
Journal of Ambient Intelligence and Smart Environments 12 (2020) 79–99 79
DOI 10.3233/AIS-200556
IOS Press

Action graphs for proactive robot assistance
in smart environments
Helen Harman * and Pieter Simoens
Department of Information Technology – IDLab, Ghent University – imec, Technologiepark 126, B-9052 Ghent,
Belgium
E-mails: Helen.Harman@ugent.be, Pieter.Simoens@ugent.be

Abstract. Smart environments can already observe the actions of a human through pervasive sensors. Based on these obser-
vations, our work aims to predict the actions a human is likely to perform next. Predictions can enable a robot to proactively
assist humans by autonomously executing an action on their behalf. In this paper, Action Graphs are introduced to model the
order constraints between actions. Action Graphs are derived from a problem defined in Planning Domain Definition Language
(PDDL). When an action is observed, the node values are updated and next actions predicted. Subsequently, a robot executes one
of the predicted actions if it does not impact the flow of the human by obstructing or delaying them. Our Action Graph approach
is applied to a kitchen domain.

Keywords: Action prediction, proactive assistance, intention recognition, symbolic AI, smart environment

1. Introduction

An increasing number of robots are being deployed
in smart environments to work alongside and assist hu-
mans in their daily activities. Rather than a human ex-
plicitly stating their goal and conversing with the robot
to determine how they will achieve that goal, our work
aims to automatically predict what actions the human
will perform next (e.g., open a door, switch on an ap-
pliance or take an item from a cupboard) and deter-
mine which of those actions could be executed by a
robot. Figure 1 shows a conceptual overview.

There are many challenges to predicting the actions
of humans. For instance, people might pursue multiple
goals concurrently, e.g., while waiting for the kettle to
boil to make a cup of tea, a person could hang-up their
washing. Further, goals are not always well-defined: a
prepared cup of tea could be a goal, or a subgoal to be
realised as part of the goal to prepare breakfast.

Our proposed system aims to adhere to the follow-
ing constraints. First, the robot should have minimal
impact on the action flow of the observed agent, e.g.,

*Corresponding author. E-mail: Helen.Harman@ugent.be.

not attempt to take an item from a cupboard at the same
time as the human. Second, the system should cope
with invalid and missing observations caused by noisy
erroneous sensor readings and the human making mis-
takes, e.g., opening the wrong cupboard. Moreover,
due to privacy concerns and humans preferring non-
intrusiveness sensors [31], some actions, e.g., naviga-
tion actions, are unobservable. Third, the algorithms
should work online, i.e., update the predictions each
time an action is observed.

In this work, actions are discrete and the term obser-
vation refers to an action that has already been derived
from raw (continuous) sensor data and low-level activ-
ity recognition algorithms, such as the work in [34].
The deployment of hardware (i.e., IoT devices and
robots) and the integration of activity recognition algo-
rithms are beyond the scope of this paper.

The main contributions of this paper are algorithms
for action prediction and for deciding which of the
predicted actions should be executed by a robot. The
action prediction aspect is performed by an Action
Graph, a graphical structure that models the dependen-
cies between the actions an observed (human) agent
can perform. An Action Graph is automatically gen-

1876-1364/20/$35.00 © 2020 – IOS Press and the authors. All rights reserved

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/299792502?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Helen.Harman@ugent.be
mailto:Pieter.Simoens@ugent.be
mailto:Helen.Harman@ugent.be

80 H. Harman and P. Simoens / Action graphs for proactive robot assistance

Fig. 1. Conceptual overview.

erated from a problem defined in Planning Domain
Definition Language (PDDL). When an observation
is received, its node values are updated and the ac-
tion nodes whose values are above a threshold are ex-
tracted, i.e., the predicted actions. The predicted ac-
tions are then mapped to a goal state before sending
them to a robot. By running a classical task planner, the
robot generates a task plan containing a set of actions
to reach the goal state from its current state. The robot
then decides to pursue the goal based on how short its
plan is and how far the human is from performing the
predicted action.

We previously presented a short paper on an early
version of our work, which focused on single goal
recognition [13]. This showed promising results for
both the goal recognition times and accuracy of our ap-
proach across many different domains. This paper en-
hances the node value update algorithms; expands the
scope of our work by predicting a person’s next ac-
tions; and adds the robot assistance aspect. Although
our work is applicable to different domains (as shown
in our previous paper), in this paper a smart kitchen
domain is the running example used to illustrate and
evaluate the presented algorithms.

The remainder of this paper is structured as fol-
lows. A summary of related work is presented in Sec-
tion 2. In Section 3, the action prediction problem
is formalised and the kitchen domain is introduced.
Section 4 outlines the structural features of an Action
Graph and how it is generated. The node value update
rules are detailed in Section 5 and the extraction of the
predicted actions in Section 6. How the robot decides
whether to execute an action (or not) is presented in
Section 7. Section 8 discusses the results of our action
prediction experiments and Section 9 presents a proof
of concept detailing which actions the robot executes.

2. Related work

Within the literature, studies on recognising the
intentions of an observed agent interchange various

terms and these often have different definitions, e.g.
goal, plan, intention and activity recognition [27,30,
34]. In this section some of the existing approaches
to intention recognition are introduced, in particular
the focus is on those which have similar (hierarchical)
structures or take PDDL as input. Intention recognition
has been applied to different application domains in-
cluding computer gaming [7], human-computer inter-
action [16], energy saving [23] and social robotics [8].
As our work focuses on proactive robotic assistance,
other works that integrate intention recognition with
robot response are also discussed.

2.1. Intention recognition

Methods for intention recognition can be broadly
categorised as data-driven and knowledge-driven
methods [28,38]. Data-driven approaches train a recog-
nition model from a large dataset [1,3,33,38]. The
main disadvantages of this method are, that often a
large amount of labelled training data is required and
the produced models often only work on data simi-
lar to the training set [32,37]. Since our work belongs
to the category of knowledge-driven methods, data-
driven methods are not discussed further.

Knowledge-driven approaches rely on a logical de-
scription of the actions agents can perform. They can
be further divided into approaches that search through
a library of predefined plans (also known as “recog-
nition as parsing”) and approaches that solve a sym-
bolic recognition problem, i.e., “recognition as plan-
ning” [20]. These are discussed in turn.

2.1.1. Recognition as parsing
Recognition as parsing tends to be fast and allows

multiple concurrent plans to be detected [11,19,25],
but is often considered to be less flexible [29,30] be-
cause a planning library containing all actions and
their orderings must be produced a priori. Hierarchi-
cal structures are usually developed, which include ab-
stract actions that can be decomposed into concrete
(observable) actions.

In [15] a Temporal AND-OR tree was constructed
from a library of plans to determine which objects a
human will navigate to. Our method of representing
a human’s actions in an Action Graph is inspired by
this AND-OR tree; however, the construction of our
graph is considerably different (i.e., Action Graphs
are derived from PDDL) and our node value update
rules differ. Moreover, their AND-OR tree only con-
tains ORDERED-AND nodes, whereas Action Graphs

H. Harman and P. Simoens / Action graphs for proactive robot assistance 81

include both ORDERED and UNORDERED-AND nodes
as often actions are not strictly ordered.

A set of action sequence graphs is derived from a li-
brary of plans in [35]. This set is compared to an action
sequence graph created from a sequence of observa-
tions to find the plan most similar to the observation se-
quence. Their approach was shown to perform well on
misclassified (incorrect) sensor observations and miss-
ing actions, but they did not investigate multiple inter-
leaving goals.

Kautz et al. [18,19] considered many of the features
(e.g., multiple goals, partial plans) we believe are key
for goal recognition and action prediction to be de-
ployed within a smart environment. They introduce a
language to describe a hierarchy of actions. Based on
which low level actions are observed, the higher level
task(s) an agent is attempting to achieve is inferred.
Their work describes a formal theory and as far as we
are aware was not implemented.

2.1.2. Recognition as planning
Recognition as planning is a more recently pro-

posed approach, in which languages normally associ-
ated with task planning, such as PDDL, define the ac-
tions agents can perform (along with their precondi-
tions and effects) and world states. This enables a sin-
gle set of action definitions to be written in a standard
language that can be utilised for both action prediction
and robot task planning. Moreover, whereas in recog-
nition as parsing there are usually only action defini-
tions, planning-based approaches allow for the inclu-
sion of state knowledge, such as what objects are found
within the environment and their locations.

In [29,30] it was proposed to view goal recognition
as the inverse of planning. In symbolic task planning,
a problem is formulated in terms of an initial and goal
state, and task planners find the appropriate set of ac-
tions (i.e., a task plan) that changes the current state
into the desired goal state [14]. In goal recognition,
the initial state, multiple hypothesis goal states, a set
of actions and a list of observations are provided as
input, and intention recognisers find the most proba-
ble goal and/or plan. [30] handles suboptimal plans,
but cannot cope with multiple interleaving goals and
does not include action prediction. As a planner needs
to be called twice for every possible goal, to find the
difference in the cost of the plan to reach the goal
with and without taking the observations into consid-
eration, this approach is computationally expensive. In
[4] the work from [30] was extended to find the joint
probability of pairs of goals rather than a single goal.

Their work aims to handle multiple interleaving goals
but also suffers from large computational costs. Al-
though initial approaches were computationally heavy
as they required a task planner to be called multiple
times [4,29,30], the latest advances in recognition as
planning algorithms have greatly improved this [6,27].

