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Abstract 

A formula has been derived to enable the prediction of the chord line force versus displacement for a 

shallow arc, thin, pre-curved bimetallic strip. A pre-curved bimetallic strip that is applied with a force 

in an axial orientation, that is, along its chord line, exhibits nonlinear force displacement 

characteristics. For thin bimetallic strips, whereby the radius of curvature is large compared to the 

thickness of the strip, the nonlinear relationship is parabolic in nature. The new theoretical formula 

introduced here, were correlated to the results of a set of force displacement tests and a good overall fit 

of the theory to the test data, was achieved. The formula put forward in this work enables the 

evaluation of large chord line displacements but is limited to the permissible stress limits of the 

material. This work can also be directly applied to thin shallow arc beams of a single material.  

The application of this work is in the field of bimetallic force displacement actuators.  
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1. Introduction 

Castigliano second energy theorem, according to (DAHLBERG.T 2004), enables the evaluation of 

small beam displacements and includes simple bending theory in its application. Simple bending 

theory is the limiting factor when applying Castigliano theorem and the resulting formula is only good 

for small order displacements. For the chord line displacement of a pre-curved beam that is part of a 

true arc of a circle, Castigliano theorem enables the calculation of the semi-circular arc displacement 

along the diameter, but even when the application of Castigliano is used for shallow arcs, it can only 

be used for small displacements due to the inherent limitations of the simple bending theory within its 

integration. This work concentrates on very shallow arcs, whereby the radius of curvature is 

significantly larger than the radius of curvature at full circle for the same semi-circle arc length. The 

formula derived here, enable the evaluation of large chord line displacements as a function of an 

applied force, and holds true for all thin bimetallic arcs from very shallow, to full circle arcs. Fig.1 

shows a side view of a shallow arc pre-curved bimetallic strip mounted such that a degree of rotational 

freedom exists at both ends, but end “A” is also fixed against displacement along the chord line axis. 

Although shown quite thick, the thickness of the bimetallic strip is considered to be thin, and in the 

region of a thickness to radius ratio of 100: 1 or larger. In Fig.1, α1 and α2 are the coefficients of 

linear expansion for each material making up the bimetallic strip, whereby α2 is numerically higher 

than α1.From the geometry, chord length L can easily be obtained as a function of arc length 𝑨𝒃 and 

radius of curvature R.  

This work will introduce the theory and then go on to prove the effectiveness of theory against actual 

bimetallic test data results. 

                 

                                           Fig.1    Pre-Curved Bimetallic Strip Material  

The underlying geometry of the pre-curved bimetallic strip is shown is in Fig.2, where the three 

important radii of curvature are defined. It should be noted that all three arcs of Fig. 2 are the same 

length 𝑨𝒃 . 



                                                                                   3 
 

            

                                 Fig. 2 Defining force displacement geometry 

2. Theory and calculations 

 

The following sections will introduce new methods and formulae that enable the calculation of the 

chord line force vs displacement for thin, shallow arc, pre-curved bimetallic strips. The derivation in 

the following section facilitates the calculation of the radius of curvature to displacement relationship 

that is crucial in evaluating the force displacement formula in later sections. Castigliano theorem 

enables the calculations of force vs displacement, but is limited to small displacements. This work 

introduces a mechanism that can cope with larger displacements and enables an accurate prediction of 

the forces when non-linear displacements are found. 

2.1   The non-linear 𝑹𝒅  𝒗𝒔 𝒙𝒅  derivation 

 

From Fig .1 the general chord length of any arc is generally published as 

  𝑳 = 𝟐𝑹𝒔𝒊𝒏  ( 
𝜽

𝟐
 ) [2]   eqn.(1)   

where:  L   is the chord length (mm), 

             R   is the radius of curvature (mm), 

             A   is the arc length part of a true circle (mm) and 

             θ   is  the angle subtending the portion of arc A  over distance L (radian). 
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By using the established relationship: arc = radius x angle (in radians),   A =  R θ and substituting for 

θ =
𝑨

𝑹
   into eqn.(1) angle θ  can be eliminated and the length of a chord L  as a function of arc length 

A  and radius of curvature R, can be obtained. Denoting the lengths by suffixes b,c and d : 

Thus,                                          𝑳𝒄 = 𝟐𝑹𝒄𝐬𝐢𝐧 ( 
𝑨𝒃

𝟐𝑹𝒄
 )  eqn.(2)   

And   thus                                  𝑳𝒅 = 𝟐𝑹𝒅𝐬𝐢𝐧 ( 
𝑨𝒃

𝟐𝑹𝒅
 )  eqn.(3)   

 

Where suffix “b” is the bent arc length in Fig.2 in (mm) 

Where suffix “c” is the initial pre-curved “cold” chord length in (mm) 

Where suffix “d” is displaced chord length in (mm) as a function of an externally applied load F. 

