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1 Introduction 1

1 Introduction

Correlations between time series are important in various areas. For example, modern

portfolio theory is based on the concept of diversification which in turn depends on the

correlation of asset returns. Specifically, as a minimum requirement, an investor needs

forecasts of the covariance matrix and expected returns to calculate optimal portfolio

weights. In addition, the correlation of a security to the market is a crucial input

for pricing models such as the capital asset pricing model (CAPM). Similarly, basket

derivatives as well as structured products are sensitive to correlation changes. Risk

management is another area in which correlations are essential. Risk figures such as

the value at risk cannot be computed without an estimate of the covariance matrix.

Moreover, if any security is hedged with a number of other securities, the calculation

of the optimal hedge ratio depends on the correlation estimate.

Since correlations are not observable, they have to be estimated. The estimate for

the unconditional sample correlation is easy to compute. If there are two assets with

returns r1 and r2, then the unconditional correlation coefficient ρ is:

ρ =
E (r1, r2)

√

E (r21)E (r22)
(1.1)

Accordingly, using this formula, it is implicitly assumed that conditional variances and

conditional correlations are constant over time. However, numerous studies have shown

that these linkages are in fact time-varying (Longin and Solnik, 1995; Cappiello et al.,

2006b; Aslanidis et al., 2010; Berben and Jansen, 2009; Cai et al., 2009; Goetzmann

et al., 2008). Even testing for a change in correlations imposes several econometric

challenges. Testing for a change in correlations by splitting a sample into sub-samples

might suffer from a heteroscedasticity bias caused by rising volatility during crises

(Forbes and Rigobon, 2002) and is subject to a selection bias (Boyer et al., 1999).

Furthermore, Billio and Pelizzon (2003) show that the choice of the window length is

crucial for the analysis.1 Addressing this issue, Boyer et al. (1999) suggest to model

the data generating process taking into account conditional correlations.

1Corsetti et al. (2005) provide an overview of these econometric issues.
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This task can be fulfilled by correlation models. Starting with the Constant Conditional

Correlation model (Bollerslev, 1990) and the Dynamic Conditional Correlation model

(Engle, 2002), several correlation models and extensions have been proposed in the lit-

erature. Since conditional correlation models explain the evolution of correlations over

time, they can be compared to Generalized Autoregressive Conditional Heteroskedas-

ticity (GARCH) models that describe the dynamics of conditional variances. As such,

most models are based exclusively on time series properties.

Correlation models are also different from the copula approach, another popular method

to model dependencies. The copula is an intrinsically static concept that allows for a

rather flexible merging of univariate marginals to a joint probability distribution and

therefore allows to model rather general dependency structures. Hence, it also calls for

more complex dependency measures as compared to the (linear) correlation coefficient

1.1. Moreover, empirical applications of the copula approach to more than two assets

typically require severe restrictions on the functional form of the copula, limiting the

potential flexibility of the approach.2

Yet, the influence of exogenous variables such as economic indicators on correlations

has largely been ignored in the literature. Nevertheless, economic variables have the

potential to simultaneously influence several time series, thereby driving conditional

correlations. Moreover, using regression analysis, some studies already demonstrate

that economic conditions can alter conditional correlations (Quinn and Voth, 2008;

Andersson et al., 2008; Li, 2002). In addition, it is established that economic variables

help explaining the conditional mean (Guidolin and Timmermann, 2008; Aı̈t-Sahalia

and Brandt, 2001) and the conditional volatility (Engle and Rangel, 2008; Engle et al.,

2009; Whitelaw, 1994) of asset returns.

Several areas of empirical research might benefit from employing correlation models

which allow for the influence of exogenous variables. For example, there is an ongo-

ing debate on the existence of contagion among stock market returns and its potential

triggers. Since many studies define contagion as a change in conditional correlations

(King and Wadhwani, 1990; Forbes and Rigobon, 2002; Corsetti et al., 2005), correla-

tion models with exogenous variables could be employed to identify contagion and its

causes. Another line of research focuses on the benefits of international diversification

2For a survey on copulas see for instance Joe (1997) or Embrechts et al. (2002). Recently, dependency
measurement and theoretical as well as empirical issues of the copula approach have been coherently
discussed by Yener (2012).



1 Introduction 3

(e.g. Solnik et al., 1996; Longin and Solnik, 1995, 2001; Goetzmann et al., 2008) and

asset-allocation (e.g. Ang and Bekaert, 2002; d’Addona and Kind, 2006; Guidolin and

Timmermann, 2008). In this line of research, it is interesting to see why correlations

between markets change. Similarly, quite a few studies focus on the convergence in the

Eurozone (Cappiello et al., 2006b; Berben and Jansen, 2005) and search for drivers that

explain increasing correlations among Eurozone markets.

Against this background, this dissertation presents a thorough, in-depth analysis of

conditional correlations models which incorporate exogenous variables. The strength

and weaknesses of the models are discussed in order to suggest which model to use for

a certain research purpose. Furthermore, the models are employed in several empirical

applications.

Figure 1.1: Dissertation Outline
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The outline of the dissertation is illustrated in Figure 1.1. In chapter 2, the corre-

lation models are discussed in depth. The Dynamic Conditional Correlation (DCC)

Model proposed by Engle (2002) is taken as a starting point since this model is used

frequently in practice and academic research. The model is based on the assumption

that the conditional correlations are a weighted average of past innovations, the long

term average, and recent conditional correlations. However, the effect of exogenous

variables is ignored. Vargas (2008) extends the DCC model to incorporate the influ-

ence of exogenous variables and introduces the Dynamic Conditional Correlation with

Exogenous Variables (DCCX) model. Yet, this model implicitly assumes that all con-

ditional correlations within a correlation matrix are equally affected by the exogenous

variable. However, this assumption becomes highly inappropriate if many assets are

included. This thesis contributes to the literature of conditional correlation models by

relaxing this assumption and introduces the generalized DCCX (GDDCX) model. An

additional feature of this model is the possibility to separate the effect of the exogenous

variable on conditional correlations from the influence on conditional variances.

Two additional approaches to exogenous variables are discussed in chapter 2. The

Smooth Transition Conditional Correlation (STCC) model proposed by Silvennoinen

and Teräsvirta (2005) postulates that conditional correlations vary between two regimes

driven by an exogenous variable. The Sheppard (2008) model pursuits another ap-

proach: it assumes that the symmetric square root of the covariance matrix is a func-

tion of exogenous variables. A simulation study in which the finite sample properties

of all estimators are investigated completes chapter 2.

Chapter 3 compares the correlation models previously presented to each other. Two

different approaches are chosen. First, a simulation experiment is conducted. Condi-

tional correlations of a known correlation structure are estimated employing all models.

Subsequently, the mean absolute error is calculated to compare the models. Second,

conditional correlations are estimated using real bond market data. To determine which

model works best, the statistic and economic criteria proposed by Engle and Colacito

(2006) are employed. The results indicate that the GDCCX model exploits the in-

formation of the exogenous variable best compared to other models in the simulation

study. Additionally, it performs well according to the statistic and economic criteria.

By contrast, the STCC and the Sheppard model are outperformed by all DCC models

in almost all settings. The use of the GDCCX model is highly advantageous if many

time series and several exogenous variables are included simultaneously in an analysis.
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The more heterogeneous the respective conditional correlations respond to the exoge-

nous variable, the more rewarding it is to use the GDCCX model. As a result, the

GDCCX model is the focus of the analysis in chapters 4 to 6.

In line with previous studies (Engle and Sheppard, 2008; Berben and Jansen, 2009;

Bauer, 2011), the models investigated in chapter 2 and 3 assume that conditional vari-

ance can be best explained using a GARCH model. Thus, the effect of exogenous

variables on volatility is ignored. However, recent studies find that this assumption

might not be appropriate (Engle et al., 2009; Çakmakli and van Dijk, 2010; Chris-

tiansen et al., 2011). In the first part of chapter 4, a theoretical model of Forbes and

Rigobon (2002) is presented which shows that, given certain conditions, a change in

conditional variances results in changing conditional correlations despite the depen-

dence structure being left unchanged. This issue is further investigated in a Monte

Carlo simulation. Specifically, it is simulated that conditional variances are driven by

an exogenous variable but this variable has no effect on conditional correlations. Then,

ignoring the effect of the exogenous variable on conditional variances, it is examined

whether the models incorrectly identify that exogenous variable drives conditional cor-

relations. A GARCH model for the variance equation and a GDDCX model to estimate

conditional correlations is employed. The results indicate that in certain cases, it is in-

correctly postulated that there is an effect of the exogenous variable on conditional

correlations. However, in a subsequent simulation, all parameter estimates are accu-

rate if the effect of the exogenous variable on conditional variances is modeled. For this

purpose, a GARCHX model (Hwang and Satchell, 2005; Brenner et al., 1996; Engle and

Patton, 2001) is employed instead of the GARCH model used previously. As a result,

in chapters 5 and 6, the GARCHX model is employed in order to estimate conditional

variances and model conditional correlations with the GDCCX model.

Chapter 5 and 6 focus on empirical applications. As correlations between different asset-

classes are central in both portfolio management and risk management, this dissertation

examines the correlations between the most important asset classes in chapter 6: stocks

and bonds. However, correlations within different bond or stock sectors are equally im-

portant. Therefore, chapter 5 investigates the determinants of conditional correlations

between European bond markets as well as conditional correlations between European

stock markets. The sample period covers both calm and turmoil market times. It is

especially interesting whether correlations are influenced by either risk aversion, market

turbulences, or the business cycle. Employing a GDCCX model and estimating con-
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ditional variances with a GARCHX model, the results indicate that both the business

cycle and market turbulences drive conditional correlations. However, risk aversion

has almost no effect on correlations. Moreover, it is shown that investigating several

exogenous variables simultaneously is advantageous.

In chapter 6, high-frequency stock-bond correlations in the Eurozone are examined.

Employing intra-day data allows to investigate the effect of macroeconomic announce-

ments in addition to exogenous variables previously used. The results show that both

risk aversion and macroeconomic announcements separately drive conditional corre-

lations and variances of bonds and stocks in the Eurozone. Conditional correlations

fall as risk aversion rises even when controlling for the influence of macroeconomic an-

nouncements and the influence of these variables on volatility. Comparing the effects

of Eurozone and US announcements, the most important announcements in the US are

news on nonfarm payroll employments while, in Europe, the announcement of the ECB

rates receives most attention.
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2 Correlation Models

2.1 Introduction

As argued in the general introduction getting correct correlation estimates is important

but difficult since correlations are not observable. In addition, they are time-varying.

Therefore, several correlation models have been proposed in the literature, that allow

to estimate the conditional covariance matrix. Examples are the Constant Conditional

Correlation (CCC) model of Bollerslev (1990) or the Dynamic Conditional Correlation

(DCC) model of Engle (2002).1 Several extensions to the DCC model have been devel-

oped either to account for asymmetries in the correlation dynamics (Cappiello et al.,

2006a; Audrino and Trojani, 2007) or to better capture dynamics for a large number of

assets (Franses and Hafner, 2003).2

However, these models are based exclusively on the time series properties. The influence

of economic variables such as macroeconomic indicators on correlations has largely been

ignored in the literature although these variables have the potential to simultaneously

influence several time series. Yet, including exogenous variables imposes additional

difficulties in the estimation procedure: Additional parameters must be estimated and

it must be guaranteed that the conditional covariance matrix is positive definite at any

time.

Only recently some models, which were developed, include exogenous variables. Vargas

(2008) extends the DCC model to allow for exogenous variables and introduces the

DCCX model. However, the model restricts the exogenous variables to influence each of

the conditional correlations by the same amount. This assumption becomes increasingly

more conflicting with reality the greater the number of included time series. Therefore,

we relax this assumption and propose a generalized DCCX (GDCCX) model which

allows for a series specific impact of the economic variable on conditional correlations.

1Engle (2009), Bauwens et al. (2006), and Silvennoinen and Teräsvirta (2008) provide a comprehensive
overview on various other correlation models.

2For an introduction to correlation models see Engle (2009). Model comparisons can be found in
Bauer (2011), Engle and Sheppard (2008), and Engle and Colacito (2006).
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Furthermore, we allow this exogenous variables to affect conditional covariances directly

and not via the change in the conditional variances.

There are also some correlation models that include the effect of exogenous variables

and which are not based on the DCC model. Silvennoinen and Teräsvirta (2005)

introduce the Smooth Transition Conditional Correlation (STCC) model which features

a transition variable that drives the correlation between two regimes. This model is

already employed in recent empirical studies. Finally, Sheppard (2008) models the

square root of the conditional covariance matrix as a function of one or more exogenous

variables. In this model, parameters are not directly interpretable as each element of

conditional covariance matrix is a function of several parameters and crossproducts of

the explanatory variables. As a result, marginal effects of the exogenous variables must

be calculated for a given sample point.

The STCC model as well as the DCC type models allow for any univariate GARCH

model to be used to estimate the conditional variance. In addition, Engle and Sheppard

(2008), Berben and Jansen (2009), and Bauer (2011) argue that the choice of the

univariate GARCH model is of minor relevance. Following this argument, we assume

throughout this chapter and in chapter 3, that all conditional variances follow a GARCH

(1,1) process and that the exogenous variables do not influence conditional variances.

We relax this assumption from chapter 4 onwards and discuss the consequences.

This chapter proceeds as follows. As the DCCX and the GDCCX models build heavily

on the DCC model, we first introduce the DCC model. Thereafter, section 2.4 presents

the various models with exogenous variables and develops the generalized DCCX model.

We discuss the estimation of the models in section 2.5 and study the finite sample

properties of all estimators in a small Monte Carlo simulation in section 2.6. Section

2.7 summarizes and concludes the chapter.

2.2 The DCC Model

In this section, we discuss the DCC model as introduced by Engle (2002) and some

recent extensions.3 The DCC model postulates the idea that conditional correlations

follow a GARCH-type structure: Conditional correlations are influenced by past con-

3For surveys of multivariate GARCH models, see e.g. Bauwens et al. (2006), and Silvennoinen and
Teräsvirta (2008).
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ditional correlations, current standardized returns, and the long-term average of the

conditional correlation. Hence, the model allows for correlation clustering, but correla-

tions can also be mean reverting.

Specifically, let rt denote an n× 1 vector of N asset returns at time t which is assumed

to be conditionally normal. Without loss of generality, it is furthermore assumed that

E (rt|Ft−1) = 0, (2.1)

E (rtr
′
t|Ft−1) = Ht, (2.2)

whereHt is an n×nmatrix with time varying conditional covariances, and Ft−1 denotes

the information set at time t−1. Any covariance matrix is positive definite by definition

so that Ht can further be decomposed as follows

Ht = DtRtDt. (2.3)

Rt is the n × n time varying correlation matrix and Dt is an n × n diagonal ma-

trix with the square root of the conditional variances on the diagonal i.e. Dt =

diag
(√

h1t, · · · ,
√
hnt

)

. To increase the flexibility, the conditional variances can be

estimated by any univariate GARCH model.

The various conditional correlations models differ in the way they explain the evolution

of Rt. For example, the constant conditional correlation (CCC) model of Bollerslev

(1990) assumes that Rt ∀ t is the constant sample correlation matrix. Thus, variations

in the covariance between two assets can only result from changes in the assets’ con-

ditional standard deviations. This reduces the number of parameters to be estimated

and alleviates the estimation process. However, the assumption of constant conditional

correlations is often too restrictive in empirical applications.

Relaxing the assumption of constant conditional correlations, Engle (2002) introduces

the dynamic conditional correlation (DCC) model in which the correlations evolve ac-

cording to:4

Rt = Q∗−1
t Qt Q

∗−1
t . (2.4)

4A similar model was proposed by Tse and Tsui (2002). For differences between the models please
see Bauwens et al. (2006) and Engle (2009).
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Q∗
t is a diagonal matrix that contains the square roots of the diagonal elements of

Qt. Hence, the conditional correlation between time series i and j at time t is ρij,t =
qij,t√

qii,t
√
qjj,t

, where qij,t is the i,jth entry of Qt. Qt is a n × n matrix and is defined as

follows:

Qt = Q (1− a− b) + a ǫt−1ǫ
′
t−1 + bQt−1, (2.5)

where a and b are non-negative scalar parameters and ǫt is a n × 1 vector with stan-

dardized residuals
(

ǫt = rit/
√

hijt

)

. Q is the unconditional covariance matrix of the

standardized residuals. Equation 2.5 depicts Qt as a weighted average of the uncondi-

tional covariance matrix, current standardized returns, and its own past realizations.

The DCC model has several attractive features. First, similar to the CCC model it

allows for a two-step estimation of the volatility and the correlation equation. For this

procedure, Engle and Sheppard (2001) establish the asymptotic consistency and nor-

mality of the estimated parameters. Second, by replacing Q with the sample covariance

matrix of the standardized residuals, the long run correlation matrix will be equal to

the sample correlation matrix. Hence, only a and b have to be estimated in the second

step. Third, the resulting correlation matrices are guaranteed to be positive definite as

long as Qt is positive definite, a suitable starting point is chosen, and a + b < 1.

As suggested by Cappiello et al. (2006a) the half-life of the innovations can be approx-

imated by: ln (0.5) / ln (a2 + b2). The half-life is the expected period of time it takes

until the influence of any correlation innovation has decreased by half.

