COST Action

CA 16112

2

EUROPEAN COOPERATION

CENTAURIUM ERYTHRAEA EXTRACT MEDIATES PRO-SURVIVAL PATHWAYS AND INSULIN EXPRESSION IN STZ-TREATED BETA-CELLS

¹Đorđević, M., ¹Grdović, N., ¹Mihailović, M., ¹Arambašić Jovanović, J., ¹Uskoković, A., ¹Rajić, J., ¹Sinadinović, M., ¹Tolić, A., ²Mišić, D., ²Šiler, B., ¹Poznanović, G., ¹Vidaković, M. & ¹Dinić, S.

¹Department of Molecular Biology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia

² Department of Plant Physiology, Institute for Biological Research "Siniša Stanković", University of Belgrade, Bulevar despota Stefana 142, 11060, Belgrade, Serbia

sdinic@ibiss.bg.ac.rs

Diabetes is characterized by hyperglycaemia resulting from a deficiency in insulin secretion and/or action leading to severe diabetic complications. Despite numerous efforts, recovery and maintenance of functional beta-cells is still an unresolved task in diabetes therapy. Considering anti-diabetic properties of medicinal herb Centaurium erythraea Rafn (CE), this study aimed to analyze protective effects of the CE extract on Rin-5F beta-cell line exposed to diabetogenic agent streptozotocin (STZ). Cytoprotective concentration of CE extract (0.25 mg/mL) and IC₅₀ dose of STZ (12mM) were determined using cell viability assay (MTT). The level of insulin mRNA and the concentration of insulin released from beta-cells in a culture medium were analyzed by RT-qPCR and ELISA, respectively. Activity of Akt, ERK and p38 kinases, as well as nuclear levels of islet-enriched Pdx1 and MafA proteins were assessed by Western blot analysis. In comparison to STZ-treated cells, CE extract/STZ co-treatment increased viability of Rin-5F cells for 12%. STZ-treated beta-cells displayed reduced mRNA level of insulin to 63% and reduced insulin secretion to 76% in comparison to controls, while application of CE extract improved insulin mRNA level to 77% and insulin secretion to 90% of the control level. Improved viability and functionality of beta-cells could be ascribed to a CE extractmediated modulation of the activities of pro-survival Akt, ERK and p38 kinases and Pdx-1 and MafA factors involved in regulation of beta-cell proliferation and insulin expression/secretion. The results of this study suggest that CE extract promotes proliferative and pro-survival pathways in beta-cells and improves their functional properties.

Acknowledgements

CORE

This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. 173020) and partially by COST action CA16112.