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Abstract 
 

Triple-negative breast cancers (TNBCs) (ER/PR/HER2 negative) represent 15% of invasive 

breast cancers and occur at a higher rate in young and African-American women. Exploration of 

novel therapeutic approaches is critical, since only 30% of woman with metastatic breast cancer 

will survive and virtually none with metastatic TNBC. The status quo as it pertains to the 

treatment of TNBCs can be summarized as: no effective therapies available. In part, the lack of 

therapeutic success is due to high genetic heterogeneity of TNBCs, challenging single drug 

approaches. 

 

Many targeted strategies to treat TNBC are being explored, including the inhibition of kinase 

pathways (e.g. PI3K/Akt, MEK, VEGFR and PDGFR), the inhibition of DNA repair, of survival 

pathways and androgen receptor blockade. In most cases, such single-drug targeted therapy is 

combined with systemic genotoxic chemotherapy. For example, although about 60% of basal-

like TNBCs over express EGFR, EGFR targeted therapy, including kinase inhibition, has been 

disappointing due to the development of resistance.  

 

Various resistance mechanisms allow cancer cells to evade single-drug targeted therapies: 

mutations in the targeted molecules, extensive crosstalk/pathway redundancy and the up-

regulation of alternate growth or survival pathways. Design of combinatorial approaches of 

therapeutics for TNBC that overcome resistance is therefore critical. The contribution of the 

proposed research is expected to be the identification of signaling network perturbations that 

occur in response to single targeted therapies, in particular in ADAM17/EGFR axis inhibition, 

and confer resistance. Based on published results, inhibition of the ADAM17/EGFR ligand axis 

in TNBC should provide therapeutic benefit with reduced tumor growth and decreased 

metastasis, if not possibly cure.   
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In our in vitro studies on PKCα and PPP1R14D gene knockout in MDA-MB-231 cells indeed led 

to decreases in cellular growth and migration. However, to our surprise, when the same cells 

were injected into mice through orthotropic fat pad transplantation, they produced aggressive, 

metastatic tumors that showed activation of alternate growth signaling pathways, namely of the 

mitogen-activated protein kinase ERK and of the PI3kinase target Akt, also a mitogen activated 

kinase. This suggested that TNBC cells were developing resistance to EGF ligand regulator 

knockdown by rewiring their growth factor signaling pathways. To determine where these 

additional growth signals come from, we first considered the tumor cells themselves.  

 

In this context we discovered that when kept in culture, MDA-MB-231 cells expressing sh-

RNAs targeting either PKCa or PPP1R14D maintained knockdown of the target for up to 35days 

tested. At the same time EGFR and ERK showed low activity as expected due to a decrease in 

EGF ligand cleavage; Akt activity was undetectable.  Since we observed strong reactivation of 

ERK and new activation of Akt in tumors in vivo, we considered possible up-regulation of other 

growth factor receptors on the cell surface that would be engaged by factors released from the 

tumor stroma once cells are inserted in vivo. Indeed, we found that FGFR2 and Erbb4 were 

upregulated.  It is therefore likely that reactivation of ERK and new activation of Akt was due to 

FGFR2 and Erbb4. This would suggest that combination therapy of EGF ligand release regulator 

inhibition and FGFR inhibition would decrease growth of these tumors in vivo. 
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Resumen  

El cáncer de mama triple negativo (TNCB) es aquel que no expresa el receptor de estrógenos 

(ER), ni el de progesterona (PR) o el HER2. Esta patología representa el 15% de los tumores de 

mama invasivos y tiene una alta incidencia en mujeres jóvenes Afro-Americanas. Es responsable 

de una alta tasa de mortalidad por cáncer de mama ya que generalmente el TNCB causa 

metástasis; además, responde pobremente a las terapias con quimioterápicos a largo plazo y 

generalmente desarrolla resistencia a las terapias dirigidas, incluyendo las que implican al EGFR. 

Por todo ello, es fundamental el desarrollo de terapias alternativas, dado que solo el 30% de las 

mujeres con cáncer de mama metastásico sobrevive pero ninguna de las que presentan TNBC 

metastásico. 

Actualmente, no existe una terapia adecuada y efectiva para el TNBC. En parte, esto se debe a la 

alta heterogeneidad genética que presentan estos tumores, lo cual redunda en la inefectividad de 

terapias basadas en una única droga. Terapias basadas en blancos terapéuticos específicos están 

en investigación y desarrollo, como aquellas basadas en la inhibición de quinasas implicadas en 

señalización (ejemplo: /Akt, MEK, VEGFR, PDGFR), reparación del DNA, supervivencia 

celular o acciones androgénicas. Mayormente, estas terapias específicas son combinadas con 

quimioterapia sistémica. Sin embargo, hasta el momento, los beneficios de tales propuestas 

terapéuticas no son claros. Aproximadamente el 60% de los TNBC de tipo basal sobreexpresan 

EGFR; sin embargo, las terapias que implican la inhibición del receptor son mayormente 

inefectivas debido al desarrollo de resistencia. Distintos mecanismos están involucrados en el 

desarrollo de resistencia a las terapias dirigidas, como ser mutaciones en la proteína blanco o la 

redundancia y sobreactivación de vías de señalización compartidas con otros factores de 

crecimiento. 

Por lo tanto, es fundamental diseñar terapias combinadas para TNBC que contemplen el posible 

desarrollo de resistencia. El trabajo de investigación propuesto intenta identificar alteraciones de 

vías de señalización intracelular ocasionadas por las terapias dirigidas, particularmente en lo que  
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respecta al eje ADAM17/EGFR, con el fin de establecer su posible implicancia en el desarrollo 

de resistencia. 

Dado que se desconoce como es regulada la actividad y selectividad de ADAM17, se realizó un 

amplio estudio mediante shRNA para dilucidar como se regula el clivaje de and PPP1R14D 

regulan el clivaje de TGFa, AREG y HB-EGF sin afectar la actividad proteasa de ADAM17. La 

inhibición del eje ADAM17/EGFR sería beneficioso para el tratamiento del TNBC. Nuestros 

estudios in vitro revelaron que células MDA MB 231 knockout para PKCα and PPP1R14D no 

presentan sobreactivación de RTKs, sugiriendo que en estos modelos podría verse potenciada la 

eficacia terapéutica de la inhibición del eje ADAM17/EGFR. 

Sin embargo, cuando las mismas células fueron inyectadas a ratones, produjeron un fenotipo de 

tumor agresivo y metastásico, asociado a la reactivación de vías de señalización intracelular 

como las mediadas por ERK y PI3K/Akt. Ello se asoció a un aumento de la expresión y 

activación de distintas RTKs, incluido el EGFR como así también de Akt. 

