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Abstract 

 

Dendritic cells (DC) are responsible for the initiation and shaping of the adaptive immune 

response and are in the focus of autoimmunity research. We were interested in comparison of DC 

obtained from autoimmunity-prone Dark Agouti (DA) rats and autoimmunity-resistant Albino 

Oxford (AO) rats. DC were generated from bone marrow precursors and matured (mDC) by 

lipopolysaccharide. Tolerogenic DC (tolDC) obtained by vitamin D3 treatment were studied in 

parallel. Profile of cytokine production was different in AO and DA mDC and tolDC. Expression 

of MHC class II molecules and CD86 were higher in DA DC, while vitamin D3 reduced their 

expression in dendritic cells of both strains. Allogeneic proliferation of CD4+ T cells was 

reduced by AO tolDC, but not with DA tolDC in comparison to respective mDC. Finally, 

expression of various genes identified as differentially expressed in human mDC and tolDC was 

also analyzed in AO and DA DC. Again, AO and DA DC differed in the expression of the 

analyzed genes. To conclude, AO and DA DC differ in production of cytokines, expression of 

antigen presentation-related molecules and in regulation of CD4+ T proliferation. The difference 

is valuable for understanding the divergence of the strains in their susceptibility to autoimmunity. 

Keywords: dendritic cells; autoimmunity; Dark Agouti rats; Albino Oxford rats; allogeneic 

proliferation. 
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Introduction 

 

Dendritic cells (DC) are the professional antigen-presenting cells able to activate and 

differentiate naïve CD4+ T cells into T helper cells (Th), and are, hence, the major initiators and 

propagators of the adaptive immune response [1, 2]. Besides stimulatory activity, DC also 

possess the ability to restrain T cell activity, i.e. they have tolerogenic effects [3]. Thus, proper 

functions of DC are needed for efficient adaptive immunity against infectious agents and for 

prevention of autoimmunity [4]. Having in mind that interferon (IFN)--producing Th1 cells and 

interleukin (IL)-17-producing Th17 cells are the major pathogenic populations in multiple 

sclerosis and in its animal model, the experimental autoimmune encephalomyelitis (EAE) [5], 

their activation and propagation by DC has a significant role in the pathogenesis of the central 

nervous system (CNS) autoimmunity observed in these diseases. Indeed, inappropriate functions 

of DC have been reported in the CNS autoimmunity [6]. For instance, DC obtained from 

peripheral circulation of multiple sclerosis patients had greater production of Th1-promoting IL-

12 and expression of chemokine receptors CCR5 and CCR7 in response to activation through 

toll-like receptors (TLR) [7]. Also, they were shown to produce more tumor necrosis factor 

(TNF), to induce higher expression of T cell co-stimulatory molecules CD80 and CD40 and 

lower expression of regulatory programmed cell death protein 1 (PD-1) [8]. Interestingly, these 

cells also had decreased steady-state release of IL-12 and type 1 IFN [9]. Importantly, lack of 

endogenenous IFN- could be a predisposing factor towards development of multiple sclerosis, 

as it was shown that IFN- treatment corrects abnormal expression of various genes in DC [10]. 

http://creativecommons.org/licenses/by-nc-nd/4.0/
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Albino Oxford (AO) and Dark Agouti (DA) rats are at the opposite poles of the susceptibility to 

the induction of EAE. It is really difficult to induce EAE in AO rats. Actually, our single 

successful attempt in the induction was based on the harsh and prolonged treatment of neonatal 

rats with antibiotics, resulting in marked changes in gut microbiota and gut-associated immune 

cells [11]. Even then, the severity of the disease was mild and short-lasting. On the contrary, DA 

rats develop EAE after immunization without adjuvants [12]. We have compared the two strains 

in relation to their divergence to EAE induction at multiple systemic, cellular and molecular 

levels. We demonstrated that these strains differ in their response to encephalitogenic 

immunization in lymph nodes draining the site of immunization [13, 14], in the gut-associated 

lymphoid tissue [15], and within the CNS [16, 17]. Generally, DA rats have dominant Th1 and 

Th17 reactivity in comparison to AO rats. Therefore, we have been interested in investigating the 

differences in DC between these strains. 