The DCC model is widely used in empirical research. For example, Engle and Colacito

(2006) show that DCC models can be applied for asset allocation decisions between

stocks and bonds, Cappiello et al. (2006b) assess the integration of European bond and

stock markets, Bali and Engle (2010) augment a capital asset pricing model with esti-

mated correlations, and Chiang et al. (2007) document contagion among stock markets

in Asia. Moreover, the DCC model is applied to currencies (van Dijk et al., 2005) and

non-financial time series such as macroeconomic data (Lee, 2006).5

The parsimonious parameterization of the DCC model comes with some limitations.

For example, it is assumed that all correlations are driven by the same dynamic pat-

tern, which is hard to justify as the number of time series grows. Thus, Franses and

5See Engle (2009) for further references.
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Hafner (2003) generalize the DCC model by replacing the common a with series spe-

cific ai parameters. Another restriction imposed by the DCC model is that positive

and negative shocks have symmetric effects on conditional correlations. Cappiello et al.

(2006a) introduce the scalar asymmetric DCC (ADCC) model that allows conditional

correlations to increase more when both returns are falling then when both are rising:6

Qt =
(

Q− a2Q− b2Q− g2N
)

+ a2ǫt−1ǫ
′
t−1 + b2Qt−1 + g2nt−1n

′
t−1, (2.6)

where nt = I [ǫt < 0]◦ ǫt and I [·] is a n×1 dummy variable that takes on the value one

if ǫt < 0. In addition, N = T−1
∑T

t=1 nt−1n
′
t−1, and a, b, and g are scalar parameters.

A necessary condition for Qt to be positive definite is that g2nt−1n
′
t−1 > 0 which is

guaranteed if g2 > 0 and nt−1n
′
t−1 > 0.7 However, this restricts the model in a way that

it only allows correlations to increase more when there is a negative shock on returns

but not to increase less.

2.3 Tests for Constant Conditional Correlation

Before estimating conditional correlations, it is important to test the

constant-correlation hypothesis. For this purpose, Bera and Kim (2002) test the

constancy of the correlation parameter in the CCC model over time. Tse (2000) tests

the null of constant correlations against an extended version of the constant

correlation model. Similarly, Silvennoinen and Teräsvirta (2005) propose an Lagrange

multiplier (LM) test of constant correlations against a STCC model alternative.

However, in this dissertation, we focus on the Engle and Sheppard (2001) correlation

test as it is easy to implement and can be applied in settings where conditional cor-

6Cappiello et al. (2006a) also propose a generalized version of the ADCC model in which the param-
eters are allowed to vary for each correlation pair. However, this comes with the cost of additional
parameters that have to be estimated.

7Cappiello et al. (2006a) show that a sufficient condition for Qt to be positive definite is that the
matrix in parentheses in equation 2.6 is positive semi-definite. This is guaranteed as long as

a2 + b2 + δg2 < 1 where δ is the maximum eigenvalue of
(

Q
−1/2

N Q
−1/2

)

.
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relations of several time series are examined simultaneously.8 In this test, the null

hypothesis of constant conditional correlations

H0 : Rt = R ∀ t (2.7)

is tested against the alternative

H1 : vech(Rt) = vech(R) + β1 vech(Rt−1) + · · ·+ βp vech(Rt−p). (2.8)

R is the sample correlation matrix, Rt is the time-varying correlation matrix, and vech

is the half-vectorization operator. Engle and Sheppard (2001) show that H0 implies

that all coefficients of the vector autoregression

Yt = β0 + β1Yt−1 + · · ·+ βpYt−p + ut (2.9)

are equal to zero. Yt is defined as follows: Yt = vechu (ztz
′
t − IN) where vechu is a

modified half-vectorization operator that only includes the elements above the diagonal

and zt = R
− 1

2 D
−1

t rt. The latter term is a vector of returns standardized with the

estimated variances and with the symmetric square root decomposition of R. The test

statistic β̂V′Vβ̂′

σ2 has a limiting chi-squared distribution with p + 1 degrees of freedom

where V is the T × (p+ 1) matrix of regressors.9

2.4 Conditional Correlation Models with Exogenous Variables

2.4.1 The DCCX Model

Vargas (2008) extends the scalar ADCC model of Cappiello et al. (2006a) by allowing

exogenous variables to drive correlations. The ADCCX model as described in equation

2.10 results.

Qt =
(

Q− a2Q− b2Q− g2N−Kc′x
)

+ a2ǫt−1ǫ
′
t−1 + b2Qt−1+

g2nt−1n
′
t−1 +Kc′xt−1.

(2.10)

8An implementation of this test can be found, for example, in the UCSD GARCH toolbox.
9I.e. V = [1, Yt−1, Yt−2, · · · , Yt−p].
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xt is a p × 1 vector with p exogenous variables while x = T−1
∑T

t=1 xt. c is a p × 1

vector with p parameters that measure the impact of the exogenous variables on Qt.

The model implies that all correlations are equally influenced by any exogenous variable.

K is a n × n matrix which can either be an identity matrix or a matrix of ones. In

the former case the exogenous variables are restricted to drive conditional variances

(qii,t) only, in the latter case conditional correlations are influenced as well. Note that

if g is zero, the model will reduce to the DCCX model and will not account for any

asymmetries in the conditional correlations.

Engle and Sheppard (2001) show that a necessary and sufficient condition for the cor-

relation matrix to be positive definite is that Qt is positive definite. Since both the

DCCX and the ADCCX do not ensure that Qt is positive definite, Vargas proposes to

bound c between 0 and 1. However, that fails to ensure positive definiteness of Qt if

the exogenous variables are negative. In addition, bounding c between 0 and 1 restricts

the model to only allowing conditional correlations to increase (decrease) when the ex-

ogenous variables rise (fall). As there is no general condition which guarantees that Qt

is positive definite, we estimate the model using constrained maximum likelihood. The

parameter space is restricted so that the smallest eigenvalue for any estimated Qt is

positive (see section 2.5 for more details).

2.4.2 The Generalized DCCX Model

The DCCX model restricts the exogenous variables to influence all correlations in an

equal way. This assumption is unrealistic if the number of time series and the number

of correlations to be estimated grows. Therefore, we propose to generalize the DCCX

model (GDCCX model) in which the exogenous variables can influence all correlations

separately:

Qt =

(

Q− a Q− b Q−
p
∑

i=1

ci xi

)

+ a ǫt−1ǫ
′
t−1 + b Qt−1 +

p
∑

i=1

ci xi,t−1, (2.11)
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where x1, x2, . . . , xp represent the exogenous variables and xi = T−1
∑T

t=1 xi,t. ci is

a n × n parameter matrix with zeros on the diagonal.10 The zeros on the diagonal

ensure that the exogenous variables influence conditional covariances directly and not

via the change in the conditional variances.11 By definition, the conditional correlation

is ρij,t =
qij,t√

qii,t
√
qjj,t

so that the exogenous variables drive conditional covariances, qij,t,

in the numerator but not the conditional variances, qii,t.

Similar to the DCCX model, the generalized version does not ensure that the resulting

correlation matrix is positive definite. To make parameter estimation feasible, again,

a constrained maximum likelihood estimation is employed (see section 2.5 for more

details) and we use the estimated DCCX values as starting values for the generalized

version. While the number of parameters to be estimated rises from 3n+ 2+ p for the

DCCX model to 3n + 2 + pn(n−1)
2

, it is still more parsimonious then, e.g., the STCC

model or the model proposed by Sheppard.

2.4.3 The STCC Model

A number of recent papers discuss conditional correlation models that allow the

conditional correlations to switch between distinct values. For example, Pelletier

(2006) assumes that an unobserved first-order Markov process drives the transition

between different correlation regimes. A similar approach is proposed by Silvennoinen

and Teräsvirta (2005). They introduce the smooth transition conditional correlation

(STCC) model in which conditional correlations change between two correlation

matrices R1 and R2 according to an observed exogenous variable:

Rt = (1−Gt)R1 +GtR2, (2.12)

10For example, for three time series and two exogenous variables that would be:

p
∑

i=1

ci xi,t−1 =





0 c121 c131
c121 0 c231
c131 c231 0



x1,t−1 +





0 c122 c132
c122 0 c232
c132 c232 0



x2,t−1

11In the empirical analysis we found that restricting the parameters on the diagonal to be zero does
not alter other results. Furthermore, the model is more parsimonious.
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where Gt is the transition function which is bounded between zero and one. The

elements of R1 and R2 are parameters of the model. Although Gt can be any transition

function, most authors use the logistic function:

Gt =
(

1 + e−γ(st−c)
)−1

, γ > 0, (2.13)

where st is the transition variable, γ determines the speed of the transition, and c is

the midpoint of the transition, i.e. the value of the transition variable for which Gt

takes the value 0.5. It is furthermore assumed that the conditional variances follow an

univariate GARCH process. In the special case Rt = R1 ∀ t, the model reduces to the

CCC model. Furthermore, as long as both R1 and R2 are positive semi-definite, the

resulting conditional correlation matrices are guaranteed to be positive semi-definite.

However, letting γ and c vary among correlations would possibly suspend this feature

so that both parameters are restricted to be constant for all conditional correlations.

Although estimation using a two-step approach is possible, asymptotic consistency and

normality of this estimator has not been established. Therefore, the parameters of the

STCC model are either jointly estimated (Aslanidis et al., 2010; Berben and Jansen,

2005) or estimated iteratively by concentrating the likelihood.12 However, the number

of parameters to be estimated grows quickly with the number of time series. For

example, using a univariate GARCH(1,1) process to model the variance, the model has

n2 + 2n+ 2 parameters. Thus, estimation can be difficult due to numerical problems.

Silvennoinen and Teräsvirta (2005) point out that there is no change in the resulting

estimated conditional correlations for γ values greater than 100. Therefore, they restrict

γ to be smaller than 100. Furthermore, as shown in equation 2.13, they restrict γ to

be greater than zero. We relax the latter restriction for two reasons. First, we find

that it is not necessary for the model interpretation. If γ is less than zero, a value of st

greater than c results in a transition of the conditional correlation matrix from R2 to

R1. Second, the estimation performance improves substantially. Therefore, we restrict

γ to values between -100 and 100. Furthermore, we replace st in equation 2.13 with

st−1 so that all estimations are based on the same information set in order to facilitate

the comparison of the models.

12Silvennoinen and Teräsvirta (2005) propose to divide the parameters into three sets and iteratively
maximize the log likelihood over one set of parameters while leaving the other sets of parameters
constant. This procedure is repeated until the estimator converges.
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As the STCCmodel only allows one exogenous variable to drive conditional correlations,

Silvennoinen and Teräsvirta (2009) recently proposed an extension of the STCC model

in which they introduce a second transition variable: the Double Smooth Transition

Conditional Correlation (DSTCC) GARCH model. However, the additional flexibil-

ity due to the second exogenous variable has to be weighted against the number of

parameters to be estimated which is 2n2 + n+ 4.

The STCC model is employed in some recent empirical papers to model conditional

correlations. For example, Silvennoinen and Teräsvirta (2005) explain correlations

of up to five single US stocks with lagged realized volatility. Other studies (Berben

and Jansen, 2005; Aslanidis et al., 2010; Savva and Aslanidis, 2010) investigate co-

movements among equity markets in order to assess the degree of integration. These

papers use time as transition variable which implies a gradual change of one correlation

regime to another but restricts the correlation to move in only one direction. Aslanidis

et al. (2010) employ a DSTCC model and take US stock market volatility as the second

transition variable. Yang et al. (2009) document that macroeconomic variables drive

the correlations between stocks and bonds.

2.4.4 The Sheppard Model

Another model which allows for the inclusion of exogenous variables is presented by

Sheppard (2008). He factorizes Ht using the spectral decomposition. That is the

factorization of a symmetric positive definite matrix A into A = VΛV′ where Λ is the

diagonal matrix of eigenvalues. The corresponding eigenvectors form the columns of a

matrix V. The matrix A can further be decomposed to:

A = VΛ1/2 Λ1/2V′, (2.14)

where Λ1/2 is the symmetric square-root of the matrix A. Sheppard assumes that the

symmetric square-root of the conditional covariance matrix is a linear function of one

or more exogenous variables:

Ht+1 = B (In ⊗ xt) (In ⊗ x′
t)B

′, (2.15)
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and

√

Ht+1 = B (In ⊗ xt) , (2.16)

where xt is a p× 1 vector with p exogenous variables and In is a n× n identity matrix

where n is the number of time series. B is a block symmetric n× np parameter matrix

and consists of n2 blocks so that there are in total n (n+ 1) /2 different blocks. Each

block is a 1 × p vector. For example, for 3 time series and 2 exogenous variables, the

square-root of the conditional covariance matrix is:

√

Ht+1 =







b111x1t + b112x2t b121x1t + b122x2t b131x1t + b132x2t

b121x1t + b122x2t b221x1t + b222x2t b231x1t + b232x2t

b131x1t + b132x2t b231x1t + b232x2t b331x1t + b332x2t







where bijq are the sensitivity parameters that measure the influence of each exogenous

variable q = 1, · · · , p on each distinct element of
√
Ht+1. In contrast, each element of

Ht+1 is a function of several parameters and cross-products of the explanatory variables,

which can be seen by rearranging equation 2.15:

Ht+1 = B (In ⊗ xtx
′
t)B

′. (2.17)

As a result, the parameters bijq are not directly interpretable. However, the average

partial effect of each exogenous variable on each element of the conditional covariance

matrix can be calculated. This is simply the first derivative of Rt with respect to

each exogenous variable. It is also possible to test for the influence of each exogenous

variable on each element of the covariance matrix by applying a Wald test.

The model described by equation 2.17 restricts the correlations to be constant in case

of only one exogenous variable. The reason is that the exogenous variable influences

both conditional variances and covariances in a similar way so that the effect of the

exogenous variables simply cancels out.13 Therefore, Sheppard proposes to augment

13From equation 2.16 it can be derived that hij,t = (
∑n

k=1
bik ⊗ bjk) (xt ⊗ xt) where bik and bkj are

p× 1 parameter blocks from B. In case that there is only one exogenous variable xt is a scalar and

(xt ⊗ xt) = x2

t . Using ρij =
hij√

hii

√
hjj

gives ρij,t =
(
∑n

k=1
bik⊗bjk) x2

t
√

(
∑

n
k=1

bik⊗bik) x2

t

√

(
∑

n
k=1

bjk⊗bjk) x2

t

where x2

t

cancel out so that ρijt =
(
∑n

k=1
bik⊗bjk)

√

(
∑

n
k=1

bik⊗bik)
√

(
∑

n
k=1

bjk⊗bjk)
.
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the model in equation 2.17 into a simple multivariate ARCH framework where lagged

return cross-products are also included:

Ht+1 = B (In ⊗ xtx
′
t)B

′ +A ◦RCt, (2.18)

where A is a symmetric positive semi-definite n× n matrix with parameters and RCt

is a n × n matrix with lagged return cross-products: RCt =
∑t

d=1 rdr
′
d. Due to the

influence of the lagged return cross-products the correlation is now varying even when

there is only one exogenous variable. Another possibility is to include a constant so

that the number of exogenous variables is always greater one. In addition, as long as

a constant is included, the model guarantees that Ht+1 is positive definite even though

there are no constraints on the parameter space which greatly alleviates the estimation

process. Therefore, we also include a constant in all estimations. However, estimation

can be time consuming as the number of parameters in equation 2.18 is (n2+n)(p+1)
2

where p is the number of exogenous variables including a constant.

2.5 Model Estimation

In line with the number of time series and exogenous variables the number of parameters

to be estimated grows for the models. The model estimation is therefore very important.

All models are estimated by maximum likelihood.14 The sample log likelihood, LL, that

is maximized with respect to all parameters is:15

LL = −1

2

T
∑

t=1

(

n log(2π) + log|Ht|+ r′tH
−1
t rt

)

;

= −1

2

T
∑

t=1

(

n log(2π) + 2 log |Dt|+ log |Rt|+ ǫ′tR
−1
t ǫt

)

;

= −1

2

T
∑

t=1

(

n log(2π) + 2 log
n
∑

i=1

hiit + log |Rt|+ ǫ′tR
−1
t ǫt

)

. (2.19)

|Ht| denotes the determinant of the matrix Ht. It is generally not necessary to assume

that residuals are normally distributed since Bollerslev and Wooldridge (1992) show

14All computations are performed with Matlab. The code for the estimation of the GARCH and the
DCC models was taken from the UCSD GARCH toolbox.

15Details can be found in Engle (2002), Engle and Sheppard (2001), or Sheppard (2008).
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that maximizing 2.19 results in a consistent estimator in these cases. Thus, 2.19 has a

quasi-maximum likelihood interpretation.

As proposed by Engle and Sheppard (2001) and Engle (2002), we estimate the DCC,

the DCCX, and the GDCCX model in two steps in order to improve the numerical

performance of the estimation routine. In the first step the variance part of 2.19 is

maximized which is equivalent to estimating univariate GARCH models. In the second

step the log likelihood function

LLC = −1

2

T
∑

t=1

(

log |Rt|+ ǫ′tR
−1
t ǫt

)

(2.20)

is maximized conditioning on the parameters estimated in the first step, i.e. given the

estimated standardized residuals. Engle and Sheppard (2001) show that this limited

information estimator is consistent but not fully efficient. Therefore, we correct the

standard errors to account for this loss in efficiency as suggested by Engle and Sheppard

(2001) and Engle (2009).