Estos resultados sugieren la activación alternativa de vías de señalización que permiten que las 

células tumorales proliferen y produzcan metástasis. 
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1. Introduction 

1.1 Triple negative breast cancer 

Triple negative breast cancer (TNBC) represents a cluster of heterogeneous diseases showing 

distinct molecular, pathological and clinical features (1). Triple negative breast cancer (TNBC) is 

characterized by the absence of estrogen receptor (ER) and progesterone receptor (PR), as well 

as human epidermal growth factor receptor-2 (Her2) (2). TNBC is associated with poor 

prognosis, a high risk of local recurrence (LR), and poor disease-free survival (DFS) and cancer-

specific survival (CSS) (2, 3). TNBCs are usually larger in size, higher in grade, with earlier 

lymph node involvement. They represent 15% of invasive breast cancers and occur at a higher 

rate in young and African-American women (4, 5).  

 

Gene expression profiling and molecular pathology have revealed that BC naturally divides into 

luminal A and B, HER2-enriched, basal-like and claudin-low subtypes (6, 7). The claudin-low 

BC is characterized by loss of tight junction markers (notably claudins) and high expression of 

markers of epithelial-to-mesenchymal transition (EMT), in addition to being enriched for 

markers of mammary stem cells (7, 8). Basal-like tumors molecularly mostly identify as Triple-

negative breast cancers (TNBCs) (ER/PR/HER2 negative). To date, the basal-like classification 

is available only in the research setting; thus, the triple-negative phenotype currently serves as a 

reliable surrogate in the clinical environment (1, 2).  

 

Exploration of novel therapeutic approaches is critical, since only 30% of woman with metastatic 

breast cancer will survive and virtually none with metastatic TNBC. Therapeutic strategies to 

confront resistance are lacking and not one single targeted therapy is approved for TNBC (10). 
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1.2 Metastasis 
 
Metastasis involves a series of steps, dependent on the balance between the intrinsic properties of 

the tumor cells and the host response, each of which can be rate-limiting since a failure at any 

step may halt the process (11).  

 

Due to the more aggressive phenotype of metastatic cells, the metastases of a tumor are often 

more difficult to treat than the primary tumor itself. These cells have gained the ability to leave 

the primary tumor, either via lymphatic tissue or blood vessels, and settled down in different 

organs. Historically metastasis was viewed as a linear progression based primarily on the 

malignant cells accrual of mutations, however, recent studies have demonstrated 

the potential for dissemination is highly complex (12,13) 
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Firstly the tumor cells start invading local host tissue and this process continues until the tumor 

cells intravasate systemic fluids. Systemic fluids help tumor cells to travel to distant organs and 

to start proliferating and inducing angiogenesis to supply their growth. Before extravasating the 

tumor cells attach to the capillary beds of the to be invaded organ. During this whole process, the 

tumor cells defend themselves from the immune system of the host and from other apoptotic  

signals produced in their environment. Metastastatic lesions can produce their own metastasis, 

called secondary metastasis (14).  

 

The invasion process involves two main molecules from the cadherin family, E-cadherin and N-

cadherin. E-cadherin basically helps in cell to cells adhesion and down regulation of this 

molecule leads to metastasis. N-cadherin is involved in epithelial-to-mesenchymal transition 

(EMT) during the gastrulation stage. EMT plays a major role in tumor progression by assisting 

invasion and intravasation into the bloodstream and by inducing proteases involved in the 

degradation of the extra cellular matrix (ECM)(14,15). 

 

Integrins are the transmembrane receptors which help tumor cells to destroy ECM. The 

degradation of ECM is carried out mainly through metalloproteinases (MMPs) and the urokinase 

plasminogen activator (uPA) system (16). 

 

One important factor contributing to metastasis formation is the local tissue and its stiffness, 

which may impact the kinetics of metastasis and also the susceptibility of the tissue to be invaded 

by metastatic tumor cells (17, 18). Therefore a better understanding of extra cellular matrix 

(ECM) qualities that favor metastasis is crucial to develop approaches that target the metastatic 

potential of cancer cells. 

 

The tumor cells travel inside the system either singly or coordinately. For coordinated movement 

they need intercellular junctions and they circulate in blood or lymphatic system as tumor cell 

emboli. The singly circulate mainly by protease-dependent mesenchymal movement or by  
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protease-independent amoeboid movement. The microenvironment is a very important factor for 

tumor growth and metastasis. The tumor microenvironment can be nourishing or aid in detection  

 

and destruction of tumor cells, e.g. by  the induction of apoptotic signals relayed by cells of the 

immune system. Many different specialized cells, including fibroblasts, immune cells, 

endothelial cells and mural cells of the blood and lymph vessels, together with the ECM make up 

the microenvironment which influences tumor progression (18). 

It is also postulated that tumor cells themselves might secrete substances to prime the ‘soil’ prior 

to metastasis to establish a ‘pre-metastatic niche’ supporting future metastatic sites (11). 
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1.3 Targetable signaling pathways 
 

The basal-like breast cancers (BBCs) were found to be molecularly distinct from the luminal A, 

luminal B, and HER2 subtypes of breast cancer, but to share many characteristics with high-

grade serous ovarian cancers (HGSOC), including loss of TP53, RB1, and BRCA1, as well as  

 

MYC  amplification. Several potential targets are currently investigated in TNBC/BBC, including 

PTEN, INPP4B, PIK3CA, KRAS, BRAF, EGFR, FGFR1, FGFR2, IGFR1, KIT, MET, PDGFRA, 

and the HIF1-α/ARNT pathway (19,20,21). 

 

Other target agents under current investigation are Src, insulin-like growth factor (IGF)/IGF-

receptor (IGFR), PI3K/AKT/mTOR and RAS/MEK/ERK inhibitors. as well as agents that 

promote apoptosis such as Poly ADP ribose polymerase (PARP) inhibitors or agents that target 

invasion and metastasis (Metalloprotease inhibitors) all of which interfere with critical signaling 

pathways that have been found upregulated in TNBC. Several different EGFR targeting agents 

are also in clinical trials (22).   

 

1.4 Targeting EGFR 
 
The epidermal growth factor receptor (EGFR) may be a potential target in the treatment of 

advanced TNBC. High expression of EGFR was noted in approximately 60% of TNBCs. 

Cetuximab, a monoclonal antibody that targets EGFR, have shown somewhat limited benefit. 

The combination of carboplatin and cetuximab is well tolerated for advance stages of TNBCs.  

But there is always reactivation of alternative signals inside the tumor cells that help them to 

survive inside the host system (20, 21).  
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The treatment of TNBCs can be summarized as: no effective therapies available. In part, the lack 

of therapeutic success is due to high genetic heterogeneity of TNBCs (10, 23), challenging single 

drug approaches. In most cases, such single-drug targeted therapy is combined with systemic 

genotoxic chemotherapy; however, to date these studies have produced little tangible results 

(10). For example, although about 60% of basal-like TNBCs overexpress EGFR (24), EGFR 

targeted therapy, including kinase inhibition, has been disappointing due to the development of 

resistance (10,25).Various resistance mechanisms allow cancer cells to evade single-drug 

targeted therapies: mutations in the targeted molecules, extensive crosstalk/pathway redundancy 

and the upregulation of alternate growth or survival pathways (26).  