In the present study, mature DC (mDC) and tolerogenic DC (tolDC) generated from AO and DA 

rats were compared by analyzing their phenotype, cytokine secretion profile, gene expression 

and functionality. As general observation, DA DC were more stimulatory and pro-inflammatory 

in comparison to AO DC. 
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Material and Methods 

 

Experimental animals 

Females of AO and DA rats, 2–3 months of age, were used in all experiments. Animal 

manipulation and experimental procedures were approved by the local Ethics Committee 

(Institute for Biological Research ‘‘Siniša Stanković´”, No 03-01/17). 

Cells and cell cultures 

DC were obtained from bone marrow progenitors of AO and DA rats by two different protocols. 

According to the first protocol, cells (5 x 106/mL/well in 6-well plate) were cultured in RPMI 

1640 (Biological Industries, Kibbutz Beit-Haemek, Israel) supplemented with 10% fetal calf 

serum (FCS) (PAA Laboratories), in the presence of GM-CSF, IL-4 and Flt3L (25ng/ml each, all 

from Peprotech, Rocky Hill, NJ). The medium was refreshed on days 3 and 6. Cell maturation 

was performed in the presence of 100 ng/mL lipopolysaccharide (LPS) or 

polyinosinic:polycytidylic acid (PolyI:C) (both from Sigma-Aldrich, St. Louis, IL) for the last 

48h of cultivation. In the second protocol, cells (1 x 106/mL/well in 24-well plate) were cultured 

in RPMI 1640 supplemented with 10% FCS, 2mM glutamine and 1 mM sodium pyruvate (both 

from Sigma-Aldrich), in the presence of 20 ng/ml GM-CSF during 8 days. For the last 24h of 

cultivation, cells were stimulated with 100 ng/mL LPS. These cells are considered as mDC. In 

order to obtain tolDC) an additional treatment with 2 nM vitamin D3 (Calbiochem, San Diego, 

CA) was performed every 2 days, starting from day 0.  

http://creativecommons.org/licenses/by-nc-nd/4.0/


8 

© 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/  

 

Cervical lymph node cells (LNC) were obtained by mechanical disruption of the lymph nodes 

from DA and AO rats and stained with carboxyfluorescein succinimidyl ester (CFSE) (2 M, 

from Invitrogen, Carlsbad, CA) prior to cultivation with DC.  

Allogeneic cultivation 

DC from AO rats were co-cultured with CFSE-labeled DA LNC and the other way around at a 

1:20 ratio (2.5 x 104 DC: 5 x 105 lymph node cells) in 96-well round-bottom plates (Sarstedt, 

Nümbrecht, Germany). Co-cultivation lasted for 5 days. Cell proliferation was determined by the 

sequential loss of CFSE fluorescence, as detected by cytofluorimetry. The cells were stained for 

CD4 expression (PE-coupled anti-CD4, eBioscience, San Diego, CA) and CFSE was detected in 

CD4 cells. Samples were gated using forward (FSC) and side (SSC) scatter to exclude dead cells 

and debris (R1), as well as using FSC and FSC-W to exclude cell doublets (R2), CFSE+ 

population (R3) and CD4+ population (CD4). 

ELISA 

Cytokine concentration in cell culture supernatants was determined by sandwich ELISA using 

MaxiSorp plates (Nunc, Rochild, Denmark) and anti-cytokine paired antibodies according to the 

manufacturer’s instructions. Samples were analyzed in duplicates for rat IL-1β, IL-6, IL-10 

(R&DSystems, Minneapolis, MN), TNF (eBioscience), IL-12, p40 and transforming growth 

factor  (TGF- (BioSource, Camarrilo, CA). The results were calculated using standard curves 

made on the basis of known concentrations of the appropriate recombinant cytokines. 
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Flow cytometry 

The phenotype of DC was assessed by flow cytometry using anti-rat antibodies specific for 

MHCII and CD86. Cells were washed, re-suspended in 100 μl of PBS supplemented with 2% of 

rat serum and incubated with PE-labeled MHCII and FITC-labeled CD86 antibodies 

(eBioscience) for 30 minutes at 4oC. After washing, stained cells were detected using CyFlow 

Space flow cytometer (Partec, Munster, Germany). Samples were gated using forward (FSC) and 

side (SSC) scatter to exclude dead cells and debris, as well as using FSC and FSC-W to exclude 

cell doublets. 