Silvennoinen and Teräsvirta (2005) estimate the STCC model iteratively by concen-

trating the likelihood since the number of parameters is quite large. However, in order

to increase efficiency and speed, we jointly estimate the conditional variances and cor-

relations (Aslanidis et al., 2010).

In section 2.4 we argued that the DCCX models as well as the GDCCX model impose

several linear and non-linear constraints on the parameter space. As suggested by

de Goeij and Marquering (2004) and Chou and Liao (2008), we restrict the parameter

space for these models so that the smallest eigenvalue of any estimated Rt is positive.

As a result, we have an optimization problem with inequality constraints. We tested

two optimization methods. First, as suggested by Greene (2008) and Hamilton (1994)

it is possible to translate the constrained problem to an unconstrained one by imposing

some sort of penalty function for constraints that are near or beyond the boundary.

Yet, different penalty functions might lead to different solutions. Second, sequential

quadratic programming methods can be applied which focus on the solution of the

Karush-Kuhn-Tucker equations.16 After running extensive simulations and tests with

real data, we find that both methods yield equal estimates. However, using the penalty

functions is preferable in terms of estimation speed.

16See Fletcher (2000) or Levy (2009) for introductions to constrained optimization.
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A general drawback of estimating the models by constrained maximum likelihood is

that it has to be assumed that both the true as well as the estimated parameters fall

within the interior of the allowable parameter space. Otherwise asymptotic standard

errors are not valid.17 This is especially relevant for the STCC γ parameter. The

parameter is restricted to values between -100 and +100. Therefore, if the γ estimate

is on the boundary, similar to Silvennoinen and Teräsvirta (2005), we do not report

standard errors for this parameter.

All models are estimated by quasi-maximum likelihood with robust standard errors

(Bollerslev and Wooldridge, 1992). Hafner and Herwartz (2008) as well as Lucchetti

(2002) argue that employing analytical derivatives instead of numerical scores is prefer-

able for quasi-maximum likelihood estimation and inference if the number of model

parameters is high. Therefore, we employ analytical derivatives for the estimation of

both Sheppard’s model and the STCC model.18 We find that although the resulting

parameter estimates remain unchanged, the speed of estimation improves remarkably.

2.6 A Simulation Study

In this section, we study the estimators discussed in section 2.4 in a simulation. Similar

to Silvennoinen and Teräsvirta (2005) and Hafner and Herwartz (2008), we estimate

parameters from samples with simulated correlated data and compare them to the true

parameters for different sample sizes. For each model we create samples in which the

true correlation evolves according to the pattern implied by the respective model.19

That allows us to investigate the finite sample properties as well as the empirical per-

formance of the estimators.

We generate 1000 samples with two normally distributed random time series for each

estimator and for each sample size. We assume that the series exhibit time-varying

volatility clustering and evolve according to a GARCH(1,1) model. The exogenous

variable is a normally distributed random variable with unit variance. The generated

conditional correlations between the two series evolve according to the correlation struc-

17See Hamilton (1994) for details. In addition, Schoenberg (1997) points out that in finite samples
standard errors have to be corrected if the estimated parameters are in the region of the boundaries.

18All DCC models are estimated applying numerical derivatives since the optimization is less demand-
ing for the optimizer due to the two-step estimation.

19We employ all models on the same sample in order to compare the model performance in chapter 3.
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ture implied by the respective model. All correlation model parameters are randomly

selected from the allowable parameter space whereas the values of the GARCH model

are fix and are representative of typical financial time series. The selected GARCH

parameters are as follows:

Series ωi αi βi

1 0.01 0.03 0.95

2 0.02 0.04 0.93

The sample sizes are 500, 1000, 2500, and 5000. To avoid any initialization effects,

we simulate 1000 observations in addition to the target sample size and remove the

first 1000 observations before estimating the models. For each model parameter, we

calculate the 90% as well as the 95% confidence intervals. Also, we determine whether

the confidence interval includes the true parameter. The empirical rejection frequency

should approach the nominal level of the test as the sample size grows. Figure 2.1

reports the percentage of simulations in which the true parameter is not included in

the 90% or the 95% confidence interval, respectively.

Rejection frequencies for the DCCX model are higher than the nominal level if the

sample size is only 500 observations: 16.7% for the 10% and 10.1% for the 5% nominal

level. However, this effect vanishes as the sample size grows. With 5000 observations

the rejection frequencies are 11.4% and 6.1% and thus only slightly different from the

nominal levels. Similar to the DCCX model, GDCCX rejection frequencies decline as

the sample size grows. Yet, the differences between empirical rejection frequency and

nominal level of the test is lower for all sample sizes. Therefore, the GDCCX model is

better in case of smaller sample sizes such as 1000 observations.

The rejection frequencies for the STCC model parameters R1 and R2 are close to

the nominal level for all sample sizes. By contrast, the rejection frequency for the

γ parameter is declining as sample size grows but the rejection frequency is severely

higher then the nominal level (14.5% and 9.9%, respectively) even if the sample size is

5000. This is not surprising as Silvennoinen and Teräsvirta (2005) show that changes

in the γ parameters at the upper end of the allowable parameter space result only in

minimal changes in the estimated conditional correlations which makes optimization

very difficult. In addition, the γ parameter is bounded between -100 and 100. As

pointed out by Schoenberg (1997), standard errors have to be corrected if the parameter
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Figure 2.1: Empirical Rejection Frequencies for Different Parameters and Sample Sizes
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estimate is on the boundary.20 Rejection frequencies for the c parameter are lower but

they rise as the sample size grows from 500 to 2500 observations. In addition, the

rejections frequencies for the 90% confidence intervals are lower then expected. As the

total number of parameters estimated is the highest for the STCC model, both the

number of replications and the sample size might still be too low.

Finally, the sample size does not matter for the Sheppard model estimates. However,

we find that some rejection frequencies are slightly lower or higher than the nominal

level. Like the STCC model, different parameter settings for the Sheppard model might

result in the same or very similar estimated conditional correlations.

We also compute the difference between the models’ estimated and the true parameters.

Table 2.1 reports the mean differences for all model parameters. Table 2.2 shows the

standard deviations of the differences.

Table 2.1: Model Parameter Differences: Mean

Model Parameter
Sample Size:

500
Sample Size:

1000
Sample Size:

2500
Sample Size:

5000

DCCX c 0.000 −0.001 0.000 0.000

GDCCX c 0.000 0.000 0.000 0.000

STCC

R1 0.002 −0.002 −0.003 0.001
R2 −0.004 0.004 0.000 0.000
γ −22.047 −16.808 −11.735 −9.844
c −0.016 −0.015 0.014 −0.008

Sheppard

parameter 1 0.001 −0.003 0.000 −0.001
parameter 2 0.004 0.001 0.000 0.000
parameter 3 0.000 0.001 0.000 0.001
parameter 4 −0.001 −0.001 0.000 0.000
parameter 5 0.002 0.001 0.002 0.000
parameter 6 −0.001 0.001 0.000 0.000

We find that the mean difference is close to zero for almost all models. The largest

mean difference can be observed for the STCC model γ parameter highlighting the

difficulties during the estimation of that parameter again. Yet, the differences become

smaller as the sample size grows. In addition, the standard deviations of the differences

decline for all parameters as the sample size is increased from 500 to 5000 observations.

Notably, the smallest differences and the smallest standard deviations of the differences

can be observed for the GDCCX and the DCCX model.

20We do not report standard errors for the γ parameter if the estimate is on the boundary.
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Table 2.2: Model Parameter Differences: Standard Deviations

Model Parameter
Sample Size:

500
Sample Size:

1000
Sample Size:

2500
Sample Size:

5000

DCCX c 0.031 0.020 0.011 0.006

GDCCX c 0.023 0.016 0.009 0.006

STCC

R1 0.113 0.101 0.083 0.035
R2 0.120 0.098 0.078 0.055
γ 33.869 33.454 30.381 27.485
c 0.372 0.315 0.297 0.266

Sheppard

parameter 1 0.065 0.047 0.027 0.026
parameter 2 0.035 0.021 0.014 0.011
parameter 3 0.067 0.045 0.028 0.026
parameter 4 0.062 0.038 0.036 0.015
parameter 5 0.035 0.019 0.026 0.008
parameter 6 0.064 0.041 0.036 0.015

These results are confirmed by our next test. We compute the mean absolute error of

the conditional correlation estimates for all models and the same sample sizes as before.

Table 2.3 displays the results. It turns out that mean absolute errors for all models

decline as the sample size grows. In addition, the results indicate that the STCC

model conditional correlation estimates are very close to the true estimates despite

higher rejection frequencies as the mean absolute errors are the second lowest among

the correlation models with exogenous variables. Interestingly, conditional correlations

estimated by the Sheppard model are even closer to the true conditional correlations

than the DCC model.

Table 2.3: Mean Absolute Error of Conditional Correlation Estimates

Sample Size

Model 500 1000 2500 5000

DCC 0.038 0.027 0.017 0.012
DCCX 0.049 0.033 0.021 0.015
GDCCX 0.048 0.036 0.022 0.016
STCC 0.045 0.026 0.017 0.012
Sheppard 0.023 0.016 0.010 0.007
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2.7 Summary

In this chapter, we argue that it is useful to model conditional correlations. Fur-

thermore, as conditional correlations between two time series might be influenced by

exogenous variables, the effect of these variables should not be neglected by the cor-

relation models. Therefore, we present several correlation models that incorporate the

effect of one or several exogenous variables and propose the GDCCX model.

First, we explain the DCC model (Engle, 2002) that neglects the influence of exogenous

variable but is the basis for two of the models. Conditional correlations are modeled

similar as conditional volatilities are explained in a GARCH model: they are a weighted

average of past innovations, the previous estimate and the long-term average correlation.

As such, conditional correlations are a function of past time series properties, but the

DCC model does not include the effect of exogenous variables. Thus, Vargas (2008)

introduces the DCCX model in which conditional correlations evolve similar to the DCC

model but are also driven by exogenous variables. As the model allows the exogenous

variables to influence all conditional correlation in an equal way only, we propose the

GDCCX model that relaxes that restriction. In addition, we modify the model to

ensure that the exogenous variables influence conditional covariances directly and not

via the change in the conditional variances. That also alleviates the interpretation of

the coefficients and reduces the number of parameters to be estimated.

Thereafter, we explain the STCC model (Silvennoinen and Teräsvirta, 2005). It allows

conditional correlations to switch between distinct values driven by only one exogenous

variable. Finally, we present the Sheppard (2008) model. The symmetric square-root

of the conditional covariance matrix is modeled as a function of one or more exogenous

variables. Each element of the conditional covariance matrix is a function of several

parameters and crossproducts of the explanatory variables. As a result, parameters are

not directly interpretable but average marginal effects can be calculated.

Going forward, we discuss the model estimation. The DCC type models can be es-

timated using a two step estimation. As the DCCX and the GDCCX model do not

guarantee that estimated conditional correlations are positive definite, we restrict the

parameter space for these models so that the smallest eigenvalue of any estimated

correlation matrix is positive.
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In the last section, we compare the performance and the finite sample properties of

all estimators in a Monte Carlo experiment. We find that the empirical rejection fre-

quencies are close the nominal level of the the tests for all models. Moreover, the

difference between the empirical rejection frequency and the nominal level diminishes

as the sample size grows. Calculating the mean absolute error of the conditional corre-

lation estimates further confirms the accuracy of the estimators.
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3 Comparison of the Models

3.1 Introduction

In the previous chapter, we introduced conditional correlations models that allow ex-

ogenous variables to affect correlations and discussed the model properties. It remains

yet to be established which model works best in different contexts. This is the focus of

this chapter. We pursue two different approaches to comparing the models.

First, we test the models in a simulation study in which the true correlation structure

is known but, as opposed to the experiment in the previous chapter, not implied by the

models. In addition, the calculation of the mean absolute error allows us to generally

assess the value of including exogenous variables in correlation models. Furthermore,

we will establish how the models react to different correlation settings.

Our second approach is to apply the models to real data. Obviously, real correlations

are not measurable and hence unknown. Comparing the models is, thus, not as straight

forward as it was in the simulation study. Yet, both statistical and economic criteria

can be employed. While statistical criteria such as information criteria are easy to

calculate, they lack an economic basis. Therefore, several studies evaluate covariance

estimates within an asset allocation framework (e.g. Fleming et al., 2001, 2003). An

investor calculates optimal portfolio weights given a vector of expected returns and the

estimated covariance matrix. However, using the realized portfolio return or the Sharpe

ratio in order to compare models is critical as they depend on the correct specification

of both expected returns and the covariance matrix.1 Therefore, Engle and Colacito

(2006) argue that correlation models can be ranked according to the variance of the

mean variance optimal portfolio and develop a test statistic. We employ these criteria

with datasets of daily returns as we have to assume that the conditional expected value

of return is constant. We take bond returns from the Eurozone as well as from the US

covering up to 20 years.

1Chopra and Ziemba (1993) point out that ”errors in means are about ten times as important as
errors in variances and covariances”.
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In addition to comparing the models, these datasets allows us to investigate on an

interesting empirical question: Does risk aversion influence conditional correlations

in different settings? Several studies demonstrate that growing risk aversion results

in rising conditional correlations among international equity markets which in turn

diminishes diversification benefits (Cappiello et al., 2006a; Solnik et al., 1996; Kasch-

Haroutounian, 2005). Other authors analyze the conditional correlations between stock

and bond returns and observe a flight-to-quality effect (Cappiello et al., 2006a; Anders-

son et al., 2008; Connolly et al., 2005; Kim et al., 2006; Baele et al., 2010; Aslanidis and

Christiansen, 2010). Conditional correlations between bond returns have received less

attention. Hunter and Simon (2005) use a bivariate conditional correlation GARCH

model to show that rising risk aversion, as measured by the conditional volatility of

US bond markets, results in lower conditional correlations among US, German and

Japanese government bonds. Also, focusing on the volatility of European bond mar-

kets, Skintzi and Refenes (2006) as well as Christiansen (2007) find evidence of volatility

spillovers from the US to European government bond markets.

Yet, the conditional correlation between different bond sectors, such as corporate bonds

and government bonds, has been largely neglected in existing studies. This is remark-

able as investors are currently trying to diversify supposedly risk free government bond

portfolios into other sectors. An exception is the study of Brière et al. (2008). They

find that during periods of financial turmoil conditional correlations between Euro-

pean bond sectors decrease. However, their analysis depends crucially on the correct

identification of crisis periods (Boyer et al., 1999).

We examine the conditional correlation of bond sectors using two datasets: one for

Europe and one for the US. We include government and corporate bonds. Corporate

bonds are furthermore segmented into investment grade and high yield since returns of

the higher quality bonds are mostly driven by interest rate risk whereas for high yield

bonds default risk is most important. In line with prior research (Andersson et al.,

2008; Connolly et al., 2005, 2007; Bali and Engle, 2010; Silvennoinen and Thorp, 2010;

Kim et al., 2006), we employ the implied volatility of equity market options in order to

capture the perceived risk aversion in the market.

In the next section, we compare the correlation models in a simulation study. There-

after, we focus on testing the various correlation models with real data. Different testing
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criteria are explained in section 3.3.1. Section 3.3.2 describes the data and results are

reported and discussed in section 3.3.3. Section 3.4 summarizes and concludes.

3.2 Comparing Models by Simulation

In this section, we compare the models discussed in section 2.4 in a Monte Carlo simu-

lation. For ease of comparison, we follow Engle (2002) in the design of this experiment.

Similar to the simulation in section 2.6, the correlation structure is known. However,

in this section, the correlation structure is not implied by the respective models, but

we assume that it follow the processes as illustrated in Figure 3.1.

That includes the assumptions that conditional correlation are constant (Constant) or

that they evolve according to a sine waves with low and high frequency (Sine and Fast

Sine). Moreover, we simulate that there is a single jump in correlations in the middle

of the sample period (Step) or that there are multiple jumps with constant changes

otherwise (Ramp).

Our study is based on 1000 observations that are simulated 200 times.2 For each

replication, we generate two normally distributed random time series that exhibit time

varying variances according to a GARCH (1,1) model. The GARCH parameters are

the same as in our previous simulation as displayed in section 2.6. We employ the true

conditional correlations as exogenous variables. As this is a near perfect predictor, it

should facilitate the estimation. We also include the DCC model in our simulation

study in order to quantify the benefits of adding exogenous variables in a correlation

model.

The models are assessed by comparing the estimated conditional correlations with the

true conditional correlations. Therefore, we calculate the mean absolute error (MAE)

as follows

MAE =
1

R

1

T

R
∑

r=1

T
∑

t=1

|ρ̂rt − ρrt|, (3.1)

2Preliminary simulation results indicated that increasing the number of simulations does not yield
any additional insights.
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Figure 3.1: Simulated Correlation Structures
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where T is the number of observations, R is the number of replications, and ρ̂rt and ρrt

are the estimated and true conditional correlations, respectively. Thus, the smaller the

MAE, the better is the model in estimating conditional correlations. The computed

MAE are presented in Table 3.1 with the lowest MAE for each correlation experiment

in bold. Furthermore, Figure 3.2 depicts the sum of the MAE over all replications and

all five experiments.