 

The above-mentioned complications lead our lab to design combination therapy approaches 

which can circumvent the resistance generated due to single targeting of the EGFR. This 

resistance frequently involves the release of EGF ligands from tumor or stromal cells that 

overcome receptor inhibition in the tumor. Our added approaches would target the signaling 

pathways that mediate EGF ligand cleavage and are activated as a result of EGFR inhibition; 

thus counteracting one important resistance mechanism to EGFR targeting. 
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1.5 Previous work 
 

Previously, our lab had performed a large scale shRNA screen for regulators of phorbol ester 

induced TGFα cleavage, targeting the human kinome and phosphatome (28). Our screen 

identified about 40 positive or negative kinase/phosphatase regulators of induced TGFα 

cleavage, including PKCα, PKCδ and PPP1R14D. PPP1R14D is a PKC-activated specific 

protein phosphatase 1 inhibitor (27, 29). Both genes selectively regulate the cleavage of TGFα, 

AREG and HB-EGF without affecting ADAM17 protease activity, and do not affect ADAM10 

substrates (28). With these results in mind, we first investigated knockdown of PKCα, 

PPP1R14D in TNBC cells in vitro and observed decrease of TNBC relevant cellular phenotypes 

in vitro (proliferation, migration, invasion, EGF ligand cleavage).  

 

PKCα and PPP1R14D knockdown significantly reduced migration (Fig. 1A) of MDA-MB-231 

TNBC cells (wound-closure scratch assay) and this inhibition was rescued by addition of EGF 

ligands such as HB-EGF. The metalloprotease inhibitor batimastat (BB94) was as effective as 

PKCα and PPP1R14D knockdown. PKCα and PPP1R14D knockdown also strongly inhibited 

invasion of MDA-MB-231 cells into collagen matrix (Fig.1B). A neutralizing anti-
amphiregulin (AREG) antibody mimicked this effect (Fig. 1B), suggesting that AREG 
release plays a role in enhancing TNBC cells invasion. Only PPP1R14D but not PKCα 

knockdown reduced cell growth of MDA-MB-231 cells, suggesting substitution of this function 

by other PKCs (Fig. 1C). However, knockdown of either gene significantly sensitized MDA-

MB-468 cells to doxorubicin (24% -> 41-53% apoptotic cell marker caspase 3 at 8hours) (Fig. 
1D). 6 hours pre-treatment with erlotinib further enhanced apoptosis in control but not in 

knockdown cells, suggesting that regulator targeting mimics EGFR inhibition 
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Following these in-vitro studies, I performed in-vivo studies to confirm whether they perform in 

a similar manner. PKCa and PPP1R14D knockdown were maintained in MDA-MB 231 cells by 

continuous input of IPTG and injected in mice with fat pad mammary transplant. 
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2. Hypothesis 
 
 We will test hypothesis that PKCα and PPP1R14D knockdown MDA-MB-231cells shows no 

tumor growth and metastasis in vivo. 

 
 
 
3. Objective 
 
3.1 Primary Objectives 
The purpose of this thesis is to investigate whether PKCα and PPP1R14D knockdown MDA-

MB-231 cells shows similar reduction in vivo tumor growth and metastasis as it has shown 

previously in in vitro experiments. 
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3.2 Secondary objectives 
 
- To perform mammary fat pad transplantation to insert PKCα and PPP1R14D knockdown             

MDA-MB-231 cells in mice 

- To measure the tumor growth at different time points. 

- To harvest the tumors and distant organs (Lungs and Liver) from mice at different at  week 5, 

4, 3. 

- To take the pictures under fluorescent stereoscope to investigate the tumor growth and    

metastasis.    

- To analyze the tumor samples by using western blot and q PCR. 
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4. Materials:  
4.1 Chemical 

 

 

 

Product Vendor Catalog Number 

2-Propanol Roth AE73.1 

Acrylamide 40% Bio-rad 161-0148 

Ammonium persulfate Thermo Scientific 17874 

Dimethyl-sulfoxide (DMSO) Sigma-Aldrich D2438 

DMEM GIBCO 41966 

Ethanol J. T. Baker 9401-33 

Ethidum Bromide 1% Fisher Scientific BP1302-10 

Fetal Bovine Serum (FBS) Sigma-Aldrich F1051 

Formaldehyde Sigma-Aldrich F8775 

Glacial Acetic Acid Sigma-Aldrich 320099 

Glycine Fisher Scientific  BP381-5 

Nitrocellulose membrane  Sigma-Aldrich N8267 

PBS Life Technologies 10010-031 

Penicillin/Streptomycin GIBCO 15140 

Protease inhibitor Sigma-Aldrich P8340 

Stripping buffer Thermo 48426 

Temed Fisher Bioreagents 112881 

Tryptan blue 0,4% Life Technologies 15250-061 

Tris Base Fisher Scientific  BP1525 

Trypsin Sigma-Aldrich P8340 

Tween 20 Fisher Scientific BP337-100 
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4.2 Instruments and Equipments  

Products Vendor 

Autoclave Vakulal S 3000 

ChemiDocTM system Bio-rad 

Centrifuge Eppendorf 

Electric Pipettor Integra Bioscience 

Incubator Heraeus 

Ice machine Ziegra 

Light microscopes Olympus CX2 

Laminar flow hood Heraeus LaminAir 2448 

Microscope system Zeiss Axioplan 2 Imaging 

Nanodrop 1000, Peqlab 

Thermomixer Eppendorf 

Refrigerator (+4. C) SummitR 

Weighing scale Sartorius CL420 

 

4.3 Consumables 

Products Vendor 

Cell culture 96 well round bottom plates BD Discovery Labware 

Cell culture round bottom plates, different 

Sizes 
Greiner 

Conical tubes, 15ml, 50ml Greiner bio-one 

Coverglasses for microscope slides Langenbrinck 

Eppendorf tubes, sterile, 1.5 ml, 2 ml Eppendorf 



IMBS 2015 
 

22 
 

Parafilm M American National Can 

Pipette tips without filter, diffenrent sizes Corning 

Single use syringes, sterile, different sizes B. Braun 

Tissue strainer 40μm, 70μm, 100μm BD biosciences 

 

4.4 Antibodies 

Products Vendor Catalog Number 

P EGFR (1068) Cell Signaling 2234 

Total EGFR Cell Signaling 2232 

P ERK Cell Signaling 9101 

Total ERK Cell Signaling 9102 

P Akt Cell Signaling 9271 

Total Akt Cell  Signaling 9272 

P  Stat3 Cell Signaling 9131 

Total Stat3 Cell Signaling 9132 

αTubulin Cell Signaling 2144 

 

4.5 Software 

Products Vendor Application 

Endnote X5 Thomson Reuters Reference management 

FlowJo BD Biosciences Analysis of flow cytometry 

data 

GraphPad Prism 5.0 GraphPad Software, 

Inc. 

