Norwegian Journal of development of the International Science

ISSN 3453-9875

VOL.1

It was established in November 2016 with support from the Norwegian Academy of Science.

DESCRIPTION

The Scientific journal “Norwegian Journal of development of the International Science” is issued 12 times a year and is a scientific publication on topical problems of science.

Editor in chief – Karin Kristiansen (University of Oslo, Norway)

The assistant of the editor in chief – Olof Hansen

- James Smith (University of Birmingham, UK)
- Kristian Nilsen (University Centre in Svalbard, Norway)
- Arne Jensen (Norwegian University of Science and Technology, Norway)
- Sander Svein (University of Tromso, Norway)
- Lena Meyer (University of Gothenburg, Sweden)
- Hans Rasmussen (University of Southern Denmark, Denmark)
- Chantal Girard (ESC Rennes School of Business, France)
- Ann Claes (University of Groningen, Netherlands)
- Ingrid Karlsen (University of Oslo, Norway)
- Terje Gruterson (Norwegian Institute of Public Health, Norway)
- Sander Langfjord (University Hospital, Norway)
- Fredrik Mardosas (Oslo and Akershus University College, Norway)
- Emil Berger (Ministry of Agriculture and Food, Norway)
- Sofie Olsen (BioFokus, Norway)
- Rolf Ulrich Becker (University of Duisburg-Essen, Germany)
- Lutz Jäncke (University of Zürich, Switzerland)
- Elizabeth Davies (University of Glasgow, UK)
- Chan Jiang (Peking University, China)

and other independent experts

1000 copies

Norwegian Journal of development of the International Science

Iduns gate 4A, 0178, Oslo, Norway

email: publish@njd-iscience.com

site: http://www.njd-iscience.com
EARTH SCIENCES

Apanovich I.
ON THE PHYSICAL NATURE OF THE VERTICAL GRADIENT OF THE FORCE ATTRACTION 3

Solodovnik A., Sartin S., Alekseeva A., Nurakay G., Cherkasova A.
ABOUT OBSERVATION OF NIGHT SHINING CLOUDS IN NORTHERN KAZAKHSTAN .. 8

PHYSICAL SCIENCES

Vinogradova M., Scopich N.
ABOUT THE AUTHOR OF LAPLACE PLANE PRECESSION IN SUNNY SYSTEM ... 12

Mardasova E.
CURRENT IN GASES .. 17

TECHNICAL SCIENCES

Khaydarova G., Kamolova Y., Kamolov N., Muratova M.
COMPUTER SOFTWARE "HOME SPEECH THERAPIST" FOR WEAKNESSES CHILDREN .. 19

Adambaev M., Alpysbayev A., Amankos B.
ANALYSIS OF AUTOMATIC CONTROL SYSTEMS OF THE GRINDING PROCESS OF MINERALS 22

Adambaev M., Alpysbayev A., Amankos B.
ANALYSIS OF AUTOMATIC PROCESS CONTROL SYSTEMS FOR DRY GRINDING OF RAW MATERIALS IN BALL MILLS .. 25

Adambayev M., Julayeva Zh., Kalabayeva A.
IDENTIFICATION OF THE STRUCTURE OF THE INDUSTRIAL CONTROL OBJECT ... 28

Mokrousov M., Shakleina O.
A NEW CLASSIFICATION OF PROPER NAMES OF RUSSIAN LANGUAGE IN THE TASK OF EXTRACTING NAMED ENTITIES .. 32

Novikov, O., Novikov M.
PROBLEM STATEMENT TO BUILD A CLOUD-BASED TECHNOLOGY INFORMATION NETWORK ... 38

Volodko O., Rogovaya N., Rybakova S.
METHOD OF CALCULATING THE STRENGTH OF HEATED ROAD COVER .. 41

Korablin Yu., Shipov A.
THE EQUATIONAL CHARACTERISATION OF THE COMPUTATION TREE LOGIC ... 48
ON THE PHYSICAL NATURE OF THE VERTICAL GRADIENT OF THE FORCE ATTRACTION

Apanovich I.

Abstract
The lithosphere is a complex of dynamic components. The clarification of its structure is possible only by studying the parameters of geological bodies as polar systems. One of the poles of each such system is the flux of particle-pulses of gravitational radiation. The intensity (or "power") of the flux generated by the substance and the degree of concentration of this substance are interrelated. The magnitude of the vertical gradient of the attractive force depends both on the power of the particle flux and on the parameters of the emitter substance. We are still poorly aware of all the components of the radiation flux. But the shown mechanism is best suited to explain the mysterious force by which all bodies interact "through emptiness" (as expressed by I. Newton).

Keywords: gravity prospecting, gravity anomalies, vertical gradient, density of rocks.

Studying the structure of the upper part of the lithosphere with the use of gravity exploration saves on drilling deep and exploratory wells. Measurements with modern high-precision gravimeters make it possible to study the distribution of anomalies of the attractive force (the amount of attractive force and centrifugal force is actually measured) and calculate the vertical gradient (VG), which improves the quality of geological interpretation. Using the mean value of the vertical gradient in calculations well takes into account the change in gravity when observing at different heights, but worsens the information content of the data due to the alignment of the anomalous field. Gradient measurements are the best solution to the problem, but it is not easy to comprehend the received information on the change in the force of attraction with height. Often, the measured gradient is larger in areas where the upper crustal layer is composed of rocks with low density, and gravity anomalies are less intense.

The theory considers simple expressions for accelerating the attractive force (g) by the planet (with a mass M) of unit mass and for the vertical gradient of this force: \(g = GM/r^2 \); \(dg/dr = -2GM/r^3 \). From the resulting simple expression \(dg/dr = -2g/r \), an average normal gradient of attractive force is calculated, equal to \(0.3086 \) mGal/m. As a result, both the force of attraction and the vertical gradient depend on the mass - the source of the external gravitational field. But is this addiction simple?

In nature, it is impossible to find a system whose functioning would be characterized without power interaction, without referring to such concepts as "work", "power". The change in the force field is completely determined by the parameters of the attracting body, which always represents the polar system. This is very important and means that we don’t need any other mechanisms to explain the nature of the vertical gradient of gravity, because gravity is a force interaction, it is an eternal and constant movement with the exchange of pulses in real conditions [1].

Indeed, by measuring and calculating the vertical gradient, in physical terms, we determine the amount of work done by the gravitational forces on the transfer of a unit mass (momentum transfer). Mathematically, the work done by the gravitational field is directly proportional to its intensity (power). Introducing the "equipotential surfaces", the theory shows the dependence of the work performed \(\Delta A \) on the power (\(\Delta F \)) of the field (Fig. 1). To accomplish the same work, the elementary displacement \(\Delta S \) must depend on the power of the gravitational field between the two selected levels. (This property of the potential field is described by the Bruns theorem).

But so far there is no algorithm that allows one to find an elementary movement in nature (only mathematicians can work with space). Apparently, it is more correct to use the acceleration associated with the movement and interaction of real objects. Measuring the acceleration of the force of attraction at different points at two levels (\(g_u \) and \(g_s \)), we obtain information on the change in power (strength) of the gravitational field created by the bodies X, Y and Z. The greater the acceleration, the greater the change in this acceleration.

If under the same conditions 1 % of energy is lost, in quantitative terms this is more for a more powerful impulse. Here everything is mathematically logical. But what really happens? In nature, the exchange of energy of motion does not depend on mathematical equipotential surfaces. Such an exchange is simple and physically understandable, but it manifests itself to the observer in different ways. Imagine several different springs compressed by the same load. Compression will be more for the spring with less elasticity. If the elasticity of the spring is considered to be analogous to the intensity of the field, then the physical nature of real gravitational interaction is seen from Figure 1D.
A physically stiffer spring is harder to compress than a less rigid one. Obviously, it is more difficult to change the more intense impulse (see fig. 1D). In our example, the impulse \(M_B \) acting on the test mass \(m \) from body X, when interacting with the surrounding matter, loses 50 % of energy, from body Z, only 25 %.

In our simple experience, the impulse \(M_B \) acting on the test mass \(m \) and changing with distance is a gravitational radiation flux invisible to a simple observer. Nevertheless, both the acceleration imparted to any mass (and the mass of the gravimeter pendulum) and the existence of bodies with different densities is a logical consequence of the only reason - the reactive action of a particle-particle flow. (The force of action is equal to the force of opposition). Only the inability to observe the true cause of attraction of bodies to each other led to the emergence of a law explaining the interaction of objects around us with a mysterious inertial mass, although this is still the same process of exchanging impulses communicating to acceleration bodies (\(\alpha = g = F/m \)). Acceleration of the force of attraction is directly proportional to the acting force (\(F \)) and inversely proportional to the mass moved with acceleration (\(m \)). By pushing the ball with our hand, we give it the role of gravitational radiation, which sets in motion another body.

The real dynamics of matter inhomogeneous in density is shown in Figure 2.
Indeed, without the existence of gravitational radiation of various intensity streams, it is impossible to move bodies, or to separate matter by density.

It is this parameter that is most accessible to us for measurement, despite the fact that we still record the deviation of the pendulum as a response to the effect of the radiation flux. The impulse cannot be transmitted from a body with a lower energy of motion to a more energetic body. Therefore, over the dense body “B” we see only a slight decrease in the vertical gradient compared to the average (0.3086 mGal/m). Above the body “A” the density of the flux of radiation particles is minimal. The flow from denser rocks is shielded, and the gravimeter records the weakening effect of the radiation of a low-density body rapidly with height. (The possibility of the Moon shielding the gravitational radiation of the Sun was shown by the author earlier [2]).

Due to the interaction of radiation fluxes, the formation of a volume of matter with an increased density in the lower part of the body “A” (suppose it is a granite massif) and the area of decomposition under the denser body “B” (for example, folded hyperbasites or dolomites) occurs. In the latter case, the area of decompression may be a reservoir in relation to fluids (oil, gas, water).

Uncertainty in our analysis contributes to the lack of data on the composition of matter in the flow of gravitational radiation. And protons, and electrons, and electromagnetic radiation, and neutrinos are the most likely candidates for this role. And although in the arsenal of experimenters there are not so many ways to rank them by importance, it is the interaction of all moving matter with the exchange of impulses is the main reason for the change in the concentration of a substance (its density). This is fixed by changing the gradient of the force of attraction.

Having determined what to consider as a consequence, and what is a cause, we will understand that it is necessary to analyze the interaction of the trial mass (unit) not with the mass of the Earth or its part, but with the “interaction mass” (M_B) in the form of the intensity of the effect of a stream of radiation particles. If the role of force (F) is the “mass of interaction”, then \(g = M_B/m \).

With a unit mass m, the acceleration is proportional to the mass of interaction (force). However, the same force can influence the trial mass at different parameters of the concentrated substance generating the radiation flux. So, if we need to find out the cause of the change in the force of attraction, then we should study the ratio of the parameters and the flow of gravitational radiation, and the object generating this substance. It is clear that an increase in the mass-emitter does not always have to lead to a proportional increase in the intensity (density) of the flow of gravitational radiation. (The law of the world does not work well if the condition of the “pointness” of the masses is not met). The radiation will be weak if it is generated even by an enormous mass, but with a volume that tends to infinity. The radiation will be powerful and almost constant at a considerable distance if the radiating mass is not only enormous, but also composed of high-density matter. The radiation will be weaker and more rapidly changing if the dense masses are covered by a layer of loose sediments shielding the gravitational radiation. This means that the measured acceleration of the attraction force depends on the force represented by the “interaction mass”, as well as on the mass emitter as a product of its density (\(\sigma \)) and volume (V): \(g = M_B/m\sigma V \).

In fact, we once again wrote down Isaac Newton’s law, which connects acceleration with force and mass. But physically we have to formulate it as “the connection of acceleration with the ratio of force to mass, generating this force”. After all, with the same force and the same mass, the reported acceleration can be different. For mathematics, this is nonsense, and for physics, the real situation. Turning to increments (and taking into account the unit mass), we obtain \(\Delta g = \Delta (M_B/\sigma V) \). In accordance with the physical content of the process being characterized, we write the formula:

\[
V_{zz} = M_B/(\sigma V). \tag{1}
\]
The vertical gradient of the force of attraction depends directly in proportion to the "mass of interaction" (density or intensity of the flow of gravitational radiation) and inversely proportional to the density of the substance and the volume of the body generating the radiation pulses. We can imagine the interaction mass characterizing the particle flow parameters as a kind of "gravitational radiation flux rate" - the interaction of classical kilograms per unit of time per second - "interaction acceleration" [kg/s²]. This allows you to get in the end the desired dimension of the gradient (1/s²).

But is it accidental for the VG that the dimension is "non-material"? Of course, not by chance! Time is not an object of physical reality. The performance of the gravitational force of the same work is not connected with the change in n-dimensional space. It is easier to assume that the speed of matter movement influences (in A. Einstein's constructions, speed was considered as the most important factor). This is logical, and the observer records such a change everywhere. (The smaller the body by the amount of substance, the greater the speed needed in the interaction to transfer the same energy of motion). But in nature, in the world of force interaction, acceleration plays a major role. This means that the interaction of a stream of gravitational radiation with the surrounding matter (with different power flows from other bodies) constantly changes the acceleration of the interaction of many single impulses. The impulse with a relative value equal to one is graviton [1]. Therefore, the gravitational interaction is correctly characterized by acceleration in the process of the exchange of pulses of interacting radiation fluxes.

So, in our analysis real bodies with their physically not very clear masses were somewhat left aside. (Einstein was right in laying the foundation of the general theory of relativity in the fact of independence of motion in the gravitational field of a body from the mass of the latter).

In the first place were the streams of gravitational radiation, consisting of "units-impulses". The more such "units" - particle-pulses are present in the flow of gravitational radiation, the more they interact (creating acceleration) per second, participating in the formation of the gradient. The apparent contradiction, when the vertical gradient of the attractive force depends differently on the parameters of the same object, does not really exist. The flow of impulses-particles of gravitational radiation is inhomogeneous substance. Its parameters vary from point to point, and with a change in height, so you need to investigate only the real physical process. In fact, we are just beginning to really use this parameter to study the dynamics of the gravitational field of the planet, analyzing the ratio of the power of the radiation flux to the density and volume of the body (or complex of bodies) generating this flow. Analyzing the ratio of the numerator as an indicator of the power of the flow of gravitational radiation and the denominator, representing the characteristics of the emitter of particles (see formula 1), will show the dependence graphically. The calculation of VG values is made for the object, with average values of the density of 5520 kg/m³ and a radius of 6371 km (Fig. 3).

From the given graphs it is easy to estimate the degree of influence of parameters on the value of the vertical gradient. For example, at a certain volume, the influence of rock density within 2520-4520 kg/m³ will be less than the influence of the power of gravitational radiation flux (β₁ is greater than β₂). However, the shift of density values in the range of 2320-2520 kg/m³ shows that the angle β₁ is already smaller than β₂. Now not the mass of interaction, but the density of rocks has a greater influence on the gradient. Even more influence on the vertical gradient can have the product of the density of the body on its volume, when the shape and rank of the object have the most effect. As the volume decreases (when we proceed to the consideration of local objects), the change in the flux density of the recorded particles with height increases sharply.

Our reasoning and constructions make it possible to understand why researchers often not only notice that "the values of the vertical gradient calculated from the anomalies of gravity do not correspond to the measured ones", but also find it difficult to explain the fact that the VG increases over low-density geological bodies. In general, the shown physical nature of the vertical gradient of the force of attraction follows logically from the constructions proposed by the author for a long time as the "physical theory of gravity".
When observing with a gravimeter, the calculation of the values of the gradient should be performed according to the observed values of the acceleration of gravity, taking into account the distorting influence of the terrestrial relief, this gives a more realistic picture. The gradient actually turns out to be dependent on the parameters of the inhomogeneous stream of gravitational radiation, which are inaccessible for direct measurement. Theoretical calculations of VG only partially use the complex dependence of the rate of change of the force of attraction on real geological bodies that are not at all in a static state. Therefore, in a real geological setting, measurement results often demonstrate an inversely proportional dependence of the values of the vertical gradient of gravity on the density of rocks. This is more pronounced in areas of low-density rock propagation, in volcanic areas, where there are many local geological bodies in the upper part of the earth's crust. Measurements of VG in one of the regions of Kamchatka showed that the dependence is indeed the opposite (Fig. 4). (Selection of objects with different densities was performed for a three-dimensional model).

![Fig. 3. The vertical gradient of the force of attraction as a function of one of the arguments: “interaction mass” (Mᵢ), volume (V), density (σ) of an object](image)

![Fig. 4. The dependence of the regional component of the vertical gradient of gravity on the density of rocks of the upper part of the sedimentary cover. Avachinskaya Square](image)
The use of the mechanism of gravitational interaction in the form of motion with the exchange of pulses made it possible to eliminate some contradictions in solving the existing problem of geophysics. Careful consideration of the measurement results, taking into account the scale of geological bodies, makes it possible to more reasonably approach the geological interpretation of the anomalies of gravity and its vertical gradient. (The presence of local sources of gravitational radiation fluxes is the reason for the formation of local anomalies of the vertical gradient). Thus, the efficiency of geological exploration using gravity data can be significantly improved if all studies are complemented by measuring the vertical gradient of gravity on at least a rare network of points. With a small increase in the cost of work, the nature of gravity anomalies will be more closely associated with real geological objects.

REFERENCES:

ABOUT OBSERVATION OF NIGHT SHINING CLOUDS IN NORTHERN KAZAKHSTAN

Solodovnik A.
Candidate of physical and mathematical sciences, professor of Fizika department, North Kazakhstan state university of M. Kozybayev

Sartin S.
Candidate of physical and mathematical sciences, assistant professor of "Physicist", North Kazakhstan state university of M. Kozybayev.

Aleksseeva A.
Student of "Physicist", department, North Kazakhstan state university of M. Kozybayev

Nurakay G.
Student of "Physicist", department, North Kazakhstan state university of M. Kozybayev

Cherkasova A.
Student of "Physicist", department, North Kazakhstan state university of M. Kozybayev.

О НАБЛЮДЕНИЯХ СЕРЕБРИСТЫХ ОБЛАКОВ В СЕВЕРНОМ КАЗАХСТАНЕ

Солодовник А.
Кандидат физико-математических наук, профессор кафедры «Физика», Северо-Казахстанского государственного университета имени М.Козыбаева

Сартин С.
Кандидат физико-математических наук, доцент кафедры «Физика», Северо-Казахстанского государственного университета имени М.Козыбаева

Алексеева А.А.
Студент кафедры «Физика», Северо-Казахстанского государственного университета имени М.Козыбаева

Нуракай Г.
Студент кафедры «Физика», Северо-Казахстанского государственного университета имени М.Козыбаева

Черкасова А.В.
Студент кафедры «Физика», Северо-Казахстанского государственного университета имени М.Козыбаева

Abstract
For many years North-Kazakhstan state university has been continuously registering night shining clouds (NSC). In this regard every observational season from June to August observation stations are organized in the extreme northward locations. The obtained data are used further as a reference material to create a model of NSC formation.

Аннотация
В СКГУ на протяжении долгих лет ведётся непрерывная регистрация МСО. В этой связи каждый наблюдательный сезон, с начала июня по август месяц, организуются точки наблюдений с максимально возможным выносом к северу. Полученные данные в дальнейшем используются в качестве опорного материала для создания модели образования МСО.

Keywords: clouds, mesosphere, twilight segment, morphological forms, genesis, midnight, destruction of clouds

Ключевые слова: облако, мезосфера, сумеречный сегмент, морфологические формы, генезис, полуночь, разрушение облаков.
О наблюдениях серебристых облаков в Северном Казахстане.

