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Abstract

Geographic data is one of the fundamental components of any Geographic Information
System (GIS). Nowadays, the utility of GIS becomes part of everyday life activities,
such as searching for a destination, planning a trip, looking for weather information,
etc. Without a reliable data source, systems will not provide guaranteed services. In
the past, geographic data was collected and processed exclusively by experts and pro-
fessionals. However, the ubiquity of advanced technology results in the evolution of
Volunteered Geographic Information (VGI), when the geographic data is collected and
produced by the general public. These changes influence the availability of geographic
data, when common people can work together to collect geographic data and produce
maps. This particular trend is known as collaborative mapping. In collaborative map-
ping, the general public shares an online platform to collect, manipulate, and update
information about geographic features. OpenStreetMap (OSM) is a prominent example
of a collaborative mapping project, which aims to produce a free world map editable and
accessible by anyone.

During the last decade, VGI has expanded based on the power of crowdsourcing. The
involvement of the public in data collection raises great concern about the resulting
data quality. There exist various perspectives of geographic data quality; this disserta-
tion focuses particularly on the quality of data classification (i.e., thematic accuracy). In
professional data collection, data is classified based on quantitative and/or qualitative ob-
servations. According to a pre-defined classification model, which is usually constructed
by experts, data is assigned to appropriate classes. In contrast, in most collaborative
mapping projects data classification is mainly based on individuals’ cognition. Through
online platforms, contributors collect information about geographic features and trans-
form their perceptions into classified entities. In VGI projects, the contributors mostly
have limited experience in geography and cartography. Therefore, the acquired data may
have a questionable classification quality.

This dissertation investigates the challenges of data classification in VGI-based map-
ping projects (i.e., collaborative mapping projects). In particular, it lists the challenges
relevant to the evolution of VGI as well as to the characteristics of geographic data.
Furthermore, this work proposes a guiding approach to enhance the data classification
quality in such projects. The proposed approach is based on the following premises: (i)
the availability of large amounts of data, which fosters applying machine learning tech-
niques to extract useful knowledge, (ii) utilization of the extracted knowledge to guide
contributors to appropriate data classification, (iii) the humanitarian spirit of contrib-
utors to provide precise data, when they are supported by a guidance system, and (iv)
the power of crowdsourcing in data collection as well as in ensuring the data quality.

This cumulative dissertation consists of five peer-reviewed publications in international
conference proceedings and international journals. The publications divide the disser-
tation into three parts: the first part presents a comprehensive literature review about
the relevant previous work of VGI quality assurance procedures (Chapter 2), the second
part studies the foundations of the approach (Chapters 3-4), and the third part discusses
the proposed approach and provides a validation example for implementing the approach
(Chapters 5-6). Furthermore, Chapter 1 presents an overview about the research ques-
tions and the adapted research methodology, while Chapter 7 concludes the findings and
summarizes the contributions.
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Abstract

The proposed approach is validated through empirical studies and an implemented web

application. The findings reveal the feasibility of the proposed approach. The output

shows that applying the proposed approach results in enhanced data classification qual-

ity. Furthermore, the research highlights the demands for intuitive data collection and

data interpretation approaches adequate to VGI-based mapping projects. An interac-

tion data collection approach is required to guide the contributors toward enhanced data

quality, while an intuitive data interpretation approach is needed to derive more precise

information from rich VGI resources.
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Zusammenfassung

Geographische Daten sind eine der wichtigsten Komponenten eines jeden Geoinforma-
tionssystems (GIS). Heutzutage werden GIS zunehmend in Alltagssituationen eingesetzt
z.B. für die Suche eines Zielorts, die Planung einer Route, zum Abruf von Wetter-
vorhersagen usw. Ohne eine zuverlässige Datenquelle funktionieren solche Dienste jedoch
nicht wie beabsichtigt. In der Vergangenheit wurden geographische Daten ausschließlich
von Fachleuten und Experten gesammelt und verarbeitet. Inzwischen ist es durch die
Verbreitung fortschrittlicher Technologien möglich, dass im Rahmen von Volunteered
Geographic Information (VGI; deutsch: “freiwillig erhobene geographische Informatio-
nen”) geographische Daten von der Öffentlichkeit gesammelt und erstellt werden. Diese
Veränderung beeinflusst die Verfügbarkeit von geographischen Daten, da beim VGI eine
Gruppe von Menschen zusammen arbeiten kann, um Daten zu sammeln und Karten zu
erstellen. Dieser Trend wird auch als kollaboratives Mapping bezeichnet. Beim kollab-
orativen Mapping wird eine Online Plattform verwendet, um Daten über geographis-
che Eigenschaften zu sammeln, zu bearbeiten und zu aktualisieren. Ein prominenter
Vertreter des kollaborativen Mappings ist OpenStreetMap (OSM), welches das Ziel ver-
folgt, eine für jeden frei verfügbare und bearbeitbare Karte der Welt bereit zu stellen.

Während des letzten Jahrzehnts hat sich VGI mit Hilfe des Crowdsourcing weiterver-
breitet. Die Beteiligung der Öffentlichkeit an der Erhebung geographischer Daten führt
jedoch zu Bedenken bezüglich der Datenqualität. Es existieren unterschiedliche Be-
trachtungsweisen hinsichtlich der Qualität von geographischen Daten. Diese Disserta-
tion beschäftigt sich hauptsächlich mit der Qualität der Datenklassifizierung (d.h. the-
matische Genauigkeit). In der professionellen Datenerhebung werden die Daten nach
quantitativen und/oder qualitativen Kriterien klassifiziert. Mit Hilfe eines vordefinierten
Klassifikationsmodells, welches von Experten erstellt wird, werden die Daten geeigneten
Klassen zugeordnet. Im Gegensatz dazu basiert die Datenklassifikation im Rahmen der
meisten kollaborativen Mapping Projekte auf dem subjektiven Eindruck der beitragenden
Individuen. Über Online-Plattformen werden Informationen über geografische Objekte
gesammelt indem die Mitwirkenden ihre subjektiven Eindrücke in klassifizierte Einträge
umwandeln. In VGI-Projekten haben die Mitwirkenden in der Regel begrenzte Erfahrung
in der Domäne Geographie und Kartographie. Als Folge ist eine hohe Qualität der re-
sultierenden Klassifikationen nicht gewährleistet.

Diese Dissertation befasst sich mit den Herausforderungen die im Rahmen der Klassi-
fizierung von Daten in VGI basierten Mapping Projekten (z.B. kollaborative Mapping
Projekte) auftreten. Insbesondere werden die Herausforderungen, welche für die Entste-
hung von VGI und die Charakteristik von geographischen Daten relevant sind aufgelis-
tet. Darüber hinaus wird ein Ansatz zur Verbesserung der Klassifizierung von Daten
in solchen Projekten vorgestellt. Der vorgeschlagene Ansatz macht sich die folgenden
Eigenschaften von VGI zu nutze: i) die Verfügbarkeit großer Datenmengen, durch die
die Anwendung von Techniken des Maschinenlernens möglich wird, (ii) die Verwendung
von extrahiertem Wissen zur Unterstützung einer korrekten Datenklassifikation, iii) die
Bereitschaft und das Streben der Mitwirkenden präzise Daten zur Verfügung zu Stellen,
wenn Sie von einem Leitsystem unterstützt werden, und iv) der Nutzen des Crowdsourc-
ing sowohl für die Datenerfassung als auch für die Prüfung der Datenqualität.
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Zusammenfassung

Diese kumulative Dissertation besteht aus fünf begutachteten Artikeln, welche in in-
ternationalen Konferenzberichten bzw. internationalen Fachzeitschriften veröffentlicht
wurden. Die Veröffentlichungen gliedern die Dissertation in drei Teile. Der erste Teil en-
thält eine umfassende Literaturübersicht existierender Arbeiten zu Methoden der Qual-
itätssicherung in VGI (Kapitel 2). Der zweite Teil prüft die Grundlagen des vorgeschlage-
nen Ansatzes (Kapitel 3-4) und der dritte Teil diskutiert den vorgeschlagenen Ansatz und
stellt ein Beispiel zur Validierung der Implementierung des Ansatzes vor (Kapitel 5-6).
Des weiteren gibt Kapitel 1 einen Überblick über die wissenschaftliche Fragestellung und
die verwendete Methodik, während Kapitel 7 die Ergebnisse und den wissenschaftlichen
Beitrag der Arbeit zusammenfasst.

Der vorgeschlagene Ansatz wird durch eine Reihe von empirischen Untersuchungen sowie
durch eine eigene dafür entwickelte Web-Anwendung validiert. Die Validierungsergeb-
nisse sprechen für die Durchführbarkeit des vorgeschlagenen Ansatzes und weisen nach,
dass mit dem Ansatz die Qualität der Klassifikation verbessert werden kann. Ferner
verdeutlicht die gesamte Dissertation den Bedarf von VGI-basierten kollaborativen Map-
ping Projekten an interaktiven Datenerfassungsschnittstellen und intuitiven Ansätzen
zur Dateninterpretation. Während für die Dateneingabe eine intelligente Benutzer-
schnittstelle erforderlich ist, um die Beiträge der Anwender qualitativ zu verbessern, ist
eine intuitive Dateninterpretation notwendig, um den Informationsgewinn – ungeachtet
der Qualität der bereitgestellten Daten – zu erhöhen.
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Chapter 1

Introduction

This dissertation focuses on Volunteered Geographic Information (VGI), which results

from collaborative mapping activities. In particular, this research investigates the poten-

tial utility of VGI as a complementary data source for land use and land cover mapping.

However, there are several challenges to ensure the data quality. This dissertation gives

an overview of the quality assurance procedures of VGI. It investigates, with more fo-

cus, the quality of data classification. Furthermore, the dissertation proposes a guided-

classification approach to enhance data classification quality in VGI resources. This

chapter presents an overview of VGI evolving, discusses the challenges of quality assur-

ance in VGI, and highlights the scope of this research. In addition, the chapter includes

the research foundations and methodologies, the organization of the following chapters,

and a list of the contributions.

1.1 Motivation

Digital forms of geographic information date to the earliest Geographic Information Sys-

tem (GIS) in the 1960s. In a broad sense, digital geographic data is one of the five

fundamental elements of any GIS application (DeMers, 2009). Without data, GIS ap-

plications would not be able to provide reliable services. Over the past decades, the

availability of digital geographic data has changed dramatically. In the past, users had

to wait – sometimes years – for mapping agencies and large organizations to produce

digital maps. The process was sophisticated, time consuming, and costly. Moreover,

the fields of geographic data collection and map production were exclusively reserved

for cartographers and well-trained experts (Cowen, 2008). Nowadays, the advanced web

technologies (e.g., Web 2.0 (O’Reilly, 2009)) and the ubiquity of location sensing devices

(e.g., smartphones) empower ordinary users to take part in the process of geographic data
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production. By exploiting information and communication technologies (ICT), users are

no longer only passive receivers of data, but they turned to be active data producers as

well. In 2006, the rise of geo-crowdsourcing – as a bottom-up paradigm of geographic

data collection – results in producing various formats of geographic content in addition

to changing the conventional ways of mapping (Howe, 2006). It supports the evolving

of a special kind of user-generated content (UGC), which has been known as Volun-

teered Geographic Information (VGI). The term has been coined by Goodchild (2007),

who described it as a phenomenon, when humans act as sensors to collect geographic

data (“citizen as sensors”). In VGI projects, ordinary users utilize online platforms to

produce different forms of content associated with geographic information implicitly or

explicitly. Among others, Wikipedia1, Wikimapia2, OpenStreetMap3 (OSM), Flickr4,

Twitter5, Google Map Maker6 and Foursquare7 are examples of platforms that generate

various formats of VGI. According to the contributors’ intentions, VGI is classified as

Active or Passive. It is also classified according to the geographic contents into Aspatial

(e.g., wikipedia) or Georeferenced (e.g., OSM) (See et al., 2016). This dissertation fo-

cuses exclusively on Active/Georeferenced VGI that results from collaborative mapping

(Mac Gillavry, 2006), when users intentionally participate in the process of mapping

geographic features.

During the last decade, VGI has evolved in a dramatic fashion to be utliized as an

individual or a complementary data source in various GIS applications (Heipke, 2010).

Moreover, researchers argue about its potential role, as a fundamental component, in spa-

tial data infrastructure (SDI) (McDougall, 2009; Cooper et al., 2011), and consequently,

in developing reliable GIS applications.

Although most VGI projects do not have standard procedures to ensure the quality

of the resulting data, the data acts as a data source in various applications, such as

land use and land cover mapping (Fritz et al., 2012; Arsanjani et al., 2015; Vaz and

Jokar Arsanjani, 2015), crisis management (Goodchild and Glennon, 2010; Zook et al.,

2010; Roche et al., 2013), demographic studies (Chow et al., 2012; Chow, 2013), urban

planning (Foth et al., 2009), map provision (Haklay and Weber, 2008), environmental

monitoring (Gouveia and Fonseca, 2008), and numerous applications of location-based

services (LBS) (Savelyev et al., 2011; Thatcher, 2013).
1www.wikipedia.org
2www.wikimapia.org
3www.openstreetmap.org
4www.flickr.com
5www.twitter.com
6www.google.com/mapmaker
7www.foursquare.com

2



Chapter 1. Introduction

Hence, different applications can be developed based on various formats of VGI. Each

individual type of application requires particular concerns regarding data quality assur-

ance. The technical and non-technical foundations of VGI are presented in Section 1.1.1,

while Section 1.1.2 discusses the VGI quality assurance. Moreover, Section 1.1.3 focuses

on the data classification problem, whereas scenarios of appropriate and inappropriate

data classification are illustrated in Section 1.1.4.

1.1.1 Foundations of VGI

VGI has evolved adopting the success of Wikipedia, when anyone with an access to the

Internet could be able to provide information, however, the information here is related

to geographic locations. The birth of VGI is based on the development of technologies

that empower users to produce geographic content: (1) Georeferencing : when users are

enabled to assign spatial coordinates to data using global coordinate systems like Uni-

versal Transverse Mercator (UTM), (2) Geotagging : a standardized format of assigning

geographic information to content, (3) Global Navigation Satellite System (GNSS): when

global geospatial positioning technology is provided to the public without further restric-

tions, and (4) Broadband communication: the high capacity Internet connections, which

are now available to most households particularly in developed countries (Goodchild,

2007).

Regarding non-technical foundations, the power of VGI comes from the local knowledge

of contributors (Heipke, 2010). For example, when we visit a new place, we most likely

ask local people for the location of a particular place or the route for a certain destination.

Hence, VGI projects have been developed to promote people to contribute their local

geographic knowledge to develop rich geographic content. In such content, the data

is provided by public individuals, regardless of their background and their geographic

experience. This fact raises research concerns about the resulting data quality.

1.1.2 Quality assurance of VGI

The International Organization for Standardization8 (ISO) has developed standards for

geographic information in (ISO/TC 211)9 (Østensen and Smits, 2002; ISO, 2009). In

particular, ISO/TS 19113 includes principles that describe the geographic data qual-

ity and specifications. They proposed five basic measures for geographic data quality:

positional accuracy, completeness, lineage, logical consistency, and thematic accuracy.
8www.iso.org
9www.isotc211.org
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In addition, other measures of semantic accuracy and temporal information have been

developed thereafter (Shi et al., 2003; Guptill and Morrison, 2013).

On the professional level, mapping agencies follow the ISO standard procedures to ensure

the data quality. The quality assurance procedures are divided into pre- and post-

procedures; when the pre-procedures describe the standards that should be followed

during data acquisition and compilation processes; and the post-procedures describe

the validation and the documentation processes for the developed data. The entire

procedures are usually attached to the data source as meta-data for the assessment of

the purpose of use.

In contrast in VGI projects, the data is acquired through crowdsourcing following no qual-

ity assurance procedures. Therefore, the resulting data possess a questionable quality.

This stimulates the researchers to develop procedures to ensure and assess the resulting

data quality. Goodchild and Li (2012) proposed three intuitive approaches to ensure the

quality of VGI: crowdsourcing, social, and geographic approaches.

• crowdsourcing: data quality is ensured through the “wisdom of crowds”, when a

group of people might be able to accomplish a solution that experts might not

able to do (Surowiecki, 2005). By following Linus’s Law “given enough eyes, all

bugs are shallow”, a large group of people will be able to validate and correct the

contributions of each other (Raymond, 1999).

• social: in this approach data quality is ensured by analyzing the characteristics

of its producers, where the communication between producers generates a reputa-

tion indicator of the data quality. This approach simulates the hierarchical formal

structure in professional organizations, but in a voluntary structure. In VGI, dif-

ferent contributors play different roles; when some are used to add new content

and others are interested in validating the content.

• geographic: the approach follows Tobler’s Law “everything is related to everything

else, but near things are more related than distant things” (Tobler, 1970). The

second inclusion of the law points to the consistency between content and its geo-

graphic context. For example, an image with a content about “Brandenburg Gate”

in Berlin, Germany and a geolocation of Jakarta, Indonesia should be detected as

an outlier (see Figure 2.1). Furthermore, geographic rules could be set up to ensure

data integrity.

In general, VGI is assessed by following either extrinsic or intrinsic approaches. In ex-

trinsic approaches, the data is matched and compared with a reference data source –

when the latter is available – to determine a particular measure of data quality (e.g.,
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completeness). In intrinsic approaches, the data is evaluated by analyzing its internal

characteristics (i.e., looking for the meta-data) to find out indicators of the data quality.

Several research in literature follow the approaches of Goodchild and Li to assess the VGI

intrinsically. Trustworthiness (Bishr and Kuhn, 2007; Keßler and Groot, 2013), credibil-

ity (Flanagin and Metzger, 2008), fitness of use (Barron et al., 2014), and reputations

(Bishr and Kuhn, 2013; D’Antonio et al., 2014) are examples of intuitive indicators that

have raised as qualitative indicators of data quality. To assess measures and indicators of

various formats of VGI, researchers applied different methods: from direct methods like

matching and comparison (Haklay, 2010; Ludwig et al., 2011; Dorn et al., 2015) through

statistical methods (Foody et al., 2015; Sparks et al., 2015) to machine learning (Huang

et al., 2010; Castillo et al., 2011).

1.1.3 Data classification in VGI: the case of OSM

This dissertation addresses quality from the perspective of data classification (i.e. the-

matic accuracy). We utilized OSM data, as an example of VGI mapping project. OSM

is the most prominent VGI-based mapping project, which aims to develop a free digital

world map that is editable and obtainable by anyone (Bennett, 2010). Regarding data

classification, the OSM project provides suggestions and recommendations on the project

Wiki pages10. These recommendations describe the appropriate ways of mapping (e.g.,

delineating) and classifying different geographic features, even in different geographic

locations or cultures. These recommendations are based on discussions between local

mapping communities.

In OSM data, each entity is classified by means of tags; when a tag has the format of

Key = V alue; the Key describes the classification perspective (e.g., landuse, highway,

building, etc.), while the V alue describes a specific class (e.g., “forest” (landuse), “pri-

mary” (highway), “public” (building), etc.). There is no limitation on the number of tags

that describe each entity (Bennett, 2010; Mooney and Corcoran, 2012b). According to

the scope of this dissertation, all tags related to land use and land cover features are

provided in Appendix A.

In VGI mapping, the data classification is related to human cognition, when contribu-

tors interpret their qualitative/quantitative observations into classes, aligned with the

provided recommendations. Moreover, in most projects, there are neither standard proce-

dures nor integrity checking mechanisms to ensure data quality. Therefore, the resulting

data inherits a problematic data classification (Mooney and Corcoran, 2012b).
10http://wiki.openstreetmap.org/wiki/Map_Features
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1.1.4 Scenarios of appropriate and inappropriate data classification

In this dissertation, we are concerned with the quality of data classification in VGI map-

ping projects. In such projects, limited contributors’ experience, ambiguous definitions

of geographic features, and flexible contribution mechanisms might lead to problematic

data classification. This section presents examples of what we call “appropriate” and “in-

appropriate” classification. In this dissertation, classification appropriateness is defined

with respect to land use and land cover features; appropriate classification of an entity

must reflect its internal and external characteristics. In addition, it should be consistent

with its geographic context and indicates the potential utilization of the entity.

Figure 1.1 illustrates examples of an appropriate classification, where the target enti-

ties are outlined with blue colour in Figures 1.1a and 1.1c. They are both classified

(a) OSM map of “Volkspark Marienberg”,
Nuremberg, Germany.

(b) Google map of “Volkspark Marienberg”,
Nuremberg, Germany.

(c) OSM map of “Stadtpark”, Nuremberg,
Germany.

(d) Google map of “Stadtpark”, Nuremberg,
Germany.

Figure 1.1: Examples of appropriate classification. The entities are outlined by blue
colour in the OSM map (on the left hand), and they are presented also visually from
Google maps (on the right hand).
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on the OSM project by the tag of “leisure=park”. Figures 1.1b and 1.1d represent the

corresponding satellite views of these entities, respectively. By analyzing both entities

visually, we can realize the typical amusement and entertainment characteristics of parks.

They are paved with footways (red dotted lines) and cycleways (blue dotted lines), in-

clude water bodies (blue areas), are located in a residential area (like in “Stadtpark”) or

surrounded by other grass-related features (like in “Volkspark Marienberg”), and might

contain a playground (waved area), cafe, restaurant, and/or sport areas.

(a) OSM map of “Leipziger Platz”, Nurem-
berg, Germany.

(b) Google map of “Leipziger Platz”, Nurem-
berg, Germany.

Figure 1.2: Example of inappropriate classification. The target entities are highlighted
with red colour on 1.2a, while 1.2b shows the entities visually from Google maps.

In contrast, Figure 1.2 illustrates an example of inappropriate classification of the same

type of feature. The indicated entities are outlined by red colour on Figure 1.2a. They are

classified on the OSM project by the tag “leisure=park”. Figure 1.2b shows the satellite

view of the indicated entities from Google maps. By inspecting the entities visually, we

can realize that they are located at the corner of a public square called “Leipziger Platz”

(dotted area on the OSM); they include only a limited number of sparse trees; and they

do not reflect any amusement or entertainment characteristics of parks.

Another example in Figure 1.3 illustrates the problem of conceptually overlapping classes.

The figure shows three entities in the OSM data: 1) blue; 2) green; and 3) red outlined en-

tities. The first entity (blue outline) has the name “Kontumazgarten”, while it is classified

as “park”. It has similar characteristics as the second entity (green outline) with a slight

difference: it includes playgrounds; however, the latter is classified as “meadow”. The

entity’s classification shows the conceptual overlap between the classes “park”, “garden”,

and “meadow”. The third entity (red outline) shows another example of inappropriate

classification; the indicated entity is classified as “park”, while it is a small grass area (in

comparison to the entities in Figure 1.1) and it is located in a backyard of a “hospital”

and a “parkhaus”.
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(a) Overlapping classes at the OSM project:
green (“meadow”), blue and red (“park")

(b) Visual view of the identical location from
Google maps.

Figure 1.3: Example of problematic classification due to conceptual overlapping
classes between “park”, “garden”, and “meadow” classes.

The previous examples indicate the problematic data classification in VGI mapping

projects. On the one hand, contributors’ preferences play a major role in classifying

the data. All examples are chosen from the same city (Nuremberg, Germany), to show

different individual perceptions within the same mapping community. On the other hand,

the non-rigid boundaries between similar classes might result in conceptually overlapping

classes. Therefore, a given entity could plausibly belong to multiple classes with various

degrees of appropriateness.

1.2 Research Focus and Questions

The motto of this research is: “exploiting VGI to develop reliable GIS applications re-

quires ensuring data quality”. Despite the technologies facilitate the production of mas-

sive data, the data quality is still a matter of concern regardless of the data quantity.

Figure 1.4 illustrates the conceptual framework of VGI from the production to the uti-

lization. The highlighted part of the figure indicates the focus of this dissertation; from

the bottom, the framework starts with the contributors (i.e., the power of any VGI

project), who are utilizing different platforms to generate various formats of VGI. Dif-

ferent formats are used to support numerous kinds of applications, and hence, each data

format requires particular procedures of quality assurance. Quality assurance is an in-

termediate layer that links the data production and the effective data utilization; when

a quality assurance procedure consists of approaches, methods, and measures/indicators

(see Chapter 2).
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Figure 1.4: Conceptual framework of various formates of VGI from production to
utilization, with the focus of this dissertation highlighted.

From a broad perspective, with more focus on map-based VGI the dissertation addresses

the question:

Q1. What are appropriate quality assurance procedures for VGI mapping projects?

From a particular point of view, the dissertation investigates the exploitation of VGI

as a complementary data source for land use and land cover thematic maps. Several

publications emphasize the applicability of VGI as a potential data source for these

features (Mooney et al., 2010; Hagenauer and Helbich, 2012; Arsanjani et al., 2015;

Dorn et al., 2015). Nevertheless, the classification of these features in general poses
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several challenges related to human cognition (Ahlqvist, 2012). Thus, the dissertation

focuses on VGI mapping projects to answer the question:

Q2. What are the challenges of data classification in VGI mapping projects?

In VGI, contributors’ cognition determines the data classification. For example, whether

an areal water body is classified as “lake”, “pond”, or “reservoir”; and if a land parcel

covered by grass and mixed vegetation is classified as “park”, “garden”, or “forest”; the

classification depends on individual perception. Humans perceive geographic features dif-

ferently, and consequently, they interpret their observations in different ways. This fact

stimulates the idea of enhancing data classification by developing a guiding approach.

From a cognitive perspective, humans might be able to provide appropriate data clas-

sification, whenever they are guided. Whether an entity is classified in an appropriate

or inappropriate way is related to quantitative and qualitative observations. The lack of

contributors’ experience, particularly of the non-experts, might lead to misinterpretation

of observations, and hence, inappropriate classification. Hence, with the availability of a

large amount of data in the OSM project, the dissertation answers the question of:

Q3. Can we learn the distinct characteristics (observations) of a specific geographic

feature from VGI?

If so,

Q4. How can we use extracted knowledge to detect outliers and to guide contributors

towards the most appropriate classification?

In VGI-based mapping projects, guiding the contributors might conflict with their flexi-

bility, and hence, influence their motivations negatively. Otherwise, their local knowledge

is the fundamental source of information. Therefore, this work involves contributors in

enhancing data classification quality by proposing human-centered guiding (i.e., recom-

mendation) approach. The dissertation addresses the questions:

Q5. What is the proper way to involve contributors in enhancing data classification

quality?

Q6. How can we guide contributors intuitively and preserve their flexibility?

And finally, the dissertation answers the question:

Q7. Would the proposed approach enhance data classification quality?

10
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1.3 Research Foundations and Methodologies

This dissertation is based on the following foundations:

• Since VGI evolution in 2007, different quality assurance procedures have been de-

veloped to cope with this paradigm of geographic data collection. There is a consen-

sus in the research field regarding the adequacy of intrinsic data quality assurance

approaches to the characteristics of VGI.

• Among other projects, the OSM project – in most parts of the world – has massive

amounts of data with a remarkable quality, particularly in urban areas of developed

countries (e.g., Germany, the UK, and USA).

• In VGI mapping projects, although humans are eager to provide data, they lack

guidance and aiding tools. Thus, the resulting data sources are rich regarding the

content, but limited regarding the quality.

• The availability of rich VGI resources facilitate applying machine learning tech-

niques to extract useful knowledge. This utility can be exploited to enhance data

classification quality.

To address the presented research questions based on the aforementioned foundations, I

adopt the following methodologies:

• Review previous related research of VGI quality assurance with a particular concern

on VGI-mapping.

As exemplification, during this research I targeted the OSM project and the resulting

data to investigate the utility of VGI as a potential data source of land use and land

cover maps. The objectives are to:

• Study and understand the data classification of various geographic features to high-

light the challenges of the process.

• Exploit the availability of data to apply machine learning methodologies to tackle

data classification quality.

• Adopt the idea of developing human-centered guiding approach to improve the

quality of data classification.

• Take advantage of crowdsourcing by employing voluntary contributors in the pro-

cess of data classification enhancement as well as in data collection process.

• Conduct empirical studies to check the feasibility of the proposed approach.

11
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1.4 Dissertation Output and Contributions

In Chapter 2, we review the quality assurance procedures related to various kinds of

VGI. In this work, we conduct a survey to investigate the quality regarding image-based,

text-based, and map-based VGI. This survey studies the previous related research of

VGI quality assurance starting from evolving of the term in 2007 until the middle of

2015. The procedures described in the literature are classified according to the proposed

approaches, the utilized methods, the quality measures/indicators and the VGI formats.

According to the 56 papers reviewed, there exist 17 different measures/indicators that

can be used to assess the data quality. The survey includes 30 methods that have been

developed to assess VGI. The methods are grouped according to the proposed approaches

into: crowdsourcing, social, geographic, and data mining. The review highlights the

promising role of data mining in assessing, as well as in enhancing the VGI quality.

With focus on map-based VGI, we investigate various geographic features to understand

the challenges of data classification. Different geographic features follow various struc-

tures of data classification; the features either follow a strict hierarchical structure (e.g.,

administrative boundary) or they follow a loose structure (e.g., land use). Whatever, the

elementary step to tackle data classification is to be able to detect potentially problematic

classified data (i.e., outliers). Due to the availability of large amounts of data, we exam-

ine the feasibility of applying machine learning, particularly data mining techniques, to

detect outliers.

Figure 1.5: The proposed approaches to ensure data classification quality in VGI
mapping projects.
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Chapters 3 and 4 present the learning-based approach to tackle the data classification.

Figure 1.5 illustrates the proposed approach. According to the figure, the approach

consists of two phases: Classification and Consistency Checking.

In brief, the first phase aims to learn the characteristics that probably distinguish and/or

describe a specific geographic feature. These characteristics might be quantitative (based

on measures) or qualitative (relative to the context) and significantly identify this spe-

cific feature. The objective is to develop a model (i.e., classifier) that will be able to

detect the problematic data, as well as, suggest the most proper classification of a given

data. In the second phase, the approach proposes three scenarios to employ the devel-

oped model; 1) Contribution Checking: when the developed model can be encoded in

an editing tool to detect the outliers and to suggest recommendation on the fly at con-

tribution time, 2) Manual Checking: when the model is applied directly to an existing

data set, it acts to present the potential outliers associated with recommendations for

crowdsourcing validation, and 3) Automatic Checking: when the model is able to justify

the recommendations then an auto correction might be possible. In the first and second

scenarios, the contributors have a potential role in validating the data classification by

accepting or rejecting the recommendations.

We conduct empirical studies to check the validation of the proposed approach. We

check the classification of administrative boundaries as an example of the strict hierar-

chical structure. Moreover, we analyze the classification of some grass-related features

as an example of the loose classification structure. With more focus on the latter kind of

classification, we apply machine learning methodologies to distinguish classes based on

quantitative characteristics (e.g., area by m2) and qualitative characteristics (e.g., topo-

logical characteristics). Figure 1.6 illustrates samples of the detected potential outliers.

(a) An entity is classified as “grass”, however
the entity is surrounded by residential houses
and contains amusement facilities. It can be
classified appropriately as “garden”.

(b) An entity is classified as “park”, while the
entity does not include any amusement charac-
teristics. Thus, it is recommended to be clas-
sified generally as “grass”.

Figure 1.6: Samples of the potential outliers detected by the proposed approach.
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The presented examples illustrate how the qualitative characteristics can be exploited

to distinguish similar classes. In Figure 1.6a, the given entity is surrounded by houses,

contains some amusement facilities, and is paved by footways. It was generally classified

as “grass”, while a more appropriate classification for this entity might be “garden”. In

contrast in Figure 1.6b, the given entity is relatively small, is surrounded by roundabouts,

and contains no facilities. Therefore, it does not have the typical characteristics of “park”,

while it might be more appropriately classified as “grass”. In Chapter 4, findings of an

empirical study indicate participants’ agreement on the detected outliers. Besides, they

show disagreement of participants on absolute classification of the presented entities.

Figure 1.7: The proposed rule-guided classification approach.