Statistical analysis and 

database Management 

Microsoft Office 2007 Microsoft Documentation and Analysis 

Applications 

Image Lab Bio-rad Analysis of western blots and 

gel images 
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4.6 Mice 

Nude mice were used for in-vivo experiment (fat pad mammary transplant), injected MDA-MB 

231 cells control, Pkcα and PPP1R14D knockout cells. 
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5. Methods 
 

5.1 Cell culture  

All cells have been cultivated at 37 C with a 5% carbon dioxide concentration, unless otherwise 

stated. Cells were kept in culture a maximum of 5 weeks, to limit genetic drift.   

5.1.1 Counting of cells 

Cells in suspension were stained with a 33% trypan blue solution at a ratio of 1:1 (10 μl Cell 

suspensions to 10 μl 33% trypan blue solution). Trypan blue stains dead/dying cells blue, while 

living/healthy cells are not stained. The cells were then counted using a Neubauer chamber 

immediately after staining. Cell concentration was calculated using the following equation.    

            

5.1.2 Collection of cells for experiments  

Adherent and semi-adherent cells were cultured in T-75 flasks until a max confluence of 90%. At 

confluence point, cells were washed with PBS, trypsinized at 37°C for 5 minutes, or until the 

cells detached from the surface of the flask. Trypsin was then neutralized with appropriate 

culture medium and cells were split into new culture flasks or counted before being used for 

experimentation. (Suspended semi-adherent cells were centrifuged at 400 x G for 8 minutes. Old 

media was removed from the cell pellet and cells were then combined to trypsinized cells for 

splitting or experimentation). Suspension cells were cultured the same as above. When 

confluence of 90% was reached, cells were split or used for experimentation.  

 

 

2 x 10000 x Average of number of cells in four fields = number of cells per ml 
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5.1.3 Freezing and thawing cells 

All long-term cell stores were kept in a cryogenic unit in liquid nitrogen at -196° C. Cells were 

collected from flasks, counted as mentioned above, centrifuged at 400xG for 8 minutes, after 

which culture media was removed. Cells were then re-suspended in freezing medium (90% FBS, 

10% DMSO) at a concentration 1 x 106 – 1 x 107 and pipetted into cryogenic freezing tubes. 

Tubes were then placed into freezing vessels containing isopropanol and stored overnight in a 

freezer at -80° C. Cell tubes were then transferred to the cryogenic storage unit for indefinite 

long-term storage.  

Thawing of long-term cell stores was done as quickly as possible to limit cell exposure to toxic 

levels of DMSO. Cells were immediately thawed and the freezing media diluted with normal 

culture media. Then cell suspensions were centrifuged at 400 x G for 8 minutes, followed by the 

removal of all media from the resulting cell pellet. Freshly thawed cells were then washed once 

with culture media to remove any residual freezing media and centrifuged again. Once the wash 

media was removed from the cell pellet, cells were re-suspended in culture media and place in 

the incubator to recover from the freezing/thawing process.  

 

5.1.4 Triple Negative Breast Cancer cell line selection and acquisition 

The MDA-MB-231 TNBC cell line was extracted from the human mammary gland/breast 

adenocarcinoma and was provided by Anna Starzinski- Powitz (Frankfurt, Germany) and Steve 

Palmer (EMD Serono).  

 

5.1.5 Lentivirus Production and Infection  

For virus production, the following protocol was used: 800,000 HEK293T cells were seeded in a 

6-cm plate on day 0. On day 1, 50% confluent cells were transfected with 1 mg viral plasmid of 

choice, 0.9 mg of VSVG, and 0.1 mg pUMVC (retroviral polymerase) or 0.1 mg deltaPVR  
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(lentiviral polymerase) using 6 mL of FuGENE 6 (all premixed in serum-free medium and 

incubated 20 min at room temperature). On day 2, 18 h after transfection, medium was changed 

to 4 mL medium containing 30% (vol/vol) FCS in DMEM. On day 3, 48 h after transfection, 

viral supernatant was harvested and syringe-filtered through a 0.4-mM filter directly onto cells to 

be infected (50% confluent at point of infection). Polybrene 4 mg/mL was added to the virus, and 

infection was done by spin-infection at 750 × g for 30 to 60 min.  

 

5.1.6 shRNA knockdown screen 

IPTG inducible lentiviral shRNA vectors (pLKO904/905) were used. Lentivirally infected 

TNBC cells were grown for 7 days in IPTG-containing media (100mM) to induce strong gene 

knockdown (typically established within 3-5 days; returns to normal if IPTG is withdrawn). The 

knockdown cells in vivo were re-tested for their desired knockdown phenotype through qPCR. 

The gene knockdown of PKCa and PPP1R14D was done. 

 

5.2 Subcutaneous mammary fat pad injections (Orthotopic transplantations) 

On day 8, tumor cells were injected in cold medium containing growth factor reduced Matrigel 

into the mammary fat pad (1-5x105 cells/injection). The surgery was performed in a sterile hood 

to maintain a sterile atmosphere. The mouse was anesthetized by subcutaneously injecting 

Xylazin/Ketamine mix at a dose of 10mg/kg, 100 mg/kg body weight respectively. The mouse 

was fixed on a heating pad. The shaved area was cleaned by using the cotton swab dipped into 

70% ethanol. A small incision was made between the fourth nipple and the midline with a scissor 

and makes a pocket by inserting the cotton swab moistened with PBS pH 7.4.  The fat pad was 

squeezed with the tweezer from its base; by doing this, fully expose the fat pad to perform 

injections easily. The cell was Homogenized mixture by pipetting up and down. After surgery, 

an analgesic was injected, such as temgesic at 0.05-0.1 mg/kg bodyweight, subcutaneously in 

order to relieve the pain. 
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5.3 Tumor Harvest 

At the day of harvest, 5 weeks after the implantation of the cells, 15 ml conical centrifuge tubes 

was filled with 3 ml Bouin’s  solution for each mouse. In addition, two 15 ml tubes filled with 5 

ml formalin solution per mouse was used. The animals was Anesthetized by injecting 

Xylazin/Ketamine, at a dose of 10 mg/kg 100 mg/kg body weight subcutaneously. A long, 

vertical midline incision with scissors was made. Two horizontal incisions right below the front 

leg and above the rear leg were made. The tumor was exposed by pinning the skin to the base. 

The tumor volume was measured by using a caliper. The tumor dissociated from the skin using 

scissors.  A part of the tumor was freezed in liquid nitrogen for RNA isolation. The other part 

placed into the conical centrifuge tube filled with formalin to perform immuno-histochemistry 

following paraffin embedding. Gently the lungs were taken out. The left lung placed into Bouin’s 

solution. The lung Kept in solution for 3 days. Superficial metastatic foci clearly Observed to 

naked eye. 

NOTE: Although, lung metastasis observed frequently in breast cancer, we wanted to collect 

liver and spleen to analyse metastasis. The cells at the metastatic area were denser and 

morphologically different and therefore could be distinguished easily from lung tissue. A day 

after harvest, the formalin solution was aspirated from 15 ml tubes and replace with 70% 

ethanol.  

 

5.4 Immuno-precipitation and Western Blotting 

This procedure is used to measure protein levels in a particular cell of interest for a given 

experiment.  