Table 3.1: Mean Absolute Error of Conditional Correlation Estimates

Model Sine Fast Sine Step Ramp Constant

DCC Model 0.139 0.227 0.071 0.158 0.025

DCCX Model 0.127 0.139 0.078 0.131 0.025
GDCCX Model 0.028 0.084 0.026 0.053 0.025
STCC Model 0.044 0.090 0.030 0.057 0.023
Sheppard Model 0.166 0.173 0.201 0.200 0.028

The results are astonishing. The GDCCX model clearly uses the information of the

exogenous variable best as the sum of the MAE is the lowest. Furthermore, it is the

best model in all settings except for the constant correlation. Its total MAE is only

a third of the total MAE of the DCC model. The STCC model performs almost as

good as the GDCCX model - although a bit weaker for the Sine type correlations.

The DCCX model is still better than the DCC model. However, the Sheppard model

performs even worse than the DCC model that does not use the exogenous data.

We conclude that the gains for using exogenous variables can be substantial as indicated

by the much lower total MAE for the GDCCX and the STCC model. Employing an

exogenous variable reduces the mean absolute error by about two thirds. The reduction

is greatest for the Sine and the Ramp as conditional correlations are constantly and

sometimes abruptly changing but lower for the Fast Sine as correlations here change

too quickly for any model. Interestingly, the Sheppard model performs better than the

DCC model in this setting as its MAE is lower. However, in total the Sheppard model

is the weakest model as it is on average even better to employ a DCC model - ignoring

the exogenous data - than to use the Sheppard model. Note that this is obviously not

a consequence of a too small sample size as the simulation study in chapter 2 showed

that this sample proved to be sufficient to get reliable results.
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3.3 Comparing Models by Employing Bond Market Data

In this section, we compare the five correlation models to each other using real data.

First, we present several testing criteria. Then, we describe the bond market data used

in the study. Finally, we discuss the results employing all models explained in section

2.4.

3.3.1 Testing Criteria

Conditional correlation models can be compared using statistical or economic criteria.

Statistical criteria are, e.g., the Akaike or the Bayesian Information Criterion or speci-

fication tests such as the likelihood ratio test. However, testing the DCC model against

the DCCX or the GDCCX model, one has to account for the two-step estimation pro-

cedure.3 Furthermore, the DCC model and both the STCC and the model proposed

3See Engle and Sheppard (2001) for details on the correction.
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by Sheppard are non-nested. A popular test for non-nested models is the Vuong (1989)

test which can also be employed to compare the models.

Some recent papers assess the model performance in an economic application (Bauer

and Missong, 2008; Engle and Colacito, 2006; Milunovich and Thorp, 2006; Thorp

and Milunovich, 2007) as conditional correlation forecasts are a key input into many

financial decisions. An important and widely evaluated application is the mean-variance

portfolio optimization.4 One approach is to form the global minimum variance portfolio

(GMVP). Its vector of portfolio weights wt is calculated using:

wt =
H−1

t ι

ι′H−1
t ι

, (3.2)

where Ht is the forecasted conditional covariance matrix at time t, and ι is a vector

of ones. By assuming that the returns on all assets are equal this approach avoids the

specification of expected returns for all assets. Yet, this assumption is quite unrealis-

tic especially in an asset allocation framework and seldom used in practice. Another

approach is to construct a portfolio using the general mean-variance optimization so

that:

wt =
H−1

t µt

µ′
tH

−1
t µt

, (3.3)

where µt is the vector of expected returns in excess of the risk free rate. As expected

returns are unknown, many studies use ex-post means instead and evaluate the risk

and return of the optimal portfolios. However, Engle and Colacito (2006) point out

that performing a mean-variance optimization is a combined test of the correct speci-

fication of expected returns and the forecasted covariance matrix. In addition, Chopra

and Ziemba (1993) argue that correctly estimated covariances are not as important as

correctly estimated expected returns for the construction of the optimal portfolio.

Yet, Engle and Colacito (2006) show that if expected returns are constant, i.e. µi,t =

µi ∀ t, it will still be possible to rank covariance forecasts according to the variance of

the optimal portfolio. The reason is that for every vector of expected returns a portfolio

which is optimized on the true covariance will have a lower or equal variance than a

4The use of further economic applications and testing criteria is discussed in Patton and Sheppard
(2009), Engle et al. (2008) as well as in Engle and Sheppard (2001).
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portfolio which is optimized on any other covariance matrix. It is generally assumed

that the true expected value of return is constant for daily or higher frequency data.

Moreover, the significance of the difference between two conditional correlation models

can be tested by employing the Diebold and Mariano (1995) test statistic. First, the

estimated difference between the realized covariance of the two models is computed as

follows:

dt =
(

w′
t,Art

)2 −
(

w′
t,Brt

)2
, (3.4)

where wt,A and wt,B are the weights for the respective optimal portfolio calculated from

the forecasted covariance matrices HA

t
and HB

t
of the two models while rt is a vector

with returns. Second, dt is regressed on a constant using a Newey-West covariance

matrix to account for heteroscedasticity, autocorrelation, and nonnormality. The null

hypothesis is that the mean of dt is 0. Engle and Colacito (2006) propose a weighted

version of this test and modify equation 3.4 in order to further adjust for heteroscedas-

ticity:

vt = dt

[

2
(

µ′ (HA

t

)−1
µ
)(

µ′ (HB

t

)−1
µ
)]1/2

. (3.5)

In a second step, vt is regressed on a constant using a Newey-West covariance matrix,

and the null hypothesis is that the mean of vt is 0.

3.3.2 Data

3.3.2.1 Bond Return Data

We employ several bond indices in order to both conduct a comprehensive test on the

correlation models and to investigate conditional correlations between these indices.

An overview is presented in Table 3.2.

We construct a dataset consisting of aggregate data on government, investment grade

corporate, and high yield corporate bond indices provided by Bank of America Merrill

Lynch which are widely used in practice. The indices are obtained for the Euro area as

well as for the United States. All six indices are based on bond prices observed in the

secondary market. Index constituents are capitalization weighted except for the two
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Table 3.2: Dataset: European and US Bond Sectors

Name Abbrev. Source Ticker Obs. Start End

European Bonds

Government EURGov ML EG00 2854 01/04/1999 03/31/2010

Investment
Grade Corporate

EURCorp ML ER00 2854 01/04/1999 03/31/2010

High Yield
Corporate

EURHY ML HEC0 2854 01/04/1999 03/31/2010

Change in
VSTOXX Index

VSTOXX BBG VSTOXX 2854 01/04/1999 03/31/2010

US Bonds

Government USGov ML G0Q0 5101 01/03/1990 03/31/2010

Investment
Grade Corporate

USCorp ML C0A0 5101 01/03/1990 03/31/2010

High Yield
Corporate

USHY ML HUC0 3332 01/03/1990 03/31/2010

Change in
VIX Index

VIX BBG VIX 5101 01/03/1990 03/31/2010

Note: The table provides an overview on the dataset. ML is the Bank of America Merrill
Lynch, and BBG is Bloomberg.

high yield corporate indices which are capitalization weighted but cap issuer exposure

at 3% for the Euro area and at 2% for the US.5 Also, in order to guarantee their liquidity

all bonds included in the indices must satisfy minimum size and maturity criteria.6

Daily data for the European indices is available from 12/31/1997. However, as pointed

out by Munves (2004), prior to the introduction of the Euro in 1999 the presence of

currency risk was a significant constraint for many investors, and liquidity was very

low especially in the high yield market. Therefore, we exclude the time period before

1999 so that the sample period for the European indices is 04/01/1999-03/31/2010.

Daily data for the US indices is available since 10/31/1986 for the government and the

corporate bond index and since 12/31/1996 for the high yield index.

5This is common practice after the downgrade of Ford and GM from investment grade to high yield
in 2005 as these two issuers would otherwise dominate the respective indices.

6For a complete list of index guidelines please refer to www.mlindex.ml.com.
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3.3.2.2 The Exogenous Variable: Risk Aversion

Several authors document the effects of risk aversion on conditional correlations in dif-

ferent markets and employing different methods and sampling frequencies. For example,

the effect of risk aversion on conditional correlations between stock markets is inves-

tigated by Solnik et al. (1996), Kasch-Haroutounian (2005), Cappiello et al. (2006a),

and Cai et al. (2009). These studies find that increasing risk aversion results in rising

conditional correlations among international equity markets. Also, stock bond correla-

tions are affected by risk aversion as growing risk aversion triggers a flight-to-quality

(Connolly et al., 2005; Cappiello et al., 2006a; Kim et al., 2006; Connolly et al., 2007;

Andersson et al., 2008; Aslanidis and Christiansen, 2010, 2011; Baele et al., 2010).

As risk aversion is not measurable, these studies proxy risk aversion with the implied

volatility of equity options as it incorporates all information available to market par-

ticipants on future volatility. Specifically, we use the change in volatility indices as

exogenous variables for the correlation models. We employ the change in the Euro

Stoxx 50 Volatility Index (VSTOXX) for the Eurozone. For the US we use the change

in the Chicago Board Options Exchange Volatility Index (VIX). Both are popular mea-

sures of the implied volatility of index options over the next 30 days on the Euro Stoxx

50 Index and the S&P 500 Index respectively. Data is available since 1/4/1999 for the

VSTOXX and since 1/2/1990 for the VIX.

3.3.2.3 The Datasets

Combining the volatility and the bond data, we get three datasets: first, the European

aggregate bond data and the VSTOXX index starting at 1/4/1999; second, the US

aggregate bond indices and the VIX index which are available since 1/2/1997. We

construct a third dataset which includes the US government and the investment grade

corporate index only. That allows us to expand the length of the time series considerably

as all series are at least available since 1/31/1990.

For all indices, we compute the continuously compounded daily returns. Furthermore,

all returns are expressed in local currency. For the volatility indices, we calculate the

daily differences. It is worth looking at the unconditional correlations in Tables 3.3 and

3.4. In all samples the government and investment grade corporate bond indices are on

average strongly correlated while the high yield indices are unsurprisingly uncorrelated
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with government bonds. They also exhibit a very low correlation with the investment

grade corporate bonds.

Table 3.3: European Bonds: Unconditionals Correlations

EURGov EURCorp EURHY VSTOXX
EURGov 1
EURCorp 0.89 1
EURHY -0.05 0.09 1

VSTOXX 0.26 0.19 -0.24 1

Table 3.4: US Bonds: Unconditional Correlations

USGov USCorp USHY VIX
USGov 1
USCorp 0.91 1
USHY 0.01 0.29 1
VIX 0.02 0.15 -0.19 1

Moreover, it is interesting if conditional correlations are constant over time or if they are

time-varying. Therefore, we employ the Engle and Sheppard (2001) test for constant

conditional correlations.7 Table 3.5 and 3.6 display results on the test for European

and US bond markets, respectively. The test reveals that conditional correlations are

in fact time-varying for most time series. An exception are conditional correlations

between European government and high yield bonds. We cannot reject the hypothesis

of constant conditional correlations for these series according to the Engle and Sheppard

(2001) test.

Table 3.5: European Bonds: Engle Sheppard (2001) Test for Constant Conditional
Correlations

EURGov EURCorp
EURCorp 659.809***
EURHY 21.858 47.621***

Descriptive statistics on all datasets can be found in Table 3.7. The descriptive statistics

show that all markets exhibit an average positive return. Interestingly, in the first

dataset the more risky asset classes fared worse. The reason is that the sample period

7See section 2.3 for details.
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Table 3.6: US Bonds: Engle Sheppard (2001) Test for Constant Conditional
Correlations

USGov USCorp
USGov 1287.800***
USHY 120.427*** 69.688***

covers both the burst of the dotcom bubble in 2000/2001 and the financial crisis in 2008.

The other US samples cover a larger time period so that the effect of these events is

less pronounced. It can also be noted that all returns series are heavily left skewed and

exhibit fat-tails. Moreover, they are non-normal as indicated by a Jarque–Bera test.

In addition, the minima and maxima of the returns indicate the presence of outliers as

the minimum of the US high yield index is a 16 standard deviation event.

Both the non-normality and the presence of outliers might severely affect the estima-

tion since all models assume that asset returns are conditionally normal. Therefore,

some authors truncate outliers (Silvennoinen and Teräsvirta, 2005) or standardize the

data (Cappiello et al., 2006a). However, Engle (2002) argues that results have a quasi-

maximum likelihood estimation interpretation when returns are non-normal. Further-

more, a standardization of the data would make the interpretation of the coefficients

more difficult so that we do not transform the data.

Table 3.7: Descriptive Statistics

Abbreviation Mean Mean p.a. Min. Max. Std. Dev. Skewn. Kurtosis

European Bonds

EURGov 0.02% 4.42% −1.17% 1.10% 0.22% −0.23 1.38***
EURCorp 0.02% 4.26% −0.82% 0.60% 0.17% −0.53 1.62***
EURHY 0.02% 3.62% −5.01% 2.62% 0.45% −1.85 17.54***
VSTOXX 0.00 −13.98 22.64 1.76 1.63 25.62***

US Bonds

USGov 0.03% 6.35% −1.96% 2.07% 0.29% −0.24 2.45***
USCorp 0.03% 7.05% −2.31% 1.97% 0.31% −0.37 2.69***
USHY 0.02% 6.30% −4.60% 2.81% 0.29% −2.22 37.00***
VIX 0.00 −17.36 16.54 1.48 0.44 19.13***

Note: The table reports descriptive statistics for the variables employed in the analysis.
*** denotes series that differ from a normal distribution at 1% level as indicated by a
Jarque–Bera test.
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In line with Silvennoinen and Teräsvirta (2005) and Engle and Colacito (2006) we mul-

tiply the return series with a fixed factor in order to enhance the numerical performance

of the estimator and to avoid rounding errors. Rounding errors can easily be encoun-

tered given that daily returns for bond indices are small in magnitude and the effects

of exogenous variables on the correlations might even be smaller. We generally found

that optimization is less numerically demanding when the dimensions of the return and

the exogenous data are similar. Therefore, we multiply the return series with 1000. As

the mean of the return series is non-zero we demean the return series.

3.3.3 Empirical Results

3.3.3.1 European Bond Sectors

Table 3.8 reports the results of running the models on the first sample with different

European aggregate bond sectors indices: government, investment grade corporate,

and high yield corporate bonds. The change in the VSTOXX Index is our exogenous

variable.

The top panel contains the estimated parameters of the DCC and the DCCX model.

For both the DCCX and the GDCCX model, the c parameter is the influence of the

exogenous variable as shown in equation 2.10. It turns out that, for the DCCX model,

the influence of the exogenous variable on the conditional correlations between govern-

ment, investment grade corporate and high yield corporate bonds is negative but not

significant.

The second panel reports the estimated parameters for the GDCCX model. The in-

fluence of the exogenous variable is indicated by the c1 − c3 parameters (see equation

2.11) and is broken down by correlation pair.

For example, the exogenous variable drives conditional correlations between European

government and investment grade corporate bonds significantly downwards as the co-

efficient c1 is negative (-0.0021) and significant. The exogenous variable’s influence on

the conditional correlation between government and high yield corporate bonds is also

negative (-0.0024) but not significant as indicated by coefficient c2. Finally, the condi-

tional correlation between investment grade corporate and high yield corporate bonds
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Table 3.8: European Bonds: Influence of Risk Aversion Changes on Conditional
Correlations (Trivariate Model)

DCCX-Model DCC-Model

a 0.0236*** (0.0048) 0.0245*** (0.0051)
b 0.9722*** (0.0067) 0.9711*** (0.0073)
c -0.0038 (0.0026)

GDCCX-Model

a 0.0215*** (0.0045)
b 0.9760*** (0.0060)

EURGov EURCorp

c1 − c3
EURCorp -0.0021*** (0.0006)
EURHY -0.0024 (0.0029) 0.0002 (0.0029)

STCC-Model

c 1.2609*** (0.0732)
γ 100

EURGov EURCorp

R1
EURCorp 0.9224*** (0.0051)
EURHY -0.0432* (0.0240) 0.0743*** (0.0197)

EURGov EURCorp

R2
EURCorp 0.8657*** (0.0200)
EURHY -0.0565 (0.0671) 0.0801 (0.0668)

Sheppard Model (Partial Effects)

EURGov EURCorp
EURCorp -0.0592*** [0.0066]
EURHY -0.1611* [0.0776] -0.1566* [0.0971]

Note: The table reports the results of estimating the conditional correlation of European
government, investment grade corporate and high yield corporate bonds using the change
in the VSTOXX Index as exogenous variable. The sample period is 1/5/1999-3/31/2010.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses, p-values in
brackets.

is almost not affected by the exogenous variable as the coefficient c3 is not significant

and close to zero (0.0002).

In panel three, results for the STCC model are presented. The conditional correlation

changes from the correlation matrix R1 to R2 as the exogenous variable exceeds c (see

equation 2.12 and 2.13). The speed of the transition is measured by γ where values

close to 0 indicate a very slow and values close to 100 or -100 a vary rapid transition.
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For example, the conditional correlation between European government and investment

grade corporate bonds is 0.9224 if the exogenous variable is less than 1.26. Once the

exogenous variable exceeds this value, conditional correlations quickly (as γ is 100) fall

to 0.8657.

The bottom panel reports the partial effects of an increase of the exogenous variable

on the conditional correlations as estimated by the Sheppard model. Estimated pa-

rameters are omitted as they are not directly interpretable. Instead, the partial effects

evaluated at the sample mean are displayed. For example, the effect of an increase in the

exogenous variable is that conditional correlations between government and investment

grade corporate bonds decrease as the partial effect is negative.

Considering the conditional correlation between the government and the investment

grade corporate bonds, the picture is quite clear: The GDCCX, the STCC, and the

Sheppard model all reveal that there is a significant flight-to-quality effect. The con-

ditional correlation between government and corporate bonds drops significantly when

risk aversion, as measured by the change in the VSTOXX index, rises. Figure 3.3 de-

picts the conditional correlation between government and investment grade corporate

bonds as estimated by the different models.

