by means of the backpropagation with momentum learning
algorithm [10]. It has been trained with 29,000 examples taken from DB5.

– bayesAG, a bayesian classifier trained on the same 100,000 instances used
by C4.5AG, running in C.

– alphaAG, an alpha-beta based worker agent with decision making capabil-
ities only. Search has been constrained, so that the maximum search depth
is limited to 5, and the maximum number of moves that the move generator
outputs is 12. The purpose of this severe search constraint is to impose a
time limit per move, brief enough to make possible the execution of many
experiments,5 and long enough to yield interesting play. Again, the main goal
of this research (for now) is to learn how to combine several agents (strong
or not), but not to build the best ever player.
The knowledge this agent uses is hardwired into its evaluation function and
into its move generator (the moves believed to be most interesting are gen-
erated first). A simple evaluation function has been used, so that the time it
takes to compute it allows to compute it many times. The computation of
the evaluation function evaluates the material difference between both sides,
weighing the pieces with an amount that reflects the importance of the board
area it dominates. This naive evaluation function provides reasonably good
play in most common situations.

– hybridAG, a heuristic searcher, based on alpha-beta. When a search tree
leaf is reached, this worker asks reinfAG who is the worker that is expected
to handle best this leaf situation. In case that worker is available, hybridAG
requests from it the evaluation of the leaf node. If that worker is not available,
hybridAG performs the evaluation of the leaf node locally. Notice that this

5 Currently the average speed of problems played is around 100 per day, when the
MADES runs using 3 Linux PCs, 1 SPI 4MP, and 2 HP Apollo workstations, shared
with other users and applications. The availability of more powerful hardware would
make it possible to reach selective search depths in accordance to competition pro-
grams.

8

Distributed Decision Making in Checkers 191

is a loosely coupled hybrid system, and that the searcher will be coupled
with different classifiers at different moments.

– A trainer agent that produces problem instances that are used for training
and testing. These problems are produced in a balanced fashion: there are as
many situations that are wins (or losses) for white as there are for black. This
has been accomplished by: first, a checkers situation is randomly generated
according to some restrictions (e.g. the total amount of pieces must be equal
or less than a given constant); then, its inverted form is computed. If the
first situation was a win for black, the next situation produced will be its
inversion, i.e. a win for white. So, none of the sides is favored by the trainer.

The agents communicate using the TCP/IP protocol over the Internet. Since
the computers reside in the same network segment, the communication process
takes much less time than the time local servicing of requests takes. In case
computers in very distant locations were used, the network slowness in the heavy
traffic hours would need to be considered.

For training the MADES, 16,000 checkers problems were generated by the
trainer agent. The checkers problems were played until either one side wins, or
a draw is reached. The draw criterium we used is to test when a series of moves
was being cyclicly repeated.

The MADES played these problems against alphaAG, and a learning session
was executed after every problem was played. Since our aim is to prove that the
MADES can learn to make decisions in such a way that it beats any of its worker
agents playing on its own, the test games were played between the MADES and
each of its workers in turn. A set of 100 test problems was produced by the
trainer, and this set was used in all the matches. The following results were
obtained:

opponent MADES advantage
c4.5AG 42%

backpropAG 35%
bayesAG 34%
hybridAG 4%
alphaAG 4%

The MADES advantage is computed as the difference between the number
of games won by the MADES, minus the number of games won by its opponent,
divided by the number of games played, and multiplied by 100 to obtain a per-
centage. This equals to expressing the game equity as a percentage. We express
this calculation mathematically in the following formula:

adv(G) =
[w(G) − l(G)] × 100

|G|
where G is the set of games played, |G| is the number of played games, w(G)

is the number of games won by the MADES, and l(G) is the number of games
lost by the MADES. Since we played 100 games per match, the formula above is

9

192 J. Ignacio Giráldez and Daniel Borrajo

simplified in this case to the evaluation of the difference between the games won
by the MADES and the games won by its opponent. Further experiments with
matches consisting of 24 and 50 games, closely approximated the results shown
here.

The results show that the MADES beats any of its members. We believe
that this gain in the quality of play justifies by itself the construction of the
MADES from the standalone systems. We are currently in the MADES training
stage, where, after every training game, reinforcement tables are updated. Since
the reinforcement tables have not yet converged, we expect that the results will
improve as the tables get near their convergence values.

The flexibility of the IAO model allows the replacement of a worker by an-
other, and the adaption of the rest of the system to the new MADES composi-
tion, thanks to the adaptive behaviour of the advisor. We replaced two workers
during the MADES’s lifetime; the first replacement improved the MADES’ score
in 6.8%, and the second in 4.68%.

5 Discussion

What the results show might seem obvious to anyone: an isolated system should
be beaten (or drawn) by a team formed by itself plus other agents. What is not
obvious at all is to determine under which conditions this is feasible, and to learn
to control the system in a way that assures inter-agent cooperation and prevents
inter-agent hampering. It should be noted that there is no “a priori” clue about
how the individual systems should be combined, and that the MADES learns
how to perform this combination on its own. This is the main contribution of
the present work.

