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ABSTRACT

The sheer volume of non-synonymous single
nucleotide polymorphisms that have been
generated in recent years from projects such as
the Human Genome Project, the HapMap Project
and Genome-Wide Association Studies means that
it is not possible to characterize all mutations ex-
perimentally on the gene products, i.e. elucidate
the effects of mutations on protein structure
and function. However, automatic methods that
can predict the effects of mutations will allow a
reduced set of mutations to be studied. Site
Directed Mutator (SDM) is a statistical potential
energy function that uses environment-specific
amino-acid substitution frequencies within homolo-
gous protein families to calculate a stability score,
which is analogous to the free energy difference
between the wild-type and mutant protein. Here,
we present a web server for SDM (http://www-
cryst.bioc.cam.ac.uk/�sdm/sdm.php), which has
obtained more than 10 000 submissions since
being online in April 2008. To run SDM, users must
upload a wild-type structure and the position and
amino acid type of the mutation. The results
returned include information about the local struc-
tural environment of the wild-type and mutant
residues, a stability score prediction and prediction
of disease association. Additionally, the wild-type
and mutant structures are displayed in a Jmol
applet with the relevant residues highlighted.

INTRODUCTION

Primarily hydrophobic interactions and a network of
hydrogen bonds stabilize the folded state of a protein.
However, a protein that is folded correctly is only margin-
ally more stable than when it is unfolded, and mutations

that affect a stabilizing interaction within a folded protein
may lead to protein instability and malfunction. Where
protein malfunction does occur and cannot be remediated
by an alternative molecular pathway this may result in
disease. For example, destabilizing mutations in phenyl-
alanine hydroxylase lead to the metabolic disease,
phenylketonuria (1). In fact, up to 80% of Mendelian
disease-associated single mutations in protein coding
regions are estimated to be caused by protein destabiliza-
tion effects (2). However, a huge volume of single nucleo-
tide polymorphisms (SNPs) has been generated in recent
years from projects such as the Human Genome Project
(3) and the HapMap Project (4) largely due to the avail-
ability of high-throughput array-based genotyping
methods (5) and next generation sequencing platforms
(6,7). Automatic methods that can predict the effect of
mutations accurately will allow a reduced set of mutations
to be characterized experimentally, saving time and
money.
Various methods of predicting protein stability changes

caused by mutation have been described and can be
grouped into four main categories based on the strategy
used in the calculation: (i) physical effective energy func-
tions; (ii) empirical potential energy functions; (iii) ma-
chine learning methods; and (iv) statistical potential
energy functions.
Physical potential energy functions (such as molecular

mechanics approaches or Monte Carlo simulations) are
probably the most accurate methods for predicting the
effects of mutations on protein stability, however, they
are currently only useful for testing small sets of
mutants due to the large amount of time required to
compute calculated ��G values (8–12). The reliability
of predictions is also complicated by the difficulties in
sampling in the folded and unfolded states (12).
Empirical potential approaches are fitted to experimental
data using a set of weighted terms incorporating physical
and statistical energy terms and structural descriptors
(13,14). Machine learning methods include neural
networks and support vector machines (SVMs) and use
information about mutations, protein sequence and
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structural information to fit a non-linear function to
experimental data (15–17). They are similar to empirical
potential approaches in their use of experimental data to
fit their function and in both cases, care must be taken that
the function is not over-fitted to the training data set.
Statistical potential energy approaches are derived from
the statistical analysis of protein data such as substitution
frequencies, distance potentials and amino acid environ-
mental propensities (18–21). Other methods use a combin-
ation of the above strategies (22–24).
Site Directed Mutator (SDM) is a statistical potential

energy function developed by Topham et al. (20) to
predict the effect that SNPs will have on the stability of
proteins. SDM uses environment-specific amino acid sub-
stitution frequencies within homologous protein families
to calculate a stability score, which is analogous to the free
energy difference between a wild-type and mutant protein.
Blind testing on a set of 83 staphylococcal nuclease and 63
barnase mutants showed a correlation of 0.80 between the
predicted stability changes and experimental data (20).
The method performs comparably or better than other
published methods in the task of classifying mutations
as stabilizing or destabilizing (25). Additionally, SDM
has much improved sensitivity in predicting stabilizing
mutations compared to other published methods (five of
the seven methods tested incorrectly classify >68% of the
stabilizing mutations). When applied to the task of pre-
dicting disease-associated mutations, SDM had an
accuracy of 61% (26). Therefore, SDM is a useful tool
for guiding the design of site-directed mutagenesis experi-
ments or for predicting whether a mutation will impact
protein structure and have a role in disease. Here, we
present a web server for SDM (http://www-cryst.bioc
.cam.ac.uk/�sdm/sdm.php), which has not previously
been published.