 

5.4.1 Tumor Lysates 

Tumor samples were taken in equal sized and TNE lysis buffer (200 ul per sample) containing  
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protease and phosphatase inhibitors was used to re-suspend and lyses the samples. Next 

mechanical homogenizer was used at moderate speed to make tissue lysates and separate protein 

and tissue. Sample always kept on ice to maintain low temperature. Before spinning down, the 

tumors are allowed to sit for 30 minutes in the TNE Lysis Buffer and put into 1.5 ml tubes. After 

the lysis incubation period, these tumor samples were centrifuged at 10,000 x G for 10 minutes at 

40C to form a cell pellet. The tissue pellet was discarded and the suspension was aspirated off to 

another clean 1.5 ml tube. Volume of lysis buffer used was proportionate to cell number and 

plate size, typically 100-200 μl. The protein supernatant was stored for the protein assay.   

 

5.4.2 Bradford Assay  

Protein concentration of each lysate was measured to quantify specific sample concentrations 

based on colorimetric assay. 20 μl of  Bio-Rad Protein Assay reagent S was combined with per 

ml of Bio-Rad Protein Assay reagent A. The working reagent A’ (25 μl ) was used on 5 μl of the 

sample or standard protein in a 96-well flat-bottomed plate. The plate was then incubated with 

Bio-Rad Protein Assay reagent B at 370C for 15 minutes. The colorimetric value was recorded 

using a photo spectrometer and analyzed with Microsoft Excel.   

 

5.4.3 SDS PAGE Separation  

SDS-PAGE gels had a concentration gradient from 4-12% of sodium dodecyl sulfate 

polyacrylamide gel (SDS-PAGE) for electrophoretic separation. Equal amounts of sample 

protein (50-80 μg) were mixed in a loading mixture with sample and TNE lysis buffer to a 

maximum volume of 80 μl to make up the loading sample and then heated to 950C for 5 

minutes. Denatured loading samples were pipetted into gel wells alongside a pre-stained protein 

standard ladder. Gels were then enveloped in approximately 200 ml, 1x running buffer. An 

electric field of 130-150V was then applied to the gel and the gel run was sustained for 60-90 

minutes.  
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5.4.4 Protein transfer to Nitrocellulose membrane  

From the gel, the proteins were blotted onto a nitrocellulose membrane using a 230 mA electric 

current for 60-90 minutes to force the proteins onto the membrane. This was done in a 1x 

transfer buffer solution with 10% methanol. Transfer chamber was placed in a cool water bath to 

prevent overheating.  

  

5.4.5 Antibody Incubation  

After transfer to a nitrocellulose membrane, the membrane was blocked with 5% milk/Tris-

buffered saline solution (TBST; 50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 0.1% Triton) for 1 h at 

room temperature. The primary antibody was incubated overnight at 4 °C in 5% BSA/ TBST. 

This is done to prevent background staining. The membranes were washed three times in TBST 

and then incubated with the respective secondary horseradish peroxidase (HRP) labeled antibody 

(1:5,000) for 1 h at room temperature in 5% (wt/vol) milk/TBST to detect the primary antibody. 

Membranes were washed 3 more times with TBST to remove excess secondary antibody.  

 

5.4.6 Chemiluminescence and Quantification  

The membranes were washed once more to remove excess antibody, then incubated with a 

chemiluminescent substrate (ECL) for the horseradish peroxidase for 5 minutes at room 

temperature. The membranes were exposed to the ECL and packed into a plastic film. Then the 

membranes were exposed inside the Chemiluminescence machine in the dark. The enzymatic 

reaction emits light in proportion to the amount of protein present when the HRP oxidized the 

substrate. Thus revealing the location and the quantity of the proteins, both primary and 

secondary antibodies, and the HRP on the membrane. Images of protein bands are analyzed for 

intensity using ImageLab software. Each protein band is normalized by dividing the value of its 

area by the same value of the associated loading control protein. Finally normalized protein  
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expression values are combined to form a graphic in GraphPad Prism for analysis.  

 

5.4.7 Phorbol ester stimulation of signaling pathways  

Cellular signaling pathways affected by phorbol ester were studied by western blot. Initially, 

cells were cultured with phorbol ester (R&D system, cat # 2667- CM) at doses of 0.05-0.2 μg/ml, 

then 0.2 μg/ml was used for time periods of 1-4 hours. The cells were injected into mice and 

tumors were isolated. Western blots of these whole-tumor protein lysates were incubated with 

antibodies targeting the signaling molecules Erk, phosphorylated Erk, Akt, phosphorylated Akt, 

phosphorylated EGFR, stat3 and phosphorylated stat3 .  

 

5.5 qPCR 

5.5.1 RNA extraction 

The tumor samples were kept on dry ice. 1ml of Tri-reagent were used for each sample of tumor. 

After homogenization with mechanical homogenizer kept it for 5 minutes at room temperature. 

0.2ml of chloroform was added in per ml of Tri-reagent. Covered the samples tightly and shake 

vigorously for 15 second and again kept on room temperature for 2-15 minutes. Then centrifuged 

at 12,000xg for 15 minutes at 2-8 C. The sample separated into three phases: 1) red organic 

phase (contained protein) 2) inter-phase (DNA) 3) Color less upper aqueous phase (contained 

RNA).The aqueous phase were taken into new fresh tube and 0.5ml of 2-propanol per ml of Tri-

reagent was added and mixed. It was kept for 5-10 minutes at RT. Centrifuged at 12000xg for 10 

minutes at 2-8 C. RNA will form a pellet on the side and bottom of the tube. Supernatant was 

removed and washed pellet by adding 1 ml of 75% ethanol per 1 ml of Tri reagent. Sample was 

vortex and centrifuges at 7500xg for 5 minutes at 2-8 C. Then RNA pellet was dried at room 

temp until it became transparent. 10-20ul of DNA, RNA free water was added and RNA 

concentration was measured using nano-drop. Testing samples were prepared (2ul of sample+8ul  
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Millipore water) and stored at -20. Simultaneously 396 well qPCR plate was prepared with 24 

different primers (1ul each) in triplicates with spinning down occasionally in between. It kept for 

drying over night. 

 

5.5.2 Reverse transcription  

RT-PCR can be done in two steps, first with the reverse transcription and then the PCR. The 

two-step protocol is usually more sensitive than the one-step method; yields of rare targets may 

be improved by using the two-step procedure. 

Before it started, RNase Inhibitor and Reverse Transcriptase placed on ice directly from the box. 

10x reaction buffer, random decamers, and dNTP mix thawed quickly in your hands and place 

on ice; small 0.25ml PCR tubes used.  

Small 0.25ml PCR tubes were used.  