Plan graphs were proposed in [6], to prevent a plan-
ner from being called multiple times. A plan graph,
which contains actions and propositions labelled as
either true, false or unknown, is built from a plan-
ning problem and updated based on the observations.
Rather than calling a planner, the graph is used to cal-
culate the cost of reaching the goals. Our Action Graph
structure differs greatly from a plan graph as Action
Graphs only contain actions and the constraints be-
tween those actions.

More recently Pereira et al. [27] significantly re-
duced the recognition time by finding landmarks, i.e.,
states that must be passed for a particular goal to
be reached. As landmarks rather than all actions are
reasoned on, action prediction cannot easily be per-
formed. Moreover, neither [6] nor [27] investigate mul-
tiple interleaving plans.

As far as we are aware, our work is the first to
take a recognition as planning approach to solve mul-
tiple concurrent subgoal action prediction problems,
by deriving a graph structure similar to those used by
some recognition as parsing approaches from a PDDL
defined problem. Moreover, the majority of work on
recognition as planning focuses on goal recognition
and not on how the observed agent will achieve their
aim, e.g., these approaches recognise that a human’s
goal is to make breakfast but not if they will make
tea or coffee to reach that goal, whereas our approach
predicts what actions the observed agent will perform
next.

2.2. Proactive robot assistance

A robot should assist a human by timely executing
an action that helps the human to achieve their goals.
In factory and assembly environments the goal and/or
plan is often known upfront. Johannsmeier et al. [24]
create a high level (team) plan for human and robot
workers offline, and map this to robot specific hard-
ware at run-time. Nonetheless, there are many situ-
ations in which the plan and goal are not known to
the system in advance. Further, several recent studies
[2,39] show that humans prefer robots that are proac-
tive, i.e., a robot which autonomously assists a person
whenever the robot is able to. Like our approach, the

82 H. Harman and P. Simoens / Action graphs for proactive robot assistance

works discussed below process observations to deter-
mine part (or potentially all) of the observed agent’s
plan, which the observer can then execute.

In [21,22] planning networks are derived from
causal links extracted from the PDDL problem de-
scription. These networks contain the decisions that
will be taken by the robot and human (i.e., team plans).
They are created offline due to large computational
costs, and then processed by an online look-up proce-
dure, which permits a robot to assist a human. Their
approach focuses on what uncontrollable decisions a
human makes and what action(s) the robot should plan
in response. Their work does not aim to prevent the
robot from disrupting the flow of a human. Whereas,
our work aims to achieve this by only allowing the
robot to perform a predicted action if, in comparison,
the robot’s plan is short and the human is far from
completing the prediction.

By contrast, in [9] the most probable goals are de-
termined by running the already cited work on goal
recognition as planning [30]. A list of the most likely
propositions is then extracted; these propositions are
set as the robot’s goal. As the goal recogniser [30]
calls the planner twice per goal, this approach is com-
putationally expensive. Similar to our work, [21] and
[9] take ideas from symbolic task planning as a start-
ing point for their prediction algorithms, but they fo-
cus on an agent performing a single goal whereas our
work also considers multiple, interleaving and partially
completed goals (i.e., subgoals).

3. Problem statement

An Action Graph is created from an action pre-
diction problem defined in PDDL. This section intro-
duces the concepts of PDDL and Domain Transition
Graphs (DTGs), an intermediate representation that is
processed during creation of an Action Graph. A de-
scription of the concrete smart kitchen scenario our
work aims to address is also provided.

3.1. Problem formalisation

Formally, an intention recognition problem can be
defined as T = (F, I, A,O,G), where F is a set of
atoms, I ⊆ F is the initial state, A is a set of actions,
G is the set of all possible goals and O is the sequence
of observed actions [30]. Actions contain precondi-
tions apre ⊆ F and effects aeff, which includes add
effects aeff+ ⊆ F , e.g., (open cupboard), and

delete effects aeff− ⊆ F , e.g., (not (open cup-
board)). Our action prediction method produces A,
which contains the actions the observee is likely to per-
form next.

Intention recognition is often viewed as the inverse
of planning. When invoked, planners translate PDDL
into structures, e.g., DTGs, that can be efficiently
searched [14,17]. DTGs are created from a planning
problem, i.e., P = (F, I, A,G) [10,12]. G is a goal
state, specified in PDDL using or and and statements.

Each variable has its own DTG in which the nodes
contain a variable’s possible values. The edges are
called transitions and describe what actions (and/or ax-
ioms) are required to move between values. If there
are multiple ways (plans/actions) to transition between
two values, the corresponding edge will have multiple
labels.

3.2. Running example: Smart home kitchen

Throughout this paper, examples from the kitchen
dataset are provided to help describe our approach.
This dataset was created by Ramırez et al. [29,30]
based on the work by Wu et al. [36], but has been
extended to include open(?container),
close(?container) and take(?item ?con-
tainer) actions. In this dataset there are 3 hypoth-
esis goals: G = {(made_breakfast), (lunch_
packed) and (made_dinner)}. These goals re-
quire multiple items to be taken and other actions to
be performed, e.g., part of the plan to make break-
fast involves taking bread and making toast. Each
goal can be achieved by multiple plans, e.g., for
(lunch_packed) to be reached a person must al-
ways perform the take(lunch_bag) action and ei-
ther perform the make-peanut-butter
-sandwich() or make-cheese-sandwich()
action.

A subset of the DTGs created from a kitchen prob-
lem are depicted in Fig. 2. In this problem, variables
transition between true and false values. As making a
packed lunch has multiple possible plans, the transi-
tion to the value (lunch_packed) being true has

Fig. 2. Example DTGs taken from a kitchen problem.

H. Harman and P. Simoens / Action graphs for proactive robot assistance 83

(at least) two transition labels. Details on the plans pro-
ducible from this domain are provided in Appendix A.

4. Action graphs

Action prediction is performed by building an Ac-
tion Graph, updating the value of the graph’s nodes
when an observation (i.e., action) is received, and then
extracting the highest valued actions and their depen-
dencies. This section provides details on the structural
features of an Action Graph and on how it is derived
from a PDDL defined problem.

4.1. Structural features

Action Graphs model the order constraints, i.e., de-
pendencies, between actions. Dependencies are de-
fined, in this paper, as actions that set one or more of
the dependant’s preconditions. For instance, action 1
is said to be dependent on action 2 if action 2 fulfils
one (or more) of action 1’s preconditions. An Action
Graph contains OR, ORDERED-AND, UNORDERED-
AND and leaf nodes. Leaf nodes are also referred to
as action nodes, as each one is associated with an ac-
tion. ORDERED-AND denotes that its children are per-
formed in order, and UNORDERED-AND denotes its
children can be performed in any order. For OR nodes,
one or more of its children can be performed. The root
node is always an OR node, and will receive a new
child for every action inserted into the graph. Through-
out the paper, unless otherwise stated, the term par-
ent(s) always refers to the direct parent(s) of a node,
the same goes for child/children.

The term graph is used, rather than tree, because ac-
tion and ORDERED-AND nodes can have multiple par-
ent nodes. Action Graphs are acyclic, i.e., do not con-
tain any cycles; actions have a fixed set of dependen-
cies, and if an action 1 depends on action 2, action 2
cannot depend on action 1.

4.2. Creation

DTGs [14] are generated from a planning problem
P = (F, I, A,G) and not from an action prediction
problem T = (F, I, A,O,G). Therefore, a goal state
G is created by placing all elements in the set of hy-
pothesis goals (G) in an or statement. For each DTG,
the DTG’s transition labels are iterated over to extract
actions along with their dependencies, and insert them
into the Action Graph. The Action Graph construction

Fig. 3. Figures showing some of the steps performed during the
creation of the Action Graph for the kitchen domain. To simplify
our examples open and close actions are excluded, i.e., the orig-
inal unmodified kitchen problem [30] is used. For readability, ar-
rows from the root node to nodes that have another parent have been
put in light grey. O-AND stands for ORDERED-AND and U-AND is
UNORDERED-AND. Some action names have been shortened, e.g.,
peanut-butter to peanutB.

steps described in this section are illustrated in Fig. 3.
For simplicity, open/close actions are omitted.

Actions associated with transition labels that do not
have any preconditions, and therefore are assumed to
have no dependencies, are appended as children of the
root node, e.g., take(bread) shown in Fig. 3(a).
These nodes may gain additional parent(s) when sub-
sequent actions, which they are dependencies of, are
inserted into the graph.

Actions associated with transition labels with pre-
conditions are inserted after all of their dependen-
cies. To perform this insertion several nodes are cre-

84 H. Harman and P. Simoens / Action graphs for proactive robot assistance

ated including: the action node itself; if the action
has more than one dependency an UNORDERED-
AND node containing all the dependencies as its chil-
dren; and an ORDERED-AND node whose children are
the UNORDERED-AND node (or single dependency)
followed by the action node. The ORDERED-AND
node is appended as a child of the root node. Fig-
ures 3(b) and 3(c) show the Action Graphs after this
process has been performed on the make-cheese-
sandwich() and make-peanut-butter-
sandwich() actions, respectively.

If an action has dependencies, it will only ever have
one parent, of type ORDERED-AND. Therefore, when
an action has dependencies, its parent ORDERED-AND
node is used to connect it to its dependants.

For transitions with multiple labels (e.g., the DTG
in Fig. 2(b)), an OR node is inserted into the Action
Graph. This node is appended to the (UN)ORDERED-
AND node’s children and the multiple possible
dependencies set as the OR node’s children. An ex-
ample is provided in Fig. 3(d) in which the pack-
lunch() action requires either make-peanut-
butter-sandwich() or make-cheese-
sandwich() to be performed first.