Initially, the competence and preference regions of the worker agents are
unknown. They are learnt by the system, and this information is used to influence
the way the MADES makes decisions. This is quite dissimilar to putting together
a program with good openings, a program with good middlegame play and
a program with good endgame play. Because, in the latter case, one has “a
priori” knowledge of the individual systems capabilities, while, in our model, the
individual capabilities are not known “a priori”, so the MADES has to learn
them. This is very common in machine learning: when one builds a decision
system based on the output of a machine learning paradigm, one usually cannot
foresee which instances will be either correctly or incorrectly classified (i.e. one
lacks “a priori” knowledge about the competence region of the system, except
for some very coarse grain guesses based on the composition of the training
set). So if computer checkers is to take advantage of decision systems based on
multiple autonomous learning (or not) agents, a method for learning dynamic
competencies like the one we propose here is needed, because there will not be
available “a priori” knowledge in the general case for determining which agents
should be heeded at a given time.6

6 There will be no informed nor reliable way to combine individual decisions to reach
a common overall decision.

10

Distributed Decision Making in Checkers 193

The focus of this work is the study of techniques for distributed decision
making and learning in MADES, and their application to the construction of
a checkers playing program. We are aware that the checkers system presented
here does not take advantage of the latest heuristic search enhancements, as
championship level programs do. Moreover, we restricted ourselves to checkers
problems of 8 pieces at most in our experiments.7 The assesment of the results
reported here provides an experimental background to support the adequacy
of the theoretical IAO model. Now that we have tested the adequacy of the
techniques involved, we wish to start working on producing a championship
level program, enlarging our scope to the whole game of checkers, and refining
and improving the existing agents.

The results improve as learning progresses due to two effects. On the one
hand, the more extensively the reinforcement tables cover the domain, the more
information that is available for reinfAG. We are in this first stage currently, and
the domain is not completely covered yet. This means that reinfAG can not give
advice in some situations because there is no reinforcement table corresponding
to the subsets those situations belong to. For the MADES to be mature, the
whole domain must be covered, and the reinforcement tables must get near its
convergence values.

On the other hand, the convergence of the reinforcement tables is a sec-
ond learning stage that will primarily take place after the covering is done. We
believe the MADES has not even passed the covering stage, because new re-
inforcement tables are often created during learning sessions. We expect the
results to improve when the problem domain be totally covered with the union
of the competence regions of the worker agents, and the reinforcement tables
have approached their convergence values.

6 Acknowledgements

We would like to thank Jonathan Schaeffer for making the DB5 and DB6 data-
bases available, as well as for his assistance with the code for its access.

References

[1] Hans Berliner and Murray Campbell. Using chunking to solve chess pawn
endgames. Artificial Intelligence Journal, 23:97–120, 1984.

[2] Susan L. Epstein. Heuristic Programming in Artificial Intelligence, chapter The
Intelligent Novice. Learning to Play Better, pages 273–284. Ellis Horwood, 1989.

[3] Jos I. Girldez and Daniel Borrajo. The intelligent agents organization. In Eugnio
Oliveira and Nick Jennings, editors, Proceedings of the Workshop on Multi-Agent
Systems: Theory and Applications (MASTA’97), pages 43–56, Coimbra, Portugal,
October 1997.

7 Due to an initial lack of computing power, and to our desire to avoid that the
intricacies of the problem domain would shift our attention from our primary goal.

11

194 J. Ignacio Giráldez and Daniel Borrajo

[4] Jos I. Girldez and Daniel Borrajo. Distributed reinforcement learning in multi-
agent decision systems. In Helder Coelho, editor, Progress in Artificial Intelligence,
Iberamia 98, number LNAI 1484 in Lecture Notes in Artificial Intelligence, pages
148–159, Lisboa, Portugal, October 1998. Springer-Verlag.

[5] Kai-Fu Lee and Sanjoy Mahajan. A pattern classification approach to evaluation
function learning. Artificial Intelligence Journal, 36:1–25, 1988.

[6] J. Ross Quinlan. Learning efficient classifiation procedures and their application
to chess end games. In R. S. Michalski, J. G. Carbonell, and T. M. Mitchell,
editors, Machine Learning, An Artificial Intelligence Approach, Volume I. Morgan
Kaufman, 1983.

[7] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
[8] J. Ross Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, San

Mateo, CA, 1993.
[9] L. De Raedt and M. Bruynooghe. Interactive concept-learning and constructive

induction by analogy. Machine Learning, 8(2):107–150, March 1992.
[10] D.E. Rummelhart, J.L. McClelland, and the PDP Research Group. Parallel Dis-

tributed Processing Foundations. The MIT Press, Cambridge, MA, 1986.
[11] Arthur Samuel. Some studies in machine learning using the game of checkers. In

E. Feigenbaum and J. Feldman, editors, Computers and Thought. McGraw-Hill,
New York, NY, 1963.

[12] Jonathan Schaeffer. DB5: Checkers endgames database.
ftp cs.ualberta.ca:/pub/chinook/DB5/, 1994.

[13] Jonathan Schaeffer, Robert Lake, Paul Lu, and Martin Bryant. Chinook, the
world man-machine checkers champion. AI Magazine, 17(1):21–29, Spring 1996.

[14] J.Q. Smith. Decision Analysis, a Bayesian Approach. Chapman & Hall, 1988.
[15] Gerald Tesauro. Practical issues in temporal difference learning. Machine Learn-

ing, 8(3/4):257–277, May 1992.
[16] G. Weiss. Some studies in distributed machine learning and organizational de-

sign. Technical Report FKI-189-94, Institut fur Informatik, Technische Universität
München, 1994.

[17] M. A. Wiering. TD learning of game evaluation functions with hierarchical neural
architectures. Master’s thesis, University of Amsterdam, 1995.

12