Where suffix “dia” denotes arc geometry at the diameter of the circle.  

From Fig. 2, it follows that :          𝒙𝒅 = 𝑳𝒄 − 𝑳𝒅     eqn.(4)   

Where 𝒙𝒅   is the displacement from the initial position 𝑳𝒄 as a result of an applied load F (N). 

For the evaluation of the Force vs Displacement relationship, the relationship between displaced radius 

of curvature 𝑹𝒅 and displacement 𝒙𝒅 first needs to be established. 

From eqn.(3) and eqn.(4) and by substitution : 

                                                   𝑳𝒄 − 𝒙𝒅 = 𝟐𝑹𝒅𝐬𝐢𝐧 ( 
𝑨𝒃

𝟐𝑹𝒅
 )  eqn.(5) 

But what is required is  𝑹𝒅 as function of 𝒙𝒅, which is the non-linear influence on the force 

displacement relationship. From eqn.(5) it can be seen that it is not possible to explicitly express 𝑹𝒅 as 

a function of 𝒙𝒅. The "sin ( 
𝑨𝒃

𝟐𝑹𝒅
 )" term of eqn.(5) can be expanded in the Taylor series: 

The general rule for a sine expansion using Taylor series is published as: 

                                        𝒔𝒊𝒏(𝒙) ≈ ∑
(−𝟏)𝒏

(𝟐𝒏+𝟏)!

→∞
𝒏=𝟎 𝑥(2𝑛+1)  eqn.(6)   (Abramowitz.M 1972) 

And thus applying for 𝒙: 

                                                  𝒔𝒊𝒏(𝒙) ≈ 𝒙 −
𝒙𝟑

𝟔
+

𝒙𝟓

𝟏𝟐𝟎
−

𝒙𝟕

𝟓𝟎𝟒𝟎
  eqn.(7)  (Abramowitz.M 1972) 

 

Now substituting 
𝑨𝒃

𝟐𝑹𝒅
 into 𝒙 of eqn.(7) and expanding until the 4th term, this becomes: 

         𝑳𝒄 − 𝒙𝒅 ≈ 𝟐𝑹𝒅( 
𝑨𝒃

𝟐𝑹𝒅
−

𝟏

𝟔∗𝟖

𝑨𝒃
𝟑

𝑹𝒅
𝟑 +

𝟏

𝟏𝟐𝟎∗𝟑𝟐

𝑨𝒃
𝟓

𝑹𝒅
𝟓 −

𝟏

𝟓𝟎𝟒𝟎∗𝟏𝟐𝟖

𝑨𝒃
𝟕

𝑹𝒅
𝟕 ) eqn.(8) 

Using the substitution of 𝜸 =
𝟏

𝑹𝒅
𝟐  into eqn.(8)  simplifying and rearranging becomes: 
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𝑨𝒃

𝟔

𝟓𝟎𝟒𝟎∗𝟔𝟒
 𝜸𝟑 −

𝑨𝒃
𝟒

𝟏𝟐𝟎∗𝟏𝟔
𝜸𝟐 +

𝑨𝒃
𝟐

𝟔∗𝟒
𝜸 +

𝑳𝒄− 𝒙𝒅−𝑨𝒃

𝑨𝒃
 = 0   eqn.(9) 

Eqn(9) is a cubic equation of the general form : 

                                                  𝒂 𝜸𝟑 + 𝒃𝜸𝟐 + 𝒄𝜸 + 𝒅 = 0   eqn.(10) 

Eqn(9) can be solved by finding the discriminant and coefficients in the equation. 