Afterwards, the learning-based approach is refined to develop a guiding classification ap-

proach. In Chapter 5, the rule-based guided classification approach is proposed. Figure

1.7 illustrates the conceptual structure of the proposed approach. This approach aims

to develop a guiding system (i.e., recommendation system) that presents the most ap-

propriate classes of a given entity. The approach exclusively investigates the qualitative

characteristics to distinguish between related classes. According to the figure, the ap-

proach consists of three phases: data processing, learning, and validation. The target

entities of particular features are topologically checked with their context, to find out the

distinct characteristics that identify each feature. During the learning phase, we applied

the associative classification data mining technique. The extracted characteristics are en-

coded as a set of predictive rules. These rules are organized into the classifier and act to

rank the potential classes of a given entity based on the matched rules. In this approach,

the validation phase is needed to double check the presented recommendations.
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Figure 1.8: Grass&Green: a recommended classification application for some grass-
related features.

We propose crowdsourcing validation to determine the applicability of the recommended

classes. In Chapter 6, we exemplify the proposed approach on some grass-related classes.

We utilize the OSM data set of Germany and tackle the classes “park”, “garden”, “meadow”,

“forest”, and the public class of “grass”. Although the classes may be conceptually over-

lapping, there exist fine details that distinguish each individual class. For example, the

“park” class points to places, where people can have amusements and perform leisure

activities (e.g., walking, jogging). The “garden” class might imply the same, but it is

usually cultivated with plants. Otherwise, the woody plants and the context might dis-

tinguish between the classes “meadow” and “forest”. We developed a web application for

crowdsourcing validation. Figure 1.8 shows the general user interface of the developed

application, which is called Grass&Green (http://opensciencemap.org/quality/).

The application presents a set of entities associated with their most appropriate classes.

Afterwards, the crowds are invited to validate the proposed recommendation. In a du-

ration of four months, about 90% of crowd participants agreed on the presented recom-

mendation. The detailed analysis reveals the potential enhancement of data classifica-

tion quality, when participants follow a specific guide line. The findings demonstrate

the significance of the proposed approach and the feasibility of exploiting the qualitative

characteristics to distinguish similar features. Participants encourage to apply the pro-

posed approach on different classes and in different locations.
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To summarize, the contributions of this dissertation are:

C1. Presenting a literature review about quality assurance procedures regarding differ-

ent formats of VGI.

C2. Summarizing the data classification challenges in VGI mapping projects.

C3. Confirming the significance of learning from crowdsourcing data, under certain

circumstances.

C4. Proposing a human-centered guided classification approach for VGI mapping projects.

C5. Developing an intuitive application to enhance the data classification quality of

some grass-related features in the OSM project.

C6. Encouraging the role of crowdsourcing in the process of data collection as well as

in the procedures of quality assurance.

1.5 Dissertation Outline and Formatting

Figure 1.9 illustrates organization of the dissertation with respect to the publications

and the contributions.

Figure 1.9: Dissertation outline with respect to contributions (right side) and the
publications (left side).

Table 1.1 lists the publications and their status at the time of submitting this dissertation.
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Published online

3 Ahmed Loai Ali and Falko Schmid (2014). “Data qual-
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Table 1.1: List of accumulated publications and their status at the time of submitting this
dissertation.

Formatting Consistency

To preserve a consistent structure of this dissertation, we adapted the original publica-

tions as follows:

• In Chapter 2,

– Tables 2.1 and 2.2 are reoriented and rescaled to fit the document format.

– The word “crowd-sourcing” is spelled “crowdsourcing”, to be consistent within

the entire document.

• In Chapters 4 and 5

– The original publications are modified from two-column format to single-

column format. In addition, the figures are rescaled to fit the modified format.
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• In Chapter 6,

– For consistency, the endnotes in the original publication are modified into

footnotes.

– Tables format are modified to be consistent with the entire dissertation.

Note:

Please, cite the original publications when referring to any content within Chapters 2 – 6.
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Abstract:

With the ubiquity of advanced web technologies and location-sensing hand held

devices, citizens regardless of their knowledge or expertise, are able to produce

spatial information. The phenomena is known as Volunteered Geographic Infor-

mation (VGI). During the last decade VGI has been used as a data source support-

ing a wide range of services such as environmental monitoring, events reporting,

human movement analysis, disaster management etc. However, these volunteer

contributed data also come with varying quality. Reasons for this are: data is

produced by heterogeneous contributors, using various technologies and tools, hav-

ing different level of details and precision, serving heterogeneous purposes, and a

lack of gatekeepers. Crowdsourcing, social, and geographic approaches have been

proposed and later followed to develop appropriate methods to assess the quality

measures and indicators of VGI. In this paper, we review various quality measures

and indicators for selected types of VGI, and existing quality assessment methods.

As an outcome, the paper presents a classification of VGI with current methods

utilized to assess the quality of selected types of VGI. Through these findings we

introduce data mining as an additional approach for quality handling in VGI.

Keywords:

Geographic Information Systems; Volunteered Geographic Information; Spatial

Data Quality; Spatial Data Applications.

2.1 Introduction

Volunteered Geographic Information (VGI) is where citizens, often untrained, and re-

gardless of their expertise and background create geographic information on dedicated

web platforms (Goodchild, 2007), e.g., OpenStreetMap1 (OSM), Wikimapia2, Google

MyMaps3, Map Insight4 and Flickr5. In a typology of VGI, the works of Antoniou et al.

(2010) and Craglia et al. (2012) classified VGI based on the type of explicit/implicit ge-

ography being captured and the type of explicit/implicit volunteering. In explicit-VGI,

contributors are mainly focused on mapping activities. Thus, the contributor explicitly

annotates the data with geographic contents (e.g., geometries in OSM, Wikimapia, or

Google). Data that is implicitly associated with a geographic location could be any kind

of media: text, image, or video referring to or associated with a specific geographic loca-

tion. For example, geo-tagged microblogs (e.g., Tweets), geo-tagged images from Flicker,
1http://www.openstreetmap.org
2http://www.wikimapia.org
3https://www.google.com/maps/mm
4http://www.mapsharetool.com/external-iframe/external.jsp
5http://www.flickr.com
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or Wikipedia articles that refer to geographic locations. Craglia et al. (2012) further

elaborated that for each type of implicit/explicit geography and volunteering there are

potentially different approaches for assessing the quality.

Due to the increased potential and use of VGI (as demonstrated in the works of Chunara

et al. (2012), Sakaki et al. (2010), Fuchs et al. (2013), MacEachren et al. (2011), Liu

et al. (2008), McDougall (2009), Bulearca and Bulearca (2010), and Jacob et al. (2009)),

it becomes increasingly important to be aware of the quality of VGI, in order to derive

accurate information and decisions. Due to a lack of standardization, quality in VGI has

shown to vary across heterogeneous data sources (text, image, maps etc.). For example,

as seen in Figure 2.1 a photo of the famous tourist site the Brandenburg Gate in Berlin

is incorrectly geo-tagged in Jakarta, Indonesia on the photo sharing platform Flickr.

On the other hand OSM has also shown heterogeneity in coverage between different

places (Haklay, 2010). These trigger a variable quality in VGI. This can be explained

by the fact that humans perceive and express geographic regions and spatial relations

imprecisely, and in terms of vague concepts (Montello et al., 2003). This vagueness in

human conceptualization of location is due not only to the fact that geographic entities

are continuous in nature, but also due to the quality and limitations of spatial knowledge

(Hollenstein and Purves, 2014).

Figure 2.1: A photo of the Brandenburg Gate in Berlin is incorrectly geotagged in
Jakarta, Indonesia on the popular photo sharing platform Flickr.

Providing reliable services or extraction of useful information require data with a fitness-

for-use quality standard. Incorrect (as seen in Figure 2.1) or malicious geographic anno-

tations could be minimized in place of appropriate quality indicators and measures for

these various VGI contributions.

25



Chapter 2. A Review of VGI Quality Assessment Methods

Goodchild and Li (2012) have discussed three approaches for assuring the quality of VGI:

crowdsourcing (the involvement of a group to validate and correct errors that have been

made by an individual contributor), social approaches (trusted individuals who have

made themselves a good reputation with their contributions to VGI can for example

act as gatekeepers to maintain and control the quality of other VGI contributions), and

geographic approaches (use of laws and knowledge from geography, such as Tobler’s first

law to assess the quality). Many works have developed methods to asses the quality of

VGI based on these approaches.

In this paper we present an extensive review of the existing methods in the state-of-

the-art to assess the quality of map, image, and text based VGI. As an outcome of the

review we identify data mining as one more stand alone approach to assess VGI quality

by utilizing computational processes for discovering patterns and learning purely from

data, irrespective of the laws and knowledge from geography, and independent from

social or crowd-sourced approaches. Extending the spectrum of approaches will sprout

more quality assessment methods in the future, especially for VGI types that have not

been extensively researched so far. To the best of our knowledge surveys on existing

methods have not been done so far. This review provides an overview of methods that

have been built based on theories and discussions in the literature. Furthermore, this

survey gives the reader a glimpse to the practical applicability of all identified approaches.

The remainder of this paper unfolds as follows: In Section 2.2, we describe the different

quality measures and indicators for VGI. In Section 2.3, we describe the main types of

VGI that we consider for our survey, and in Section 2.4, we describe the methodology

that was followed for the selection of literature for this survey. Section 2.5 summarizes

the findings of the survey, and Section 2.6 discusses the limitations and future research

perspectives. Lastly we conclude our findings in Section 2.7.

2.2 Measures and Indicators for VGI Quality

Quality of VGI can be described by quality measures and quality indicators (Antoniou

and Skopeliti, 2015). Quality measures, mainly adhering to the ISO principles and

guidelines refer to those elements that can be used to ascertain the discrepancy between

the contributed spatial data and the ground truth (e.g., completeness of data) mainly

by comparing to authoritative data. When authoritative data is no longer usable for

comparisons, and the established measures become no longer adequate to assess the

quality of VGI, researchers have explored more intrinsic ways to assess VGI quality by

looking into other proxies for quality measures. These are called quality indicators, that

rely on various participation biases, contributor expertise or the lack of it, background,

etc., that influence the quality of VGI, but cannot be directly measured (Antoniou and
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Skopeliti, 2015). In the following these quality measures and indicators are described in

detail. The review of quality assessment methods in Section 2.5 is based on these various

quality measures and indicators.

2.2.1 Quality measures for VGI

ISO6 (International Standardization Organization) defined geographic information qual-

ity as totality of characteristics of a product that bear on its ability to satisfy stated and

implied needs. ISO/TC 2117 (Technical Committee) developed a set of international

standards that define the measures of geographic information quality (standard 19138,

as part of the meatadata standard 19115). These quantitative quality measures are:

completeness, consistency, positional accuracy, temporal accuracy and thematic accu-

racy.

Completeness describes the relationship between the represented objects and their con-

ceptualizations. This can be measured as the absence of data (errors of omission) and

presence of excess data (errors of commission). Consistency is the coherence in the data

structures of the digitized spatial data. The errors resulting from the lack of it are indi-

cated by (i) conceptual consistency, (ii) domain consistency, (iii) format consistency, and

(iv) topological consistency. Accuracy refers to the degree of closeness between a mea-

surement of a quantity and the accepted true value of that quantity, and it is in the form

of positional accuracy, temporal accuracy and thematic accuracy. Positional accuracy

is indicated by (i) absolute or external accuracy, (ii) relative or internal accuracy, (iii)

gridded data position accuracy. Thematic accuracy is indicated by (i) classification cor-

rectness, (ii) non-quantitative attribute correctness, (iii) quantitative attribute accuracy.

In both cases, the discrepancies can be numerically estimated. Temporal accuracy is

indicated by (i) accuracy of a time measurement: correctness of the temporal references

of an item, (ii) temporal consistency: correctness of ordered events or sequences, (iii)

temporal validity: validity of data with regard to time.

2.2.2 Quality indicators for VGI

As part of the ISO standards, geographic information quality can be further assessed

through qualitative quality indicators such as the purpose, usage, and lineage. These

indicators are mainly used to express the quality overview for the data. Purpose de-

scribes the intended usage of the dataset. Usage describes the application(s) in which

the dataset has been utilized. Lineage describes the history of a dataset from collection,
6http://www.iso.org/iso/home/standards.htm
7http://www.isotc211.org/
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acquisition to compilation and derivation to its form at the time of use (Van Oort and

Bregt, 2005; Hoyle, 2001; Guinée, 2002). In addition, where ISO standardised measures

and indicators are not applicable, we have found in the literature more abstract qual-

ity indicators to imply the quality of VGI. These are: trustworthiness, credibility, text

content quality, vagueness, local knowledge, experience, recognition, reputation. Trust-

worthiness is a receiver judgment based on subjective characteristics such as reliability or

trust (good ratings on the creations, and the higher frequency of usage of these creations

indicate this trustworthiness) (Flanagin and Metzger, 2008). In assessing the credibility

of VGI, the source of information plays a crucial role, as it is what credibility is pri-

marily based upon. However, this is not straight forward. Due to the non-authoritative

nature of VGI, the source maybe unavailable, concealed, or missing (this is avoided by

gatekeepers in authoritative data). Credibility was defined by Hovland et al. (1953) as

the believability of a source or message, which comprises primarily two dimensions, the

trustworthiness (as explained above), and expertise. Expertise contains objective char-

acteristics such as accuracy, authority, competence, or source credentials (Flanagin and

Metzger, 2008). Therefore, in assessing the credibility of data as a quality indicator one

needs to consider factors that attribute to the trustworthiness and expertise. Metadata

about the origin of VGI can provide a foundation for the source credentials of VGI (Frew,

2007). Text content quality (mostly applicable for text-based VGI) describes the quality

of text data by the use of text features such as the text length, structure, style, readabil-

ity, revision history, topical similarity, the use of technical terminology etc. Vagueness

is the ambiguity with which the data is captured (e.g., vagueness caused by low resolu-

tions) (De Longueville et al., 2010). Local knowledge is the contributors’ familiarity to

the geographic surroundings that she/he is implicitly or explicitly mapping. Experience

is the involvement of a contributor with the VGI platform that she/he contributes to.

This can be expressed by the time that the contributor has been registered with the

VGI portal, number of GPS tracks contributed (for example in OSM) or the number of

features added and edited, or the amount of participation in online forums to discuss the

data (Van Exel et al., 2010). Recognition is the acknowledgement given to a contributor

based on tokens achieved (for example in gamified VGI platforms), and the reviewing

of their contributions among their peers (Van Exel et al., 2010). Maué (2007) described

reputation as a tool to ensure the validity of VGI. Reputation is said to be assessed by,

for example the history of past interactions that are happening between collaborators.

Resnick et al. (2000) described contributors’ abilities and dispositions as features where

this reputation can be based upon. Maué (2007) further argue that similar to the eBay

rating system8, the created geographic features on various VGI platforms can be rated,

tagged, discussed, and annotated, which affects the data contributor’s reputation value.
8http://ebay.about.com/od/gettingstarted/a/gs_feed.htm
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2.3 Map, Image, and Text based VGI: Definitions and Quality Issues

The effective utilization of VGI is strongly associated with data quality, and this varies

depending primarily on the type of VGI, the way data is collected on the different VGI

platforms, and the context of usage. The following sections describe the selected forms

of VGI: 1) map, 2) image, and 3)text, their uses, and how data quality issues arise. These

three types of VGI are chosen based on the methods that are used to capture the data

(maps: as gps points and traces, image: as photos, text: as plain text), and because they

are the most popular forms of VGI currently used. This section further lays the ground

work to understand the subsequent section on various quality measures and indicators,

and quality assessment methods used for these three types of VGI.

2.3.1 Map-based VGI

Map-based VGI concerns all VGI sources that include geometries as points, lines and

polygons, the basic elements to design a map. Among others, OSM, Wikimapia, Google

Map Maker, and Map Insight are examples of map-based VGI projects. However, OSM

is the most prominent project due to the following reasons: (i) It aims to develop a free

map of the world accessible and obtainable for everyone; (ii) It has millions of regis-

tered contributors; (iii) It has active mapper communities in many locations; and (iv)

It provides free and flexible contribution mechanisms for data (useful for map provision,

routing, planning, geo-visualization, point of interests (POI) search etc.). Thus, dur-

ing the rest of the article we will discuss OSM as an example for map-based VGI. As

in most VGI projects, the spatial dimension of OSM data is annotated in the form of

nodes, lines, or polygons with latitude/longitude referencing, and attributes are anno-

tated by tags in the form of key-value pairs. Each tag describes a specific geographic

entity from different perspectives. There are no restrictions to the usage of these tags:

endless combinations are possible, and the contributors are free to choose the tags they

deem appropriate. Nevertheless, OSM provides a set of recommendations of accepted

key-value pairs, and if the contributors want their contributions to become a part of the

map, they need to follow the agreed-upon standards. This open classification scheme

can lead to misclassification and reduction in data quality. Map-based VGI is commonly

used for purposes like navigation and POI search. For these purposes the positional

accuracy and the topological consistency of the entities are as important as their ab-

stract locations. The other dimension is the attribute accuracy, where the annotations

associated with an entity should reflect its characteristics without conflicts (e.g., for road

tags, oneway = true and twoway = true). In OSM, the loose contribution mechanisms

result in problematic classifications that influence the attribute accuracy. In addition to
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accuracy, providing reliable services is affected by data completeness; features, attribute,

and model completeness. Whether a map includes all the required features, whether a

feature is annotated with a complete set of attributes, and if the model is able to answer

all possible queries, all these points are related to the completeness quality measure. Es-

pecially due to the lack of ground-truth data for comparison, assessing VGI completeness

still raises some challenges.

2.3.2 Image-based VGI

Image-based VGI is mostly produced implicitly within portals such as Flickr, Panoramio,

Instagram etc., where contributors take pictures of a particular geographic object or sur-

rounding with cameras, smart phones, or any hand held device, and attach a geospatial

reference to it. These objects/surroundings can be spatially referenced either by giving

geographic coordinates and/or user-assigned geospatial descriptions of these photographs

in the form of textual labels. These photo sharing websites have several uses such as

environmental monitoring (Fuchs et al., 2013), pedestrian navigation (Robinson et al.,

2012), event and human trajectory analysis (Andrienko et al., 2009), for creating ge-

ographical gazetteers (Popescu et al., 2008), or even to complement institutional data

sources in your locality (Milholland and Pultar, 2013).

Tagging an image is a means of adding metadata to the content in the form of specific

keywords to describe the content (Golder and Huberman, 2006), or in the form of ge-

ographic coordinates (Geotagging) to identify the location linked to the image content

(Valli and Hannay, 2010). There exist several approaches to geotag an image: record the

geographic location with the use of an external GPS device, with an in-built GPS (in

many of the modern digital cameras, smart phones), or manually positioning the photo

on a map interface.

Not only the GPS precision and accuracy errors resulting from various devices, but also

other factors influence the quality of image-based VGI. For example, instead of stating

the position from where the photo was taken (photographer position) some contributors

tend to geotag the photo with the position of the photo content, which could be several

kilometers away from where the photo originated causing positional accuracy issues (as

also discussed in Keßler et al. (2009)). This is a problem when we want to utilize

these photos for example in human trajectory analysis. Furthermore, due to the lack of

sufficient spatial knowledge contributors sometimes incorrectly geotag their photographs

(Figure 2.1), also in lower geographic resolutions (in case of Flickr, some contributors

do not zoom enough to the street level, instead they zoom up to country or city level to

geotag their photos). Or some contributors geotag and textually label random irrelevant

photos for actual events, causing the users to doubt the trustworthiness of the content.
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Such content are not fit for use for tasks such as disaster management, environmental

monitoring, or pedestrian navigation. Citizen Science Projects such as GeoTag-X9 have

in place machine learning and crowdsourcing methods to discover unauthentic material

and clean them.

2.3.3 Text-based VGI

Text-based VGI (typically microblogs) is mostly produced implicitly on portals such as

Twitter, Reddit or various Blogs, where people contribute geographic information in the

form of text by using smart phones, PCs, or any hand held devices. Twitter for example

is used as an information foraging source (MacEachren et al., 2011), in journalism to

disseminate data to the public in near real-time basis (O’Connor, 2009; Castillo et al.,

2011), detect disease spreading (Chunara et al., 2012), event detection (Bosch et al.,

2013), and for gaining insights on social interaction behavior (Huberman et al., 2008) or

trajectories of people (Andrienko et al., 2013; Senaratne et al., 2014).

In text-based VGI, the spatial reference can be either in the text, where the contributor

refers to a place-name (e.g., ’Lady Gaga is performing in New York today’), or the

spatial reference can be the geotag where the tweet is originating from. While some

people contribute meaningful information most others use these mediums to express

personal opinions, moods, or for malicious aims such as bullying or trolling to harass

other users. Gupta and Kumaraguru (2012) conducted a study to investigate how much

information is credible and therefore useful, and how much information is spam, on

Twitter. They found that 14% of Tweets collected for event analysis were spam, while

30% of the Tweets contained situational awareness information, out of which only 17% of

the total tweets contained credible situational awareness information. Such spam makes

it difficult to derive useful information that could be of interest for the above named

use-cases. Therefore quality analysis of these data is important to filter out the useful

information, and disregard the rest. Other than the inherent GPS errors in devices,

a bigger role for quality issues is played by the contributor herself/himself based on

the information she/he provides. Also due to the lack of spatial knowledge of some

contributors the location is incorrectly specified, and at times at a low resolution (in the

Twitter interface on PCs the contributor can specify the location not only at the city

level, but also at a more coarse state level). Sometimes if the contributor is writing about

an event that takes place a few hundred kilometers away from her position, she would

geotag her content with the location of the event rather than her position; Or the other

way around. A summary of quality assessment methods for these VGI types is presented

in Section 2.5.
9http://geotagx.org/
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2.4 The Literature Review Methodology
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Figure 2.2: Distribution of the surveyed papers.

This review provides an overview of the state-of-the-art methods to assess the quality

of selected types of VGI. To achieve this goal we breakdown our review in to three

categories. Firstly, we show how the topic of quality assessment within map, image, and

text VGI has evolved over the years since the birth of VGI in 2007 until the time of

writing this article (mid of 2015). Secondly, the reviewed papers are classified according

to the type of quality measure or indicator that is assessed within each of the papers.

Thirdly, all the quality measures and indicators that are addressed within each of the

reviewed papers are classified with the different methods utilized to assess them.

We used the following strategy to select the literature for our review. We used Google

Scholar to search for papers that include the following terms in their title or abstract:

data quality assessment, methods and techniques, uncertainty, volunteered geographic in-

formation, map, microblog, photo. This query resulted in 425 research papers. We sorted

the search results according to the Google Scholar relevance ranking10. This relevance

ranking follows a combined ranking algorithm that contains a weighting for the full text

of each article, author of article, publisher, and how often the article has been cited in

other scholarly articles. We refined our collection of papers by filtering out the papers ac-

cording to the following criteria: (1) papers were published from 2007; (2) papers should

describe quality assessment methods, or techniques, or tools; and (3) a latest paper was

selected when multiple versions of similar methods were available from the same research

group. Citizen Science research studies are not considered in this review. As such, we

selected 56 papers in total: out of which 33 of them discuss quality assurance methods
10https://scholar.google.com/scholar/about.html
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for map-based VGI, 10 on text-based VGI, 6 on image-based VGI, and 8 on all three

types of VGI.

Figure 2.2 shows the distribution of the reviewed papers for VGI quality assessment

methods. Evidently, the publication of papers on this topic gained momentum in 2010,

for the most part papers discuss methods for map-based VGI.

2.5 Existing Methods for Assessing the Quality of VGI

We have reviewed state-of-the-art methods to assess various quality measures and indica-

tors of VGI. Within this review, a method is considered to be a systematic procedure that

is followed to assess the quality measures and quality indicators. For example, comparing

with satellite imagery is a method to assess the positional accuracy of maps. The found

methods have been mostly conceptually implemented for a particular usecase. These

methods have been reviewed mainly based on the type of VGI, the quality measures and

indicators supported, and the approaches followed to develop the method.

2.5.1 Distribution of selected literature

Out of the 56 papers that we reviewed, 40 papers discuss methods on assessing the

quality of map-based VGI, in most cases taking OSM data as the VGI source. 18 papers

introduce methods for text-based VGI taking mainly Twitter, Wikipedia, and Yahoo!

answers as the VGI source. 13 papers introduce methods for image-based VGI taking

Flickr and Panoramio as their VGI source. In reference to Craglia et al. (2012) typology

of VGI with the reviewed papers, most quality assessment work is done on explicit VGI

and lesser amount of work is done on implicit VGI, although implicit VGI due to its very

nature has more concerns regarding its quality.

2.5.2 Type of quality measures, indicators, and their associated methods

We have found 17 quality measures and indicators (7 measures and 10 indicators) that

are addressed within the 56 papers we surveyed. In Table 2.1 we have classified these

surveyed papers according to the type of quality measures and indicators and the type

of VGI. We found that papers particularly focusing on map-based VGI are clearly using

only ISO standardized measures for quality assessment, whereas text-based VGI have

been assessed only on the credibility, text content quality, and vagueness. Image-based

VGI have been assessed in several papers on the positional/thematic accuracy, credibility,

vagueness, experience, recognition, and reputation.
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Agichtein et al. (2008) �
Schmitz et al. (2008) �

Mummidi and

Krumm (2008)

�

Hasan Dalip et al.

(2009)

�

Kounadi (2009) �

Ather (2009) � �

De Longueville et al.

(2010)

��

Bishr and Janowicz

(2010)

��

Mendoza et al. (2010) �
Haklay (2010) � �

Ciepłuch et al. (2010) � �

Corcoran et al. (2010) �

Girres and Touya

(2010)

� � � � � � � �

Haklay et al. (2010) �

Poser and Dransch

(2010)

��

Brando and Bucher

(2010)

�� �� �� �� ��

Huang et al. (2010) ��

De Tré et al. (2010) � �
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bairn (2010)
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O’Donovan et al.

(2012)

�

Kang et al. (2012) �
Gupta and Ku-

maraguru (2012)

�

Morris et al. (2012) �
Helbich et al. (2012) �

Mooney and Corcoran

(2012b)

�

Koukoletsos et al.

(2012)

�

Keßler and Groot

(2013)

� � �

Senaratne et al.

(2013)

• •

Zielstra and

Hochmair (2013)

•

Canavosio-Zuzelski et

al. (2013)

�

Hecht et al. (2013) �

Vandecasteele and

Devillers (2013)

�

Jackson et al. (2013) � �

Foody et al. (2015) •
Barron et al. (2014) � �

Siebritz (2014) �

Wang et al. (2014) �

Fan et al. (2014) � �

Tenney (2014) � �

Ali et al. (2014) �

Bordogna et al.

(2014)

•� • • •

Forghani and Delavar

(2014)

��

Hollenstein and

Purves (2014)

•

Arsanjani et al.

(2015)

�

Vandecasteele and

Devillers (2015)

�

Hashemi and Ab-

baspour (2015)

�

Table 2.1: Classification of the reviewed papers according to the quality measures and indicators.
� = map-based, • = image-based, and � = text-based VGI. While �� = all types of VGI.
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Completness �� �� � � �

Temporal
accuracy

�

Geometric
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Semantic
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Usage �
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•
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•
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•
�

Table 2.2: Quality measures and indicators are classified according to the type of methods to assess them,
and the types of VGI. Methods are further classified according to the quality assessment approaches. � =
map-based, • = image-based, and � = text-based VGI, while �� = all types of VGI.
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Within these 56 papers we came across 30 methods to assess these quality measures

and indicators. These quality measures/indicators gather previously discussed spatial

data quality elements in the literature, but also extends the previous categorizations

such as Thomson et al. (2005), to include further spatial data quality indicators such as

reputation, text content quality, or experience.

A classification of the VGI quality measures and indicators according to the type of

quality assessment methods and the type of VGI used in the respective applications is

presented in Table 2.2. The sparse cells in the matrix indicate the quality measures/indi-

cators that have not been explored excessively. We have further classified these methods

according to the approach categorization by Goodchild and Li (2012). In addition to

their categorization, we have also found methods based on the data mining approach.

2.5.2.1 Quality assessment in Map-based VGI

Positional Accuracy

In the works of Kounadi (2009), Ather (2009), Haklay (2010), Ciepłuch et al. (2010),

Al-Bakri and Fairbairn (2010), Zandbergen et al. (2011), Helbich et al. (2012), Jackson

et al. (2013), Fan et al. (2014), Tenney (2014), Brando and Bucher (2010), and Al-Bakri

and Fairbairn (2010), authors employ officially gathered reference datasets to assess the

positional accuracy of map-based VGI (mostly OSM data) by comparison. The compari-

son with reference data method has been further employed for the assessment of thematic

accuracy (Girres and Touya, 2010; Poser and Dransch, 2010; Kounadi, 2009; Brando and

Bucher, 2010; Arsanjani et al., 2015), completeness (Haklay, 2010; Ciepłuch et al., 2010;

Kounadi, 2009; Ather, 2009; Ciepłuch et al., 2011; Hecht et al., 2013; Jackson et al.,

2013; Fan et al., 2014; Tenney, 2014; Brando and Bucher, 2010), geometric accuracy

(Girres and Touya, 2010). For geometric accuracy OSM objects of same structure were

manually matched. This manual approach was preferred over an automated approach to

avoid any processing errors.

Haklay et al. (2010) applied the Linus Law and found out that higher the number of

contributors on a given spatial unit on OSM, higher the quality. This study shows that

comparison to reference datasets isn’t the only way to assess the quality of OSM data as

done in many use-cases.

De Tré et al. (2010) uses a Possibilistic Truth Value (PTV) as a normalized possibility

distribution to determine the uncertainty of the POIs being co-located. The uncertainty

regarding the positioning of a POI is primarily caused by the imprecision with which the

POI are positioned on the map interface. The proposed technique further semantically

checks and compares the closely located POIs. Their method helps to identify redundant
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VGI, and fuse the redundancies together. Furthermore, this approach has been applied

to also assess the thematic accuracy of map-based VGI.

In a rather different approach, Canavosio-Zuzelski et al. (2013) perform a photogram-

metric approach for assessing the positional accuracy of OSM road features using stereo

imagery and a vector adjustment model. Their method applies analytical measurement

principles to compute accurate real world geo-locations of OSM road vectors. The pro-

posed approach was tested on several urban gridded city streets from the OSM database

with the results showing that the post adjusted shape points improved positional accu-

racy by 86%. Furthermore, the vector adjustment was able to recover 95% of the actual

positional displacement present in the database.

Brando and Bucher (2010) present a generic framework to manage the quality of ISO

standardized quality indicators by using formal specifications and reference datasets.

Formal specifications facilitate the assurance of quality in three manners with means

of integrity constraints: i) support on-the-fly consistency checking, ii) comparison to

external reference data, and iii) reconcile concurrent editions of data. However, due to a

lack of proof of concept the practical applicability of this approach is difficult to conceive.

Topological Consistency

The topological consistency in OSM data is assessed mainly on intrinsic data checks

to detect and alleviate problems occurring through for example overlapping features or

overshoots and undershoots in the data (also known as dangles where start and end point

of two different lines should meet but do not, due to bad practices in digitization). The

authors Schmitz et al. (2008), Neis et al. (2011), Barron et al. (2014), and Siebritz (2014)

have demonstrated that for each of these measures a separate topology integrity rule can

be designed and applied.

Further, based on the definition of planar and non-planar topological properties Corco-

ran et al. (2010) and Da Silva and Wu (2007) have used geometrical analysis methods

to assess the topological consistency of the OSM data. In another work, the concept

of spatial similarity in multi-representations have been employed in order to perform

both extrinsic and intrinsic quality analysis (Hashemi and Abbaspour, 2015). The au-

thors discuss that their method could be efficiently applied to VGI data for the purpose

of vandalism detection. Other studies have also focused on evaluating the topological

consistency of OSM data with a focus on road network infrastructures (Will, 2014). In

Wang et al. (2014) and Girres and Touya (2010) the authors have used the Dimensional

Extended nine-Intersection Model (DE-9IM) in order to compute the qualitative spatial

relation between road objects in OSM. This method and model allows them to check for

topological inconsistencies and be able to locate the junctions of roads in order to, for

example generate expected road signs.
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Thematic Accuracy and Semantic Accuracy

Mooney and Corcoran (2012b) points out that most errors in OSM are caused by manual

annotation by contributors who sometimes misspell the feature values. Addressing this

issue, Codescu et al. (2011), Vandecasteele and Devillers (2013), and Ali et al. (2014)

have developed semantic similarity matching methods, which automatically assess the

contributor annotation of features in OSM according to the semantic meaning of such

features. In the work of Girres and Touya (2010), they found semantic errors were

mainly due to the mis-specification of roads. For example: roads that were classified

as ‘secondary’ in the reference dataset were classified as ‘residential’, or ‘tertiary’ by

contributors in OSM data. The reasons for these inaccuracies as seen by authors are

the lack of a standardized classification, looseness for contributors to enter tags and

values that are not present in the OSM specification, lack of naming regulations w.r.t.

for example capitalization or prefixes. The authors emphasize the need for standardized

specifications to improve semantic and attribute accuracy of OSM data.