Мезосферные серебристые облака (МСО) являются главным маркером физических процессов, происходящих в верхних слоях атмосферы, локализующихся в области мезопаузы. Их изучением занимаются в ряде стран мира. В Северо-Казахстанском государственном университете имени Манаша Козыбаева систематическое изучение МСО ведется с 1989 года. Начиная с 2004 года, каждый сезон проводятся наблюдения за ними из нескольких точек [1-5].

В 2018 году наблюдения МСО проводились из четырех точек. Такая постановка работы позволяет не только минимизировать неблагоприятное влияние погодных условий, но и в перспективе анализировать пространственную структуру облачных полей. Первое появление МСО датируется 6 июня. Сопоставляя с данными прошлых лет, можно отметить, что это довольно раннее их появление.

Особенностью сезона 2018 года было размещение одной из наблюдательных точек близ села Долматово, Северо-Казахстанской области с координатами 55°18'48.3"N 69°30'03.7"E. Географически эта точка являлась самой северной точкой наблюдений МСО в Республике Казахстан. Наблюдения производились с помощью цифрового фотоаппарата Canon EOS 600D с минимальным разрешением 2,5 МПк с экспозициями от 2 до 6 секунд, в зависимости от степени освещенности сумеречного сегмента.

За период наблюдений 2018 года с этой точки, за 10 наблюдательных ночей, было получено более 200 снимков, различного качества, на которых зарегистрирован факт присутствия МСО. Снимки позволяют классифицировать морфологические формы серебристых облаков. Чаще всего наблюдались облачные поля 1 типа (флер), 2 типа: 2-a (полосы размытые) и 2-b (резко очерченные), сравнительно реже наблюдались вихри (завихрения с маленьким радиусом) и волнообразные образования (гребешки). Временной промежуток от появления до исчезновения МСО в среднем составлял около трёх часов.

Суммарно по всем наблюдательным пунктам в 2018 году отмечено 14 эпизодов появления серебристых облаков. Из них наибольший интерес представляют мезосферные облака, наблюдавшиеся в ночь с 25 на 26 июня. Их структура явно свидетельствовала о влиянии тропосферных процессов на генезис мезосферной облачности. Анализ структуры и кинематики облачных полей в эту ночь заслуживает отдельной статьи.

Для получения данных о расположении облаков в пространстве производилась первичная обработка изображений. При этом уточнялось положения линии истинного горизонта и направления на север. Далее определялись горизонтальные координаты границ полей МСО. По ним рассчитывались географические координаты и высоты над Землей отдельных участков облачности, а так же расстояния от точки наблюдения до ближней границы облака. Отслеживалось изменение этих параметров с течением времени.

Ниже (рис. 1-3) приведены примеры подобной обработки снимков.

Рисунок 1 - Фотография МСО полученная 7 июня 2018 года в 1 час 50 минут

На первом изображении верхняя граница МСО наблюдается на высоте приблизительно 7° над горизонтом. Правая граница МСО наблюдается восточнее точки севера с астрономическим азимутом приблизительно 198°. Левая граница МСО наблюдается к западу от направления север с азимутом примерно 144°. Основная часть облака выглядит в...
форме систем параллельных полос с ярко выраженными волновыми изгибами, что соответствует группам 2b и 3a. Ближняя граница облака, с учётом устоявшегося значения высотного положения МСО, находится от наблюдателя на расстоянии приблизительно 670 км.

Рисунок 2 – Фотография МСО полученная 7 июня 2018 года в 2 часа 56 минут

На втором изображении верхняя граница МСО наблюдается на высоте около 9° над горизонтом. Правая граница поля МСО имеет азимут приблизительно 220°. Левая его граница имеет азимут около 171°. Основная часть облака не имеет чётких структур, что соответствует флёру. К западу от направления на север примерно в 2°, наблюдаются полосы группы 2a. Восточнее от направления на север с азимутом 202°, наблюдаются полосы группы 2в. Ближняя граница облака, с учётом устоявшегося значения высотного положения МСО, находится от наблюдателя на расстоянии приблизительно 570 км.

На третьем изображении верхняя граница МСО наблюдается на высоте около 6° над горизонтом. Правая граница поля МСО имеет азимут приблизительно 231°. Левая его граница имеет азимут около 180°. Основная часть облака не имеет чётких структур, что соответствует флёру. В структуре облака наблюдаются полосы группы 2a и 2в. Ближняя граница облака, с учётом устоявшегося значения высотного положения МСО, находится от наблюдателя на расстоянии приблизительно 570 км.

В тот же сезон проводился мониторинг сумеречного сегмента с использованием широкоугольной камеры Arecont AV 40185 DN-HB в г. Петропавловске. Аппаратура располагалась на специальной мачте высотой 18 метров, расположенной рядом со зданием университетской Обсерватории.

Рисунок 3 – Фотография МСО полученная 7 июня 2018 года в 3 часа 10 минут
Рисунок 5. График изменения азимутальной протяженности облачного поля в градусах (ось у) от времени (ось х) с полиномиальной аппроксимацией.

Рисунок 4. Панорама сумеречного сегмента и поле серебристых облаков в ночь 19-20.06.2017

Поле зрения камеры составляет 180° по азимуту и около 25 градусов по высоте. Благодаря панорамности изображения удалось изучить изменение общей протяженности по азимуту облачного поля (рис. 4).

Результаты представлены на графике (рис. 5.). Здесь видно постепенное уменьшение этой величины со временем, начиная с появления облаков до истинной полуночи. После полуночи протяженность облачного поля возрастила.

Результат обработки указывает на то, что величина протяженности облачного поля определялась только положением Солнца под горизонтом. То есть быстрого образования или исчезновения серебристых облаков не происходило. За исключением последнего этапа наблюдения, когда возможно происходило разрушение серебристых облаков. Такой результат является новым. Он свидетельствует о перспективе применяемой методики и аппаратуры.

СПИСОК ЛИТЕРАТУРЫ:
ABOUT THE AUTHOR OF LAPLACE PLANE PRECESSION IN SUNNY SYSTEM

Vinogradova M.
Doctor of science and Technology, Academician of Information, communication, control International Academy (ICCIA), Saint-Petersburg, Russia

Scopich N.
Researcher of Scientific & Production Union “Russian Light”, Saint-Petersburg, Russia

Abstract
It should raise the question about necessity of determination of phenomenon nature having an influence to the Solar System. Astronomer K. Butusov wrote in 2004: "The Black Sun approximates to the Earth". Today this problem arises with the information from American astronomers about indignation of long periodic comet orbits by distant invisible celestial body. Let us find out what is foundation for reckon this body to the Solar System namely.

Keywords: ecliptic, precession, frequency, ethers flows, moment of force, impulse of rotation, angular velocity, mass.

Наука о движении Солнца в данную эпоху совершается почти точно в плоскости галактического экватора, с небольшими вертикальными флуктуацияями. Кроме движения вокруг ядра Галактики, Солнечная система совершает гармонические волнобразные колебания относительно галактической плоскости, переходящие в Северном, то в Южном галактическом полушарии [2].
Иллюстрация 1. Вид галактики Млечный путь с ребра. V_\odot - вектор окружной скорости Солнца в его галактическом обращении (показан условно, так как на самом деле он перпендикулярен плоскости рисунка и направлен от нас), ω - вектор угловой скорости обращения спиральных узоров, направленный вдоль оси вращения Галактики.

На иллюстрации 1 показана наша Галактика «Млечный путь», как она должна быть видна с ребра, или в разрезе вдоль галактической долготы 180°-0°.

Известно, что небесное склонение галактического экватора Млечного пути составляет 63°, то есть эклиптика наклонена к галактическому экватору под углом $63 - 23,5 = 39,5°$. А что же может пространственно связывать небесные тела в Космосе, определять и поддерживать угол наклона всей системы относительно галактической плоскости? В объяснении особенностей стереометрии Солнечной системы не обойтись без привлечения невидимых эфирных нейтринных потоков, формирующих наклон плоскости эклиптики к галактической плоскости, обусловливающий возникновение момента силы как виновника прецессии плоскости Лапласа в Солнечной системе [1, 3]. На заре образования Солнечной звёздной системы (С. з.) какой-то массивный небесный объект S вращался над плоскостью симметрии галактической плоскости выше системы и чуть ближе к оси вращения Галактики, чем водородное скопление, из которого образовались ранние звёзды Солнечной системы [1,6]. Он сформировал эфирные нейтринные потоки, проинизывающие и обтекающие вращающееся плоское водородное облако, направленные к центру массы неизвестного образования в виде телесного угла – конуса 2α. Радиально-сходящиеся эфирные потоки формировали положение в пространстве плоскости вращения водородного облака как основания кругового конуса небольшой протяжённости, предположительно порядка 10 астрономических единиц (астрономическая единица а.е. = 1,5 \times 10^8 \text{ км} = 1,5 \times 10^{13} \text{ см}). Показано на иллюстрации 2.

Рассмотрим, как наличие массивного небесного тела вне плоскости вращения формирующейся системы вызывает изменение момента количества движения системы в этой плоскости? Покажем, что импульс вращения Л в водородном скоплении, направленный вдоль его оси вращения — вдоль вектора Ω, меняет свое направление в пространстве под действием момента М внешней силы F_вн, относительно т. О. Импульс вращения Л получает приращение Δ L в направлении, параллельном вектору М момента внешней силы и перпендикулярном вектору L. На основании известного периода прецессии Т=36 000 лет становится известна угловая скорость прецессии ω_пр:

ω_пр = M/ I_0 Ω_0 (1).

так что ω_пр = (1/3). Здесь I_0 = m_0 Ω_0 2/3 — начальный момент инерции системы, где m_0 — масса и Ω_0/2 —радиус инерции первоначального водородного скопления С. с.: ω_пр — угловая скорость вращения системы С. в. вокруг оси CS.

Поскольку плоскость эклиптики Солнечной системы составляет с галактической плоскостью некоторый угол α (39,5° по рис.1), то поддерживающую систему в наклонном состоянии сила есть суммарный результат действия эфирных потоков, приносящих к центру массы S по рис. 2, в виде силы F_тр.

Эта сила F_тр взаимного притяжения неизвестной массы m_1 и начальной массы m_0 протозвёздного образования образует момент М относительно точки т. О пересечения плоскости эклиптики с галактической плоскостью составляет с галактической плоскостью некоторый угол α (39,5° по рис.1), то поддерживающую систему в наклонном состоянии сила есть суммарный результат действия эфирных потоков, приносящих к центру массы S по рис. 2, в виде силы F_тр.

В связи с этим эллиптические орбиты солнечных систем формируются их планеты: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Солнце. Наклонения плоскостей их орбит отличаются от среднего значения не более, чем на 1-1,5°.

Из уравнения (1) после подстановки всех действующих величин при F_тр = G(m_1 m_0)/ R^2 и r = OC = R тg α получено выражение для неизвестной массы:

m_1 = ω_пр ω_пр R (r R^2 G тg α), (2) где G = 6.67.10^-8 см^3/г.с^2 — гравитационная постоянная, α = 39,5°.

При ω_пр = 8.10^-12 Гц для возможного интервала начальных значений ω_пр в пределах от 5.5.10^-12 рад/с = 8.0.10^-12 Гц до 4.10^-12 рад/с = 0.71.10^-4 Гц и диапазона ориентировочных значений r_0 в пределах от 5 до 10 а. е., возможная величина неизвестной массы m_1 по уравнению (2) может принимать значения, заключённые в пределах от 1,6.10^29 г до 1,2.10^24 г. Последняя величина m_1, на порядок превышает современную массу Солнца m_ʘ = 2.10^33 г.

Указанный наклон древнего водородного скопления определил ориентацию плоскостей орбит ранних сближённых звёзд Солнечной системы: Нептуну, Урану, Сатурну, Юпитера — и соответственно эллиптичность их будущих орбит вокруг Солнца. Наклона плоскостей их орbit отличаются от среднего значения не более, чем на 1-1,5°.

Из уравнения (1) после подстановки всех действующих величин при F_тр = G(m_1 m_0)/ R^2 и r = OC = R тg α получено выражение для неизвестной массы:

m_1 = ω_пр ω_пр R (r R^2 G тg α), (2) где G = 6.67.10^-8 см^3/г.с^2 — гравитационная постоянная, α = 39,5°.

При ω_пр = 8.10^-12 Гц для возможного интервала начальных значений ω_пр в пределах от 5.5.10^-12 рад/с = 8.0.10^-12 Гц до 4.10^-12 рад/с = 0.71.10^-4 Гц и диапазона ориентировочных значений r_0 в пределах от 5 до 10 а. е., возможная величина неизвестной массы m_1 по уравнению (2) может принимать значения, заключённые в пределах от 1,6.10^29 г до 1,2.10^24 г. Последняя величина m_1, на порядок превышает современную массу Солнца m_ʘ = 2.10^33 г.

Указанный наклон древнего водородного скопления определил ориентацию плоскостей орбит ранних сближённых звёзд Солнечной системы: Нептуну, Урану, Сатурну, Юпитера — и соответственно эллиптичность их будущих орбит вокруг Солнца. Наклона плоскостей их орбит отличаются от среднего значения не более, чем на 1-1,5°, что и указывает на их одновременное или последовательное возникновение из одного водородного скопления, который всегда был стационарно ориентирован в пространстве [4,5]. Но все орбиты небесных тел Солнечной системы, в том числе упомянутых звёзд (Нептуну, Урану, Сатурну и Юпитера) и солнечных производных-планет являются эллиптическими. В чем причина этого явления?

Непрекращающееся продуцирование вакуумного момента в рассматриваемой области приводило к уплотнению обширного водородного сгустка и привело к инициированному 6-й вспышкой Юпитера возгоранию молодой водородной звезды Солнца. Его массивность обеспечивала ему преобладающее положение центрального небесного тела в системе, соответствующим образом перестроив его составляющих, с сохранением лишь генетического наклона в пространстве. Параметры орбит вторичных небесных тел — производных самого Солнца в пространстве Галактики были уже обусловлены наклоном плоскости экватора Солнца, так как именно в его экваториальной плоскости происходил выброс соответствующих оболочек, из которых формировались его планеты: Меркурий, Венера, Земля.

Солнце со своими сброшенными оболочками притягивалось «вакуумной» воронкой к основанию кругового конуса телесного угла, образуемого эфирными нейтринными потоками, устремляющимися к массивному телу S — видимому или невидимому. Тогда можно полагать, что эллиптичность орбит небесного тела в системе должна возникать из-за наклона её плоскости к плоскости основания указанного кругового конуса как наклонное коническое сечение конусов эфира. * Следует отличать понятие вакуум от понятия эфир - они не идентичны, так как вакуумное разрежение измеряется степенью отсутствия давления среды, а разрежение эфира - степенью поглощения средой плотности его потоков или дефицитом их плотности.

В связи с этим эллиптические орбиты солнечных производных планет должны иметь тем больший эксцентриситет, чем больше они имеют наклонение к основанию кругового эфирного конуса. Это оказалось действительно так [6]. Далее приведена таблица основные характеристики эллиптичности орбит солнечных производных небесных тел, которые проанализированы.
Солнце со своими производными по отношению к Галактической плоскости по современному состоянию

<table>
<thead>
<tr>
<th>Производные солнца в порядке их возникновения с известными орбитальными параметрами</th>
<th>Эксцентриситет орбиты $e = \frac{f}{a}$</th>
<th>Большая полуось орбиты «а» в радиусах Солнца R_\odot</th>
<th>Половина фокусного расстояния f в R_\odot</th>
<th>Угол наклона плоскостей солнечного экватора и орбит его производных к эклиптике</th>
<th>Галактической плоскости</th>
<th>Плоскости основания конуса, образованного эфирными потоками как образующими этого конуса</th>
</tr>
</thead>
<tbody>
<tr>
<td>углистые астероиды от 2-го периода</td>
<td>0,093 (0,08-0,12)</td>
<td>327</td>
<td>30</td>
<td>≈ 2</td>
<td>39,5-2=37,5</td>
<td>+ 1,5</td>
</tr>
<tr>
<td>силикатные астероиды и Луна от 3-го периода</td>
<td>0,017</td>
<td>215</td>
<td>3,6</td>
<td>5</td>
<td>39,5-5 =34,5</td>
<td>- 1,5</td>
</tr>
<tr>
<td>Венера от 4-го периода</td>
<td>0,007</td>
<td>155</td>
<td>1°</td>
<td>3°24'</td>
<td>39,5-3,5=36</td>
<td>принято за 0</td>
</tr>
<tr>
<td>Меркурий от 5-го периода</td>
<td>0,206</td>
<td>83</td>
<td>17</td>
<td>7</td>
<td>39,5-7=32,5</td>
<td>-3,5</td>
</tr>
<tr>
<td>Солнечный экватор</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>39,5-7=32,5</td>
<td>-3,5</td>
</tr>
</tbody>
</table>

*Эта орбита может считаться круговой – с одним фокусом, благодаря его расположению в пределах одного радиуса сферы Солнца R_\odot, по отношению к ней может рассматриваться наклонение других орбит.

За плоскость сравнения лучше всего принять орбиту Венеры, оказывающуюся круговой, полагая, что в момент выброса венерианской оболочки ось собственного вращения Солнца имела малое отклонение от оси эфирного конуса. Тогда орбита Меркурия, имеющая наибольший эксцентриситет 0,206, оказалась имеющей наибольший угол наклона к плоскости орбиты сравнения.

Небольшие отклонения оси вращения Солнца от оси эфирного конуса вызывали малые колебания наклонений плоскостей соответствующих орбит сброшенных оболочек к галактической плоскости и планет, сформировавшихся из этих оболочек.

Так, наклонение солнечного экватора под углом 7° к эклиптике и 32° к галактической плоскости осталось от момента выброса оболочки 1 млрд лет назад, образовавшей Меркурий, хотя после этого была сброшена ещё одна оболочка - с будущим Вулканом [6].

Истинный наклон галактической плоскости к эклиптике можно наблюдать, например, с Луны, как небесного тела, возникшего из сброшенной оболочки в экваториальной плоскости Солнца. Ось вращения Луны перпендикулярна плоскости эклиптики, с отличием в 5°, так что галактическая плоскость видна с плоскости её орбиты под углом 39,5-5= 34,5° (вторая строка таблицы). Эту картину можно видеть на иллюстрации 3.
Иллюстрация 3. Вид с Луны в момент Солнечного затмения, когда должен прекрасно наблюдаться натуральный наклон галактического экватора к эклиптике. Рисунок из журнала «Природа» № 6, 1962 (Куликов К.А. Вид звёздного неба с Луны).

В свою очередь, с Земли можно в ясную ночь наблюдать угол натурального наклона галактического экватора к небесному экватору, он оказывается существенно больше предыдущего.

Вполне возможно, что невидимый сверхплотный объект типа «чёрной дыры» вращается над плоскостью симметрии галактической плоскости выше Солнечной системы и ближе неё к оси вращения Галактики, как показано на иллюстрации 2. Именно этот небесный объект оказывал и продолжает оказывать своё гравитационное влияние на не прекращающийся процесс формирования Солнечной системы через эфирную составляющую бытия Космоса.

По всей вероятности, гравитационное влияние невидимой Черной звезды достаточно сильное для того, чтобы как раз и вызывать вертикальные колебания солнечной галактической орбиты относительно галактического экватора, повторяющиеся с периодичностью 33-35 млн. лет. При оказалшейся соизмеримости масс Солнца и невидимого небесного тела последнее образует с Солнечной системой некую альтернативную систему, взаимодействие в которой осуществляется в плоскости, перпендикулярной плоскости эклиптики Солнечной системы через общий центр масс.