The discriminant for a cubic equation is generally published as : 

                 ∆= 𝟏𝟖𝒂𝒃𝒄𝒅 − 𝟒𝒃𝟑𝒅 + 𝒃𝟐𝒄𝟐 − 𝟒𝒂𝒄𝟐 − 𝟐𝟕𝒂𝟐𝒅𝟐  eqn.(11) (Abramowitz.M 1972) 

Where a, b, c, d are the coefficients of eqn.(10) and are equal to: 

                                                                          𝒂 =
𝑨𝒃

𝟔

𝟓𝟎𝟒𝟎∗𝟔𝟒
   eqn.(12) 

                                                                    𝒃 = −
𝑨𝒃

𝟒

𝟏𝟐𝟎∗𝟏𝟔
    eqn.(13) 

                                                            𝒄 =
𝑨𝒃

𝟐

𝟔∗𝟒
          eqn.(14) 

                                                           𝒅 =
𝑳𝒄− 𝒙𝒅−𝑨𝒃

𝑨𝒃
  eqn.(15) 

In this particular case we have the condition that ∆< 0 which means that the equation has only one 

real root and also two complex conjugate roots. Due to physical nature of the results required, only the 

real root has significance in the solving of the equation. 

The roots of the eqn.(9), in terms of the coefficients, can be solved by the published general formula 

for solving cubic equations: 

𝜸
𝒌  =−

𝟏

𝟑𝒂 
(𝒃+𝒖𝒌𝑪+

∆𝟎
𝒖𝒌𝑪

) 
  eqn.(16)  

 

Where                                                         𝒄 = √∆𝟏+√∆𝟏
𝟐−𝟒∆𝟎

𝟑

𝟐

𝟑

  eqn.(17) 

 
With                                                          ∆𝟎= 𝒃𝟐 − 𝟑𝒂𝒄            eqn.(18) 

                                                                  ∆𝟏= 𝟐𝒃𝟑 − 𝟗𝒂𝒃𝒄 + 𝟐𝟕𝒂𝟐𝒅    eqn.(19)         

And                                                                    ∆𝟏
𝟐 − 𝟒∆𝟎

𝟑= −𝟐𝟕𝒂𝟐∆        eqn.(20)            

Where  ∆  is the discriminant in shown in eqn.(11) earlier. 

And the three cube roots are unity are therefore : 

                                          𝒖𝟏 = 𝟏;  𝒖𝟐 =
−𝟏+𝒊√𝟑

𝟐
 ;  𝒖𝟑 =

−𝟏−𝒊√𝟑

𝟐
     eqn.(21) 

With  𝒌 = 𝟏, 𝟐, 𝟑  substituted into eqn.(16)  
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From experimental test calculations the root 𝜸𝟐 of which 𝒖𝟐 is the real root that best fits the 

application requirements. 

Thus from the earlier substitution of 𝜸 =
𝟏

𝑹𝒅
𝟐  into eqn.(8)  by simple rearrangement in terms of radius 

of curvature, thus                                              

                                                                   𝑹𝒅 =
𝟏

√𝜸𝟐
   eqn.(22) 

The above equations were programmed into an Electronic spread sheet and the formulae were found to 

hold true for the whole range of values and possible combinations of parameters. Catia R19 Solid 

modelling software was used to test the values which accorded to the theory with a high degree of 

accuracy. The relationships just derived, enables the accommodation of the non-linear displacement 

characteristics by modifying the initial radius of curvature 𝑹𝒄 to reflect the changed radius of 

curvature 𝑹𝒅 as a function of displacement 𝒙𝒅.  

𝑹𝒅 is used to evaluate the force displacement equation in the next section. 

Using the formulae just derived a 𝑹𝒅  𝒗𝒔 𝒙𝒅  curve was plotted out using the following initial 

conditions : 

                                                                          𝑨𝒃 = 𝟏𝟎𝟎 𝒎𝒎  arc length  

                                                                          𝑹𝒄 = 𝟏𝟎𝟎𝒎𝒎  initial radius of curvature of the arc 

 

The results of the calculation are shown in Fig.3 which clearly show the nonlinear relationship.          

         

                                                            Fig. 3   𝑅𝑑  𝑣𝑠 𝑥𝑑  plotted out. 