Furthermore, in regard to semantic accuracy of map-based VGI, Vandecasteele and Dev-

illers (2015) introduced a tag recommender system for OSM data which aims to improve

the semantic quality of tags. OSMantic is a plugin for the Java OpenStreetMap editor

which automatically suggests relevant tags to contributors during the editing process.

Mummidi and Krumm (2008) use clustering methods on Microsoft’s Live Search Maps11

to group user contributed pushpins of POIs that are annotated with text. Frequent text

phrases that appear in one cluster but infrequently in other clusters help to increase the

confidence that the particular text phrase describes a POI.

Completeness

Koukoletsos et al. (2012) propose to use a feature-based automated matching method for

linear data using reference datasets. Barron et al. (2014) and Girres and Touya (2010)

use intrinsic data checks to record the statistics of the number of objects, attributes, and

values, thereby keeping track of all omissions and commissions to the database.

Temporal Accuracy

Very few works exist to assess the temporal accuracy. We reviewed the works of Girres

and Touya (2010) where they use statistics to observe the correlations of the number of

contributors to the mean capture date, and to the mean version of the capture object

in order to assess how many objects are updated. Their results show a linear increase

of the mean date, and the mean version of captured object in relation to the number of

contributors in the chosen geographic area. Concluding results show higher the number

of contributors, more recent the objects were, and the more up-to-date the objects were.
11http://maps.live.com
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Lineage, Usage, Purpose

In Keßler et al. (2011), following a data oriented approach with a focus on the origins

of specific data items, their provenance vocabulary explicitly shows the lineage of data

features of any online data. They base their provenance approach on Hartig (2009)

on ’provenance information in the web of data’. Their approach allows them to classify

OSM features according to recurring editing and co-editing patterns. To keep track of the

data lineage Girres and Touya (2010) urge the need for moderators who has control over

screening the contributions (as in Wikipedia) for necessary source information. They

further analyze the usage of data by comparing the limitations that were observed in

previous evaluations of map-based VGI.

As a generic approach to assess ISO standardized quality indicators, (Keßler and Groot,

2013) propose Trust as a proxy to measure the topological consistency, thematic accuracy,

and completeness in these map data based on data provenance, a method which relies

on trust indicators as opposed to ground truth data.

2.5.2.2 Quality assessment in Image-based VGI

Positional Accuracy and credibility

Jacobs et al. (2007) explored the varying positional accuracy of photos by matching

photos with ancillary satellite imagery. They localize cameras based on satellite imagery

that correlates with the camera images taken at a known time. Their approach helps

where it is important to know the accurate location of the photographer instead of the

target object. Zielstra and Hochmair (2013) on the other hand compared the geotagged

positions of photos to the manually corrected camera position based on the image content.

Their results indicate better positional accuracy for Panoramio photos compared to Flickr

photos. Hollenstein and Purves (2014) assessed the positional accuracy of such photos by

manually inspecting these photos for their correspondence between the tagged geographic

label and geotagged position. Senaratne et al. (2013) assessed the positional accuracy of

Flickr photos by computing a line of sight between the camera position and the target

position based on in-between surface elevation data. They further manually inspected the

geographic label against the geographic location. The results are used as a reference of

quality for contributor and photo features of Flickr, and thereby used to derive credibility

indicators.

Thematic Accuracy

Foody et al. (2015) use Geowiki as the data source, where it contains a series of satellite

imagery. Volunteered contributors were given the task to label the land use categories in

these satellite imagery from a pre-defined set of labels. The accuracy of the labeling was

40



Chapter 2. A Review of VGI Quality Assessment Methods

assessed through conducting a latent class analysis (LCA). LCA allows the analyst to

derive an accuracy measurement of the classification when there are no reference datasets

available to compare with. The authors further emphasize that this method can be

applied to image-based VGI. Further, their approach characterizes the volunteers based

on the accuracy of their labels of land use classes. This helps to ultimately determine

the volunteer quality.

On a related work, Zhang and Kosecka (2006) used feature-based geometric matching

using the image recognition software SIFT (Lindeberg, 2012) to localize sample photos

in urban environments. Although their work was not based on VGI, this is a potential

approach to solve quality related issues within image-based VGI.

2.5.2.3 Quality assessment in Text-based VGI

Quality of text-based VGI has been mainly assessed through the credibility of such data

based on contributor, text, and content features, and through the text content quality.

Credibility

Relating to a social approach of quality analysis, Mendoza et al. (2010) found out that

rumors on Twitter tend to be more questioned by the Twitter community during an

emergency situation. They further indicate that the Twitter community acts as a col-

laborative filter of information.

Castillo et al. (2011) employed users on mechanical turk12 to classify pre-classified ’news-

worthy events’ and ’informal discussions’ on Twitter according to several classes of credi-

bility (i. almost certainly true, ii. likely to be false, ..). This is then used in a supervised

classification to evaluate which Tweets belong to these different classes of credibility.

This helped the authors to derive credibility indicators. The user features such as av-

erage status count or the number of followers among others were found to be the top

ranked user-based credibility features.

The work of Gupta and Kumaraguru (2012) is similar to Castillo et al. (2011), and follows

a supervised feature classification PageRank like method to propagate the credibility on

a network of Twitter events. They use event graph-based optimization to enhance the

trust analysis at each iteration that updates the credibility scores. A credible entity

(node) links with a higher weight to more credible entities than to non-credible ones.

Their approach is similar to that of Castillo et al. (2011), but the authors proposed a

new technique to re-rank the Tweets based on a Pseudo Relevance Feedback.
12https://www.mturk.com
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Canini et al. (2011) divided credibility into implicit and explicit credibility. Implicit

credibility is the perceived credibility of Twitter contributors, and is assessed by Twitter

users by evaluating an external data source together with the Tweeters content topicality

and its relevance to the context, and social status (follower/status counts). Explicit

credibility is evaluated by ranking Tweeters (Twitter contributors) on a scale from 1 to

5 based on their trustworthiness. End result is a ranking recommendation system on

whom to follow on Twitter regarding a particular topic.

O’Donovan et al. (2012) provided an analysis of the distribution of credibility features

in four different contexts in the Twitter network: diversity of topics, credibility, chain

length and dyadic pairs. The results of their analysis say that the usefulness of credibility

features depends on the context in question. Thus the presence of a credibility feature

alone is not good enough to evaluate the credibility of the context, but rather a particular

combination of different credibility features that are ‘suitable’ for the context in question.

Morris et al. (2012) designed a pilot study with participants (with no technical back-

ground) to extract a list of features that are useful to make their credibility judgments.

Finally to run the survey, the authors sent the survey to a sample of Twitter users in

which they were asked to assess how each feature impacts their credibility judgment on

a five-point scale. Their findings indicate that features such as verified author expertise,

re-tweets from someone you trust, or author is someone you follow have higher credibility

impact. These features differ somewhat to the features extracted through the supervised

classification of Castillo et al. (2011). These features were further ranked according to

the amount of attention received by Twitter users.

Kang et al. (2012) defined three different credibility prediction models and studied how

each model performs in terms of credibility classification of Twitter messages. These

are: (1) social model, (2) content-based model, and (3) hybrid model (based on differ-

ent combinations of the two previous models). The social model relies on a weighted

combination of credibility indicators from the underlying social network (e.g., re-tweets,

no. of followers). The content-based model identifies patterns and tweet properties that

leads to positive reactions such as re-tweeting or positive user ratings, by using a prob-

abilistic language-based approach. Most of these content-based features are taken from

Castillo et al. (2011). The main results from the paper indicate that the social model

outperformed all other models in terms of predication accuracy, and that including more

features in the predication task doesn’t mean a better predication accuracy.

Text Content Quality

Agichtein et al. (2008) describes a generic method for all text-based social media data.They

use three inputs for a feature classifier to determine the content quality: (1) textual fea-

tures (e.g., word n-grams up to length 5 that appears in the text more than 3 times,
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semantic features such as punctuations, typos, readability measures, avg. no. of sylla-

bles per word, entropy of word lengths, grammarticality), (2) user relationships (between

users and items, uses intuition such as good answers are given by good answerers, and

vote for other good answerers), (3) usage statistics (no. of clicks on an item, dwell time

on content).

Becker et al. (2011) use a two tier approach for the quality analysis of text-based Twitter

data in an event analysis context. To identify the events, they first cluster tweets using

an online clustering framework. Subsequently, they use three centrality based approaches

to identify messages in the clusters that have high textual quality, strong relevance, and

are useful. These approaches are: (1) centroid similarity approach that calculates the

cosine similarity of the ‘tf-idf’ statistic of words, (2) degree centrality methods which

represents each cluster message as a node in a graph, and two nodes are connected with

an edge when their cosine similarity exceeds a predetermined threshold, (3) LexRank

approach distributes the centrality value of nodes to its neighbors, and top messages in

a cluster are chosen according to their LexRank value.

Hasan Dalip et al. (2009) on the other hand used text length, structure, style readability,

revision history, and social network as indicators of text content quality in Wikipedia

articles. They further use regression analysis to combine various such weighed quality

values into a single quality value, that represents an overall aggregated quality metric

for text content quality.

Bordogna et al. (2014) measured the validity of text data by measuring the number of

words, proportion of correctly spelled words, language intelligibility, diffusion of words,

and the presence of technical terms as indicators of text content quality. They further

explored quality indicators such as experience, recognition and reputation to determine

the quality of VGI.

2.5.2.4 Generic approaches

As a generic method for all VGI Forghani and Delavar (2014) propose a new quality

metric for the assessment of topological consistency by employing heuristic metrics such

as minimum bounding geometry area and directional distribution (Standard Deviational

Ellipse). Van Exel et al. (2010) propose to use contributor related quality indicators such

as local knowledge (e.g., spatial familiarity), experience (e.g., amount of contributions),

and recognition (e.g., tokens achieved). A conceptual workflow for automatically assess-

ing the quality of VGI in crisis management scenarios was proposed by Ostermann and

Spinsanti (2011). VGI is cross-referenced with other VGI types, and institutional ancil-

lary data that are spatially and temporally close. However, in a realistic implementation
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this combination of different VGI data types for cross referencing is a challenging task

due to their heterogeneity. Bishr and Janowicz (2010) proposed to use trust together

with reputation as a proxy measure for VGI quality, and established the spatial and

temporal dimensions of trust. They assert that shorter geographic proximity of VGI ob-

servations provide more accurate information as opposed to higher geographic proximity

VGI observations (implying that locals know better, the proximate spectator sees more).

On a temporal perspective of trust, they further claim that trust in some VGI develop

and decay over time, and that the observation time of an event has an affect on the trust

we endow in one’s observation. Furthermore, to assess the trust of VGI Huang et al.

(2010) developed a method to detect outliers in the contributed data. De Longueville

et al. (2010) proposed two methods to assess the vagueness in VGI. (1) contributor en-

codes the vagueness of their contributed spatial data in a 0 - 5 scale (e.g., 5 = it’s exactly

there, 0 = I don’t know where it is. (2) the second type is system created vagueness that

is assessed through automatically capturing the scale at which VGI is produced. VGI

produced in lower scales is classified as more vague.

Table 2.2 shows a summary matrix of all quality measures and indicators observed in

the literature review, with various methods that can be applied to assess these quality

measures/indicators. Following this matrix we can learn which methods can be applied

to solve various quality issues within map, text and image-based VGI. However, this

should be followed with caution, as we present here only what we discovered through

the literature review, and the presented methods could be applied beyond our discovery,

and therefore need to be further explored.

2.6 Discussion and Future Research Perspectives in VGI Quality

VGI is available with tremendous amounts through various platforms, and it is crucial to

have methods to ensure the quality of these VGI. The vast amount of data and the het-

erogeneous characteristics of utilization make the traditional comparison with reference

data sets no longer viable in every application scenario (also due to the lack of access to

reference data). Based on such characteristics, Goodchild and Li (2012) propose three

approaches to ensure the quality of VGI: (1) crowd-sourced, (2) social, and (3) geo-

graphic. As seen in Table 2.2, 20 of the methods we have discovered in the literature fall

in to geographic, social, or crowd-sourced approaches. Furthermore, 10 of the methods

we discovered fall in to an additional approach: 4) data mining, that helps to assess

VGI quality by discovering patterns and learning purely from the data. Data mining

can be used as a stand-alone approach, completely independent of the laws and knowl-

edge of geography, and independent from social or crowd-sourced approaches to assess

the quality of VGI. For example, the possibilistic truth value method is used to assess
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the positional uncertainty of POIs based only on the possibility distribution. Similarly,

outlier detection, cluster analysis, regression analysis, or correlation statistics methods

can be used to assess the data quality by purely discovering and learning data patterns,

irrespective of the laws and knowledge from geography. The supervised learning, and

feature classification methods that are used to assess the quality of text based VGI use

text, message, and user features to train the classifier. These two machine learning meth-

ods we found in the literature once again work irrespective of the laws and knowledge

from geography. Therefore, we believe these methods deserve to be represented under

an additional approach to assess VGI quality.

We have classified the found methods according to these 4 approaches based on the de-

scription of the methods in the literature. By this discovery, we aim to extend Goodchild

and Li (2012)’s classification through this survey.

While most methods have been utilized to assess the positional accuracy, thematic accu-

racy, and topological consistency, fewer methods tackle the rest of the quality measures

and indicators we review such as the completeness, temporal accuracy or vagueness. Fu-

ture work should focus also on other potential approaches to handle quality measures

and indicators. Different VGI platforms should clearly communicate to the contributors

and the consumers, as to what kind of data that one could contribute. The more precise

this is, the more comprehensive it is to the contributor on what is expected in terms of

data. As also stated by Antoniou et al. (2010), explicit VGI gives a loosely coupled spec-

ification(s) of what volunteers can contribute. If these specifications are more rigid the

future of VGI can expect higher quality information, although it may be a compromise

with lesser contributions. This may further vary depending on the task at hand.

Lower population density positively correlates with fewer number of contributions, thus

affecting data completeness or positional accuracy (Neis et al., 2013; Haklay, 2010; Girres

and Touya, 2010; Mullen et al., 2014). However, more research needs to be done regarding

this issue. Hence, a step further in this direction is to derive the socio-economic impacts

on OSM data quality. As presented in section 5.2., there have been a number of studies

and empirical research performed on the subject of OSM quality. Nevertheless, a solid

framework for assessing OSM data is far from being established, let alone a framework

of quality measurement for specific application domains. The limitation is that existing

measures and indicators (described by ISO) are not inclusive enough to evaluate OSM

data. This is mainly because the nature of OSM (and VGI in general) is fundamentally

different to what geospatial experts have dealt with so far. Therefore, we argue that

there are still research gaps when defining quality measures/indicators and proposing

methods to calculate these measures/indicators. In addition, only few studies have been

conducted to explore and analyze the differences in quality requirements for different
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application domains. Therefore, as a recommendation for future research in this topic,

we suggest to develop a systematic framework that provides methods and measures to

evaluate the fitness for purpose of each VGI type. This would need to not only focus on

the analysis of data itself, but also explore the social factors which are the driving forces

behind public contributions, and thus considerably affect the quality. For example, one

could define a mathematical model based on OSM intrinsic data indicators (e.g., number

of contributors, number of edits, etc.) to estimate the quality (e.g., completeness) of data

without having reference data in hand. This would enrich and complete the new paradigm

of intrinsic quality evaluation, which by far has received less attention by the research

community, compared to the common extrinsic quality evaluation: i.e., comparison with

reference data.

The utilization of text and image-based VGI still mostly depend on the geo-tagged con-

tent. However, the sparse geo-tagged content of these two VGI types in most cases

represent only a minority of the data. Therefore, generalization based on VGI is still

limited and need further demographic studies.

Gamification has become a popular way to involve people to contribute spatial data

(Geograph, Foursquare13, Ingress14 are some examples). Such gamification approaches

have increased participation as well as spatial coverage (Antoniou and Schlieder, 2014;

Antoniou et al., 2010). Due to the clear incentives of this data collection approach

(going high up in rankings, collecting badges etc.) this popular method can be used

to control the process of collecting more accurate data by incorporating data quality

concepts (Yanenko and Schlieder, 2014). One way to do that would be to give a ranking

to the contributor based on the quality of their collected data. Revealing such rankings

of their peers would further encourage the contributors to pay more attention to the

quality of their data (peer pressure).

As encouragement mechanisms are required to motivate people to contribute, we should

also research methods to make contributors aware of the importance of quality, and

secondly to involve the contributors and consumers to maintain the quality of the VGI

contents. This can be achieved for example by collaboratively doing quality checks on

the data. Such collaborative efforts are presently actively done in OSM, but rather

inadvertently done on Flickr or Twitter. As evident from the review, image and text-

based VGI have been given far less attention to its quality as compared to map-based

VGI. We see this as mainly due to the complexity of the image and text data types.

Comments and discussions associated with image and text contents might be one way

to ensure the contribution while systematic analysis of these resources is not a trivial
13https://foursquare.com/
14https://www.ingress.com/

46



Chapter 2. A Review of VGI Quality Assessment Methods

process. Our understanding is that quality assurance methods for text and image-based

VGI are still on the phase of experimentation, and therefore need more attention in

order to standardize these methods in to practice. This is crucial because more and

more text and image-based VGI are being utilized in various applications. Furthermore,

the works of Sacha et al. (2014), where they introduce a framework that integrates trust

and other various quality indicators in a knowledge generation process within the visual

analytics paradigm can be adapted in future research to assess and visually analyze

quality of VGI. Their framework allows the user to comprehend the associated quality at

each step of knowledge generation, and also express their confidence in the findings and

insights gained by externalizing their thoughts. This facilitates the user to comprehend

the provided quality of data as well as the perceived quality.

As further evident from this review, there is no holy grail that could solve all types of

quality issues in VGI. We should be aware of the heterogeneity of these data, and be

informed of the existing state-of-the-art to resolve many of the quality issues of VGI,

and their limitations. Addressing these limitations and thereby improving the existing

methods already paves for new contributions on this topic that should be recognized as

valid scientific contributions in the VGI community.

2.7 Conclusions

In this review of VGI quality, we have taken a critical look at the quality issues within

map, image, and text VGI types. The heterogeneity of these VGI types give rise to

varying quality issues that need to be dealt with varying quality measures and indicators,

and varying methods. As a result of this review, we have summarized the literature in to

a list of 30 methods that can be used to assess one or more of the 17 quality measures and

indicators that we have come across in the literature for map, image, and text-based VGI

respectively. This review further shows the following: 1) a majority of reviewed papers

focus on assessing map-based VGI. 2) Though implicit VGI (e.g., text-based Twitter

or image-based Flickr) has higher quality concerns in comparison to explicit VGI (e.g.,

map-based OSM), such explicit VGI has received significantly higher attention to resolve

quality issues, compared to implicit VGI. The review shows the increasing utilization of

implicit VGI for geospatial research. Therefore, more efforts should be in place to resolve

quality issues within these implicit VGI. 3) Mostly ISO standardized quality measures

have been used to assess the quality of map-based VGI (OSM). Text-based VGI have been

assessed on the credibility, vagueness, and the content quality. Image-based VGI have

been assessed on the positional/thematic accuracy, credibility, vagueness, experience,

recognition, and reputation. A logical explanation for this is that ISO standardized

measures are most often assessed through comparative analysis with ground truth data.
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For the explicit VGI (e.g., OSM) we can easily realize which ground truth data to look

for. However for implicit VGI, it is not straight forward to realize which ground truth

data to look for, therefore comparative analysis is not always possible (e.g., topological

consistency, or thematic accuracy cannot be directly assessed, as we need to derive the

topology or the thematic attributes from the VGI in an additional data processing step).

These implicit VGI are further enriched with contributor sentiments and contextual

information. Therefore ISO standardized measures alone are not enough to assess the

quality of implicit VGI. This explains the use of indicators such as reputation, trust,

credibility, vagueness, experience, recognition, or local knowledge as quality indicators.

A lack of standardization of these more abstract quality indicators is a reason why

fewer works exist for image and text-based VGI. In addition, the implicit nature of

the geography that is contributed in most of these VGI is yet another reason for the

insufficiency of quality assessment methods for text and image-based VGI. 4) we have

classified the quality assessment methods according to the crowd-sourced, geographic,

and social approaches as introduced by Goodchild and Li (2012). We have further

discovered data mining as an additional approach in the literature that extends Goodchild

and Li (2012)’s classification.
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Chapter 3. Data Quality Assurance for VGI

Abstract:

The availability of technology and tools enables the public to participate in the

collection, contribution, editing, and usage of geographic information, a domain

previously reserved for mapping agencies or companies. The data of Volunteered

Geographic Information (VGI) systems, such as OpenStreetMap (OSM), is based

on the availability of technology and participation of individuals. However, this

combination also implies quality issues related to the data: some of the contributed

entities can be assigned to wrong or implausible classes, due to individual interpre-

tation of the submitted data, or due to misunderstanding about available classes.

In this paper we propose two methods to check the integrity of VGI data with re-

spect to hierarchical consistency and classification plausibility. These methods are

based on constraint checking and machine learning methods. They can be used to

check the validity of data during contribution or at a later stage for collaborative

manual or automatic data correction.

3.1 Introduction

During the last decade, low-cost sensing devices like handheld GPS receivers or smart-

phones became available and accessible for many consumers. In the same period powerful

open GIS software and web technologies have been developed. The availability of tech-

nology and tools enables the public to participate in the collection, contribution, editing,

and usage of geographic information, a domain previously reserved for mapping agencies

or large organizations. Volunteered Geographic Information (VGI) (Goodchild, 2007),

the voluntary collection and contribution of geo-spatial data by interested individuals

became a large and vital movement. VGI projects like OpenStreetMap1 (OSM) result

in large scale data sets of geographic data covering many parts of the world. This new

way of geographic data production changed not only the way of data processing but also

applications and services built on it (Coleman et al., 2009; Feick and Roche, 2010; Zook

et al., 2010).

There exist a huge number of services based on e.g., OSM data, such as map providers,

trip advisers, navigation applications. Depending on the service, reliable data is neces-

sary. However, without coordinated action, the experience and training of experts, and

industrial grade sensing devices it is hard to guarantee data of homogeneous quality.

The absence of a clear classification system in, e.g., OSM, the ambiguous nature of

spatial entities, and the large number of users with diverse motivations and backgrounds

foster the generation of data of mixed quality. Whatever a body of water is a pond or a
1http://www.OpenStreetMap.org
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lake, whatever a grassland is a meadow, natural reserve, a park, or a garden is not just a

question of a proper, crisp definition, but also a question of perception, conceptualization,

and cultural background. What is a pond somewhere, might be a lake in a different

environment, a river might be a creek or a stream. In addition to rather conceptual

issues, many contributed entities are incompletely classified or wrongly attributed due to

the open and loose attributation mechanism in OSM. As a result, a significant amount

of data is not correctly classified and can cause errors whenever they are addressed by

algorithms, such as rendering, analysis, or routing. This situation triggers questions

about the quality of VGI data, suitable mechanisms for guaranteeing and fostering high

quality contributions, and correcting problematic data.

Hence, it becomes increasingly important to analyze the heterogeneous quality of VGI

data. Several studies investigate the quality of VGI by applying geographic data quality

measures, such as feature completeness, positional accuracy, and attribute consistency

(Girres and Touya, 2010; Ludwig et al., 2011; Neis et al., 2011). These approaches

usually require using reference data sets to evaluate the VGI data. However, these data

sets are in many cases not available.

In this paper we present two approaches for analyzing the quality of VGI data: one

by constraint checking and one by machine learning, i.e., we are analyzing the available

data only with respect to consistency and plausibility based on contributions themselves.

The results can be used to re-classify existing data and to provide guidance and recom-

mendations for contributors during the contribution process. Recommendations can be

directly generated from the data source itself by analyzing the distribution of the con-

tributed feature in the surrounding area, thus the locality of entitles is preserved and no

global rules are applied to locally generated data.

3.2 Related Work

In VGI, contributors produce geographic information without necessarily being educated

surveyors or cartographers. In open platforms such as OSM, the motivation for contri-

bution can be highly diverse, and the quality of contributions also depends on the used

equipments and methods. Thus, the combination of diverse educational backgrounds,

different views on required data and its quality, as well as technical constraints lead to

data of mixed quality. Hence, the assessment of VGI data quality became a focus in VGI

related research.

Quality of VGI data has various perspectives and notions: completeness, positional ac-

curacy, attribute consistency, logical consistency, and lineage (Goodchild and Li, 2012).

The quality can be assessed by basically three different methods: comparison with re-

spect to reference data, semantic analysis, and intrinsic data analysis.
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One approach to assess the quality of VGI data is by means of a direct comparison with

reference data collected with a certain quality standards. The challenge of this approach

is to identify a robust mutual mapping function between the entities of both data sets. In

(Haklay, 2010; Ludwig et al., 2011) the authors are able to show a high overall positional

accuracy of OSM data in comparison with authoritative data. In terms of completeness,

some studies conclude that some areas are well mapped and complete relative to others.

They also show a tight relation between completeness and urbanization (Haklay, 2010;

Neis et al., 2013).

Different aspects have influence on the quality of VGI data, e.g., the combination of loose

contribution mechanisms, and the lack of strict mechanisms for checking the integrity

of new and existing data are major sources of the heterogeneous quality of VGI data

(Mooney and Corcoran, 2012b). Amongst others, semantic inconsistency is one of the

essential problems of VGI data quality (Elwood et al., 2012). In (Mülligann et al., 2011)

and (Vandecasteele and Devillers, 2013) the authors present methods for improving the

semantic consistency of VGI. The analysis of semantic similarity is applied to enhance

the quality of VGI by suggesting tags and detecting outliers in existing data (Mülligann

et al., 2011; Vandecasteele and Devillers, 2013), as well as by ontological reasoning about

the contributed information (e.g., (Schmid et al., 2012)). Another approach for tackling

quality issues is the development of appropriate interfaces for the data generation and

submission. In (Schmid et al., 2013a; Schmid et al., 2013b) the authors demonstrate that

task-specific interfaces support the generation of high quality data even under difficult

conditions.

An alternative approach is evaluating the available data along three intrinsic dimensions

(Goodchild and Li, 2012):

• Crowdsourcing evaluation: the quality of data can be evaluated manually by means

of cooperative crowdsourcing techniques. In such an approach, the quality is en-

sured through checking and editing of objects by multiple contributors, e.g., by

joint data cleaning with gamification methods (Arteaga, 2013).

• Social measures : this approach focuses on the assessment of the contributors them-

selves as a proxy measure to the quality of their contributions. (Haklay, 2010;

Ludwig et al., 2011) use the number of contributors as a measure for data qual-

ity, (Neis and Zipf, 2012) analyzes the individual activity, (Mooney and Corcoran,

2012b) investigates positive and negative edits, (Barron et al., 2014) is researching

fitness-for-purpose of the contributed data.

• Geographic context : this approach is based on analyzing the geographic context of

contributed entities. This approach relates to Tobler’s first law of geography which
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states that "all things are related, but nearby things are more related than distant

things" (Tobler, 1970).

3.3 Managing Quality of VGI Data

A big challenge for VGI is the quality management of the contributed data because of its

multidimensional heterogeneity (e.g.,knowledge and education, motivation for contribu-

tion, and technical equipment). The problem requires the development of tools advising

contributors during the entity creation process, but also to correct already existing data

of questionable quality. Amongst others, quality problems can be general accuracy issues,

geometric or topological constraint violations, hierarchical inconsistencies, and wrong or

incomplete classification. In this work we focus on hierarchical inconsistencies and wrong

or incomplete classification. Whenever we use the term “wrong” in our study we mean

the assignment of a potentially wrong class or tag to the respective entity due to label-

ing ambiguity. “Wrong” entities will be detected by our classification and consistency

checking algorithms. This is only an indicator for a potential conflict.

In the case of OSM, it is known that the data set contains large amounts of problematic

data (e.g., see Section 6.2). On the other hand, we can assume that a significantly

larger part of the data is of sufficient quality: the large amount of volunteers constantly

improving the data set and the large number of commercial applications built on top

of the data set are good indicators for it. Given that this rather unprovable statement

is true, we can use the data itself for quality assessment by learning its properties and

using the results as an input for the processes described in our approach.

Figure 3.1 describes the two phase approach: in the Classification phase, we can either

apply machine learning algorithms to learn classifiers of the so far contributed data, or

we can define classification constraints the data has to satisfy. Some of the before men-

tioned quality issues could be solved if at the point of data generation or contribution the

integrity with existing data is checked. Depending on the potential problem to be ad-

dressed, different automatic approaches for satisfying inherent constraints are available,

e.g., (Devogele et al., 1998).

Hence, in the Consistency Checking phase we propose three approaches for checking the

consistency of the data: during Contribution Checking the contribution tool should in-

form users during the contribution process about potentially problematic data based on

the generated classifier. Contributors can now consider the hints generated by the system

about an object and can take actions to correct it if necessary. After contribution, the

new data can be used to train the classifier again (if checking is based on an learning ap-

proach). Manual Checking should provide tools allowing the identification of problematic
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Figure 3.1: Proposed approaches to ensure VGI quality, see Section 3.3 for a detailed
description.

entities in the existing data set. They can be presented to volunteers for checking and

correcting, ideally based on plausible suggestions. And finally, Automatic Checking can

correct obviously wrong data automatically, if the correction can be computed without

human assistance.

3.4 Tackling Areal Consistency and Classification Plausibility

The majority of data quality studies focus on point-like or linear geographic entities,

such as points of interest or road networks (see Section 6.2). In this work we focus on

quality issues related to areal entities, that is extended geometric entities. Our methods

can be applied to entities of all possible scales, from very large administrative or natural

entities to rather small ones like buildings or park benches.

The focus of our work is the quality of the classification of the contributed data. We are

particularly interested in:

• Hierarchical consistency of administrative data: we check if administrative elements

are used according to intrinsic, logical rules.
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• Classification plausibility of areal entities: the correct classification of entities can

be difficult, especially when contributors are not aware of potential conflicts due to

similar concepts. Here we focus on ambiguity issues resulting from the availability

of two or more possible classification options of entities (e.g., park vs. garden vs.

grass).

Our study is build on OSM data. We will use notions typically used in the OSM tagging

scheme, such as: keys and values.

3.5 Hierarchical Consistency Analysis

Administrative boundaries are political geographic entities with a strict inherent struc-

ture, such as continents consist of countries, countries consisting of states and states

consisting of districts, etc. In OSM2 administrative boundaries are defined as subdivi-

sions of areas/territories/jurisdictions recognized by governments or other organizations

for administrative purposes. Administrative boundaries range from large groups of nation

states right down to small administrative districts and suburbs, with an indication of this

size/level of importance, given by tag ’admin_level’ which takes a value from 1 to 10".

However, as countries can have different administrative partitioning, some levels might

not be applicable or the classification schema may not be sufficient. In this case it can

be extended to 11 levels (e.g., in Germany and Netherlands).

Typically, administrative boundaries around administrative Units U are structured such

that every administrative unit typically belongs to one administrative level of 1 to 11

(exceptions are, e.g., city states):

∀u ∈ Ui where 1 ≤ i ≤ 11 (3.1)

Each administrative unit where i > 1 is contained in an administrative unit of a higher

level; all together the contained units exhaustively cover the territory of the containing

unit:

∀ua ∈ Ui>1, ∃ub ∈ Uj>i : ua ⊂ ub (3.2)

Administrative units on one level can share borders but do not intersect each other:

∀Uj , Uk ⊂ Ui : Uj ∩ Uk = ∅ (3.3)
2http://wiki.openstreetmap.org/wiki/Key:admin_level#admin_level
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However, there are exceptions from this strict hierarchy, such as exclaves, enclaves, city

states, or embassies. Still, the vast majority of administrative units follow a clear and

exhaustive hierarchical ordering. This allows checking the integrity of the available ad-

ministrative data in OSM by checking the following type of outliers:

• Duplication: in the case of duplication, entities belong to two or more different

administrative units. See Figure 3.2a.