MATERIALS AND METHODS

Environment-specific substitution tables

SDM uses a set of conformationally constrained
environment-specific substitution tables (ESSTs), the
general methodology of which are described in (27,28).
The tables were derived from 371 protein family
sequence alignments from the HOMSTRAD database
(29), consisting of 1357 structures and were built using a
modified version of the program Makesub, which is able
to handle sidechain hydrogen bond satisfaction
(C. Topham, unpublished data). By defining the local
structural environment of amino acid residues (secondary
structure, solvent accessibility and formation of hydrogen
bonds) distinct patterns of substitutions have been
observed (30,31). Environment-specific substitution
tables (ESSTs) store these substitution data quantitatively
in the form of probabilities and therefore provide infor-
mation about the existence of each amino acid in a par-
ticular environment and the probability of it being
substituted by any other amino acid. Functional residues
[as defined by Uniprot (32), the Catalytic Site Atlas (33)
and Interpare (34)] were masked from substitution counts.

Definition of structural environment

The structural parameters that were used to define the
local environment of amino acid residues are mainchain
conformation, solvent accessibility and hydrogen-bonding
class.

(i) Mainchain conformation and secondary structure:
Nine classes of mainchain conformation were
defined: residues were identified as belonging to
either a-helix or b-sheet first and the remaining
residues were classified as being a, b, p, t, l, g or e
according to their mainchain j-c torsion angles.
The torsion angles and secondary structure assign-
ments were calculated using the SSTRUC program
(D. Smith, unpublished data).

(ii) Relative sidechain solvent accessibility: Three classes
of relative sidechain solvent accessibility were defined
based on the method of Lee and Richards (35).
Residues with sidechain relative accessibilities of:
(a) <17% were defined as inaccessible
(b) 17–43% were defined as partially accessible
(c) >43% were defined as accessible

These cut-offs were chosen based on an assessment of
relative sidechain solvent accessibility values (36). The ac-
cessibility of each residue in a structure was calculated
using the program PSA (A. Sali, unpublished data).

(iii) Hydrogen bonding: Two classes of hydrogen
bonding were defined: residues were classed as
either being satisfied in terms of their sidechain
hydrogen bonding or not based on the criteria
described by Worth and Blundell (37). Proteins
were first protonated and the charge state of ionis-
able residues determined using the program,
PROPKA (38). The program, HBOND (J.
Overington, unpublished data), was used to
identify hydrogen bonds defined by the criterion
that the distance between donor and acceptor was
<3.5Å except for interactions involving sulphur
atoms where 4.0Å was used. Hydrogen bonds were
then further filtered using the methodology
described by Worth and Blundell (37).

These structural parameters gave a total of 54 local en-
vironments (nine mainchain� three solvent accessibil-
ity� two hydrogen bonding terms).

Prediction of protein stability changes caused by mutation

The algorithm underlying SDM was first described by
Topham et al. (20). In this original work, two stability
difference scores were calculated using either amino acid
environmental substitution data (method I) or amino acid
propensities (method II). Our subsequent analysis showed
that updating the substitution and propensity data using
additional protein families resulted in a better perform-
ance when the environment substitution data were used
(data not shown). Therefore, SDM uses only method I to
calculate protein stability changes caused by mutation. In
addition, SDM now uses a far more comprehensive set of
substitution data (ESSTs) compared to the original
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publication (371 families compared to 131) and known
functional sites are excluded from the substitution
counts. Furthermore, the local structural environment
parameter ‘sidechain hydrogen bond (yes/no)’ was
modified to ‘sidechain hydrogen-bonding satisfaction
(satisfied/unsatisfied)’ and this was shown to improve the
stability score calculations (36).