While correlations estimated by the DCCX and the GDCCX model are close to those es-

timated by the DCC model, the correlations estimated by the STCC and the Sheppard

model exhibit a different pattern. Notably, the greatest differences between conditional

correlations estimated by the DCC and the GDCCX model are after 9/11 and in the

wake of the Lehman collapse in September and October 2008. In addition, all esti-

mated conditional correlations share a common feature: they drop considerably during

the financial crisis. However, the estimates of the actual level of conditional correla-

tions during the crisis vary widely among the models: the DCC type models find that

conditional correlations fall to about 0.6. Correlations estimated by the STCC model

are not lower than 0.86 and the minimum of the conditional correlations estimated by

the Sheppard model is as low as 0.2.

We now turn to the correlation between government and high yield corporate as well

as between high yield corporate and investment garde corporate bonds as shown in

Table 3.8. We find that the picture is more ambiguous. The coefficients of the GDCCX

model indicate that there is no significant influence of the exogenous variable on the

correlations while the Sheppard model suggests a drop in correlations - but only at the
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Figure 3.3: European Government and Investment Grade Corporate Bond
Conditional Correlations

10% level of significance. The STCC model shows that there is only one correlation

regime close to the respective unconditional correlations. Finally, the c parameter for

the DCCX model is insignificant.

This result is not surprising given that the model depends on the assumption of a

common effect of the exogenous variable on all conditional correlations, which clearly

seems not to be true in this sample. That illustrates an important result: By assuming

that there is a common effect of the exogenous variable on all conditional correlations,

the DCCXmodel misses the influence of the risk aversion on the government/investment

grade corporate bond correlation. This is an clear argument in favor of the generalized

version of the DCCX model.
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In order to further analyze the impact of the common parameters on the model results,

we repeat the analysis but only with two indices, i.e. we drop the investment grade

corporate index. The parameter estimations are reported in Table 3.9. In addition,

Figure 3.4 plots the estimated conditional correlations.

A comparison between Figures 3.3 and 3.4 shows that conditional correlations between

government and high yield corporate bonds are much lower than between government

and investment grade corporate bonds. Specifically, the correlation between government

and investment grade corporate bond is around 0.8 to 1 during non-crisis periods while it

is around 0 between high yield corporate and government bonds. This is not surprising

as credit risk is more important for high yield corporate bonds than for investment

grade corporate bonds. More astonishing is that the conditional correlations between

government and high yield corporate bonds barely change during the financial crisis.

Comparing parameter estimates for the conditional correlations between the trivariate

estimation in Table 3.8 and the bivariate estimation in 3.9, the largest changes can be

observed for the DCCX and the STCC model. This is not surprising since both restrict

some parameters to be equal for all conditional correlations in the trivariate case. The

STCC model assumes that there is a common place and speed of the transition (i.e. a

common c and γ) and the DCCX model restricts the c parameter to be equal for all

correlations.

The parameter for the DCCX and the GDCCX model are both negative but still in-

significant at the 5% level. By contrast, the Sheppard model finds that risk aversion

significantly drives conditional correlations between government and high yield corpo-

rate bonds. However, the STCC model indicates that a change in the VSTOXX index

greater than 6.69 results in rising correlations which seems to be counterintuitive at a

first view.

To understand the difference in the sign of the effect, it is important to notice the

differences in the models. The DCCX models and the Sheppard model are built on

the assumption that the exogenous variable has a constant effect on the conditional

correlations while the STCC model distinguishes two correlation regimes. However,

the second correlation regime might be observed only once, e.g. there is a correlation

“outlier”. This happens if the location of transition between the two regimes is close to

the maximum or minimum of the exogenous variable and the speed of the transition is

very high. Values of 6.69 for c and 95.53 for γ might reflect correlation outliers after
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Table 3.9: European Government and High Yield Corporate Bonds: Influence of Risk
Aversion Changes on Conditional Correlations (Bivariate Model)

DCCX-Model DCC-Model

a 0.0000 (0.0087) 0.0059* (0.0033)
b 0.5600*** (0.1644) 0.9858*** (0.0080)
c -0.0105* (0.0057)

GDCCX-Model

a 0.0058 (0.0035)
b 0.9775*** (0.0139)

c1 EuroGov
EURHY -0.0061* (0.0036)

STCC-Model

c 6.6920*** (0.0777)
γ 95.5272 (307.6408)

R1 EuroGov
EURHY -0.0468 (0.0431)

R2 EuroGov
EURHY 0.7039*** (0.0868)

Sheppard Model (Partial Effects)

EuroGov
EuroHY -0.1784*** [0.0002]

Note: The table reports the results of estimating the conditional correlation of European
government and high yield corporate bonds using the change in the VSTOXX Index as
exogenous variable. The sample period is 1/5/1999-3/31/2010.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses, p-values in
brackets.

large changes in the VSTOXX index. Correlation outliers are also visible in Figure 3.4.

In this case no general conclusion regarding the influence of the transition variable on

the correlation can be drawn from the results of the STCC model.

Overall, we see that the influence of risk aversion on conditional correlations between

government and high yield corporate bonds is weak and particularly not as strong as

the effect of risk aversion on government and investment grade corporate bonds.
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Figure 3.4: European Government and High Yield Corporate Bond Conditional
Correlations

3.3.3.2 US Bond Sectors

We repeat the analysis on a sample with US bond sectors. Results are reported in

Table 3.10. Similar to our previous analysis, we include government bonds, investment

grade corporate, and high yield corporate bonds. We take the change in the VIX index

as exogenous variable and find that the flight-to-quality effect is even stronger than in

the Eurozone.

All models show that conditional correlations decrease if risk aversion, as measured by

the VIX index, rises. Specifically, the estimated c parameter of the DCCX model is

negative and significant indicating a negative effect of the exogenous variable on the

conditional correlations.
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Table 3.10: US Bonds: Influence of Risk Aversion Changes on Conditional
Correlations (Trivariate Model)

DCCX-Model DCC-Model

a 0.0737*** (0.0158) 0.0791*** (0.0158)
b 0.9214*** (0.0182) 0.9155*** (0.0183)
c -0.0112*** (0.0029)

GDCCX-Model

a 0.0731*** (0.0143)
b 0.9219*** (0.0163)

USGov USCorp

c1 − c3
USCorp -0.0014*** (0.0003)
USHY -0.0102** (0.0044) -0.0094** (0.0039)

STCC-Model

c 1.0050*** (0.0138)
γ 100

USGov USCorp

R1
USCorp 0.9592*** (0.0041)
USHY 0.2086*** (0.0261) 0.3376*** (0.0232)

USGov USCorp

R2
USCorp 0.8099*** (0.0664)
USHY 0.0871* (0.0480) 0.2976*** (0.0387)

Sheppard Model (Partial Effects)

USGov USCorp
USCorp -0.0877*** [0.0187]
USHY -0.1342*** [0.0000] -0.1149*** [0.0000]

Note: The table reports the results of estimating the conditional correlation of US govern-
ment, investment grade corporate and high yield corporate bonds using the change in the
VIX Index as exogenous variable. The sample period is 1/2/1997-3/31/2010.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses, p-values in
brackets.

The GDCCX model further differentiates the effect of the exogenous variable on each

conditional correlation. For example a rise of the VIX index influences the conditional

correlation between government and investment grade corporate bonds to a lesser extent

than the conditional correlation between government and high yield corporate bonds

(see Table 3.10). This is confirmed by the Sheppard model but not by the STCC

model as there the largest influence of risk aversion is the government/investment grade

corporate bond correlation. Specifically, conditional correlation between government
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Figure 3.5: US Government and High Yield Corporate Bond Conditional Correlations

and investment grade corporate bonds decrease quickly (γ = 100) from 0.96 to 0.81

if the VIX increases more than 1.005 points while the correlation between government

and high yield corporate bonds falls from 0.2086 to 0.0871.

Figure 3.5 stresses the differences between the models. While the estimated conditional

correlations of the DCC type models are somewhat similar, conditional correlations as

estimated by the STCC model jump frequently between two regimes, and the Shepard

model conditional correlations largely fluctuate. Notably, the DCC correlations are not

as smooth as in the Eurozone as the estimated half life of the innovations is about

4.4 days in the US while it is 12.4 days in the Eurozone. As suggested by Cappiello

et al. (2006a) the half-life is approximated by: ln (0.5) / ln (a2 + b2). The half-life is the

expected period of time it takes until the influence of any correlation innovation has

decreased by half.
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Table 3.11: US Government and Investment Grade Corporate Bonds: Influence of
Risk Aversion Changes on Conditional Correlations (Bivariate Model)

DCCX-Model DCC-Model

a 0.0622*** (0.0111) 0.0748*** (0.0158)
b 0.9356*** (0.0118) 0.9220*** (0.0169)
c -0.0358*** (0.0019)

GDCCX-Model

a 0.0670*** (0.0152)
b 0.9297*** (0.0161)

c1 USGov
USCorp -0.0017*** (0.0004)

STCC-Model

c 1.0095*** (0.1140)
γ 100

R1 USGov
USCorp 0.9467*** (0.0033)

R2 USGov
USCorp 0.8281*** (0.0501)

Sheppard Model (Partial Effects)

USGov
USCorp -0.0280*** [0.0057]

Note: The table reports the results of estimating the conditional correlation of US gov-
ernment and investment grade corporate bonds using the change in the VIX Index as
exogenous variable. The sample period is 1/3/1990-3/31/2010.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses, p-values in
brackets.

In order to test the robustness of the results we ran the analysis with a longer sample

covering more than 20 years of daily observations from 1/1990 to 3/2010. However, this

is a bivariate model as this sample only includes the government and the investment

grade corporate bonds. Results are presented in Table 3.11.

They largely confirm the results of the previous analysis. Other than in the European

sample, the estimated c parameter for the STCC model is almost identical to the one

previously estimated. Thus, the common c parameter for all correlations imposes no
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Figure 3.6: US Government and Investment Grade Corporate Bond Conditional
Correlations

additional restriction. Figure 3.6 also shows that both during the subprime crisis as

well as during the burst of the dot-com bubble conditional correlations were lower.

3.3.3.3 Comparison by Statistical and Econometric Criteria

After estimating the coefficients of the models, we compare the models using the selec-

tion criteria proposed in section 3.3.1. Table 3.12 reports several statistical criteria.

Looking at the AIC and the BIC, the GDCCX model performs best in the US samples.

For the European samples, the DCC model is best according to the BIC while the

AIC favors the GDCCX and the STCC. Generally, according to the statistical crite-

ria, the performance of the DCC-type models is somewhat similar. By contrast, the
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Table 3.12: Statistical Criteria

DCC
Model

DCCX
Model

GDCCX
Model

STCC
Model

Sheppard
Model

European Government, Investment Grade, and High Yield Corporate Bonds

LL −15649.778 −15648.053 -15629.604 −15883.451 −16671.083
AIC 10.975 10.974 10.963 11.143 11.695
BIC 10.988 10.999 10.992 11.178 11.733
Param. 11 12 14 17 18

European Government and High Yield Corporate Bonds

LL −13289.321 −13294.328 −13287.360 -13282.907 −13976.980
AIC 9.318 9.323 9.318 9.315 9.801
BIC 9.335 9.341 9.337 9.336 9.820
Param. 8 9 9 10 9

US Government, Investment Grade, and High Yield Corporate Bonds

LL −17890.388 −17871.776 -17782.521 −19059.471 −19346.052
AIC 10.745 10.735 10.682 11.451 11.623
BIC 10.765 10.757 10.708 11.482 11.656
Param. 11 12 14 17 18

US Government and Investment Grade Corporate Bonds

LL −18501.106 −18411.540 -18406.544 −19835.020 −19942.682
AIC 7.257 7.222 7.220 7.781 7.823
BIC 7.267 7.234 7.232 7.794 7.834
Param. 8 9 9 9 10

Note: The table reports the log-likelihood values (LL), the values of the Akaike (AIC)
and Bayesian information criteria (BIC), and the number of parameters (Param.) we
have to estimate.

STCC model performs worse in all samples except in the sample which only includes

European government and high yield corporate bonds. Moreover, the Sheppard model

always ranks last. Although the DCC model does not consider the influence of exoge-

nous variables, it outperforms the STCC and the Sheppard model if BIC is chosen as

criterion.

The economic criteria reveal the differences between the DCC type models on the one

hand and the STCC and the Sheppard model on the other hand. Table 3.13 presents

the volatility of portfolios formed with the estimated covariance matrix of the respective

models. The lowest standard deviation is normalized to 100. As described in section

3.3.1, results are reported for both the global minimum variance portfolio (GMVP) and
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for the mean variance optimal portfolio which is calculated using realized mean-returns

(MVP).

Table 3.13: Economic Criteria: Comparison of Volatilities

DCC
Model

DCCX
Model

GDCCX
Model

STCC
Model

Sheppard
Model

European Government, Investment Grade, and High Yield Corporate Bonds

GMVP 100.215 100.415 100.000 105.483 107.773
MVP 100.000 100.234 100.426 113.401 110.137

European Government and High Yield Corporate Bonds

GMVP 100.449 100.793 100.634 100.000 114.289
MVP 100.000 100.180 100.131 100.169 113.813

US Government, Investment Grade, and High Yield Corporate Bonds

GMVP 102.172 101.455 100.000 141.329 122.845
MVP 100.000 101.276 100.614 137.957 148.763

US Government and Investment Grade Corporate Bonds

GMVP 100.739 100.294 100.000 113.762 123.070
MVP 100.093 103.436 100.000 109.244 113.016

Note: The table reports the sample standard deviations of global minimum variance
portfolios (GMVP) and minimum variance portfolios subject to a required return
(MVP). The lowest standard deviation is normalized to 100 so that a value of 105
means that using the forecasts of the best model a 5% higher return could be required.

For the aggregate bond indices, the GDCCX, the DCCX, and the DCC perform best.

The volatility of portfolios formed with the covariance matrix from the STCC or the

Sheppard model is much higher. Again, the sample which only includes the European

government and high yield corporate bonds is an exception as the STCC model performs

well in that case. Interestingly, the DCC model usually performs better than the

GDCCXmodel when portfolios are calculated using realized mean-returns. By contrast,

the opposite is true for the global minimum variance portfolios. However, differences

between the DCC type models are only modest.

Next, the models are tested by using the Diebold–Mariano approach. This allows

to compare two models with another. The Diebold–Mariano approach yields similar

results as our previous test. That can be inferred from Tables 3.14 and 3.15. In these

Tables, a significant positive number means the model of the row is better than the

model of the column. If the coefficient is not significant, the test is inconclusive. For

example, the GDDCX model outperforms the STCC model as the test statistic (-2.288)
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Table 3.14: Economic Criteria: Unweighted Diebold-Mariano-Test Statistics for a
Global Minimum Variance Portfolio

DCC
Model

DCCX
Model

GDCCX
Model

STCC
Model

European Government, Investment Grade, and High Yield Corporate Bonds

DCCX Model -0.520
GDCCX 0.520 1.076
STCC Model -2.309** -2.130** -2.288**
Sheppard Model -2.518** -2.483** -2.563** -0.719

European Government and High Yield Corporate Bonds

DCCX Model -1.773*
GDCCX -0.637 0.598
STCC Model 0.716 1.331 0.785
Sheppard Model -5.033*** -4.842*** -4.896*** -5.107***

US Government, Investment Grade, and High Yield Corporate Bonds

DCCX Model 1.473
GDCCX 1.631 1.254
STCC Model -2.117** -2.143** -2.256**
Sheppard Model -2.761*** -2.809*** -3.177*** 1.315

US Government and Investment Grade Corporate Bonds

DCCX Model 2.175**
GDCCX 1.662* 0.919
STCC Model -3.003*** -3.105*** -3.206***
Sheppard Model -4.510*** -4.600*** -4.693*** -3.229***

Note: The table reports the unweighted Diebold-Mariano test statistics of equal pre-
dictive accuracy of the models for all datasets used. A significant positive number
means the model of the row is better than the model of the column. The panel shows
results for the global minimum variance portfolio.
* p < 0.10, ** p < 0.05, *** p < 0.01

is significantly less than zero. Both the weighted and the unweighted versions of the

test find that the STCC model and the Sheppard model are significantly outperformed

by the DCC type models. The only exception is the conditional correlation between

European government and high yield corporate bonds since the STCC model is not

outperformed by the other models in this sample. The differences between the DCC,

the DCCX and the GDCCX model are mostly not significant. Comparing the STCC

and the Sheppard model only results in significant results in the sample with European

government and high yield corporate bonds and in the sample with US government
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Table 3.15: Economic Criteria: Weighted Diebold-Mariano-Test Statistics Using
Expected Returns

DCC
Model

DCCX
Model

Generalized
DCCX

STCC
Model

European Government, Investment Grade, and High Yield Corporate Bonds

DCCX Model -2.016**
GDCCX -0.033 0.286
STCC Model -4.384*** -4.352*** -4.352***
Sheppard Model -5.171*** -5.119*** -5.011*** -1.557

European Government and High Yield Corporate Bonds

DCCX Model -1.089
GDCCX 0.797 1.140
STCC Model -1.212 -0.056 -1.017
Sheppard Model -6.264*** -6.129*** -6.340*** -6.123***

US Government, Investment Grade, and High Yield Corporate Bonds

DCCX Model 0.432
GDCCX 0.165 -0.360
STCC Model -4.063*** -3.945*** -4.211***
Sheppard Model -3.287*** -3.037*** -3.345*** -0.241

US Government and Investment Grade Corporate Bonds

DCCX Model 0.324
GDCCX 1.757* 0.000
STCC Model -3.149*** -2.526** -3.148***
Sheppard Model -3.712*** -3.655*** -3.970*** -1.047

Note: The table reports the weighted Diebold-Mariano test statistics of equal pre-
dictive accuracy of the models for all datasets used. A significant positive number
means the model of the row is better than the model of the column. Portfolios are
constructed employing expected returns estimated by the sample mean of the return
series for the complete sample.
* p < 0.10, ** p < 0.05, *** p < 0.01

and investment grade corporate bonds. In these samples, the STCC model significantly

outperforms the Sheppard model.