Each action node may optionally have a list of re-
verse actions. Two actions are the reverse of each other
if one sets an atom aeff+ and the other deletes it aeff−.
For example, close(cupboard) is the reverse of
open(cupboard). Reverse actions are identified by
checking if a DTG has opposite edges between the
same two values, e.g., the DTG depicted in Fig. 2(a).
Details on the importance of reverse actions are pro-
vided in Section 5.2.

The Action Graph generation process finishes when
all actions have been inserted and reverse actions have
been identified. Action Graphs are quick to generate
(see Experiment in Section 8) but the process will typ-
ically be performed offline. If new actions become
available, e.g., because the human installs a new IoT
device in their house, these new actions can be in-
serted into the graph by executing the method de-
scribed above. The size of the produced graph depends
on the number of actions and what constraints those
actions have. Readers familiar with FD [14] will know
that DTGs also contain transitions labelled with ax-
ioms; axioms are not inserted into the Action Graph.

5. Node value updates

Every time the environment observes the human
performing an action, the Action Graph’s node values

are updated according to the algorithms described in
this section. In this section, the term AND node refers
to either a UNORDERED-AND or a ORDERED-AND
node.

5.1. Updating node values based on observations

Each node has an initial (minimum) value of 0 and
a maximum value of 1. When an observation o ∈ O

is received, the value of the corresponding action node
is set to 1. Subsequently, a value update procedure is
executed, which contains an upward and a downward
pass. The upward pass traverses the Action Graph from
the observed action’s node to the root node. Then the
downward pass updates all node values in a depth first
trajectory starting at the root. The purpose of this value
update process is to increase the value of the actions,
which are most likely to be performed next.

Pseudo-code of the upward pass is shown in Algo-
rithm 1. After setting the value of the observed action’s
node to 1 (line 3), the parent nodes are updated re-
cursively (lines 13). If the observed action has a re-
verse action, the reverse action’s value is reset (see
Section 5.2). It does not matter in which order a node’s
parents are updated. During the upwards recursion, the
argument of the method call in line 1 will always be of
node type OR, UNORDERED-AND or ORDERED-AND.

– If the argument is a node of type OR, its value is
set to the maximum value of its children (line 6)
because, by the nature of the node itself, its value
should not depend on the number of children it
has.

– If the argument is a node of type UNORDERED-
AND, its value becomes the mean of its children’s
values. We considered calculating product, rather
than mean, but with product the size of the sub-
trees has a much larger effect on the probability of
a goal, i.e., strongly favours shorter plans. To cal-
culate the mean, a value of 0 replaces the actual
value of unobserved action nodes (see lines 15–
18). If the algorithm were to use the actual node
value, node values would be increased too rapidly
which causes a high rate of false positive predic-
tions on subgoal action prediction problems.

– If the argument is a node of type ORDERED-
AND, its value becomes the mean value of its
children which come after (and including) the
last child whose value is 1. Like UNORDERED-
AND, an ORDERED-AND node’s value is based on
how completed its children are. Moreover, due to

H. Harman and P. Simoens / Action graphs for proactive robot assistance 85

Algorithm 1 Update node value upwards
1: function UPDATE_NODE_VALUE_UPWARDS(node)
2: if node is an action node then � The observed action
3: node.value = 1.0
4: for each r in node.reverseActions do r.RESET_NODE_VALUE() end for � See Section 5.2
5: else if node is an OR node then
6: node.value = max(children) � Maximum value of node’s children
7: else if node is an UNORDERED-AND node then
8: node.value = v(c) ∀c ∈ node.children � Mean of node’s children
9: else if node is an ORDERED-AND node then

10: U ← c ∀c ∈ node.children after last child with node value 1
11: node.value = v(c) ∀c ∈ U � Mean of children after (and including) 1st observed child
12: end if
13: for each parent in node.parents do UPDATE_NODE_VALUE_UPWARDS(parent) end for
14: end function
15: function v(node)
16: if node is an action node and node.value < 1.0 then return 0.0
17: else return node.value end if
18: end function

Algorithm 2 Update node value downwards (depth-first)
1: function UPDATE_NODE_VALUE_DOWNWARDS(node)
2: if node is an ORDERED-AND node or node is an UNORDERED-AND node then
3: for each child in node.children do child.value = max(child.value, node.value) end for
4: end if
5: for each child in node.children do UPDATE_NODE_VALUE_DOWNWARDS(child) end for
6: end function

the order constraints imposed on ORDERED-AND
nodes’ children, we can assume that the left most
branch has been completed if the right branch
has been observed. This improves Action Graphs’
ability to handle missing observations.

After Algorithm 1 returns, a downward pass, shown
in Algorithm 2, is performed. Starting from the root
node, this recurs over all nodes in a depth-first manner.
Direct children of AND nodes are assigned the value of
their parent if that value is larger. The direct children
of OR nodes are not updated.

To demonstrate how these algorithms affect the
nodes’ values, an example is provided and depicted
in Fig. 4. When processing the first observation,
namely, take(lunch_bag), the only action node
whose value is affected is pack-lunch() as it is
connected to take(lunch_bag) via AND nodes.
At this point determining if the person is making
a cheese or peanut butter sandwich is impossible.
When take(cheese) is observed, the values of the
pack-lunch() action and all the actions associated

Fig. 4. Figures showing the node values after they have been updated
by Algorithms 1 and 2.

86 H. Harman and P. Simoens / Action graphs for proactive robot assistance

with making a cheese sandwich are increased. make-
cheese-sandwich() node’s value is increased by
0.17, whereas pack-lunch() node’s value is in-
creased by 0.04. This is because the further (i.e., num-
ber of nodes that must be traversed) an action is from
the observed action the less its value is increased (as
the human could be aiming to achieve a subgoal).

5.2. Node value updates with reverse actions

If the state set by an observed action is reversed, the
nodes whose values were increased when the action
was observed should be decreased. For example, clos-
ing a cupboard is the reverse of opening that cupboard
and reduces the chance of an item being taken from
the cupboard, and thus any action which requires those
items. Moreover, when a node value is set to 1 the ac-
tion prediction algorithms will not consider this action
as a plausible candidate for future actions. This is not
a valid assumption in real-world domains, where peo-
ple can, e.g., open a cupboard multiple times. When
an action is observed, the first step (i.e., line 4 of
Algorithm 1) resets the value of the reverse action
nodes. If the node being reset is the child of an AND
node, all its non-observed siblings must also be reset
to zero. Pseudo-code and an example is provided in
Appendix B.

After setting the reverse action node’s value to 0,
each of its parents are iterated over. If the parent is an
AND node, its children that have not yet been observed
(and have not already been reset) also need to be reset.
An action node is simply reset by setting its value to 0.
For children that are OR nodes, their value becomes the
maximum of their children because during the down-
wards pass (Algorithm 2) their value was updated but
their children’s values were not. For AND nodes the
children are recursively reset, as they were also up-
dated when the reverse action was observed. Once all
of its children have been reset, the AND node’s value
is then updated to the mean value of its children, and
the algorithm continues to recurs upwards until an OR
node, e.g., the root, is reached.

6. Action prediction with action graphs

Action prediction is performed by finding action
nodes with a value greater than threshold θ and extract-
ing their dependencies, including the dependencies’
dependencies. Dependencies are extracted because an
action can only be performed if its dependencies are

executed first. This process results in a map A, which
maps each action node with a value greater than θ to a
list of its dependencies.

Dependencies are extracted by traversing depth-first
starting from an ORDERED-AND node (i.e., the parent
of a node with dependencies), and appending all ac-
tions nodes encountered to the dependency list. For OR
nodes, only the most likely child is traversed, and for
UNORDERED-AND nodes, the children are first sorted,
highest value first. Note, the action (key) itself is also
appended to the end of the dependency list during this
depth-first traversal.

If an action node (a) in the map’s keys is in the de-
pendency list of another action in the map, then the lat-
ter dependency list will contain all elements in the de-
pendency list of a. Therefore, the entry with key a is
removed from the map (A). This reduces the amount
of unnecessary data; however, it is still possible (and
very likely) for some actions to appear in multiple de-
pendency lists.

Actions which are attached to an OR node (not in-
cluding the root) that have a lower value than another
action attached to the same OR node are removed from
the predicted actions. This is because OR branches of-
ten contain similar actions, and thus when one branch
is above the threshold so are the others, e.g., making
a cup of coffee and making a cup of tea require many
similar actions. The map of predicted actions is recre-
ated every time an observation is received, thus re-
moved actions can reappear in the list during subse-
quent iterations.

7. Proactive robot assistance

A robot can proactively assist a human by executing
one of the predicted actions. The decision about which
action to execute is based on the value of the predicted
action and on how long it would take the robot or hu-
man to execute that action. An overview of this process
is depicted in Fig. 5. This section introduces which
predicted action is selected, what information is sent
to the robot and the robot’s decision making process.

The Action Predictor checks if a robot can execute
one of the predicted actions (A). Starting with actions
in the highest valued action’s (key’s) dependency list,
each action is checked to see if it appears in a prede-
fined list of actions the robot is capable of executing.
If it does, an execution request is sent to the robot and
if the robot chooses to execute that request, the iter-
ation finishes. Otherwise, the iteration continues un-

H. Harman and P. Simoens / Action graphs for proactive robot assistance 87

Fig. 5. Overview of the processes the action predictor and robot per-
form.

til all predicted actions (and their dependencies) have
been processed.

