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ABSTRACT  

In the framework of the development of the guidelines for flood flow assessment in 

Serbia, the outlier detection procedures and their consequent treatment are investigated. 

The outcomes of different methods are analysed in terms of both detected outliers and 

estimated flood quantiles using data from 68 hydrologic stations in Serbia. Three 

different tests are applied which are commonly proposed in the outlier detection 

procedures and which are all based on the assumption of normally distributed samples 

(original or after transformation). The tests identified the same series with outliers, but 

the number of outliers differs from test to test. Removal of low outliers from the sample 

has a significant impact on the resulting flood frequency and quantiles. The log-Pearson 

type III and the log-normal distributions are highly sensitive to presence of low outliers, 

while the general extreme value distribution is not. It is also concluded that these tests 

are not appropriate for flood data that cannot be assumed to be log-normally distributed 

(or normal after some other transformation). 
 

 

1. INTRODUCTION   
 

The major uncertainty associated with the flood frequency analysis stems from the 

limited length of the observed hydrologic records and uncertainty inherent in extreme 

flood flow measurement and estimation from the extrapolated stage-discharge 

relationships. In practical applications of flood frequency analysis, these sources of 

uncertainty lead to a difficulty in recognizing the underlying distribution of the flood 

flows. One of the typical problems is that the annual maximum flows in different years 

are caused by different runoff generation mechanisms, like snowmelt or heavy rainfall. 

This is the case when the flood data sample comes from a mixed population, and it 

requires separating the floods into two or more groups according to the flood generation 

mechanism and later combining the separately estimated distributions into a composite 

one. However, the number of the flood events due to one of the generating mechanisms is 

usually small for defining a reliable probability distribution.  

The problem of outliers in the flood data is also closely related to the problem of a 

unknown parent distribution of floods and the uncertainty in flood flow measurements 

and estimation. The presence of outliers in a data sample can lead to problems in 

formulating a probabilistic model and fitting an appropriate theoretical distribution from 

the observations. Given that finding a correct model that would allow extrapolation of the 

flood flows outside the range of observed values is very important for flood estimation, 

the effect of high outliers on the choice of the theoretical distribution is usually 
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considered to be crucial. However, it has been recognized that low outliers can 

significantly affect not only the choice of the best distribution, but also the distribution 

parameter estimates and consequently the flood quantile estimates.  

The most popular method proposed in the literature for detection and treatment of 

outliers is based on the approach presented in the well-known Bulletin 17B (IACWD, 

1982). However, the problem of outliers is still an open problem; calls for revision of 

these methods have been made since the available series are now 30 years longer and 

new perspective of the outlier problem might be possible (Stedinger and Griffis, 2008; 

2011).  

In Serbia, development of the “Guidelines for flood flow assessment at hydrologic 

stations (at gauged catchments)” is currently in progress (Blagojevic et al, 2013). In this 

framework, a study has been undertaken with an aim to determine the differences that 

arise from different approaches to outlier detection and treatment and to identify the 

problems that may arise in application of the proposed procedures. A preliminary 

analysis of the available data (Blagojevic et al, 2014) has shown that the main doubts in 

the outlier detection emerge from the application of the traditional Grubbs-Beck test for 

outlier detection, which is valid for normal (or transformed to normal) data while the 

flood data is assumed to follow other distributions. Moreover, the annual maximum flood 

series that exhibit outliers usually come from mixed populations, and a question remains 

whether the outliers are the exceptional values of small probability of occurrence or just 

“regular” values from another population.  

In this paper, we investigate the outlier detection procedures and consequent 

treatments of outliers. We analyse the outcomes of the different methods for outlier 

detection using data from 68 hydrologic stations in Serbia in terms of both detected 

outliers and estimated flood quantiles. We also focus on these results in respect to an 

assumed underlying distribution of the annual maximum floods and try to make 

recommendations for practitioners.  
 

 

2. DETECTION AND TREATMENT OF OUTLIERS IN HYDROLOGIC DATA  
 

2.1 Outlier detection 

 

The prevailing method for the outlier detection and accommodation in hydrologic 

series is the procedure given in the Bulletin 17B (IACWD, 1982). These guidelines 

recommend the Grubbs-Beck test for detecting outliers, which is applied as the one-sided 

test by comparing the logarithmic flows in the sample to a threshold corresponding to the 

critical value of the test statistic at 10% significance level.  