СПИСОК ЛИТЕРАТУРЫ:

3. Виноградова М.Г., Скопич Н.Н. Определяющая роль небесного эфира в космофизических процессах. Труды Конгресса-2016. Фундаментальные проблемы естествознания и техники. Серия: Проблемы исследования Вселенной. Том 37, № 1. СПб. 2016. С. 77-93.
8. РусСвет ТВ: МКУ 23.07.2016. Нина Николаевна Борисова «Определяющая роль небесного эфира …»
CURRENT IN GASES

Mardasova E.
Student of Automation Mechatronics Faculty and Management,
Don State Technical University

Abstract
This article discusses how to transfer current through a gas, as a result of which discharges appear. Also, much attention is paid to the types of these discharges, methods of their formation with examples. And finally, the application of these very discharges in various spheres of human life is described in detail.

Keywords: ionization, gas discharge, independent gas discharge, non-independent gas discharge, glow discharge, corona discharge, spark discharge, arc discharge.

Gases in the normal state, under normal conditions, are insulators, because it’s consist of neutral atoms or molecules and do not contain free charges. In order for the gas to become a conductor of electricity, some of its molecules must be ionized.[3]

Ionization is either the detachment of an electron from an atom, resulting in the formation of a positively charged ion, or the attachment of an electron to a neutral atom, with the formation of a negatively charged ion.

The passage of an electric current through a gas is called a gas charge. That is, the ordered motion of positive and negative ions and electrons to the electrodes under the action of an electric field.

Ionization of gases can occur for various reasons:
1) Ionization with strong heating occurs if the average kinetic energy of the atoms is greater than the ionization energy. The energy of ionization is the energy necessary to detach one electron from the neutral atom.
2) Ionization by radiation (UV, X-ray and γ-radiation)
3) Ionization by a stream of fast particles coming from outside (ions, electrons, protons).
4) Shock ionization - under the action of the impacts of electrons and ions of the gas itself, thus accelerated by the electric field, which causes a current through the gas.[2]

In the gas discharge the gas atoms are excited - the transition of an electron from the ground state to a state with a higher energy (to a more distant orbit from the nucleus). The excited electron returns to the ground state after ~ 10-8 s, emitting a quantum of light, which is responsible for the glow of the gas in a gas discharge.

In the electric field, the motion of charges is directed. Approaching the anode, the electrons go into the metal; the negative ion gives off an extra electron, turning into an electrically neutral atom. Positive ions are neutralized, obtaining the missing electrons from the cathode. At low voltages, not all charged particles reach the electrodes. As the voltage is increased, the velocity of the directed motion of electrons and ions becomes larger. More charges will reach the electrodes, the current will increase. With a certain potential difference, all charged particles reach the electrodes, and a further increase in voltage will not cause an increase in current, the current will remain constant and is called the saturation current.

A discharge that exists only under the influence of an external ionizer is called a non-self-sustaining one.

There is also an independent discharge, for which a free electron is necessary, it can be formed under the influence of cosmic rays or radioactive substances present everywhere. While the velocity of the electron is small, its impacts on the atom are elastic. In a strong electric field, which will create a new current source, the electron receives sufficient energy to ionize atoms in the collision. The released electrons produce further ionization - an avalanche is formed. Depending on the gas pressure, the configuration of the electrodes, the parameters of the external circuit, we can speak of four types of independent discharge.

If the gas pressure in the discharge gap is reduced to a pressure of several mmHg, an independent discharge can be obtained at lower voltages. Such a discharge is called “the glow discharge”. In a weak electric field, an electron collides with atoms, producing ionization and excitation. The gas is glowing.[1]

Glow discharge is widely used in engineering. Since the glow has a characteristic color for each gas, it is used in gas-light tubes for luminous inscriptions and advertisements. For example, neon gives a red or orange glow, argon is bluish green. Daylight lamps are more economical than incandescent lamps. The emission of a glow discharge occurring in mercury vapor is absorbed by the luminophore deposited on the inner surface of the tube, which begins to shine under the action of the absorbed radiation. The substance of the cathode in a glow discharge due to the bombardment by positive ions, becoming very hot, becomes a vapor state, because of which objects near the cathode can be uniformly coated with a metal.

The corona discharge is an independent gas discharge arising at the tip of the electrode, near which a strong electric field is created. The air is ionized. For example, during a thunderstorm on the masts of the ship you can see the so-called lights of St. Elm. According to legend, the lights of St. Elm appeared after St. Elm (the patron sailor of the Mediterranean) died at the time of the strongest storm. Before his death, he promised that he would give signals to the sailors about whether they were destined to be saved. Sometime later an unusual glow appeared on the mast, the sailors accepted it as the fulfillment of the promise given by Saint Elm.[4]

Another example is the glow of electrical wires during a thunderstorm. The resulting current of the corona discharge leads to energy losses. To avoid this loss, the wire cross section is increased, the field...
strength near the conductor decreases and the discharge stops.

Its use of corona discharge found in electrostatic precipitators, used to purify industrial gases from impurities. It is also used when applying powder and paint coatings.

Spark discharge occurs when the voltage of the electric field is high and atmospheric pressure. The spark has the appearance of a brightly glowing thin channel, in a complex, curved and branched manner. An example may be ordinary lightning during a thunderstorm.

It’s used to ignite the combustible mixture in internal combustion engines. Also used in spark voltmeters.

The arc discharge is an independent gas discharge that occurs when the colliding carbon electrodes are diluted, to which a voltage of several tens of volts is applied. When the distance between the electrodes is still not large, a breakdown of a narrow air gap occurs, that is, a spark igniting between the electrodes ignites the electric arc. Due to the high resistance of the air gap, a very large amount of heat is released in it, so the temperature in the arc reaches tens of thousands of degrees.

Arc discharge is widely used for welding and cutting metals, obtaining high-quality steels and lighting (projectors, projection equipment). Widely used are arc lamps with mercury electrodes in quartz cylinders, where an arc discharge occurs in a mercury vapor in evacuated air. The arc created in the mercury vapor is a powerful source of ultraviolet radiation and is used in medicine (for example, quartz lamps).

REFERENCES:
COMPUTER SOFTWARE "HOME SPEECH THERAPIST" FOR WEAKNESSES CHILDREN

Khaydarova G.
Doctor of Medical Sciences, Associate Professor of the Department of Otorhinolaryngology and Dentistry of the Tashkent Medical Academy

Kamolova Y.
Assistant of the Department of "Biomedical Engineering" Tashkent State Technical University

Kamolov N.
Master student of the department "Mechatronics and Robotics" Tashkent State Technical University

Muratova M.
Student of the Department of "Biomedical Engineering" Tashkent State Technical University

Abstract
The article describes the process of rehabilitation of children after cochlear implantation, game techniques and computer software for studying sounds, words and the name of objects in the Uzbek language. It was established that the lack of new gaming technological methods in the Uzbek language of teaching children with hearing pathology complicates the work of speech therapists and audiologists.

Keywords: cochlear implant, hearing aids, gaming methods, software, rehab, sounds, words.

Технологии с каждым годом развиваются интенсивнее, появляются новые решения в самых различных сферах деятельности человека — от бытового уровня до производственного, медицина в данном случае не является исключением, при этом она выступает существенным драйвером инноваций: разрабатываются и внедряются новые препараты, новое медицинское оборудование и приборы, новые методы лечения самых различных заболеваний и патологий. В общей сложности, 2–4% населения земного шара имеют проблемы, связанные со снижением слуха.

Так, в мире примерно 5 млн глухих людей, около 350 млн человек имеют снижение слуха умеренной и тяжелой степени — второй, третьей и четвертой, а 750 млн человек — снижение слуха первой степени. При этом из 360 млн людей со значительным снижением слуха 32 млн — это дети до 15 лет [5]. Тягуохость у детей является социальной проблемой, так как без своевременной коррекции специалистов эта категория детей плохо адаптируется в социуме, у них отмечается иное восприятие мира. Таким образом, чем раньше начинаются реабилитационные мероприятия, тем более защищенными психофизически и эмоционально они вырастают. Сегодня активно развивающиеся технологии могут предоставить глухим и слабослышащим детям возможность адаптироваться в жизни в обычных коллективах, и реализовывать себя [1].
Сегодня основным способом лечения глухоты является кохлеарная имплантация, ее методы и оборудование, применяемое при этой операции, постоянно совершенствуются. Как полагают эксперты, в ближайшее десятилетие в помощь докторам придут, возможно, новые методики, лечение будет осуществляться с использованием стволовых клеток, а в более отдаленной перспективе — и генная инженерия, при которой будет проводиться перестройка генотипа — для предупреждения рождения детей с проблемами слуха. Реабилитация тугоухих детей подразумевает комплекс мероприятий, направленных на развитие речи. Именно комплексный подход в решении этой проблемы — залог успешной адаптации в современном обществе детей с проблемами со слухом [2].

Сегодня важно осознавать, что при выборе метода восстановления слуха нельзя терять время и ждать, пока станут доступны технологии будущего. Ведь для развития ребенка необходимо как можно раньше обеспечить ему возможность слышать, так как существует критический период для развития слуховых и речевых центров мозга, и эту возможность тугоухому и глухому ребенку обеспечивают слуховые аппараты и кохлеарные импланты. Технология кохлеарной имплантации сама диктует принципиально новый подход к реабилитации глухого ребенка — целенаправленное формирование процессов слухового анализа и создание условий для их спонтанного развития, чтобы в дальнейшем они стали инструментом для овладения речью посредством общения с окружающими взрослыми. Это серьезно отличается от традиционных подходов развития речи у слабослышащих и глухих, опирающихся на зрение (чтение, пальцевая азбука, жесты, письменная речь) и тактильные ощущения [4]. При слухоречевой реабилитации пациентов как со слуховыми аппаратами, так и с кохлеарными имплантатами в том числе, могут использоваться и виртуальные технологии. В частности, в компьютерном тренажерном комплексе для развития слухоречевого восприятия у пациентов с имплантатами, разработанном в Ташкентском государственном техническом университете кафедрой «Биомедицинской инженерии» совместно кафедрой «Оториноларингологии и стоматологии» Ташкентской медицинской академии, для тренировки способности локализовать источник звука используется виртуальное моделирование перемещения источника звука и его различной локализации, моделирование сложных акустических сцен, синтез речевых сигналов с заданными характеристиками. Это позволяет структурированно сформировать процессы мозгового анализа звуковой информации у пациента с тугоухостью или глухотой в более короткие сроки.

Слухопротезирование и кохлеарная имплантация являются лишь началом по пути, так как дети получают возможность слышать звуки, но эти методы реабилитации не учат ребенка понимать услышанное. Над развитием слуха и речи ребенка еще долгое время после операции работают сурдопедагоги, другие специалисты и родители. Длительность реабилитации детей с врожденной глухотой составляет от трех до пяти лет. Программное обеспечение на узбекском языке «Домашний логопед» («Уй логопед») специализируется на разработке новых методик слухоречевой реабилитации и социальной адаптации детей после слухопротезирования и кохлеарной имплантации [3].

Также в программе есть раздел смешанных звуков, при котором ребенок может анализировать и различать воспроизводимые звуки в комбинированных трейках (рис.3.). Таким образом, реабилитация детей с нарушениями слуха должна основываться на комплексном подходе, включающем в зависимости от степени тяготения слухопротезирование или кохлеарную имплантацию, занятия с сурдопедагогом, а также компьютерные программы, направленные на развитие слуховой памяти.

СПИСОК ЛИТЕРАТУРЫ:

1. Королева И.В. Кохлеарная имплантация глухих детей и взрослых. Книга. –СПб.:С-Петербургский НИИ уха, горла, носа и речи, 2017.-65с.

2. Королева И.В. Развитие слуха и речи у глухих детей раннего и дошкольного возраста после кохлеарной имплантации. Учебное пособие. –СПб.:С-Петербургский НИИ уха, горла, носа и речи, 2017.-286с.

ANALYSIS OF AUTOMATIC CONTROL SYSTEMS OF THE GRINDING PROCESS OF MINERALS

Adambaev M.
Ph.D., Associate Professor, Department of Electronics and Robotics, Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

Alpysbayev A.
Bachelor, Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

Amankos B.
Bachelor, Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

АНАЛИЗ СИСТЕМ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ ПРОЦЕССА ИЗМЕЛЬЧЕНИЯ ПОЛЕЗНЫХ ИСКОПАЕМЫХ

Адамбаев М.Д.
к.т.н., доцент, кафедра «Электроника и робототехника», Алматинский университет энергетики и связи (АУЭС), Алматы

Алпысбаев А.С.
Бакалавр, Алматинский университет энергетики и связи (АУЭС), Алматы

Аманкос Б.Е.
Бакалавр, Алматинский университет энергетики и связи (АУЭС), Алматы

Abstract
The analysis of the known systems of automatic control of the process of grinding minerals is carried out in order to assess the possibility of their use in the technologies of dry grinding in two-chamber mills.

Keywords: The grinding process, types of control systems, granulometric composition, pulp density, intra-mill loading, noise spectrum.

Важнейшим направлением техничес–кого прогресса, позволяющим поднять эффективность любого производства, является автоматизация этих производств. Большое внимание уделяется автоматизации и в горно-обогатительной промышленности, в частности при автоматизации процессов измельчения полезных ископаемых. Процессы измельчения занимают центральное место в производствах по переработке добытых полезных ископаемых. Основными агрегатами в измельчительных отделениях предприятий являются такие энергоемкие установки как шаровые и бесшаровые мельницы, работающие по принципу измельчения ударом, истиранием, раздавливанием. Закономерности процесса измельчения и требования к технологии помола с сырья, в основном, определяют принципы регулирования измельчителей агрегатов [1]. Большое количество раз–новидностей систем автоматического управления процессом измельчения, из–вестных в настоящее время, обусловлено сложностью взаимосвязей между входными, промежуточными и выходными координатами процесса, так и разнообразием технологических схем и условий из–мельчения [2,3]. Подавляющее большинство автомат–ических систем управления процессом измельчения разработаны применительно к одностадийному измельчению. Для замкнутого цикла одностадийного из–мельчения выполнение технологических требований обеспечивается применением следующих видов систем автоматического управления:

1. Систем автоматического управ–ления, обеспечивающих заданный гранулометрический состав в сливе класс–сифонатора. В этих системах гранулометрический состав пульпы контролируется применением пьезометрических, радиоактивных или весовых датчиков, а также по прямому параметру с использованием в качестве датчиков крупности седиментационного гранулометра или гранулометра на принципе измерения крупных классов [1]. Дальнейшее развитие этих систем не рассматривается, т.к. они разработаны применительно к процессу мокрого измельчения и не представляется возможным применение их на рассматриваемом производстве. Плотность пульпы контролируется применением неразмольных, радиоактивных или весовых датчиков, а также по прямому параметру с использованием в качестве датчиков крупности седиментационного гранулометра или гранулометра на принципе измерения крупных классов [1]. В дальнейшем эти системы не рассматриваются, т.к. их разработаны применительно к процессу мокрого измельчения и не представляется возможным применение их на рассмотриваемом производстве.

2. Систем автоматического управ–ления, обеспечивающих заданную плотность пульпы в мельнице. Эти системы установлены на практике в основном двумя видами. Это системы, поддерживающие заданное соот–ношение...
"руда-вода" ("тврдое-жидкое"), и системы, поддерживающие заданную плотность в разгрузке мельницы [3].

3. Систем автоматического управления, стабилизирующих уровень внутри-мельничной загрузки измельченным мате-риалом. Эти системы занимают ведущее место при автоматизации процессов измельчения, поэтому остановимся на них подробнее.

Управление по вышеуказанному принципу можно осуществить применением трех видов систем автоматического регулирования загрузки мельницы рудой.

1. Загрузка мельницы рудой стабили-зируется по принципу постоянства величины исходного питания \(Q_0 = \text{const} \).

2. Загрузка мельницы рудой стабили-зируется по принципу постоянства величины циркулирующей нагрузки \(S = \text{const} \).

3. Загрузка мельницы рудой стабили-зируется по принципу \(Q_0 + KS = \text{const} \), где \(Q_0 \)-величина исходного питания; \(S \)-цир-кулирующая нагрузка; \(K \)-ко-эффектив, определяемый отношением количества исходного питания к циркулирующей нагрузке при средней измельчаемости данной руды.

Системы автоматического регулирования, стабилизирующие величину исходного питания \(Q_0 = \text{const} \), нашли широкое применение в измельчении полезных ископаемых, но эти системы малоэффективны, т.к. работают при заведомо пониженной производительности, рассе-танной на наиболее трудноизмельчаемую руду. Принцип работы этих систем заключается в следующем (рис. 1, а). Сигнал от конвейерных весов, пропорциональный величине исходного питания, поступает на преобразователь сигнала (конвейерный весовой прибор) и далее в регулятор 3, где происходит сравнение истинного сигнала с заданным, и при наличии рассогласования формируется сигнал для управления исполнительным механизмом 4, воздействующий на питатель исходной руды. До- статочно проста - чисто аппаратуарное решение.

Система системы автоматического регулирования, стабилизирующие величину исходного питания \(Q_0 = \text{const} \), нашли широкое применение в измельчении полезных ископаемых, но эти системы малоэффективны, т.к. работают при заведомо пониженной производительности, рассе-танной на наиболее трудноизмельчаемую руду. Принцип работы этих систем заключается в следующем (рис. 1, а). Сигнал от конвейерных весов, пропорциональный величине исходного питания, поступает на преобразователь сигнала (конвейерный весовой прибор) и далее в регулятор 3, где происходит сравнение истинного сигнала с заданным, и при наличии рассогласования формируется сигнал для управления исполнительным механизмом 4, воздействующий на питатель исходной руды. До- статочно проста - чисто аппаратуарное решение.

Но следует отметить, что компоновка исследуемой технологии измельчения, не позволяющая контролировать величину исходного питания при помощи конвейерных или других типов датчиков, а также широкий диапазон изменения измельчаемости фосфоритной руды исключают применение этих систем для автоматизации исследуемой технологии измельчения.

Метод основан на принципе пос-тойнства цир-кулирующей нагрузки пояс-няется рис. 1, б. Сиг-нал с датчика циркулирующей нагрузки - конвейер-ных весов 1 через регулирующий прибор \(S \) и ре-гулятор 3 воздействует на исполнительный механизм 4 рудного питателя. Хотя эти системы и учитывают размалываемость руды, т.к. циркулирующая нагрузка, в основном, определяется физико-меха-ническими свойствами руды, но они имеют недостатки, ограничивающие их применение. Это ненадежность и несовершенство датчиков и значительное транспортное запаздывание по каналу ре-}
самой мельницы, между параметрами шума и загрузкой существует тесная корреляционная связь, значительно снижается время транспортного задерживания (с 6 - 10 мин. до 1 - 2 мин.), что позволяет поднять качество регулирования.

В системах, стабилизирующих шум мельниц, применяется один из параметров шума (или их комбинация) в качестве регулируемой величины. Известные системы используют такие параметры шума как ря总书记在шечную частоту шума, амплитуду интенсивности шума мельницы, амплитуду шума мельницы в избранной полосе частот, и комбинацию изменения амплитуды и частоты звуковизуального спектра. Все указанные параметры шума уменьшаются с увеличением загрузки мельницы. Несмотря на значительное число работ по автоматизации загрузки шаровых мельниц на основе применения звукометрических методов контроля и регулирования, до сих пор еще нет однозначного решения по выбору того или иного параметра шума. Очевидно, что в каждом конкретном случае целесообразно проведение специфических исследований в этой области.