Component Stock Final 

amount 

Experiment (+RT) Control (-RT) 

Total RNA   ~1-  ~1-  
Random Decamers     
10X RT Buffer 10X 1X   
dNTP mix 2.5mM 0.5mM   
RNase Inhibitor 10  10U   
Reverse Transcriptase  100U   
Nuclease-free water    

 

 

  

Mixed gently, spin briefly. Incubated in the thermacycler at: 44°C for 1 hr, 92°C for 10 min to 

inactivated the reverse transcriptase, Stored reaction at –20°C or proceed to the PCR. We 

considered making master mixes as we were testing multiple sets of primers at once. A master 

mix contained everything except the PCR primers. We tested n set of primers, made a master 

mix enough for n+ 1 test. The components mixed gently but thoroughly. 22.5µl of your master  
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mix aliquot to each tube. 1.25µl of each of the appropriate primer added at 5µM working stock 

concentration. 

Reactions assembled on ice and incubated in Thermacycler. Initial denaturation: 94°C for 4 min 

30 cycles: Denatured at 94°C for 30 sec. Annealed at 55°C for 20–30 sec. Extended at 72°C for 

45 sec. Final extension: 72°C for 5 min 

cDNA were mixed with sybr green and 20 ul each sample added to well in triplicates.  

Immediately it kept in machine for readings and it took around one and half hour for full cycle. 

Calculations were done using sds software 

 

5.6 Statistical Analysis  

Student’s t test was used for comparisons between two groups. p<0.05 was considered 

significant 
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6. Results: 

6.1 Confirmation of PKCa and PPP1R14D knockdown in MDA-MB231 cells in vivo 

To study the role of PKCα and PPP1R14D in TNBC in vivo we used the previously described in 

introduction section MDA-MB-231 cells with the inducible knockdown system in an orthotopic 

transplantation mouse model. MDA-MB-231 cells (5x105) expressing a lenti-viral IPTG-

inducible shRNA vector system (pLKO-904) and GFP were treated with IPTG for 5 days and 

then injected into the mammary fat pad of mice. The mice received IPTG in water after 

transplantation. 5 weeks after transplantation of the cells, the tumor size was measured and the 

mice were sacrificed. The tumors as well as the metastasis to the lungs and liver could be easily 

visualized and quantified using a fluorescent stereoscope (Fig. 1A).  

In order to verify the knockdown of PKCα or PPP1R14D in the tumors in vivo, western blot and 

q PCR were performed (Fig. 1B and 1C). We found that indeed the protein levels as well as 

mRNA of both genes were significantly reduced in the respective tumors. 

            A. 
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Figure 1: A) Picture is showing primary tumor and metastasis in lungs under fluorescent 

stereoscope as the cells injected were GFP+ and reflect green fluorescent light. B) Western blot 

results to examine the protein levels of both PKCa and PPP1R14D in tumor sample C) q PCR 

result to confirm the knockdown tumor in both PKCa and PPP1R14D at week 5. 

 

6.2 In vivo measurements of tumor size of PKCα and PPP1R14D knockdown MDA-MB231 
tumor cells    

In order to test the effect of PKCα or PPP1R14D knockdown on tumor size tumors were 

measured by using a caliper at 5 weeks after transplantation. The formula used was length (cm) x 

width (cm) / 2 = tumor volume (cm2).  We found that the tumor size of both PKCα and 

PPP1R14D knockdown tumors was significantly increased compared to control tumors as shown 

below in Figure 2. This result was unexpected, since we have previously seen that the 

knockdown of these genes causes reduced migration, invasion and/or growth of MDA-MB-231 

cells in vitro (see previous results). To further examine the effects of the knockdown in vivo, we 

measured the extent of metastasis in the lung and liver. 
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-0.5

0
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C.    qPCR for PKCa and PPP1R14D gene 
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Figure 2: Quantification of tumor sizes. The PKCα and PPP1R14D knockdown tumor has 

shown significant tumor growth compared to sh-control tumor. *: P<0.05 

 

6.3 In vivo analysis of tumor metastasis in lungs and liver of mice in both PKCα and 

PPP1R14D knockdown tumors. 

Tumor metastasis was analyzed in lungs and liver of mice at 5 weeks after transplantation using 

a fluorescent stereoscope (as MDA-MB-231 cells used in the xenograft model are GFP+). 

Epifluorescence pictures were taken for each tumor sample in each histological preparation and 

fluorescence was quantified using Image J software and by applying the following formula:   

 

 

At the time point examined (5 weeks) the cells expressing the control shRNA already show 

moderate level of metastasis in the lungs (Fig. 3A) and lower levels in the liver (Fig. 3B). PKCα 

knockdown resulted in slightly increased but not statistically significant metastasis in both lung  

 

Corrected total cell fluorescence =  

Integrated density – (Area of selected cell x mean fluorescence of background reading) 
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and liver (Fig. 3C and 3D, quantified in Fig 3G and 3H). On the other side, PPP1R14D 

knockdown resulted in more aggressive metastasis compared to sh-control tumor in both lung 

and liver (Fig. 3E and 3F, quantified in Fig. 3G and 3H). In order to further examine the 

unexpected tumor growth and metastasis to distant organs, we assessed the activation status of 

EGFR-dependent signaling pathways as well as of other cellular growth pathways. 
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Figure 6.3: Analysis of PKCa and PPP1R14D knockdown on metastasis. A-F: Fluorescent 

representative images, G, H: quantifications Fluorescent image of Lung metastasis in mice with 

MDA-MB-231 GFP+ cells with sh-control at 5 weeks.  
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The metastasis was not expected, since we have previously seen that the knockdown of these 

genes causes reduced migration, invasion and/or growth of MDA-MB-231 cells in vitro. 

Since we found that the knockdown of both genes PKCα and PPP1R14D, resulted in increased 

tumor size and metastasis, we subsequently examined whether there was re-activation of the 

EGFR pathway in these tumors in vivo. In addition, we examined the activity of major mitogenic 

pathways in the tumors that are downstream of EGFR or other RTKs. 

 

6.4 PKCα and PPP1R14D knockdown effect on signaling pathway activation in vivo at 
week 5 

In order to examine possible reasons for aggressive tumor growth and metastasis in vivo at 5 

weeks despite EGF ligand cleavage regulator knockdown, activity state of EGFR, ERK1/2, Akt 

and Stat3 were measured.  

These pathways lie downstream of EGFR and involved in cancer cell growth and metastasis 

(30). Lysates were prepared from tumors and the phosphorylation levels of EGFR, ERK1/2, Akt 

and Stat3 were examined by western blot using phosphor-specific antibodies. 

Phosphorylation levels of EGFR were variable in Control tumors (Fig.A). However, all PKCα 

tumors and one PPP1R14D knockout tumor sample showed reactivation of EGFR. These data 

suggest that stromal cells might be involved in the up regulation of phosphor-EGFR in some 

tumor samples. 

 On the other side, two PPP1R14D knockdown samples had much lower levels of phosphor-

EGFR, suggesting that there is probably no involvement of EGFR in the aggressive tumor 

phenotype in these mice.  
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A.  

 

 

 

Tumors showed significant up regulation of Phospho-Erk, likely explaining their unharnessed 

growth potential. ERK-P activation in tumors varied and was most pronounced in PPP1R14D 

knockdown cells (Fig. B).  

This coincided with their more aggressive growth and metastasis as compared to PKCα knockout 

cells. 
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B.  