The Grubbs-Beck test, originally proposed by Grubbs (1969) and Grubbs and Beck 

(1972), examines the presence of either high or low outliers in the series. It is used under 

the assumption that the data in the original form or after some transformation is normally 

distributed. If xi (i = 1, 2, ..., n) are the data values from the sample of size n sorted from 

the smallest to the largest value, the test statistic of the Grubbs-Beck test is the 

studentized deviate of the lower or upper most extreme value in the sample x1 or xn, 

respectively: 
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where x  and s are the sample mean and standard deviation, and K is the test statistic that 

depends on the significance level α and the sample size n. For the 10% significance level 

and sample size n, an approximate expression for K is given with (Stedinger et al, 1993): 

nnK log4046.0log345.39043.0%10   (2) 

Although the Grubbs-Beck test is aimed at testing a single outlier, the Bulletin 17B 

(IACWD, 1982) recommends that all values below the low threshold defined by K10% are 

considered low outliers and all values above the upper threshold are considered high 

outliers. The order of testing depends on sample skew. For samples with negative skew 

(smaller than –0.4), low outliers are tested first and high outliers are tested in the sample 

censored for detected low outliers. For samples with skew greater than –0.4, high outliers 

are tested first and low outliers are tested second. In the latter case, if the high outliers are 

identified in the record containing historical floods, the sample statistics are adjusted for 

historical information before testing for low outliers for skews greater than 0.4, and after 

testing for low outliers for skews smaller than 0.4. 

The major criticism to application of the Grubbs-Beck test to flood data is twofold. 

The first is that this test cannot deal with multiple outliers and the second is related to the 

assumption of normality (Spencer and McCuen, 1996). The first problem is related to 

sequential application of this test by testing e.g. the smallest value, then removing it from 

the sample if it is identified as a low outlier, and repeating the test on the reduced 

(censored) sample, and so on. However, the test power is reduced in its repeated 

applications (Tietjen and Moore, 1972). The sequential procedure can also lead to the 

masking effect in case when a group of values is separated from the rest of the values. 

The sequential testing can then be unable to detect a single value as an outlier within the 

group of suspected outliers. On the other hand, if the tests for multiple outliers are made 

on a group of values simultaneously, then the swamping effect may occur. In this case all 

values may be declared outliers while in fact there is only a single outlier. 

Grubbs (1950) also developed a test for testing multiple outliers as a group of k values 

at one of the distribution tails, with null hypothesis that all the values come from the 

same normal distribution. This test was later also proposed by Tietjen and Moore (1972), 

with the test statistic for examining k greatest values: 
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In case when k smallest values are examined, the summation in the nominator in 

equations (3) and (4) ranges from i = k + 1 to i = n. The tables of critical values for Lk for 

sample sizes up to n = 50 and up to k = 10 outliers can be found in Tietjen and Moore 

(1972), and for sample sizes up to n = 100 with k up to 4 in Verma and Quiroz-Ruiz 

(2006). Tietjen and Moore (1972) recommend the backward procedure with this test in 

order to avoid the masking effect. This means that a large k is assumed at the beginning. 

If the null hypothesis is not rejected, then k is reduced for one and the test is repeated. 
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However, this procedure does not prevent the swamping effect. Tietjen and Moore (1972) 

also examined several alternatives on how to assume the number k of outliers if no 

outliers are anticipated, and they showed that this should be the number of observations 

below or above the largest gap in data values.  

McCuen (2002) proposed the test of Rosner (1975) which can identify more than one 

outlier, but the number k of potential outliers must also be specified in advance. The test 

looks for both low and high outliers by looking at k values that are the farthest from the 

mean. All k values are considered outliers if the null hypothesis that no outliers are 

present is rejected, but none of the individual values can be considered an outlier if the 

null hypothesis is not rejected. However, by identifying the outliers on both tails, this test 

is not helpful for the flood frequency analysis since the nature of high and low outliers in 

flood flow series is completely different and they cannot be treated in the same manner. 