Автоматизация двухстадиального измельчения на многих обогатительных фабриках, как правило, ограничивается автоматизацией первой стадии измельчения по одному из вышерассмотренных методов, известны отдельные попытки автоматизации обеих стадий. Так, в мокром измельчении исследовались системы стабилизации загрузки второй стадии воздействием на исходное питание первой стадии. Была также попытка создать систему, работающую по принципу распределения цирукулирующей нагрузки между стадиями, воздействием на классификаторы. Однако в силу громоздкости конструктивных решений и плохой управляемости эти системы пока не нашли практического применения.

![Рисунок 1 Блок-схемы САР одностадиального измельчения:](image)

- а) по принципу $Q_n = \text{const}$;
- б) по принципу $S = \text{const}$;
- в) по принципу $Q_n + kS = \text{const}$;
- г) по звукометрическому методу;

(П - питатель, М - мельница, К - классификатор)
ANALYSIS OF AUTOMATIC PROCESS CONTROL SYSTEMS FOR DRY GRINDING OF RAW MATERIALS IN BALL MILLS

Adambaev M. D.,
Ph.D., Associate Professor, Department of Electronics and Robotics,
Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

Alpysbayev A.,
Bachelor, Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

Amankos B.
Bachelor, Almaty University of Power Engineering and Telecommunication (AUPET), Almaty

Abstract

A critical analysis of the existing control systems for the process of grinding raw materials, from the point of view of the possibility of their application in the technology of two-stage dry grinding.

Keywords: Dry grinding, separator mills, combined separation, separate control, intracameral loading.

Сухой помол сырья наиболее распространен в горно-химической, цементной промышленности, в промышленности строительных материалов, при приготовлении угля на тепловых электрических станциях и др. Сухой помол осуществляется в сепараторных мельницах одно- и двух стадиального измельчения, работающих в разомкнутом, частично замкнутом и замкнутом циклах измельчения.

Системы управления процессами сухого измельчения для одно стадиального, как разомкнутого, так и замкнутого циклов, реализованы на следующих методах, которые рассмотрены с точки зрения возможности их применения для управления двухкамерными шаровыми мельницами с объединенной сепарацией продуктов помола обеих камер.

Для помола угля в сепараторных мельницах применяется метод регулирования загрузки помольной установки по перепаду давления в ее рабочей камере [1], что обусловлено специфическими особенностями этих агрегатов. Ряд недостатков таких систем ограничили область их применения и, в частности, для рассматриваемой технологии.

Регулирование загрузки сепараторных мельниц в подавляющем большинстве случаев ведется по звуковому методу, который реализован на основе звукометрической аппаратуры [2], которая позволяет точно и оперативно определить уровень загрузки мельницы сырьем и готовым продуктом.

Анализ систем автоматического управления процессом сухого помола сырья в шаровых мельницах выполнен с целью определения возможности их применения в технологии двухстадийного сухого измельчения.

Ключевые слова: Сухое измельчение, сепараторные мельницы, объединённая сепарация, раздельный контроль, внутрикамерная загрузка.
имеет тот недостаток, что не учитывает различную размалываемость исходной руды и циркулирующей нагрузки. Последняя, образуется из наиболее трудно размалываемой части руды, подаваемой для измельчения в мельницу. Изменение уровня загрузки мельницы, следовательно, и звуко-метрического сигнала, например, от циркулирующей нагрузки, компенсируется не эквивалентным по размалываемой ей исходной питанием.

Попытки устранить указанный недостаток привели к разработке систем, работающих по принципу эквивалентного замещения. Суть этих систем заключается в поддержании определенного соотношения между изменениями циркулирующей нагрузки и исходной руды. Величина соотношения устанавливается экспериментально для руд средней размалываемости. Для одностадийных замкнутых систем известны, в основном, две разновидности систем по методу эквивалентного замещения. В одном случае сигналы с конвейерных весов исходной руды и циркулирующей нагрузки подаются в блок соотношения, далее через регулирующую аппаратуру воздействуют на величину исходного питания, а в другом случае для контроля циркулирующей нагрузки используется активная потребляемая мощность привода ковшевого элеватора [2]. Для устранения опасности завалов мельницы материалом используется звукометрическая защита.

Многокамерные и, в частности двухкамерные сепараторные мельницы, являются основными агрегатами для помола фосфоритных руд в условиях АО «Каратау». Специфическими особенностями двухкамерных шаровых мельниц являются осуществление процесса двухстадийного помола в одной мельнице, состоящей из двух рабочих камер, и возможность пере-распределения циркулирующей нагрузки между камерами. Продукты помола могут подвергаться раздельной или объединенной сепарации. Технологическая схема с раздельной сепарацией имеет два ковшевых элеватора, что позволяет вести раздельный контроль камер по загруженности материалами [3]. Но применение таких систем на исследуемой технологии исключается ввиду отсутствия второго элеватора. При раздельной сепарации продукты измельчения каждой камеры транспортируются своим элеватором на сепараторы, в отличие от схем с объединенной сепарацией, где продукты первой и второй камер объединяются и подаются общим элеватором в сепаратор. Рассматриваемая технология измельчения руды осуществляется в двухкамерных шаровых мельницах сухого помола с объединенной сепарацией, поэтому представляют особый интерес системы регулирования, разработанные применительно к такой технологической схеме измельчения.

Анализ литературных источников и патентных исследований по исследуемому вопросу дали следующий результат. Для управления данной технологической схемой в настоящее время разработан только один способ [4]. Блок-схема этого способа приведена на рис. 1. Схема работает следующим образом. "Продукты помола первой и второй камер объединяются и подаются общим элеватором в сепаратор 2. Не до измельченный продукт ("крупка") распределяется шибером 3 или другим распределяющим устройством на ту или иную стадию помола. Экстремальный регулятор 4, воздействуя на шибер, осуществляет поиск максимальной производительности мельницы, которую устанавливает регулятор суммарной загрузки 5. Для измерения производительности мельницы может быть использован расходомер сыпучих материалов 6 или весы на входе или выходе мельницы. В качестве регулируемой величины экстремального регулятора также может быть использовано положение вала исполнительного механизма 7 в регуляторе суммарной загрузки..." [4].

Описанный способ обладает следующими недостатками:
1. Система не позволяет контролировать пока мерную загрузку мельницы, т. к. она контролирует суммарную загрузку обеих стадий по мощности привода элеватора.
2. Система обладает значительным транспортным запаздыванием по каналу регулирования, ухудшающим динамику процесса, т. к. материал, прежде чем отразиться на мощности привода элеватора, должен пройти через камеры мельницы, затратив на это 3 - 4 минуты для первой и 6 - 7 минут для второй камеры, а за это время уровни загрузки могут существенно измениться.
3. Рисунок 1 Блок-схема экстремальной системы регулирования режимом работы мельниц с объединенной сепарацией. Контроль суммарной загрузки по мощности привода элеватора имеет значительные погрешности, т.к. загрузка элеватора определяется суммой циркулирующей нагрузки и готового продукта. Соотношение их меняется в широких пределах в зависимости от размалываемости руды, в связи с чем количество готового продукта может колебаться от 20 до 70 % по отношению к общей загрузке элеватора.

4. Экстремальные системы не нашли применения для управления измельчительно-гравитационными агрегатами в связи с отсутствием ярко выраженного экстремума (экстремум сильно "размыт") [5].

5. Контроль производительности по положению вала исполнительного механизма, воздействующего на исходное питание, или расходомером сыпучих материалов имеет погрешности, обусловленные люфтом исполнительного органа питателя руды, его износом, нелинейной характеристикой и т. д.

И, наконец, уместно процитировать автора описанного способа: «...Если имеет место переменное соотношение размалываемости материала разных стадий, возникает необходимость в периодической пере-становке шифера 3. Для того, чтобы осуществить это автоматически, нужно располагать методом раздельного контроля режимов помола на каждой стадии, как это имеет место, например, в случае с раздельной сепарацией. К сожалению, в настоящее время нет практически действенных методов контроля для мельниц с объединенной сепарацией..." [2, с. 130].

Таким образом, известные разработки не могут быть применены на рассматриваемом объекте, следовательно, для его автоматизации необходимо разрабатывать новую систему управления.

СПИСОК ЛИТЕРАТУРЫ:

3. А. С. 175380 СССР. Способ автоматического регулирования загрузки мельницы, работающей в замкнутом цикле с сепараторами. Опубл. 18.11.65 /Гельфанд Я. Е. и др.

4. А. С. 175379. Способ автоматического регулирования загрузки много-камерной сепараторной мельницы. Опубл. 21.09.65 / Гельфанд Я. Е.

5. Адамбаев М. Д. Определение динамической структуры и параметров промышленных объектов управления: Научное издание (монография).- Алматы: 2010, 258 с.
IDENTIFICATION OF THE STRUCTURE OF THE INDUSTRIAL CONTROL OBJECT

Adambayev M.,
Cand.Sc. in engineering, associate professor, Department Automation and Control
Kazakh Academy of Transport and Communications. M. Tynyshpaev (KazATC), Almaty

Julayeva Zh.,
PhD student Kazakh Academy of Transport and Communications. M. Tynyshpaev (KazATC), Almaty

Kalabayeva A.
PhD student Kazakh Academy of Transport and Communications. M. Tynyshpaev (KazATC), Almaty

ИДЕНИФИКАЦИЯ СТРУКТУРЫ ПРОМЫШЛЕННОГО ОБЪЕКТА УПРАВЛЕНИЯ

Адамбаев М.Д.,
к.т.н., доцент, кафедра «Автоматизация и управление»,
Казахская академия транспорта и коммуникаций им. М. Тынышпаева (КазАТК), Алматы

Джулаева Ж.Т.,
Докторант, Казахская академия транспорта и коммуникаций им. М. Тынышпаева (КазАТК), Алматы

Калабаева А.Е.
Докторант, Казахская академия транспорта и коммуникаций им. М. Тынышпаева (КазАТК), Алматы

Abstract

The results of identification of the dynamic structure of the dry two-stage dry grinding process using two-chamber polysius-type mills are presented.

Аннотация:

Приведены результаты идентификации динамической структуры процесса сухого двухстадиального сухого измельчения с использованием двухкамерных мельниц типа «Полизиус».

Keywords:

Ключевые слова: математическая модель, активный эксперимент, разгонные характеристики, измельчение, циркулирующая нагрузка, структурная схема

Промышленные объекты являются инерционными и в динамическом отношении представляют собой фильтры низких частот. Зависимость входных и выходных координат между собой описывается математической моделью, в которую входят уравнения статики и динамики. Нахождение уравнений динамики промышленных объектов, в основном, осуществляется экспериментальными методами, заключающимися в том, что создается испытательное возмущение (ступенчатое, импульсное, гармоническое и т.д.) на входе объекта и регистрируются соответствующие изменения во времени выходных переменных. Полученные, таким образом, функции являются решением дифференциальных уравнений объекта с известными правыми частями и начальными условиями [1]. Затем подбираются дифференциальные уравнения, решения которых наилучшим образом аппроксимируют полученные разгонные зависимости. Точность описания динамики объекта при использовании этого метода сводится к задаче оценки точности аппроксимации экспериментальных зависимостей аналитическим выражением. Достоинством метода является то обстоятельство, что найденные уравнения динамики не нуждаются в дополнительной проверке на объекте, т.к. все его индивидуальные особенности, уже учтены в формулой полученного переходного процесса.

Различают активные и пассивные методы исследования динамики в зависимости от способа введения входного возмущения [2]. Экспериментальные методы основаны на предположениях о сосредоточенности параметров, стационарности во времени его динамических свойств и линейности их при небольших изменениях входных переменных. Строго говоря, все промышленные объекты являются объектами с распределенными параметрами и их динамика описывается уравнениями в частных производных. Но практика показывает, что в большинстве случаев переходные функции достаточно хорошо аппроксимируются решениями обыкновенных дифференциальных уравнений невысокого порядка и звеном чистого запаздывания [3].

Предположение о стационарности динамических свойств промышленных объектов позволяет аппроксимировать их переходные функции решениями обыкновенных дифференциальных уравнений с постоянными коэффициентами. Описание переходных процессов линейными дифференциальными уравнениями удовлетворяет принципу суперпозиции в некотором интервале изменений входной координаты, что обусловлено предположением о линейности в малом динамических свойств объектов. Интервал изменения входного сигнала зависит от кривизны статической зависимости и налици в объекте нелинейностей, действия которых появляются только в переходных режимах.
С учетом допущенных предположений динамические свойства объекта математически можно описать выражениями следующего вида:
1) дифференциальным уравнением:
\[a_n \frac{d^n y(t)}{d t^n} + a_{n-1} \frac{d^{n-1} y(t)}{d t^{n-1}} + \ldots + a_0 y(t) = \]
= \[b_m \frac{d^m x(t-\tau)}{d t^m} + \ldots + b_0 x(t-\tau), \]
где \(a_0, a_{0-1}, \ldots, a_0, b_m, b_{m-1}, \ldots, b_0 \) - постоянные коэффициенты; \(m; n; \tau \) - время запаздывания;
2) передаточной функцией:
\[W(p) = \frac{Y(p)}{X(p)} = \sum_{\omega=0}^{\infty} \left(\sum_{\omega=0}^{\infty} b_j \right) \rho^j \cdot e^{-\alpha \cdot t}, \]
где \(\rho = \alpha + \imath \omega \) комплексная переменная: \(\alpha \) - вещественная переменная; \(\omega \) - угловая частота в рад/с;
\[j = \pm \sqrt{-1}; X(p); Y(p) \] - преобразования Фурье входной и выходной функций.
3) амплитудно-фазовой характеристикой (АФХ):
\[W(p) = \frac{Y(j\omega)}{X(j\omega)} = \sum_{\omega=0}^{\infty} a_j \rho^j \cdot e^{-\alpha \cdot t}. \]
где \(X(j\omega), Y(j\omega) \) - преобразование по Фурье входной и выходной функций; \(P(\omega) \) и \(Q(\omega) \) - аналитические выражения вещественной и мнимой частей комплексной функции; \(A(\omega), \phi(\omega) \) - амплитудно частотная и фазо частотная характеристики, которые определяются из следующих соотношений [4]:
\[A(\omega) = \frac{|Y(j\omega)|}{|X(j\omega)|} = \sqrt{P^2(\omega) + Q^2(\omega)}; \]
\[\phi(\omega) = \arctg \frac{Q(\omega)}{P(\omega)}. \]
Следует отметить, что математическое описание промышленных объектов указанными соотношениями носит чисто условный характер, т.к. переход от одной формы представления динамических свойств к другой не представляет особой сложности.
В данной работе описание динамических свойств цепи аппаратов процесса двухстадийного сухого измельчения произведено на основе составления их передаточных функций, что позволило получить структурную схему объекта управления.
Исследуемая размольная установка состоит из следующих технологических аппаратов, подразделяемых по выполняемым ими функциям:
1. Тарельчатый питатель установлен в начале процесса измельчения и предназначен для подачи исходного сырья в мельницу. Входом его является изменение частоты вращения электродвигателя \(n \), а выходом - количество исходного питания \(Q_0 \).
2. Шаровая мельница состоит из двух рабочих камер. Камера крупного помола имеет два входных сигнала \(Q_0 \) и \(K_1S \), причем \(Q_0 \) является регулирующим воздействием для этой камеры, а \(K_1S \) является основным возмущающим воздействием. Эта камера имеет один выход - внутрикамерное заполнение \(M_1 \), контролируемое по промежуточному звукометрическому сигналу \(Z_1 \). \(M_1 \) определяется величинами \(S_1 \) и \(O_1 \) \(S_1 \) - выход по вновь образованной циркулирующей нагрузке, а \(O_1 \) - выход по вновь образованному готовому продукту. Следовательно, камера крупного помола имеет три выходных координаты - \(Z_1, S_1, Q_1 \). Попутно отметим, что величины \(S_1 \) и \(Q_1 \) не поддаются контролю, поэтому зависимости: \(S_1 = f(Q_0); Q_1 = f(Q_0); S_1 = f(M_1); Q_1 = f(M_1) \) принимаются в соответствии с результатами статистических прослеживаний, полученных ранее.
Входной сигнал камеры мелкого помола определяется другой частью циркулирующей нагрузки \((1-K_1S) = K_2S \). Эта камера также имеет три выходных сигнала \(Z_1, S_2, Q_2 \), аналогичных выходным сигналам камеры крупного помола.
3. Ковшевой елеватор предназначен для транспортировки измельченной руды до сепараторов. Вход и выход его равны между собой и сдвинуты по отношению друг к другу во времени на величину чистого транспортного запаздывания.
4. Воздушный сепаратор классифицирует измельченную руду по двум продуктам: готовый продукт и циркулирующую нагрузку. Этот элемент имеет один вход \(M \) и два выхода \(S, Q \).
5. Орган распределения циркулирующей нагрузки \((1-K_1S) = K_2S \). Небольшое запаздывание между питателем и мельницей отнесено к запаздыванию между камерами крупного помола.
Ковшевой елеватор является звеном чистого транспортного запаздывания с передаточной функцией \(W(p) = K_2, n = 1 \). Небольшое запаздывание между питателем и мельницей отнесено к запаздыванию между камерами крупного помола.
Тарельчатый питатель по виду разгонной характеристики аппроксимирован безинерционным динамическим звеном (рис.1, а) с передаточной функцией \(W(p) = K_2, n = 1 \). Небольшое запаздывание между питателем и мельницей отнесено к запаздыванию между камерами крупного помола.
Сепаратор аппроксимирован безинерционным звеном по обоим каналам (рис.1, в):
\[W^S(\rho) = K_1, \]
- передаточная функция по каналу вход-выход циркулирующей нагрузки;
\[W^C(\rho) = K_2, \]
- передаточная функция по каналу вход-выход готового продукта, причем \(K_2 = 1/K_1 \).
Незначительное запаздывание в сепараторе отнесено к запаздыванию ковшевого елеватора.
Орган распределения песковой нагрузки между камерами имеет один вход и два выхода и является разделительным элементом с передаточными функциями (рис.1, г):
\[W^S(\rho) = K_1, \]
- передаточная функция шибера по каналу вход-выход в камеру крупного помола;
$W^\Pi_o(\rho) = K^\Pi_o$ - передаточная функция шиберя по каналу вход-выход в камеру мелкого помола, причем $K^\Pi_o = 1 - K^I_o$.

Полная структурная схема двухкамерной шаровой мельницы приведена на рис.2, где:

$W^\Pi_i(\rho)$ - передаточная функция камеры крупного помола по основному каналу вход-выход вновь образованного готового продукта;

$W^\Pi_s(\rho)$ - то же по каналу выхода цирукулирующей нагрузки;

$W_{22}^S(\rho)$ - то же для камеры мелкого помола;

$W_{21}(\rho)$ - передаточная функция первого перекрестного канала связи (влияние режима камеры крупного помола на режим работы камеры мелкого помола):

$W_{21}(\rho) = W_i(\rho) \cdot W_s(\rho) \cdot W_u(\rho) = K_i \cdot K_s^I \cdot e^{-\rho T_u}$.