RT-PCR 

Total RNA was isolated from cells using a TRI Reagent Solution (Ambion, Foster City, CA) and 

reverse transcribed using random hexamer primers and MMLV (Moloney Murine Leukemia 

Virus) reverse transcriptase, according to the manufacturer’s instructions (Fermentas, Vilnius, 

Lithuania). Prepared cDNA were amplified by using Maxima SYBR Green/ROX qPCR Master 

Mix (Fermentas) according to the recommendations of the manufacturer in an ABI PRISM 7000 

Sequence Detection System (Applied Biosystems, Foster City, CA). Thermocycler conditions 

comprised an initial step at 50 ˚C for 5 min, followed by a step at 95 ˚C for 10 min and a 

subsequent 2-step PCR program at 95 ˚C for 15 s and 60 ˚C for 60 s for 40 cycles. The PCR 

primers (Metabion) were as follows: Gapdh: 5'-TGG ACC TCA TGG CCT ACA T-3'; 5'-GGA 

TGG AAT TGT GAG GGA GA-3'; Cyp24a1: 5'-AAC GGT TCT GGGTGA ATA CG-3'; 5'- 

AGC GAA GGG GTT GAT CTT TT-3'; Mucl1: 5'-CCT CTG ATG GA CCA ACG AT-3';  5'-

http://creativecommons.org/licenses/by-nc-nd/4.0/
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CGT CAT CAT CAT CCC CTT CT-3'; Map7: 5'-GCG ACA TGT TCA AAG GAG TT-3'; 5'-

TTG GCT GCT TCT CCA AAT CT-3'; Sparc: 5’-AAA CAT GGC AAG GTG TGT GA-3’; 5’-

AAG TGG CAG GAA GAG TCG AA-3’; Camp: 5’-TCT ACC GTC TCC TGG ACC TG-3’; 

5’-TCA CTA CCC CCT GTT CCT TG-3’; Atp6v0d2: 5’-GAG CTC TTC AAG GCT GTG CT-

3’; 5’-CCG TGA TCC TTG CAG AAT TT-3’; Accumulation of PCR products was detected in 

real time and the results were analysed with 7500 System Software (AB). The relative RNA 

expression was calculated as 2 dCt, where dCt is the difference between Ct values of a gene of 

interest and the endogenous control (Gapdh).  

Statistics 

Two way ANOVA followed by Tukey’s multiple comparisons test and Student’s t test were 

applied, as appropriate, using Graphpad Prism 7. 
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Results 

 

Comparison of cytokine production in AO and DA DC 

The ability of DC obtained from AO and DA rats to produce various pro- and anti-inflammatory 

cytokines was determined. DC were generated from bone marrow precursors under the influence 

of granulocyte-macrophage colony-stimulating factor (GM-CSF), IL-4 and Fms-related tyrosine 

kinase 3 ligand (Flt3L). They were cultivated in the absence or presence of LPS or PolyI:C 

stimulation. In the absence of stimulation, production of IL-6, IL-10, IL-12, p40 and TGF- was 

relatively low, and there were no statistically significant differences between AO and DA DC for 

all of the tested cytokines (Fig 1). TGF- levels were not statistically significantly changed with 

either of the stimuli applied. LPS stimulation increased IL-6, IL-10 and p40 levels in both 

strains, and IL-12 levels only in DA DC. PolyI:C increased IL-6 and IL-10 levels in AO DC, and 

IL-12 and p40 levels in DA DC. As for the difference between the strains, IL-6 and IL-10 levels 

were higher in AO DC, while IL-12 and p40 were higher in DA DC, irrespectively of the 

stimulus used (Fig 1). 

Further, DC were generated from bone marrow precursors under the treatment of GM-CSF only, 

and matured in the presence of LPS (mature DC – mDC). This protocol for DC generation was 

applied as our aim was to generate tolDC in parallel. TolDC generated in the presence of GM-

CSF and vitamin D3 [18] were compared with mDC in both strains. IL-10 levels were higher in 

tolDC in comparison to mDC in both strains (Fig 2). Moreover, AO mDC and tolDC had 
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significantly higher level of IL-10 in comparison to their respective DA DC (Fig 2). IL-6 was 

higher in AO tolDC in comparison to DA tolDC, while there was no difference between the 

strains in the level of IL-1 and TNF (Fig 2). Finally, TNF was higher in DA mDC in 

comparison to DA tolDC (Fig 2). 