2.2 Evaluation of Force vs Displacement using 𝑹𝒅 as a function of 𝒙𝒅 

 

The derivation of the force displacement formula is based upon simple bending theory and the new 

evaluation of 𝑹𝒅 as a function of displacement 𝒙𝒅. The method introduces an imaginary force 𝑭𝒄  that 

is considered to be the equilibrium force required to hold the bimetallic strip at the initial radius of 

curvature 𝑹𝒄 when an axial load 𝑭𝒄  is applied to free end of the flat strip. The imaginary force 𝑭𝒄  
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yields an imaginary moment 𝑴𝒄 when multiplied by the distance 𝒉𝒄 , see Fig.2. The imaginary 

moment in simple bending terms is: 

                                                                 𝑴𝒄 =
𝑬𝑰

𝑹𝒄
       eqn.(23)    

Likewise as result of applied real force 𝑭𝒅   

                                                                 𝑴𝒅 =
𝑬𝑰

𝑹𝒅
      eqn.(24) 

Where 𝑴𝒅&𝑴𝒄  are bending moments (J) 

E   is the Youngs Modulus for the bimetallic strip   ( 
𝑁

𝑚𝑚2) 

I    is the second moment of area of the cross section of the strip (𝑚𝑚4 ) 

The difference between the two energy states 𝑴𝒅 & 𝑴𝒄  are equated to the force 𝑭𝒅  x 𝒉𝒅 

Thus the displaced force is given by: 

𝑭𝒅 =
 𝑴𝒅 − 𝑴𝒄

𝒉𝒅
   (N) eqn.(25) 

Where 𝒉𝒅 can easily be derived using the given geometry, thus 

                                                               𝒉𝒅 =
𝑳𝒅

𝟐
𝒕𝒂𝒏(

𝑨𝒃

𝟒𝑹𝒅
)  (mm) eqn.(26) 

 But from eqn. (4) previously  𝒙𝒅 = 𝑳𝒄 − 𝑳𝒅      

 Thus eqn.(25) can be written in terms of displacement  𝒙𝒅. 

Hence                                             𝑭𝒅 =
 𝑴𝒅 − 𝑴𝒄

(𝑳𝒄−𝒙𝒅)

𝟐
𝒕𝒂𝒏(

𝑨𝒃
𝟒𝑹𝒅

)   
 (N) eqn.(27) 

Thus the force 𝑭𝒅 is evaluated as a function of the change in moments 𝑴𝒅 & 𝑴𝒄 , one real, one 

imaginary, divided by the height 𝒉𝒅 which is a function of  𝑹𝒅, 𝒙𝒅, 𝑳𝒄, and arc length 𝑨𝒃.  

This is the force vs displacement equation that overcomes the limitations of simple bending theory, 

and small displacements, via the introduction of 𝑹𝒅 as a function of displacement 𝒙𝒅  which 

accommodates the nonlinear characteristics of the thin pre-curved beam geometry. 

In using eqn.(27), it is normal to know 𝑨𝒃, 𝑳𝒄 and 𝑹𝒄 as the initial pre-curved conditions of the 

bimetallic strip. By inputting a displacement 𝒙𝒅 from the initial length 𝑳𝒄, 𝑭𝒅 is evaluated. 

In practice the amount of displacement 𝒙𝒅 of the pre-curved bimetallic strip, is limited to the 

permissible stresses normally defined by the materials properties of the bimetallic.  

2.3 Summary of theory 

 

From section 2.1 a new method of obtaining the  𝑅𝑑   𝑣𝑠 𝑥𝑑  relationship was introduced. This resulted 

in a mechanism to evaluate the non- linearity that limits simple bending theory. 

The work from 2.1 was used in the force displacement derivation in section 2.2.  The theoretical 

equations put forward in the previous sections were programmed into an electronic worksheet and 

theoretical values corresponding to test samples were generated. Testing of pre-curved bimetallic strip 
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3. Test methodology 

 

For the experimental investigation, two independent test sets were created and tested. 

The object of the tests was to verify the new formulae proposed in the earlier sections. In order to 

ascertain the robustness of the force deflection formulae two geometry test sets were used. 

Test set 1 comprised of 7 bimetallic strips all with the same initial radius of curvature 𝑹𝒄= 80mm, 

Test set 2 comprised of 5 bimetallic strips of constant arc length 𝑨𝒃 = 𝟏𝟎𝟎𝒎𝒎, see Table 1. 