By analogy to the folding-unfolding cycle in Figure 1,
the algorithm uses ESSTs to calculate the difference in the
stability scores of the folded and unfolded state for the
wild-type and mutant protein structures:

��s ¼ �sUjk ��sFjk ð1Þ

The substitution data used for calculating the stability
score are from families of homologous proteins, which
have accepted multiple mutations during the course of
their evolution. However, the effects of single substitu-
tions are not often observed over the timescale of evolu-
tion e.g. cavity mutants. In order to compensate for this a
disruption term is introduced for buried mutated residues.
It is defined as the logarithmic function of the absolute
value of the net change over the mutated position in the
sidechain surface accessible area in an extended peptide
Gly-X-Gly, relative to that for glycine. Therefore
Equation (1) becomes:

��s ¼ �sUjk ��sFjk ��sDisrupt
jk ð2Þ

ESSTs take into account the environment of only one of
the two residues (wild-type or mutant), therefore it is ne-
cessary to consider not only the probability of replacement
of the wild-type residue (Rj) in the wild-type environment
(ewt) by a mutant residue type (rk) in an undefined envir-
onment [P(rk/Rj, ewt)] but also the probability of replace-
ment of the mutant residue type (Rk) in the mutant
environment (emut) by the wild-type residue (rj) in an un-
defined environment [P(rj/Rk, emut)].

In order to normalise the probabilities that are
combined from different substitution tables, it is necessary
to introduce a reference state. For the wild-type residue

(Rj) in the wild-type environment a suitable reference state
is the probability of it being conserved in that environment
[P(rj/Rj, ewt)]. In an analogous way, for the mutant residue
type (Rk) in the mutant environment, a suitable reference
state is the probability of it being conserved in that envir-
onment [P(rk/Rk, emut)].
The difference in stability scores for a mutation in the

folded state is therefore calculated by:

�sFjk ¼ � ln
Pðrk=Rj,ewtÞ
Pðrj=Rj,ewtÞ

�
Pðrk=Rk,emutÞ

Pðrj=Rk,emutÞ

� �
ð3Þ

The difference in stability scores in the unfolded state
(�sUjk) is also calculated using Equation (3) but uses an
environmental substitution table derived from non-
hydrogen bonded, surface exposed amino acid residues
falling outside regions of regular secondary structure.
The stability difference scores for the folded and
unfolded state for the wild-type and mutant protein struc-
tures are then calculated using Equation (1).

Prediction of disease-association

From studying missense mutations for which the pheno-
types are known, it is estimated that the stability margin
that can be accommodated without any immediate effect
on protein fitness is 1–3 kcalmol�1 (39–41). Studies of
Ig-like proteins have shown that mutations that decrease
the stability of these proteins by >2 kcalmol�1 result in
severe disease phenotypes (42,43).
It may appear counter-intuitive that increased protein

stability can lead to protein malfunction; however, protein
flexibility is essential for enzyme catalysis. For instance,
the increased stability of many thermophilic proteins is
accompanied by loss of protein flexibility and reduced
enzymatic activity at low temperatures (44–48).
Furthermore, stabilizing mutations at catalytic site
residues typically decrease activity and suggest that
function often comes with a substantial penalty to stability
(44,49–52). In addition, highly stable proteins are
protease-resistant and therefore difficult to regulate—this
is important to consider in systems such as cell signalling,
where removing a signal is as important as its activation
(53). A recent study showed that b-catenin accumula-
tion is the most common aberration in parathyroid
tumours of primary origin and that the S37A stabilizing
mutation of CTNNB1 was found in 5.8% of the
tumours (54). Another example of a stabilizing and
damaging mutation is the Parkinson disease-associated
A30P mutation, which stabilizes a-synuclein against
proteasomal degradation triggered by haeme
oxygenease-1 over-expression in human neuroblastoma
cells (55). Hence, there is biological evidence that
increased protein stability can lead to protein malfunction
and hence disease.
In light of the studies mentioned in the previous two

paragraphs, we have used a cut-off of 2 kcalmol�1

(stabilizing or destabilizing) for classifying mutations as
leading to protein malfunction and possibly disease.

Figure 1. The thermodynamic cycle can be used to calculate protein
stability changes between wild-type and mutant proteins.
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Mutant thermodynamic data sets

A subset of the data set used by Capriotti et al. (16) was
used for initial benchmarking. This mutant data set was
taken from the ProTherm database, which stores thermo-
dynamic data for proteins and mutants (56). Our method
requires knowledge of the local structural environment of
wild-type and mutant residues in order to predict the effect
of mutation on the stability of a protein. If the local en-
vironment is incorrectly defined e.g. the protein functions
as a trimer but is defined in the crystallographic asymmet-
ric unit as the protomer, this may affect our calculation.
To remove the effect of such errors we used the Protein
Interfaces, Surface and Assemblies (PISA) service to
predict the oligomeric state of each of the proteins in the
data set (57). Only those proteins predicted to be
monomers were used. This data set is hereafter referred
to as the monomeric set.
The validation data set used by Dehouck et al. (22) for

benchmarking their method PoPMuSiC-2.0 was used for
comparison of SDM’s performance to other published sta-
bility change prediction algorithms. This data set com-
prises 350 mutations, none of which was included in any
of the databases used to devise or test the seven methods
tested by Dehouck et al. (22).
A set of 388 mutants (S388) with thermodynamic meas-

urements conducted under physiological conditions was
also used to test our method. The S388 data set has
been used to test other published methods and therefore
allows us to perform a direct comparison of our method to
them.