The robot decides to execute the request by gen-
erating task plans for itself and the human with the
task planner of [26]. As introduced in Section 3, this
planner solves a planning problem P = (F, I, A,G).
The world state I is provided by the Action Predictor,
which maintains an updated world model by applying
observed actions to this model. The predicted action is
converted to a goal state G, which is determined from
the action’s effects (aeff). When the robot receives a re-
quest it will call the planner twice, once from the per-
spective of itself and once from the perspective of the
human (i.e., as if the robot is at the human’s location
in the world model I). The length of the plans, i.e.,
number of actions in the plans, produced by the task
planner are provided to Eq. (1).

The robot decides to execute the request by com-
paring the length of its own plan with the human’s
plan, see Eq. (1). In this equation lr is the length of the
robot’s plan, lh is the length of the human’s plan, w is a
weight factor (0 � w � 1) and σ is the sigmoid func-
tion that maps the plan length to a value between 0 and
1. The length of the robot’s plan is converted to a nega-
tive value, so that the longer the robot’s plan the lower
the result (i.e., inverse sigmoid). If the result of Eq. (1)
is above threshold β, the robot will execute its plan.

γ (w) = (
σ(−lr) × w

) + (
σ(lh) × (1 − w)

)
(1)

This decision rule is designed to help prevent the
robot from obstructing or delaying the human. For ex-
ample, if the human is about to take an item from a
cupboard (i.e., lh is small), the robot should not ob-
struct them by attempting to take an item from the
same cupboard. We also assume the human is friendly
towards the robot, i.e., the robot will announce its plan
and the human will not perform the actions within the

robot’s plan. Thus, the robot should not force the hu-
man to wait for it to execute a long plan.

Actions that are absent from the Action Graph, as
they are not defined in the action prediction problem
the graph was generated from, could still be executed
by the robot. This is because the robot’s own set of ac-
tions, defined in PDDL, could include additional (un-
observable) actions.

8. Experiments: Action prediction accuracy

The experiments in this section aim to show how ac-
curately Action Graphs predict a person’s actions. This
section describes the setup, then reports the action pre-
diction results. The action prediction results include
the accuracy for when a simulated human is pursuing
one of the hypothesis goals, a subgoal and multiple (in-
terleaving) subgoals.

8.1. Setup

Our Action Graph based method for action pre-
diction was tested on the kitchen domain, introduced
in Section 3.2. When running the task planner [26]
to create list of observations (i.e., actions) and the
ground truth, a move(?s ?g) action definition was
also included; in the original dataset spatial layout was
not accounted for. This action enabled rational plans
to be generated, i.e., the simulated human takes all
items from the closest location before moving to the
next location, instead of re-visiting the same location
multiple times. The layout of the modelled environ-
ment is depicted in Fig. 6. Unless otherwise stated, for

Fig. 6. The layout of the environment used for the simulated exper-
iments. EC is equipment cupboard, FC food cupboard, F fridge, D
draw, A appliance (e.g., toaster and kettle) and KE is kitchen en-
trance. There are waypoints in front of containers and at the entrance
to the kitchen, the dashed lines indicate how the locations are linked
for the planning of move actions. This environment is based on our
HomeLab1.

1https://www.imec-int.com/en/homelab.

https://www.imec-int.com/en/homelab

88 H. Harman and P. Simoens / Action graphs for proactive robot assistance

each experiment the human starts from the kitchen en-
trance.

Statements, e.g., (not(open fridge)), were
appended to the planner’s goal to force all containers
to be closed before the simulation finished, without
these statements the task plans would not have con-
tained close(?container) actions. All actions in
this domain, except move actions, are assumed to be
observable by mapping sensor readings to observations
or by applying activity recognition algorithms such as
[34].

The Action Graph creation for the kitchen problem,
including transforming the PDDL to DTGs, only takes
an average of 0.13 seconds on a virtual machine with
8 GB RAM and 2 CPUs (2.90 GHz). Having said that,
Action Graphs can be created offline; the algorithms
for traversing the graph to update the node values and
find the predicted actions must be performed online.
Our DTGs to Action Graph transformation method has
a time complexity of O(n2) as for each action (not
applicable to the initial state) all actions are iterated
over to find the actions’ dependencies. Algorithms 1, 2
and 3 have a linear (worst-case) time complexity, i.e.,
O(n) with respect to the number of actions, as these
algorithms traverse the graph (which has a tree-like
structure) without traversing the same edge twice.

The results, in this section, report the number of
correctly predicted (i.e., true positives) and incorrectly
predicted (i.e., false positives) actions after observing
the first 10, 30, 50, and 70% of the actions in the plan
produced by the task planner. Already observed ac-
tions are not included in the comparison, and move
actions are not accounted for since they are assumed
unobservable. Experiments were repeated for various
values of θ , which is the minimum value of an action
node to be included in the list of predicted actions.

8.2. Hypothesis goal action prediction

In the kitchen dataset there are three hypothe-
sis goals: G = { (made_breakfast), (lunch_
packed), (made_dinner)}. There are multiple
options a human could choose to achieve each of these
goals:

– (made_breakfast) by making coffee or tea;
– (made_dinner) by either making a salad or a

cheese sandwich, or both;
– (lunch_packed) by either making a peanut

butter or cheese sandwich.

To produce the plans of these 7 options, the goal
provided to the task planner was set to an and state-
ment, e.g., (and ((made_coffee) (made_
breakfast))). The planner [26] is not guaranteed
to find the optimal plan; thus, we also inserted not
statements into the goal to prevent the human taking
additional items, e.g., to prevent the human taking a tea
bag when they are making coffee. The results for ac-
tion prediction when the simulated agent is performing
each one of these options are presented in Table 1.

Both lower values of θ and higher numbers of obser-
vations (|O|) resulted in more predictions being made.
At θ = 0.65 more true positives were returned in com-
parison to higher values of θ , but also a higher number
of false predictions were made. On average the num-
ber of false positives reduced more than the number of
true positives as θ is increased. This shows that at least
some of the true positive actions have a higher value
than those that were falsely identified.

We considered increasing the value of θ as more ob-
servations are observed but this would have little ef-
fect on which actions the robot executes. The list of
predicted actions is sorted (highest value first) prior to
checking if the robot can execute each action in turn;
therefore, the robot is likely to execute actions cor-
rectly even when false positives are included within
these predictions. Moreover, in all presented experi-
ments no predictions were made when 10% of obser-
vations are provided. When such a small number of ob-
servations are provided, it is unclear what the human’s
intentions are; thus, a robot should not start acting.

Even with a high threshold value θ = 0.85, the num-
ber of false positives in relation to the plan length |a|
remains high for three options: 1) (lunch_packed)
including(made_cheese_sandwich), 2) (made
_dinner)including(made_cheese_sandwich)
and 3) (made_dinner) including (made_cheese
_sandwich) and (made_salad). The main rea-
son is that the plans to make a peanut butter sandwich
and a cheese sandwich are very similar; therefore, the
predicted actions are the union of actions required to
make both types of sandwich.

8.3. Single subgoal action prediction

To demonstrate how well our approach predicts ac-
tions of subgoals, plans (ground truth) for 6 sub-
goals were created using the method described in
Section 8.1, and the accuracy of the predictions was
recorded after 10, 30, 50 and 70% of actions had
been observed. No modifications were made to the list

H. Harman and P. Simoens / Action graphs for proactive robot assistance 89

Table 1

Number of true positives (TP) and false positives (FP) for different goals (and plans) when the first 10, 30, 50 and 70% of actions have been
observed. |a| is the total number of observable actions in the plan, and |O| the number of processed observations

Goal |a| |O| 0.65 0.75 0.85 0.95

TP FP TP FP TP FP TP FP

(made_breakfast) including: (made_coffee) 28 3 0 0 0 0 0 0 0 0

8 7 1 4 0 4 0 0 0

14 11 3 9 3 9 2 4 0

20 6 6 6 5 4 4 0 2

(made_breakfast) including: (made_tea) 27 3 0 0 0 0 0 0 0 0

8 7 1 4 0 4 0 0 0

14 10 7 5 4 5 3 1 2

19 6 7 6 6 4 4 1 2

(lunch_packed) including: (made_peanut_butter_sandwich) 15 2 0 0 0 0 0 0 0 0

5 4 3 4 0 0 0 0 0

8 2 5 2 1 2 1 2 0

11 2 10 0 3 0 1 0 1

(lunch_packed) including: (made_cheese_sandwich) 12 1 0 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0

6 2 3 2 0 2 0 1 0

8 2 7 0 5 0 3 0 0

(made_dinner) including: (made_cheese_sandwich) and (made_salad) 14 1 0 0 0 0 0 0 0 0

4 3 0 0 0 0 0 0 0

7 3 6 1 3 1 0 1 0

10 2 6 2 4 0 4 0 0

(made_dinner) including: (made_cheese_sandwich) 11 1 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 0

6 2 3 2 0 2 0 0 0

8 1 8 0 5 0 3 0 0

(made_dinner) including: (made_salad) 6 1 0 0 0 0 0 0 0 0

2 2 0 0 0 0 0 0 0

3 1 0 1 0 1 0 0 0

4 1 0 0 0 0 0 0 0

of hypothesis goals, which is processed to transform
PDDL into DTGs.

The results, presented in Table 2, show a similar
trend as the results in the previous section. When (non-
distinctive) actions belonging to multiple goals are ob-
served, often actions belong to both goals will appear
in the predicted actions of a single goal. For example,
the false positives returned for (made_buttered_
toast) are contained within the plan to (made_
peanut_butter_sandwich), both these goals
have similar actions, i.e., require the human to retrieve
bread, retrieve a knife and open the fridge.