Taken together these results demonstrate differences in cytokine production between both mDCe 

and tolDC obtained from AO and DA rats with the dominance of pro-inflamatory cytokines in 

the latter DC. 

 

Comparison of dendritic cell phenotype 

Next, mDC and tolDC from AO and DA rats were compared for the expression of co-stimulatory 

and antigen presenting molecules. The proportion of cells expressing MHC class II molecules 

and their level of expression were higher in DA than in AO DC, irrespectively if mDC or tolDC 

were compared (Fig 3A, B). In addition, there were less tolDC expressing MHC class II and also 

its expression was lower on tolDC in comparison to mDC in both rat strains. Similar results were 

observed with CD86 molecule, although there was no statistically significant difference between 

AO and DA tolDC (Fig 3C, D). 

 

Allogeneic proliferation 
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AO DC were co-cultured with DA LNC, while DA DC were co-cultured with AO LNC. Higher 

proliferation of responding AO LNC was observed in co-cultures of DA DC in comparison to the 

proliferation of DA LNC co-cultured with AO DC, irrespectively if mDC or tolDC were 

compared (Fig 4A,B). Proliferation of DA LNC co-cultured with AO tolDC was lower when 

compared to that observed in co-culture with AO mDC. However, such difference was not 

observed when allostimulatory capacities of DA mDC and DA tolDC were compared. 

 

Comparison of gene expression in human and rat DC 

Our next goal was to compare tolDC of AO and DA rats to human tolDC. In a recent study, a 

comparative transcriptomic profiling of human DC differentiated with vitamin D3. CYP24A1, 

MUCL1 and MAP7 were identified as genes whose expression is differentially expressed in 

human vitamin D3-induced tolDC versus both mDC and immature DC (iDC). Additionally, 

ATP6VOD2, CAMP and SPARC were identified as differentially expressed genes in vitamin D3-

induced tolDC in comparison to mDC [19]. Therefore, an analysis of the expression of these six 

genes was performed in rat DC (Fig 5). Statistically significant differences between tolDC and 

mDC or iDC were observed for Cyp24a1 in both strains (Fig 5A). Also, there was a statistically 

significant decrease of Sparc expression in AO tolDC in comparison to AO mDC (Fig 5 D). The 

difference between AO and DA rats reached statistical significance for Cyp24a1 expression in 

tolDC, and for Sparc expression in mDC (Fig 5 A,D). No statistically significant differences 

neither among iDC, mDC and tolDC, nor between rat strains, were found in the expression of the 

other genes. Comparison of the expression differences between tolDC and iDC or mDC was also 
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performed in rat and human DC in parallel (Fig 6). Despite the lack of statistical significance, a 

similar trend of expression was observed in both rat strains and human cells for Cyp24a1, Mucl1 

and Map7. Also, similar pattern of expression to human cells was observed for Sparc and Camp 

in DA, but not in AO DC. Expression of Atp6vod2 was opposite in human and rat DC. 

 

Discussion 

DC obtained from AO and DA rats differ significantly in their cytokine response to maturation 

stimuli, in the level of antigen presentation-related molecules and in their allostimulatory 

capacities. Also they differ in expression pattern of genes potentially relevant for tolerogenic 

phenotype of human DC. We could describe DA rat DC as pro-inflammatory in comparison to 

AO rat counterparts. 

DC have the central role in the activation of naïve T cells towards pathogenic Th1 and Th17 

effector subpopulations [4, 6]. DA DC express higher levels of MHC class II molecules and co-

stimulatory CD86. This implies that they are more efficient in antigen-presentation and 

activation of T cells. This assumption is in accordance with earlier data from our group and 

others that draining lymph node cellularity increases faster and to the greater extent in DA rats in 

response to encephalitogenic immunization [13, 20]. Similar results were observed in the contact 

hypersensitivity reaction [21]. The ability of DA rat DC to produce more IL-12 than AO rat DC 

implies that Th1 response is dominant in DA rats in comparison to AO rats. This fits well with 

our previous observation that DA rat lymph node cells produce more IFN- [22, 14]. Higher IL-

10 release from AO rat DC is also in accordance with our previous report on the increased IL-10 
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expression and production in AO rat lymph nodes and within the CNS of the immunized rats 

[17]. Interestingly, IL-6 generation is also higher in AO rat DC, while the clear dominance of 

DA rat lymph node cells in production of IL-6 was observed in previous reports [14, 20]. Since 

there are multiple cellular sources of IL-6 within unseparated population of lymph node cells, 

cell-specific regulation of IL-6 production in relation to the strain specificity is worthy of further 

studies. 