$W_{12}(\rho)$ - передаточная функция второго перекрестного канала связи (влияние режима камеры мелкого помола на режим работы камеры крупного помола):

$W_{12}(\rho) = W_i(\rho) \cdot W_s^I(\rho) \cdot W_u^I(\rho) = \frac{K_m}{1 + T_m \cdot \rho}$

т.е. аппроксимируется апериодическим звеном первого порядка с последовательно включенным звеном чистого транспортного запаздывания.

С другой стороны, исследованиями многих авторов [3, 5] установлено, что шаровая мельница достаточно полно описывается передаточной функцией вида:

$W_M(\rho) = \frac{K_m}{1 + T_m \cdot \rho}$

и т.д.

Рис.1. Структурные схемы функциональных элементов размольной установки.

Рис.2. Структурная схема двухстадиального измельчения с перекрестными связями.

Параметры передаточных функций элементов системы определены по переходным характеристикам при ступенчатом возмущении на их входе.

Возмущения (ступенчатые) наносились двумя факторами - изменением количества исходного питания и перераспределением цирукулирующей нагрузки между камерами. Некоторые динамические характеристики, полученные на объекте, приведены на рис.4 [5].

Обработка экспериментальных кривых разгона с целью определения времени запаздывания и постоянных времени производилась по методу Орманина [1]. Коэффициенты усиления находятся обычным способом [4].
Предварительный анализ полученных экспериментальных кривых разгона при ступенчатом возмущении позволяет отметить следующие особенности динамики двухкамерной шаровой мельницы сухого помола:

1. Формы переходных процессов камер мельницы подтверждают правомочность аппроксимации их динамики последовательным включением апериодического звена и звена чистого транспортного запаздывания с достаточной для практических целей точностью.

2. Постоянные времени T_i при разнополярных возмущениях одинаковой амплитуды принимают различные значения. При набросе возмущения (положительное возмущение) T_i принимают большие значения, чем при сбросе возмущения (отрицательное возмущение). Например, передаточные функции камер принимают вид (см. рис.4):

- камера крупного помола
 \[W_i^+(\rho) = \frac{e^{-0.9\rho}}{1+5.2\rho} \] (положительное возмущение);

- камера мелкого помола
 \[W_i^-(\rho) = \frac{e^{-2.9\rho}}{1+1.67\rho} \] (отрицательное возмущение).

3. Исследуемая мельница по основным регулируемым величинам и регулирующим воздействиям является объектом со взаимозависимыми величинами. Возмущения исходным питанием определяют, в основном уровень загрузки первой камеры, но в то же время по каналу выход первой камеры - элеватор-сепаратор-вход второй камеры это возмущение влияет на уровень загрузки камеры мелкого помола. Аналогично возмущение перераспределением циркулирующей нагрузки между камерами влияет на уровень загрузки обеих камер (см. рис. 4)

Рис.2. Структурная схема цепи аппаратов процесса двухстадиального сухого измельчения

Рис.4. Разгонные характеристики мельницы: a - при возмущении исходным питанием (I); b - при возмущении шибером (2); 3 - загрузка первой камеры; 4 - загрузка второй камеры.
Список литературы:

1. Адамбаев М.Д. Определение динамической структуры и параметров промышленных объектов управления: Научное издание (монография). – Алматы: 2010, с. 258

3. Адамбаев М.Д. Курық кен дайындау үрдістерін автоматты басқару: Монография – Алматы, 2013, - 166 б; Библиогр. 139 атау; 59 сур; 9 кесте.

5. Мурат Адамбаев. Повышение эффективности процесса сухого измельчения. Идентификация и автоматизация. LAP LAMBERT Academic Publishing. Saarbrücken, Deutschland/ Германия 2014

A New Classification of Proper Names of Russian Language in the Task of Extracting Named Entities

Мокроусов М.,
Candidate of Engineering Sciences, Associate Professor,
Head of Department of Automated Data Processing and Control Systems
Kalashnikov Izhevsk State Technical University

Шаклеина О.,
Student of Department of Linguistics
Kalashnikov Izhevsk State Technical University

Новая классификация имен собственных русского языка в задаче извлечения именованных сущностей

Мокроусов М.Н.,
Кандидат технических наук, доцент, заведующий кафедрой
«Автоматизированные системы обработки информации и управления»
Ижевский государственный технический университет имени М.Т. Калашникова

Шаклеина О.В.,
Студент кафедры «Лингвистика»
Ижевский государственный технический университет имени М.Т. Калашникова

Abstract
The article deals with the problem of extracting named entities from natural language texts using a database of proper Russian language names. The paper proposes a new complete classification of proper names, containing terms for new categories of onomastic space. The article also describes the search algorithm and the experiment of the text normalization program.

Аннотация
В статье рассматривается задача извлечения именованных сущностей из естественно-языковых текстов с применением базы данных имен собственных русского языка. В работе предложена новая полная классификация имен собственных, содержащая термины для обозначения новых категорий ономастиче-
скогопространства. Также в статье описаны алгоритм поиска и проведенный эксперимент в программе нормализации текста.
Введение
Исследование собственных имен находится в стадии постоянного развития и совершенствования, но проходят они только в частных областях. Исследователи не делают попыток создания единой классификации имен собственных с конца прошлого века.

В российской ономастике накопилось немало проблем, требующих решения. Например, создание единой классификации имен собственных и базы данных, содержащей все эти имена. Это позволило бы создать алгоритм и программное средство, позволяющие выделять имена собственные в тексте, а также способствовало решению некоторых вопросов, возникающих в смежных областях.

Ономастика — это раздел лингвистики, изучающей собственные имена, историю их возникновения и преобразования [1]. Существует ряд наук (география, история, астрономия и др.) особенно заинтересованных в ономастическом материале, представители которых считают ономастику своей вспомогательной дисциплиной.

1. Существующие классификации имен собственных
До настоящего времени более или менее детальной классификации подвергались лишь топонимы. В [2, с. 149-150] рассмотрены классификации топонимов Ф. Палацко, Ф. Миключича, Т. Войцеховского, В. Шварца, Э. Мука, П. Скока, К. Мошинского, В. Ташицкого, С. Роспона, В.А. Жучкевича. Почти все они строятся на экстралингвистических принципах: мотивировка имен в связи с историческими, социальными, культурными и прочими факторами. Лингвистический компонент, присутствующий в классификации, играет вспомогательную роль.

Известный исследователь по ономастике А.В. Суперанская [2, с. 174] выделяет следующие типы классификаций имен собственных:
1) классификация имен в связи с именуемыми объектами:
2) классификация по линии «микро – макро»;
3) структурная классификация имен;
4) хронологическая классификация имен;
5) классификация в связи с объемом закрепленных в них понятий;
6) стилистическая и эстетическая классификация.

По результатам аналитического обзора литературы по ономастике следует отметить чрезвычайную широту ономастического пространства, разнообразие входящих в него единиц, а также их неравномерную изученность. Не секрет, что в русский язык проникает много иноязычных имен и названий, а также вместе с развитием мировой экономики появляются новые компании, товарные знаки, различные географические объекты и объединения и многое другое. С учетом того, что исследования в данной области практически остановились, множество таких единиц остается неучтенными.

2. Новая классификация имен собственных

1. Имена живых существ и существ, воспринимаемых как живые:
1) антропонимы:
а) личные имена;
б) прозвища;
в) псевдонимы;
г) фамилии;
д) эпонимы;
2) зоонимы:
а) женские;
б) мужские;
3) мифонимы:
а) демонимы;
б) этонимы;
2. Именования неодушевленных предметов:
1) астронимы:
а) астероиды;
б) звезды;
2) космонимы:
а) галактики;
б) звездные скопления;
2) автонимы/ киненимы/ мобилонимы (названия средств передвижения):
а) авиационные:
- космические корабли;
- самолеты;
- бжелезнодорожные экспрессы;
- воздухоплаватели;
4) типонимы/ графонимы (сортовые и фирменные названия);
5) топонимы:
а) естественные и искусственные природные географические объекты:
3. Имена собственные комплексных объектов:
1) названия предприятий, учреждений, обществ, объединений;
2) библионимы;
3) хрононимы;
4) аргионимы/ мелонимы;
5) названия мероприятий, кампаний, войн;
6) названия произведений литературы и искусства;
7) документонимы;
8) физионимы;
9) фалеронимы.
2) географические объекты, созданные человеком:
 агроонимы;
 дромонимы;
 кратонимы;
 некронимы;
 ойконимы:
 астионимы/ полисонимы;
 комонимы/ хорионимы;
 агронимы;
 годонимы;
 хоронимы;
б) хрематонимы:
а) доспехи;
б) драгоценности;
в) музыкальные инструменты;
 огнестрельное;
 холодное;
д) посуда
3. Имена собственные комплексных объектов:
4. Лексические категории, не включаемые в ономастическое пространство:
1) этнонимы:
2) мононимы/ демосонимы;
3) номены;
4) товарные знаки;
5) названия зданий и интерьеров.
В таблице 1 приведены определения некоторых терминов классификации. В качестве опорных данных использовались некоторые определения, данные Н.В. Подольской в пособии «Словарь русской ономастической терминологии» [3]. Термины, которых нет у Н.В. Подольской, были разработаны авторами данной работы.

<table>
<thead>
<tr>
<th>№</th>
<th>Термин</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Автоним</td>
<td>Имя собственное, обозначающее индивидуальное название средств передвижения (лодок, самолеты, корабли и др.).</td>
</tr>
<tr>
<td>2</td>
<td>Агороним</td>
<td>«Вид урбанонима; собственное имя любой городской площади или рынка» [3, с. 27].</td>
</tr>
<tr>
<td>3</td>
<td>Акрооним</td>
<td>«Вид топонима; собственное имя любого земельного надела, участка, пашни, поля» [3, с. 27].</td>
</tr>
<tr>
<td>4</td>
<td>Антропоним</td>
<td>«Вид антропонима; любое собственное имя, которое может иметь человек или группа людей, в т.ч. личное имя, отчество, фамилия, прозвище, всевдоним и др.» [3, с. 31].</td>
</tr>
<tr>
<td>5</td>
<td>Аргионим</td>
<td>Собственное имя любого праздника, юбилея или торжества.</td>
</tr>
<tr>
<td>6</td>
<td>Астионим</td>
<td>«Вид астионима; собственное имя любого земельного надела, участка, пашни, поля» [3, с. 27].</td>
</tr>
<tr>
<td>7</td>
<td>Астроним</td>
<td>«Имя собственное, обозначающее названия отдельных небесных тел: звезд, планет, комет и астероидов» [3, с. 39].</td>
</tr>
<tr>
<td>8</td>
<td>Аэроаутоним</td>
<td>Имя собственное, обозначающее индивидуальное название атмосферных летательных аппаратов (самолетов, вертолётов, аэростатов, дирижаблей, ракет и т.д.).</td>
</tr>
<tr>
<td>9</td>
<td>Библионим</td>
<td>Собственное имя любого органа периодической печати.</td>
</tr>
<tr>
<td>10</td>
<td>Гелоним</td>
<td>«Вид гелонима; собственное имя любого болота, заболевенного места» [3, с. 43].</td>
</tr>
<tr>
<td>11</td>
<td>Гидроним</td>
<td>«Вид гидронима; собственное имя любого водного объекта (природного или созданного человеком), в т.ч. пелагоним, гелоним, океаноним и др.» [3, с. 46].</td>
</tr>
<tr>
<td>12</td>
<td>Годоним</td>
<td>«Вид урбанонима; собственное имя любого линейного объекта в городе, в т.ч. проспекта, улицы, линии и др.» [3, с. 50].</td>
</tr>
<tr>
<td>13</td>
<td>Графоним</td>
<td>Имя собственное, обозначающее сортовое или фирменное название, и находящееся в промежуточном положении между именем собственным и нарицательным.</td>
</tr>
<tr>
<td>14</td>
<td>Демоним</td>
<td>Имя собственное любого демонического персонажа в мифологии.</td>
</tr>
<tr>
<td>15</td>
<td>Демосоним</td>
<td>Собственное имя, обозначающее лиц по месту жительства и групповые именования людей.</td>
</tr>
<tr>
<td>16</td>
<td>Документоним</td>
<td>«Собственное имя отдельного (важного для народа или народов) документа» [3, с. 56].</td>
</tr>
<tr>
<td>№</td>
<td>Термин</td>
<td>Определение</td>
</tr>
<tr>
<td>----</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>Дримоним</td>
<td>«Вид онима; собственное имя любого лесного участка, леса, бора, рощи, части леса и пр.» [3, с. 56].</td>
</tr>
<tr>
<td>18</td>
<td>Дромоним</td>
<td>«Вид топонима; собственное имя любого пути сообщения (наземного, водного, подземного, воздушного)» [3, с. 57].</td>
</tr>
<tr>
<td>19</td>
<td>Зооним</td>
<td>«Вид онима; собственное имя (кличка) животного (домашнего, дикого, подопытного), содержащегося в зоопарке, в цирке и т.д.» [3, с. 58].</td>
</tr>
<tr>
<td>20</td>
<td>Инсулоним</td>
<td>Вид оронима; собственное имя любого острова или полуострова.</td>
</tr>
<tr>
<td>21</td>
<td>Киненим</td>
<td>Имя собственное, обозначающее индивидуальное название средств передвижения (лодки, самолеты, корабли и др.).</td>
</tr>
<tr>
<td>22</td>
<td>Комоним</td>
<td>«Вид ойконима; собственное имя любого сельского поселения» [3, с. 66].</td>
</tr>
<tr>
<td>23</td>
<td>Корабоним</td>
<td>Имя собственное, обозначающее индивидуальное название корабля.</td>
</tr>
<tr>
<td>24</td>
<td>Космоним</td>
<td>«Имя собственное, обозначающее названия галактик, звездных скоплений, созвездий и туманностей» [3, с. 68].</td>
</tr>
<tr>
<td>25</td>
<td>Кратоним</td>
<td>Вид топонима; собственное имя любого государства, республики, королевства и др.</td>
</tr>
<tr>
<td>26</td>
<td>Лимноним</td>
<td>«Вид гидронима; собственное имя любого озера, пруда» [3, с. 69].</td>
</tr>
<tr>
<td>27</td>
<td>Личное имя</td>
<td>«Вид антропонима; основное, официальное имя, данное человеку при рождении, или выбранное для себя взрослым человеком» [3, с. 69].</td>
</tr>
<tr>
<td>28</td>
<td>Макрозэгоним</td>
<td>Собственное имя крупных этносов, иногда понимаемых расширительно и включающих генетически неродственные этносы.</td>
</tr>
<tr>
<td>29</td>
<td>Мелоним</td>
<td>Собственное имя любого праздника, юбилея или торжества.</td>
</tr>
<tr>
<td>30</td>
<td>Мифоним</td>
<td>«Слово или словосочетание, имеющее прямую связь с предметом как с видом, представляющим собой определенное множество идентичных единиц, являющихся объектом какой-либо отрасли науки, техники и т.п.» [3, с. 90].</td>
</tr>
<tr>
<td>31</td>
<td>Мобильоним</td>
<td>Имя собственное, обозначающее индивидуальное название средств передвижения (лодки, самолеты, корабли и др.).</td>
</tr>
<tr>
<td>32</td>
<td>Мононим</td>
<td>Собственное имя, обозначающее лиц по месту жительства и групповые именования людей.</td>
</tr>
<tr>
<td>33</td>
<td>Некроним</td>
<td>Вид топонима; собственное имя любого места погребения и захоронения.</td>
</tr>
<tr>
<td>34</td>
<td>Номен</td>
<td>«Слово или словосочетание, имеющее прямую связь с предметом как с видом, представляющим собой определенное множество идентичных единиц, являющихся объектом какой-либо отрасли науки, техники и т.п.» [3, с. 90].</td>
</tr>
<tr>
<td>35</td>
<td>Ойконим</td>
<td>«Вид топонима; собственное имя любого поселения, в т.ч. городского и сельского типа» [3, с. 93].</td>
</tr>
<tr>
<td>36</td>
<td>Океаноним</td>
<td>«Вид гидронима; собственное имя любого океана и его части» [3, с. 93].</td>
</tr>
</tbody>
</table>
| 37 | Ороним | 1. Вид онима; собственное имя любого положительного элемента земной поверхности, в т.ч. гор, хребтов и др.
2. «Вид топонима; собственное имя любого элемента земной поверхности (положительного и отрицательного), т.е. любого орографического объекта» [3, с. 104]. |
<p>| 38 | Пелагоним | «Вид гидронима; собственное имя любого моря или его части» [3, с. 108]. |
| 39 | Полисоним | «Вид ойконима; собственное имя любого города» [3, с. 112]. |
| 40 | Потамоним | «Вид гидронима; собственное имя любой реки» [3, с. 113]. |
| 41 | Прозвище | «Вид антропонима; дополнительное имя, данное человеку окружающими в соответствии с его характерными чертами и особенностями» [3, с. 115]. |
| 42 | Псевдоним | «Вид антропонима; вымышленное имя человека, существующее в его общественной жизни наряду с настоящим именем или вместо него» [3, с. 118]. |
| 43 | Спелеогидроним | Вид гидронима; собственное имя любого подземного водного объекта (природного или созданного человеком). |
| 44 | Спелеоним | «Вид оронима; собственное имя любого подземного водного объекта (природного или созданного человеком). |
| 45 | Теоним | «Имя собственное божества в пантеоне» [3, с. 131]. |
| 46 | Типоним | Имя собственное, обозначающее сортовое или фирменное название, и находящееся в промежуточном положении между именем собственным и нарицательным. |
| 47 | Топоним | «Вид онима; собственное имя, обозначающее название любого географического объекта, в т.ч. гидроним, ороним, спелеоним и др.» [3, с. 135]. |</p>
<table>
<thead>
<tr>
<th>№</th>
<th>Термин</th>
<th>Определение</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Урбаноним</td>
<td>«Вид топонима; собственное имя любого внутригородского топографического объекта, в т.ч. агороним, годоним и др.» [3, с. 154].</td>
</tr>
<tr>
<td>49</td>
<td>Урбоним</td>
<td>«Вид топонима; собственное имя любого внутригородского топографического объекта, в т.ч. агороним, годоним и др.» [3, с. 154].</td>
</tr>
<tr>
<td>50</td>
<td>Фалероним</td>
<td>«Собственное имя любого ордена, медали, знака отличия» [3, с. 155].</td>
</tr>
<tr>
<td>51</td>
<td>Фамилия</td>
<td>«Вид антропонима; наследуемое официальное именование, указывающее на принадлежность человека к определенной семье» [3, с. 155].</td>
</tr>
<tr>
<td>52</td>
<td>Физионим</td>
<td>Собственное имя любого стихийного бедствия.</td>
</tr>
<tr>
<td>53</td>
<td>Фитоним</td>
<td>«Вид оронима; собственное имя любого отдельного растения» [3, с. 158].</td>
</tr>
<tr>
<td>54</td>
<td>Хороним</td>
<td>Вид ойконима; собственное имя любого сельского поселения.</td>
</tr>
<tr>
<td>55</td>
<td>Хороним</td>
<td>«Вид топонима; собственное имя любой территории, области, района» [3, с. 160].</td>
</tr>
<tr>
<td>56</td>
<td>Хрематоним</td>
<td>«Вид онима; собственное имя предмета материальной культуры, в т.ч. Названия оружия, музыкального инструмента, драгоценного камня и др.» [3, с. 161].</td>
</tr>
<tr>
<td>57</td>
<td>Хрононим</td>
<td>«Вид онима; собственное имя любого отрезка времени» [3, с. 162].</td>
</tr>
<tr>
<td>58</td>
<td>Эндоэтноним</td>
<td>Собственное имя народа, которое он присваивает себе сам.</td>
</tr>
<tr>
<td>59</td>
<td>Эпоним</td>
<td>«Вид антропонима; лицо, имя которого послужило основой для образования любого другого онима» [3, с. 165].</td>
</tr>
<tr>
<td>60</td>
<td>Этнинок</td>
<td>«Название местности, территории и народа (этноса), там живущего, одним именем» [3, с. 167].</td>
</tr>
<tr>
<td>61</td>
<td>Этноним</td>
<td>«Номен для обозначения любого этноса (племени, народа, национальности и др.)» [3, с. 167].</td>
</tr>
</tbody>
</table>

Из 61 термина у Н.В. Подольской [3, с. 3] было заимствовано 40 терминов. Оставшиеся термины были предложены авторами на основе изучения различных источников.