In the case of (made_coffee), the 2 false pos-
itives (for θ = 0.85), and all actions required to

make coffee, are contained within the plan to reach
(made_breakfast). The more observed a plan is
the more likely the human is to be aiming to achieve
its goal, thus the more likely they are to perform other
actions in that plan. When θ is increased to 0.95, all
the predicted actions are correct as those actions fur-
ther away (in the Action Graph structure) from the ob-
served actions have a lower value.

8.4. Multiple interleaving subgoals

In this section, results are presented for when a sim-
ulated human is interleaving actions to complete 2 sub-
goals. Subgoals were chosen, rather than the original

90 H. Harman and P. Simoens / Action graphs for proactive robot assistance

Table 2

Action prediction for the subgoals, found in the kitchen domain

Goal |a| |O| 0.75 0.85 0.95

TP FP TP FP TP FP

(made_coffee) 15 2 0 0 0 0 0 0

5 7 0 0 0 0 0

8 5 2 5 2 2 0

11 3 3 3 2 3 0

(made_peanut_butter_sandwich) 13 1 0 0 0 0 0 0

4 0 0 0 0 0 0

7 3 1 3 0 0 0

9 2 1 2 1 2 0

(made_buttered_toast) 12 1 0 0 0 0 0 0

4 0 0 0 0 0 0

6 4 0 4 0 0 0

8 2 4 2 3 0 0

(made_tea) 11 1 0 0 0 0 0 0

3 0 0 0 0 0 0

6 3 0 3 0 0 0

8 2 0 2 0 0 0

(made_cheese_sandwich) 10 1 0 0 0 0 0 0

3 0 0 0 0 0 0

5 2 0 2 0 0 0

7 1 3 1 0 1 0

(made_salad) 6 1 0 0 0 0 0 0

2 0 0 0 0 0 0

3 1 0 1 0 0 0

4 0 0 0 0 0 0

hypothesis goals, as there are a higher number of sub-
goals, allowing more combinations to be tested. More-
over, if multiple of hypothesis goals were pursued,
nearly all actions would be required, making it trivial
to correctly predict actions.

When a human will switch between plans is non-
deterministic; therefore, the results for 2 different
methods of selecting when to switch between the
plans are provided. In the first approach, a single call
to the planner was performed with the goal set us-
ing an and statement, e.g., (and (made_coffee)
(made_salad)).

For the other approach the plans for both subgoals
were created independently, then interleaved based on
the probability (p) of a human switching between the
two plans. If this probability is set to 1, one action from
each of the plans will be selected in turn (i.e., alternat-
ing); if one plan is longer, any remaining actions are
appended to the end. Actions are not repeated: if an ac-

tion has already been executed because it was part of
the other plan, the subsequent action is selected. The
results show the average of 5 runs for when the prob-
ability of switching plans was set to 1, 0.75, 0.5, 0.25
and 0. As before, the predictions for when 10, 30, 50
and 70% of the actions have been observed are com-
pared to the real (interleaving) plan. The average re-
sults is shown in Table 3 and results for each individual
pair of subgoals are provided in Appendix C.

There is a large amount of variation in the results for
the different ways of interleaving two goals. In gen-
eral, when 50% and 70% of actions had been observed,
the number of true positive predictions decreases when
the probability of switching plans (p) is reduced. With
lower switching probabilities, most of the observations
are from only one of the goals, hence the actions from
the other goal cannot be predicted. For 30% of obser-
vations, the number of true positives often decreases
when p is increased as fewer actions from a single goal

H. Harman and P. Simoens / Action graphs for proactive robot assistance 91

Table 3

Action prediction for combinations of 2 plans that achieve subgoals, found in the kitchen domain. θ is set to 0.85

Goal |a| |O| Planner p = 1 p = 0.75 p = 0.5 p = 0.25 p = 0

TP FP TP FP TP FP TP FP TP FP TP FP

Average 17.93 1.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5.47 0.80 0.00 0.67 0.07 0.57 0.07 1.10 0.17 1.32 0.25 2.07 0.40

9.33 2.27 1.07 4.13 0.73 3.49 0.84 3.38 0.97 2.28 1.04 1.00 1.40

12.60 2.40 2.60 2.73 2.00 2.69 2.08 2.57 2.09 2.30 2.32 1.07 1.40

are observed, making it more challenging to make any
predictions.

9. Experiments: Robotic assistance

In this section, how the robot decides which of the
predicted actions it can execute on behalf of the human
is evaluated. The effect changing the values of β, w

and θ , and of receiving invalid observations, has on
which actions the robot executes is discussed.

9.1. Setup

The simulated robot is capable of all take
(?item) and take(?item ?container) ac-
tions. How many actions were (correctly) taken over
by the robot is discussed, as well as if the human was
temporarily blocked from performing an action, e.g.,
because they had to wait for the robot to take an item.

The simulated human’s plan may be affected by the
robot. When the robot changes the state of the environ-
ment and a precondition of the human’s next action is
no longer met, a new plan is produced for the human.
It can also happen that the next action the human wants
to execute is in the robot’s current plan. If so, this ac-
tion is skipped and the human attempts to proceed with
the next action in its plan, without replanning.

Simulations were ran for the three hypothesis goals:
to make breakfast, dinner and lunch. The resulting ac-
tion sequence for making breakfast is shown in Fig. 7.
For making dinner and lunch, the action sequences are
provided in Appendix D. To produce these results, θ

was set to 0.85, β to 0.45 and w to 0.5.

9.2. Results and discussion

To make breakfast, the human requires 32 actions
without robotic assistance and 29 actions with robotic
assistance. The robot correctly opened the food cup-
board, took the bread and took a cloth. The robot did
not perform any incorrect actions, i.e., no actions were

executed that were not in the human’s original plan.
During this experiment the human waited for the robot
to open the food cupboard as it took a while for the
robot, i.e., 3 move actions, to reach its location. An im-
patient human could have opened the cupboard them-
selves enabling the robot to then just take the bread,
or continued with actions later in their plan. The hu-
man’s wait times were more prominent when the robot
assisted the human to make dinner and pack lunch. Be-
cause the plans to reach these two goals are short, the
human could not perform any further actions.

9.2.1. Changing β

The threshold β controls if the robot should execute
the request or not based on the length of its plan and
the plan it generates for the human to perform that re-
quest, see Eq. (1). When β is increased to 0.5, the robot
does not execute any actions, unless its starting loca-
tion is adjusted in order to shorten its plan. When the
human was making breakfast and the robot started near
the fridge, the robot correctly retrieved bread, but then
incorrectly retrieved sugar. When making breakfast the
human has the option of making a coffee with sugar,
and as the actions to make tea and coffee are similar,
the actions in the plan to make coffee also had high
values. For making lunch and dinner, when the robot
is placed near the cupboard, the robot correctly opened
the equipment cupboard and took a plate.

When β was decreased to 0.4 and the human was
making breakfast (with the original initial locations),
the robot retrieved the bread and a bowl and incor-
rectly retrieved sugar. Prior to the robot starting to get a
bowl, the human had opened the equipment cupboard
in which the bowl is stored, and both the human and
robot took items from the equipment cupboard simul-
taneously. In a real-world setting, such collisions must
be prevented, e.g., by setting β to a higher value. For
making dinner and making lunch, lowering the value
of β had no effect on which actions the robot executed.

9.2.2. Changing w

By changing w, the robot’s decision can be either
weighted towards the robot’s or human’s plans’ length.

92 H. Harman and P. Simoens / Action graphs for proactive robot assistance

Fig. 7. The human action sequence when their goal is to make break-
fast (left) and the actions executed by the robot (right) when its ini-
tial location is kitchen_entrance. θ is set to 0.85, β = 0.45
and w = 0.5. Actions in bold are observable. Thick arrows pointing
right indicate when the robot started execution, and dashed arrows
when the human waited for the robot before executing an action.

When weighted towards the robot’s plan (i.e., w =
0.6), the robot did not execute any actions for any of
the goals due to how long its initial plan was. Lowering
w had the same effect as decreasing β.

9.2.3. Changing θ

Only action nodes with a value above the thresh-
old θ are returned by the action predictor and are thus
possible candidates for being executed by the robot.

For making breakfast, when θ was decreased to 0.7
the robot correctly executed the following actions:
open(foodcupboard), take(bread food-
cupboard), open(equipmentcupboard),
take(bowl equipmentcupboard) and take
(cloth). This resulted in the human only perform-
ing 27 actions, instead of 32 without robotic assistance.
When θ was reduced further, the robot executed incor-
rect actions, i.e., false positive predictions, as it started
acting before enough observations to determine the hu-
man’s true intentions had been received. At θ = 0.6,
the robot executed 2 incorrect actions (i.e., retrieved
peanut butter and sugar), and at θ � 0.4 three incorrect
actions were executed. Increasing θ reduces the num-
ber of actions executed by the robot and at θ = 0.9 the
robot did not execute any actions.

At θ � 0.25 and θ � 0.85, and when the human’s
goal was to make dinner or pack lunch, the robot cor-
rectly opened the equipment cupboard and took the
plate for the human. When θ was lowered to 0.2, the
robot also correctly opened the food cupboard and took
the bread. Lowering θ further resulted in the robot per-
forming incorrect actions as the robot acted too soon.

9.2.4. Noisy observations
As sensors may provide erroneous readings and hu-

mans can make mistakes (e.g., take the wrong item
or open the wrong cupboard) experiments were per-
formed with the simulated human deviating from the
plan produced by the task planner. Before the human
performs an action in its plan, with a predefined prob-
ability a random (invalid) action was performed. This
invalid action could be any action which is not in the
person’s plan and that has not already been observed;
thus, if all invalid actions have already been observed,
no further invalid actions can be observed.