If both high and low outliers are eliminated from the sample, it would get closer to the 

normality assumption; however, in the flood statistics we do not want to exclude the 

greatest values and loose valuable information about the upper distribution tail.  

More recently, Cohn et al. (2013) developed the generalized test for detecting multiple 

potentially influential low outliers in flood series, based on the Grubbs-Beck test statistic 

(1) and similar to the Rosner’s (1975) method but without an a priori defined number of 

outliers. This is a great step forward for the flood frequency analysis and the hydrologic 

statistics in general. However, the method is rather complicated for use by practitioners 

unless incorporated in a statistical software package. 

All the previously mentioned tests and the critical values of the test statistics are based 

on the assumption of normality. This means that rejection of the null hypothesis may be a 

result of a non-normal parent population rather than the presence of outliers in the 

sample. The usual recommendation is to transform the data in order to make it closer to 

normality, including logarithmic, Wilson-Hilferty, Box-Cox and other transformations. 

Logarithmic transformation is the most common to hydrologic practice. While it is 

generally thought that it provides a sufficient degree of normality in the sample, at the 

same time this transformation can provoke occurrence of low outliers because the small 

values get more weight in the log-transformed sample. 

For flood flow series and their logarithms for which distributions other than normal are 

assumed, NRCS (2012) implicitly proposes in the practical examples that the critical 

values xU and xL for declaring a lower or an upper outlier respectively in the Grubbs-Beck 

test can be estimated from the assumed distribution for the normal probability of test 

statistic K: 

)(),(or)1( 11 KppFxpFx XUXL Φ 
 (5) 

where Φ(.) is the normal cumulative distribution function, and FX(.) is the assumed parent 

distribution for the sample data. This approach is referred to as the probability mapping. 

The sample data can be tested for normality by different tests, including the goodness-

of-fit tests (e.g. the probability plot correlation coefficient test or the Anderson-Darling 

test), or by looking into the confidence intervals for sample skewness and kurtosis (see 

e.g. Kottegoda and Rosso, 2008).  
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2.2 Treatment of outliers 

 

Ghosh and Vogt (2012) state: “Outlier treatment is an art.” In the flood frequency 

analysis, high and low outliers have different nature and have different effects on the 

probability distribution; their treatment should therefore be different. High outliers may 

indeed be exceptional and rare events, but they can also be a result of measurement 

errors. Even if there is no proof of a measurement error, uncertainty in the upper end of 

the stage-discharge relationship is usually high due to its extrapolation and our 

confidence in extreme values is generally lower. Furthermore, the exceptional values 

might not have occurred naturally, but under some anthropogenic effect. This calls for a 

careful review of the extreme values in the record before proceeding to frequency 

analysis. On the other hand, low outliers are not expected to result from a measurement 

error, nor they are burdened by high uncertainty from the stage-discharge relationship; 

however, they can significantly affect the sample statistics and the results of frequency 

analysis. 

In general, the outliers can be excluded from the sample from either lower or upper 

side (censoring or trimming). This approach is commonly used for low outliers in flood 

series. Another approach is to adjust the outliers so that their effect on the sample 

statistics is reduced (“winsorising”). According to Vukmirovic and Pavlovic (2000), 

possible adjustments of high outliers can be to replace them with: (1) the second greatest 

value from the same year, (2) the second greatest value in the sample, or (3) an estimate 

based on the 50- or 100-year flood from the neighbouring stations. High outlier 

adjustment is generally considered a better procedure than excluding it from the sample, 

except when a doubt exists that it is caused by measurement error (BLFUW, 2011). 

Keeping high outliers in the sample and treating them as an ordinary value seem to be a 

preferred approach because it is believed that they carry important information. However, 

keeping the high outliers may lead to overestimation of flood flows, while the censoring 

and winsorising approaches introduce statistical bias and may lead to underestimated 

flood flows. The Austrian guidelines (BLFUW, 2011) propose, among other approaches, 

that an apparent return period T* > n of a high outlier can roughly be estimated as the 

return period of the same flood event at neighbouring stations or by using information on 

historical floods.  