WEBSERVER

Input

SDM requires the 3D co-ordinates of the wild-type
protein (in PDB format), the PDB chain identifier, the
mutation position and the amino acid type of the
mutation in one-letter code in order to calculate a stability
score for mutant proteins. Users who have not already
obtained a structure of their protein of interest may use
the search boxes on the home page to do so. These search
boxes allow a user to query the RCSB Protein Data Bank
(www.pdb.org) (58) for their protein of interest, using
protein name, description or amino acid sequence.
The wild-type structure may be submitted using one of

two methods; the user can either upload the PDB file or
enter the four-letter PDB code. NMR structures are
accepted by SDM for input; however, users should note
that it is only the first model in the PDB file, which is used
for subsequent analysis.
SDM also requires a 3D structure of the mutant protein

to perform its calculations. In this case, the user has the
option of either uploading a mutant structure or using
the program ANDANTE to build a model structure of
the mutant (59). A requirement of SDM is that the
wild-type and mutant structures span the same part of
the polypeptide chain; therefore users must ensure that
when they upload a mutant PDB structure that they
fulfil this requirement.

The home page also provides a link to example output
in order that users may view the type of output produced
before running their job. Additionally, tutorials on usage
are available for viewing using the link provided on the
navigator bar.

Output

The results page is split into three sections. On the
left-hand side the mutant information is displayed
(wild-type and mutant amino acid types plus the
position). Where ANDANTE was used to build a
mutant structure, the PDB file is made available for
download. The results returned include information
about the local structural environment of the wild-type
and mutant residues (the secondary structure, solvent ac-
cessibility and sidechain hydrogen bond satisfaction), a
stability score prediction and prediction of disease associ-
ation. As mentioned in the methods section, a cut-off of
2 kcalmol�1 is used to indicate whether a mutation is
likely to be disease-associated or not. However, mutations
that do not reach this cut-off may still lead to protein
malfunction and disease if they affect binding sites.
A statement indicating this issue is therefore displayed
and the links page lists resources that can be used to
assess whether a residue is involved in binding.

In the middle portion of the results page, the wild-type
and mutant structures are displayed using the Jmol struc-
ture viewer (Jmol: an open-source Java viewer for
chemical structures in 3D http://www.jmol.org/) with the
relevant residues highlighted. The user may control the
display of these structures using the menu buttons on
the right-hand side.

An example of the type of output produced by SDM is
shown in Figure 2. A particular advantage of the predic-
tions provided by SDM over other published methods is
the indication of the local structural environment of
wild-type and mutant residues and the fact that the user
may view the 3D structural context of the residues. This
allows users to identify possible molecular mechanisms
that underlie predicted stability changes for example,
loss of hydrogen bonds to the protein backbone.

VALIDATION

SDM has previously been validated using a set of �230
mutants and was shown to have an accuracy of 74% in
predicting the sign of stability change and a linear correl-
ation coefficient of 0.60 between predicted and observed
��G values (25). Removal of one outlying data point
increased the linear correlation coefficient to 0.66.
Analysis of the performance of SDM in predicting the
sign of stability change in comparison to eight other pub-
lished methods demonstrated that SDM performs com-
parably or better than the other methods.

Since the benchmarking detailed above was carried out,
SDM has been modified so that the definition of sidechain
hydrogen bonding has been changed from yes or no to
satisfied or unsatisfied. Furthermore, functional residues
have been masked from the substitution counts used to
generate the ESSTs. We tested the improvement that
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these changes made to SDM’s predictions using the 855
mutants in the monomeric data set. The additional families
used to generate the ESSTs, masking functional residues
and incorporation of the hydrogen bond satisfaction term
improved the correlation coefficient between predicted sta-
bility changes and experimental measurements from 0.51
to 0.58 (Table 1).