Higher allogeneic proliferation of AO CD4+ T cells observed in co-cultivation with DC is in 

agreement with stronger alloreactivity in AO rats in comparison to DA rats [23]. Importantly, the 

decrease in allogeneic proliferation was observed under the influence of AO, but not DA tolDC. 

This implies that vitamin D3 treatment does not diminish allostimulatory properties of DA DC, 

at least in vitro. It will be important to determine if the discrepancy in the activity of tolDC 

between the two strains observed in alloreactive system also exists in the antigen specific system 

in vitro, as well as in vivo. Interestingly, DA tolDC were as efficient as mDC in allo-proliferative 

stimulation of AO LNC, despite the reduction in the expression of antigen-presenting molecules 

MHC class II and CD86 and increase of IL-10 generation that were observed in tolDC in 

comparison to mDC. This could be explained by low threshold of activation of AO allo-reactive 

T cells and/or by the inability of DA tolDC to act in tolerogenic manner. These options have to 

be studied in more details in the future, especially in vivo. 

Comparison of the selected gene expression in DC obtained from EAE-resistant AO rats and 

EAE-prone DA rats with human DC obtained from healthy individuals revealed various 

differences in the expression patterns. Cyp24a1 expression was higher in tolDC than in iDC and 
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mDC in both rat strains and humans. Cyp24a1 codes for the key catabolic vitamin D3 enzyme 

25-hydroxyvitamin D3-24-hydroxylase, that is up-regulated in response to elevated levels of 

vitamin D3, and can be considered as the positive control for the response of cells to vitamin D3. 

In accordance with our results, it was previously shown that human monocyte-derived DC 

increased expression of Cyp24a1 in response to vitamin D3 [24]. Mucl1 has previously been 

identified as breast cancer-specific gene whose product Mucin-like protein 1 controls 

proliferation in breast cancer cells [25]. The protein is present intracellularly or secreted from the 

cancer cells. FAK/JNK pathway was identified as the downstream effector of MUCL1 signaling 

[25]. High expression of MUCL1 in human and rat tolDC implies that this protein might play an 

important role in tolerogenic activity of DC. The same holds true for microtubule-associated 

protein 7 (MAP7 also known as ensconsin) coded by Map7. MAP7 is an exceptional protein that 

interacts with both microtubules and motor protein kinesin-1 [26, 27]. Kinesin-1 is a main 

microtubule motor that pushes transport of several cellular cargoes towards the plus ends of 

microtubules [26]. MAP7 has been shown important for neuronal cell morphogenesis [27], while 

its role in tolDC is yet to be explored. SPARC (Secreted protein acidic and rich in cysteine, also 

known as osteonectin) encoded by Sparc, is a matricellular protein that organizes collagen 

deposition in tissue stroma [28]. Interestingly, accelerated migration of DC and T cell priming 

were observed in Sparc-deficient mice [28]. Therefore, increased expression of Sparc in tolDC 

might be involved in deceleration of T cell activation, a possibility that is surely worthy of 

further studies. Cathelicidin antimicrobial peptide (CAMP) exhibits direct antimicrobial effects, 

but it also acts as an oligonucleotide carrier of nucleic acids towards endosomal compartment of 

DC [29], thus facilitating recognition of oligonucleotides by intracellular pattern-recognition 
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receptors [30]. Therefore, it is involved in efficient recognition of pathogens. However, it can 

also contribute to the breakdown of immune tolerance to self-DNA as observed in psoriasis [31]. 

An increase of CAMP expression under the influence of vitamin D3 was previously observed in 

DC [32]. Elevated CAMP expression was also previously shown in lamina propria mononuclear 

cells of healthy subjects receiving high-dose vitamin D3 supplementation [33]. In our study, the 

increased CAMP expression was detected in human and DA, but not in AO tolDC. The 

possibility that limitation of CAMP expression in AO tolDC contributes to the resistance of AO 

rats to autoimmunity is worthy of further investigation. Interestingly, expression of ATP6V0D2 

(ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d2) was increased in human tolDC, but 

decreased in rat tolDC in our study. ATP6V0D2 was identified as an important element in DC 

transdifferentiation into osteoclasts [34]. Its immunomodulatory effects have not been identified, 

so far. 