• Inconsistency : hierarchical inconsistency occurs when entities of higher adminis-

trative units are contained in units of lower levels or the same level. See Figure 3.2b

• Incorrect Values : incorrect values occur throughout the OSM data set, probably

due to the import from different classification schemes. Typically the value of

admin_level tag is not a numerical value between 1-11.

(a) Duplication. (b) Inconsistency.

Figure 3.2: Incorrect classification plausibility (Duplication & Inconsistency). In a)
a part of Bremen city is within Bremerhaven, in b) units on level 11 contain elements
of level 8 and 9.

3.5.1 Consistency analysis results and discussion

We applied the consistency rules on the complete OSM data set downloaded at January

20th, 2014. At the time of analysis, the OSM data contained 259,667 geographic entities

classified as administrative units (admin_level = value). 24,410 entities, thus about

10% of all administrative units contained problematic assignments, see Figure 3.3. We

identified 14,842 duplications, 9,305 inconsistencies and 263 incorrect values.

Figure 3.2a illustrates an example for duplication: a part of the administrative unit

representing Bremen city, is part of another unit representing Bremerhaven city. Fig-

ure 3.2b shows an instance of inconsistency: some administrative units of level 8 and 9

are contained by administrative units of level 11.
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Of course, not all of the 24,410 detections represent wrong data, some cases already

represent the mentioned special cases, some inconsistencies might be detected due to in-

complete presence of administrative hierarchies. However, a plausibility check as sketched

in Section 3.3 would draw the attention of the contributor towards potential errors.

Figure 3.3: Distribution of potentially incorrect hierarchical classification of admin-
istrative units.

3.6 Classification Plausibility Analysis

When users contribute data to OSM, they have a large range of possibilities to classify

the data. In some cases classifying entities is not straightforward; depending on the

perspective of the contributor different possible classes may be applicable. A water body

can still be a pond or already be a lake, the grass covered area can be a park, a garden,

meadow or grassland. In many cases there is no definite answer, especially as in OSM

there is no explicit classification system, just recommendations. However, utilizing spa-

tial data requires homogeneous handling of data of identical concepts. Only if the same

type of entities are identically classified, algorithms can access them properly for analy-

sis, rendering, or reasoning. However, in many cases users contribute data with wrong

classifications either due to conceptual ambiguity or due to a different understanding of

the available concepts.

In this work we exemplify our approach on analysing classification plausibility of enti-

ties, which are classified either as park or garden. We chose these classes as they are

good examples for classification ambiguity: within OSM, parks and gardens lack a clear

definition distinguishing them. Thus, contributions of these features mainly depend on

individual conceptualizations. Many entities are obviously not correctly classified when
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we inspected them with a commonsense understanding of parks and gardens. Typically

parks are public, accessible areas of a cultivated nature. Gardens, in contrast are typi-

cally private areas also featured with cultivated nature. However, one large difference of

both entities is not only their infrastructural containments, but also their size: parks are

usually significantly larger than gardens. As usual when it comes to geospatial reality,

we can observe everything such as large public gardens or small parks. However, the

vast majority of gardens and parks follow this vague classification (see Figure 3.6 for a

support of this statement), especially relative to entities in their surrounding (parks and

gardens can have significantly different dimensions in different areas of the world, usually

correlated to the available territory in relation to the population). In the following we

analyzed entities classified with the tags leisure=park and leisure=garden.

3.6.1 Classification learning to ensure VGI quality

Due to the large amount of data in OSM, it is possible to apply machine learning tech-

niques to tackle data quality issues. Machine learning algorithms can learn from existing

data and extract implicit knowledge to build a classifier. Then such a classifier can be

used for ensuring the quality as sketched in Figure 3.1, either during contribution or by

applying on already existing data. In our approach learning the classifier on the con-

tributed data is used to predict the correct class of an entity (i.e., park or garden in our

example). This is done in two steps: a learning or training step, and a validation step.

In the first step our system learns a classifier based on the properties of pre-classified

entities of a training set (Bishop, 2006; Han et al., 2011). In this work, the training

set consists of entities representing parks and gardens, Dtrain = (E1, E2, ..., En), where

each Entity E is represented by a set of features (such as: size, location ...etc.) and is

assigned to a class C (i.e., park or garden), E = (F1, F2, ..., C). This step tries to identify

a function, f(E) = C to predict the class C of a given entity E.

In the second step the generated classifier is used for classification: we apply it on a test

set to measure the accuracy of the classifier. The test set only contains entities not used

for training. The classifier performance is evaluated according to classification accuracy

on the test entities (Bishop, 2006; Han et al., 2011).

3.6.2 Experiments and setup

As described previously, we focus on classification plausability in case of similarly ap-

plicable classes, in our case parks (leisure = park) and gardens (leisure = garden). We

use data from Germany, the United Kingdom (UK), and Austria. According to (Haklay,

68



Chapter 3. Data Quality Assurance for VGI

2010; Ludwig et al., 2011), OSM data is of acceptable quality in Germany and the UK.

In our study we use data downloaded on December 20th, 2013.
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Figure 3.4: Number of Parks and Gardens within the selected data set.

We selected data from the ten densest (population/area) cities of each country. Figure 3.4

shows the selected cities and the present number of parks and gardens within each city.

We decided to use cities as spatial units, as they define graspable spatial regions. In our

experiments we follow the locality assumption of Tobler’s first law of geography: different

cities in the same country might have a closer understanding of parks and gardens than

cities of different countries. Thus, it will be more likely to produce meaningful results if

we apply a learned classifier from one city on the data of another city in the same country.

Learning areal properties in Hong Kong and applying them on data of Perth/Australia

might not be valid due to the size of the available territory. The same holds for the

idea of learning global parameters for parks and gardens — spatial entities have a strong

grounding in local culture and history of a particular country, applying global rules on

local data will lead in many cases to wrong classifications due to different local concepts.

In the following we learned the classifiers of 10 cities per country, and applied them

mutually to every other city. By assessing the classification accuracy, this method al-

lows identifying the most accurate classifiers for a city, and the identification of biased

classifiers due to biased or ambiguous classification practices within specific cities.
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(b) London.

Figure 3.5: Distribution of parks and gardens areas in London and Birmingham.

In our study we applied a straightforward approach to distinguish between parks and

gardens: we compared their size. Size is not probably enough to reliably distinguish be-

tween gardens and parks, especially if we consider other related classes such as meadows

or grassland. When we have a closer look into how the classes are populated, we can

see that the distribution can be rather clear, as it is, e.g., the case in Birmingham (see

Figure 3.5a). There are also places with a less clear separation, e.g., the case of London

(see Figure 3.5b), where parks and gardens seem to have a large conceptual overlap.

However, our intention behind choosing the area is to detect incorrect classification at

a very early point of contribution, when no other features are yet provided. Confronted

with an ‘early-warning’, users can reconsider the class they selected and modify it if

required. However, especially a review of the existing data, as suggested in Section 3.3,

can be fed by such a classifier. Figure 3.6 shows the mean areas of parks and gardens. It

clearly shows that the areas per class are generally distinct and can be used to distinguish

between entities of the two classes.

3.6.2.1 Feature selection

The areas of each class have a specific distribution in each city. Figure 3.6 shows that

parks are more likely to be large (i.e., tens of thousands to millions sqm), while gardens

are more likely to cover rather smaller areas (i.e., a few sqm to a few thousands sqm).

Although there are rare cases (i.e., Royal Botanic Gardens in the UK about one million

sqm, however, they can be considered to be parks) corrupting the distribution; the

majority of entities follow a common distribution. This distribution might also be similar

in other cities, even if the data does not reflect it. By learning these distributions, we can

distinguish between parks and gardens, and apply the learned classifiers to other cities

and check the existing data or to guide contributors during the contribution process.
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Figure 3.6: Mean area size of parks and gardens for the selected data set.

3.6.2.2 Classifier training

Building a classifier basically can be done using Eager Learning (EL) or Lazy Learning

(LL). In EL a training set is used to build a complete classifier before receiving any

test entities. Bayesian classification, support vector machines (SVM), neural network

(NN), and decision trees are examples for EL algorithms. In LL, generalization beyond

the training data is delayed until a query is made to the system. K-nearest neighbours

(KNN) and case based reasoning (CBR) are examples of lazy learning (Bishop, 2006;

Han et al., 2011). In OSM a set of pre-classified entities is already stored, and the

classification process is performed on new entities at contribution time. The new entity

is classified based on similarity to existing entities. Hence, it is a good idea to follow the

lazy learning paradigm to develop a classifier.

We decided to use KNN (Cover and Hart, 1967; Witten and Frank, 2005) for building a

classifier. KNN classifies entities based on closest training examples. It works as follows:

the unclassified entity is classified by checking the K nearest classified neighbours. The

similarity between the unclassified entity and the training set is calculated by a similarity

measure, such as euclidean distance.
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Berlin 80.43 76.78 76.23 72.25 74.07 82.03 56.44 79.38 78.94 82.2 75.23
Bremen 71.93 72.28 70.18 70.18 69.12 72.28 59.30 72.98 71.23 71.93 71.70
Dortmund 54.14 55.7983.31 82.26 82.41 32.93 76.84 81.05 76.84 32.93 82.26
Dusseldorf 43.59 59.08 85.74 91.38 91.18 19.69 86.36 87.28 78.26 19.69 89.95
Essen 77.44 71.9579.27 79.88 82.32 75.00 66.16 80.49 78.35 75.00 80.69
Frankfurt 89.68 79.13 75.00 62.39 65.37 92.66 47.94 78.67 78.21 92.89 88.07
Hamburg 54.15 55.87 59.03 61.27 61.76 51.69 61.06 58.97 57.90 51.79 61.36
Cologne 78.13 79.09 81.49 80.05 80.05 77.16 66.35 80.53 80.29 77.16 80.13
Munchen 72.50 71.02 79.37 77.90 79.17 69.16 62.48 78.49 78.88 69.25 78.65
Stuttgart 93.58 74.3380.75 65.24 67.38 94.65 54.01 74.33 78.61 94.65 76.11

Table 3.1: Classification accuracy for parks and gardens of cities in Germany.

3.6.2.3 Classifier validation

During the validation process we use independent data sets for training and testing or

we use the same data set for mutually applied classifiers (with this method, we evaluate

if a classifier from a different city can be applied to another city). In the latter case,

we use K-fold cross validation (CV) (Kohavi et al., 1995) to show the validity of our

classification. In CV a training set is divided into K disjointed equal sets, where each set

has roughly the same class distribution. Then the classifier is trained K times3, and each

time a different set is used as a test set. Afterwards the performance of the classifier is

measured as the average of developed classifiers (Kohavi et al., 1995). We build classifiers

for each city in a country. The results can be inspected in Tables 3.1, 3.2 and 3.3. The

rows of the tables represent the accuracies of different classifiers for the data of each

city as a test set. These classifiers were generated based on the data of other cities as

training sets and are represented in the columns. The last column “Class. Acc.” shows

the average classification accuracy of parks and gardens within each city based on the

top three classifiers (italic red values).

3.6.2.4 Classifier assessment

Depending on just one training and test set might result in biased classifiers. Further-

more, we aim to detect possible incorrect classifications based on the similarity between

cities within the same country. Thus, we build mutual classifiers between cities at the
3 5 and 10 are recommended values for K
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Birmingham 99.73 0.99 70.03 92.6590.79 92.67 0.94 69.27 1.29 94.73 92.73
Bradford 59.49 84.8173.42 54.43 67.09 70.25 84.81 74.68 81.65 68.99 72.78
Bristol 72.73 79.55 78.64 67.27 75.91 79.09 79.55 76.82 79.5581.82 78.03
Edinburgh 65.23 44.4459.14 59.3263.26 63.26 44.62 59.50 51.61 60.75 60.63
Glasgow 74.30 45.55 67.18 70.23 69.72 73.03 45.80 67.94 61.07 69.97 71.76
Leeds 75.96 57.87 72.34 70.4377.45 75.96 58.09 73.40 58.9477.66 77.02
Liverpool 86.05 89.53 88.37 80.2387.21 89.53 89.53 87.21 89.53 90.70 87.60
London 68.26 64.88 72.51 66.7772.02 72.22 65.05 73.03 68.1272.83 72.63
Manchester 67.38 92.20 80.85 63.8373.05 78.01 92.20 79.43 91.4979.43 73.29
Sheffield 71.55 72.41 78.88 70.26 74.14 77.59 72.41 73.71 73.7178.02 75.72

Table 3.2: Classification accuracy for parks and gardens of cities in the UK.
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Dornbirn 100 84.62 84.62 84.62 23.08 53.85 84.6276.92 15.38 76.9282.05
Graz 63.06 77.71 64.33 77.71 31.85 68.15 77.71 74.52 35.03 60.5151.59
Innsbruck 80.19 66.04 83.02 66.04 52.83 50.94 66.04 66.98 47.17 47.1767.30
Klagenfurt72.1373.77 70.49 70.49 31.15 62.30 73.7775.41 47.54 49.1865.57
Linz 41.52 34.66 43.32 34.66 62.09 37.91 34.6638.63 61.01 40.0748.01
Salzburg 56.60 67.92 59.43 67.92 39.62 70.75 67.92 64.15 42.45 58.4960.38
St. Pölten 100 100 100 100 25.00 80.00 100 95.00 30.00 55.00 X
Vienna 59.39 70.36 58.45 70.36 38.93 62.10 70.3668.28 37.50 61.8665.69
Vilach 34.29 31.43 34.29 31.43 68.57 48.57 31.43 31.43 77.14 22.8659.02
Wels 56.2556.25 56.25 56.25 31.25 56.25 56.25 50.00 50.00 37.5056.25

Table 3.3: Classification accuracy for parks and gardens of cities in Austria.

same country. One challenge is to assess the classifier performance. The accuracy of a

classifier applied on a given test set is expressed by the percentage of correctly classified

entities (please see the next section for a deeper discussion on the measurability of the

results). However, in some cases accuracies are biased due to overfitting or underfitting

(Bishop, 2006; Han et al., 2011). A reason can be unbalanced population of the training

or the test set. This happens for instance when the classifiers created from Liverpool

or Manchester are applied on the Birmingham data (see Table 3.2). The Receiver Op-

eration Characteristics (ROC) curve is a useful measure to asses the performance of
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classifiers. The ROC curve represents the relative trade-off between benefits and costs of

the classifier. In particular the Area Under the ROC Curve (AUC) is a useful measure

to asses a classifier. The closer the value of a AUC is to 1, the higher its performance.

Good classifiers should have AUC value between 0.5 and 1 (Fawcett, 2006). Tables 3.1,

3.2, and 3.3 represent the accuracies of the generated classifiers, while AUC measures

are dropped due to space restrictions. A combination of accuracy and AUC is used to

determine the classification accuracy of parks and gardens for each city. We select the

three top classifiers with the highest AUC measures (italic red values), and neglect biased

classifiers with AUC less than or equal 0.5 (blue values). The classification accuracy is

measured on the basis of the average accuracy.

3.6.2.5 Results discussion

Our results show that the cities in Germany and the UK have a classification accuracy

from 70% to 90% for parks and gardens (see Tables 3.1 and 3.2). This means, according

to our generated classifiers and their mutual application in other cities, about 10% to

30% of all analyzed entities within each city might be incorrectly classified. In Austria

(see Table 3.3) we achieve poorer results. This might be due to the relative low number

of entities in the available data set, or to already existing classification problems. In

some of the cities, e.g., St. Pölten only one class of entities is available or predominant

and causes the classifier to be highly biased and practically unusable (see Figure 3.4 and

Table 3.3).

Of course, the classification results have to be interpreted with care. In none of the

selected data sets, we had a qualified reference data set of known good quality. We

selected the data sets as they were, and tried to identify two size classes within them:

one for gardens and one for parks. In most cities we could identify good classifiers,

however, their accuracies are not verifiable to full extend. As we have no clear ground

truth, we cannot claim the correctness of the classifiers. With our approach we were

able to identify a large set of entities worth looking at again. All samples we inspected

showed clear evidence for entities that have been classified in an inappropriate way:

“parks” around residential buildings in residential areas, as well as “gardens” with typical

park facilities such as ways, playgrounds, or larger water bodies.

Although these samples were randomly chosen, they showed indicators for the validity

of our approach. There are other evidences about that our results point in the right

direction. In April 2014 we reviewed all entities that were detected as outliers in this

paper. Of the originally 24,410 detected conflicts of the hierarchy consistency analysis

(see Section 3.5) 10,635 entities had been already corrected or removed by the OSM
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community. Thus, in about 40% our approach pointed to entities identified as incorrect

by crowdsourcing reviewers. The classification plausibility analysis resulted in 2,023

problematic entities in Germany, 2,516 in the UK, and 1,062 in Austria. About 8% of

the German entities, 8% of the UK entities, and 11% of the Austrian entities have been

revised since then. It is necessary to state that they have been revised without explicitly

pointing to them. An appropriate infrastructure, e.g., a website or a gamified entitiy

checker, can help to point users to the detected entities and revise them if necessary.

Also, the developed a very simple classifiers. If we want to successfully distinguish more

than two classes, we need to consider more features than just size, thus we have to learn,

e.g., typically contained or surrounding features of entities. By applying the approach

as discussed in Section 3.3, we can select the detected entities and present them in a

crowdsourcing manner to volunteers for inspection. The potentially re-classified entities

could be used for rebuilding the classifier with clearer evidence.

3.7 Conclusion and Future Work

In this work we propose a new approach to manage the quality of VGI data during

contribution, and on the existing data set manually or automatically. We presented two

approaches to tackle VGI quality. We mainly focused on the problem of potentially

wrong classifications that might lead to heterogeneous data quality. We developed two

methods to tackle hierachical consistency and classification issues based on ambiguity of

potential entity classes.

With our first method, constraint based checking of hierarchical elements, we are able

to detect all inconsistencies in the existing OpenStreetMap data set. With our second

method, we can identify potentially wrong areal classifications in the OpenStreetMap

data set by learning classifiers of different entity classes. The results show that we can

identify a large number of existing problems in OSM data with both approaches. These

detected conflicts could be presented to voluntary users to validate the entities’ class,

potentially based on suggestions generated along with it. For more complex classifiers

being able to detect multiple possible classes, like, e.g., the “green areas” on a map

(parks, gardens, meadow, grassland, scrub, etc.) we need to develop meaningful classifiers

considering sets of features to be learned. We also need to think about appropriate ways

to implement the proposed quality assurance methods, e.g., by means of gamification of

user-based validation of the detect problematic data.
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Abstract:

With the ubiquity of technology and tools, current Volunteered Geographic Infor-

mation (VGI) projects allow the public to contribute, maintain, and use geo-spatial

data. One of the most prominent and successful VGI project is OpenStreetMap

(OSM), where more than one million volunteers collected and contributed data that

is obtainable for everybody. However, this kind of contribution mechanism is usu-

ally associated with data quality issues, e.g., geographic entities such as gardens

or parks can be assigned with inappropriate classification by volunteers. Based

on the observation that geographic features usually inherit certain properties and

characteristics, we propose a novel classification-based approach allowing the iden-

tification of entities with inappropriate classification. We use the rich data set

of OSM to analyze the properties of geographic entities with respect to their im-

plicit characteristics in order to develop classifiers based on them. Our developed

classifiers show high detection accuracies. However, due to the absence of proper

training data we additionally performed a user study to verify our findings by

means of intra-user-agreement. The results of our study support the detections of

our classifiers and show that our classification-based approaches can be a valuable

tool for managing and improving VGI data.

Keywords:

Volunteered Geographic Information, Spatial Data Quality, Machine Learning, Ge-

ographic Information Systems.

4.1 Introduction

During the last decade, the ubiquity of location-aware devices (e.g., smartphones) enables

the public to collect, contribute, edit, and use geographic information — activities for-

merly exclusively conducted by national mapping agencies and professional organizations.

The phenomenon is known as Volunteered Geographic Information (VGI) (Goodchild,

2007). Due to its large success and openness, data generated by VGI projects became

part of a common, globally available Spatial Data Infrastructure (SDI) and plays a sig-

nificant role in Geographic Information Systems (GIS) (Mooney and Corcoran, 2011).

The advancement of Web technologies and the availability of open source software lead

to the increasing numbers of VGI projects, such as OpenStreetMap1 (OSM). OSM is one

of the most common VGI projects, with the aim to provide a free editable world map.

A large number of contributors are producing and improving large scale geographic data

sets covering many parts of the world (Haklay and Weber, 2008). OSM has no restric-

tion about the spatial data to be contributed, and its rich data set enables numerous
1http://www.openstreetmap.org
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different applications — including but not limited to map provision, routing, planning,

geo-visualization, and point of interests (POI) search. Applications require reliable and

consistent data, which is not guaranteed with VGI data (Flanagin and Metzger, 2008) in

contrast to “official” data collected by authorities. Nevertheless, VGI is a potential alter-

native for authoritative data: it is typically open and free, dynamically and frequently

updated, and employs crowdsourcing forces to ensure the quality (Goodchild and Li,

2012).

The increasing number of OSM contributors, the vast amounts of daily contributions,

and the loose classification system trigger questions about the resulting data quality.

The large number of heterogeneous contributors fosters data of mixed quality: they have

different perspectives, contribute for different purposes, and use different contribution

technologies and tools. Data quality in VGI has been studied from different perspectives

and identified a number of crucial constituents for quality issues and mechanisms.

In this work, we address VGI data quality from the perspective of classification plausi-

bility. In OSM, there is no explicit classification system, just recommendations. If an

“water” area is classified as “lake” or “pond” — the decision is up to the contributors

and based on their conceptualization of space, and their knowledge and considerations

of the provided recommendations. Due to a certain degree of conceptual ambiguity, in

many cases multiple classes are applicable for an entity; if a piece of land is “grass” or

“meadow”, “garden” or “park” depends on the context and purpose of data collection.

Additionally, missing hard constraints make it hard to clearly decide. As a result, a

significant amount of data is inappropriately classified and can cause errors whenever

addressed by algorithms, such as rendering, analysis, or routing algorithms.

However, in many cases one classification is more applicable than others, as comparable

pieces of land might have certain comparable intrinsic properties: parks are usually

more than just an area covered with grass, parks in many cases contain ways, trees,

water bodies, etc.

In this paper, we attempt to tackle the problem of classification ambiguity and the result-

ing quality issues. In our approach we analyze the properties of potentially ambiguous

classes with respect to their inherent structure. We use these properties and build clas-

sifiers with the aim to identify entities with a potentially inappropriate classification.

To validate the promising results of our approach, we conducted a user study with a

subset of the identified entities. Based on the findings of the intra-user-agreements of

our participants, we have a strong support for the approach and the general applicability

of automatic quality checking approaches. Our results also raise questions about remote

(non-local) classification of entities of unclear characteristics.
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4.2 Related Work

In VGI, contributors produce geographic information without necessarily being educated

surveyors or cartographers. The motivation for contribution can be highly diverse, and

the quality of contributions also depends on the used equipments and methods. Thus,

the combination of diverse educational backgrounds, different views on required data

and its quality, as well as technical constraints lead to data of mixed quality. Due to

the increasing significance of VGI questions concerning data quality, credibility, and

reliability are increasingly studied (Elwood et al., 2012; Flanagin and Metzger, 2008).

Quality of VGI data has various perspectives and notions: completeness, positional accu-

racy, attribute consistency, logical consistency, and lineage (Devillers et al., 2010; Good-

child and Li, 2012). As most VGI projects, OSM does not have data quality specifications

or standard procedures as implemented by mapping agencies. The quality of VGI data

can be assessed by two different methods: comparison with respect to reference data

and intrinsic data analysis (which can be implemented by crowdsourcing approaches,

social measures, or geographic consistency analysis (Goodchild, 2007; Goodchild and Li,

2012)). In Girres and Touya (2010), Haklay (2010), and Ludwig et al. (2011) the au-

thors compare OSM data to reference data, in Haklay (2010) and Ludwig et al. (2011)

the authors are able to show a high overall positional accuracy of OSM data in compari-

son with authoritative data. In terms of completeness, some studies conclude that some

areas are well mapped and complete, however with a tight relation of completeness and

urbanization (Haklay, 2010; Neis et al., 2013). On the other hand, the following intrinsic

methods and mechanisms are applied and proposed to ensure VGI data quality:

• Crowdsourcing revision: data quality can be ensured by means of crowdsourcing,

thus by checking and editing of entities by multiple contributors.

• Social measures : this approach focuses on the assessment of contributors them-

selves as a proxy measure for the quality of their contributions (Keßler and Groot,

2013).

• Geographic consistency : this approach analyzes the consistency of contributed en-

tities with their geographic context, i.e., contextually implausible entities will be

detected (e.g., a building in a lake).

Examples for intrinsic analysis methods are in e.g., Barron et al. (2014) presenting 25

methods to assess VGI quality without the need for authoritative data. The methods

are focused around "fitness for purpose" approach. In Keßler et al. (2011) and Neis

and Zipf (2012) the authors analyze intrinsic information, such as tracking edits history,
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and contributor’s reputation analysis. In D’Antonio et al. (2014) and Keßler and Groot

(2013) the authors use trustworthiness as a proxy to assess the quality. Mooney and

Corcoran (2012b) assesses data quality by analyzing the frequently edited entities by

correlating the number of tags and the number of contributors associated with an entity.

Different aspects influence the quality of VGI data, e.g., the combination of loose contri-

bution mechanisms, and the lack of strict mechanisms for checking the integrity of new

and existing data are major sources of heterogeneous quality of VGI data (Mooney and

Corcoran, 2012b). Amongst others, semantic inconsistency is one of the essential prob-

lems of VGI data quality (Elwood et al., 2012): for instance, different classes represent

the same geographic phenomena (synonymy), or one class describes different geographic

phenomena (polysemy). In Mülligann et al. (2011) and Vandecasteele and Devillers

(2013) the authors present methods for improving the semantic consistency of VGI. The

analysis of semantic similarity is applied to enhance the quality of VGI through suggest-

ing tags and detecting outliers in existing data (Mülligann et al., 2011; Vandecasteele

and Devillers, 2013). Another approach for tackling quality issues is the development of

appropriate interfaces for the data generation and submission. In Schmid et al. (2013b)

and Schmid et al. (2013a) the authors demonstrate that task-specific interfaces support

the generation of high quality data even under difficult conditions.

4.3 Ambiguity and Plausibility

In this work, we focus on the classification of entities as a facet of data quality. Classifi-

cation ambiguity of spatial entities can be a fundamental source of data quality problems

(Devillers et al., 2010; Grira et al., 2010). Particularly in VGI, contributors are often

non-experts with no formal surveying or cartographic education. The diversity of cultural

and educational backgrounds, conceptualization of spatial entities and understanding of

recommendations lead to heterogeneous classifications. On the one hand local concepts

should be preserved. While on the other hand as homogeneous data as possible is re-

quired to allow the development of global, uniform applications (e.g., map rendering or

routing).

In OSM, the majority of contributors contribute data by annotating satellite imagery

(Flanagin and Metzger, 2008). If mappers are not familiar with the area they map, this

method makes it hard to identify the correct class for an entity: crucial details might

not be visible on the (currently) low resolution imagery, or features can be wrongly

interpreted. For instance a green area with scrub and trees might be classified as “scrub”,

“grassland”, or “meadow”. However this area could also be a “park” or a “garden”. Without

having local knowledge, some entities are hard to classify.
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Figure 4.1: Inappropriate Classification: a “park” placed in a roundabout.

From other perspective, when mappers have local knowledge they contribute based on

their personal perspectives (Neis and Zipf, 2012), thus the diverse backgrounds and some-

times missing knowledge about the recommendations for contribution result in classifi-

cation problems. In other cases, the recommendations themselves might be vague and

an entity might belong to multiple classes. For example, an area covered by grass could

be classified as a “grass”, “meadow”, or “grassland”. Thus, an individual entity can have

multiple valid classifications.

Whenever an entity can potentially belong to several classes, we call this Classification

Ambiguity. Whenever we want to express the likelihood of an entity belonging to a

specific class, we call it Classification Plausibility. In some cases the properties of the

contributed entity indicate that the plausibility of an assigned class might be very low

and indicate the class was most probably not chosen correctly. In this case we call it

Inappropriate Classification. Figure 4.1 shows an example of a inappropriate classifica-

tion: the green area in the center of a roundabout is tagged to be a “park” — typically

parks are larger, have a certain degree of contained infrastructure, and are not placed in

rather small roundabouts. According to OSM classification recommendations, this area

should be “grass”.

4.3.1 Classification by tagging

In OSM, data is classified by means of tags of the form key = “value”. Different tags

are used to describe different properties, e.g., the tag leisure = “value” is commonly

used to describe entities with a recreational purpose, while landuse = “value” reflects

the primary use of the land by humans. In OSM tagging is not restricted and the

same entity can be assigned with numerous combinations of tags. Nevertheless, some

combinations are applicable, while others are misleading or contradictive. Our approach

aims to check the classification integrity of an entity by inspecting its properties.
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Figure 4.2: Learning-based approach to tackle classification plausibility.

4.4 Learning and Crowdsourcing

The increasing amount of VGI data - in particular OSM data - allows the application

of machine learning algorithms as one of the possible methodologies to analyze and

improve its data quality. We can select parts of certain entities in the database, learn

their properties in form of a classifier, and apply the developed classifier on the entities

of the database. The results tell us how well entities match to the learned properties.

Figure 4.2 illustrates the approach of using learning for quality assurance as introduced

in Ali and Schmid (2014). The approach consists of two phases: Classification, and

Consistency Checking.

The Classification phase aims to develop a robust classifier based on data of sufficient

quality. According to previous studies OSM data is of good quality in some areas (Haklay,

2010; Ludwig et al., 2011); we can processes OSM data to extract an appropriate data set

for learning the classifier. In the Consistency Checking phase, three scenarios for applying

the developed classifier are possible: 1) Contribution Checking uses the classifier during

the data contribution phase in an editor tool. The tool informs the contributor about

the potential problematic data based on the classifier. The contributor can consider

the hints generated by the tool and take action for correction if required. 2) Manual

Checking refers to the manual validation of detected entities by volunteers, potentially

inappropriately classified entities are presented to volunteers and validated by them.

Regarding OSM data, there exists a number of applications, such as MapRoulette2,
2http://maproulette.org/
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MapDust3, KeepRight4, and OpenStreetBugs5 improve the data quality. They typically

check the integrity of entities against a set of rather static rules such as entities without

name, roads without information about speed or driving direction, or entities marked by

users for further inspection. If such systems or OSM editors are fed by entities detected by

a learning approach as we propose, potential candidates with inappropriate classification

can be identified and fixed by volunteers. 3) Automatic Checking, tries to automatically

detect and correct inappropriate classifications without human assistance.

However, as there is no clear reference data set to train the classifier, the results need to

be interpreted with care. We deal with all kind of spatial real world entities, i.e., entities

can belong to a certain class, although they might have rather unlikely characteristics

(e.g., very small parks or huge private gardens).

4.4.1 Tackling classification plausibility

In this paper we are interested to check the classification plausibility of VGI data. One

key idea is to preserve the locality of the data. During the classifier development, we

maintain the locality within a given region for learning and applying the developed clas-

sifier. For example, learning from data of China and applying the extracted knowledge

on data of the UK might return misleading results: they have different cultures (finding

their expression also in the characteristics of spatial entities) and might have different

conceptualizations of space. Thus, we follow the locality assumption of Tobler’s law (To-

bler, 1970). For this work we interpret Tobler’s law as follows: cities in the same country

have a closer concept for the same class of entity than cities of different countries, i.e.,

when we analyze data in Germany, we do not use this results to validate data in the UK.

4.5 Classification of Ambiguous Areas

In our work, we focus on a set of classes with a certain degree of intrinsic ambiguity:

areas that are typically rendered as green areas on a map. In OSM, amongst others

these are entities tagged as “garden”, “grass”, “meadow”, or “park”. We chose these four

classes as they represent a good example for classifications ambiguity. Conceptually,

those entities have a certain degree of mutual ambiguity: parks and gardens share many

characteristics, if a grass-covered area is just “grass”, “meadow”, or “garden” or “park”

depends on the usage, conceptualization, or a legal definition.
3http://www.mapdust.com/
4http://keepright.ipax.at/
5http://openstreetbugs.schokokeks.org/
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The OSM recommendations6 for the four classes are:

• Garden: “a distinguishable planned space, usually outdoors, set aside for the display,

cultivation, and enjoyment of plants and other forms of nature. The most common

form is known as a residential garden, it is a form of garden and is generally found

in proximity to a residence, such as the front or back garden.”