 

                                             Table 1   Test sets 1& 2 

3.2 Test setup 

 

For both test sets, bimetallic test samples comprising of Nickel steel and Invar 36 were made from  

initially straight bimetallic strip supplied by Shivalik SBC-206-1. The thickness of each metal was 

0.2mm and thus the total thickness of each bimetallic strip was 0.4mm, the width of the strips was 

5mm. The Young’s Modulus of the steel is 213 GN/m
2
 and that of Invar 36 is 145GN/m

2
. The 

coefficient of linear expansion for steel is 20 x 10
-6

/K and for Invar 36 is 1.85 x 10
-6

/K. For both test 

sets, all the bimetallic strips were cut back to the sizes as indicated in the two test sets, then they were 

gently cold formed into their radius of curvatures according to the test set sizes. After the final sizes of 

each test sample were checked for length and radius of curvature see Fig.5 using a set of similar 

formers. Each test sample was stress relieved soaked by heat treatment for 2 hours at 350°C according 

to (Kanthal 2008). 

                                                                           

                                       Fig. 5 showing typical roundness formers used 

Test set 1 Test set 2 

constant constant

 

  

  

  

  

 

 
 
 

𝑹𝒄= 80mm 

 𝑹𝒄 = 50mm 

 𝑹𝒄 = 64mm 

 𝑹𝒄 = 70mm 

 𝑹𝒄 = 80mm 

 𝑹𝒄 = 84mm 



                                                                                   9 
 

      

                               Fig. 7 Generic Force Displacement Test Set up 

3.2 Test Method 

 

The following test procedure was used for both test sets with all 12 test samples. 

a) Test sample mounted into test rig as shown in Fig.7. 

b) Force and displacement gauges set to zero. 

c) Ambient temperature recorded 

d) Test sample displaced by the moving Sauter Force /displacement gauge. 

e) Force and displacement values recorded until the maximum displacement achieved. 

f) Test sample removed from rig and checked for roundness against former. 

g) Steps a) to f) repeated for 3 runs** for all samples in test set. 

** Test set 2 only one test run per test sample. 

3.3 Test results 

 

Both sets of tests yielded excellent force displacement data values which were translated into force 

displacement curves using Microsoft Excel spread sheet. Due to the simple test setup and the 

repeatable accuracy of the Sauter force and displacement gauges, very little experimental scatter of 

data points occurred. Fig. 8 shows the force displacement curves for Test set 1, ie; varying arc lengths 

𝑨𝒃, but keeping the radius of curvature constant at 𝑹𝒄= 80mm. 
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                          Fig. 8 Test set 1 Comparison of theory to test results 

Fig.9 shows the force displacement Test set 2, ie: constant arc length 𝑨𝒃 = 𝟏𝟎𝟎𝒎𝒎, with varying 

radii of curvature 𝑹𝒄. 

 

                           Fig.9 Test set 2 Comparison of theory to test results 
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4. Discussion 

 

From the test results in the previous section, a good overall correlation exists between the formula 

introduced here, and the test data from the testing of the 12 sample bimetallic strips. Due to the fact 

that for test set 2, only one test run was possible for each test sample, the test data to theory variance   

was larger in this test set. Comparison must be made with Castigliano’s derived force displacement 

formulae with the same data. 

                                                           

                                                                                      

                                                                                                                         eqn.(35)                                  

 

Eqn(35) is the unmodified quadrant derived formula for a semi-circle. This Castigliano derived 

expression cannot cope with shallow arcs, or large displacements. 

 

                                                eqn.(36)  

 

Eqn.(36) is Castigliano theorem applied using  xy, coordinate geometry in the integration  process, 

however it is limited to a non -varying 𝑹𝒄, and thus it is a linear expression that does not match well to 

the test data. 

     

                               eqn.(37)   

Eqn.(37) is the same derivation as eqn.(36) ,except here, the modified radius of curvature 𝑹𝒅 replaces 

𝑹𝒄. As can be seen from Fig.10, the application of the variable radius of curvature greatly improves 

the estimation of the force vs displacement when compared to the fixed radius of curvature 𝑹𝒄. And 

lastly, the newly introduced force displacement formula which most closely matches the test data. 