         

 

    

In the case of Akt (Fig. C) which is also downstream effector of EGFR and can participate in 

resistance mechanism for cancer cells. Two samples of PKCα showed significant upregulation of 

phosphorylation levels of Akt.  

On the other hand, two of PPP1R14D knockdown tumor samples showed also the same 

behavior. This indicates that there is activation of one or more other RTKs which have as a Akt 

downstream effector. 
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C. 

 

 

 

Further Phosphorylation levels of stat3 (Fig.D) was examined as it is also a downstream effector 

of EGFR and regulates cell proliferation and growth. In PKCα knockdown tumor cells, all of 

them showed significant increase in phosphorylation levels of stat3 except one sample.  

On the other hand, PPP1R14D knockdown tumor samples also showed significant upregulation 

of phosphorylated levels of stat3 compared to control tumor samples. 
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D. 

 

 

 

 

Figure 6.4 A. western blot showing phosphorylated levels of EGFR in week 5 PKCa and 

PPP1R14D knockdown tumor cells B. western blot showing phosphorylated levels of ERK ½ in 

week 5 PKCa and PPP1R14D knockdown tumor cells C. western blot showing phosphorylated 

levels of Akt in week 5 PKCa and PPP1R14D knockdown tumor cells D. western blot showing 

phosphorylated levels of stat3 in week 5 PKCa and PPP1R14D knockdown tumor cells. sh = sh-

control, PPP = PPP1R14D knockout cells, PKC = PKC a knockout cells  
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Overall the above data show a reactivation of EGFR and a profound increase of ERK1/2 and Akt 

activation in some of the PKCα and PPP1R14D knockdown tumor samples. In order to examine 

whether these are early tumor responses or if they only appear in the advanced stages of tumor 

growth, we further examined the activation levels of these pathways at earlier time points. 

 

6.5    PKC a and PPP1R14D knockdown effect on signaling pathway activation in vivo at 
week 4  

At week 4, phosphorylation levels of EGFR showed variable results (Fig. A). In PPP1R14D 

knockdown tumor samples, one sample has significant upregulation of phospho-EGFR levels. 

Other sample didn’t show any EGFR involvement. However, PKCα  knockdown tumor samples  

followed the same pattern. One tumor sample showed significant increase in phospho-EGFR 

levels and others result were not significant. 

             A.   
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At week 4, the phosphorylated levels of Erk showed upregulation. In PPP1R14D knockdown 

tumor samples, one of the tumor sample showed significant increase in phospho-ErK levels 

compare to other tumor samples of the same group (Fig.B). Other also showed upregulation but 

not significant compared to control tumor samples.  

In case of PKCα knockdown tumor samples, all of the samples showed upregulation of phospho-

ErK levels compared to controls which is indicating the involvement of other RTKs are having 

same downstream effector which is ErK (Fig. B). 

          

  B.  

                    

 

At week 4, only the one sample from PPP1R14D knockdown tumors showed significant up-

regulation of Phospho-Akt levels compare to control tumor samples (Fig. C). However, PKCa 

knockdown tumor samples did show upregulation in phosphorylated levels but it’s not 

significant compared to control tumor samples (Fig. C). 
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      C.  

 

 

 

 

At week 4, the phospho-stat3 levels in PPP1R14D knockdown tumor samples showed significant 

up-regulation compared to control tumor samples. However, PKCα knockdown tumor samples 

also showed upregulation of phospho-stat3 in all the tumor samples. The phospho-stat3 levels 

were highest increased in PPP1R14D.  
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D.  

 

 

 

 

6.6      PKCα and PPP1R14D knockdown effect on signaling pathway activation in vivo at 
week3      

At week 3, the phosphorylation levels of EGFR didn’t upregulation in both PPP1R14D and 

PKCα tumor samples (Fig. A). It suggests that there is no involvement of EGFR in tumor growth 

and metastasis at week 3 time point. This result motivated us to look for other downstream 

effectors of EGFR to check their phoshphorylated levels as those effectors are also target for 

other RTKs. 
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                A.    

 

 

 

 

The phospho ERK ½ did show upregulation in PPP1R14D knockdown tumor samples but not 

signaficant increase (Fig. B). On the other hand, PKCa didn’t show upregulated phospho-ERK 

levels (Fig. B), suggesting no involvement in tumor growth and metastasis at week3. 
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B. 

 

                

              

At week 3, Phospho-Akt levels were also not upregulated in both PKCα and PPP1R14D 

knockdown tumor samples, indicated no involvement of Akt in tumor growth and metastsis at 

this time point ( Fig. C). 
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 C. 

 

 

At week 3, the stat3 phosphorylation levels were upregulated in PPP1R14D knockdown tumor 

samples but not significant increase (Fig. D). On other side, one of the PKCα knockdown tumor 

sample showed signaficant increase in phospho-stat3 levels and other one didn’t show significant 

upregulation of phospho-stat3 levels of the same group (Fig. D).  

This suggest that some of the samples from both knockdown genes showed involvement of stat3 

at week 3 time point and few other didn’t show. 
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D.           

    

 

 

In summary, I found up-regulation of phosphorylated levels of Erk and reactivation of Akt 

pathway in week 5 and week 4 mainly. The stat3 is consecutively up-regulated all three weeks 

and EGFR showed variable signals which are assuming because of stromal cells involvement. 

The reactivation of mitogenic pathways described above is reminiscent of the effects previously 

observed when specific kinase inhibitors were used in vivo and caused the activation of 

alternative growth pathways, leading to tumor cell survival and resistance to treatments (30, 31). 

In order to examine the possibility of alternative pathway activation in our in vivo model, we 

examined the upregulation of a panel of RTKs that have been previously involved in cancer 

resistance mechanisms (32).  

 

 



IMBS 2015 
 

51 
 

 

6.7 PKCa and PPP1R14D knockdown effect on receptor tyrosine kinases (RTKs) 
Expression in vivo:  

In order to test the mRNA expression levels of different receptor tyrosine kinases, we performed 

qPCR. The RNA was extracted from tumors and the concentration was measured with nano 

drop. A Qiagen kit was used for reverse transcription and sample preparation for qPCR.  

The expression levels of each RTK were calculated using the Delta-Delta Ct method. Data were 

plotted as log 2 fold change of control samples values. The RTKs, I studied, are well cited 

literature for having involvement in cancer cell growth and acquiring resistance to single targeted 

therapies.   

At week 5 (Fig. A), In PKCα knockdown cells predominantly family members, DDR family, 

HER 3 and HER4 are showed significantly increased mRNA expression levels. FGFR has been 

involved in tumor angiogenesis. DDR play important role cell differentiation and homeostasis by 

communicating with cell-matrix. This function is disrupted by tumor cell by destroying the 

communication and which lead to DDR mutation and alter in receptor function (31, 33, 39). 

HER 3 has mainly involved in dimerization with other family members and alter the response of 

cancer therapies. The role of HER4 is not very well understood in tumor biology and in normal 

cell, it helps in cell differentiation.  