The Bulletin 17B (IAWCD, 1982) recommends that high outliers should be retained as 

a part of the systematic record. If they represent historical floods from the non-systematic 

record, the sample statistics and the plotting positions are adjusted for this historical 

information. The low outliers are excluded from the record and the distribution function 

F1(x) resulting from the censored sample is adjusted for removing k values from the 

sample of size n by using conditional probability:  
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The statistical literature (Kottegoda and Rosso, 2008; Barnett and Lewis, 1994) also 

advocates the use of robust statistical measures (e.g. trimmed mean, interquartile range 

etc.) instead of those sensitive to outliers. However, we still need more research on the 

use of such measures in flood frequency analysis. 
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Figure 1. Hydrologic stations in Serbia used in this study.  

 

3. DATA AND METHODS 

 

In this paper, we investigate the outcomes of different approaches for outlier detection 

and treatment in the annual maximum series of flood flows in Serbia. A total of 68 

hydrologic stations at which hydrologic regime is not under significant anthropogenic 

influence were used in the analysis (Figure 1). The drainage areas range from 84 to 

37200 km
2
 for the inner Serbia, but stations on the transboundary rivers Sava and Danube 

are also included. Record lengths span from 37 to 85 years, until 2010. The following 

approaches were applied for outlier detection: 

1. the Bulletin 17B procedure, denoted here with as B17B; 
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2. the original one-sided Grubbs-Beck test for single outlier detection, denoted GB1, 

applied sequentially to the sample after removing detected low outliers; 

3. the multiple outlier test by Grubbs (1950) according to Tietjen and Moore (1972), 

denoted TM. 

The above listed approaches were applied to the log-transformed data and therefore an 

assumption of the log-normal underlying distribution was made. All log-transformed 

series were tested for normality using two tests: the probability plot correlation 

coefficient (PPCC) test and the Anderson-Darling (AD) test. The two tests did not 

produce consistent results. The null hypothesis that the log-transformed data are normally 

distributed could not be rejected by PPCC test in only five cases out of 68, all in the 

series without detected outliers. The same hypothesis was rejected by the AD test in 12 

cases only, including five series that were later shown to contain outliers. In further 

considerations, the distribution providing the best fit for a particular series was identified 

by ranking the results from the Anderson-Darling and the Kramer-von Mises goodness-

of-fit tests. The general extreme value (GEV) distribution was generally found to be the 

best fit to the observed data, and the log-Pearson type III (LP3) was equally good for 

stations with greater positive skew. 

A preliminary testing of homogeneity was also undertaken by applying the non-

parametric Mann-Whitney or the rank-sum test (Helsel and Hirsch, 2002) to all series by 

looking into differences between two halves of each sample. The null hypothesis of 

homogeneity was rejected for 28 stations out of 68. This number includes six stations in 

which outliers were later detected. This shows that additional investigation would be 

needed to identify the sources of non-homogeneity and eventually non-stationarity. 
 

 

4. RESULTS AND DISCUSSION 
 

The results of the outlier detection procedures according to the three tests are 

presented in Tables 1, 2 and 3 for low outliers, high outliers and both low and high 

outliers respectively. All tests were applied at the 10% significance level.  

Eight series with low outliers detected with the three methods are listed in Table 1. All 

the methods identified the same series as those with low outliers, so it could be said that 

the results are rather consistent. The differences are in the number of detected outliers at 

three stations out of eight (stations 30, 52 and 53), where the sequential application of the 

Grubbs-Beck test and the Tietjen-Moore test detected two outliers instead of one. After 

removing the detected number k of low outliers, neither of the series exhibited presence 

of high outliers with each method.  

The effect of removing a different number of outliers is described in Figure 2 for 

station 53. It can be seen that removal of outliers mostly affects the log-normal (LN) and 

the log-Pearson type III (LP3) distribution. The performance of the LN distribution 

becomes much better without low outliers according to the goodness-of-fit tests since the 

log-sample skew approaches zero. However, the upper tail of this distribution is lowered 

(Table 4). The LP3 distribution also adjusts to higher skew and results in a higher upper 

tail, while its goodness-of-fit improves. The GEV distribution is the most resistant to the 

outlier removal; its upper tail without outliers is just slightly higher and the goodness-of-

fit statistics are almost unchanged. Similar results are obtained for other stations with low 

outliers.  
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Table 1. Low outliers detected in the series of annual maximum flows (n denotes sample size 

and ‘best fit’ indicates the result according to the goodness-of-fit tests). 
No.  River/Station Area 

(km
2
) 

n Min. 