• Grass: “a smaller areas of mown and managed grass for example in the middle of

a roundabout, verges beside a road or in the middle of a dual-carriageway.”

• Meadow: “a land primarily vegetated by grass plus other non-woody plants.”

• Park: “an open, green area for recreation, usually municipal. These are outdoor

areas, typically grassy or green areas, set aside of leisure and recreation. Typically

open to the public, but may be fenced off, and may be closed; e.g., at night time.”

In OSM, these entities are contributed under various tags. They are commonly con-

tributed with tags like leisure = “value”, and landuse = “value”.

4.5.1 Selection of classification properties

To be able to distinguish between similar classes it is necessary to look into the character-

istics and properties of each class. To develop a robust classifier we need to understand

the properties of the entities to be classified. We apply not only the analytical methods,

reflecting typical observable characteristics, but also statistical methods to explore the

characteristics that are not immediately observable. In our approach we combine both

methods.

Figure 4.3 shows typical entities of interest. Figure 4.3a depicts a “park” containing a

playground, sport center, and paths. Figure 4.3b illustrates a residential “garden” sur-

rounded by residential houses. Figure 4.3c shows a typical “grass” entity not containing

other infrastructural entities and usually surrounded by or meet roads. Figure 4.3d shows

“meadow” entities next to farmland and not containing other infrastructural entities.

These examples illustrate that geographic entities have basically two different types of

properties: geometric (e.g., size and shape) and geographic properties (e.g., topologi-

cal properties). In our previous work Ali and Schmid (2014), we developed classifiers

based on geometric properties to distinguish between entities of the classes “park” and

“garden”. This property is also observable in Figure 4.3: parks are usually larger than

gardens. However, building classifiers for multiple classes requires the analysis of more
6http://wiki.openstreetmap.org/wiki/
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(a) park (b) “residential” gardens

(c) grass (d) meadow

Figure 4.3: Samples of typical entities of interest.

properties, as size of entities can be similar, but their characteristics might be funda-

mentally different.

4.5.1.1 Geometric properties: size

Some entities are classifiable by considering their size. Figure 4.4 shows the average area

of our entities of interest within the ten densest cities in Germany and the UK. “Meadows”

and “parks” are usually larger than “grass” and “gardens”. However, “meadows” and

“parks” are as close as “grass” and “gardens”. Thus, an entity’s size will not be enough

to distinguish between the four classes. In this study, we use the size of entities only as

one of classification properties.

4.5.1.2 Analytical context properties

In addition to the OSM recommendations, the four entities of “garden”, “grass”, “meadow”,

and “park” are characterized by their internal and external context (see Figure 4.3 for

examples). I.e., the kind of entities surrounded or contained in them influence and define

their functionality and consequently their classification. For instance, “parks” typically

contain other entities such as paths, playgrounds, and water bodies, whereas “grass” and
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Figure 4.4: Average areas for the classes “garden”, “grass”, “meadow”, “park”
in Germany and the UK.

“meadows” are rather unlikely to contain much infrastructure like this. Many of these

relations are observable in the real world, and we tried to formulate a reasonable set of

rules based on intensive visual analysis and data consultation.

We analyze the topological relations between pairs of entities by means of the 9-Intersection

Model (9IM) (Egenhofer, 1995). As depicted in Figure 4.5, the 9IM distinguishes

eight topological relations holding between two regions: equal, disjoint, meet, overlap,

contains, covers, inside, and coveredBy.

A B
A

B

A

B

B

A
BA

B

A
A AB B

disjoint meet overlap containscovers insidecoveredBy equal

Figure 4.5: The eight distinct topological relations of the 9-intersection model.

In this study we consider three topological relations meet, overlap, and contains. These

relations add distinct information to the classifier. We neglect the other relations due

to three reasons: (a) equal and covers rarely hold among the entities of interest (e.g.,

a park is usually does not cover another entity), (b) coveredBy and inside are the

inverse of covers and contains respectively, and (c) disjoint does not add additional

information for the classification process. To find out about the characteristics of our

example entities, we analyzed the features that are often contained by, overlap, or meet

with “gardens”, “grass”, “meadow”, “parks”.

Following relations are part of the classifier, as they can be often observed in the data

set:
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• Meet with (areal) entities (meetA): residential “gardens” often meet with (residen-

tial) houses. Additionally, as our analysis showed, “grass” often meet with houses

as well, whereas “parks” and “meadows” are rather unlikely to meet with houses at

all.

• Meet with (linear) entities (meetL): in many cases, roads lead into and surround

“parks” and public “gardens”. They are often surrounded by fences as well.

• Overlap with (areal) entities (overlapA): within a city, “parks” and “gardens” are

often overlapped by residential areas, while “meadows” are usually overlapped with

farmland entities.

• Overlap with (linear) entities (overlapL): “grass” areas are often overlapped by

roads, since they are often located next to highways and roundabouts.

• Contains (areal) entities (containsA): one key property of the classifier is the

containment property. The more entities are located inside the green area, the

more likely the entity belongs to leisure-related entities, thus a “park” or public

“garden”.

• Contains (linear) entities (containsL): “parks” and public “gardens” usually contain

ways for bicycles, pedestrians, and sometimes cars, whereas “grass” or a “meadows”

are unlikely to contain any of those entities.

4.5.1.3 Statistical context properties

In order to understand the characteristics of the geographic context of the interested

entities, we investigate the keys of entities that are involved in the topological relations

described above. Analytical context properties (as described in previous section) are

observable in the environment and can be found in many instances. However, from the

viewpoint of data, we can derive more properties based on the classification. To identify

them, we utilized a straightforward statistical analysis to derive the set of keys that are

both frequently hold in the relations to add distinct information to the classifier. We used

all keys with an absolute occurrence of ≥ 2% (below 2% there is a huge set of keys with

rather low information gain, such as administrative boundaries). The selected keys for

areal entities the keys are: “amenity” (5%), “building” (44%), “landuse” (23%), “leisure”

(10%), “natural” (6%), and “sport” (2%). As well, for linear entities we selected the keys

of: “barrier” (6%), “bicycle” (15%), “foot” (12%), “highway” (63%) and “waterway” (3%).

In general, the analysis of geometric properties (Section 4.5.1.1) and spatial context

properties (Sections 4.5.1.2 and 4.5.1.3) can be adapted to the characteristics of any kind
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of areal geographic entities. Definitely, the kind of entities involved in the investigated

topological relations will depend on the type of classes of interest.

4.5.2 Classifier development

The development of a classifier involves two phases: training and validation. The aim of

the training phase is to train the classifier to distinguish between classes based on the

classification properties. In the validation phase we test the validity of the generated

classifier (Bishop, 2006).

4.5.2.1 Classifier training

In this study, the training set consists of “park”, “garden”, “grass” and “meadow” entities

extracted from OSM data set, Dtrain ={E1, E2, ..., En}. Each Entity E is represented

by a set of properties and assigned to a class C, E = {size, meetA, meetL, overlapA,

overlapL, containsA, containsL, amenity, building, landuse, leisure, natural, sport, bar-

rier, bicycle, foot, highway, waterway, C}, where C ∈ {garden, park, grass, meadow}.

The training process tries to identify a function, f(E) = C, to predict the class C of an

entity E.

Building a classifier can be done by using Eager Learning (EL) or Lazy Learning (LL). In

EL a training set is used to build a complete classifier before receiving any test entities.

Bayesian classification, support vector machines (SVM), neural network (NN), and deci-

sion trees are examples for EL algorithms. On the contrary in LL, generalization beyond

the training data is delayed until a query is made to the system. K-nearest neighbours

(KNN) and case based reasoning (CBR) are examples of lazy learning (Bishop, 2006;

Han et al., 2011). In OSM a set of pre-classified entities is already stored, and the clas-

sification process is performed at arrival of a new entity. The new entity is classified

based on similarity to the existing entities. Hence, we use the lazy learning paradigm to

develop the classifier.

In particular, we use KNN (Cover and Hart, 1967; Witten and Frank, 2005) for building

a classifier KNN classifies entities based on the closest training examples. An unclassified

entity is classified by checking the K nearest classified neighbours. The similarity between

the unclassified entity and the entities stored in training dataset is calculated by euclidean

distance.
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4.5.2.2 Classifier validation

The aim of the validation process is to check the classifier’s generalization ability. Thus,

several test sets are applied on the same classifier to determine its performance. There

exists more than one measure to determine a classifier performance, however, depending

on just one measure could introduce bias (Bishop, 2006). We use two measures to as-

sess the classifier performance: the accuracy and the area under the Receiver Operation

Characteristics (ROC) curve.

The accuracy measure of a classifier is the percentage of correctly classified entities on

a given test set. In some cases accuracies are biased due to overfitting or underfitting

(Bishop, 2006; Han et al., 2011). A reason can be an unbalanced population of the

training or the test set. For example, Figure 4.6 shows the majority of “garden” entities,

in the UK, over the others. This phenomena can influence the classifier performance.

Thus, we utilize more than one measure to assess the resulting classifiers. The (ROC)

curve is a useful measure to assess the performance of a classifier (Fawcett, 2006; Witten

and Frank, 2005). In particular the Area Under the ROC Curve (AUC) is a useful

measure to evaluate a classifier. The closer the value of AUC is to 1.0, the higher

its performance. According to Fawcett (2006), good classifiers should have AUC value

between 0.5 and 1.0.
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Figure 4.6: Number of “garden”, “grass” ,“meadow” ,“park” entities in Germany and the UK.
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4.6 Empirical Study

To evaluate our approach and the derived classifiers, we performed an empirical study.

We used OSM data of Germany and the UK. According to (Ludwig et al., 2011), and

(Haklay and Weber, 2008), OSM data for Germany and the UK is of acceptable quality.

4.6.1 Data preprocessing

We do not have a reference data set to assess the classifier performance. I.e., to set up

training and test data for the classifiers we need to identify a subset of the OSM data

which is of sufficient quality. It has been shown that mapping activities of individual

contributors and the frequency of edits are good indicators for quality (Mooney and

Corcoran, 2012b; Neis and Zipf, 2012), thus we selected entities with a high number of

edits and contributed by trustworthy users.

In OSM, every edit is stored as new version of the edited entity. Additionally, a collec-

tion of all edits of a particular contributor over 24 hours are stored in a changeset. For

each entity we stored the last version number and the contributor ID. The contributors

themselves are categorized based on the work in (Neis and Zipf, 2012): New registered

(1 changeset), Non-recurring (up to 10 changesets), Junior (up to 100 changesets), Se-

nior (up to 500 changesets), Senior+ (up to 2000 changesets), Gold (more than 2000

changesets).

The data we used was extracted from OSM on December 2nd, 2013. During the de-

velopment of our classifiers, we maintained the locality of each country by developing

different classifiers for both regions: we used the data of the ten most densest cities (pop-

ulation/city area) of both countries. The data of the most densest cities was selected to

ensure a data with active contributor communities and hence data of sufficient quality.

In Germany, we utilized data of Berlin, Bremen, Cologne, Dortmund, Dusseldorf, Essen,

Frankfurt, Hamburg, Munich, and Stuttgart. As well in the UK we utilized data of Birm-

ingham, Bradford, Bristol, Edinburgh, Glasgow, Leeds, Liverpool, London, Manchester,

and Sheffield.

Table 4.1 summarizes the facts of the extracted data of Germany and the UK. In de-

veloping the classifiers we utilized the data of the ten most densest cities (D). From

D, we extracted two data sets for the classifiers validation process: Dtop_mappers and

Dtop_versions. Dtop_mappers contains entities of highly active mappers (Senior+ and Gold

mappers), while Dtop_versions contains frequently edited entities with more than five

versions.

93



Chapter 4. Ambiguity and Plausibility: managing classification quality in VGI

Germany The UK
Entities of the ten most densest
cities (D) 19,088 41,822

Entities of active mappers
(Dtop_mappers)

14,736 38,186

Entities with freq. edits
(Dtop_versions)

2,080 854

Table 4.1: Extracted data from Germany and the UK.

4.6.2 Classifier learning

In order to learn our classifiers efficiently, we extracted multiple data sets for the training

and validation process. We developed classifiers based on two different models: Label-

Based Model (LBM ) and Tag-Based Model (TBM ).

In LBM, we trained the classifiers to distinguish between the four classes. We utilized D

in training the classifiers. Afterwards, the classifiers are validated using D, Dtop_mappers,

and Dtop_versions. Table 4.2 shows the results of the classifiers performances measures;

accuracy (Acc.) and AUC.

D Dtop_mappers Dtop_versions

Acc. AUC Acc. AUC Acc. AUC

GER 60.4 % 0.85 64.7 % 0.86 67.8 % 0.86

UK 88.3 % 0.98 92.0 % 0.99 75.2 % 0.84

Table 4.2: LBM classifiers performance of data extracted from Germany (GER) and the UK.

From Table 4.2, we calculate the average performance of the classifiers for each country.

The classifier for Germany has an average accuracy of 64.3%, and AUC equal 0.85. The

UK classifier has a higher performance: it has an average performance with an accuracy

of 85.1% and AUC equal 0.93.

The unbalanced data in LBM has an influence on the performance of the classifiers

(see Figure 4.6 for details). Additionally, the four classes represent two pairs of entities

belonging to two different tags (leisure = “value” and landuse = “value”). As discussed

in Section 4.3.1, selecting a proper tag is crucial for a plausible classification. Hence, we

developed the TBM classifiers that distinguish between two tags: leisure = “value”

and landuse = “value”. In the TBM, both “park” and “garden” entities belong to the

leisure key, whereas “grass” and “meadow” entities belong to the landuse key. However,

the opposite usage indicates a potentially inappropriate classification. In the classifiers

development, we followed the same methodology and used the same data sets as in LBM.

Table 4.3 illustrates the classifiers performance measures.
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D Dtop_mappers Dtop_versions

Acc. AUC Acc. AUC Acc. AUC

GER 78.4 % 0.85 79.0 % 0.86 73.0 % 0.80

UK 92.2 % 0.97 93.6 % 0.97 81.4 % 0.84

Table 4.3: TBM classifiers performance of data extracted from Germany (GER) and the UK.

Table 4.3 conveys that the classifiers of TBM have higher performance than the classifiers

of LBM. According to the table, the classifier based on the data set of Germany has an

average performance with accuracy of 76.8% and AUC equal to 0.85, whereas the classifier

based on the UK data set has an average performance by 89.0% accuracy and AUC equal

0.92.

4.6.3 Discussion

In this work, we applied the developed classifiers of TBM to check the integrity of the

target entities of Germany and the UK. According to the results, the comparison between

the classifiers of LBM and TBM shows that the AUC measures are nearly the same in

both models. However, the accuracy measures indicate a higher performance of TBM

classifiers.

Figure 4.7 shows a sample of detected entities with potentially inappropriate classifi-

cation. Figures 4.7a and 4.7b show entities belonging to the leisure tag and classified

as “park” and “garden” respectively. The selected examples illustrate that the entities

do not show the properties of leisure-related entities. They are relatively small and do

not have any kind of infrastructure to be either a “park” nor a “garden”. In both cases,

the appropriate classification of the entities is most likely “grass”. Whereas the entities

of Figure 4.7c and 4.7d are tagged with landuse. They are classified as “grass” and

“meadow” respectively. When inspecting the properties of these entities, their current

classifications seem to be inappropriate. The entity in Figure 4.7c is surrounded by

houses and contains a playground. The entity in Figure 4.7d contains a large playground

and some entities tagged with sport=“value”. Both of them are relatively large and also

have footpaths, i.e., the entities are more likely leisure-related entities. These examples

show the validity of the proposed classifiers.

In order to understand which kinds of entities the OSM community consider as prob-

lematic, we also downloaded the OSM data concerning the period from December 2nd,

2013 to June 2nd, 2014 (about 6 months). We particularly checked the data for the

updated entities, i.e. where the OSM tag (e.g., leisure = “park”) was changed or the
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(a) leisure = “park” (b) leisure = “garden”

(c) landuse = “grass” (d) landuse = “meadow”

Figure 4.7: Samples of entities with potentially inappropriate classification.

entity was completely deleted. We also used the TBM classifier to check the integrity of

the updated data. Using the updated data of Germany, the classifier identified 23% of

6,568 updated entities to be potentially inappropriate classified. However, when applied

to data of the UK, the classifier identified 60% of 310 updated entities to have potentially

inappropriate classifications.

4.7 Experimental Evaluation

In order to evaluate our approach, we designed a web-based user study with anonymous

participants. The aim of the study was to measure the intra-user agreement of the

participants on a set of 30 entities. All entities were detected by LBM and TBM classifiers

to have potentially inappropriate classifications.

The study consisted of two phases: learning and evaluation. In the learning phase, we

introduced to the participants the OSM recommendations of the four target classes (i.e.

tags). Additionally, we displayed them also recommendations of other classes, that are
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Figure 4.8: A snapshot from the website of the study.

conceptually related. The participants were asked to provide their OSM experience, age,

gender, and mother tongue. In the evaluation phase we showed all the participants the

same set of 30 classified entities; 4 “garden”, 6 “grass”, 8 “meadow”, and 12 “park” entities.

For each entity, the participants were firstly asked about their agreement or disagreement

with the current classification. In case of disagreement, the participants were allowed

to select from different options to classify the entity. Figure 4.8 depicts a snapshot

from the study website. The left side displays the investigated entity and the opinion

of the participant. At the right side the participant was allowed to check the entity’s

context via an aerial image or on OSM maps. Participants were also allowed to check

the recommendations of classes at any point of the study, and also to check other tags

used to describe the given entity.

In total we had 157 participants to the experiment. Out of these 115 participants finished

the study. Together 81 participants gave complete assessments of all entities (it was

possible to skip entities), and thus we considered this group for the analysis. Together

there were 65 males and 16 females. 24 of the participants had no knowledge about

OSM, 17 were beginners, 21 had moderate knowledge, and 19 considered themselves as

experts. The average age of the participants was 27 years and they had more than 10

different mother languages.

In order to evaluate the results, we used Light’s Kappa for m raters (Light, 1971) to

measure the intra-user agreement of the participants. Kappa value of 1.0 means max-

imum agreement and the values ≤ 0 mean less than chance agreement. Moreover, the
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Figure 4.9: The percentage of total agreement and disagreement of the participants
on the current classifications per entity.

range from 0.01 to 1.0 is divided into slight, fair, moderate, and substantial agreements

(Viera, Garrett, et al., 2005).

Light’s Kappa for all 81 participants was 0.176, meaning thus a slight agreement. We

analyzed the intra-user agreements also per subgroups. To create the subgroups we

considered different levels of expertise about OSM project by participants (no knowledge,

beginner, and expert). Participants with expert knowledge about OSM had somewhat

higher intra-user agreement — 0.21 (fair agreement) — than participants with limited

or no knowledge — 0.19 and 0.15 (slight agreement), accordingly. We also grouped the

intra-user agreements data to entity types (garden, park, meadow, grass). This provided

not much difference, except for somewhat higher intra-user agreement (0.26) concerning

“meadow” entities and accordingly lower concerning “park” entities (0.09).

We also analyzed the experiment results by investigating entities individually. For each

entity, we counted the different opinions and checked the agreement or disagreement of

the 81 participants about the current classifications of entities. Figure 4.9 shows the

results as percentages of the participants’ agreement and disagreement per entity. This

reveals that the participants had in a substantial amount of cases a disagreement with

the current classifications of entities. However, there are small differences: “park” for

instance was found in more cases an acceptable categorization than, say, “meadow”.
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4.7.1 Discussion

These findings clearly show that the participants of the study substantially disagreed

with the current classification of the entities. This is a strong support for the classifiers

we developed and for the method in general. This means that, we were able to identify

controversial entities within the OSM data set by a combination of analytically and

statistically derived properties (see Section 4.5.1 for details). However, the participants

also largely disagreed among themselves even when they are supported by materials like

maps and class descriptions. Participants also gave comments such as “Needs further

investigation/survey”, “not sure” and “difficult to see”, which all suggesting to further

study classification mechanisms of VGI projects. Especially the remote annotation of

satellite imagery by contributors not familiar with a region can be problematic: if an

entity is not clearly recognizable on the image and the contributor is not fully aware

of the recommendations — the resulting data might not be of sufficient quality. One

way of avoiding this is the explicit integration of local contributors in the validation

process. In OSM this is a common practice, however, coupling the results of automatic

approaches as proposed in this paper with local contributors requires new communication

infrastructures and modalities within VGI projects.

4.8 Conclusions

In this work, we presented a novel approach to address a facet of data quality in Volun-

teered Geographic Information (VGI): classification ambiguity and plausibility. In many

cases geographic features can belong to multiple classes, depending on the motivation,

viewpoint, or conceptualization of the individual contributor. However, in many cases

the classification is just not correct and needs to be fixed. We developed an approach

based on machine learning from VGI data itself, thus without the need for reference data.

In this work, “park”, “garden”, “grass”, and “meadow” entities are selected reflecting the

ambiguous classification of entities. We tackle the classification ambiguity problem by

learning properties and characteristics of representative entities within the dataset. We

utilize geometric and contextual geographic properties to build classifiers based on a

carefully selected subset of the OSM dataset.

The developed classifier was able to detect obviously inappropriate classified entities. To

validate the classifier beyond computational measures, we conducted a user study. In

this study, our participants were asked to revise the classification of 30 detected entities.

If they disagreed with the current tagging (e.g., “park”) they had a chance to propose

another tagging (e.g., “garden”). The result of our study showed that the participants

disagreed with the actual classification but also disagreed amongst themselves. This
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result is a strong indicator for the feasibility of our classifiers: they detect controversial

entities, which is the original purpose of our approach. The output of the classifiers can

be presented to volunteers and validated by their knowledge.

However, the generation of classifiers is still a rather manual task: one has to identify a

set of potentially ambiguous entities, and define their discriminating properties in form

of classification rules. In our future work we will focus on the automatic detection of

ambiguous classes and the characteristic properties.
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Abstract:

During the last decade, web technologies and location sensing devices have evolved

generating a form of crowdsourcing known as Volunteered Geographic Information

(VGI). VGI acted as a platform of spatial data collection, in particular, when a

group of public participants are involved in collaborative mapping activities: they

work together to collect, share, and use information about geographic features.

VGI exploits participants’ local knowledge to produce rich data sources. However,

the resulting data inherits problematic data classification. In VGI projects, the

challenges of data classification are due to the following: i) data is likely prone to

subjective classification, ii) remote contributions and flexible contribution mech-

anisms in most projects, and iii) the uncertainty of spatial data and non-strict

definitions of geographic features. These facts lead to various forms of problem-

atic classification: inconsistent, incomplete, and imprecise data classification. This

research addresses classification appropriateness. Whether the classification of an

entity is appropriate or inappropriate is related to quantitative and/or qualitative

observations. These observations – in most cases – may be not recognizable par-

ticularly for non-expert participants. Hence, in this paper, the problem is tackled

by developing a rule-guided classification approach. This approach exploits data

mining techniques of Association Classification (AC) to extract descriptive (quali-

tative) rules of specific geographic features. The rules are extracted based on the

investigation of qualitative topological relations between target features and their

context. Afterwards, the extracted rules are used to develop a recommendation

system able to guide participants to the most appropriate classification. The ap-

proach proposes two scenarios to guide participants towards enhancing the quality

of data classification. An empirical study is conducted to investigate the classifi-

cation of grass-related features like forest, garden, park, and meadow. The findings

of this study indicate the feasibility of the proposed approach.

Keywords:

Volunteered Geographic Information (VGI), Spatial Data Quality, Spatial Data

Mining, Classification, Topology, Qualitative Spatial Reasoning

5.1 Introduction

The advanced technologies of Web 2.0, geo-tagging, geo-referencing, Global Navigation

Satellite System (GNSS), and broadband communication enable the public to gener-

ate spatial content known as User Generated Geographic Content (UGGC) (Goodchild,

2008). They empower ordinary citizens to participate in mapping activities producing

geo-spatial content, such activities were formerly conducted by mapping agencies and
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professional organizations. This trend results in evolving a form of crowdsourcing data

known as Volunteered Geographic Information (VGI) (Goodchild, 2007). In this research,

we are concerned with the form of VGI, when a group of participants collaboratively work

to collect, share, update, and use information about geographic features. Among others,

OpenStreetMap1(OSM), Google Map Maker2 and Wikimapia3 are examples of collabo-

rative mapping projects which aim to produce a digital map of the world. During the last

decade, VGI played a significant role in the GIScience community. Various applications

and services have been developed based on VGI data sources including – but not limited

to – environmental monitoring (Gouveia and Fonseca, 2008), crisis management (Roche

et al., 2013), urban planning (Foth et al., 2009; Song and Sun, 2010), land use mapping

(Arsanjani et al., 2015), and mapping provision (Haklay and Weber, 2008). Moreover,

VGI acted as a means of geographic data collection and as a complementary component

of spatial data infrastructure (SDI)(McDougall, 2009).

However, the dramatic increase of VGI triggers questions about the resulting data qual-

ity (Flanagin and Metzger, 2008; Elwood et al., 2012). Among other things, the lack of

detailed information about data quality and the difficulty of applying the conventional

spatial quality measures are key reasons behind its questionable quality (Flanagin and

Metzger, 2008; Elwood et al., 2012). Generally, multiple measures are used to describe

the quality of spatial data from different perspectives, such as completeness, positional

accuracy, thematic accuracy, logical consistency, and lineage. However, this paper ad-

dresses the quality from the perspective of data classification.

In a VGI context, the classification of data faces various challenges. On one hand, a large

amount of data is contributed by arm-chair participants based on their local knowledge.

This remote contribution method results in imprecise classification. On the other hand,

human observations generate subjective data classification. Whether a water body is

classified in VGI as pond or lake, depends on the participant’s perceptions. In contrast,

in the professional field, a strictly defined classification model is developed by experts in

advance, and then data is classified according to measures and observations in compar-

ison to the predefined model. Hence, remote contributions and subjective perceptions,

among other reasons, produce problematic data classification, and consequently, difficul-

ties for data integration and utilization.

For example, Figure 5.1 shows one of the common interfaces (iD editor) of OSM project,
1www.openstreetmap.org
2www.google.com/mapmaker
3www.wikimapia.org
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where participants can edit geographic features using the appropriate geometric repre-

sentation (point, line, or polygon) by tracking over satellite images provided by Bing4.

Afterwards, they describe (classify) the sketched entity using tags (see Section 5.3.2).

Figure 5.1: Example of an editing interface in OSM project (iD editor).

Whether this piece of land covered by grass – in the middle of Figure 5.1 – is classified

as park, garden, meadow, or generally grass, is not strictly defined. The human-centered

classification generates multiple acceptable class labels with higher or lower degrees of

appropriateness. The given entity can be recognized by a participant as park, even if it

has been classified by others as garden or forest. The most appropriate classification of

an entity is related to qualitative and/or quantitative observations. Small difference in

observations might lead to different classification. These differences might be not recog-

nizable by voluntary participants. Hence, this paper presents a rule-guided classification

approach to tackle the classification problems of VGI.

The proposed approach exploits the dramatic increase of VGI towards enhancing data

classification. It consists of two phases: Learning and Guiding phases. During the Learn-

ing phase, the task is to learn the qualitative characteristics that distinguish among sim-

ilar classes. This task exclusively investigates qualitative topological characteristics of

specific classes. The extracted characteristics are formulated into descriptive qualitative

rules able to guide the participants towards the most appropriate classification. The

Guiding phase presents two scenarios for applying the generated guidance and recom-

mendations.

To validate the proposed approach, an empirical study has been conducted addressing

the classification of grass-related features. Classes of forest, garden, grass, meadow,

park, and wood are selected for the study. The classification of these features represents
4www.bing.com/maps
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a challenge; they are commonly covered by grass, although each class has its unique

features. For example, the classes park and garden have entertainment characteristics,

forest and wood are usually covered with trees or other woody vegetation, meadow has

agriculture characteristics, etc. The findings indicate the feasibility of the proposed

approach. Specifically, the developed system is able to unambiguously classify some of

the target classes, while other classes still have poor classification accuracy.

This paper is organized as follows. Section 5.2 presents a review of VGI data quality. Sec-

tion 5.3 gives insight into the fundamental reasons behind the problematic classification

of VGI. Section 5.4 presents an overview of the qualitative spatial reasoning field, which

provides intuitive and well-defined semantics from spatial quantitative data. Section 5.5

presents the proposed approach and its phases and Section 5.6 describes the empirical

study carried out. Section 5.7 envisions the application of the presented approach in

emerging GIS trends. The last section concludes the findings and points to future work.

5.2 Issues of VGI Data Quality

In VGI, humans are the fundamental source of data. Particularly in collaborative map-

ping projects, participants record their observations by collecting, updating, and sharing

information about geographic features. VGI employs participants’ local knowledge and

their willingness to contribute in order to produce rich spatial data sources (Goodchild,

2007). But the quality of the resulting data is questionable. With increasing utilization of

VGI in GIScience research, data quality becomes a concern of highest priority (Flanagin

and Metzger, 2008; Elwood et al., 2012). Various methods to assess data intrinsically

or extrinsically can be found in the literature (Section 5.2.1), also methodologies/ap-

proaches to improve data quality (Section 5.2.2), whereas there is only a limited number

of research that addresses data classification problems (Section 5.2.3).

5.2.1 Extrinsic and intrinsic data assessment

Generally, VGI is evaluated by following either extrinsic or intrinsic procedures. In

the extrinsic procedure, with the availability of ground-truth data, the VGI data set is

compared with a comparable ground-truth data source. Girres and Touya (2010), Haklay

(2010), Neis et al. (2011), and Jackson et al. (2013) compared OSM data against ground-

truth data sources in France, UK, Germany, and USA, respectively. They emphasized the

quality of VGI data particularly in urban areas. In Hecht and Stephens (2014), authors

found that VGI data quality decreases with increased distance from urban areas.
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In the intrinsic procedure, comparable data sources are not available. The data is as-

sessed by analyzing its intrinsic properties like participants’ mapping activities, data

development, and participants’ reputation. Goodchild and Li (2012) presented three di-

mensions that could be followed to ensure VGI quality intrinsically: the crowdsourcing,

social, and geographic dimensions. Bishr and Kuhn (2007), Keßler et al. (2011), Neis

et al. (2011), Mooney and Corcoran (2012a), and Barron et al. (2014) assessed VGI data

intrinsically. They analyzed meta-data of VGI like contributors’ mapping activities and

reputation, editing history of entities, etc. Neis et al. (2013) compared the development

of contributors’ communities in different cities around the world indicating the relation

between the communities and data quality. Moreover, the nature of VGI results in new

intrinsic measures of data quality like fitness of use and conceptual quality. Barron et al.

(2014) developed 25 intrinsic measures that fit specific purposes of use. Ballatore and

Zipf (2015) proposed a framework that assesses VGI conceptually.

5.2.2 Towards enhanced data quality

In an attempt to improve data quality, Pourabdollah et al. (2013) conflated VGI data

with authoritative data to enrich the data source. Vandecasteele and Devillers (2013)

provided a semantic solution to guide contributors during the editing process aiming to

improve the semantic data quality. Moreover, Schmid et al. (2013a) argued a task-specific

interface approach toward acquiring higher data quality even in harsh conditions.

In previous research, we presented the approach of guided classification in (Ali and

Schmid, 2014) and then we enhanced it to detect problematic classifications of VGI (Ali

et al., 2014). The introduction of rule-guided classification was originally presented in

Ali et al. (2015), and the current paper extends this work to discuss all aspects and

complications of this approach in more detail.