В ходе анализа и сбора материала для разработки базы данных имен собственных в общей сложности было собрано 932334 единицы материала (таблица 2).

Таблица 2

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Раздел</th>
<th>Общее число материала, ед.</th>
<th>% от общего количества, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Имена живых существ и существ, воспринимаемых как живые:</td>
<td>259419</td>
<td>27,83</td>
</tr>
<tr>
<td>1.1</td>
<td>Антропонимы</td>
<td>252656</td>
<td>27,1</td>
</tr>
<tr>
<td>1.2</td>
<td>Зоонимы</td>
<td>5893</td>
<td>0,63</td>
</tr>
<tr>
<td>1.3</td>
<td>Миционимы</td>
<td>870</td>
<td>0,1</td>
</tr>
<tr>
<td>2.</td>
<td>Имена неодушевленных объектов:</td>
<td>659746</td>
<td>70,76</td>
</tr>
<tr>
<td>2.1</td>
<td>Автонимы/ киненимы/ мобилонимы</td>
<td>1960</td>
<td>0,21</td>
</tr>
<tr>
<td>2.2</td>
<td>Астронимы</td>
<td>351078</td>
<td>37,66</td>
</tr>
<tr>
<td>2.3</td>
<td>Космонимы</td>
<td>6447</td>
<td>0,69</td>
</tr>
<tr>
<td>2.4</td>
<td>Типонимы/ графонимы</td>
<td>7545</td>
<td>0,81</td>
</tr>
<tr>
<td>2.5</td>
<td>Топонимы</td>
<td>292334</td>
<td>31,35</td>
</tr>
<tr>
<td>2.6</td>
<td>Хрематонимы</td>
<td>382</td>
<td>0,04</td>
</tr>
<tr>
<td>3.</td>
<td>Имена собственных комплексных объектов:</td>
<td>13169</td>
<td>1,41</td>
</tr>
<tr>
<td>3.1</td>
<td>Аргodonимы/ мелонимы</td>
<td>407</td>
<td>0,44</td>
</tr>
<tr>
<td>3.2</td>
<td>Библионимы</td>
<td>972</td>
<td>0,104</td>
</tr>
<tr>
<td>3.3</td>
<td>Документонимы</td>
<td>91</td>
<td>0,01</td>
</tr>
<tr>
<td>3.4</td>
<td>Названия мероприятий, кампаний и войн</td>
<td>954</td>
<td>0,102</td>
</tr>
<tr>
<td>3.5</td>
<td>Названия предприятий, учреждений, обществ, объединений</td>
<td>8161</td>
<td>0,489</td>
</tr>
<tr>
<td>3.6</td>
<td>Названия произведений литературы и искусства</td>
<td>1591</td>
<td>0,16</td>
</tr>
<tr>
<td>3.7</td>
<td>Фалеронимы</td>
<td>305</td>
<td>0,03</td>
</tr>
<tr>
<td>3.8</td>
<td>Физионимы</td>
<td>646</td>
<td>0,07</td>
</tr>
<tr>
<td>3.9</td>
<td>Хрононимы</td>
<td>42</td>
<td>0,005</td>
</tr>
<tr>
<td>Всего</td>
<td></td>
<td>932334</td>
<td>100</td>
</tr>
</tbody>
</table>

В процессе составления базы данных имен собственных были выделены некоторые подразделы ономастики, сбор единиц которых оказался достаточно сложным и трудоемким процессом. А для некоторых подразделов оказался полностью невозможным.
К таким подразделам относятся:

1. Топонимы
 - Дримонимы
 - Лимнонимы
 - Гелонимы
 - Агроонимы
 - Некронимы
 - Спелеонимы
 - Спелеогидронимы

2. Хрематонимы
 - Названия драгоценностей
 - Названия музыкальных инструментов
 - Названия предметов посуды

3. Алгоритм выделения имен собственных в тексте

Укрупненный алгоритм поиска работает следующим образом:
1) выделяются с помощью регулярных выражений даты, числа, адреса, ссылки и прочие структурированные записи и слова;
2) производится разбивка текста на предложения;
3) производится разбивка предложений на слова;
4) производится поиск слов по словарю.

Между собственными и нарицательными именами наблюдается постоянный взаимоперекос. Собственные имена переходят в нарицательные, если употребляются для обобщенного названия однородных предметов: бел, сименс, тесла (от фамилий ученых). Нарицательные имена переходят в собственные, если употребляются для индивидуального названия того или иного предмета: Восток (страны Востока) — имя возникло из нарицательного восток (сторона света).

Исходя из этого, следует сказать, что омонимами в ономастике признаются случаи совпадения в звучании и на письме слов-представителей различных ономастических классов: антропонимов и зоонимов (Мышка, Васька — разговорные варианты имени и кличек; антропонимов и топонимов (Лени, Владимир — имена людей, названия реки и города) и т.п. Для обобщенного именования таких оппозиций логично использовать термин «ономастические омонимы».

Еще одной сложностью при выявлении имен собственных в тексте могут стать склонения. На сегодняшний день наиболее эффективным сервисом с высоким уровнем правильности склонения по падежам является «Морфер» [4]. Данный сервис позволяет за короткое время анализировать и склонять огромные объемы данных.

Проанализировав все правила написания имен собственных, был сделан вывод о том, что самое распространенное написание имен собственных — с прописной буквы. На втором месте стоит написание со строчной буквы, а написание в кавычках является самым редким.

4. Эксперимент

В статье [5] описана программная система нормализации текста, которая в своей работе использует представленную классификацию и разработанную базу данных имен собственных. База данных в системе может быть дополнена новыми данными, а для каждой категории имени собственного можно назначить цвет выделения в тексте. В программе предусмотрена возможность непосредственного ввода текста вручную и загрузки текста из файла.

Заключение

Предложенная в статье общая классификация имен собственных на данный момент является наиболее полной из всех представленных, в том числе, за счет новых терминов, описывающих категории ономастического пространства. Основной результат работы заключается в повышении эффективности систем автоматического анализа текстов за счет разработки базы данных имен собственных русского языка и способа их выделения в тексте.

СПИСОК ЛИТЕРАТУРЫ:

PROBLEM STATEMENT TO BUILD A CLOUD-BASED TECHNOLOGY INFORMATION NETWORK

Novikov, O.
The Agency of high technologies
Novikov M.
high technologies Agency

ПОСТАНОВКА ЗАДАЧИ ДЛЯ ПОСТРОЕНИЯ ОБЛАЧНЫХ ТЕХНОЛОГИЙ ИНФОРМАЦИОННОЙ СЕТИ

Новиков О.П.
Агентство высоких технологий
Новиков М.П.
Агентство высоких технологий

При построении информационной сети с облачными технологиями, первостепенной задачей является получение основных характеристик, в которых учитываются совокупность данных о информационной сети, центре управления сетью и его «облаке», включающие: место расположения; используемая модель сетевых технологий; задачи, решаемые облачными структурами; информационные процессы, происходящие в «облаке»; объем и тип компьютерного оборудования, а также ряд других исходных данных.

Широкий спектр предоставляемых услуг при их низкой стоимости, сделали популярными информационные сети с облачными технологиями, что и нашло достаточно широкое применение в современных информационных технологиях. Одним из направлений применения таких инновационных технологий являются современные информационные сети. Расширение возможностей по предоставлению клиентским услуг для пользователей информационных систем, является очень привлекательным аспектом и программой активных действий по модернизации своих информационных систем. Расширение работы на профессиональной основе при предоставлении услуг клиентам является не только своевременным, с точки зрения финансовой политики управления, но и значительно выгодным вложениям средств в современную систему организации работы с клиентами. В данном случае облачные технологии представляют собой совокупность всех возможностей информационной системы для управления. Сложность в повышении качества предоставления услуг сводится к сокращению времени. При решении такого вопроса применяют различные математические методы и теории (теорию передачи информации с пакетной коммутацией, коммутации каналов, модели топологии, управление потоками и другие теоретические аспекты).

Основываясь на общей постановке задачи разработки информационных систем с облачными технологиями, совокупность решаемых задач может быть представлена в следующем виде.

Обобщенная постановка задачи

Исходные данные: Функционал облачной структуры банка: $F = \{K, Z, W\}$, где K – данные о расположении сети;
Z – задачи, решаемые подразделениями сети при обмене информации и их характеристики;
W – модель сетевой технологии.
Ограничения: Время внедрения элементов «облака» $T_{cr} \leq T_{pr}$.

Abstract
Information networks with a cloud structure are built on solving problems with different levels of hierarchy. Setting the task for the study takes into account processes within the network and involves the development of appropriate methods.

Аннотация
Информационные сети с облачной структурой строятся на решении задач с различными уровнями иерархии. Постановка задачи на исследование учитывает процессы внутри сети и предполагает разработку соответствующей методики.

Keywords: Information systems, cloud structures, hierarchical structure, problem statement, methodology.

Ключевые слова: Информационные системы, облачные структуры, иерархическая структура, постановка задачи, методика.
Перечень определяемых характеристик «облака»: \(X = \{ N, R, S \} \), где \(N \) - объем узлового и абонентского оборудования «облака»; \(R \) - обобщенные данные о размещении узлов коммутации «облака»; \(S \) - топология построения «облака».

Требуется: разработать методику, обеспечивающую определение таких характеристик облачной структуры \(X^* \), при которых

\[
Y(D, X^*) = \min Y(D, X) \quad (1)
\]

где \(X_0 \) - множество допустимых значений характеристик «облака», \(U \) - характеристики процесса ввода «облака» в эксплуатацию.

Особенности задачи: высокая размерность, наличие переменных, имеющих различный физический смысл, отсутствие аналитических зависимостей (1), (2).

Модель исследуемой структуры

\(M = \{ N, R, S \} \), где \(N \) - множество элементов; \(R \) - пространственные отношения внутри «облака»; \(S \) - связи между элементами «облака».

Задача построения информационной сети с облачными технологиями может быть решена в виде совокупности задач, решаемых на основе разработанной комплексной методики. В основе такой методики будет лежать алгоритмическая последовательность реализации комплексной методики. На рис.1 представлен обобщенный алгоритм комплексной методики.
В процессе реализации алгоритма решения обобщенной задачи будут решены частные задачи по разработке требований создания информационной сети с облачными технологиями, включающие:

1. Формирование комплексной методики обоснования требований к «облаку» информационной сети.
2. Подготовку частной методики определения состава и количества узлового абонентского оборудования «облака».

Рис. 1 Общий алгоритм комплексной методики
METHOD OF CALCULATING THE STRENGTH OF HEATED ROAD COVER

Volodko O.,
Candidate of Technical Sciences, Associate Professor of the Department of Hotel, Restaurant and Resort Business of the Higher Educational Institution of Ukoopsoyuz “Poltava University of Economics and Trade”, Poltava

Rogovaya N.,
Candidate of Technical Sciences, Associate Professor of the Department of Hotel, Restaurant and Resort Business of the Higher Educational Institution of Ukoopsoyuz “Poltava University of Economics and Trade”, Poltava

Rybakova S.
Senior Lecturer at the Department of Hotel, Restaurant and Resort Business of the Higher Educational Institution of Ukoopsoyuz “Poltava University of Economics and Trade”, Poltava

МЕТОДИКА РАСЧЕТА ПРОЧНОСТИ НАГРЕВАЕМОГО ДОРОЖНОГО ПОКРЫТИЯ

Володько О.В.,
кандидат технических наук, доцент кафедры гостинично-ресторанного и курортного дела Высшего учебного заведения Укоопсоюза “Полтавский университет экономики и торговли”, Полтава

Роговая Н.В.,
кандидат технических наук, доцент кафедры гостинично-ресторанного и курортного дела Высшего учебного заведения Укоопсоюза “Полтавский университет экономики и торговли”, Полтава

Рыбакова С.С.
старший преподаватель кафедры гостинично-ресторанного и курортного дела Высшего учебного заведения Укоопсоюза “Полтавский университет экономики и торговли”, Полтава

Abstract

The subject of the research is the construction of a multi-layer road heating coating, which can be used in international road corridors for the safety of their winter maintenance. Standards and classification of these constructions are absent, as well as and methods of their calculation are not investigated. Thus, the research in this sphere may be considered as timely and perspective.

The subject of the research is the construction of the multi-layered coating with heated surface layers, which can be used in hotel and catering industry to prevent snowdrifts, slipperiness and ice-crusted ground on its surface. Subject of the research is tense strained condition of the coating with heated surface layers. The objective of the research is connected with the improvement of the engineering methods of calculating tense strained condition of the coating with heated surface layers.

The model problem to calculate multi-layered coating with heated surface, which is considered as multi-layered cushion based slab, is solved. Model of the elastic homogeneous semi space is used for the above mentioned slab. The construction consists of the monolithic coating layer of the fibrous electro conducting concrete, that under the influence of heat flux generated by electric current heats up and heats the surface layer of a typical pavement - macadam-mastic asphalt concrete. Electric current is supplied to the carbon conducting grid that is an underlying layer of fibro electro concrete. Under the net for the isolation of cement-concrete slab is a layer of heat insulation. Pre-heat problem was solved for the heating system and confirmed thermos-effect required for heating surface coating of +2.0°C to 11°C at ambient temperature -20°C.

To create an effective approach to determining the stress-strain state of the constructions of the proposed type methods of calculation for multi-layer and one layer slabs were united and conducted. By the method of calculation of multilayer slab of V.H. Piskunova cylindrical overall rigidity of the package of layers of the coating with heating was determined. The method used was combined with accurate method of O.Ya. Shechter, which is modified to calculate multilayer slabs. Reliability of calculations was confirmed by the results obtained by a number of non-
correlated by their theoretical base analytical and numerical methods. With established relations for the characteristics of the base, simulated by elastic semi-space and using the model of Winlclair, calculation and other methods for single-layer slabs and for multilayer systems were modified. The results are obtained by numerical method — by the finite difference method and analytical method of solving the problem of layered elasticity environment theory. The value of the maximum points and maximum stress are calculated by all methods confirm within practical needs the exactly actual reliability of the results of calculation of pavement with the heating surface. Strength of the construction is estimated.

Obtained results may be used by the design engineering firms when designing coating with heated surface layers as for hotels and restaurants and for other branches of construction industry.

Further research will be conducted to develop constructions of the coating with heated surface layers depending on its usage (parking place, places to rest, pavements, etc) and research its state of thermos-stress.

Abstract

The subject of the research is a construction of multilayer road heated pavements, which can be used for projecting international transport corridors for organization safety their winter maintenance. The goal of the research is related to perfection of engineering methods and their implementation for the solution of this task, in particular, the development of multilayer structures. Therefore, different approaches to their design were envisaged, including the development of composite materials [3,9]. This pavement can be used for designing international transport corridors for organizing safe their maintenance in the winter period of operation.

The accuracy of such constructions is determined by the research of their, namely deformed, state and geometric thickness, rigidity, elastic base, module of elasticity, strength are calculated for all methods confirm within practical needs the exactly actual reliability of the results of calculation of pavement with the heating surface. Strength of the construction is estimated.

Keywords: tension, hardness, cushion, elasticity modulus, strength

Key words: напряженное состояние, жесткость, упругая основа, модуль упругости, прочность

Постановка проблемы в общем виде. Наряду с традиционными способами борьбы с гололедом и снегозаносами на дорожных покрытиях автотранспортных коридоров для безопасности их зимнего содержания. Цель исследований связана с совершенствованием инженерных методов расчета напряженно-деформированного состояния дорожных покрытий с поверхностными нагреваемыми слоями. Выполнено объединение метода расчета многослойных плит с методом расчета однослойных жестких плит, который модифицирован для расчета многослойного покрытия. Достоверность расчетов подтверждена результатами, полученными рядом несокорректированных за их теоретической базой аналитических и числовых методов. Выполнена оценка прочности конструкции.

Annotazione

Настоящая работа представляет собой конструкцию многослойного дорожного нагреваемого покрытия, которая может использоваться при проектировании международных автотранспортных коридоров для безопасности их зимнего содержания. Цель исследований связана с совершенствованием инженерных методов расчета напряженно-деформированного состояния дорожных покрытий с поверхностными нагреваемыми слоями. Выполнено объединение метода расчета многослойных плит с методом расчета однослойных жестких плит, который модифицирован для расчета многослойного покрытия. Достоверность расчетов подтверждена результатами, полученными рядом несокорректированных за их теоретической базой аналитических и числовых методов. Выполнена оценка прочности конструкции.

Keywords: tension, hardness, cushion, elasticity modulus, strength

Ключевые слова: напряженное состояние, жесткость, упругая основа, модуль упругости, прочность

Постановка проблемы в общем виде. Наряду с традиционными способами борьбы с гололедом и снегозаносами на дорогах покрытий автотранспортных коридоров для безопасности их зимнего содержания. Цель исследований связана с совершенствованием инженерных методов расчета напряженно-деформированного состояния дорожных покрытий с поверхностными нагреваемыми слоями. Выполнено объединение метода расчета многослойных плит с методом расчета однослойных жестких плит, который модифицирован для расчета многослойного покрытия. Достоверность расчетов подтверждена результатами, полученными рядом несокорректированных за их теоретической базой аналитических и числовых методов. Выполнена оценка прочности конструкции.

Annotazione

The subject of the research is a construction of multilayer road heated pavements, which can be used for designing international transport corridors for organization safety their winter maintenance. The goal of the research is related to perfection of engineering methods and their implementation for the solution of this task, in particular, the development of multilayer structures. Therefore, different approaches to their design were envisaged, including the development of composite materials [3,9]. This pavement can be used for designing international transport corridors for organizing safe their maintenance in the winter period of operation.

The accuracy of such constructions is determined by the research of their, namely deformed, state and geometric thickness, rigidity, elastic base, module of elasticity, strength are calculated for all methods confirm within practical needs the exactly actual reliability of the results of calculation of pavement with the heating surface. Strength of the construction is estimated.

Keywords: tension, hardness, cushion, elasticity modulus, strength

Ключевые слова: напряженное состояние, жесткость, упругая основа, модуль упругости, прочность

Постановка проблемы в общем виде. Наряду с традиционными способами борьбы с гололедом и снегозаносами на дорогах покрытий автотранспортных коридоров для безопасности их зимнего содержания. Цель исследований связана с совершенствованием инженерных методов расчета напряженно-деформированного состояния дорожных покрытий с поверхностными нагреваемыми слоями. Выполнено объединение метода расчета многослойных плит с методом расчета однослойных жестких плит, который модифицирован для расчета многослойного покрытия. Достоверность расчетов подтверждена результатами, полученными рядом несокорректированных за их теоретической базой аналитических и числовых методов. Выполнена оценка прочности конструкции.
ящений классической теории для поперечных касательных и нормальных напряжений, которые включают известные функции, характеризующие поперечные силы, и зависят от прогибов, определенных по классической теории. Широко применяется для расчета многослойных конструкций модель С.П. Тимошенко, основанная на гипотезе прямой линии для пакета слоев, которая в отличие от гипотезы прямой нормали, учитывает деформации поперечного сдвига. Перемещение по толщине слоистой оболочки по этой теории описано двумя степенями аппроксимации. Первая базируется на гипотезе прямой линии для всего пакета слоев, а вторая — вводит эту гипотезу послойно (гипотеза ломаной линии). Указанные теории могут применяться для конструкций, жесткости слоев которых отличается незначительно.