(m
3
/s) 

Max. 

(m
3
/s) 

Log 

skew 

Best  

fit 

No. of low outliers k 

B17B GB1 TM 

20 J. Morava/Mojsinje 15390 60 115 1830 -0.40 GEV 1 1 1 

29 Kolubara/Valjevo 340 55 7.2 287 -0.31 LN, 

LP3* 

1 1 1 

30 Kolubara/Slovac 995 57 28.7 322 -1.06 GEV 1 2 1 

31 Kolubara/Beli Brod 1896 52 27.3 767 -0.57 GEV 1 1 1 

51 V. Morava/Varvarin 31548 63 336 2550 -0.58 GEV 2 2 2 

52 V. Morava/Bagrdan 33446 61 354 2930 -0.53 GEV 1 2 2 

53 V. Morava/Lj. Most 37320 63 353 2354 -0.70 GEV 1 2 2 

69 Z. Morava/Trstenik 13902 48 160 1750 -0.31 LN, 

GEV* 

1 1 1 

*Best fit atfer removing low outliers. 

 

Table 2. High outliers detected in the series of annual maximum flows (n denotes sample size 

and ‘best fit’ indicates the best result according to the goodness-of-fit tests). 
No.  River/Station Area 

(km
2
) 

n Min. 

(m
3
/s) 

Max. 

(m
3
/s) 

Log 

skew 

Best  

fit 

No. of high outliers 

B17B GB1 TM 

13 Ibar/Batrage 703 56 27.0 519 0.92 GEV 1 1 2 

17 Ibar/Lopatnica Lakat 7818 63 115 1520 0.62 GEV 1 1 3 

24 Lužnica/Svođe 319 49 6.6 488 0.05 LN 1 1 1 

25 Vlasina/Svođe 350 56 4.86 578 0.48 GEV 1 1 1 

48 Lukovska/Merćez 113 42 2.12 106 0.74 GEV 1 1 4 

58 Z. Morava/K. Stena 3077 82 99.4 1250 0.18 GEV 1 1 2 

60 Z. Morava/Jasika 14721 60 327 1870 0.50 LP3 1 1 1 

62 Moravica/Ivanjica 475 64 16.1 429 0.56 GEV 1 1 1 

 

Table 3. Series with both low (LO) and high (HO) outliers (n denotes sample size; HO* indicate 

number of high outliers after removing low outliers). 
No.  River/Station Area 

(km
2
) 

n Min. 

(m
3
/s) 

Max. 

(m
3
/s) 

Log 

skew 

Type No. of outliers 

B17B GB1 TM 

18 Studenica/Ušće 540 57 9.84 276 0.19 LO 1 1 1 

HO 1 1 3 

HO* 1 1 3 

45 Toplica/Magovo 180 37 2.33 192 0.48 LO 1 1 1 

HO 1 1 2 

HO* 1 1 2 

 

 

However, the outcomes are different with one or two outliers deleted from the record 

and the question of the number of low outliers in the sample remains. The values of the 

goodness-of fit statistics indicate that only the LN distribution benefits significantly from 

removing two low outliers instead of one, while performance of the GEV and LP3 

distributions is almost the same. This is expected since all tests assume that the log-

transformed floods are normally distributed and the removal of outliers would actually 

contribute to getting closer to normality. With this in mind, we performed the tests using 

the probability mapping given by eq. (5) under the hypothesis that the data is GEV 

distributed. This procedure gave the same results for low outliers as the tests with the LN 

assumption for stations 31 and 69, while the other stations from Table 1 did not exhibit 

low outliers. The GEV mapping also identifies low outlier at station 8, which was not 
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detected under the LN assumption. Although the probability mapping testing procedure 

may not be theoretically sound, it is indicative that different assumptions about the parent 

distribution can lead to different results. 
 

 

Figure 2. Effect of low outliers on distribution fitting: complete record (left), one outlier 

removed (middle) and two outliers removed (right).  