In summary, we find that the differences within the DCC type model are not as large.

However, all DCC type models outperform the STCC and the Sheppard model, re-

spectively. The Sheppard model performs worst in all samples and with all testing

criteria. The STCC model is worse than the DCC type models except for the sample

with European government and high yield corporate bonds in which the test is not
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significant. However, as we have seen by plotting conditional correlations (see Figure

3.4), conditional correlations estimated by the STCC model are almost constant.
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3.4 Summary

In this chapter, we compare the performance of conditional correlation models in dif-

ferent settings. First, we conduct a simulation study employing the true conditional

correlation as exogenous variable. We find that GDCCX model uses the information of

the exogenous variable best in all settings. The STCC model performs almost as good

as the GDCCX model and the DCCX model is still better than the DCC model that

does not account for the effect of exogenous variables. By contrast, the Sheppard model

performs even worse than the DCC model. Interestingly, the Sheppard model performs

well in a setting where correlation change very quickly. Furthermore, we demonstrate

that employing models which account for a potential effect of an exogenous variable

reduces the mean absolute estimation error by about two thirds. We conclude that the

gains for using exogenous variables can be substantial.

We then turn to an application of the correlation models employing real data. We

include bond sector data for the Eurozone and the US in our analysis. Our empiri-

cal results can be summarized as follows. First, the greater the number of time series

analyzed and the more heterogeneous the respective conditional correlations respond

to the exogenous variable the more rewarding it is to use the GDCCX model instead

of the DCCX model. For example, in a sample with European government, corporate

investment grade and corporate high yield bonds, conditional correlations between in-

vestment grade and government bonds react differently to risk aversion than conditional

correlations between high yield and investment grade bond. That effect is captured by

the GDCCX model since there are coefficients that measure the influence of the ex-

ogenous variable on each correlation separately. Yet, there is only one coefficient that

measures the effect of the exogenous variable on all correlations in the DCCX model.

As a result, this coefficient is not significant and cannot be interpreted as well. Also,

the GDCCX model performs well in terms of both statistic and economic criteria. Sec-

ond, the most striking result when comparing the different models is that the DCC,

the DCCX and the GDCCX model outperform the Sheppard and the STCC model in

most settings with respect to both statistical and economic criteria.

By the choice of our exogenous variable, we also address an empirical research question

in this chapter. We investigate the influence of risk aversion on conditional correlations.

We find statistical evidence for a flight-to-quality effect. When risk aversion rises, the

conditional correlation between government and corporate bonds falls. That holds
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true both for the US and the Eurozone and can be observed for either investment

grade or high yield bonds though the results are not as strong for high yield bonds

in the Eurozone. The results are robust among all models we consider. As opposed

to equity investments, the benefits of diversification between different bond sectors are

not diminished in times of market turbulences. Our findings further indicate that the

conditional correlation between investment grade and high yield corporate bonds fall

in the US but not in the Eurozone.
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4 Exogenous Variables in Correlation and Volatility

4.1 Introduction

In the models presented in the previous chapters, we assumed that all conditional vari-

ances are sufficiently described by a univariate GARCH (1,1) model. This approach is

supported by Engle and Sheppard (2008), Berben and Jansen (2009), and Bauer (2011)

who argue that the choice of the GARCH model is of minor relevance given that pat-

terns of conditional variances produced by many univariate GARCH models are similar.

Moreover, we assumed that the exogenous variables affect conditional correlations but

do not affect conditional variances. This is justified since Schwert (1989) examines the

stock volatility from 1857 to 1987 and does not find any macroeconomic variable that

explains return volatility. Likewise, a study of Paye (2010) provides little support for

volatility predictability by exogenous variables.

However, Officer (1973) demonstrates that market volatility can be related to industrial

production. Recently, the modeling of volatility as a function of exogenous variables

has gained additional attention. For example, Engle et al. (2009) provide evidence

that economic fundamentals such as inflation and industrial production growth drive

stock market volatility. Çakmakli and van Dijk (2010) demonstrate that a number

of macroeconomic variables can help predicting US stock volatility between 1980 and

2005. Christiansen et al. (2011) get similar results for the foreign exchange, the com-

modity, and the bond market. Last, Engle and Rangel (2008) find that volatility in

macroeconomic and financial factors are important determinants of increased volatility.

The influence of exogenous variables on conditional variance is important for correlation

models and is the focus of this chapter. As already noted by King and Wadhwani (1990)

and later by Forbes and Rigobon (2002), a change in the conditional variance of one

time series can result in increasing conditional correlations. Corsetti et al. (2005) argue

that this is true only under certain restrictive assumptions regarding the dependence

structure and the time-series specific variance. However, provided these assumptions

hold, a change in the exogenous variable can drive conditional correlations without

changing the dependence structure of the time series.
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We further investigate the consequences of a misspecification of the variance equation

in the GDCCX model. We present the GARCHX model that is an extension of a

GARCH model but allows exogenous variables to drive conditional variances. This

model is employed in a simulation experiment. We simulate time series in which con-

ditional variances are influenced by an exogenous variable according to a GARCHX

model but conditional correlations are not. Then, we estimate a GDCCX model as-

suming that conditional variances are driven by a GARCH (1,1) process and that only

conditional correlations are affected by the exogenous variable. We repeat the sim-

ulation for various different sample sizes, exogenous variables, correlation structures,

and parameter constellations. We find that in some settings, the parameter estimates

are biased as the model incorrectly finds an influence of the exogenous variable on the

conditional correlations.

We therefore propose to replace the GARCH model in the variance equation of the

GDCCX model by a GARCHX model to capture the effect of exogenous variables on

conditional variances. We repeat the previous simulation experiment with this estima-

tor and demonstrate that parameter estimates are unbiased in all settings now.

This chapter proceeds as follows. In the next section, we discuss a theoretical model

that describes the interrelation between variances and correlations. In section 4.3, we

introduce the GARCHX model. We investigate how the GDCCX model estimation is

affected if exogenous variables drive conditional variances instead of correlations and

examine how result change once the variance equation is correctly specified with a

GARCHX model. Section 4.5 summarizes and concludes.

4.2 The Interrelation Between Variance and Correlation

In this section, we discuss the interaction between variance and correlation. Forbes

and Rigobon (2002) argue that conditional correlations rise as conditional variances

increase during periods of crisis. As a result, testing for a change in correlations suffers

from heteroscedasticity bias.1

1Ronn et al. (2009), Loretan and English (2000), and Boyer et al. (1999) also document this bias
employing a different statistical framework and more restrictive assumptions.
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Specifically, Forbes and Rigobon (2002) assume that the rates of return ri and rj in

two markets i and j are stochastic variables and are linked as follows:2

ri = β0 + β1 rj + ǫi, (4.1)

where β1 is the constant strength of the dependence and ǫi are zero-mean market-

specific shocks that are uncorrelated with rj. Hence, variance of ri and covariance of ri

and rj can be expressed by:

Var (ri) = β2
1 Var (rj) + Var (ǫi) , (4.2)

Cov (ri, rj) = β1 Var (rj) . (4.3)

Plugging 4.2 and 4.3 into the correlation definition yields:

Corr (ri, rj) =
β1 Var (rj)

√

β2
1 Var (rj) + Var (ǫi)

√

Var (rj)
,

and can be rearranged as follows:

Corr (ri, rj) =

[

1 +
Var (ǫi)

β2
1 Var (rj)

]− 1

2

. (4.4)

Equation 4.4 shows that Corr (ri, rj) is a function of Var (rj), Var (ǫi), and β1. Let us

now assume that there are is a high and a low variance regime denoted by H and L,

respectively, where

Var (rj|H) = (1 + δ1) Var (rj|L) , δ1 > 0, (4.5)

and δ1 is a measure of the proportional increase in the variance. H corresponds to a

crisis caused by an exogenous shock in market j. The distinction between crisis and

non-crisis periods is exogenously determined. In addition, it is assumed that

Var (ǫi|H) = Var (ǫi|L) = Var (ǫi) , (4.6)

Corr (rj, ǫi|H) = Corr (rj, ǫi|L) = 0, (4.7)

2The following illustration of the Forbes and Rigobon (2002) model is based on Corsetti et al. (2005).
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i.e. the variance of the market-specific shocks in market i is constant across variance

regimes and is not correlated with rj. Thus, the exogenous shock in market j does not

affect the specific shocks in market i in any way. Applying 4.5 and 4.6 to 4.4, we get:

[

1 +
Var (ǫi)

β2
1 (1 + δ1)Var (rj|L)

]− 1

2

>

[

1 +
Var (ǫi)

β2
1 Var (rj|L)

]− 1

2

(4.8)

Corr (ri, rj|H) > Corr (ri, rj|L)

Hence, the correlation between ri and rj increases in the high variance regime,

although the strength of the dependence β1 remains constant during the crisis.

However, as pointed out by Corsetti et al. (2001) and Corsetti et al. (2005), the

results critically depend on assumptions 4.6 and 4.7. It is easy to imagine a situation

in which a shock in market j gives rise to a higher risk aversion in all markets

resulting in higher variance of the market-specific shocks in market i:

Var (ǫi|H) = (1 + δ2) Var (ǫi|L) (4.9)

and therefore the relation between the correlation in high and low variance regimes as

expressed by 4.8 becomes:

[

1 +
(1 + δ2)Var (ǫi)

β2
1 (1 + δ1)Var (rj|L)

]− 1

2

R
[

1 +
Var (ǫi)

β2
1 Var (rj|L)

]− 1

2

(4.10)

Corr (ri, rj|H) R Corr (ri, rj|L)

depending on

(1 + δ1) R (1 + δ2) .

Therefore, a change in the correlation between market i and market j can be caused in

different ways.

In one scenario, a shock in market j results in rising correlations. The increase in vari-

ance in market j is higher than the rise in market-specific variance (δ1 > δ2) although



4 Exogenous Variables in Correlation and Volatility 61

the strength of the relation β1 does not change. This is also known as interdependence

in the contagion literature (Forbes and Rigobon, 2002; Corsetti et al., 2005).

In another scenario, the higher variance in market j might be completely offset by a

higher market-specific variance in market i, (δ1 = δ2), but the strength of the relation

increases i.e. βH
1 > βL

1 . As a result and similar to the first scenario, conditional

correlations rise. We conclude that a change in the conditional correlation might be

caused by either increasing variance in one market or by a stronger dependency.3

In addition, one can easily imagine a scenario in which δ1 = δ2, and the dependence

structure does not change resulting in unchanged conditional correlations. Hence, a

change in variance does not necessarily influence conditional correlations.

Turning to the correlation models, it is particularly interesting what happens if a change

in an exogenous variable drives the variances but not the dependence structure and vice

versa.

First, we assume that the dependence structure is affected by an exogenous variable,

while variances are unchanged. Furthermore, we assume that there are two exogenous

regimes: in the first, called A, the dependence structure is not influenced by an exoge-

nous variable. In the second, called B, the influence of the exogenous variable on the

dependence structure is captured by a factor x so that 4.1 becomes:

ri = β0 + βB
1 rj + ǫi, (4.11)

where βB
1 is defined as follows:

βB
1 = (1 + x1) βA

1 , x1 > 0. (4.12)

Therefore, the following holds for correlations in regime A and B:

[

1 +
Var (ǫi)

(1 + x1)
2 (βA

1 )
2
Var (rj)

]− 1

2

>

[

1 +
Var (ǫi)

(βA
1 )

2
Var (rj)

]− 1

2

(4.13)

Corr (ri, rj|B) > Corr (ri, rj|A)

3Corsetti et al. (2005) employ a standard factor model in which the returns in market i and market
j are driven by a common factor and show that the results hold as well.
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As expected, if an exogenous variable strengthens the relation between the markets i

and j, the correlation rises.

Let us now assume that the variance in market j is affected by an exogenous variable

but not the dependence structure. Again, there are two regimes: there is no influence

of the exogenous variable on the variance in regime C. By contrast, in regime D,

exogenous variables cause the variance in market j to increase as follows:

Var (rj|D) = (1 + x1) Var (rj|C) , x1 > 0. (4.14)

Furthermore, the market-specific variance is assumed to remain constant, i.e.

Var (ǫi|C) = Var (ǫi|D) = Var (ǫi) (4.15)

Corr (rj, ǫi|C) = Corr (rj, ǫi|D) = 0. (4.16)

Then, for x1 > 0, the respective correlations in regimes C and D are:

[

1 +
Var (ǫi)

β2
1 (1 + x1)Var (rj|C)

]− 1

2

>

[

1 +
Var (ǫi)

β2
1 Var (rj|C)

]− 1

2

(4.17)

Corr (ri, rj|D) > Corr (ri, rj|C)

As expected, if an exogenous variable affects the variance in market j but not the

market-specific variance ǫi, the correlation between market i and j rises. Thus, a

change in the exogenous variable drives the conditional correlations without changing

the dependence structure of the time series. However, as shown previously, if assump-

tions 4.15 and 4.16 are dropped, i.e. we assume that the market-specific variance in

market i is also affected by the exogenous variables, the outcome changes: conditional

correlation might increase, decrease, or not change at all.

Although we do not have a general result indicating what happens if the variance is

affected by an exogenous variable, there are cases in which an influence of the exogenous

variable on the variance also drives correlations.
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4.3 Conditional Variance and Exogenous Variables: The GARCHX

Model

In this section, we present a model that captures the influence of any exogenous variable

on conditional variances. Several studies argue that macroeconomic or financial vari-

ables might help in forecasting volatility while others are more sceptical.4 As already

noted by Engle (1982), any variance function can be augmented with exogenous vari-

ables. Previous studies employ both multivariate GARCH(1,1) and GARCHX models.

The former studies model conditional variance as a function of its own and exogenous

variables’ past squared innovations (Bollerslev, 1990; Fratzscher, 2002; Kaltenhäuser,

2003; Hunter and Simon, 2005). GARCHX models as proposed by Hwang and Satchell

(2005), Brenner et al. (1996) or Engle and Patton (2001) directly include the exogenous

variable in the GARCH conditional variance equation such as

ht = ω + αrt−1 + βht−1 + γXt−1, (4.18)

where rt−1 is a lagged demeaned time series, ht is the conditional variance and Xt−1 a

vector with lagged exogenous variables.5 For γ = 0 the model reduces to the traditional

GARCH(1,1) model. Han (2010) establishes the asymptotic properties. Furthermore,

the GARCHX model is widely used in empirical research.6. Depending on the formu-

lation of Equation 4.18, different parameter restrictions are imposed to ensure that the

non-negativity condition of variance is always satisfied (Hwang and Satchell, 2005) Al-

ternatively, the model can be estimated by constrained maximum likelihood, restricting

the parameter space so that the conditional volatility process is always positive (de Goeij

and Marquering, 2004).

4.4 GDCCX Simulation when an Exogenous Variable Drives

Conditional Variances

In this section, we study the consequences of estimating a GDCCX model when the

variance equation is misspecified. Therefore, we conduct a simulation experiment.

4See Christiansen et al. (2011) for an overview on these papers.
5An alternative formulation is replacing γXt−1 with γX2

t−1
which ensures that the term with the

exogenous variable is positive.
6See Fleming et al. (2008) or Han (2010) for an overview.
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Specifically, we simulate time series where the conditional variances but not condi-

tional correlations are driven by an exogenous variable. We model the influence of

the exogenous variables with a GARCHX model. We include four different types of

exogenous variables:

1. The exogenous variable is an independent identically-distributed random time

series sampled from a normal distribution.

2. The exogenous variable is similar to defined above but exhibits conditional het-

eroscedasticity according to a GARCH(1,1) model. Typically, financial time series

behave like series from this data generating process.

3. The exogenous variable takes on a standard normal distributed value every 100th

observation only. All other observations are zero. This type of series simulates

macroeconomic announcements which are usually published periodically.7 Al-

though the simulated announcement values are standard normally distributed,

the complete time series of the exogenous variable is not normally distributed

due to the large number of zeros.

4. The exogenous variable is similar to the exogenous variable as described before

but the value during the announcement is one. That simulates a dummy variable

which indicates the release of an macroeconomic announcement.

Furthermore, we test two different parameter sets for the GARCHX model (see Equa-

tion 4.18) that describes the influence of the exogenous variable on conditional variances:

Parameter Set Series ωi αi βi γi

I
1 0.01 0.03 0.90 0.00010
2 0.01 0.03 0.90 -0.00005

II
1 0.01 0.03 0.90 0.010
2 0.01 0.03 0.90 -0.005

7These types of time series are included in the empirical analysis in chapter 6.
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The parameter sets differ in the dimension of the γ parameter as they vary by a factor of

100. Thus, GARCHX effects are more pronounced when parameter set II is employed.8

In all simulated time series, the conditional variances but not conditional correlations

are driven by an exogenous variable. Two different correlation structures are tested.