On the other hand, PPP1R14D knockdown cells showed with significantly increased mRNA 

expression level of FGFR family and HER4 just similar with PKCα knockdown cells. There is 

also increase in VEGFR family, DDR family and HER3, but it was not significant.  

In order to examine whether these are early tumor responses or if they only appear in the 

advanced stages of tumor growth, we further examined the mRNA expression levels of these 

RTKs at earlier time points. 

At week 4 (Fig. B), the PKCα knockdown tumor samples showed upregulation of  FGFR 2 

which is similar with week 5 results. However PPP1R14D tumor samples showed upregulation  
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of FGFR2 and also one of the samples showed upregulation of other RTKs which are PDGFR 

family and ERBB4. 

At week 3(Fig. C), one of the PKCα knockdown tumor sample showed significant up-regulation 

in mRNA expression levels of FGFR2, ERBB3 and ERBB4 and one of the PPP1R14D tumor 

sample showed high expression level of mRNA of ERBB2.  

In qPCR data from three weeks, I found upregulation of mRNA expression levels of FGFR and 

EGFR family members which was common in all the three weeks. DDR family was only 

upregulated in week 5.  

In summary,  the FGFR, DDR, EGFR , VEGFR and PDGFR family has been upregulated in both 

PKCα and PPP1R14D knockdown tumor samples at different time points. These RTKs played 

major role in activation of alternative pathways, which lead to excessive tumor growth and 

metastasis in later time points. 

A. 
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 B.                    

          

    C.  
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Figure 6.6 (A, B, C) pkc =PKC a, ppp = PPP1R14D, FGFR = Fibroblast growth factor receptor, 

VEGFR = vascular endothelial growth factor, PDGFR = Platelet-derived growth factor receptor, DDR = 

Discoidin domain receptor, INSR = Insulin receptor, IGFI R = Insulin receptor, EGFR = 

Endothelial growth factor receptor, ERBB = Endothelial growth factor receptor also named 

HER, AXL = AXL receptor. 
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Discussion: 

Triple negative breast cancer is an aggressive breast cancer subtype with poor prognosis and no 

successful treatment options. The underlying causes for triple negative breast cancer and its high 

metastatic potential continue to be tirelessly studied. Both environmental and genetic factors play 

critical roles in this disease. Prevention, diagnosis, and treatment must consider the specific 

factors in order to effectively quell metastatic manifestations (31, 34, 35). This thesis proposes 

that combination therapies may play a critical role in triple negative breast cancer and metastasis 

by circumventing resistance to EGFR targeting, for example as proposed here by targeting of the 

ADAM17/EGF ligand axis. I discuss here why knockdown of PKCα and PPP1R14D, ADAM 17 

cleavage regulators studied in my master’s thesis, did not successfully prevent tumor growth and 

metastasis in vivo although it inhibited EGF ligand release in vitro.  

The first experiment to confirm knockdown of PKCα and PPP1R14D in tumor samples provided 

us with the solid data that knockdown worked in our tumor samples. However, tumor growth and 

metastasis was not blocked as expected. Phosphorylation levels of EGFR measured in the tumors 

at different time points revealed that there is variability in phospho-EGFR levels and not all 

tumors show inhibited EGFR activation, as would be expected for ADAM17 cleavage regulator 

knockdown. Interestingly, at week 3 there is no up-regulation of phospho-EGFR levels in any of 

the tumors. At week 4, one tumor sample from each gene knockdown showed up-regulation. At 

week 5, however, all tumors with PKCα knockdown and one of the PPP1R14D knockdown 

tumor samples showed phospho-EGFR up-regulation. This lead us to conclude that over time 

some of the tumors manage to turn back on the primary downstream target of our intervention, 

EGFR. This could occur due to ligand-independent activation of the receptor or by compensatory 

release of ligands from the uninhibited tumor stroma.  

We also found that there is significant up-regulation of phospho-Erk levels at week 4 and 5 in 

PPP1R14D knockdown tumor samples compared to control tumor samples. At week 3 

PPP1R14D knockdown tumors didn’t show significant up-regulation of phospho-Erk. The PKCα 

knockdown tumor samples had up-regulation but this was not significant compared control  
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tumor samples in all three time points. This suggests that PPP1R14D knockdown tumors 

reactivate the major downstream target of EGFR, ErK. This could occur due to EGFR 

reactivation, as mentioned above, or alternate activation of  ErK secondary to other growth factor 

receptors that the tumor cell up regulates in response to EGFR inhibition. 

ErK is a downstream part of an evolutionarily conserved signaling module that is activated by 

the Raf serine/threonine kinases. Raf activates the MAPK/ErK kinase (MEK) ½ duel specificity 

for protein kinase and it activates Erk1/2 and can be activated by numerous growth factor 

receptors, many of them receptor tyrosine kinases. Mutation of Raf leads to cancer. The small 

GTPase Ras lies upstream of the Raf-MEK-ErK pathway, and represents the most frequently 

mutated oncogene in human cancers. Finally, Ras is a key downstream effector of the epidermal 

growth factor receptor (EGFR), which is mutationally activated and/or overexpressed in a wide 

variety of human cancers. ErK activation also promotes upregulated expression of EGFR ligands 

that lead to tumor growth (31, 36, 37 ).  

The phosphorylation levels of Akt were also up-regulated at week 5 in both PPP1R14D and 

PKCα knockdown tumor samples. At week 4, only one PPP1R14D tumor knockdown samples 

showed upregulation of Akt-Phospho levels and no upregulation at the week 3 time point. These 

results lead us to conclude that next to ErK, tumors also upregulated the activity of other mitogen 

activated kinases like Akt, in response to EGFR inhibition. The phosphorylation of Akt could be 

the result of crosstalk between MAP kinase and PI3k pathways. The variable phospho-EGFR, 

upregulation of ERK and Akt activity could be the result of limited crosstalk between all three of 

them (34, 38).  

Different RTKs were checked for their up-regulation with qPCR and surprisingly, the FGFR 

family and ERBB4 were strongly up-regulated in week 3, 4 and 5 time points. Few others, DDR 

family members and VEGFR showed up-regulation in few tumor samples but this was not 

consistent across tumors. FGFR2 indeed is known to activate ERK1/2. The VEGFR family in 

contrast is known to activate PI3K/AKt. 
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Conclusion: 

This investigation examined the knockdown effects of both PKCα and PPP1R14D cleavage 

regulators of ADAM17 in triple negative breast cancer. The in-vitro studies showed reduced 

invasion, migration and proliferation in MDA-MB-231 cells. Contrary to in-vitro results, in-vivo 

studies showed excessive tumor growth and metastasis.  

In summary, I have identified resistance mechanisms in TNBC that occur in response to EGFR 

targeting, or targeting of EGF ligand release by knockdown of ADAM17/EGF ligand cleavage 

regulators. My results identify FGFR and VEGFR family member as alternate targets for 

combination therapy with EGFR inhibitors. It also suggests that biopsies during the course of 

treatment and in particular of metastasis can meaningfully influence treatment decisions. 
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