Multiple experiments were performed for a range
of probabilities; during these experiments the robot
did not perform any incorrect actions. For (packed_
lunch) and (made_dinner) the robot correctly
opened the equipment cupboard and took a plate, and
for (made_breakfast) opened the food cupboard,
took bread and sometimes either opened the equip-
ment cupboard and took a bowl or took a cloth. The
take(bread) action belongs to all three goals, so
no matter which action is observed its value is in-
creased. Taking a plate is required for making salad,
making a cheese sandwich and making a peanut but-
ter sandwich; taking a bowl is required for making
salad and cereal, and taking a cloth required for both
making tea and making coffee. Unintentionally, the

H. Harman and P. Simoens / Action graphs for proactive robot assistance 93

robot has performed actions which are non-distinctive,
i.e., actions belonging to multiple goals’ plans, thus
small amounts of noisy have very little effect on the
results. In future work we will investigate explicitly
extracting non-distinctive actions for the robot to exe-
cute.

10. Conclusion and future work

When a robot is integrated into a smart environment,
it can execute actions that help a human to achieve
their goals sooner by predicting the human’s next ac-
tions. Our approach applies techniques from classical
planning to transform a PDDL-defined problem into an
Action Graph. Action Graph node values are updated
based on the observations received. Experiments show
Action Graphs adequately predict actions, even when
the plans of multiple interleaving subgoals are ob-
served. Further, a simulated proof of concept demon-
strated that by predicting a person’s actions a robot is
able to successfully assist a person by executing ac-
tions on their behalf.

We see several directions for future work. First, our
approach favours the actions with shorter dependency
lists due to the node value update algorithm calcu-
lating the mean value. For example, make-tea()
has fewer dependencies than make-coffee(); thus,
when an action common to both their dependency lists
is observed, the value of make-tea() is increased
more than the value of make-coffee(). Applying
biases to nodes with more dependencies and weight-
ing actions that are more unique to a plan [27] will
be investigated to potentially improve the accuracy of
our method. Nevertheless, for predicting the actions
to reach subgoals (as well as goals), favouring actions
with fewer dependencies is the desired behaviour for
our system.

Second, how β and w are affected by differing ac-
tion durations will be investigated. Moreover, β could
be automatically adjusted based on how a human
reacts to which actions the robot executes. For in-
stance, if the robot continuously obstructs the human,
β should be increased. If both the human’s and robot’s
plans are short, increasing w will increase the chance
of the robot performing an action; for long plans in-
creasing w will have the opposite affect. Therefore, the
value of w could be learnt for each domain, by mea-
suring the length of the plans within the domain as
well as if the robot acted without obstructing the hu-
man.

Performing a statistical analysis of the effect chang-
ing the Action Graph’s structure has on the optimal
choice for θ will be investigated. These structural
changes include changing the number of dependencies
each action has, the types of nodes used to connect ac-
tions to their dependencies and how unique the depen-
dencies are. The optimal value of θ depends on which
of these dependencies have been observed, i.e., if the
observed dependency is unique to a correct action, θ

can be set to a much lower value than if the observed
dependency also belongs to a incorrect action. More-
over, such an analysis must consider the trade-off be-
tween false positive and true positive predictions.

Fourth, we intend to prevent the robot obstructing
the human when it is appointed an independent goal
[5,9]. To do this we will consider reasoning about the
constraints between the person’s and robot’s plans; for
example, if the person is handling an item, the robot
cannot handle it at the same time. Furthermore, the per-
son’s plan may unintentionally contain actions that as-
sist the robot, e.g., opening a door; therefore, the robot
could conserve time and energy by allowing the human
to perform certain actions first.

Last, our experiments assumed a rational human
(i.e., followed plans produced by a task planner), and
all human and robot actions took the same constant
time. In future work, real-world tests will be conducted
in our HomeLab1, where we will deploy sensors, e.g.,
cupboard door sensors, cameras to detect items being
take from in cupboards, smart electric sockets, audio
sensors for recognising activities [34] etc.

Acknowledgements

Harman is an SB fellow at FWO (project num-
ber 1S40217N). Part of this research was funded via
imec’s RoboCure project.

Appendix A. Kitchen domain

The AND-OR trees in Figs 8, 9 and 10 represent
the plans found within in the kitchen domain. To make
the diagrams readable the actions to reach each hy-
pothesis goal have been put in separate figures and
close(?container) actions have not been in-
cluded. Moreover, in the real Action Graph no action
is repeated, nodes have multiple parents and only a
single graph is produced. These figures provide in-
sight on the complexity of the domain, for full details

94 H. Harman and P. Simoens / Action graphs for proactive robot assistance

Fig. 8. The plan to make breakfast including making tea, represented as an AND-OR tree. The final actions in the subgoal’s plans, used for our
experiments, has been put in bold. Some action names have been shortened, e.g., take(bread foodcupboard) to take(bread).

Fig. 9. The two possible plans for making dinner represented as an AND-OR tree.

Fig. 10. The two possible plans for making lunch represented as an AND-OR tree.

the original kitchen domain produced by Ramırez et.
al [30] can be download from https://sites.google.com/
site/prasplanning/file-cabinet.

Appendix B. Reverse actions

As explained in Section 5.2, when an action is ob-
served, its reverse actions are reset along with any ac-
tion whose value was increase when the reverse action
was observed. The algorithm that performs this reset
procedure is provided in Algorithm 3.

An example of how the process works is depicted
in Fig. 11. After observing the action open(food-

cupboard), the value of its action node is set to
1 and then the reset algorithm is called on its re-
verse action node. As close(foodcupboard) has
not yet been observed, no reset is required. Applying
the node value update algorithms, described in Sec-
tion 5.1, results in the nodes values that are shown
in Fig. 11(a). The updated node values after the next
observation, i.e., take(sugar), was received are
shown in Fig. 11(b).

https://sites.google.com/site/prasplanning/file-cabinet
https://sites.google.com/site/prasplanning/file-cabinet

H. Harman and P. Simoens / Action graphs for proactive robot assistance 95

Algorithm 3 Reset node value
1: function RESET_NODE_VALUE(node)
2: if node is action node and node.value �= 1 then return
3: else if node is action node then node.value = 0 end if
4: for each parent in node.parents do
5: if (parent is AND node) then
6: RESET_CHILDREN(parent)
7: RESET_NODE_VALUE(parent)
8: else parent is OR node
9: parent.updateValue() � max value of children

10: end if
11: end for
12: end function
13: function RESET_CHILDREN(node)
14: for each child in node.children do
15: if child.value �= 1 and child has not been reset then
16: if child is action node then
17: child.value = 0
18: else if child is OR node then
19: child.updateValue() � max value of children
20: else
21: child.RESET_CHILDREN(child, null)
22: end if
23: end if
24: end for
25: parent.updateValue() � mean of children update rules
26: end function

Fig. 11. Action graphs to show the effect of reverse actions. Double
ended arrows indicate two actions are the reverse of each other.

The next observation to be received, i.e., close
(foodcupboard), causes the open(foodcup-
board) action node to be reset (line 3). The algo-
rithm iterates over each of its parents, i.e., OR node 1,
ORDERED-AND node 1 and ORDERED-AND node 2
(line 4–11). As another child of the OR node has
a value of 1, its value is not changed. ORDERED-
AND node 1 also remains unaltered as its subsequent
child, take(sugar), has already been observed.
The algorithm recurs over the subsequent children
of ORDERED-AND node 2 (lines 6 and 13–26), re-
sulting in use(bread) being reset (line 17). The
ORDERED-AND itself is then updated to the mean
of its children (line 25) and its parents are iterated
over (line 7 and 1–12). The process also occurs for
ORDERED-AND nodes 3 and 4, resulting in both the
use(toaster) and make-toast() action nodes
being reset. After resetting the reverse action, the
upwards and downwards procedures are performed.
In our simple example the observed action’s node
(close(foodcupboard)) only has a single OR
parent, i.e., the root node, whose value is already 1;

96 H. Harman and P. Simoens / Action graphs for proactive robot assistance

therefore, no values require updating. The final node
values are shown in Fig. 11(c).

Appendix C. Experiments: Two subgoals

Our action prediction system was tested on prob-
lems in which a simulated human aimed to achieve two
subgoals. The average result is provided in the main
body of this manuscript, see Section 8. Table 4 shows
the result for each pair of subgoals.

Appendix D. Experiments: Robot assistance

The robot assistance experiment is discussed in Sec-
tion 9. In this experiment the simulated human per-
formed the actions to reach a goal (e.g., made dinner)
and the robot assisted them by executing several of
the predicted actions. For when the human’s goal is to
make dinner and to make lunch, the action sequences
(of the human and the robot) are shown Figs 12 and 13,
respectively.