5.2.3 Data classification in VGI

Regarding the problematic data classification of VGI, Sparks et al. (2015) highlighted

the ability of volunteers to give precise classification of land cover features given differ-

ent sources of information like aerial and ground-based photos. Klippel et al. (2015)

addressed the influence of cultural, linguistic, and regional factors on the classification

consistency of VGI and concluded the need for statistical grouping methods that allow

to identify relevant semantic contexts. Foody et al. (2015) assessed the classification

quality of VGI with a reference to the contributors and the data that they provided

using a statistical model (e.g., Laten Class Model). Arsanjani et al. (2015) conducted a

comprehensive assessment of Land Cover and Land Use (LC/LU) classification on OSM
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data sets. Arsanjani et al. (2015) and Dorn et al. (2015) concluded the promising of

OSM as a source of LC/LU maps with an acceptable level of classification quality, and

completeness as well.

To our knowledge, a limited number of research focuses on improving the data quality by

guiding the participants. On one hand, researchers argue that developing data with lim-

ited quality is better than having no data at all; on the other hand, other researches find

that free contribution mechanisms encourage participants to express what they actually

observe, generating multi-dimensional data sources. However, in the present research,

we aim to adapt contribution mechanisms to guide participants through an implicit ap-

proach as well as to support multiple classification for overlapping feature categories.

5.3 The Problematic Data Classification in VGI

In general, the uncertainty of spatial data results in different formats of errors. Based on

whether a geographic feature is well or poor defined, errors are classified into ambiguity,

vagueness, and probabilistic errors (Fisher, 1999). Moreover, most geographic features

are not strictly defined. These facts lead to problematic data classification in VGI. In

particular, a single geographic feature can be described by multiple acceptable labels,

with various degrees of accuracy. This can be conceptualized by overlapping categories,

for example between park and garden, lake and pond, or swamp and marsh. However,

the characteristics of a geographic feature could be exploited to distinguish between

these overlapping categories. In addition, the flexibility of classification mechanisms

and the absence of integrity checking can result in heterogeneous data classification.

In most VGI projects, contributors are heterogeneous, i.e., they have various levels of

geographic and cartographic knowledge, and come from diverse cultures and educational

backgrounds. These issues generate human-centered classification of data. Whether

a piece of grass-covered land is classified as park or meadow, is highly determined by

participants’ perception. While in fact, the appropriate classification of a feature is

related to quantitative observations and/or qualitative measures of its context.

The following sections discuss the classification appropriateness (Section 5.3.1) and the

classification ambiguity exemplified in grass-related features (Section 5.3.2).

5.3.1 Appropriate and inappropriate classification

In this paper, an appropriate classification is defined as assigning a given entity a class

label that highly reflects its intrinsic and extrinsic characteristics and matches its geo-

graphic context. Figures 5.2 and 5.3 illustrate the terms of appropriate and inappropriate

classification, respectively.
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(a) entity classified as park ; it contains
playground/sport centers, is paved by foot-
paths, and located within an urban area.

(b) entity classified as forest ; it contains
woody plants, is paved by tracks, and lo-
cated beside farmland.

Figure 5.2: Examples of appropriate classification.

In Figure 5.2a, the selected entity contains some amusement facilities such as a play-

ground, sport centers, and accessibility for walking. This entity is classified as park,

which typically reflects the characteristics of the entity. While in Figure 5.2b, the se-

lected entity is classified as forest, since it is covered by woody plants and is located

in non-urban area next to farmland. Here, park and forest class labels are examples of

appropriate classification with respect to the context and characteristics of the entities.

In contrast, in Figure 5.3, the selected entities represent small pieces of land covered

by grass. In Figure 5.3a, the entity contains no infrastructure and is located beside

road connections. This entity is misclassified as park, because it lacks amusement and

entertainment characteristics. The same appears in Figure 5.3b, the selected entity is

located within a school and does not have the proper characteristics of a forest. Note

that, in these scenarios, both entities are misclassified as park and forest, respectively.

(a) the entity is misclassified as park ; it
contains no infrastructure, and located be-
tween roundabouts.

(b) the entity is misclassified as forest ; it is
located within a school, and relatively sur-
rounded by non-forest characteristics.

Figure 5.3: Examples of inappropriate classification.
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However, the entities may be classified appropriately as grass, the label that describes

their general characteristics of land cover.

Hence, as indicated in the examples, the qualitative characteristics significantly influence

the classification appropriateness. Thus, we exploit these characteristics to guide the

participants towards an appropriate data classification.

5.3.2 Grass-related classification ambiguity

As a case study, we address the classification of grass-covered land. A piece of land

covered by grass could be classified as garden, forest, park, meadow, or even generally as

grass. These classes represent a sample among other potential classes (e.g., recreation

ground, scrubs). Our previous study (Ali et al., 2014) demonstrates how contributors

are unlikely to agree between themselves on a certain class for a given set of entities.

The participants of the study typically reflect the nature of VGI contributors: diversity

of age, gender, culture, education, and geographic knowledge. The findings indicate the

following: (i) difficulties in classifying such entities; (ii) a massive need for having mul-

tiple classes for some entities; and (iii) the demand for a guided classification approach.

During remote classification, it is difficult, even for experts, to recognize the intrinsic

characteristics of an entity to assign the most appropriate class. Thus recommendations

and guides are both required particularly for non-expert contributors, which represent

the majority in VGI projects.

We utilize OSM data, as a prominent example of a VGI project. In OSM, the classi-

fication is done by means of tags in form of key = value, where the key represents a

classification perspective and the value represents a class of that perspective. For ex-

ample, tag leisure = park the key leisure is associated with the set of entities that are

used for entertainment purposes, while park represents one class label between others

like garden, pitch, recreation, etc. There are no restrictions on the number of tags

that are associated with an entity; each entity could be related to no tags or several

tags with arbitrary combinations of tags (Mooney and Corcoran, 2012b). At the same

time, OSM provides only recommendations of tags based on discussions between mapper

communities. However, most contributors do not spend enough time to check the given

recommendations. Moreover, particularly for non-experts, some recommendations might

be conceptually misinterpreted (e.g., wood or forest and landuse or landcover).
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5.4 Qualitative Spatial Reasoning and Geospatial Information

Qualitative Spatial Representation and Reasoning (QSR) (Guesgen, 1989; Cohn and

Renz, 2007; Ligozat, 2011) deals with modeling and reasoning about properties of space

(i.e. topology, location, direction, proximity, geometry, intersection, etc). QSR models

avoid the high computational cost of managing all the quantitative information which can

be gathered from space; instead, they identify the qualitative spatial relations/properties

which are important for a particular problem. These relations are usually modeled as

disjoint but continuous, so that they can identify the important changes taking place in

space (i.e. North,West, South, East), and in this way, reason about it more intuitively.

Maintaining the consistency in space and time are the basics in qualitative reasoning

when solving spatial and temporal problems. And for that, the evolution of relations

between continuous conceptually neighbouring situations (Freksa, 1991) is studied.

QSR models can deal with imprecise and incomplete data on a symbolic level since

qualitative labels (i.e. close, far, in, touching) include already a margin for uncertainty

and can be defined even if part of the numerical data is not known. Moreover, QSR

models help in human-machine interaction because they align human cognitive concepts

with numerical perception of computational systems. Another advantage of a description

based on qualitative relations is also that semantics can be assigned to them by means

of logics and ontologies.

QSR has been successfully applied to many areas such as robotics (Falomir et al., 2013b;

Wolter et al., 2011), computer vision (Falomir et al., 2011; Cohn et al., 2006), ambient

intelligence (Bhatt and Dylla, 2009; Falomir and Olteţeanu, 2015), shape recognition

(Falomir et al., 2013a), architecture and design (Richter et al., 2010; Bhatt and Freksa,

2015), etc. Specifically GIS has been the field in which most QSR models – for exam-

ple RCC-8 (Randell et al., 1992), 9-Intersection model (9IM)(Egenhofer, 1995) – have

found a direct application when investigating: topological changes in space (Egenhofer

and Al-Taha, 1992), and in sensor networks (Jiang and Worboys, 2008), topological

relations between multi-holed regions (Vasardani and Egenhofer, 2009), the extraction

of qualitative spatial relations between recognized places from natural language place

descriptions (Khan et al., 2013; Vasardani et al., 2013), the generation of narratives to

explain spatio-temporal dynamics (Bhatt and Wallgrün, 2014), spatial query solving and

retrieval (Fogliaroni, 2013; Al-Salman, 2014), the alignment of sketch and metric maps

(Schwering et al., 2014), etc.

In this paper, qualitative topological relations between pairs of entities are investigated

to understand the qualitative characteristics of target features. Based on the first law of

geography (Tobler, 1970): “Everything is related to everything else, but near things are
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more related than distant things”, we need to find the frequent relations between entities

that uniquely distinguish each class. For example, a park typically contains playgrounds,

sport centers, pathways, etc., whereas a meadow contains less infrastructure; also a park

is probably located within or near urban areas, whereas meadow is typically located

near farms and rural areas, etc. We apply the 9IM (Egenhofer, 1995) to investigate

qualitative topological relations between pairs of entities. As shown in Figure 5.4, 9IM

describes topological relations between pairs of entities as: disjoint, meet, overlap, covers,

covered by, contains, inside, and equal. Basically, geographic features are represented by

means of point, line, and polygon data elements. In this work, target classes are usually

represented by polygons. Thus, we consider all mutual topological relations between

polygon and other data elements; polygon-point, polygon-line and polygon-polygon.

Figure 5.4: The 8 topological relations in the 9-Intersection Model by Egenhofer (1995).

At Figure 5.4, let us assume that the gray entities represent the target entities, then the

relevant relations to consider are: disjoint, meet, overlap, contains, and covers. Regarding

the disjoint relation we analyze entities within a distance from 5 to 10 meters from target

entities. Particularly, the disjoint relation gives insight about the external geographic

context, while the others represent the relations resulting from the intersections of the

interiors and boundaries of entities. Note that inside, covers, and equals relations are not

considered because: (a) inside and covers are inverse relations of contains and covered by,

respectively; and (b) the equal relation rarely occurs and does not add useful information

for this analysis.

5.5 The Proposed Rule-Guided Classification Approach

The proposed approach is aimed to improve the quality of data classification in VGI by

guiding the participants during the classification process. Through this guidance we aim

to obtain data of homogeneous and appropriate classification. Figure 5.5 illustrates the

proposed approach, which consists of two phases: Learning phase (Section 5.5.1) and

Guiding phase (Section 5.5.2).
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Figure 5.5: Rule-guided classification approach.

5.5.1 Learning phase

The objective of the Learning phase is mining the VGI data source to extract a set

of individual characteristics of specific geographic features. These characteristics are

extracted by analyzing the qualitative topological relations of the target features. The

characteristics are formulated into predictive rules with the format:

head← body (5.1)

where the body describes the qualitative topological characteristics of a geographic fea-

ture and the head points to the recommended classification. The combination of rules

will be able to describe a specific feature. Afterwards, the extracted rules are organized

into a rule-based classifier, which consequently would be able to recommend the most

appropriate classification for a given set of characteristics of a specific geographic feature.

During the learning process, we excursively investigate the qualitative topological char-

acteristics of features to understand the geographic context of target features. We take

into account the locality principle: we assume that at country level a certain geographic

feature should have the same characteristics. For example, learning the characteristics of

forest features in China and applying the developed classifier in Germany may not make

sense. Thus, we maintain the locality principle in the Learning and Guiding phases, as

well.
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5.5.1.1 Data mining process

This process aims to find frequent patterns (in this case topological relations) involved

between target classes and other geographic features; e.g., park contains playground,

sport center, garden meet residential houses, fences, etc. According to the OSM tagging

method, we consider each combination of key = value as a new feature type. For example,

leisure = playground and leisure = sport are two different geographic features. We

encode them as leisure_playground and leisure_sport respectively and relate each

new feature with a unique identifier (ID) in an indexed file. The analysis includes the

common map features that are suggested by the OSM project on its Wiki page5. Due to

the free contribution mechanism of the OSM project, the analysis results in more than

1,000 unique features, after filtering. The mining process works to extract atomic rules

in form of rule (5.1), which is translated into:

Class(X,C)← R(X,F ) (5.2)

where X represents a target entity, C is the predicted class and C ∈ {park, meadow, ...},

R is one of the topological relations where R ∈ {contains,meet, ...} and F represents the

set of frequent features that is mostly involved in a relation R with entities of class C.

To extract such rules, we apply the Apriori algorithm (Agrawal, Srikant, et al., 1994)

which is one of the most common data mining algorithms initially developed to extract

frequent item sets and to learn association rules from a transactional database (Witten

and Frank, 2005). In this work, we particularly use a class association rule mining

task, when rules have a predefined class (e.g., park) as their consequences (left side at

rules (5.1) and (5.2)). Extracting interesting rules among a large number of possibilities

requires setting up some constraint thresholds: support (supp) and confidence (conf ) are

two commonly used constraint thresholds for extracting and evaluating interesting rules,

as follows:

• Support: used to filter interesting patterns. It is defined as the percentage of enti-

ties that hold the body description. For example, supp (contains(X, [1, 15])) = 20%,

means 20% of the entire entities contain playground (where 1=leisure_playground)

and footways (where 15=highway_footway) features.

• Confidence: used to evaluate extracted rules. It is equal to the percentage of

entities that hold the body description and consequently the head. e.g., conf

(Class(X, park) ← contains(X, [1, 15])) = 80%, implies 80% of the entities hold

the rule: body associated with class park.
5http://wiki.openstreetmap.org/wiki/Map_Features

117



Chapter 5. Rule-Guided Human Classification of VGI

5.5.1.2 Classifier development

The main idea of association rule mining has been adapted to solve other problems,

such as classification, resulting in Associative Classification (AC) mining field; It is one

branch of data mining that combines two mining fields, associating rule mining and

classification, to build a classifier based on a set of predictive association rule (Thabtah,

2007). Generally, developing such a classifier based on a set of predictive rules consists

of 4 steps:

Step 1: Find all interesting class association rules from a data set, using the supp thresh-

old;

Step 2: Filter the extracted rules into a set of predictive association rules, based on the

conf threshold;

Step 3: Encode the rules into a rule-based classifier; then

Step 4: Evaluate the classifier performance on a test data set.

In geographic contexts, anything could be possible. For example, a building may be

located in a desert, a highway might cross a residential area or a public park, etc. More-

over, in VGI projects there exist unlimited unique features (see Section 5.5.1.1). Thus,

we set a support threshold to 1% and we consider as frequent those patterns that occur

with a frequency higher than 1%. This threshold is used due to: (i) the lower frequencies

are considered as rare patterns and might have no significant influence on the classifica-

tion; and (ii) from a rational perspective, considering these rare patterns might lead to

biased classification. During this learning process, we are mining to extract atomic rules

per topological relation per class. The extracted rules represent the output of Step 1.

However, due to the uncertainty of spatial data, the extracted rules themselves represent

a challenge at Steps 2 and 3. The aim at Step 2 is to filter and organize the extracted rules

into a set of predictive association rules for developing the classifier in Step 3. Hence,

the difficulties come from the following points: (a) Step 1 results in rules of identical

bodies associated with different heads (classes); (b) during Step 2, the higher the confi-

dence threshold for filtering interesting rules, the higher the possibility to dismiss useful

information; (c) due to overlapping classes (see Section 5.3.2), an entity could plausibly

belong to more than one class; and (d) due to geographic context, an entity could match

with several atomic rules associated with different heads (classes). In summary: How

should we classify? By the majority of rules or by rules of higher confidence? In this

paper, we considered the most appropriate classification of a given entity to be one that

best reflects its qualitative characteristics.
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5.5.2 Guiding phase

During the Guiding phase, the aim is to enhance the classification quality of VGI by ap-

plying the developed classifier. This approach presents two guiding scenarios for applying

the classifier:

First, contribution checking scenario, when the classifier is implemented in an editing

tool. At contribution time, the tool informs the participant about a potential classifica-

tion problem, based on the classifier. The editor provides the participant with recom-

mendations. Afterwards, the participant considers the guidance provided and responds

with correction (if required).

Second, manual checking scenario, when the classifier is applied directly on an existing

data set. The classifier points out entities with problematic classification, which do not

match any provided recommendation. The classifier generates the problematic entities

combined with the generated recommendations. Afterwards, both are presented for

assessment and correction (if required).

In both scenarios, we do not restrict participants to the given recommendations. How-

ever, we provide them with flexible guidance, which probably might lead to indirect data

enrichment, for example, when participants add more information to satisfy recommen-

dations (if they find additional appropriate classifications).

5.6 Experimentation and Results

To evaluate the presented approach, we performed an empirical study. The study checked

the ability of the developed classifier to distinguish between similar classes. We used the

OSM data set of Germany. The reasons for this choice were: (i) in Germany there are

active mapper communities, particularly in urban areas; (ii) no authoritative bulks of

data are imported; so the data set still reflects the voluntary nature; and (iii) several

studies concluded that the quality of OSM data in Germany is higher than that of other

places (Zielstra and Zipf, 2010; Ludwig et al., 2011; Neis et al., 2013).

In our previous study Ali et al. (2015), we utilized the German data set dated December

2013, while in the present study, we use an updated version of May 2015. Following the

methodology described, we extracted all entities that are represented by polygons and are

classified as forest, garden, grass, meadow, park, or wood. The entities are extracted from

the ten most densly populated cities in Germany6 to ensure active mapper communities

and acceptable quality levels. These cities are: Berlin, Bremen, Cologne, Dortmund,
6http://en.wikipedia.org/wiki/List_of_cities_in_Germany_by_population
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Düsseldorf, Essen, Frankfurt, Hamburg, Munich, and Stuttgart. This data set consists

of 23,567 entities as follows: 3,590 forest, 3,025 garden, 7,188 grass, 4,038 meadow, 4,298

park, and 1,428 wood entities. We processed each entity individually by analyzing the

topological relations between pairs of entities within its geographic context. Each entity

is described by a set of topological relations with other surrounding features and is

assigned to a specific class.

This section provides a detailed description of the learning process (Section 5.6.1), the

classification hypotheses (Section 5.6.2), and the classification process (Section 5.6.3)

followed in the experimentation. Then, the results obtained are explained (Section 5.6.4)

and their validation is described (Section 5.6.5).

5.6.1 Learning process

In the learning process, we applied the Apriori algorithm (Agrawal, Srikant, et al., 1994)

to investigate the frequent topological relations that describe each class. During the

topological analysis, we adapted our previous study in Ali et al. (2015) to handle the

imprecise editing in VGI. We considered entities in a distance up to 1 meter from the

boundary of a target entity as they are on the boundary, and hence, they fulfill the

topological meet relation. Moreover, we checked the disjoint relation within distances

of 5 and 10 meters to have insights into various geographic scopes. We used a support

threshold of 1% to find the interesting patterns. Each topological relation is processed

individually with a given class to generate a set of predictive qualitative rules of that

class. The rules represent the output of Step 1 (see Section 5.5.1.2). Table 5.1 shows a

snapshot of the extracted rules.

Rule supp. conf.
Class(X, grass)←disjoint10m(X, [13, 40, 45, 57]) 1% 99%
Class(X, park)← contains(X, [1, 15, 22, 27, 36]) 1% 98%
Class(X, garden)← meet(X, [27, 42, 78, 235]) 2% 98%
Class(X, park)← contains(X, [1]) 23% 88%
Class(X, garden)← overlap(X, [43]) 1% 78%
Class(X, park)← overlap(X, [15]) 57% 52%
Class(X, grass)← contains(X, [nothing]) 77% 34%
Class(X,meadow)← contains(X, [nothing]) 75% 20%
Class(X, park)← contains(X, [nothing]) 37% 9%
Class(X, forest)← contains(X, [nothing]) 78% 7%

where
1=leisure_playground

6=highway_residential

13=route_bus

15=highway_footway

21=sport_soccer

22=leisure_pitch

27=building

36=highway_steps

40=route_road

42=highway_service

43=building_residential

45=highway_cycleway

57=landuse_grass

78=barrier_fence

89=nature_water

181=highway_track

235=leisure_garden

Table 5.1: Samples of the extracted qualitative descriptive rules.
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In Table 5.1, the 1st rule describes the case when a grass entity is located beside public

roads and cycle ways for decoration purposes; the 2nd rule points to the probable enclo-

sure of park entities to leisure facilities and footways; the 3rd and 5th rules sketch the

scene of (residential) garden entities, when they are located adjacent to houses, fences,

service ways, and other garden entities and overlapping with (residential) houses; the 4th

rule, emphasizes the absolute relation between the playground facilities and park enti-

ties; and the 6th rule partially identifies the logical connection between the interior and

exterior of park entities, by means of a footway.

From another specific view, an example of duplicated rules are shown in the last four

rules of contains(X, [nothing]), while the various values of confidence threshold raise a

conceptual classification issue: when an entity contains nothing it is more likely classified

as grass or meadow than as park or forest.

As indicated in Table 5.2, we extracted 4,425 rules describing the classes as follows:

1,246 describe forest, 216 describe garden, 659 describe grass, 441 describe meadow,

1,468 describe park, and 395 describe wood. The rules have a wide range of confidence

threshold: 1,235 out of 4,425 rules have a confidence ≥ 50%, while the others have a

descending confidence to less than 1%. Otherwise, the constraint thresholds and the

rules are distributed differently among classes and topological relations as well.

forest garden grass meadow park wood Total

contains 45 8 7 13 468 17 558

coveredBy 9 8 16 12 9 13 67

disjoint5m 161 28 100 64 115 50 518

disjoint10m 679 106 470 241 618 180 2,294

meet 130 55 36 84 116 54 475

overlap 222 11 30 27 142 81 513

Total 1,246 216 659 441 1,468 395 4,425

Table 5.2: The distribution of rules per classes per relations.

5.6.2 Classification hypotheses

As shown and mentioned previously, the rules resulting from the learning process rep-

resent a challenge for developing the classifier. The classification of entities based on a

single topological relation or a rule of the highest conf. may be biased. For example,

classification of park entities depending on the contain relation, or classification of forest

entities based on the meet relation might lead to biased classification. However, other

significant conceptual rules like contains(X, [nothing]) can be exploited as a filter for the
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classification, at least to reduce the number of plausible alternatives. To overcome these

challenges, we tested the following hypotheses:

• Pruning:

1. filtering based on the confidence threshold: the classification is done once by

considering the entire set of extracted rules and once by exploiting the rules

with conf ≥ 50%.

2. disjoint5m ⊂ disjoint10m, then we check applying both relations together or

applying each relation individually.

• Ranking 1st and 2nd recommendations: During the classification process, we

consider the 1st and 2nd recommended classes given by the predictive rules; when

each entity is matched against the entire developed rules, the maximum conf per

class determines 1st and 2nd recommended classes.

• Classification assumptions: Due to an unbalanced distribution of rules, we

consider only rules with maximum conf per class to define 1st and 2nd potential

classes.

Based on the procedure of data selection, we assumed that a large fraction of the data

set has an acceptable classification quality. Therefore, we depend on the classification

accuracy as a measure to evaluate the proposed hypotheses. Here, the classification ac-

curacy implies that the percentage of corrected classified entities that have been assigned

a class label match with one of the 1st or 2nd recommended classes.

5.6.3 Classification process

During this process, each entity is classified with respect to the matched qualitative

rules. For example, the given entities in Figure 5.6a and 5.6b illustrate the classification

process; they show entities and their corresponding samples of the matched rules. In

Figure 5.6a, the entity matches 136 rules: 25 park, 25 forest, 24 grass, 21 wood, 22

meadow, 19 garden, while the entity in Figure 5.6b matches 401 rules: 232 park, 132

forest, 25 grass, 8 meadow, 2 wood, and 2 garden.

Following the illustrations and the information in the previous Figures, the entity in

Figure 5.6a can be described as: overlaps residential buildings, meet buildings, contains

nothing, and disjoint within 10 m to a service/foot roads (highway). While, the other

entity in Figure 5.6b can be described as: contains a nature water body/playground/sport

center/footways, meet residential/footway/services roads (highway), and overlap other

forest areas.
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Rule conf.
Class(X, garden) ← overlap(X, [43]) 78%
Class(X, garden) ← meet(X, [27]) 39%
Class(X, grass) ← disjoint10m(X, [15, 42]) 39%
Class(X, grass) ← contains(X, [nothing]) 34%
Class(X, park) ← disjoint10m(X, [15, 42]) 24%

(a) entity with osm_id = 82449147 and sample
of the matched rules corresponding to the entity

Rule conf.
Class(X, park) ← contains(X, [1, 15, 27, 89]) 94%
Class(X, park) ← contains(X, [1, 15, 21, 22]) 83%
Class(X, park) ← meet(X, [6, 15]) 70%
Class(X, park) ← meet(X, [6, 15, 42]) 55%
Class(X, forest) ← overlap(X, [42, 181]) 43%

(b) entity with osm_id = 25422214 and sample
of the matched rules corresponding to the entity

Figure 5.6: Examples of the classification process; see Table 5.1 for the indications of the ID’s.

Considering exclusively the highest confidence threshold, the entities in Figure 5.6a and

5.6b have recommended class labels as garden and park, respectively. However, to con-

sider 1st and 2nd recommendations, we looked into the maximum confidence per class.

The entity in Figure 5.6a is classified as garden (1st recommendation) and as grass (2nd

recommendation), while the other entity in Figure 5.6b is classified as park (1st recom-

mendation) and as forest (2nd recommendation).

5.6.4 Results

We used the classification accuracy measure to judge on the proposed hypotheses in

Section 5.6.2. In this work, the classification accuracy implies the compatibility between

our recommendations and the presented classification on the OSM data.

First, in the case of filtering based on the conf ≥ 50%, the classifier provided poor

performance since 25% of the entities did not match any rule and the classification ac-

curacy was 55%. The reason for that is that, although the approach extracted several

meaningful qualitative rules, which are identical to the textual recommendations given

on OSM project to some extent, the filter led to missing valuable information embedded

in rules with low confidence threshold. For example, we extracted the following rule:

Class(X, park) ← meet(X, [highway_footway]), with a confidence threshold of 38%;
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The rule is identically defined in OSM Wiki recommendations7, in the description of

how to map a park feature. Second, when comparing the disjoint5m and disjoint10m re-

lations, the highest performance is obtained when the disjoint relation within 10 metres

(disjoint10m) is applied, producing 72.5% classification accuracy. Thus, in further analy-

sis, we considered only the rules of disjoint10m relation and avoid the 518 rules generated

from the disjoint5m relation.

The classification accuracy per class is shown in Figure 5.7. According to this Figure,

grass, garden, and forest have higher classification accuracies, 92%, 84%, and 70% re-

spectively, while meadow and park have moderated accuracies of 62%. However, the

wood class has a noticeable lower classification accuracy of 16%.
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Figure 5.7: Classification accuracies per class

We summarize our explanation of these results as follows:

1. The higher classification accuracies obtained for the classes grass, garden, and

forest are due to: the grass class, is a general class that could describe the land

cover of all of these entities, while the characteristics of the second and third

classes are well recognizable and they might be well mapped particularly in urban

areas (cities); The garden entities which are contributed within city boundaries are

mostly (residential) garden that have unique characteristics; and the forest entities

can be recognized by heavy coverage of woody trees.

2. The moderate classification accuracy obtained for the meadow class can be due to

the limited occurrence of meadow entities within city boundaries. Moreover, the
7http://wiki.openstreetmap.org/wiki/Tag:leisure%3Dpark
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concept of meadow might not be identically received by participants. For example,

for some participants, meadow is an open grass area, that is artificially created,

and mostly contains multiple wildlife, while for others, it is a place where hay and

pasture are growing and used for the purpose of feeding animals.

3. The moderate classification accuracy obtained for the park class is due to: 37% of

entities contain no infrastructure (see Table 5.1, the 9th rule support), and hence,

they might represent either a problematic conceptual classification or incomplete

mapped entities.

4. The lower classification accuracy obtained for the wood class is due to the limited

number of entities in the training data set and the multiple classification recom-

mendations that are presented at the OSM Wiki8 for forest and wood classes.

In addition, it is important to note that we are dealing with a VGI data source and

therefore, some features might be better mapped than others. It could also happen that

the training data set contains incorrectly classified entities. However, we assumed the

correctness of a large fraction of data.

5.6.5 Validation

Due to the unavailability of ground-truth data for the selected features, we adopted the

following ways to validate the findings.

farmland

farmland

meadow

meadow

meadow

meadow

Figure 5.8: Appropriately classified entities
as forest matched the recommendations: 1st

forest, 2nd meadow.

Figure 5.9: Inappropriately classified enti-
ties as park, while the recommendations are:
1st garden, 2nd grass.

First, the results were visually examined to check the plausibility of the proposed rec-

ommendations. Figure 5.8 and 5.9 illustrate examples of detected appropriately and
8http://wiki.openstreetmap.org/wiki/Tag:natural%3Dwood

125



Chapter 5. Rule-Guided Human Classification of VGI

inappropriately classified entities, with respect to the generated recommendations. In

Figure 5.8, the entities are appropriately classified as forest, matching the recommen-

dations: forest (1st) and meadow (2nd). The entities are located within a meadow area

and near highways and farmland areas (i.e., non-urban area). The entities might look

sparse and smaller in size than the common forest entities. However, in the OSM project,

there are no restrictions on specific definitions of the features, but community agreements

control the data classification. In Figure 5.9, the entities are misclassified as park and

the recommendations provided are garden (1st) and grass (2nd). The reasons behind

these recommendations are that the entities contain nothing and are located adjacent

to houses. The findings indicate that applying the proposed classifier and following the

given recommendations will potentially enhance the classification quality.

Second, we exploited intrinsic properties, like number of tags, version, mapper’s repu-

tation, etc., to extract a data set for the validation process. For example, we extract

all entities that are named park and are tagged leisure=park as a validation data set.

The extraction done from the entire data set of Germany resulted in 1,856 park entities.

We applied the developed classifier on the extracted entities. The results show that 90%

of the entities are correctly classified by the 1st recommendation, while 98.5% of the

entities are correctly classified by the 1st or 2nd recommendation. The validation reflects

the classifier efficiency in distinguishing a specific class based on learning its intrinsic and

extrinsic characteristics. Hence, applying the classifier on the entire set of park entities of

Germany would point out the inappropriately classified entities. The problematic classi-

fication might be relevant to incomplete mapping of an area or to an incorrect mapping

attitude of participants; the classification could be improved by applying the proposed

classifier.

Third, we compare the results of our previous study in Ali et al. (2015) with the current

study. Both studies utilized data sets of the same features from the same location, but

with different dates: December 2013 and May 2015, respectively. Due to the dynamic

nature of spatial data generally and VGI data particularly, we detected that 6% of the

entities of 2013 have been deleted, whereas, a larger fraction of 94% remain in the data

set of 2015. Among the remaining fraction, 96% of the entities are still in the target

classes, while only 4% of the entities are updated to other related classes like scrubs,

recreation, and construction. In some sense, the remaining of a large fraction of data

for 18 months may indicate the conceptual quality of these entities. During our analysis

of the remaining fraction, we found that a promising percentage of 8% of entities have

been updated according to our recommendations, without our interference or intention

of guidance. The findings encourage us to implement a crowdsourcing revision scenario

to check the classification of these features.
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5.7 Discussion

For VGI to become an everyday common practice for human beings across all sectors,

an intuitive geographic information capture, exchange, and reasoning is needed (Nittel

et al., 2015). More natural interfaces between people and their smartphones, cars, etc.,

which enable for example, dialogue communication, would increase the quality of VGI.

Therefore, the resulting improvement of VGI may help in disambiguating vague place

descriptions (Jones et al., 2008).

Research towards spatial cognition engineering (Richter et al., 2015) is carried out for

developing more cognitive interfaces/systems so that devices adapt to users, instead of

forcing users to accommodate to devices. Regular users are not system designers and

are often not experts in the field. Spatial intelligence is needed for normal humans and

more specifically when they arrive at new places. GIS and VGI can help humans to

improve this spatial intelligence. Spatial cognition studies can also help to improve GIS

and the way VGI is captured and presented to users towards augmenting their spatial

intelligence for example in wayfinding and decision taking.

Developing intuitive data capture interfaces, is one solution, among others, to enhance

the resulting data. Particularly, the data quality can be improved, when the interfaces

support the ability to interpret visual information more easily (in a cognitively adequate

manner), and provide volunteered participants with better feedback. In the VGI context,

participants usually use free and flexible mapping tools. A guiding mechanism may

motivate them without affecting their flexibility to choose and decide about the entities.