First, we assume that the true correlation structure of the simulated time series is gen-

erated by a DCC (1,1) model. Second, we assume that the time series are uncorrelated.

In addition, we examine the effect of different sample sizes. We investigate samples

with 500, 1000, 2500, and 5000 observations. All simulations are repeated 200 times.

After simulating the data, we estimate a GDCCX model and estimate conditional

variances using a GARCH (1,1) model. We calculate the 90% as well as the 95%

confidence intervals for the c parameter that measures the influence of the exogenous

variable (see section 2.4.2 and equation 2.11). Next, we check if the confidence interval

includes the true parameter. That should be the case in 95% of all simulations for

the 95% confidence interval, i.e. the empirical rejection frequency should be 5%. The

empirical rejection frequency should approach the nominal level as the sample size

grows. The true c parameter is zero since the conditional variances are not affected by

the exogenous variable. Results for the different settings are presented in Figures 4.1

and 4.2.

Employing parameter set II and assuming that the true correlation structure is gener-

ated by a DCC (1,1) model results in the most exceptional results as shown in Figure

4.1(b). If we simulate that the exogenous variables are homoscedastic or heteroscedas-

tic normally distributed random time series the rejection frequency approaches 100%

as the sample size grows . That means that the estimated c parameter of the GDCCX

model is significantly different from zero in all simulations. However, the true param-

eter is zero as conditional correlations are not influenced by the exogenous variable.

In this setting, the GDCCX estimator is biased. Most probably this is caused by the

univariate GARCH model not being well specified. Obviously, the large influence of

exogenous variable on the conditional variances is incorrectly assigned to a change in

conditional correlations.

8We also employed parameter sets where the γ parameter is constant among series or takes on different
values. However, we found that changing the parameter dimension among parameter sets is more
important than changing the sign or the actual value of the parameter.
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Interestingly, the results change dramatically once we change the simulation setting. For

example, we employ parameter set I in Figure 4.1(a). As a result, all empirical rejection

frequencies approach 5% and 10%, respectively. Therefore, the bias disappears if the

simulated influence of the exogenous variable on conditional variances is not as large

as in parameter set II. The same is true if the simulated time series are uncorrelated

as shown in Figures 4.2(a) and 4.2(b) or if the exogenous variable is the ”rare event

dummy” or a dummy time series. In both cases there are further misspecifications, i.e.

the exogenous variable is not normally distributed or the conditional correlations are

constant and are not generated by a DCC model. As a result, the bias also disappears.

Yet, it needs a larger sample size for the empirical rejection frequencies to approach the

nominal significance values in all settings that include these additional misspecifications.

As expected, a sample size of 1000 already produces empirical rejection frequencies that

are close to the nominal ones if the exogenous variable is normally distributed, the true

correlation structure is generated by a DCC model, and the influence of the exogenous

variable on conditional variances is small.

As discussed in section 2.2 and 2.4, the DCC type models allow for any univariate

volatility specification to estimate conditional variances. Thus, we can employ the

GARCHX model as well. In the following, we repeat the GDCCX model estimation

from above but replace the GARCH model with the GARCHX model. We are especially

interested if the bias which we previously found in some settings disappears. Figures

4.3 and 4.4 present the results.

We find that the bias completely disappears once we model conditional variances with

a GARCHX model. That becomes clear if Figure 4.3(b) is compared to Figure 4.1(b).

Comparing all other settings to the previous experiment, there are only small differ-

ences. That is, the empirical frequencies approach the nominal levels as the sample size

increases. We conclude that it is useful to model conditional variances with GARCHX

model to account for the influence of an exogenous variable on volatility when estimat-

ing a GDCCX model.
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Figure 4.1: Empirical Rejection Frequencies for GDCCX/GARCH Estimations
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Figure 4.2: Empirical Rejection Frequencies for GDCCX/GARCH Estimations
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Figure 4.3: Empirical Rejection Frequencies for GDCCX/GARCHX Estimations
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Figure 4.4: Empirical Rejection Frequencies for GDCCX/GARCHX Estimations
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4.5 Summary

In this chapter, we investigate the consequences of a misspecification of the GDCCX

model estimation. Specifically, we examine what happens if an exogenous variable in-

fluences conditional variances and the variance equation is misspecified. We argue that

this question is relevant since previous research has shown that various macroeconomic

as well as financial variables have an effect on conditional variances.

Therefore, we present the theoretical model of Forbes and Rigobon (2002). It is assumed

that one time series is dependent on another time series as well as on time series

specific shocks. It can be shown that an exogenous shock and a resulting change in

conditional variance in one time series result in higher conditional correlations although

the dependence structure does not change. Corsetti et al. (2005) point out that this

result critically depends on the assumption that the variance of the time series specific

shocks is not affected by the exogenous shocks. We demonstrate that this outcome is

also true when variances are driven by an exogenous variable.

Depending on assumptions regarding the time series specific variance, the theoretical

results are inconclusive. Thus, the effects of exogenous variables on conditional vari-

ances are studied in a simulation experiment. In different settings, we simulate that

conditional variances but not conditional correlations are affected by an exogenous vari-

able. We find that under certain conditions, the GDCCX estimator, which assumes that

conditional variances follow a GARCH(1,1) model, is biased. These conditions include

that the effect of the exogenous variable on conditional variances is very strong, the

true correlation structure is generated by a DCC model, and the exogenous variable is

normally distributed. Furthermore, we show that this bias is caused by the misspecifi-

cation of the variance equation. If the same simulation experiment is repeated but the

variance is model with a GARCHX model instead of the GARCH model, the estimator

is unbiased and consistent. We conclude that it is generally reasonable to model con-

ditional variances with a GARCHX model if conditional variances are affected by the

exogenous variable.

Moreover, the GDCCX and the GARCHX model individually account for exogenous

influences on the stochastic structure of financial returns. From a theoretical point of

view, combining both models allows to separate the influence of exogenous variables

on volatility from the impact of exogenous variables on the dependence structure of
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financial returns in a clear cut manner. We will consider both models in the empirical

analysis in chapter 5 and chapter 6.



5 Market Turbulence and Conditional Correlations 73

5 Market Turbulence and Conditional Correlations

5.1 Introduction

In the previous chapters, we lay out and discussed an econometric framework that al-

lows us to investigate the drivers of conditional correlations. We find that the GDCCX

model is particularly well suited for an empirical analysis of the determinants of condi-

tional correlations. Moreover, we show that it is advantageous to estimate conditional

variances with a GARCHX model in order to separate the effects of exogenous variables

on volatility from the effects on the dependence structure.

In this chapter, we put this empirical framework into action. Specifically, we want to

extend the analysis to the effects of risk aversion in general, market turbulences, as

well as the business cycle on conditional correlations. Since the GDCCX model allows

for the simultaneous inclusion of several exogenous variables, we are able to examine if

the effect of a specific variable on correlations is dominating. By contrast, most studies

employ a limited set of only one (Berben and Jansen, 2009; Yang et al., 2009) or two

(Cai et al., 2009; Aslanidis et al., 2010) exogenous variables at a time.

We are especially interested in the effects of risk aversion since several authors sug-

gest that risk aversion influences correlations. For example, Cai et al. (2009) employ

a Smooth Transition Conditional Correlation (STCC) type model1 and analyze corre-

lations between daily international equity market returns. They find that conditional

correlations are higher when risk aversion, as measured by the implied volatility of

index options, is larger. Using regression analysis, Kim et al. (2006) as well as An-

dersson et al. (2008) demonstrate that the linkages between stocks and bonds weaken

when risk aversion rises. Furthermore, Connolly et al. (2007) show that stock bond

return correlations are lower and equity market correlations are higher when the VIX

volatility index is above its 99% percentile. This raises the question whether there is a

nonlinear impact of risk aversion on conditional correlations. For example, conditional

correlations might rather be affected by extreme values of risk aversion than by risk

aversion in general.

1Cai et al. (2009) use the Double Smooth Transition Conditional Correlation with Conditional Auto
Regressive Range (DSTCC-CARR) model.
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A number of studies investigate if macroeconomic fundamentals affect conditional cor-

relations. For example, some authors find that an increase in the inflation rate results

in an increase in conditional correlations between major international stock markets

(Cai et al., 2009) and between bonds and stocks (Yang et al., 2009; Ilmanen, 2003; Li,

2002; Andersson et al., 2008). By contrast, the evidence on the effects of the business

cycle on conditional correlations is mixed. Employing a rolling regressions approach,

Erb et al. (1994) suggest that the linkage between G7 equity markets is stronger during

recessions. However, King et al. (1994), Karolyi and Stulz (1996), Kizys and Pierdzioch

(2006), and Andersson et al. (2008) do not find any significant effect for business-cycle

fluctuations.

Turning to the linkages between international bond markets, Hunter and Simon (2005)

use a bivariate conditional correlation GARCH model and find that conditional corre-

lations between international bond returns do not increase in times of market stress. In

addition, in chapter 3, we have shown that the correlation between different bond mar-

ket sectors fall as risk aversion rises. However, the literature on the linkages between

bond markets is scarce.

We aim to investigate the effects of risk aversion, market turbulences, and economic

fundamentals in this chapter employing the empirical framework we developed in the

previous chapters. Therefore, we construct a dataset that covers both bond and equity

markets in the US and in the Eurozone. Thus, we can assess if there are differences in

the way exogenous variables affect conditional correlations between stocks and linkages

between bonds. Moreover, we can examine if the effect of exogenous variables within

the Eurozone is similar to the effects on linkages between the Eurozone and the US.

In addition to the large government and stock markets in Germany, France, Italy, and

Spain, we also include Greece, Ireland, and Portugal in our dataset in order to document

the effects of the recent European sovereign debt crisis.

To preview our results, we find that both GDP growth and market turbulences drive

conditional correlations whereas risk aversion has almost no effect. The impact of

market turbulences is especially pronounced in the peripheral countries. There is an

important difference between bonds and stocks: While market turbulences result in a

drop of conditional correlations between international bond markets, conditional cor-

relations between stock markets rise strongly. This is a clear sign of contagion. We

conclude that benefits from international diversification diminish for stock but not for
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bond investors in times of market turbulences. Furthermore, lower GDP growth results

in higher stock return correlations and lower bond return correlations.

The outline of the chapter is as follows. In section 5.2, we describe the data we use.

Section 5.3 reports and discusses the results. Section 5.4 concludes.

5.2 Data

We construct two datasets: one for bonds and one for stocks. Table 5.1 presents the

details. Bond data is covered by J.P. Morgan total return government bonds indices for

the United States (US) and seven European Monetary Union (EMU) countries: France,

Germany, Greece, Ireland, Italy, Portugal, and Spain.

Table 5.1: Dataset

Name Symbol Source Ticker Obs. Start End

Government Bonds

US US JPM USTITRLC 833 06/30/1995 09/30/2011
Germany DE JPM GETITRLC 833 06/30/1995 09/30/2011
France FR JPM FRTITRLC 833 06/30/1995 09/30/2011
Italy IT JPM ITTITRLC 833 06/30/1995 09/30/2011
Greece GR JPM GRTITRLC 702 01/09/1998 09/30/2011
Ireland IR JPM IRTITRLC 833 06/30/1995 09/30/2011
Portugal PT JPM PTTITRLC 833 06/30/1995 09/30/2011
Spain ES JPM SPTITRLC 833 06/30/1995 09/30/2011
VDAX VDAX BBG VDAX Index 833 06/30/1995 09/30/2011
VIX VIX BBG VIX Index 833 06/30/1995 09/30/2011
GDP GDP ES EUGNEMUQ Index 833 06/30/1995 09/30/2011

Stocks

US US FTSE FTL3US Index 685 05/08/1998 09/30/2011
Germany DE FTSE FTL3GR Index 685 05/08/1998 09/30/2011
France FR FTSE FTL3FR Index 685 05/08/1998 09/30/2011
Italy IT FTSE FTL3IT Index 685 05/08/1998 09/30/2011
Greece GR FTSE FTL3GE Index 685 05/08/1998 09/30/2011
Ireland IR FTSE FTL3IR Index 685 05/08/1998 09/30/2011
Portugal PT FTSE FTL3PO Index 685 05/08/1998 09/30/2011
Spain ES FTSE FTL3SP Index 685 05/08/1998 09/30/2011
VDAX VDAX BBG VDAX Index 685 05/08/1998 09/30/2011
VIX VIX BBG VIX Index 685 05/08/1998 09/30/2011
GDP GDP ES EUGNEMUQ Index 685 05/08/1998 09/30/2011

Note: The table provides an overview on the datasets. JPM is J.P. Morgan, BBG is
Bloomberg, FTSE are FTSE indices, and ES is Eurostat.
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Our sample includes countries which are in the center of the current European sovereign

debt crisis and countries that are considered to be safe investments. All indices are cap-

italization weighted, assume a reinvestment of received coupon payments or redemp-

tions, and are based on prices observed in the secondary market. Furthermore, all

bonds must satisfy certain liquidity criteria.2

We use FTSE All-World country indices for our stock dataset. We choose the same

countries as in the bond sample. The indices are value weighted total return indices that

include dividend payments. They provide a broad measure of stock market returns.3

For all indices, we compute the continuously compounded weekly returns from Friday to

Friday. We choose to study returns at a weekly frequency in order to avoid the problems

caused by non-synchronous trading (Burns et al., 1998). All returns are expressed in

local currency.

We use different exogenous variables in our analysis. As described in section 3.3.2.2,

the implied volatility of equity options is a popular proxy of risk aversion. We employ

the VDAX volatility index as a measure of risk aversion. The index tracks the expected

volatility over the next 45 days implied in index options on the German DAX stock

index.4 For analysis which include the US indices, we employ the Chicago Board

Options Exchange Volatility Index (VIX) as proxy for risk aversion. The VIX is a

popular measure of the implied volatility of index options on the S&P 500 Index over

the next 30 days. Several authors (Connolly et al., 2005, 2007; Hunter and Simon,

2005; Cappiello et al., 2006a) point out that conditional correlations change quickly in

high-stress periods. Therefore, we take the 1% percentile of the VDAX and VIX indices

as a proxy for high market stress by using an appropriately defined dummy variable

Since large values of the exogenous variable result in very small values of the respective

coefficient, we avoid rounding errors during optimization and calculation of standard

errors by dividing the level of risk aversion by 1000. We employ quarterly Eurozone

GDP growth as a proxy for the business cycle. We take quarterly growth figures from

Eurostat for the Eurozone. Quarterly data is converted into weekly data by allowing the

2For further details on the index construction and guidelines please refer to www.morganmarkets.com.
3For further details on the index construction and guidelines please refer to www.ftse.com.
4An alternative to the VDAX volatility index is the Euro Stoxx 50 Volatility Index (VSTOXX) that
tracks implied volatility of index options on the Euro Stoxx 50 Index. However, the VSTOXX
index is only available since 1/4/1999. Besides, the correlation between the VSTOXX and the
VDAX is very high: 0.98. Therefore, we consider both as equally representative for the Eurozone.
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variable to remain constant during a quarter. This transformation of macroeconomic

data has already been applied to convert monthly to daily (Cai et al., 2009) or to weekly

data (Aslanidis and Christiansen, 2010).

Table 5.2: Descriptive Statistics

Symbol Mean Min. Max. Std. Dev. Skewness Kurtosis

Government Bonds

US 0.12% −3.28% 2.57% 0.68% −0.49 4.16∗∗∗
DE 0.11% −2.05% 1.91% 0.53% −0.20 3.66∗∗∗
FR 0.12% −1.99% 1.89% 0.54% −0.24 3.71∗∗∗
IT 0.13% −2.74% 4.81% 0.65% 0.06 8.11∗∗∗
GR 0.02% −15.18% 22.36% 1.75% 1.90 60.59∗∗∗
IR 0.11% −7.97% 13.16% 1.13% 1.54 35.78∗∗∗
PT 0.09% −10.95% 10.15% 1.02% 0.00 42.88∗∗∗
ES 0.13% −2.82% 4.91% 0.64% 0.02 8.27∗∗∗
VDAX 22.98 10.10 64.28 9.37 1.35 4.91∗∗∗
VIX 21.68 10.02 79.13 8.83 2.01 10.11∗∗∗
GDP 0.43% −2.50% 1.30% 0.58% −2.57 12.99∗∗∗

Stocks

US 0.02% −20.12% 11.51% 2.75% −0.75 8.86∗∗∗
DE −0.01% −23.90% 15.43% 3.53% −0.69 7.78∗∗∗
FR 0.02% −24.93% 12.58% 3.20% −0.93 9.37∗∗∗
IT −0.07% −24.50% 19.66% 3.38% −0.89 10.95∗∗∗
GR −0.22% −20.08% 18.80% 4.46% −0.33 5.88∗∗∗
IR −0.18% −37.10% 16.61% 4.09% −1.50 15.25∗∗∗
PT −0.08% −20.61% 13.09% 2.91% −0.93 9.31∗∗∗
ES 0.02% −23.80% 13.07% 3.36% −0.83 8.26∗∗∗
VDAX 24.04 10.98 64.28 9.53 1.36 4.71∗∗∗
VIX 22.43 10.02 79.13 9.31 1.89 9.23∗∗∗
GDP 0.40% −2.50% 1.20% 0.62% −2.51 11.69∗∗∗
Note: The table reports descriptive statistics for all variables.
*** denotes series that differ from a normal distribution at 1% level as indi-
cated by a Jarque–Bera test.