Table 4

Action prediction for combinations of 2 plans that achieve subgoals found in the kitchen domain. θ is set to 0.85

Goal |a| |O| Planner p = 1 p = 0.75 p = 0.5 p = 0.25 p = 0

TP FP TP FP TP FP TP FP TP FP TP FP

(made_coffee) and
(made_buttered_toast)

23 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

7 4 0 3 0 1.4 0.0 3.6 0.4 2.6 0.8 4 2

12 1 2 8 2 7.6 1.8 5.0 2.0 5.0 1.2 0 3

16 1 5 4 5 4.2 5.0 4.8 4.6 4.2 4.8 0 3

(made_coffee) and
(made_peanut_butter_sandwich)

22 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

7 0 0 3 0 1.8 0.0 4.2 1.2 3.0 1.2 4 2

11 7 1 7 0 6.2 1.0 6.4 1.6 2.4 2.8 0 3

15 5 5 4 4 4.0 4.0 3.8 2.8 2.4 3.2 0 3

(made_tea) and
(made_buttered_toast)

21 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

6 4 0 0 0 0.0 0.0 1.2 0.0 0.6 0.0 3 0

11 2 2 6 1 4.4 0.8 2.6 1.4 1.4 1.4 0 2

15 2 2 4 3 3.8 2.4 2.8 2.6 3.4 3.4 3 4

(made_tea) and
(made_peanut_butter_sandwich)

20 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

6 0 0 0 0 0.0 0.0 1.8 0.0 1.8 0.0 2 0

10 2 1 2 0 3.8 0.0 2.4 0.0 0.6 1.0 0 2

14 0 2 3 1 2.6 1.4 2.6 1.4 1.6 3.2 2 6

(made_coffee) and
(made_cheese_sandwich)

19 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

6 0 0 0 0 0.8 0.0 1.2 0.0 3.4 1.2 5 2

10 6 2 6 2 5.8 2.8 6.0 1.2 4.6 2.0 1 3

13 4 7 3 6 3.6 6.6 3.4 6.0 3.0 4.8 0 3

(made_coffee) and (made_salad) 19 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

6 0 0 0 1 0.8 1.0 0.6 1.0 3.2 0.6 6 0

10 0 0 5 1 2.0 1.0 5.0 1.0 3.2 1.0 4 1

13 4 3 4 1 4.0 1.0 3.6 1.0 3.4 1.2 1 2

(made_salad) and
(made_buttered_toast)

18 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.4 0.0 0.2 1.0 0.2 0.0 0 0

9 0 0 2 2 2.6 1.4 2.8 4.0 1.6 1.0 0 0

13 3 4 3 4 2.6 4.0 2.4 0.0 2.8 4.0 3 4

(made_tea) and
(made_cheese_sandwich)

17 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.0 0.0 0.8 0.0 1.2 0.0 3 0

9 0 3 1 0 0.8 1.2 1.2 1.8 1.4 1.2 0 2

12 3 4 3 3 2.8 2.4 2.8 3.4 2.6 2.8 0 2

H. Harman and P. Simoens / Action graphs for proactive robot assistance 97

Table 4

(Continued)

Goal |a| |O| Planner p = 1 p = 0.75 p = 0.5 p = 0.25 p = 0

TP FP TP FP TP FP TP FP TP FP TP FP

(made_coffee) and (made_tea) 17 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

9 4 2 5 0 4.4 0.0 4.4 0.8 3.0 1.2 3 2

12 2 2 3 0 2.6 0.0 2.8 0.8 2.4 1.2 2 2

(made_cheese_sandwich) and
(made_buttered_toast)

17 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.4 0.0 0.4 0.0 1.6 0.0 2 0

9 4 1 4 1 3.4 1.0 4.0 1.0 1.8 1.2 2 2

12 2 1 2 1 2.0 1.0 2.0 1.0 1.2 1.4 0 2

(made_peanut_butter_sandwich)
and (made_buttered_toast)

17 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 4 0 4 0 1.6 0.0 1.6 0.0 0.8 0.0 0 0

9 4 1 4 1 4.0 1.0 4.0 0.8 3.4 0.8 1 1

12 2 1 2 1 2.0 1.0 2.0 1.0 1.6 1.2 0 2

(make_peanut_butter_sandwich)
and (made_salad)

16 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.2 0.0 0.0 0.0 0.2 0.0 0 0

8 1 1 3 1 0.6 0.2 1.0 0.0 1.2 0.0 0 0

11 2 3 2 1 2.0 0.4 1.6 0.8 1.8 0.8 2 0

(made_tea) and (made_salad) 15 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

8 0 0 4 0 2.0 0.0 1.4 0.0 1.6 0.0 1 0

11 3 0 2 0 2.2 0.4 2.0 0.4 1.6 0.8 0 2

(made_cheese_sandwich) and
(made_peanut_butter_sandwich)

15 2 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

5 0 0 0 0 0.8 0.0 0.8 0.0 1.2 0.0 2 0

8 3 0 3 0 3.0 0.0 2.8 0.0 2.6 0.0 3 0

11 1 0 1 0 1.0 0.0 1.0 0.0 1.0 0.6 1 1

(made_cheese_sandwich) and
(made_salad)

13 1 0 0 0 0 0.0 0.0 0.0 0.0 0.0 0.0 0 0

4 0 0 0 0 0.4 0.0 0.2 0.0 0.0 0.0 0 0

7 0 0 2 0 1.8 0.4 1.8 0.4 0.4 0.8 0 0

9 2 0 1 0 1.0 1.6 1.0 2.4 1.6 2.0 2 0

98 H. Harman and P. Simoens / Action graphs for proactive robot assistance

Fig. 12. The order the human performs actions when their goal is to
make dinner (left) and the actions executed by the robot (right) when
its initial location is kitchen_entrance. With the following pa-
rameters: θ = 0.85, β = 0.45, w = 0.5.

Fig. 13. The order the human performs actions when their goal is
to make a pack lunch (left) and the actions executed by the robot
(right) when its initial location is kitchen_entrance. With the
following parameters: θ = 0.85, β = 0.45, w = 0.5.

References

[1] L. Amado, R.F. Pereira, J. Aires, M. Magnaguagno,
R. Granada and F. Meneguzzi, Goal recognition in latent space,
in: Proceedings of the International Joint Conference on Neu-

ral Networks, IJCNN, IEEE, 2018, pp. 1–8, ISSN 2161-4407.
doi:10.1109/IJCNN.2018.8489653.

[2] J. Baraglia, M. Cakmak, Y. Nagai, R.P. Rao and M. Asada, Effi-
cient human-robot collaboration: When should a robot take ini-
tiative?, The International Journal of Robotics Research 36(5–
7) (2017), 563–579. doi:10.1177/0278364916688253.

[3] F. Bisson, H. Larochelle and F. Kabanza, Using a recursive
neural network to learn an agent’s decision model for plan
recognition, in: Proceedings of the Twenty-Second Interna-
tional Joint Conference on Artificial Intelligence, IJCAI’15,
AAAI Press, 2015, pp. 918–924. ISBN 978-1-57735-738-4.

[4] J. Chen, Y. Chen, Y. Xu, R. Huang and Z. Chen, A planning ap-
proach to the recognition of multiple goals, International Jour-
nal of Intelligent Systems 28(3) (2013), 203–216. doi:10.1002/
int.21565.

[5] M. Cirillo, L. Karlsson and A. Saffiotti, Human-aware task
planning: An application to mobile robots, ACM Transac-
tions on Intelligent Systems and Technology 1(2) (2010), 15:1–
15:26. doi:10.1145/1869397.1869404.

[6] Y. E-Martin, M.D. R-Moreno and D.E. Smith, A fast goal
recognition technique based on interaction estimates, in: Pro-
ceedings of the Twenty-Fourth International Joint Confer-
ence on Artificial Intelligence, IJCAI’15, AAAI Press, Buenos,
Aires, Argentina, 2015.

[7] M. Fagan and P. Cunningham, Case-based plan recognition
in computer games, in: International Conference on Case-
Based Reasoning Research and Development, K.D. Ashley
and D.G. Bridge, eds, Springer, Berlin, Heidelberg, 2003,
pp. 161–170. ISBN 978-3-540-45006-1. doi:10.1007/3-540-
45006-8_15.

[8] R.G. Freedman, Y.R. Fung, R. Ganchin and S. Zilberstein,
Towards quicker probabilistic recognition with multiple goal
heuristic search, in: AAAI Workshops on Plan, Activity, and In-
tent Recognition (PAIR-18), 2018.

[9] R.G. Freedman and S. Zilberstein, Integration of planning with
recognition for responsive interaction using classical planners,
in: Proceedings of the Thirty-First AAAI Conference on Artifi-
cial Intelligence, AAAI’17, AAAI Press, 2017, pp. 4581–4588.

[10] H. Geffner and B. Bonet, A Concise Introduction to
Models and Methods for Automated Planning: Syn-
thesis Lectures on Artificial Intelligence and Machine
Learning, 1st edn, Morgan & Claypool Publishers,
2013. ISBN 1608459691, 9781608459698. doi:10.2200/
S00513ED1V01Y201306AIM022.

[11] C.W. Geib and R.P. Goldman, A probabilistic plan recognition
algorithm based on plan tree grammars, Artif. Intell. 173(11)
(2009), 1101–1132. doi:10.1016/j.artint.2009.01.003.

[12] M. Ghallab, D. Nau and P. Traverso, Automated Planning: The-
ory and Practice, Elsevier, San Francisco, 2004.

[13] H. Harman, K. Chintamani and P. Simoens, Action Trees for
scalable goal recognition in robotic applications, in: Proceed-
ings of the Sixth Workshop on Planning and Robotics (Plan-
Rob), 2018, pp. 90–94.

[14] M. Helmert, The fast downward planning system, J. Artif. In-
tell. Res. 26 (2006), 191–246. doi:10.1613/jair.1705.