                                              𝑭𝒅 =
 𝑴𝒅 − 𝑴𝒄

(𝑳𝒄−𝒙𝒅)

𝟐
𝒕𝒂𝒏(

𝑨𝒃
𝟒𝑹𝒅

)   
  introduced in section 2.2 

                                                                        

              Fig. 10 Comparison of Castigliano  to new force displacement formulae 𝑭𝒅 
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5. Conclusions 

This work has introduced a new method of calculating the chord line force at a displacement, for a 

thin, shallow arc, pre-curved bimetallic strip. This work also applies to a single material curved beam 

that is axially loaded along it’s chord line. An important mechanism for evaluating the radius of 

curvature as a function of chord line displacement was introduced. This new relationship was shown to 

enhance the accuracy of matching a non-linear force displacement with good results. 

It has been shown that the force displacement formula introduced, can deal with relatively large 

displacements with a reasonably good correlation to the test data. 
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Appendix 

 

             Table 1                                          Table 2                                      Table 3 

 

           
 

           

                    

 

 

 

 

AB = 80 mm Rc=80mm

Xd F(N) F(N) F(N) Fave Fd

0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.22 0.22 0.23 0.22 0.21

0.48 0.42 0.41 0.43 0.42 0.41

0.72 0.59 0.59 0.61 0.60 0.58

0.96 0.75 0.75 0.77 0.76 0.74

1.20 0.91 0.90 0.92 0.91 0.89

1.44 1.05 1.05 1.07 1.06 1.03

1.68 1.18 1.18 1.20 1.19 1.16

1.92 1.31 1.31 1.32 1.31 1.28

2.16 1.42 1.42 1.44 1.42 1.39

2.40 1.53 1.53 1.54 1.53 1.50

AB =100 mm Rc=80mm

Xd F(N) F(N) F(N) Fave Fd

0.00 0.00 0.00 0.00 0.00 0.00

0.45 0.15 0.15 0.14 0.14 0.13

0.90 0.27 0.27 0.27 0.27 0.26

1.35 0.39 0.39 0.38 0.38 0.37

1.80 0.49 0.49 0.49 0.49 0.47

2.25 0.60 0.59 0.59 0.59 0.57

2.70 0.69 0.69 0.68 0.68 0.66

3.15 0.78 0.78 0.77 0.77 0.74

3.60 0.86 0.86 0.86 0.86 0.82

4.05 0.94 0.94 0.93 0.93 0.89

4.50 1.01 1.01 1.01 1.01 0.96

AB =120 mm Rc=80mm

Xd  F(N) F(N) F(N) Fave Fd(N)

0.00 0.00 0.00 0.00 0.00 0.00

0.80 0.06 0.10 0.11 0.09 0.10

1.60 0.19 0.17 0.20 0.18 0.19

2.40 0.24 0.26 0.29 0.26 0.27

3.20 0.32 0.34 0.37 0.34 0.35

4.00 0.40 0.42 0.44 0.42 0.42

4.80 0.47 0.48 0.51 0.49 0.48

5.60 0.54 0.55 0.57 0.55 0.55

6.40 0.60 0.61 0.63 0.61 0.61

7.20 0.65 0.67 0.69 0.67 0.66

8.00 0.71 0.72 0.74 0.72 0.71
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            Table 3                                            Table 4                                     Table 5 

 

             

       

    Table 6                Table 4            Table 6             Table 7            Table 8             Table 9 

                              Test Set 2         Test Set 2         Test Set 2        Test Set 2        Test Set 2              

 

                      

                     Table 10   Comparative data of different Force Displacement formulae 

                                                    

 

AB =140 mm Rc=80mm

Xd F(N) F(N) F(N) Fave Fd(N)

0.00 0.00 0.00 0.00 0.00 0.00

1.30 0.06 0.08 0.08 0.07 0.08

2.60 0.13 0.15 0.15 0.14 0.15

3.90 0.20 0.22 0.22 0.21 0.21

5.20 0.26 0.28 0.28 0.27 0.27

6.50 0.32 0.33 0.34 0.33 0.33

7.80 0.37 0.39 0.39 0.38 0.38

9.10 0.43 0.44 0.44 0.43 0.43

10.40 0.47 0.48 0.49 0.48 0.48

11.70 0.52 0.53 0.53 0.52 0.52

13.00 0.56 0.57 0.57 0.57 0.56

AB =160 mm Rc=80mm

Xd  F(N) F(N) F(N) Fave Fd(N)