The statistical potential-based method, PoPMuSiC-2.0
was recently reported and achieved a correlation of 0.63

between measured and predicted stability changes (22).
The predictive power of the method was shown to be sig-
nificantly higher than that of other programs described in
the literature. In order to compare the predictive power of
SDM to PoPMuSiC-2.0 and the other tested methods, we
used the same data set of 350 mutants. After the
PoPMuSiC algorithms, SDM has the highest linear cor-
relation between predicted and measured ��G values
(Table 2). It also has the benefit of making predictions
for the entire data set of 350 mutants. It is encouraging
that the performance of SDM is improved when consider-
ing only highly stabilizing or destabilizing mutations—the
correlation coefficient increases from 0.52 to 0.63
(Table 2).
The vast majority of published methods for predicting

the effects of mutations on protein stability are based on
machine learning (ML). These are first trained on a data
set of mutations. Many of these ML methods report high
correlations with experimental data sets [e.g. CUPSAT
R=0.87 (21) and IMutant2.0 R=0.71 (60)]. However,
when tested later in blind tests, these correlations
drop drastically [e.g. CUPSAT R=0.37 and
IMutant-2.0 R=0.29 (22)]. This reduction in prediction

Figure 2. Screenshot of SDM analysis results for the example of mutation Y231N in Dystrophin (PDB code 1DXX, chain A). On the left hand side
information about the wild-type and mutant residue is displayed such as the secondary structure, solvent accessibility and hydrogen bonds formed by
the sidechain. Underneath this information is the predicted effect on protein stability. In this case, SDM predicts that the mutation is highly
destabilizing and disease-associated. In fact, this mutation is associated with muscular dystrophy and has been shown to decrease protein stability
(73). In the middle, the structural context of the wild-type and mutant amino acids are shown in the Jmol applet with the residues coloured according
to their chemical properties (key displayed on right hand side). Using the menus on the right hand side the user can manipulate the Jmol applet and
control what is shown.

Table 1. Comparison of the performance of SDM using different sets

of ESSTs and the monomeric data set

Parameters used to generate ESSTs Accuracy
(%)

Ra s
(kcal/mol)

Protein
families

Hydrogen
bonding
term

Masking of
functional
residues

113 Original No 73 0.51 1.82
371 Original Yes 73 0.56 1.61
371 Satisfied No 73 0.56 1.73
371 Satisfied Yes 71 0.58 1.74

aPearson product-moment correlation coefficient.
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performance may be due to over-fitting to available data
sets. The problem of decreasing performance of ML
methods using blind-data sets was also observed by two
independent assessments of the performance of protein
stability predictors (61,62). SDM is not a ML method,
but rather a statistical method based on observed amino
acid substitutions that have occurred during divergent
protein evolution. Therefore, it does not suffer from the
problem of over-fitting, as demonstrated by the similar
correlation coefficients obtained using the monomeric
data set and the PoPMuSiC-2.0 validation data set. The
problem of over-fitting is an important point to consider if
methods are to be used to help successfully design muta-
genesis experiments.

Table 3 shows the results of testing the S388 data set.
These results show the performance of methods in predict-
ing the sign of stability change i.e. whether a mutation is
stabilizing or destabilizing. Many of the methods have
accuracies of over 80%, which is impressive. However, if
we examine the ability of the methods to predict
stabilizing and destabilizing mutations another picture
emerges; they tend to be very good at predicting
destabilizing mutations but much worse at predicting
stabilizing mutations. SDM however has a more
balanced sensitivity in predicting both types of mutations,
although the specificity of predicting destabilizing muta-
tions is far better than that of predicting stabilizing muta-
tions. Most mutations are destabilizing and this is
reflected in the mutant thermodynamic data sets used
for developing and testing such methods. Methods that
assign all of the samples to the majority class (destabilizing
mutations) will have high accuracy even though the per-
formance is poor for the minority class (stabilizing muta-
tions). This trend is observed for most of the methods
reported in Table 3. It is possible that some of the
results in Table 3 are biased by some over-fitting to the
training data sets used in developing the methods.