To conclude, AO and DA DC differed in their ability to produce cytokines, express antigen-

presentation molecules and regulate T cell alloproliferation. DA DC were more inflammatory 

and stimulatory in comparison to AO DC. Moreover, the expression of genes, demonstrated to be 

associated with a vitamin D3-induced tolerogenic phenotype in human DC, was different 

between AO and DA tolDC. Interestingly, regarding the expression of these genes, DA tolDC 

were more similar to human tolDC than AO tolDC. This study contributes to the view that the 

difference in susceptibility of AO and DA rats towards autoimmunity might be associated with a 

variability in the intrinsic regulation of the immune response within the strains. 
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Figure legends 
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Fig 1 Cytokine profile in AO and DA DC. DC were propagated from rat bone marrow cells in 

the presence of GM-CSF, IL-4 and Flt3L. They were untreated (0), stimulated with LPS or with 

Poly I:C for 48 hours. Subsequently, cytokines were determined in cell culture supernatants by 

ELISA for IL-6, IL-10, IL-12, p40 and TGF-. Data are presented as mean + SD of values 

obtained in 4 independent experiments. *p<0.05, vs. 0 within the strain, #p<0.05, AO vs. DA in 

the same treatment group; Tukey’s multiple comparisons test. 
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Fig 2 Cytokine profile in AO and DA tolDC. DC were propagated from rat bone marrow cells 

in the presence of GM-CSF and in the absence (mDC) or presence  of vitamin D3 (tolDC). Cells 

were treated with LPS for 24h. Subsequently, cytokines were determined in cell culture 

supernatants by ELISA for IL-10, IL-6, IL-1 and TNF. Data are presented as mean + SD of 

values obtained in 7 independent experiments. *p<0.05, mDC vs. tolDC, #p<0.05, AO vs. DA; 

Tukey’s multiple comparisons test. 
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Fig 3 Phenotype of AO and DA DC. DC were propagated from rat bone marrow cells in the 

presence of GM-CSF, and in the absence (mDC) or presence of vitamin D3 (tolDC). Cells were 

treated with LPS for 24h. Subsequently, expression of MHC class II molecules (A, B) and CD86 

(C, D) was determined by cytofluorimetry. Data are presented as mean + SD of values obtained 

in 3 independent experiments. *p<0.05, mDC vs. tolDC, #p<0.05, AO vs. DA; Tukey’s multiple 

comparisons test. 
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Fig 4 Alloproliferative response. DC were propagated from rat bone marrow cells in the 

presence of GM-CSF, and in the absence (mDC) or presence of vitamin D3 (tolDC). They were 

treated with LPS for 24h. AO DC were co-cultured with DA lymph node cells and the other way 

around. Lymph node cells were stained with CFSE. Co-cultivation lasted for five days. After co-

culture, cells were stained for CD4 expression and CFSE was detected in CD4 cells by 

cytofluorimetry. Data are presented as mean + SD of values obtained in 2 independent 
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experiments (A). Representative plots are also presented (B).*p<0.05, mDC vs. tolDC, #p<0.05, 

AO vs. DA; Tukey’s multiple comparisons test. 

 

Fig 5 Gene expression profiles in AO and DA DC. DC were propagated from bone marrow 

cells. DC were grown in the presence of GM-CSF only, without additional stimuli (iDC) or 

stimulated with LPS (mDC), or they were grown in the presence of GM-CSF and vitamin D3 

and stimulated with LPS (tolDC). Subsequently, “real-time” RT-PCR for Cyp24a1 (A), Mucl1 

(B), Map7 (C), Sparc (D), Camp (E), and Atp6vod2 (F) genes was performed. Data are presented 
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as mean + SD of values obtained from 5 samples. *p<0.05, within the strain; #p<0.05, AO vs. 

DA; Tukey’s multiple comparisons test. 

 

 

Fig 6 Gene expression profile in rat and human DC. Data from Fig 5 were compared to data 

obtained from human cells [19]. *p<0.05, in comparison to tolDC; Tukey’s multiple 

comparisons test. 
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