0 0 0 0 0 0

1.40 0.04 0.05 0.05 0.05 0.05

2.80 0.09 0.10 0.10 0.09 0.09

4.20 0.13 0.14 0.14 0.13 0.13

5.60 0.17 0.18 0.18 0.17 0.17

7.00 0.21 0.21 0.22 0.21 0.20

8.40 0.24 0.25 0.25 0.25 0.23

9.80 0.27 0.28 0.29 0.28 0.27

11.20 0.31 0.31 0.32 0.31 0.30

12.60 0.34 0.35 0.35 0.34 0.33

14.00 0.37 0.38 0.38 0.37 0.36

AB = 180 mm Rc=80mm

Xd F(N) F(N) F(N) Fave Fd(N)

0.00 0.00 0.00 0.00 0.00 0.00

2.50 0.05 0.05 0.05 0.05 0.05

5.00 0.09 0.09 0.10 0.09 0.09

7.50 0.13 0.13 0.14 0.13 0.13

10.00 0.17 0.17 0.18 0.17 0.17

12.50 0.21 0.21 0.21 0.21 0.20

15.00 0.24 0.24 0.25 0.24 0.24

17.50 0.28 0.28 0.28 0.28 0.27

20.00 0.31 0.31 0.32 0.31 0.30

22.50 0.34 0.34 0.35 0.34 0.33

25.00 0.37 0.37 0.38 0.37 0.36

Ab=200

Xd F(N) Fd(N)

0.0 0.00 0.00

2.0 0.04 0.02

4.0 0.06 0.05

6.0 0.08 0.07

8.0 0.10 0.09

10.0 0.12 0.11

12.0 0.14 0.13

14.0 0.16 0.15

Rc= 80 Xd  F(N) Fd

0.00 0.00 0.00

1.00 0.14 0.13

2.00 0.26 0.25

3.00 0.38 0.37

4.00 0.50 0.48

5.00 0.60 0.58

6.00 0.71 0.67

7.00 0.81 0.76

7.50 0.85 0.81

Ab=100, Rc=50

Ab=100, Rc=64

Xd  F(N) Fd

0.00 0.00 0.00

0.50 0.10 0.10

1.00 0.19 0.19

1.50 0.28 0.28

2.00 0.36 0.37

2.50 0.44 0.45

3.00 0.51 0.52

3.50 0.58 0.59

4.00 0.66 0.66

4.50 0.73 0.73

5.00 0.79 0.79

5.50 0.85 0.85

Ab=100, Rc=70

Xd  F(N) Fd

0 0 0

0.50 0.12 0.12

1.00 0.23 0.23

1.50 0.33 0.33

2.00 0.43 0.42

2.50 0.51 0.51

3.00 0.60 0.59

3.50 0.68 0.67

4.00 0.75 0.75

4.50 0.82 0.82

5.00 0.89 0.88

Ab=100, Rc=80

Xd  F(N) Fd

0.00 0.00 0.00

0.50 0.15 0.15

1.00 0.28 0.28

1.50 0.39 0.40

2.00 0.50 0.52

2.50 0.60 0.62

3.00 0.69 0.71

3.50 0.78 0.80

4.00 0.87 0.89

4.50 0.95 0.96

Ab=100, Rc=84

Xd  F(N) Fd

0.00 0.00 0.00

0.50 0.17 0.16

1.00 0.31 0.31

1.50 0.44 0.44

2.00 0.56 0.56

2.50 0.67 0.66

3.00 0.77 0.76

3.50 0.86 0.86

4.00 0.95 0.94

Rc=80 

Xd F(N) Fd(N) Fcast Fc Fcd

0.000 0.000 0.000 0.000 0.000 0.000

1.300 0.060 0.077 0.013 0.102 0.096

2.600 0.130 0.147 0.025 0.204 0.180

3.900 0.200 0.212 0.038 0.306 0.256

5.200 0.260 0.272 0.050 0.408 0.324

6.500 0.320 0.328 0.063 0.510 0.387

7.800 0.370 0.379 0.075 0.613 0.444

9.100 0.425 0.429 0.088 0.715 0.497

10.400 0.470 0.475 0.100 0.817 0.547

11.700 0.515 0.520 0.113 0.919 0.593

13.000 0.560 0.560 0.125 1.021 0.636

E=211GPaAb =140