 

Table 4. The 100-year and 500-year flood quantiles XT after removing low outliers for station 53 

(percentage in parentheses indicates change relative to the complete record results). 
No. of outliers X100 (m

3
/s) X500 (m

3
/s) 

 LN LP3 GEV LN LP3 GEV 

k = 0 2792 2294 2383 3442 2529 2682 

k = 1 2656 2380 2415 3225 2704 2753 

 (-4.9%) (3.7%) (1.3%) (-6.3%) (6.9%) (2.6%) 

k = 2 2556 2451 2445 3066 2862 2824 

 (-8.5%) (6.8%) (2.6%) (-10.9%) (13.2%) (5.3%) 

 

 

 

Figure 3. Examples of data with high outliers where the multiple outliers were detected with the 

Tietjen-Moore test.  

 

Table 2 lists the series with identified high outliers and it indicates again that all the 

applied methods identify the same series with outliers. All the stations in this group have 

positive log-sample skew. The Bulletin 17B procedure and the sequential application of 
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the Grubbs-Beck test yield the same results of one high outlier per series, while the 

Tietjen-Moore test detects a larger group of outliers in half of the series. While this may 

be the consequence of the swamping effect, at the same time a greater number of outliers 

may indicate presence of mixed distributions in the sample, for which an additional 

analysis should be made. Two examples are shown in Figure 3.  

Only two series exhibited both high and low outliers, as shown in Table 3. The results 

obtained for these series are similar to those with individual low and high outliers. All 

tests detected the same number of low outliers while the Tietjen-Moore test again 

indicates that more than one high outlier is present. After removing the low outlier from 

each series, the same number of high outliers remains in the series. The effects of 

removing the low outliers from these two series are the same as already described for 

series exhibiting only low outliers (see Figure 4 for an example). The LP3 distribution 

has the greatest sensitivity to low outliers. For example, the 100-year and 500-year LP3 

quantiles without low outlier are greater for 16% and 36% respectively. For the GEV 

distribution, these percentages are 2% and 6%, thus indicating that the GEV distribution 

is almost insensitive to low outliers. 

 

 

Figure 4. An example of data with both low and high outliers (station 18): complete record (left) 

and one outlier removed (right).  

 
 

5. CONCLUSIONS 
 

The results of three different tests for outlier detection were compared under the 

hypothesis that the annual maximum flood data are log-normal. The tests identified the 

same series with outliers, but the number of outliers differs from test to test. The tests for 

multiple outliers such as the Tietjen and Moore (1972) test or the new test proposed by 

Cohn et al. (2013) are useful not only for multiple low outliers, but can also be useful for 

high outliers in order to indicate mixed distributions. 

Removal of low outliers from the sample has a significant impact on the resulting 

flood frequency and quantiles. The log-Pearson type III and the log-normal distributions 

are very sensitive to presence of low outliers. On the contrary, the general extreme value 

distribution has a very low sensitivity to low outliers and can therefore be recommended 

for a robust flood frequency analysis. On the other hand, impact of low outliers on the 
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upper tail of the distribution can be avoided with the peaks over threshold (POT) 

approach. This approach has an additional benefit of including more values above the 

threshold so that the high outliers from the annual maximum series are not exceptional 

values in the POT series. The outliers should also be investigated in the regional context 

flood frequency analysis, which is considered to be more robust than at-site analysis.   

The analysis of the series used in this study has shown that the tests are obviously 

designed to identify and remove data that violate normality. While this can be beneficial 

when applied to data at the lower tail, it cannot be reasonably applied to data at the upper 

tail. Therefore, these methods are not appropriate for flood data that cannot be assumed 

to be log-normally distributed (or normal after some other transformation). Such cases 

call for application of tests with an assumption of other underlying distributions. Further 

research is needed in this direction, since a range of tests for non-normal samples are 

available in the literature (Barnett and Lewis, 1994). 

However, it has been again shown that the problem of outliers is related to many other 

problems such as the lack of knowledge on parent distributions, non-homogeneity of the 

data or presence of mixed distributions, and relatively short records from which these 

distributions are difficult to identify. Therefore, it is impossible to recommend a single 

and a straightforward procedure for flood frequency analysis. The practising hydrologists 

still have to deal carefully with each particular series and each outstanding value in these 

series, and to strive to apply the more robust approaches like the POT method or regional 

analysis.  
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