Furthermore, in the next-generation of GIS systems, the automated extraction of high-

level entities (i.e. objects, properties, processes, etc.) from remote sensing images is envi-

sioned, as the advances in Geographic Object-Based Image Analysis (GEOBIA) highlight

(Arvor et al., 2013; Blaschke et al., 2014). Therefore, high-level image descriptions would

lead towards more intuitive GIS user interfaces, which will enable higher precision and

higher quality of data.For example, if the houses and the grass from the remote sensing

image shown in Figure 5.10 were identified automatically, then the selected entity to be

classified would follow the qualitative descriptions of within a residential area and grass-

related class, and consequently, that would reduce the classification space and generate

appropriate recommendations. Conversely, VGI observations contributed by local volun-

teers may help GEOBIA systems to improve their remote sensing image classifiers, for

example in situations where coarse resolution cells (e.g., 1 km2) might not differentiate

open patches, paths, and roads inside a forested area. Finally, when volunteered partici-

pants are guided by intuitive interfaces and quality assurance mechanisms are developed
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to ensure the data quality of VGI, we envision a very fruitful collaboration of the GEO-

BIA + VGI research fields. In particular, the integration of experts’ perception (who

observe the geographic features from remote sensing images captured by satellites) with

local participants’ observations (who contribute geographic information based on their

local knowledge about places where they live) may produce richer data sources with a

higher data quality.

The advantages of the proposed approach are; first, it is grounded on investigation of the

topological relations, hence, it could be applied on different types of geographic features

(e.g., water body features); and second, with our assumption of “identical entities should

be classified similarly within the same Country"; the approach could be used to enhance

the data classification in non-urban areas of a Country that has rich data sets in urban

areas.

Otherwise, the proposed approaches has some limitations, since developing the classifier

requires large amounts of data with a certain level of quality. Regarding the availabil-

ity of large amounts of data, it is related to data mining. As most algorithms of data

mining act effectively with large training data sets. Moreover, we assumed locality of

data classification. For example, learning the rules form data of Germany and applying

them on data of India might be inappropriate. Thus, in case of unavailability of data,

applying the extracted information at completely different geographic boundaries (i.e.,

different cultures), might result in inappropriate classification. Regarding the quality of

the utilized data, we assumed that the OSM data in urban areas are ensured by crowd-

sourcing and social approaches; In particular, there exist active mapping communities in

Germany. However, applying the approach on data of another location requires careful

investigation of the utilized data quality.

5.8 Conclusions and Future Work

With the increasing development of VGI data sources, the demand for high data quality

rises with high priority. Nowadays, VGI is a data source that supports diversity of

applications and services in GIScience research. In the present paper, we are mainly

concerned with VGI resulting from collaborative mapping, where public participants

work together to map geographic features. The uncertainty of spatial data, human-

centred classification, and flexible contribution mechanisms result in data of problematic

classification. However, consistent and precise feature classification is required towards

effective utilization of the resulting data.

From a professional perspective, spatial data classification is carried out based on field ob-

servations and physical measurements, with respect to a pre-defined classification model.
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In contrast, in VGI projects, public participants are eager to record their individual obser-

vations classifying the data based on their local knowledge and personal cognitions. This

gap stimulates the idea of guided classification in VGI projects. The proposed guidance

aims to drive appropriate data classification by imitating professional data classification

methods.

In this paper, we proposed a rule-based guided classification approach for VGI projects.

The approach exploits QSR as well as VGI to learn qualitative characteristics of specific

geographic features. We addressed the classification of grass-related features using OSM

data of Germany. We developed a classifier able to distinguish between forest, garden,

grass, park, meadow, and wood entities. We applied data mining functions to extract

qualitative rules describing the target features. Afterwards, we encoded these rules into

a classifier, which was able to successfully distinguish between the entities.

The findings reveal the feasibility of the proposed approach. The developed classifier was

able to detect and provide appropriate recommendations for problematically classified

entities. According to the extracted entities, the classifier showed that 72.5% of the enti-

ties have an appropriate classification. The results pointed to problematic classification

of 8%, 16%, and 30% of grass, garden, and forest entities, respectively, and 34% of park

and meadow entities. The findings indicated the noticeable problematic classification of

wood entities. Three methodologies were adopted to validate the findings: i) checking

a sample of entities visually; ii) using a test data set; and iii) analyzing the temporal

classification evolving of entities. These validations emphasized the promising results of

the proposed approach.

In the discussion, we argued the role of intuitive interfaces to enhance the data qual-

ity of VGI. Tackling the classification of the target features, we started to implement a

web application that will present our recommendations to crowdsourcing revisions. This

application is called Grass&Green and it implements the manual checking scenario pro-

posed in this paper under the concept of crowdsourcing revision. The application has

the following objectives:

1. presenting our generated recommendations to the community;

2. checking the validity of the proposed approach;

3. measuring the participants’ satisfaction towards the guiding approach; and

4. improving the data classification of these features.

Figure 5.10 shows the interface of the Grass&Green application. On the right hand,

we intend to present the entities associated with their qualitative description above a
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Figure 5.10: The interface of the Grass&Green web application.

satellite image. On the left hand, the generated recommendations are provided with a

flexibility to accept/reject the recommendation and make further updates to express the

appropriate classification. Moreover, textual and visual descriptions of the features will

be provided for participants in a dedicated menu (Guide). An adapting mechanism to

attract the crowds to participate in this application is still under study. Other formats

of crowdsourcing like social media, and discussion blogs will be exploited to announce

this application.

We discussed the potential integration of enhanced VGI and GEOBIA towards produc-

ing more rich and precise geographic data sets. Furthermore, additional investigations

are required to evaluate the extracted rules. In future work, we intend to implement

the Guiding phase and measure the classification improvements based on the provided

recommendations. We plan to study the OSM ontology, e.g., OSMonto (Codescu et

al., 2011), to determine whether the semantic distance between the ontological concepts

could solve the ambiguity between similar classes.
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Abstract:

The increased development of Volunteered Geographic Information (VGI) and its

potential role in GIScience studies raise questions about the resulting data qual-

ity. Several studies address VGI quality from various perspectives like complete-

ness, positional accuracy, consistency, etc. They mostly have consensus on the

heterogeneity of data quality. The problem may be due to the lack of standard

procedures for data collection and absence of quality control feedback for volun-

tary participants. In our research, we are concerned with data quality from the

classification perspective. Particularly in VGI-mapping projects, the limited ex-

pertise of participants and the non-strict definition of geographic features lead to

conceptual overlapping classes, where an entity could plausibly belong to multiple

classes; e.g., lake or pond, park or garden, marsh or swamp, etc. Usually there ex-

ist quantitative and/or qualitative characteristics that distinguish between classes.

Nevertheless, these characteristics might not be recognizable for non-expert par-

ticipants. In previous work, we developed the rule-guided classification approach

that guides participants to the most appropriate classes. As exemplification, we

tackle the conceptual overlapping of some grass-related classes. For a given data

set, our approach present the most highly recommended classes for each entity. In

this paper, we present the validation of our approach. We implement a web-based

application called Grass&Green that presents recommendations for crowdsourcing

validation. The findings show the applicability of the proposed approach. In four

months, the application attracted 212 participants from more than 35 countries,

who checked 2,865 entities. The results indicate that 89% of the contributions

fully/partially agree with our recommendations. We then carried out a detailed

analysis that demonstrates the potential of this enhanced data classification. This

research encourages the development of customized applications that target a par-

ticular geographic feature.

Keywords:

Volunteered Geographic Information (VGI); Classification; Spatial Data Quality;

OpenStreetMap (OSM)

6.1 Introduction

Web and information revolutions, the increased availability of location sensing devices,

and the advanced communication technologies facilitate the evolution of free geographic

content, which is known as Volunteered Geographic Information (VGI) (Goodchild,

2007). In particular, we are concerned with the VGI format, in which the public partic-

ipates in mapping processes regardless of their prior geographic experience. In the past,
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these processes were performed exclusively by cartographers at mapping agencies and

in specialized organizations. Among others, OpenStreetMap1 (OSM), Wikimapia2, and

Google Map Maker3are examples of VGI-based mapping projects. With the expansion

of crowdsourcing, participants have developed a tremendous amount of free geographic

data that have been utilized in various applications. For example, VGI acts as a po-

tential data source for applications of environmental mapping (Gouveia and Fonseca,

2008; Mooney and Corcoran, 2011), crisis management (Roche et al., 2013; Zook et al.,

2010), urban planning (Foth et al., 2009; Mooney et al., 2011), map provision (Haklay

and Weber, 2008), and location-based services (LBS) (Mooney et al., 2011; Savelyev

et al., 2011). However, in each application, the data quality is an issue of high concern.

Several studies have concluded that the quality of VGI is heterogeneous Elwood et al.,

2012. This finding impacts on the utility of VGI as a complementary source or as an

alternative to authoritative data sources (Ali and Schmid, 2014; Devillers et al., 2010;

Goodchild and Li, 2012; Goodchild, 2008).

In general, VGI — as spatial data — has multiple measures of data quality such as:

completeness, lineage, logical consistency, positional accuracy, and semantic (attribute)

accuracy (Guptill and Morrison, 2013). In our research, we are concerned with the

attribute accuracy. In particular, we investigate data quality from the viewpoint of

classification, i.e., whether a piece of land covered by grass is being classified as park,

garden, or forest ; if an areal water body belongs to the lake, pond or reservoir class,

etc. In VGI projects, data classification is mainly based on participants’ cognition.

On one hand, the appropriate classification depends on quantitative (e.g., size, area)

and/or qualitative (e.g., context) characteristics. However, these characteristics, which

distinguish between classes, might not be observed by participants. In addition, the

non-standard data collection procedures and the limited expertise of participants may

result in heterogeneous data classification. On the other hand, the non-strict definition

of geographic features leads — in some cases — to conceptual overlapping classes. Thus,

a given entity may be classified as lake or pond, park or garden, marsh or swamp and

it could plausibly belong to multiple classes, but only small details might distinguish

between the most appropriate class (Ali et al., 2015; Ali et al., 2016).

To tackle the aforementioned problems, we propose the rule-guided classification ap-

proach in our previous work Ali et al. (2015) and Ali et al. (2016). The approach learns

the distinct qualitative characteristics of specific classes and encodes them into predictive

rules. Afterwards, the extracted rules are organized into a classifier that acts to guide
1http://openstreetmap.org/
2http://www.wikimapia.org/
3https://www.google.com/mapmaker
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the participants towards the most appropriate classes. In this paper, we propose crowd-

sourcing validation as one of many possible implementation scenarios of our approach.

In this scenario, we present a set of entities associated with our recommended classes to

the crowd for the purpose of validation.

In this paper, we present the Grass&Green application (http://www.opensciencemap.

org/quality): a web-app that addresses the conceptual overlapping challenge of some

grass-related classes. We utilized the data from the OSM project, particularly the data

set of Germany. However, the results were presented to the entire OSM mappers as well

as public participants. We selected the classes of garden, grass, forest, park, and meadow

as an exemplification of the conceptual overlapping problem. The choice is based on the

following reasons: i) In the utilized data set, they are the most common grass-related

classes within city boundaries (our geographic scope of research); and ii) For non-experts,

there exists conceptual overlapping between these classes, since they are related to the

global concept of grass, but with finer differences. We launched the application to val-

idate our previous work in Ali et al. (2015) and Ali et al. (2016). The participants

were allowed to express their agreement/disagreement with the recommended classes. In

addition, the participants were encouraged to send us feedback and comments. We an-

nounced the application on OSM diaries4 and other social media blogs. In four months,

the application attracted 212 participants from more than 35 countries. During this

period, the participants checked 2,865 entities. The findings indicate the applicability

of the proposed approach. Around 89% of the contributions are fully/partially in agree-

ment with our recommended classes. Moreover, the detailed investigation of the results

demonstrates the enhanced classification of the target entities. We received positive

feedback from participants, which encourages the expansion of the application of the

proposed approach to different locations. Moreover, the findings of this work motivate

the development of more customized applications that handle a particular geographic

feature in order to enhance the data quality of voluntary geographic data sets.

This paper is organized as follows. Section 6.2 provides an overview about related works.

The reasons for problematic data classification in VGI projects, including subjective clas-

sification, participant heterogeneity, and conceptual overlapping classes are discussed in

Section 6.3. A summary of our proposed approach is provided in Section 6.4. The

Grass&Green application is presented in Section 6.5 including: the description, the con-

ceptual architecture, and the announcement methodologies. Section 6.6 illustrates the

results from various perspectives. A vision of the proposed approach with respect to

enhancing data quality is provided in Section 6.7. Section 6.8 concludes the paper and

highlights some future research directions.
4http://www.openstreetmap.org/diary
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6.2 Related Work

With the increased availability of VGI sources, the resulting data quality has been raised

as an issue of high concern in GIScience (Goodchild, 2008; Elwood et al., 2012; Devillers

et al., 2010). Most research has targeted the OSM project, as the most prominent VGI

mapping project. The project aims to develop a free world digital map editable and

obtainable by everyone (Haklay and Weber, 2008). Currently, OSM data covers most of

the world and the project has more than 2,500,000 registered users at 10th April 2016

according to OSMstats5 website. Several research studies have addressed the quality

from various perspectives like the assessment of the resulting data (Section 6.2.1) and

the development of approaches and methodologies to enhance the data quality (Section

6.2.2). Other research has focussed on data classification in user-generated geographic

contents (Section 6.2.3).

6.2.1 VGI quality assessment

Generally, geo-spatial data are assessed either by comparison with an authoritative data

source or by analyzing the intrinsic properties of the data. The assessment is carried out

based on the standard spatial data quality measures developed in ISO/TC6 211 (Østensen

and Smits, 2002). The OSM data are compared with the authoritative data in the UK,

Germany, Canada and France (Haklay, 2010; Ludwig et al., 2011; Arsanjani et al., 2015;

Dorn et al., 2015; Vaz and Jokar Arsanjani, 2015; Girres and Touya, 2010). With the

evolution of VGI, authors in Goodchild and Li (2012) argue that there are three dimen-

sions in assessing VGI data: crowdsourcing, social, and geographic dimensions. Hence,

the intrinsic properties of data like contributors’ reputation, editing history, and data

evolution have been analyzed to assess data quality (Flanagin and Metzger, 2008; Bishr

and Kuhn, 2007; Neis and Zipf, 2012; Neis et al., 2011; Keßler and Groot, 2013; Keßler

et al., 2011; D’Antonio et al., 2014; Neis et al., 2013). Researchers have investigated

different quality measures like positional accuracy, completeness, and thematic accuracy

with respect to various geographic features like road networks, buildings, and land use

features. Another perspective of quality assessment has been presented in Ballatore and

Zipf (2015), where the data quality is associated with the purpose of use. In Barron

et al. (2014), the authors presented a framework to assess the data quality conceptually.

Most of the research concludes that VGI is a potentially valuable data source, particularly

in urban places (Hecht and Stephens, 2014). Nevertheless, they mostly agree on the
5http://osmstats.neis-one.org/
6http://www.isotc211.org/
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heterogeneous quality of the data with respect to various quality measures (Goodchild

and Li, 2012; Devillers et al., 2010).

6.2.2 VGI quality enhancement: approaches & methods

Several economic and cultural factors influence data quality in VGI-mapping projects

(Quattrone et al., 2014; Neis et al., 2013). To our knowledge, there are only a limited

number of research studies concerned with enhancing the data quality in VGI-based

mapping projects.

In Schmid et al. (2012) and Schmid et al. (2013a), the authors argue that intuitive human

interfaces can play a role in producing data of high quality. The work in Pourabdollah

et al. (2013) encourages conflating OSM and authoritative data to develop an integrated

open data source while Vandecasteele and Devillers (2013) present a semantic solution

that aids the contributors during the editing process toward enhanced data quality, to

overcome cross-cultural and multi-language problems. Moreover, Ali et al. (2014) and Ali

and Schmid (2014) discussed the utilization of learning to enhance the data classification

of VGI projects. In Ali et al. (2015) and Ali et al. (2016), we presented the rule-guided

classification approach, which acted to generate recommended classes to improve the

classification quality. As an alternative, "Gamification" has been presented as another

method for enhancing VGI quality (Yanenko and Schlieder, 2014).

For the OSM project in particular, OSMRec7 is presented in Karagiannakis et al. (2015);

it is an editor plugin tool for automatic annotation of spatial entities in the OSM project.

In addition, OSM Inspector8, KeepRight9, MapRoulette10, and MapDust11 are examples,

among others, of web-applications that have been developed to enhance the data quality

of the project. These applications have been either customized for a particular feature in

a particular location like NOVAM12, which manages bus stop features in the UK, or they

have been developed generally for multiple features in various locations. These applica-

tions encourage the role of participants to enhance data quality through crowdsourcing

revision.

7https://github.com/GeoKnow/OSMRec
8http://tools.geofabrik.de/osmi/
9http://keepright.ipax.at/

10http://maproulette.org/
11http://www.mapdust.com/
12http://b3e.net/novam/
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6.2.3 Human-centered data classification

Other research has focus particularly on the data classification in user generated geo-

spatial content. In VGI, the data classification is human-centered; the data are classified

based on individual perceptions rather than on a pre-defined model as is the case in

professional data classification. The authors in Fisher (1999) presented different forms

of spatial data uncertainty, which influence the classification precision and granularity.

In Ali et al. (2014), the authors analyzed the plausible and ambiguous classification in

VGI. Nevertheless, the research in Sparks et al. (2015) concludes the ability of the public

to precisely classify land cover features when they are provided with aerial and ground

photos. The work of Klippel et al. (2015) studied cultural, linguistics, and regional

influences on the data classification while the authors of Foody et al. (2015) investigate

the classification quality of land use and land cover features in VGI with respect to the

contributors and the provided data.

The authors of Fritz et al. (2012) have developed Geo-Wiki13 (a crowdsourcing web-

application) to validate and enhance the classification of global land cover data. Geo-

Wiki also aims to develop a hybrid global land cover map from different data sources,

where the authoritative data sources are enhanced with open sources and the power of

crowdsourcing is used for validation.

In Mooney and Corcoran (2012b), the authors studied the annotation process in the OSM

project. They identified the problem of using OSM data taxonomy and its impacts on

data classification. From a particular point of view, the cross-cultural nature of the OSM

project results in heterogenous data classification of identical geographic features, and

hence, limited use of the data. However, semantic solutions have been used to overcome

this problem (Ballatore et al., 2013; Baglatzi et al., 2012).

Nevertheless, the research in Arsanjani et al. (2015) and Vaz and Jokar Arsanjani (2015)

has assessed the classification accuracy of land use and land cover features in the OSM

project. They highlighted the remarkable data quality and the potential utilization of

VGI as a complementary data source of these features.

6.3 Beyond Data Classification in VGI Projects: the case of Open-
StreetMap

Several research studies have emphasized the significance of VGI sources. However,

they also highlight their problematic data classification: in most applications, imprecise
13http://www.geo-wiki.org/
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data classification results in either incorrect or incomplete results. How are the data

classified? Do the data follow a strict classification model? How could we verify the

data classification? At which granularity level is the data classification complete? All of

these are critical issues that will impact on the effective utilization of VGI sources. Thus,

this section gives an insight into the classification challenges in VGI projects. In this

paper, we analyzed the OSM data. The impacts of the contribution mechanism and the

utilized data models on data quality are presented in Section 6.3.1. In any VGI projects,

participants play a major role in the data collection process. Thus, the OSM communities

and their influence on data classification are addressed in Section 6.3.2 whereas Section

6.3.3 discusses general difficulties of geographic data classification.

Figure 6.1: An example of problematic classification in the OSM project: the highlighted
entity is classified as pitch, school, and beach, while it is actually a beach volleyball playground
in a school.

6.3.1 Classification by tags (key = value)

In OSM, the contributions are performed by participants as follows: the participants

delineate geographic features from provided satellite images (e.g., Bing aerial images),

by using one of the OSM editors (e.g., iD editor). The features are represented as

entities using the appropriate data models: point (0-D features), way (linear features),

and relation (complex features). Afterwards, the participants are free to describe and

classify the contributed entity by means of tags; when a tag has the format of key =

value, the key describes the classification perspective and the value is the class label.

For example, the tag of natural = water describes the natural coverage of an entity

as a water body, while an additional tag, e.g., water = lake, is required to express the

precise classification.

146



Chapter 6. Guided Classification System for Overlapping Classes in OSM

The OSM project presents the recommended tags and appropriate ways of mapping var-

ious geographic features on its Wiki pages14. However, the lack of integrity checking

mechanisms and the complete free contribution mechanisms result in problematic clas-

sification. For example, an entity could be assigned no tags or infinite tags and even the

repetition of tags is possible, e.g., natural = water and natural_1 = sand. Although

these flexible mechanisms allow participants to initiate new classes, they generate vari-

ous challenges during data processing and cleaning. Figure 6.1 illustrates a problematic

classification example, when the indicated entity is assigned to conflicting classes.

6.3.2 Subjective classification

VGI mapping projects are run by the power of crowds. The contributions come from

the local knowledge of participants. They are free to translate their observation into an

annotated geographic feature with description/categorization/classification. As humans

interpret the observations differently, they may perceive the geographic features differ-

ently; a given entity might be classified as a restaurant by a participant, but it may be

categorized by others as a cafe; whether a water body is large enough to be classified

as a lake or small enough to be appropriately classified as a pond ; these classifications

depend on rational and individual aspects. This fact leads to subjective classification.

In the OSM project, participants have unequal mapping and cartographic experience;

they come from different cultures; and they have various educational backgrounds and

interests. Thus, the heterogeneous participants boost the problematic classification. In-

complete and inconsistent classification are examples of the problems related to subjective

classification.

• Incomplete classification: the limited local knowledge of a participant or the unclear

perceived observation from the provided satellite images impacts on the classifica-

tion granularity. In a pilot study on the OSM data set of Germany (May 2015),

we found 225,933 entities related to water body classes. Only 20% out of these

entities have further finer classes like lake, pond, waste water, reservoir, etc. We

detected about 10,520,418 unclassified building entities, which have a coarser clas-

sification as building while other entities of building are classified into finer classes

like residential, service, public, industrial, house, etc.

• Inconsistent classification: when participants interpret a given feature differently,

they assign it to conflicting classes or an ambiguous class. During our investiga-

tions, we found out some entities are assigned to conflicting classes; some entities
14http://wiki.openstreetmap.org/wiki/Map_Features
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are classified as meadow (i.e. grass land) and wetland (i.e. water body). Figure

6.1 illustrates a clear example of the classification inconsistency, when the given

entity is classified by the pitch, school, and beach classes.

6.3.3 Conceptual overlapping classes

In general, spatial data are prone to various forms of uncertainty: probability, vagueness,

and ambiguity. The problem might be related to whether a geographic feature is well

or poorly defined (Fisher, 1999). In Comber et al. (2006) and Grira et al. (2010), the

authors link the uncertainty of the spatial data with the VGI quality. In particular, poor

definitions lead to crisp boundaries between similar classes. Thus, a particular entity

could plausibly belong to multiple overlapping classes with various degrees of accuracy.

Nevertheless, there are usually qualitative and/or quantitative characteristics that could

distinguish between these classes.

(a) Overlapping grass-related classes. (b) Overlapping water-related classes.

Figure 6.2: Conceptual overlapping classes due to the given descriptions in the OSM Wiki.

Among others, the features of water bodies, grass-related, and wetland are examples of

features with non-strict definitions, and hence, they include overlapping classes. Figure

6.2 illustrates the conceptual overlapping classes within grass-related and water body

features, with respect to the recommendations given in the OSM Wiki. Table ?? de-

scribes the mapping between the OSM tags and their corresponding classes. In the OSM

project, a single class could be described by various tags; however, we investigate the

most common tagging. The overlapping between classes in the figure is based on shar-

ing a particular concept or common characteristics. Moreover, the size of overlapping

indicates the degree of conceptual similarity.

For example, the park, recreation, and garden are overlapping classes in Figure 6.2a: they

share the characteristics of being used for entertainment and amusement. The classes
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OSM tag Class OSM tag Class
landuse = grass
or landcover = grass grass natural = wood

or wood = yes wood

leisure = park park natural = water water

leisure = garden garden natural = water
water = lake lake

landuse = recreation ground recreation natural = water
water = pond pond

landuse = meadow meadow natural = water
water = reflecting_pool reflecting pool

natural = scrub scrub natural = water
water = reservoir reservoir

natural = grassland grassland natural = water
water = wastewater waste water

natural = heath heath natural = wetland
wetland = swamp swamp

landuse = forest forest natural = wetland
wetland = marsh marsh

Table 6.1: Mapping between OSM tags and some of grass-related and water-related
overlapping classes.

of park, garden are classified by the leisure key, while the recreation class is described

by the landuse key. However, the recreation entities are most likely related to certain

activities (e.g., sport, or social activities), the garden entities are more cultivated with

flowers and plants than others, and the park entities are in general larger than garden and

recreation and might include both of them as well. Figure 6.2b shows another example of

overlapping classes related to water body features. When a water body is stagnant and

natural, it could be classified as lake (if it is large) or as pond (if it is small), but when it

is man-made it would be more appropriately classified as reservoir. Other classes such as

marsh and swamp are both describing the land area that is saturated with water, either

permanently or seasonally. In the OSM data, they are both described by the wetland

key. Only the type of vegetation distinguishes between the classes: swamp when woody

vegetation and marsh when non-woody vegetation and open habitats.

The previous discussions summarize the reasons behind the problematic classification

in VGI projects; Sections 6.3.1 and 6.3.2 argue the problem from the nature of VGI

projects, while Section 6.3.3 discusses the problem from the perspective of spatial data

uncertainty. These classification problems impact not only on the data quality, but they

also limit the development of general applications, e.g., global rendering and visualizing

applications. Moreover, the problematic data quality will determine the utility of VGI

sources for particular types of application.
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6.4 Rule-Guided Classification Approach

In Ali et al. (2015) and Ali et al. (2016), we tackled the classification by developing the

rule-guided classification approach. In VGI projects, participant conceptualization of ge-

ographic features impacts on the data classification. From a human cognitive perspective,

people are likely to investigate the qualitative characteristics of a given feature in order

to classify it appropriately. Moreover, humans implicitly contrast between similar classes

to infer a certain class instead of others. For example, we contrast between park and

forest classes by looking into the coverage of trees, the availability of amusement and en-

tertainment facilities, and the accessibility for pedestrians. Hence, our approach exploits

the qualitative characteristics and comparison to distinguish between similar classes. For

particular entities of overlapping classes, we apply a machine learning mechanism to ex-

tract the distinct qualitative topological characteristics that identify each class. These

characteristics are formulated and organized to develop a classifier. Then, the approach

employs the developed classifier to re-classify the entities and presents them again for

crowdsourcing validation. In this approach, we assume that identical entities should be

classified similarly within the same country (i.e., localized classification). Thus, learning

from data of India and applying the extracted knowledge on data of Germany might lead

to another problematic classification, due to different cultures and concepts. For further

details see Ali et al. (2016).

Figure 6.3: Conceptual structure of the rule-guided classification approach.
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Figure 6.3 illustrates the conceptual structure of the rule-guided classification approach.

For exemplification, we demonstrate the approach on a case study. We utilize the OSM

data set of Germany and target the classification of some grass-related classes: grass,

garden, forest, park, and meadow. The choice of the Germany data set is due to the

following reasons: a) in Germany, there exists an active mappers community on the

OSM project; b) several studies confirmed the high quality of data, particularly in the

urban areas; and c) there is no large bulk import of data. Figure 6.3 divides the approach

into three phases: data processing, learning, and validation phases.

1. Data processing:

From the OSM data set of Germany, we extracted the entities of target classes.

The entities are extracted from the most densely populated cities to ensure data

of high quality. We are concerned with the areal entities. Thus, to understand the

qualitative characteristics of the classes, we topologically checked each individual

entity. We developed an automatic algorithm using the 9-Intersection Model (9IM)

to perform the investigation (Egenhofer and Al-Taha, 1992). This investigation

aims to find out the common topological relations between pairs of entities; these

relations are potentially useful to distinguish between similar classes. For example,

find the relation between pairs of entity (E1, E2), when E1 represents the target

feature (e.g., park entity) and E2 is another kind of nearby feature to E1 (e.g.,

playground, water bodies, etc.).

2. Learning:

The target of the learning phase is developing a classifier able to potentially distin-

guish between similar classes. We apply an associative classification Thabtah, 2007

data mining mechanism to perform the learning task. This mining approach utilizes

the association rule to construct the classification system (Thabtah, 2007). First,

we extract a set of predictive rules that describe each class, and then these rules

were ranked and organized into the classifier. During the classification process,

a given entity is matched against the entire extracted set of rules. The matched

rules are ranked in descending order based on their confidence measures. Due to

the overlapping problem (see Section 6.3), the developed classifier is configured to

give the two most appropriate classes instead of picking out a single class.

3. Validation:

Due to the nature of VGI, the proposed approach exploits crowdsourcing to vali-

date the classification. The entities are re-classified using the developed classifier.

Afterwards, they are presented to the public again for the purpose of revising

the recommended classes. The validation phase has multiple functionalities: a)
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enhance/ensure the target entities’ classification by crowdsourcing revision, b) un-

derstand the public conception of target classes, and c) find out the response of

participants to the provided recommendations.

The first and second phases are presented with more details in a previous work Ali et

al. (2015) and Ali et al. (2016) while, this paper focuses on the third phase, where the

implementation of the validation phase is presented in the next section.

6.5 Grass&Green: Customized Quality Assurance Application

As a validation of the rule-guided classification approach, we developed a web application

called Grass&Green15. We adopted a web-based architecture to reach a broad number

of participants. The application has been launched since August 2015, and targeted at

public participants and OSM mappers as well. The application is hosted on an Ubuntu16

server as a sub-branch of the OpenScienceMap17 (OScieM) project.

Figure 6.4: Application instructions and the OSM user login options.

The application description is presented in Section 6.5.1. Section 6.5.2 demonstrates

the application architecture and its components while the utilized channels to attract

participants are discussed in Section 6.5.3.

15http://www.opensciencemap.org/quality/
16http://www.ubuntu.com/server
17http://www.opensciencemap.org/
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6.5.1 Application description

Figures 6.4, 6.5, and 6.6 illustrate the user interface (UI) of the application. The interface

usability and ease of use are of our concern to achieve the application objectives and to

simulate the nature of VGI projects as well. Before logging in, Grass&Green presents the

instructions for use to the participant. As we contribute directly to the OSM project,

participants must have an OSM user account. The application allows non-OSM users to

register for an account (see Figure 6.4).

For non-expert participants, the application has a menu called "Guide" that introduces

the class descriptions. The descriptions are provided visually and as text from multiple

sources: Wikipedia, OSM Wiki, and WordNet18 (see Figure 6.5).

Figure 6.5: Textual and visual descriptions of target classes.

After login, the application shows the entities to the participant randomly. Figure 6.6

shows the simple interface of the revision process. On the right hand side, the given entity

is outlined and overlapped with Bing satellite images, which is an aerial image provider.

In addition, the topological qualitative descriptions of the entity are provided as text.

For example, the given entity in Figure 6.6 contains trees, adjacent to a building, a

garden, and a service way, and covered by a residential area. On the left hand side,

the entity is outlined and overlapped with the OSM base map. Over the entity, a pop-up

message shows the recommended classes (marked as recommended) and the other classes

as well. The validation is flexible, similar to the contribution mechanism of the OSM

project; the participant could select between “yes”, “no”, and “maybe” options from the

provided classes. The participant could deselect our recommendations and select other
18https://wordnet.princeton.edu/
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Figure 6.6: Validation interface for the presented entities.

classes or add a new class (if required). More options are provided for the participant

like view and edit the entity directly through the OSM project interfaces. In both maps,

a zoom in/out option is provided to enable the participants to explore the geographical

context.

Furthermore, the “Help” menu provides participants with the instructions at anytime

if required. At the bottom, a contact e-mail address is given for further feedback and

comments from interested participants. At any point, participants are allowed to logout

or simply close the application to exit the validation process.

6.5.2 Application architecture

As a web-based application, Grass&Green consists of front-end and back-end compo-

nents; the front-end components control the usability and the visualization in the UI

like the leaflet19 component, the Bootstrap20 framework, and the JQuery21 library while

the back-end components are responsible for performing efficient and reliable communi-

cations among application layers. Figure 6.7 shows how the application is composed of

three layers: interface layer, data layer, and external layer.