[15] S. Holtzen, Y. Zhao, T. Gao, J.B. Tenenbaum and S.-C. Zhu,
Inferring human intent from video by sampling hierarchical
plans, in: Proceedings of the IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS 2016), IEEE,
Daejeon, South Korea, 2016, pp. 1489–1496, ISSN 2153-0866.
doi:10.1109/IROS.2016.7759242.

https://doi.org/10.1109/IJCNN.2018.8489653
https://doi.org/10.1177/0278364916688253
https://doi.org/10.1002/int.21565
https://doi.org/10.1002/int.21565
https://doi.org/10.1145/1869397.1869404
https://doi.org/10.1007/3-540-45006-8_15
https://doi.org/10.1007/3-540-45006-8_15
https://doi.org/10.2200/S00513ED1V01Y201306AIM022
https://doi.org/10.2200/S00513ED1V01Y201306AIM022
https://doi.org/10.1016/j.artint.2009.01.003
https://doi.org/10.1613/jair.1705
https://doi.org/10.1109/IROS.2016.7759242

H. Harman and P. Simoens / Action graphs for proactive robot assistance 99

[16] J. Hong, Goal recognition through goal graph analysis, Jour-
nal of Artificial Intelligence Research 15 (2001), 1–30. doi:10.
1613/jair.830.

[17] P. Jonsson and C. Bäckström, State-variable planning un-
der structural restrictions: Algorithms and complexity, Artifi-
cial Intelligence 100(1) (1998), 125–176. doi:10.1016/S0004-
3702(98)00003-4.

[18] H.A. Kautz, A formal theory of plan recognition, PhD the-
sis, University of Rochester, Department of Computer Science,
1987.

[19] H.A. Kautz and J.F. Allen, Generalized plan recognition, in:
Proceedings of the Fifth AAAI National Conference on Artifi-
cial Intelligence, AAAI’86, Vol. 86, AAAI Press, 1986, pp. 32–
37.

[20] S. Keren, R. Mirsky and C. Geib, Plan Activity and Intent
Recognition Tutorial, AAAI, 2019, http://www.planrec.org/
Tutorial/Resources_files/pair-tutorial.pdf.

[21] S.J. Levine and B.C. Williams, Concurrent plan recognition
and execution for human-robot teams, in: Proceedings of
the Twenty-Fourth International Conference on International
Conference on Automated Planning and Scheduling (ICAPS),
ICAPS’14, AAAI Press, 2014, pp. 490–498. ISBN 978-1-
57735-660-8.

[22] S.J. Levine and B.C. Williams, Watching and acting together:
Concurrent plan recognition and adaptation for human-robot
teams, Journal of Artificial Intelligence Research 63 (2018),
281–359. doi:10.1613/jair.1.11243.

[23] W.S. Lima, E. Souto, T. Rocha, R.W. Pazzi and F. Pramudianto,
User activity recognition for energy saving in smart home en-
vironment, in: IEEE Symposium on Computers and Commu-
nication (ISCC), IEEE, 2015, pp. 751–757. doi:10.1109/ISCC.
2015.7405604.

[24] L. Johannsmeier and S. Haddadin, A hierarchical human-robot
interaction-planning framework for task allocation in collabo-
rative industrial assembly processes, IEEE Robotics and Au-
tomation Letters 2(1) (2017), 41–48. doi:10.1109/LRA.2016.
2535907.

[25] R. Mirsky, Y.K. Gal and S.M. Shieber, CRADLE: An on-
line plan recognition algorithm for exploratory domains, ACM
Transactions on Intelligent Systems and Technology 8(3)
(2017). doi:10.1145/2996200.

[26] C. Muise, S. Vernhes and P. Florian, PDDL solver in the cloud,
2018, https://bitbucket.org/planning-researchers/cloud-solver.

[27] R.F. Pereira, N. Oren and F. Meneguzzi, Landmark-based
heuristics for goal recognition, in: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, AAAI’17,
AAAI Press, 2017, pp. 3622–3628.

[28] J. Rafferty, C.D. Nugent, J. Liu and L. Chen, From activity
recognition to intention recognition for assisted living within
smart homes, IEEE Transactions on Human-Machine Systems
47(3) (2017), 368–379. doi:10.1109/THMS.2016.2641388.

[29] M. Ramírez and H. Geffner, Plan recognition as planning, in:
Proceedings of the Twenty-First International Joint Conference

on Artifical Intelligence, IJCAI’09, Morgan Kaufmann Pub-
lishers Inc., San Francisco, CA, USA, 2009, pp. 1778–1783.

[30] M. Ramírez and H. Geffner, Probabilistic plan recognition
using off-the-shelf classical planners, in: Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence,
AAAI-10, AAAI Press, 2010, pp. 1121–1126.

[31] N. Roy, A. Misra and D. Cook, Ambient and smartphone
sensor assisted ADL recognition in multi-inhabitant smart
environments, Journal of Ambient Intelligence and Human-
ized Computing 7(1) (2016), 1–19. doi:10.1007/s12652-015-
0294-7.

[32] P.C. Roy, S. Giroux, B. Bouchard, A. Bouzouane, C. Phua,
A. Tolstikov and J. Biswas, A possibilistic approach for ac-
tivity recognition in smart homes for cognitive assistance to
Alzheimer’s patients, in: Activity Recognition in Pervasive In-
telligent Environments, Atlantis Press, Paris, 2011, pp. 33–
58. ISBN 978-94-91216-05-3. doi:10.2991/978-94-91216-05-
3_2.

[33] G. Singla, D.J. Cook and M. Schmitter-Edgecombe, Recogniz-
ing independent and joint activities among multiple residents in
smart environments, Journal of Ambient Intelligence and Hu-
manized Computing 1(1) (2010), 57–63. doi:10.1007/s12652-
009-0007-1.

[34] S. Tremblay, D. Fortin-Simard, E. Blackburn-Verreault,
S. Gaboury, B. Bouchard and A. Bouzouane, Exploiting en-
vironmental sounds for activity recognition in smart homes,
in: AAAI Workshop: Artificial Intelligence Applied to Assistive
Technologies and Smart Environments, 2015.

[35] S.S. Vattam, D.W. Aha and M. Floyd, Case-based plan recog-
nition using action sequence graphs, in: Case-Based Reasoning
Research and Development, L. Lamontagne and E. Plaza, eds,
Springer International Publishing, Cham, 2014, pp. 495–510.
ISBN 978-3-319-11209-1. doi:10.1007/978-3-319-11209-1_
35.

[36] J. Wu, A. Osuntogun, T. Choudhury, M. Philipose and
J.M. Rehg, A scalable approach to activity recognition based
on object use, in: Proceedings of the Eleventh IEEE Interna-
tional Conference on Computer Vision, IEEE, 2007, pp. 1–8,
ISSN 1550-5499. doi:10.1109/ICCV.2007.4408865.

[37] K. Yordanova, F. Krüger and T. Kirste, Context aware ap-
proach for activity recognition based on precondition-effect
rules, in: IEEE International Conference on Pervasive Com-
puting and Communications Workshops (PerCom Workshops),
Vol. 00, IEEE, 2012, pp. 602–607. doi:10.1109/PerComW.
2012.6197586.

[38] K. Yordanova, S. Lüdtke, S. Whitehouse, F. Krüger,
A. Paiement, M. Mirmehdi, I. Craddock and T. Kirste,
Analysing cooking behaviour in home settings: Towards health
monitoring, Sensors 19(3) (2019). doi:10.3390/s19030646.

[39] Y. Zhang, V. Narayanan, T. Chakraborti and S. Kambham-
pati, A human factors analysis of proactive support in human-
robot teaming, in: IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS), IEEE, 2015, pp. 3586–
3593. doi:10.1109/IROS.2015.7353878.

https://doi.org/10.1613/jair.830
https://doi.org/10.1613/jair.830
https://doi.org/10.1016/S0004-3702(98)00003-4
https://doi.org/10.1016/S0004-3702(98)00003-4
http://www.planrec.org/Tutorial/Resources_files/pair-tutorial.pdf
http://www.planrec.org/Tutorial/Resources_files/pair-tutorial.pdf
https://doi.org/10.1613/jair.1.11243
https://doi.org/10.1109/ISCC.2015.7405604
https://doi.org/10.1109/ISCC.2015.7405604
https://doi.org/10.1109/LRA.2016.2535907
https://doi.org/10.1109/LRA.2016.2535907
https://doi.org/10.1145/2996200
https://bitbucket.org/planning-researchers/cloud-solver
https://doi.org/10.1109/THMS.2016.2641388
https://doi.org/10.1007/s12652-015-0294-7
https://doi.org/10.1007/s12652-015-0294-7
https://doi.org/10.2991/978-94-91216-05-3_2
https://doi.org/10.2991/978-94-91216-05-3_2
https://doi.org/10.1007/s12652-009-0007-1
https://doi.org/10.1007/s12652-009-0007-1
https://doi.org/10.1007/978-3-319-11209-1_35
https://doi.org/10.1007/978-3-319-11209-1_35
https://doi.org/10.1109/ICCV.2007.4408865
https://doi.org/10.1109/PerComW.2012.6197586
https://doi.org/10.1109/PerComW.2012.6197586
https://doi.org/10.3390/s19030646
https://doi.org/10.1109/IROS.2015.7353878

	Introduction
	Related work
	Intention recognition
	Recognition as parsing
	Recognition as planning

	Proactive robot assistance

	Problem statement
	Problem formalisation
	Running example: Smart home kitchen

	Action graphs
	Structural features
	Creation

	Node value updates
	Updating node values based on observations
	Node value updates with reverse actions

	Action prediction with action graphs
	Proactive robot assistance
	Experiments: Action prediction accuracy
	Setup
	Hypothesis goal action prediction
	Single subgoal action prediction
	Multiple interleaving subgoals

	Experiments: Robotic assistance
	Setup
	Results and discussion
	Changing beta
	Changing w
	Changing theta
	Noisy observations

	Conclusion and future work
	Acknowledgements
	Appendix A. Kitchen domain
	Appendix B. Reverse actions
	Appendix C. Experiments: Two subgoals
	Appendix D. Experiments: Robot assistance
	References