When applied to the task of predicting disease-
associated mutations, SDM had an accuracy of 61%
(26), only 3% less than the accuracy achieved by the
program Sorting Intolerant from Tolerant (SIFT) (63).
Of course, it is unsurprising that SIFT obtains a higher
accuracy than SDM as SDM is able to distinguish
disease-associations only for those mutations that
perturb protein structure and not those that directly
affect catalytic residues, binding sites etc. Mutations that
cause protein malfunction by affecting the functional
residues of a protein (active sites or protein–protein inter-
action sites) or by altering post-translational modifications
will not be identified as damaging by SDM. Therefore, to
obtain a more accurate prediction of whether an nsSNP is
associated with disease, these other effects should also be
taken into account. We previously demonstrated that
when SDM’s predictions were combined with predictions
of functional sites using Crescendo (64) and known func-
tional sites, this combined approach has a comparable
accuracy to the other methods tested but has the benefit
of a much lower false-positive rate, therefore providing a
high-quality set of predictions (26).

SUMMARY

The SDM server provides users with a fast and accurate
means of assessing the impact that a mutation will have on
protein structure and stability. It provides a 3D view of
the wild-type and mutant residues, allowing users to
inspect the structural context of the sidechains. SDM is
a useful tool for identifying possible disease associations
and has been applied to the task of predicting deleterious
nsSNPs at the genome scale (25,26,65) and also for
generating new hypotheses regarding: (i) the molecular
aetiology of renal cell carcinoma and pheochromocytoma
in the cancer syndrome, von Hippel-Lindau disease (66);
(ii) the structural effects of mutations in thyroid

Table 2. Comparison of the performance of different prediction

methods

Method No. of
predictionsb

Complete set (350/309/87 mutants)a

R s (kcal/mol)

Automutec 315 0.46 / 0.45 / 0.45 1.43 / 1.46 / 1.99
CUPSATc 346 0.37 / 0.35 / 0.50 1.91 / 1.96 / 2.14
Dmutantc 350 0.48 / 0.47 / 0.57 1.81 / 1.87 / 2.31
Erisc 334 0.35 / 0.34 / 0.49 4.12 / 4.28 / 3.91
I-mutant-2.0c 346 0.29 / 0.27 / 0.27 1.65 / 1.69 / 2.39
PoPMuSiC-1.0c 350 0.62 / 0.63 / 0.70 1.24 / 1.25 / 1.66
PoPMuSiC-2.0c 350 0.67 / 0.67 / 0.71 1.16 / 1.19 / 1.67
SDM 350 0.52 / 0.53 / 0.63 1.80 / 1.81 / 2.11

aThree values are given per column. The first corresponds to the whole
validation set of 350 mutants with the unavailable ��G predictions set
to 0.0 kcal/mol. The second corresponds to the 309 mutants for which a
��G prediction is available for all predictors. The third corresponds to
87 mutants for which the experimental ��G value causes >2 kcal
mol�1 change and for which a ��G prediction is available for all
predictors.
b350 mutations were tested with each method. However, some servers
failed to compute the ��G prediction for all mutants, resulting in
predictions for less than the full number.
cData taken from (22).

Table 3. Comparison of the performance of different prediction

methods

Method MCC Accuracy Sens.
(+)

Spec.
(+)

Sens.
(�)

Spec.
(�)

Automute S1227a 0.31 0.87 0.36 0.42 0.94 0.92
FOLDXb 0.25 0.75 0.56 0.26 0.78 0.93
DFIREb 0.11 0.68 0.44 0.18 0.71 0.90
PoPMuSiC-1.0b 0.20 0.85 0.25 0.33 0.93 0.90
PoPMuSiC-2.0 0.32 0.86 0.35 0.44 0.94 0.91
NeuralNetb 0.25 0.87 0.21 0.44 0.96 0.90
MuPro SOc 0.26 0.86 0.30 0.40 0.94 0.90
MuPro TOc 0.28 0.86 0.31 0.42 0.94 0.91
MuPro STc 0.27 0.86 0.31 0.40 0.93 0.91
MuX-Sd 0.39 0.88 0.29 0.67 0.94 0.91
MuX-48c 0.39 0.89 0.29 0.67 0.98 0.91
SDM 0.28 0.71 0.70 0.24 0.71 0.94

aData taken from Masso and Vaisman (24).
bData taken from Capriotti et al. (16).
cData taken from Cheng et al. (17).
dData taken from Kang et al. (74).
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stimulating hormone receptor that are associated with con-
genital non-goitrous hypothyroidism (67); and (iii) tumour
risk associated with mutations in succinate dehydrogenase
D (68). It has also been used in the analysis of mutations in
the autoimmune regulator protein (69), mixed lineage
kinase 3 (70), the adaptor protein MyD88 adaptor-like
(71) and breast cancer susceptibility gene 1 (72).
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