19http://leafletjs.com/
20http://getbootstrap.com/
21https://jquery.com/
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Figure 6.7: The Grass&Green application structure.

Using any internet browser, the participants can access the interface layer. First, the

participants login to the application using the authorization open standard of OAuth22,

which allows them to connect to a third party website — in this case the OSM project

— in a secure way without exposing their password. After successful login, the interface

layer, by means of Ajax and php, starts to call the data from the data layer for the

validation process. By means of php functions, the application controls the validation

results and participant contributions. The data layer contains the data set developed by

the proposed approach in Ali et al. (2016). In the data set, each entity is associated with

its topological qualitative characteristics, its geometry, and two recommended classes.

The data set is stored in a Postgres data base with postGIS extension to handle the

geometry of entities. As an external layer, the OSM server is accessed through the OSM

Application Program Interface (API). We used the OSM user account as a reference to

participant experience and their geographic origin. During the validation, participants

have options to edit/view the presented entities by OSM editors/viewers. In addition,

the interface layer calls the OSM API to update the entities after the validation process.

22http://oauth.net/
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6.5.3 Announcement methods and target participants

Participants are the power of any VGI project. Thus, attracting and encouraging par-

ticipants to contribute is one of the deployment challenges. The aim is to attract a

large number of participants: OSM mappers and public participants as well. We have

exploited the power of the crowd to attract participants using the following channels:

• OSM diaries:

We announced the launch and the objectives of the application locally to the OSM

mappers through the project diaries23. The OSM diaries are public to every one.

• Social Media:

We developed two pages for the project: one on Twitter24 and the other on Face-

book25 to use the power of social media to attract public participants. We infre-

quently sent news of the application and thanked the participants on the project

pages.

• Others:

Mailing lists and paper-based flyers are also utilized to target other researchers and

students as well.

6.6 Results

In this section, we discuss the results that have been obtained by the application from

various perspectives: participant and contribution patterns (Section 6.6.1), the partic-

ipant responses to recommendations (Section 6.6.2), and the potential enhanced data

classification (Section 6.6.3). In addition, we analyzed the participant feedback as well

(Section 6.6.4). The presented results represent the contributions over a four month

period from 28th August to 28th December 2015.

6.6.1 Participant and contribution patterns

Taking into account that we used simple declaration approaches, Figures 6.8, 6.9, and

6.10 give insight into the patterns of participants and contributions. The application

attracted 212 participants: 163 participants have a known origin of location from 35

different countries while the others are from unknown locations. Figure 6.8a shows that
23https://www.openstreetmap.org/user/grass_and_green/diary
24https://twitter.com/grass_and_green
25https://www.facebook.com/grassANDgreen/
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(a) The distribution of participant geo-
origins.

(b) Contributions relative to participant geo-
origins.

Figure 6.8: Participant and contribution patterns with respect to the participant
geographic origins.

46 (about 28%) out of 163 participants are from Germany. In addition, the participants

examined the classification of 2,865 entities; 1,060 out of these entities have been checked

by participants related to Germany, as shown in Figure 6.8b, which is relevant to the

data set used here. The rest of the entities have been checked by participants from

different locations.

On the other hand, the participants have various levels of familiarity with the OSM

project, and consequently, distinct levels of contributions. We use the OSM mapper

categorization schema proposed in Neis and Zipf, 2012 to group the participants, as

shown in Figure 6.9:

(a) Distribution of participants and contribu-
tions per group.

(b) Participant concerns per group.

Figure 6.9: Participants and contributions relative to participant experience.
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Figure 6.9a shows the distribution of participants and contributions per group as fol-

lows: 30.19% Gold (changesets26 >= 2000), 32.08% Senior+ (500 <= changesets <

2000), 18.4% Senior (100 <= changesets < 500), 9.43% Junior (10 <= changesets <

100), 3.77% Nonrecurring (1 < changesets < 10), and 6.13% New registered (change-

sets <= 1). In Grass&Green, about 65% of contributions are from Senior+ and Gold

mappers, which adds reliability to the obtained results. Figure 6.9b shows the minimum

and maximum contributions of participants per group, in addition to the average contri-

butions per participant. This figure indicates that the more experience and familiarity

of a participant with the OSM project, the more they are concerned and contribute.

Figure 6.9b shows that the participants from Gold, Senior+, Senior, and Junior groups

examined on average between 11-16 entities/participant, while participants from Nonre-

curring and New registered groups checked on average between 6-8 entities/participant.

The finding shows some extreme concerns of individual contributions of 289, 222, and 174

entities from participants belonging to Gold, Senior, and Senior+ groups, respectively.

Figure 6.10: Numbers of participants per days relative to the announcement methods.

Figure 6.10 shows the contribution patterns relative to the utilized announcement meth-

ods. After two weeks, the number of participants are mostly less than ten per day. The

figure shows that the number of participants decreases with time and increases with using

an attraction method, particularly the OSM diaries.
26Changeset: is the number of changes the OSM user done including add, delete, and update operations
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6.6.2 Participant responses

The participants checked 2,865 entities. During the validation, the participant may select

the “I do not know” option, when they are not confident about a certain classification.

For 586 entities we received the “I do not know” option, when the variances between

classes were not recognized by the participants. In these cases, the entities have not

been updated on the OSM project and have been excluded from our analysis as well.

For the rest of the 2,279 entities, we received a participant’s opinion. As explained before

(see Section 6.5.1), the participant has complete flexibility to adapt our recommended

classes resulting in three levels of participant agreement:

• Complete agreement: when a participant agrees with both of the recommended

classes and marks them with the “yes” option.

• Partial agreement: when a participant agrees with only one of the recommended

classes and marks the other with a “no” or “maybe” option.

• Disagreement: when a participant does not agree with any of the recommended

classes and marks them both with a “no” or “maybe” option.

Figure 6.11: Participant agreement with the recommended classes.

Figure 6.11 shows the agreement of the participants with the recommended classes as

follows: 10.84% disagree, 26.89% completely agree, and 62.53% partially agree. We can

conclude that about 89% of the participants have complete/partial agreement with the

recommended classes. The findings indicate the success of the developed classifier to

distinguish between the target classes. Furthermore, the responses and the participation

implies the feasibility of the proposed approach as well.
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6.6.3 Enhanced data classification quality

To understand the influence of our approach on data classification quality, we analyzed

the contributions in more detail. We examined the classification of entities before and

after the validation with respect to the recommended classes. Tables 6.2 and 6.3 give

two different views of the results.

entities/class
before validation

participants’
response

previous class in
recommendation

previous class not in
recommendation

acceptance
percentage

412 entities
(garden)

yes/maybe 261 11 75.9%no 88 52
1,136 entities

(grass)
yes/maybe 942 24 89.2%no 98 72

731 entities
(park)

yes/maybe 426 41 85.2%no 67 197
Total

2,279 entities 85.5%

Table 6.2: Entities classified before and after the validation with respect to the recommended
classes and participant opinions.

Table 6.2 compares the classification of entities before and after the validation with

respect to the recommended classes and participant opinions. During the indicated

period, participants validated 2,279 entities; these entities were classified previously as

follows: 412 garden, 1,136 grass, and 731 park. In the analysis, we investigate whether the

previous classification is recommended or not by our approach. From a cognitive view, in

this analysis we consider a “maybe” answer to be closer to “yes” than to “no”. The findings

indicate that the participants accepted 75.9%, 89.2%, and 85.2% of the recommendations

of the garden, grass, and park entities, respectively. The participants confirmed the

classification of a large portion of the presented entities, as well as correcting other

potential misclassified entities (bold numbers in 3rd and 4th columns of Table 6.2). In

general, they accepted about 85.5% of the provided recommendations.

classes in recommended
classes

participants response
yes/maybe no

forest 748 184 564
garden 753 443 310
grass 1970 1605 365
park 747 542 205

meadow 340 106 234

Table 6.3: Classes with respect to recommendations and participant responses after
the validation.

In another analysis, Table 6.3 gives insight into the classes with respect to the recom-

mendations and participant opinions after the validation process. During the validation
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process, the forest class was recommended for 748 entities either as 1st or 2nd rec-

ommendations. For 184 out of the 748 entities, participants agreed on the potential

recommended classes when the forest class was not previously assigned to any of the

presented entities; the same occurred with the meadow class (bold numbers in Table

6.3). Furthermore, entities that have potentially accepted classes of garden, grass, and

park are more than the presented entities per each class as shown in comparison with

Table 6.2. On one hand, the finding may indicate the potential correction of misclassified

entities. On the other hand, the overall results in Table 6.3 proved the conceptual over-

lapping classification and demonstrate the plausibility of multiple classes as indicated in

Figure 6.12.

Through manual investigation, we detected cases when entities can strongly belong to

various classes. According to participant validations, we found numerous entities with

two valid classes; among others, 37 entities as park/forest, 24 entities as park/garden, and

2 as park/meadow. Figure 6.12 illustrates some of these examples when the given entity in

Figure 6.12a is located within a forest area and adjacent to a farmyard. However, the en-

tity contains a playground (i.e., entertainment facility) and is paved by footways (dashed

red lines). Thus, it is recommended and validated to be classified as park/meadow while

the presented entities in Figures 6.12b and 6.12c are recommended and validated as

park/forest ; they are partially covered by heavy trees and woody plants (dark green

areas). In addition, they contain water bodies (outlined by a blue line), and cycle ways

(dashed blue lines).

Figure 6.13 illustrates visually the potential of the enhanced data classification. The

figure shows three scenarios of contributions: confirmation, correction, and ignorance.

Figure 6.13a presents the confirmation scenario, when the indicated entity is classified

as park. The approach suggests park and grass as recommended classes. During the

(a) An entity is validated to
be classified as park/meadow.

(b) An entity is validated to
be classified as park/forest.

(c) An entity is validated to
be classified as park/forest.

Figure 6.12: Visual illustrations of entities that plausibly belong to conceptual overlapping
classes. The given entities (outlined by black lines) are validated by the participants.
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(a) A participant followed
our recommendation and con-
firmed the entity classification
as park.

(b) A participant followed
our recommendation and cor-
rected the entity classification
from park to meadow.

(c) A participant ignored our
recommended garden class,
and misclassified the entity as
meadow.

Figure 6.13: Visual investigation of participant contributions compared to the provided rec-
ommendations by our approach and the resulting enhanced data classification.

validation, a participant selected only the park class. Figure 6.13b shows the correction

scenario, when the given entity is classified as park and the approach recommends meadow

and grass classes. During the validation, a participant classified it as a meadow. Figure

6.13c illustrates the ignorance scenario, when the indicated entity is classified as grass.

The approach recommends garden and grass classes. However, a participant decided to

classify it as meadow, which was an inappropriate choice.

In the first scenario, the given entity has leisure characteristics and the participant fol-

lowed our recommendations and confirmed its classification as park. The entity in the

second scenario contains no other features, is located within a forest area, and has a

name “Gerlach-Wiese” 27; it was classified as park, but a participant followed our recom-

mendations and updated it to meadow. In the third scenario, the entity is surrounded

by buildings and has a higher probability of being a garden, according to our recommen-

dations. However, the participant classified it as meadow, which was an inappropriate

class. The last scenario does not enhance the data classification, but it reflects individual

perceptions. This scenario could also happen when our recommendations are wrong or

do not reflect reality. In such cases, multiple validations could be the proper solution.

6.6.4 Participant feedback

Participants were allowed to contact us giving their comments and feedback either by

e-mail or by commenting on our posts. We received both positive and negative feedback

as well. Regarding the positive feedback, participants showed respect and encouraged

us by different statements like: “great service, plans to expand?”, “If you plan to include
27wiese (German) = meadow (English)

162



Chapter 6. Guided Classification System for Overlapping Classes in OSM

Belgium, you’ll see very strange stuff”, “just perfect. thank you”, “It’s a good subject

indeed!”, etc. On the contrary some people sent us negative or improvement feedback

like: “Your questions will produce a very strong response bias”, “referring to Wikipedia

and definitions from the dictionaries is completely wrong since OSM does not use natural

language to describe objects”, “To be able to use this tool correctly, there should be clear

consensus on exact meaning”, etc. We thank all the participants for their contributions

and feedback. The entire feedback will be considered to extend the application.

6.7 Discussion

In the past, mapping was an exclusive task of cartographers and well-trained individ-

uals. Nevertheless, the errors and the accuracy of maps was an issue of concern even

in professional production. In reality there is no accurate map due to geographic data

ambiguity and temporal developments of data (Crone, 1966; Goodchild and Gopal, 1989;

Goodchild, 1993). With the availability of new technologies, VGI has become a poten-

tial source of geographic data. In particular, VGI facilitates the mapping process, when

the public takes part in the process of data collection. However, in VGI other factors

influence the resulting data accuracy such as: the heterogeneous characteristics of the

participants, the lack of expertise, and the flexible contribution mechanisms. In particu-

lar, most VGI sources have inherent issues such as problematic data classification that is

either inconsistent or incomplete. To provide reliable services requires data of guaranteed

quality. The concept of Volunteered Geographic Services (VGS) has been introduced in

Thatcher (2013). However, there still exists a need for reliable data sources (Parker et al.,

2013).

VGI is based on the power of crowdsourcing. From our perspective, in order to exploit

the crowd to provide valuable information, participants should be guided and/or well

educated regarding the required data quality. Thus, we proposed the rule-guided classi-

fication approach in Ali et al. (2015) and Ali et al. (2016). The approach aims to fill the

gap between the need for flexible contribution mechanisms, the uncertainty of spatial

data, and the various participant perceptions. With the increase in the evolution of VGI

sources, machine learning, particularly data mining, can play a vital role in ensuring data

quality. In our approach, we applied data mining mechanisms to develop a classifier that

can distinguish between similar classes. Afterwards, the developed classifier is utilized

to guide the participants towards more accurate classification.

To enhance the data quality, the use of crowdsourcing is one possibility, which has been

previously encouraged as one dimension to ensure the data quality (Goodchild and Li,

2012). In this paper, we encourage exploiting the crowds, but in a guided manner. In
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crowdsourcing, participants are willing to contribute. However, they generally do not

care about the target goal. For example, we tracked the participant interactions during

their contribution in Grass&Green to find out whether they carefully investigated the

provided descriptions or not. We found out that only 80 out of the 212 participants

checked the given descriptions in the “Guide” menu. The same situation occurs in the

OSM project where most of the participants contribute without spending enough time

to read the provided suggestions and recommendations on the OSM Wiki pages.

The application presented in this paper shows the feasibility of the proposed approach.

In addition, it encourages the development of customized applications for a particular

geographic feature. For example, regarding the OSM project, several applications and

services have been developed to check and enhance road networks in various locations.

Consequently, OSM provides more reliable and precise information about roads than

authoritative data sources in some locations. In Grass&Green, we developed a simple

application to verify our approach. The few perceived drawbacks could be tackled by in-

telligent modules. Developing intuitive and interactive interfaces for VGI-based mapping

projects would be one possibility to overcome the classification challenges. For example,

by negotiation or by exemplification, an intelligent interface might be able to drive the

participants towards more precise and finer classification.

From a cognitive perspective, understanding human perception of geographic features is

required, because they are the engine of VGI mapping projects. The diversity of partic-

ipants’ cultures and interests have dual functionality: enrich the data source and ensure

the data quality. In Grass&Green, we coped with participants’ diversities by focusing

on the concepts and investigating the qualitative representation of the classes. Thus, we

utilized classes definitions and descriptions from Wikipedia and dictionaries. Cognitive

acquisition techniques and adequate data representation are also required to encourage

participants to produce more accurate data. Moreover, the classification problems could

be tackled by employing geo-spatial ontology. The need for geo-spatial ontology has been

previously discussed for better understanding of space and building more efficient GIS

applications (Frank, 1997).

The developed approach is grounded in strong foundations, and thus it can be configured

to other geographic features and other locations as well. First, the approach is based on

the topological investigation of target features with respect to their context. Therefore,

it can be applied to any other areal geographic features (e.g., water body features).

Second, the approach is built upon the assumption of localized classification. Thus,

within a particular country the approach may be used to enrich the data classification in

non-urban areas, after learning from the data of urban areas, if the latter are available. In

contrast, the approach has some limitations as well. Firstly, the classifier is dependent on
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the availability of large amounts of data in order to extract reliable knowledge. Secondly,

learning from data with problematic quality may trigger uncertainty in the developed

classifier, and hence, a careful investigation of the utilized training data quality is needed.

6.8 Conclusion

VGI can act as a complementary data source for authoritative data and a significant ele-

ment in a geo-spatial data infrastructure. Nevertheless, heterogeneous data quality limits

the utility of this promising resource. In particular, this research tackles the problematic

classification of VGI, where the data classification depends on individual preferences and

perceptions. In a previous work, we developed the rule-guided classification approach

that exploits machine learning mechanisms to handle the classification challenges in VGI

projects. The approach utilizes the data availability to learn the distinct characteristics

that can help to distinguish between similar classes. The learned characteristics were

used afterwards to develop a classifier, which was able to distinguish between similar

classes. The classifier is developed to guide the participants towards most appropriate

classification.

As a validation of the approach, we developed a web-based application called Grass&Green.

The application addresses the overlapping classes of some grass-related entities. For a

given data set, the application applied the rule-guided classification and presented the

recommended classes for public validations. The findings indicate the feasibility of the

proposed approach and the success of the application as well. Using simple announce-

ment methods, we attracted the attention of 212 participants from more than 35 different

cultural backgrounds. About 89% of the contributions agree with our recommendations.

Analysing the contributions shows a potential enhancement of data classification. Par-

ticipant feedback has encouraged the application of our approach to other data sets. The

results stimulate the development of more customized applications to ensure the classifi-

cation quality of a particular feature. In future works, we intend to design cognitive and

interactive data acquisition mechanisms. In addition, we would like to exploit the nature

of VGI and the participants in order to develop more intuitive data interpretation.
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Chapter 7

Conclusions and Future Work

The presented research reveals various issues regarding the quality of VGI. In particular,

this dissertation focuses on the quality of map-based VGI and tackles the challenges

of human-centered data classification. During this research, we studied the potential

causes behind problematic data classification in map-based VGI. Furthermore, we tackled

the problem by developing a guiding approach to cope with the evolution of VGI. To

conclude, this chapter summarizes the answers to the presented research questions within

the scope of the contributions of this research (see Chapter 1). Furthermore, it highlights

envisions of future research directions.

7.1 Discussions and Conclusions

GIS is a particular kind of information system, which facilitates manipulation and pro-

cessing of data related to properties on or near the Earth’s surface. In GIS, the data

links a specific property and an associated geo-location. Geographic data has various

formats, either records associated with locations (e.g., census and socioeconomic data) or

records describe recognizable geographic features (e.g., natural features, road networks,

buildings). Over the past years, GIS had a reputation of being difficult to use and ge-

ographic data collection and processing were exclusively reserved for professionals and

well-trained individuals. However, the utility of ICT fosters significant changes not only

in the usability and accessibility of GIS, but in the way data is collected and processed.

Nowadays, everyone with access to the Internet is able to: i) participate in mapping

and collecting geographic data, ii) use open-source GIS software, iii) perform geographic

data processing, and iv) access, utilize, and reproduce various formats of open-geographic

content. Therefore, the dilemma in GIScience research has changed from How to collect

173



Chapter 7. Conclusions & Future Work

and produce geographic data? to How to guarantee the quality and effectively utilize the

resulting data?

Concerns of data quality rise to the highest priority, when millions of volunteers around

the world collaboratively act to collect, update, and use information about geographic

features. Different quality assurance procedures are presented in Chapter 2 (see C1).

According to the literature, the data quality is ensured probably by following either

extrinsic or intrinsic approaches. In the extrinsic approaches, the data is matched and

compared with a reference data set, while in the intrinsic approaches the data is an-

alyzed to find out an indirect signal of data quality. With the limited availability of

reference data sets, the intrinsic approaches assess the contributors’ reputation, analyze

the contribution pattern, and check for credibility and trustworthiness to ensure data

quality. With the availability of large amounts of data, data mining techniques arise as

a promising method to ensure the data quality.

In this dissertation, data quality is addressed from the perspective of classification. We

examined the problematic classification of various areal geographic features in Chapters

3-4. The findings show that a limited number of geographic features follows a strict

structure of data classification (e.g., hierarchical classification). For these features the

data can be checked against the constraints to ensure the integrity. However, most

geographic features follow context-based classification; when the classification of a given

feature is related to its characteristics and its geographic context. In this research several

concepts have been introduced:

• Classification Ambiguity : entities could belong to several classes due to conceptual

overlap of the classes.

• Classification Plausibility : entities have a high compatibility with a specific class

rather than other possible classes.

• Appropriate Classification: the class that strongly reflects the intrinsic and extrin-

sic characteristics of a given entity and is consistent with its geographic context.

Furthermore, it has the highest compatibility among other similar classes as well.

• Wrong/Inappropriate Classification: the class that describes an entity inappropri-

ately. This class might be in conflict with entity characteristics and its geographic

context.

In the context of VGI, the term Wrong Classification is not recommended unless the

classification is completely incorrect, such as classifying a “residential area” as a “for-

est”. In VGI, the classification is based on human perception, and hence, the terms of

Appropriate Classification and Inappropriate Classification are more adequate.
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Mapping and collecting information about the land use was of great concern since the

earliest GIS. By the middle of the 1960s, the first operational GIS had been developed in

Canada to collect and store information about the land use (Foresman, 1998). Land use

(LU) and land cover (LC) data are complementary: LC indicates the physical type of land

in a particular area, while LU determines the appropriate utilization of a particular area

by humans (Fisher et al., 2005). From a cognitive perspective, humans need categorical

data to build memories, process experience, and communicate knowledge (Rosch, 1978).

However, categorical classification of LU/LC represents a challenge due to the following

reasons: i) classes might lead to binary treatments and loss of information, ii) there

are no standard measures to distinguish various classes, iii) a particular land might be

used differently by humans, and iv) due to the non-strict definition of most geographic

features, there exists conceptual overlap between similar classes (Ahlqvist and Ban, 2007;

Ahlqvist, 2012). The challenges are doubled in VGI, as the data classification is based

on rational perspectives with no integrity checking mechanisms. Moreover, participants

are mostly volunteers; they are not well-trained and they might be not interested in

geography or cartography at all. Therefore, LU/LC data resulting from VGI projects

comes with an inherently problematic classification and requires careful investigation

before utilization (see C2).

Hence, this dissertation proposes a guided classification approach in Chapters 4-5 to ex-

ploit the leverage of VGI to produce data of enhanced quality. The approach employs

the availability of data to learn the characteristics of particular geographic features. Var-

ious characteristics are used to distinguish between classes: quantitative and qualitative

characteristics. In Chapter 5, a rule-based guided classification approach is presented.

In this approach, qualitative spatial reasoning (QSR) is adopted to extract the distinct

qualitative characteristics of particular geographic features. The extracted characteris-

tics are formulated as associative prediction rules and are utilized to develop a classifier.

Afterwards, the developed classifier acts to generate recommendations and guides the

participants to the most proper classes for a given entity. The findings indicate the ca-

pabilities of the developed classifier to distinguish between similar classes. Findings of

empirical studies show the agreement of the participants on the recommended classes

(see C3-C4).

The rule-based guided classification approach is practically implemented in Chapter 6.

As exemplification, the approach is applied to some grass-related features. These kinds

of features present challenges for classification. Although they share the general vegeta-

tion characteristics, there exist fine details that may identify each individual geographic

feature. Otherwise, quantitative measures and qualitative observations are usually able

to distinguish an appropriate and inappropriate classification. The entities “park”, “gar-

den”, “forest”, “meadow”, and “grass” are extracted from the OSM data set of Germany.
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Based on the proposed approach, we developed a classifier that is able to distinguish

these features. Thereafter, the web application Grass&Green was developed to present

the entities associated with our recommended classes for crowdsourcing validation. The

validation process showed three major findings: 1) the feasibility to learn the qualitative

characteristic of a specific geographic feature from VGI, 2) the significant role of crowd-

sourcing in enhancing the data classification as well as in data collection, and 3) the

potential enhancement of data classification when volunteers are supported by guidance

(see C5-C6). Users of the application strongly agreed on a large fraction of the pre-

sented recommendations. They provide feedback to improve and extend the developed

application as well.

In general, there is no absolute accurate geographic map (Goodchild, 1993); as any map

is likely a model or a generalization of reality, it might contain a certain level of inac-

curacy. In geographic maps, thematic inaccuracy might be due to either measurement

problems, or problems related to definition and classification granularity. In VGI-based

mapping particularly, thematic accuracy is problematic due to contributors’ rational

preferences and their limited knowledge and experience. Therefore, this dissertation

proposes a human-centered guided classification approach to tackle thematic inaccuracy

of the resulting data.

7.2 Future Directions

The potential of VGI in mapping activities will increase with the expansion of geoinfor-

mation technologies. Nevertheless, merit of the resulting data might be limited as long

as there are no adequate procedures to ensure the data quality. Thus, the next sections

highlight some research directions related to VGI quality assessment and enhancement

approaches (Sections 7.2.1 and 7.2.2). Otherwise, toward effective utilization of data,

further research is required to develop intuitive data interpretation methodologies that

are able to handle the questionable data (Section 7.2.3). Furthermore, the extension of

the Grass&Green application is discussed in Section 7.2.4, as a part of my future work.

7.2.1 Data quality: an assessment approach

Regarding data quality assessment, several research projects have started to look for

characterizing VGI quality by finding a way to characterize data providers (Maué, 2007;

Flanagin and Metzger, 2008; Foody et al., 2015). They adopted the social approach that

has been developed by Goodchild and Li (2012).
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To assess data providers, one idea is to implement a reputation system that evaluates

the interaction between community members. Reputation systems are well known in

other applications such as e-commerce, where service providers, services, and goods are

associated with scores indicating their quality (Resnick et al., 2000; Jøsang et al., 2007).

In e-commerce applications, these scores are calculated conventionally based on collected

feedback and opinions provided by both sides of a commercial transaction. In VGI

mapping projects, the challenge is that there is no direct relation or feedback between the

contributors; they only share a platform to contribute geographic data. However, they

share editing the same entities in a collaborative manner. Hence, tracking the editing

history for a specific set of entities can be exploited to construct the interaction network

among contributors, and consequently, to calculate their reputation scores. In previous

work of Keßler et al. (2011) and Keßler and Groot (2013), the authors categorized the

editing actions into positive and negative feedback. This work can be extended to develop

a reputation system for VGI. The system will act to rank the contributors, and hence,

to assess resulting data quality.

7.2.2 Data quality: an enhancement approach

This dissertation argues the usefulness of a guidance approach to enhance data classifi-

cation quality in VGI-based mapping projects. There are various ways of guiding that

might be adequate to such projects. For example, guiding by asking a series of ques-

tions, guiding by illustrative examples, or guiding by comparison. In this dissertation,

we applied the classical type of guiding, where contributors are informed about recom-

mended classes among potential alternatives. From a cognitive perspective, comparison

or exemplification might be adequate ways to get precise information from contributors.

When guiding is provided in an adequate manner, it will have dual functionality: first,

it will probably result in enhanced data quality; second, it acts to raise the contributors’

experience by learning. Further studies might be required to find the proper guiding

methodology, which should not hinder the contributors to express their observations.

In GIScience, the “Gamification” approach has evolved originally as a means of data

collection (e.g., Towns Conquer (Castellote et al., 2013)). However, research started

to employ it as a tool for enhancing the data quality (Yanenko and Schlieder, 2014)

(e.g., Cropland Capture (See et al., 2014)). In this research, it has been shown that a

good motivation methodology is required to keep contributors active in validating the

presented recommendation (see Figure 6.10). Further research is required to develop a

game-based guiding system for VGI mapping. Here, the challenge is how to preserve

the properties of VGI mapping (e.g., flexibility), games (e.g., motivation), and guiding

systems (e.g., accuracy).
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7.2.3 Intuitive data interpretation

The next generation of GIS must address the quality of VGI. Due to the importance of

VGI as a source of information, intelligent data interpretation should be developed to

handle the uncertainty of data. In cases of conceptual overlap between classes, binary

classification leads to loss of information. However, the overlap can be interpreted in

such a way that is result in more precise information.

Figure 7.1: Intelligent data interpretation of overlapping classes.

For example, Figure 7.1 depicts a case when an entity could be classified differently by

contributors: “park”, “garden”, and “recreation-ground”. Every classification might be

based on an individual observation. Therefore, the entity might belong to all of these

classes with near levels of appropriateness. In this case, these overlapping classes might

imply that this entity is “park–like a garden with a recreation facilities”. From another

view, the overlapping classes emphasize the broad level of classification (i.e. artificial,

non-agricultural vegetated, not agricultural area, not forest, and not water body). The

challenge here is the difficulty of data interpretation, when the assigned classes are not

overlapping. Further research is needed to develop such intuitive data interpretation

approaches.

7.2.4 Extension of Grass&Green

The users of the Grass&Green application encouraged extending of the application. The

extension can be achieved by applying the approach either on different locations or on dif-

ferent geographic features. The OSM project requires particular research that focuses on

improving the data classification. The improvement denotes checking for the classifica-

tion integrity (i.e., horizontal view) and increasing the level of classification granularity

(i.e., vertical view). In some applications coarse classification suffices while in others

finer levels of detail are required. For example, during disaster situations, planning for

evacuation requires knowing the type of building. Thus, developing customized applica-

tions to enhance the data classification in OSM will increase the utility of the resulting

data. Further research is needed to keep contributors motivated towards guaranteed data

quality.
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Appendix A

OpenStreetMap landuse related

tags

This appendix lists most common OSM tags, which are related to land use and land cover
mapping. The tags represent various level of classification granularity: the broarder level
(e.g., “grass”, “water”) and the finer level (e.g., “garden”, “lake”). These tags are developed
based on discussions among mapper communities. They are described in more detail on
the OSM Wiki pages.

Key Value Comments and Remarks

landuse allotments A piece of land given over to local residents for growing
vegetables and flowers.

landuse basin An area of water body that drains into a river.
landuse brownfield Describes land scheduled for new development where old

buildings have been demolished and cleared
landuse cemetery Place for burials. You can add religion = value. Smaller

places (e.g. with a church nearby) may use amenity =

grave_yard.
landuse commercial Predominantly offices, business parks, etc.
landuse farmland An area of farmland used for tillage and pasture (animals,

crops, vegetables, flowers, fruit growing).
landuse farmyard An area of land with farm buildings like farmhouse,

dwellings, farmsteads, sheds, stables, barns, equipment
sheds, feed bunkers, etc. plus the open space in between
them and the shrubbery/trees around them.

landuse forest Managed forest or woodland plantation.
landuse grass For areas covered with grass. Consider finder tags when

more information are available.
landuse industrial Predominantly workshops, factories or warehouses.
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landuse meadow An area of land primarily vegetated by grass and other
non-woody plants, usually mowed for making hay.

landuse railway Area for railway use, generally off-limits to the general pub-
lic.

landuse recreation_ground An open green space for general recreation, which may in-
clude pitches, nets and so on, usually municipal but possibly
also private to colleges or companies.

landuse reservoir Stores water, may be covered or uncovered
landuse residential Predominantly houses or apartment buildings
landuse retail Predominantly shops
landuse village_green An area of common land, usually grass, in the centre of a

village
leisure garden Place where flowers and other plants are grown in a deco-

rative and structured manner or for scientific purposes.
leisure golf_course The outline of a golf course. The node form may be

used to place an icon within the course. This tag implies
sport=golf.

leisure marina For mooring leisure yachts and motor boats.
leisure nature_reserve Protected area of importance for wildlife, flora, fauna or

features of geological or other special interest.
leisure park Open, green area for recreation, usually municipal.
leisure pitch E.g. a field for playing football/soccer, cricket, baseball

sports, and skate parks. To describe which kinds of sport(s)
use sport=*.

natural wood Woodland where timber production does not dominate use.
natural scrub Uncultivated land covered with bushes or stunted trees.
natural heath Bare lower lying uncultivated land with bushes but little or

no tree cover.
natural sand Ground coverage of mostly silica particles, with no or very

sparse vegetation.
natural water General tags for all kinds of water: Lakes, pond, etc.
natural wetland Waterlogged area.

Table A.1: List of OSM tags related to land use and land cover mapping.
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