Более полно работу слоистых конструкций с производным количеством слоев отражает теории на основе гипотезы ломаной линии. Особенностью этих теорий является зависимость порядка решаемых уравнений от количества слоев, что несколько усложняет решение задачи. Поэтому, более совершенными следует считать теории, в которых применены нелинейные законы распределения смещений по толщине пакета слоев. К таким относится теория В. Г. Пискунова, сущность которой заключается в том, что смещения в ортогональных направлениях описываются производной от одной искомой функции сдвига [6].

А.А. Рассказовым построена прикладная теория расчета многослойных конструкций, учитывающая влияние поперечного сдвига и обжатия на напряженно-деформированное состояние системы [7]. Задача была решена численно с использованием МКР и радиальной сетки. Указанные теории дали возможность не только рассмотреть работу всех слоев конструкции с учетом деформаций сдвига и обжатия, а и произвольно сочетать слои с различными толщинами и характеристиками.

На основе аналитической теории расчета слоистых плит на упротом полупространстве ряд задач расчета конструианых дорожных покрытий решены А. В. Марчуком [8]. Анализ указанных методов создал основу для создания эффективного подхода к определению напряженного состояния нагреваемых конструкций предложенного типа.

Формирование целей статьи. Предметом исследования является конструкция многослойного дорожного нагреваемого покрытия, которая может использоваться для предотвращения снегозаносов, скольжности и гололеда на их поверхности. Объектом исследования является напряженно-деформированное состояние дорожного нагревательного покрытия. Цель исследований связана с совершенствованием инженерных методов расчета напряженно-деформированного состояния дорожных покрытий с поверхностными нагреваемыми слоями.

Изложение основного материала исследования.

Предварительно была решена тепловая задача для нагреваемой системы и подтвержден необходимый термоэффект разогрева поверхности покрытия от + 2,0 °С до +11 °С при температуре внешней среды -20°С [2].

Для расчета многослойной плиты дорожного покрытия с позиций прочности рассмотрена модельная задача расчета. За расчетную схему принята конструкция пакета слоев дорожного покрытия, состоящая из цементобетонной плиты и системы поверхностных нагреваемых слоев, которая представлена на рис. 1. Для каждого слоя конструкции приняты механические характеристики - толщина слоя (h_i), модуль упругости (E_i), коэффициент Пуассона (ν_i). При заданном диаметре штампа (d = 0,30 м) и интенсивности нагрузки (q \geq 0,8 \,\, MH/m^2) его равнодействующая составляет P = \frac{q \cdot d^2}{4} = 0,0633 \,\, MH.

Для создания эффективного подхода к определению напряженно-деформированного состояния конструианых покрытий данного типа проведено объединение методов расчета многослойных и однослоиных плит.
Рисунок 1 – Конструкция пакета слоев одежды:

1 – щебенно-мастичный асфальтобетон:
$h_1 = 0,06 \text{ м}; E_1 = 2000 \text{ МПа}, \nu_1 = 0,25$;

2 – фиброзэлектробетон: $h_2 = 0,05 \text{ м}, E_2 = 2100 \text{ МПа}, \nu_2 = 0,25$;

3 – углеродная сетка: $h_3 = 0,005 \text{ м}, E_3 = 2000 \text{ МПа}, \nu_3 = 0,25$;

4 – термоизоляция: $h_4 = 0,05 \text{ м}, E_4 = 1140 \text{ МПа}, \nu_4 = 0,25$;

5 – цементобетонная плита: $h_5 = 0,24 \text{ м}, E_5 = 2 \times 10^4 \text{ МПа}, \nu_5 = 0,15$;

6 – упругое основание: $E_o = 150 \text{ МПа}, \nu_o = 0,2$.

По методике расчета многослойных плит [14] определена цилиндрическая жесткость дорожной одежды по формуле

$$D = D_k + B_k C_k^2, k=1 \ldots n, n=5,$$ \hspace{1cm} (1)

где $D_k = E_k h_k^2 / 12(1-\nu_k^2)$ – цилиндрические жесткости слоев, МН/м;

$B_k = E_k h_k / (1-\nu_k^2)$ – жесткости слоев на растяжение, МН/м;

C_k – координата срединной плоскости слоя k, относительно нейтральной поверхности.

Положение нейтральной поверхности относительно верхней плоскости плиты находится по выражению

$$\delta = \sum_{k=1}^{n} B_k d_k / \sum_{k=1}^{n} B_k ,$$ \hspace{1cm} (2)

где d_k – расстояние от верхней плоскости к срединной плоскости слоя k, м.

Нейтральная поверхность принятой конструкции (рис. 1) расположена в слое 5 на расстоянии $\delta = 0,2724 \text{ м}$ от поверхности одежды. Полученные результаты представлены в таблице 1.

Таблица 1

<table>
<thead>
<tr>
<th>Жесткость слоев на растяжение, МН/м</th>
<th>Расстояния от верхней плоскости, м</th>
<th>Цилиндрические жесткости слоев, МН/м</th>
<th>Координата срединной плоскости слоя k, м</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B_1=128,000$</td>
<td>$d_1=0,0300$</td>
<td>$D_1=0,03840$</td>
<td>$C_1=-0,24242$</td>
</tr>
<tr>
<td>$B_2=112,000$</td>
<td>$d_2=0,0850$</td>
<td>$D_2=0,02333$</td>
<td>$C_2=-0,18742$</td>
</tr>
<tr>
<td>$B_3=10,667$</td>
<td>$d_3=0,1125$</td>
<td>$D_3=0,000022$</td>
<td>$C_3=-0,15992$</td>
</tr>
<tr>
<td>$B_4=60,800$</td>
<td>$d_4=0,1400$</td>
<td>$D_4=0,01267$</td>
<td>$C_4=-0,13242$</td>
</tr>
<tr>
<td>$B_5=4910,48$</td>
<td>$d_5=0,2850$</td>
<td>$D_5=23,5703$</td>
<td>$C_5=0,012581$</td>
</tr>
</tbody>
</table>

Общая цилиндрическая жесткость пакета слоев одежды согласно (1) составляет $D = 37,2172 \text{ МН/м}$.

Для оценки напряженного состояния и прочности плиты при изгибе возникает необходимо определить расчетные изгибающие моменты - М, МН.
При известном моменте возможно определение нормальных напряжений в слоях плиты по формуле:
\[
\sigma(z_k) = \frac{ME_k z_k}{D(1-\nu_k^2)},
\]
где \(E_k, \nu_k \) – модуль упругости и коэффициент Пуассона слоя, \(k \);
\(z_k \) – расстояние от нейтральной поверхности к поверхностям слоев плиты.

Приведенная методика определения жесткости многослойных плит и напряжений в слоях создает основу для обобщения известных методов расчета однослоинных плит – модификации этих методов для расчета многослойных систем. Поэтому, для дальнейших расчетов будет применена модификация точного метода О.Я. Шехтер.

Данный метод моделирует определяет расчётного момента в плите бесконечных размеров на упругом полупространстве, нагруженном круговым штампом – сложному колесу транспортного средства.

\[
c = y = -0,3393x^4 + 1,2309x^3 - 1,7997x^2 + 1,2373x + 0,036; \quad x = aR.
\]

\[
a = \text{упругая характеристика плиты -}
\]
\[
E_0, \nu_0 \text{ – модуль упругости и коэффициент Пуассона основания;}
\]
\[
R = 0,16 \text{ м} – радиус штампа.
\]

Для плит заданной конструкции при \(aR = 0,20487 \) значение \(c = 0,22394 \).

При получении из (6) расчетном момента напряжения по толщине дорожной одежды определяются выражением (3).

Напряжение на нижней поверхности плиты при \(z_k = 0,13006 \) является максимальным и составляет \(\sigma_{\text{max}} = 0,9102 \text{ МПа} \).

Кроме модификации рассматриваемого метода возникает возможность его применения для ряда других методов расчета однослоинных плит на упругом основании, в которых применяют модель Винклера. При этом возникает необходимость достижения эквивалентности результатов расчета, полученных для плит на основе, смоделированный упругим полупространством с модулем упругости \(E_0 \) и винклеровским коэффициентом основы \(K_0 \). Условием эквивалентности выбираем равенство максимальных растягивающих напряжений на подошве плиты, найденных при указанных характеристиках основания – чем и обосновывается их взаимный выбор. Модуль упругости экспериментально определяется штамповыми испытаниями по формуле

\[
E_0 = qd / f
\]

где \(q \) – удельное давление на основание от штампа, МПа;

Для указанной модификации этого метода цилиндрическая жесткость многослойной плиты, определенная по формуле (1), уравнена с жесткостью эквивалентной однородной системы

\[
D = \frac{Eh^3}{12(1-\nu^2)},
\]

где \(h \) – общая толщина многослойной плиты \(h = 0,405 \) м;
\(v = \frac{b}{h} = \sum \frac{E_k h_k \nu_k}{E_k h_k} = 0,156 \) – сводный коэффициент Пуассона слоев.

Из формулы (4) определена сводная характеристика упругости пакета слоев

\[
E = \frac{12D}{1-v^2} = 6722,95 \text{ МПа}.
\]

Расчетный момент согласно методу Шехтер определяется формулой

\[
M = \frac{cP(1+v)}{2\pi R},
\]

где \(c \) - коэффициент, для которого существует функциональная зависимость [4]

\[
d – диаметр штампа, м;
\]
\[
f – его осадка, м.
\]

Коэффициент основы \(K_0 \) является удельным давлением \(q \), который вызывает единичную осадку. Если принять \(f = 1,0 \) м, то \(K_0 = q \), а \(E_0 = K_0 d / f \) откуда \(K_0 = E_0 / d \). Диаметр штампа при испытаниях принимают от 0,5 м до 1,0 м, поскольку из опыта испытаний известно, что дальнейшее его увеличение не приводит к изменению результатов. Для определения принимаем значение диаметра \(d = 1,0 \) м.

Тогда \(K_0 = E_0 \).

Для обоснования установленного соотношения коэффициента основы и модуля упругости проверено выполнение условия их эквивалентности путем решения следующей тестовой задачи.

При различных значениях модуля упругости основы и соответствующих значениях коэффициента основы определены нормальные растягивающие напряжения \(\sigma_{\text{max}} \) на подошве цементобетонной однослоинной плиты толщиной \(h=0,2 \) м при единичной нагрузке \(P=0,01 \) МН, представленной по плоскости штампа диаметром 0,30м (следу колес расчетного автомобиля). Рассчитанные напряжения выполнены двумя методами –
методом Уэстенгарда для плиты на винклеровий основе с коэффициентом основы \(K_o = (100 \ldots 200) \) МПа/м и шагом 25 МПа/м и скорректированным к нему методом Иванова-Медникова для модели однородного полупространства с соответствующими модулями упругости \((E_o, MПа) \). Результаты расчетов сведены в таблицу 2.

Таблица 2

<table>
<thead>
<tr>
<th>Метод Уэстенгарда</th>
<th>Метод Иванова-Медникова</th>
</tr>
</thead>
<tbody>
<tr>
<td>(K_o, MН / m)</td>
<td>(\sigma_{max}, MПа)</td>
</tr>
<tr>
<td>100</td>
<td>0,2769</td>
</tr>
<tr>
<td>125</td>
<td>0,2693</td>
</tr>
<tr>
<td>150</td>
<td>0,2630</td>
</tr>
<tr>
<td>175</td>
<td>0,2579</td>
</tr>
<tr>
<td>200</td>
<td>0,2532</td>
</tr>
</tbody>
</table>

Полученные значения напряжений совпадают с точностью до \(\leq 5\% \), что подтверждает определенную эквивалентность значений модуля упругости и коэффициента основы плиты и дает возможность получить значения максимальных напряжений в цементобетонных плитах модельной задачи толщиной, близкой к принятой в тестовой задаче.

Согласно расчетной схеме, представленной на рис. 2, были определены значения моментов и напряжений по методу Уэстенгарда \((M=0,01258 \text{ МН}, \sigma_{max} = 0,9102 \text{ МПа}) \), Иванова-Медникова \((M=0,0108 \text{ МН}, \sigma_{max} = 0,9102 \text{ МПа}) \) и Тимошенко \((M=0,0123 \text{ МН}, \sigma_{max} = 0,9102 \text{ МПа}) \), которые совпадают в пределах точности практических расчетов между собой и с результатами, полученными модифицированным для расчета многослойных плит методом О.Я. Шехтер \((M=0,01273 \text{ МН}, \sigma_{max} = 0,9102 \text{ МПа}) \).

Рисунок 2 - Расчетная схема (модель Винклера):
1 - пакет нагреваемых слоев;
2 - цементобетонная плита

Для дальнейшего исследования напряженного состояния наряду с примененными аналитическими методами введен расчет численным методом – методом конечных разностей. Поскольку диаметр штампа нагрузки мал по сравнению с размерами плиты, то задача сведена к расчету плиты достаточного больших размеров по осесимметричных схеме МКР в полярных координатах [16]. Решена система конечно-разностных уравнений и полученные значения прогибов \(\eta_i \) в узлах сетки \(i = 1, 2, 3 \ldots 9, 10 \). По найденным прогибам определен момент в центральном узле и по формуле (3) рассчитаны напряжения в слоях дорожной одежды. Результаты нормальных напряжений по толщине пакета слоев дорожной одежды в центральной точке (под штампом), полученных методом конечных разностей и методом Шехтер, приведены в таблице 3.

Таблица 3

<table>
<thead>
<tr>
<th>Слои</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Напряжения по толщине дорожной одежды, МПа</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(\sigma_{max} = 0,9102 \text{ МПа} \), \(\sigma_{max} = 0,9102 \text{ МПа} \), \(\sigma_{max} = 0,9102 \text{ МПа} \), \(\sigma_{max} = 0,9102 \text{ МПа} \)
Расхождение значений напряжений, определенных примененными методами, находится в пределах точности экспериментального определения механических характеристик материалов, из которых изготовлено покрытие. Поэтому следует считать, что точность приведенных данных удовлетворяет точности практических расчетов.

Исследовано напряженно-деформированное состояние конструкции с учетом деформаций поперечного сдвига и поперечного обжатия и аналитическим методом решения задачи теории упругости слоистых сред [13]. Согласно этому методу искомые функции напряжений в конструкции представляются в виде рядов Фурье, а по толщине их распределение описано соответствующей системой дифференциальных уравнений, полученных вариационным путем. В таблице 4 представлены результаты тангенциальных напряжений \(\sigma_{11} \), напряжений обжатия \(\sigma_{33} \) и нормальные перемещения \(u_3 \) по толщине дорожной одежды.

Таблица 4

<table>
<thead>
<tr>
<th>Слои одежды</th>
<th>(\sigma_{11}), МПа</th>
<th>(\sigma_{33}), МПа</th>
<th>(u_3), м</th>
</tr>
</thead>
<tbody>
<tr>
<td>Асфальтобетон</td>
<td>-0,377</td>
<td>-0,800</td>
<td>2,604 (\times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>-0,277</td>
<td>-0,782</td>
<td>2,428 (\times 10^{-4})</td>
</tr>
<tr>
<td>Фиброэлектробетон</td>
<td>-0,277</td>
<td>-0,782</td>
<td>2,428 (\times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>0,118</td>
<td>-0,709</td>
<td>2,273 (\times 10^{-4})</td>
</tr>
<tr>
<td>Углеродная сетка</td>
<td>-0,124</td>
<td>-0,699</td>
<td>2,257 (\times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>-0,153</td>
<td>-0,699</td>
<td>2,257 (\times 10^{-4})</td>
</tr>
<tr>
<td>Термоизоляция</td>
<td>-0,166</td>
<td>-0,699</td>
<td>2,014 (\times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>-0,234</td>
<td>-0,699</td>
<td>2,014 (\times 10^{-4})</td>
</tr>
<tr>
<td>Цементобетонная плита</td>
<td>-0,672</td>
<td>-0,592</td>
<td>2,014 (\times 10^{-4})</td>
</tr>
<tr>
<td></td>
<td>0,855</td>
<td>-0,0194</td>
<td>1,979 (\times 10^{-4})</td>
</tr>
</tbody>
</table>

Сравнительный анализ результатов расчетов, полученных всеми нескорелированными аналитическими и численными методами, приведены в табл. 5.

Таблица 5

<table>
<thead>
<tr>
<th>Данные</th>
<th>Шехтер</th>
<th>Уэстенгарда</th>
<th>Тимошенко</th>
<th>Иванова-Медникова</th>
<th>МСР</th>
<th>Марчук</th>
</tr>
</thead>
<tbody>
<tr>
<td>M, МН</td>
<td>0,01273</td>
<td>0,01258</td>
<td>0,0123</td>
<td>0,0108</td>
<td>0,0168</td>
<td>0,0117</td>
</tr>
<tr>
<td>(\sigma_{max}), МПа</td>
<td>0,910</td>
<td>0,900</td>
<td>0,876</td>
<td>0,848</td>
<td>1,207</td>
<td>0,855</td>
</tr>
</tbody>
</table>

Оценка прочности конструкции выполнена обобщенно по напряжениям, возникающим в подошве многослойной плиты. Для оценки приняты максимальные растягивающие напряжения \(\sigma_{max} = 1,207 \) МПа и нормальные напряжения давления на основу \(\sigma_{min} = -0,0194 \) МПа, полученные вариационным методом Марчука. Взят к внику расчетные сопротивления материала бетона (класс B20) на сжатие \(R_s = 15 \) МПа и на растяжение с учетом усталости \(R_p = 1,4 \) МПа.

Для определения прочности конструкции на сопротивление растяжению использован критерий Кулона-Мора:

\[
\sigma_{expr} = \sigma_{max} - \frac{R_p}{R_c} \sigma_{min} \leq R_p, \quad (10)
\]
THE EQUATIONAL CHARACTERISATION OF THE COMPUTATION TREE LOGIC

Korablin Yu.,
Dr.Sc. (Engineering), Professor of the State Technological University – MIREA, Moscow, Professor of the Research University MPEI, Moscow

Shipov A.
C.Sc. (Engineering), Software Development Department, RSC, Moscow

Abstract
Constantly growing rates of development of information and computer technologies are forcing engineers and scientists in relevant areas to constantly look for better, faster and more accurate ways to control the quality of software and technical systems. The problem of analyzing the system for its compliance with the specifications has been and remains one of the key problem for solving this tasks. However, language constructions we are used to are not enough to set rigid and formal requirements for technical systems, since natural language is often capable of giving ambiguous statements, which, in turn, can be interpreted differently depending on the context. Obviously, such requirements cannot be guaranteed to be truthful nor can be used to perform automated checks.

Условие прочности на сопротивление растяжению удовлетворено.

Выводы.
1. Значение максимальных моментов и максимальных напряжений, вычисленные вами некорректными методами, подтверждают в пределах потребностей практической точности фактическую достоверность результатов расчета дорожной одежды с нагреваемым покрытием.
2. За счет объединения методики расчета многослойных плит с модификационными методами расчета однослойных плит появляется возможность эффективного использования их для определения напряженно-деформированного состояния конструкций нагреваемых дорожных покрытий.
3. Полученные результаты исследований могут быть использованы в деятельности проектных организаций при проектировании дорожных нагреваемых покрытий.

СПИСОК ЛИТЕРАТУРЫ:
2. Пат. на кор. модель № 50381, МПК Е01Н5/00, Е01С11/24, Е01С5/00, В64F1/00. Нагрев автодорожных и аэродромных покрытий / Пискунов В.Г., Володько О.В., Демчук О.М., Порхунов О.И.; заявник и власник Национальный транспортный университет. – № 2009 11553; заявл. 13.11.2009; опубл. 10.06.10, Бюл. № 11.
3. Пат. на корисну модель № 82232, Н01С7/00. Резистивный композиционный материал / Пискунов В.Г., Володько О.В., Порхунов О.И.; Цибульский В.М.; заявник и власник Национальный транспортный университет. – № u2013 01785; заявл. 13.02.13; опубл. 25.07.13, Бюл. № 14.

THE EQUATIONAL CHARACTERISATION OF THE COMPUTATION TREE LOGIC

Korablin Yu.,
Dr.Sc. (Engineering), Professor of the State Technological University – MIREA, Moscow, Professor of the Research University MPEI, Moscow

Shipov A.
C.Sc. (Engineering), Software Development Department, RSC, Moscow

ЭКВАЦИОНАЛЬНАЯ ХАРАКТЕРИЗАЦИЯ формул логики ветвящегося времени

Кораблин Ю.П.,
д.т.н., профессор Российского технологического университета – МИРЭА, Москва, профессор научно-исследовательского университета «МЭИ», Москва

Шипов А.А.
к.т.н., старший инженер-программист, Отдел разработки ПО, РСК, Москва

Abstract
Constantly growing rates of development of information and computer technologies are forcing engineers and scientists in relevant areas to constantly look for better, faster and more accurate ways to control the quality of software and technical systems. The problem of analyzing the system for its compliance with the specifications has been and remains one of the key problem for solving this tasks. However, language constructions we are used to are not enough to set rigid and formal requirements for technical systems, since natural language is often capable of giving ambiguous statements, which, in turn, can be interpreted differently depending on the context. Obviously, such requirements cannot be guaranteed to be truthful nor can be used to perform automated checks.
Введение

В современном мире верификация сложных, как программных, так и технических систем давно стала неотъемлемой частью их жизненного цикла. Существующие инструменты и средства верификации постоянно развиваются и совершенствуются с целью повышения их быстродействия, гибкости и расширения области применимости. Так, одним из наиболее актуальных на сегодняшний день является метод формальной верификации на моделях или Model Checking [1, 5]. Концептуальная особенность данного метода состоит в том, что верификация выполняется путем анализа свойств моделей систем, построенных на базе некоторых формальных конструкций, относительно требований к ним, также заданных формально. Как правило, для задания требований оперируют такими понятиями, как LTL, CTL, CTL*. Однако, выразительные возможности этих логик ограничены, поскольку они не позволяют задавать не только сами требования, но и модели верифицируемых систем. Поэтому на текущий момент не существует единой темпоральной логики.

Аннотация

Постоянно растущие темпы развития информационных и компьютерных технологий вынуждают инженеров и ученых в соответствующих областях постоянно искать более совершенные, быстрые и точные средства для контроля качества программных и технических систем. Проблема анализа системы на соответствие её спецификации была и остается одной из ключевых проблем в решении поставленных задач. Однако, использование привычных нам языковых конструкций недостаточно для задания жестких и формальных требований к системам, поскольку естественный язык частично способен рождать двусмысленные и неоднозначные утверждения, которые, в свою очередь, могут быть интерпретированы по-разному в зависимости от контекста. Очевидно, что подобные требования не могут быть гарантированно верными и их невозможно использовать для выполнения автоматизированных проверок.

Для решения проблемы формализации требований для системы используются временные логики: логика линейного времени LTL, логика ветвящегося времени CTL и логика CTL*, объединяющая возможности двух логик. Однако, каждая из этих логик обладает своими недостатками, ограничениями и проблемами выразительности, которые возникают ввиду их синтаксических и семантических особенностей. Именно поэтому на текущий момент не существует единой темпоральной логики.

Авторы убеждены, что использование специальных представлений, основанных на системах рекурсивных уравнений в отношении темпоральных логик, способно не только расширить их выразительную мощность, но и унифицировать их синтаксические конструкции, позволив, тем самым, сформулировать некоторую общую и единую для всех логик нотацию.

Keywords: verification, Model Checking, RLTL the equational characteristics of LTL, temporal logic formula, LTL, CTL.

Ключевые слова: верификация, Model Checking, эквационная характеристика RLTL, формула временной логики, LTL, CTL.

1. Логика ветвящегося времени CTL

Логика CTL является альтернативной LTL способом формулирования временных свойств. Если в логике линейного времени свойства формулируются лишь относительно некоторого порядка их наступления внутри вычислительного процесса, то в логике ветвящегося времени, помимо порядка, учитываются также альтернативы развития вычислительного процесса. В отличие от логики линейного времени, формулы которой являются формулами пути, формулы логики ветвящегося времени являются формулами состояний. То есть, любой темпоральный оператор CTL, предваренный квантором пути, определяет на всех (квантор вседобности A) или только на некоторых (квантор существования E) путях из текущего состояния данное свойство является истинным [1, с. 80].
Верифицируемая система может работать в разных режимах в зависимости от условий или исходных данных, может поддерживать многопоточное/многопроцессное выполнение [9], или результаты работы системы носят вероятностный характер [6]. Во всех этих ситуациях логики линейного времени скорее всего будет недостаточно.

Рассмотрим простой пример. Допустим, есть приложение, которое берет информацию из некоторой базы данных A и выводит её пользователю. В случае если база данных A по каким-то причинам перестает работать, то приложение переключается на работу с резервной базой данных B и информирует администратора системы о необходимости восстановления работоспособности базы данных A. При этом следует отметить, что наступление предиката неопределенности в некотором состоянии вычислительного процесса не исключает переключение на работу с базой данных B и администратор информируется об аварии базы A. Очевидно, что данные свойства не могут быть выражены средствами LTL.

Таблица 2.1. Рекурсивные преставления операторов CTL в RTL нотации.

<table>
<thead>
<tr>
<th>CTL</th>
<th>RTL</th>
</tr>
</thead>
<tbody>
<tr>
<td>AXϕ</td>
<td>Δ ∘ ϕ</td>
</tr>
<tr>
<td>EXϕ</td>
<td>Δ ∘ (ϕ + Δ)</td>
</tr>
<tr>
<td>AFϕ = ϕ ∨ AX AFϕ</td>
<td>AFϕ = ϕ + Δ ∘ AFϕ</td>
</tr>
<tr>
<td>EFϕ = ϕ ∨ EX EFϕ</td>
<td>EFϕ = ϕ + Δ ∘ (EFϕ + Δω)</td>
</tr>
<tr>
<td>AGϕ = ϕ ∧ AX AGϕ</td>
<td>AGϕ = ϕ ∘ AGϕ</td>
</tr>
<tr>
<td>EGϕ = ϕ ∧ EX EGϕ</td>
<td>EGϕ = ϕ ∘ (EGϕ + Δω)</td>
</tr>
<tr>
<td>A(ϕ1;Uϕ2) = ϕ2 ∨ ϕ1 ∧ AX A(ϕ1;Uϕ2)</td>
<td>AU(ϕ1, ϕ2) = ϕ2 + ϕ1 ∘ AU(ϕ1, ϕ2)</td>
</tr>
<tr>
<td>E(ϕ1;Uϕ2) = ϕ2 ∨ ϕ1 ∧ EX E(ϕ1;Uϕ2)</td>
<td>EU(ϕ1, ϕ2) = ϕ2 + ϕ1 ∘ (EU(ϕ1, ϕ2) + Δω)</td>
</tr>
</tbody>
</table>

Символ «ω» обозначает оператор продолжения (конкатенация выражений), что позволяет использовать оператор X в неявном виде, а также упростить его восприятие, в частности, запись ϕ₁ ∘ ϕ₂ будет пониматься как «ϕ₂ следует за ϕ₁». Под символом «Δ», именуемым предикатом неопределенности, будем понимать некоторое неопределенное подмножество символов входного алфавита. Под отрицанием данного предиката будем понимать некоторое другое неопределенное подмножество символов алфавита, а под отрицанием отрицания – некоторое третье неопределенное подмножество. Таким образом, отрицание предиката неопределенности является неполным, а каждое последующее отрицание даёт неопределенное подмножество символов. Каждое из этих подмножеств ввиду своей неопределенности также может быть обозначено через «Δ».

Запись вида «Δω» является расширением предиката неопределенности и представляет собой сокращенную запись для рекурсивного уравнения F = Δ ∘ F, означающего наступление бесконечной последовательности предикатов неопределенности на всех путях вычислительного процесса, исходящих из данного состояния. При этом следует отметить, что наступление предиката неопределенности в некотором состоянии вычислительного процесса не отрицает наступление в этом же состоянии любого из символов входного алфавита.

Сформулируем основные аксиомы и правила вывода нотации RTL.
Аксиомы RTL:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A1.</td>
<td>AFAFφ = AFφ</td>
</tr>
<tr>
<td>A2.</td>
<td>EEFφ = EFφ</td>
</tr>
<tr>
<td>A3.</td>
<td>AGAGφ = AGφ</td>
</tr>
<tr>
<td>A4.</td>
<td>EGEFφ = EGFφ</td>
</tr>
<tr>
<td>A5.</td>
<td>1A = E</td>
</tr>
<tr>
<td>A6.</td>
<td>1E = A</td>
</tr>
<tr>
<td>A7.</td>
<td>1Fφ = G1φ</td>
</tr>
<tr>
<td>A8.</td>
<td>1Gφ = F1φ</td>
</tr>
<tr>
<td>A9.</td>
<td>AGφ = φ • AGφ</td>
</tr>
<tr>
<td>A10.</td>
<td>EGφ = φ • (EGφ + ∆ω)</td>
</tr>
<tr>
<td>A11.</td>
<td>Aφ = φ + ∆ • AFφ</td>
</tr>
<tr>
<td>A12.</td>
<td>Eφ = φ + ∆ • (Eφ + ∆ω)</td>
</tr>
<tr>
<td>A13.</td>
<td>AU(φ₁, φ₂) = φ₂ + φ₁ • AU(φ₁, φ₂)</td>
</tr>
<tr>
<td>A14.</td>
<td>EU(φ₁, φ₂) = φ₂ + φ₁ • (EU(φ₁, φ₂) + ∆ω)</td>
</tr>
<tr>
<td>A15.</td>
<td>{φ, Δ} = φ</td>
</tr>
<tr>
<td>A16.</td>
<td>(φ, 1φ) = Δ</td>
</tr>
<tr>
<td>A17.</td>
<td>∆ω • φ = ∆ω</td>
</tr>
<tr>
<td>A18.</td>
<td>∆ω = Δ • ∆ω</td>
</tr>
<tr>
<td>A19.</td>
<td>(φ₁ + φ₂) • φ₁ = φ₁ • φ₁ + φ₂ • φ₁</td>
</tr>
<tr>
<td>A20.</td>
<td>φ₁ • (φ₂ + φ₃) = φ₁ • φ₂ + φ₁ • φ₃</td>
</tr>
</tbody>
</table>

Правила вывода RTL:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R1.</td>
<td>1A = Δ</td>
</tr>
<tr>
<td>R2.</td>
<td>F = φ₁ • F • φ₂ → F = φ₁ • F</td>
</tr>
<tr>
<td>R3.</td>
<td>F = φ₁ • F → F = φ₁ • F + φ₂ (и в обратную сторону правило справедливо)</td>
</tr>
</tbody>
</table>

3. Сочетания операторов CTL

Сочетания операторов логики ветвящегося времени, заданных в своем рекурсивном представлении, могут также быть легко получены на основе обозначенных в предыдущем разделе аксиом и правила вывода. Рассмотрим некоторые из них и опишем процесс их вывода.

Лемма 1.

Выражение вида AFAF φ логики CTL может быть представлено в RTL-нотации в виде F = φ • F + ∆ • F.

Доказательство.

AFAFφ = AG(AFφ) = (A9)
AGφ = AG(AFφ) = (A11)
(φ + ∆ • AFφ) • AG(AFφ) = (A19)
φ • AG(AFφ) + ∆ • AFφ • AG(AFφ) = (п.3)
φ • AG(AFφ) + ∆ • AG(AFφ)
Заменив AG(AFφ) на F получим
F = φ • F + ∆ • F, ч.т.д.

Лемма 2.

Выражение вида EGEF φ логики CTL может быть представлено в RTL-нотации в виде F = φ • (F + ∆ω).

Доказательство.

AGEFφ = AG(EFφ) = (A9)
EFφ • AG(EFφ) = (A12)
(φ + ∆ • (EFφ + ∆ω)) • AG(EFφ) = (A19)
φ • AG(EFφ) + ∆ • (EFφ + ∆ω) • AG(EFφ) = (A19)
φ • AG(EFφ) + ∆ • (EFφ • AG(EFφ) + ∆ω) = (п.3)
φ • AG(EFφ) + ∆ • (AG(EFφ) + ∆ω)
Заменив AG(EFφ) на F получим
F = φ • F + ∆ • (F + ∆ω), ч.т.д.

Лемма 3.

Выражение вида AFAF φ логики CTL может быть представлено в RTL-нотации в виде системы рекурсивных уравнений:

F₁ = φ • F₂ + ∆ • F₁
F₂ = φ • F₂

Доказательство.

AFAFφ = AF(AFφ) = (A11)
AGφ + ∆ • AF(AGφ) = (A9)
φ • AGφ + ∆ • AF(AGφ)
Заменив AF(AGφ) на F₁ и AGφ на соответствующее рекурсивное определение, обозначаемое метагерменевтической F₁, получим
F₁ = φ • F₂ + ∆ • F₁
F₂ = φ • F₂
ч.т.д.
Лемма 4.
Выражение вида $\text{AFEG}\varphi$ логики CTL может быть представлено в RTL-нотации в виде системы рекурсивных уравнений:

$F_1 = \varphi \circ (F_2 + \Delta^w) + \Delta \circ F_1$

$F_2 = \varphi \circ (F_2 + \Delta^w)$

Доказательство.

$\text{AFEG}\varphi = \text{AF}(\text{EG}\varphi) = (A11)$

$\text{EG}\varphi + \Delta \circ \text{AF}(\text{EG}\varphi) = (A10)$

$\varphi \circ (\text{EG}\varphi + \Delta^w) + \Delta \circ \text{AF}(\text{EG}\varphi)$

Заменив $\text{AF(EG}\varphi)$ на F_1 и $\text{EG}\varphi$ на соответствующее рекурсивное определение, обозначаемое метатерминной F_2, получим

$F_1 = \varphi \circ (F_2 + \Delta^w) + \Delta \circ F_1$

$F_2 = \varphi \circ (F_2 + \Delta^w)$

ч.т.д.

4. Примеры

Рассмотрим несколько примеров для лучшего понимания принципов задания формул ветвящегося времени на базе RTL.

П1. $F = \Delta \circ (\text{G}\varphi_1 + \text{G}\varphi_2)$. Формула истинна, если «из текущего состояния исходят два типа ветвей: либо во всех состояниях выполняется φ_1, либо во всех состояниях выполняется φ_2».

П2. $F = \varphi_1 \circ (\text{G}\varphi_3 + \text{G}\varphi_4) + \varphi_2 \circ \text{G}\varphi_5$. Формула истинна, если «в текущем состоянии выполняется φ_1 или φ_2, при этом, если выполняется φ_1, то из текущего состояния исходят два типа ветвей: либо во всех состояниях выполняется φ_3, либо во всех состояниях которых выполняется φ_4; если в текущем состоянии выполняется φ_2, то исходят лишь те ветви вычислительных последовательностей, для которых во всех состояниях истинно φ_5».

П3. $F = \varphi \circ (F + \Delta^w)$. Формула истинна, если «в текущем состоянии выполняется φ и из него исходит хотя бы одна ветвь, в которой будет истинна эта же формула».

На рис. 3.1(а-в) представлены развертки моделей, удовлетворяющие П1-П3 соответственно.

Рисунок 3.1(а-в). Развертки моделей, удовлетворяющие формулу из П1

Рисунок 3.1а. Развертка модели, удовлетворяющая формуле из П1

Рисунок 3.1б. Развертки моделей, удовлетворяющие формуле из П2

Рисунок 3.1в. Развертка модели, удовлетворяющей формулу из П3

Рисунок 3.1в. Развертка модели, удовлетворяющая формулу из П3.
Отметим, что переход в некоторое состояние, помеченное каким-либо символом предиката (например, предикатом ф) отображает на самом деле все множество переходов в состояния, в которых выполняется этот предикат.

Заключение

В статье авторами была рассмотрена RTL-нотация, представляющая собой расширенную и адаптированную под логику ветвящегося времени RTL-нотацию. Наглядно на конкретных примерах было продемонстрировано, что RTL-нотация способна не только в полной мере выражать базовые конструкции CTL, позволяя формулировать требования к альтернативным путям развития вычислительного процесса верифицируемой модели, но и также расширяет выразительную мощность логики, позволяя выражать утверждения, которые не могут быть выражены в CTL.

Таким образом, RTL-нотация в целом представляет собой гибкий и мощный механизм, расширяющий выразительность обеих логик (LTL и CTL), и делающий процесс верификации более эффективным и удобным. Благодаря своим особенностям RTL может стать единым универсальным инструментом для выполнения всесторонних проверок свойств моделей, позволив специалистам по верификации избавиться от необходимости выполнять лишние действия, связанные с использованием большого числа различных структур данных и подходов к верификации.

СПИСОК ЛИТЕРАТУРЫ:

Norwegian Journal of development of the International Science

ISSN 3453-9875

VOL. 1

It was established in November 2016 with support from the Norwegian Academy of Science.

DESCRIPTION

The Scientific journal “Norwegian Journal of development of the International Science” is issued 12 times a year and is a scientific publication on topical problems of science.

Editor in chief – Karin Kristiansen (University of Oslo, Norway)

The assistant of the editor in chief – Olof Hansen

- James Smith (University of Birmingham, UK)
- Kristian Nilsen (University Centre in Svalbard, Norway)
- Arne Jensen (Norwegian University of Science and Technology, Norway)
- Sander Svein (University of Tromso, Norway)
- Lena Meyer (University of Gothenburg, Sweden)
- Hans Rasmussen (University of Southern Denmark, Denmark)
- Chantal Girard (ESC Rennes School of Business, France)
- Ann Claes (University of Groningen, Netherlands)
- Ingrid Karlsen (University of Oslo, Norway)
- Terje Gruterson (Norwegian Institute of Public Health, Norway)
- Sander Langfjord (University Hospital, Norway)
- Fredrik Mardosas (Oslo and Akershus University College, Norway)
- Emil Berger (Ministry of Agriculture and Food, Norway)
- Sofie Olsen (BioFokus, Norway)
- Rolf Ulrich Becker (University of Duisburg-Essen, Germany)
- Lutz Jäncke (University of Zürich, Switzerland)
- Elizabeth Davies (University of Glasgow, UK)
- Chan Jiang (Peking University, China)

and other independent experts

1000 copies

Norwegian Journal of development of the International Science
Iduns gate 4A, 0178, Oslo, Norway

email: publish@njd-iscience.com
site: http://www.njd-iscience.com