All government bond indices are available at least since 12/30/1994 except for the

Greece government bond index that starts at 12/31/1997.5 The volatility index starts

1/2/1990. As Eurozone GDP growth is available since 06/30/1995 only, it deter-

mines the starting point for our bond sample. Altogether, we cover the period from

06/30/1995 to 09/30/2011. Fridays on which markets were closed are removed from

the sample which gives us 833 observations. However, all analysis that include gov-

5Data from the US, France, and Germany are available since 12/31/1985, time series from Ireland,
Italy, Spain start at 12/31/1987, while data from Portugal and Greece are only available since
12/30/1994 and 12/31/1997, respectively.
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Table 5.3: European Bonds: Unconditional Correlations

US DE FR IT GR IR PT ES VDAX VIX GDP
US 1
DE 0.73 1
FR 0.71 0.95 1
IT 0.48 0.55 0.67 1
GR 0.08 0.03 0.13 0.53 1
IR 0.31 0.32 0.40 0.60 0.61 1
PT 0.24 0.23 0.33 0.64 0.74 0.80 1
ES 0.52 0.62 0.70 0.87 0.50 0.64 0.68 1
VDAX 0.10 0.10 0.09 0.01 -0.02 0.05 0.03 0.04 1
VIX 0.11 0.13 0.12 0.02 -0.03 0.05 0.04 0.05 0.86 1
GDP 0.04 -0.03 -0.04 -0.03 -0.01 -0.02 -0.04 -0.03 -0.33 -0.44 1

Note: The table reports the unconditional correlations of our bond sample.

ernment bonds of Greece start at 12/31/1997 leaving us with a reduced sample of 702

observations.

Table 5.2 provides descriptive statistics for the bond sample. All bond markets exhibit

an average positive return. With the exception of Greece, the average weekly return

is about the same level in all countries. The peripheral countries in the Eurozone are

riskier as measured by the range between minimum and maximum return. In addition,

most time series are heavily left skewed and exhibit fat-tails. Moreover, they are non-

normal as indicated by the Jarque-Bera test. We find large outliers during the last two

years in the sample that can be attributed to the sovereign debt and the financial crisis.

All FTSE stock indices are available at least since 5/1/1998. That results in 685 ob-

servations from 5/8/1998 to 9/30/2011. Remarkably, average stock returns are slightly

positive only for Germany, France, and Spain and even negative for all other countries.

The reason for this is that our sample covers both the burst of the dot-com bubble and

the recent sovereign debt crisis. As expected, the standard deviation is higher for stock

than for bond index returns. Similar to the bond sample, stock returns are left skewed,

exhibit fat-tails, and are non-normal.

Both the non-normality and the presence of extreme values might severely affect the

estimation since the models are constructed by assuming conditionally normal asset

returns. Therefore, some authors truncate extreme values (Silvennoinen and Teräsvirta,

2005) or standardize the data (Cappiello et al., 2006a; Aslanidis and Christiansen, 2010).

On the other hand, we are especially interested in periods of high market stress in which

the presence of extreme values is most likely. Since Engle (2002) argues that results
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Table 5.4: European Stocks: Unconditional Correlations

US DE FR IT GR IR PT ES VDAX VIX GDP
US 1
DE 0.79 1
FR 0.80 0.91 1
IT 0.74 0.84 0.88 1
GR 0.47 0.54 0.55 0.54 1
IR 0.59 0.64 0.67 0.63 0.47 1
PT 0.55 0.65 0.69 0.67 0.49 0.49 1
ES 0.71 0.82 0.84 0.83 0.56 0.60 0.71 1
VDAX -0.10 -0.23 -0.20 -0.18 -0.18 -0.16 -0.16 -0.16 1
VIX -0.26 -0.27 -0.25 -0.25 -0.25 -0.23 -0.22 -0.23 0.86 1
GDP 0.02 0.04 0.04 0.03 0.00 0.02 0.02 0.02 -0.39 -0.48 1

Note: The table reports the unconditional correlations of our stock sample.

have a quasi-maximum likelihood estimation interpretation if returns are non-normal,

we do not truncate or standardize the data. Moreover, outliers may be accounted for

by an exogenous variables, particularly by the market turbulences dummy. Similar to

section 3.3.2, we multiply the return series with 1000 to avoid rounding error during

estimation. Since the mean of the return series is non-zero, we demean the return series.

Table 5.3 presents the unconditional correlations of the bond sample and suggests the

presence of three distinct groups: US, France, and Germany as they are considered to

be the safest investments; Greece as it is the main country affected by the sovereign debt

crisis during our sample period; and all other countries - namely, Ireland, Italy, Portugal,

and Spain. The unconditional correlation between France and Germany is close to 1.

That compares to correlations in the range of 0.24 to 0.70 between countries of the first

and the third group and exceptionally low correlations between US/France/Germany

and Greece (between 0.03 and 0.13). Unconditional correlations within the third group

are in the range between 0.53 and 0.87 while correlations between the third group and

Greece are mostly lower.

Table 5.4 provides the unconditional correlations for our stock sample. They are some-

what similar to the bond correlations with the exception of Italy and Spain which are

stronger correlated with France and Germany than in our bond sample. Notably, the

correlation between the volatility indices and the bond indices is negative while it is

positive for stocks.
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5.3 Empirical Results

5.3.1 European Bonds

At first, we estimate the conditional correlations between the bond index returns of

our sample employing the DCC(1,1) model. Thus, we need conditional variances as

estimated by a univariate GARCH model. In chapter 4, we have argued that it is

reasonable to estimate conditional variances with a GARCHX model in order to better

separate the effects of exogenous variables on volatility from the effects on the de-

pendence structure. Parameter estimates for the univariate GARCH model and the

GARCHX model are presented in Table 5.5 and 5.6, respectively.

Table 5.5: European Bonds: Univariate GARCH Models

Countries α0 α1 α2

US 1.178* (0.694) 0.058*** (0.019) 0.918*** (0.029)
DE 1.005* (0.562) 0.079*** (0.026) 0.886*** (0.039)
FR 1.260* (0.700) 0.072*** (0.026) 0.885*** (0.043)
IT 2.678** (1.308) 0.149*** (0.040) 0.788*** (0.059)
GR 0.848 (0.620) 0.155*** (0.052) 0.842*** (0.057)
IR 1.995*** (0.769) 0.207*** (0.051) 0.783*** (0.039)
PT 0.801** (0.373) 0.183*** (0.046) 0.817*** (0.036)
ES 1.677** (0.783) 0.143*** (0.044) 0.820*** (0.050)

Note: The table reports the GARCH (1,1) model estimates for government bond indices in our sample.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

As almost all coefficients in Table 5.5 are significant, there are clear signs of volatility

clustering in the bond return time series. By contrast, the exogenous variables we em-

ploy in our study do not influence conditional variances as the GARCHX γ coefficients

depicted in Table 5.6 are not significantly different from zero with the exception of the

US data.6 Hence, conditional variances are not driven by the exogenous variables we

considered. Nevertheless, we still employ the GARCHX model when estimating con-

ditional variances in the GDCCX model in order to clearly separate the effects of the

exogenous variables on the dependence structure from the effects on the volatility.

Table 5.7 presents the DCC model estimates. The sums of the DCC a and b parameters

are close to one implying a high degree of persistence in the conditional correlations.

Therefore, we employ the Engle and Sheppard (2001) correlation test as described in

6Results are unchanged if the insignificant parameters are dropped.
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Table 5.6: European Bonds: Univariate GARCHX Models

Countries Risk Aversion Market Turbulence GDP

US 260.337*** (85.408) 174.351 (169.044) −2881.405** (1134.129)
DE 28.188 (28.375) 273.536 (201.039) −1100.420 (693.951)
FR 30.904 (37.250) 348.669 (277.919) −779.713 (654.704)
IT −66.290 (62.116) 601.639 (374.589) −1649.987 (1383.919)
GR −4.050 (7.782) 382.021 (388.269) −969.616 (810.326)
IR 35.903 (51.002) 923.729* (515.484) −1004.079 (1240.029)
PT 8.308 (67.144) 150.417 (282.964) −545.560 (598.178)
ES −11.833 (38.202) 463.990 (349.892) −1246.786 (944.105)

Note: The table reports the GARCHX model estimates for government bond indices in our
sample. We use three exogenous variables simultaneously. We estimate conditional correlations
for each country pair separately.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

chapter 2.3. The right panel of Table 5.7 indicates that there is strong statistical

evidence for time-varying correlations between almost all countries. In addition, most

DCC parameter estimates are significantly different from zero.

Figure 5.1 plots the conditional correlations as calculated by the DCC model for the

EMU bonds. Looking at the graphs, different periods can be identified. Conditional

correlations are in the range between zero and one and rise steadily in the first period

prior to the introduction of the Euro in 1999. Correlations are close to one in the second

period which lasts nine years after the introduction of the Euro.

Figure 5.2 zooms into the conditional correlations of Greece. It becomes clear that

Greece is an exception as the second phase starts about two years later. This may reflect

the fact that Greece joined the Eurozone in 2001 two years after the introduction of the

Euro due to the non compliance with the Euro deficit criteria. With the start of the

financial crisis in 2008 conditional correlations decline. Particularly, there is a sudden

drop at the end of 2009 which marks the beginning of the European sovereign debt crisis.

Conditional correlations fall to values as low as -0.5. This is particularly interesting as

the relation changed from positive to negative indicating a complete reassessment of

Greek government bonds. However, since the announcement of the European Financial

Stability Facility in May 2010 conditional correlations are rising once again but remain

volatile.

Next, we use a GDCCX model to shed light on the economic causes of the changes in

conditional correlations and model variances with a GARCHX model. That allows us to
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Table 5.7: European Bonds: DCC Models

Countries a b Corr-Test

DE FR 0.099** (0.040) 0.899*** (0.042) 378.590***
DE IT 0.107*** (0.027) 0.892*** (0.028) 341.218***
DE GR 0.097*** (0.031) 0.902*** (0.032) 143.117***
DE IR 0.110*** (0.037) 0.887*** (0.038) 635.481***
DE PT 0.107*** (0.025) 0.891*** (0.025) 430.017***
DE ES 0.101*** (0.022) 0.898*** (0.022) 390.467***

FR IT 0.078*** (0.017) 0.922*** (0.018) 350.700***
FR GR 0.102*** (0.028) 0.897*** (0.029) 115.247***
FR IR 0.111*** (0.027) 0.887*** (0.027) 561.654***
FR PT 0.109*** (0.029) 0.889*** (0.029) 350.380***
FR ES 0.102*** (0.032) 0.898*** (0.032) 346.704***

IT GR 0.122*** (0.029) 0.875*** (0.030) 35.559**
IT IR 0.070*** (0.016) 0.926*** (0.017) 196.931***
IT PT 0.093*** (0.020) 0.905*** (0.021) 136.099***
IT ES 0.071*** (0.016) 0.928*** (0.016) 148.201***

GR IR 0.116*** (0.033) 0.881*** (0.034) 26.099
GR PT 0.166*** (0.028) 0.833*** (0.028) 22.756
GR ES 0.119** (0.056) 0.879*** (0.057) 23.412

IR PT 0.138*** (0.025) 0.859*** (0.025) 95.375***
IR ES 0.117*** (0.026) 0.881*** (0.026) 202.860***

PT ES 0.125*** (0.021) 0.872*** (0.022) 199.381***

Note: The table reports the DCC(1,1) model estimates for EMU government bond indices in our
sample. Corr-Test denotes the Engle and Sheppard (2001) test for testing the null of constant
correlation (Rt = R ∀ t).
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.
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Figure 5.1: European Government Bond Conditional Correlations (DCC(1,1) Model)

better separate the effects of the variables on the dependence structure from the effects

on the volatility since both models include the effects of exogenous variables. At first,

we employ only one exogenous variable in the GDCCX model. Later, we simultaneously

examine more variables in our two and three exogenous variables models.

Our first exogenous variable is risk aversion as measured by the VDAX volatility index.

Results for the coefficient of the exogenous variable are presented in Table 5.8 in the
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Figure 5.2: Greece Government Bond Conditional Correlations

first column. Remarkably, almost all estimated parameters are negative indicating that

conditional correlations fall if risk aversion rises. However, only some coefficients for

country pairs including Germany are significant. This might reflect the special status

of German bonds as a “save haven”.
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Table 5.8: European Bonds: GDCCX Models with One Exogenous Variable

Countries Risk Aversion Market Turbulence GDP

DE FR −0.037*** (0.000) −0.224** (0.103) 0.212* (0.112)
DE IT −0.043* (0.026) −0.373 (0.299) 0.512 (0.397)
DE GR −0.068 (0.064) −1.746** (0.803) 2.100* (1.178)
DE IR −0.132 (0.081) −0.434 (0.609) 2.279*** (0.846)
DE PT −0.139* (0.084) −0.552 (0.429) 2.515*** (0.742)
DE ES −0.030** (0.014) −0.558 (0.438) 0.293* (0.163)

FR IT −0.002 (0.008) −0.073 (0.192) 0.204 (0.221)
FR GR −0.046 (0.034) −1.391** (0.696) 2.213*** (0.857)
FR IR −0.088 (0.057) −0.495 (0.474) 1.924*** (0.678)
FR PT −0.083 (0.057) −0.278 (0.294) 1.775*** (0.539)
FR ES −0.023 (0.023) −0.428 (0.351) 0.456** (0.209)

IT GR −0.045 (0.041) −0.532*** (0.204) 1.994*** (0.589)
IT IR 0.035 (0.034) −0.221 (0.267) 1.884** (0.869)
IT PT −0.006 (0.016) −0.249** (0.105) 0.805* (0.472)
IT ES −0.003 (0.008) −0.437 (0.287) 0.156 (0.212)

GR IR −0.013 (0.053) −0.554 (0.462) 2.105* (1.116)
GR PT −0.036 (0.027) −0.914*** (0.327) 0.807 (0.581)
GR ES −0.032 (0.042) −1.163* (0.614) 1.563 (0.985)

IR PT −0.044 (0.036) −0.216 (0.276) 0.762* (0.453)
IR ES −0.047 (0.049) −1.060 (0.978) 1.533** (0.633)

PT ES −0.034 (0.025) −0.334 (0.227) 0.932** (0.371)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model
for EMU government bonds. We estimate volatility with a GARCHX model. The c parameter
measures the influence of the exogenous variable on the respective conditional correlations. We
estimate conditional correlations for each country pair separately. Risk aversion is proxied by
the VDAX volatility index, market turbulence is the upper first percentile of the VDAX index,
and GDP growth is quarterly Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

We are also interested in the evolution of correlations in times of extreme market stress.

The VDAX reached its peaks in several phases of market turbulence: in the aftermath

of the LTCM crisis in October 1998, in the wake of the dot-com bubble in October

2002, and in October 2008 after the collapse of Lehman Brothers. Therefore, similar to

Connolly et al. (2005) we focus on the percentiles of the distribution of the volatility in-

dex. We construct a proxy for market turbulence using the first percentile of the VDAX

index and employ this measure as exogenous variable. We define market turbulence m

as follows: mt = I [V DAXt > VDAX99] · V DAXt where I [·] is an indicator function
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that takes on the value 1 if the argument is true and 0 otherwise.7 The second column

in Table 5.8 shows the effects of market turbulence. Conditional correlations for Greece

government bond return indices significantly fall in case of market turbulence.

These results raise the question if market turbulence rather than risk aversion explains

conditional correlations. Therefore, we repeat our analysis including the risk aversion

measure and the proxy for market turbulence simultaneously in a two exogenous vari-

ables model.8 As shown in Table 5.9, the results for our market turbulence proxy remain

largely unchanged while the effect of risk aversion on conditional correlations dimin-

ishes. When accounting for both risk aversion and market turbulence simultaneously,

risk aversion significantly explains the conditional correlations only for the linkage be-

tween France and Germany and the signs of the coefficients even changes to positive

for some country pairs.

Next, as reported in third column in Table 5.10, we consider the effects of macroeco-

nomic fundamentals on conditional correlations within the Eurozone. Using Eurozone

GDP growth as a proxy for the business cycle, we find that higher GDP growth results

in higher conditional correlations. The effect can be found for both correlations between

the safest and the riskier countries and for correlations within riskier countries.

Employing GDP growth as the only explaining variable might be misleading as market

turbulence usually coincides with lower GDP growth. Therefore, in our final analysis

we employ all three exogenous variables simultaneously. Results presented in Table

5.10 confirm our previous findings. Both GDP growth and market turbulences drive

conditional correlations downwards whereas risk aversion has almost no effect. There-

fore, when GDP growth turns negative during a crisis, correlations decline. In addition,

if there are market turbulences, conditional correlations fall even more. As expected,

the impact of market turbulences is most pronounced for the peripheral countries. Fur-

thermore, there is no general effect of risk aversion on conditional correlations since the

signs of the coefficients are positive for some country pairs and are negative for other

country pairs. Yet most coefficients are significantly different from zero.

7Repeating all analysis with a market turbulence dummy i.e. mt,alt = I [V DAXt > VDAX99] leaves
results qualitatively unchanged.

8When using both the proxy for risk aversion and for market turbulence in the two and three ex-
ogenous variables models, we remove the first percentile from the risk aversion indicator in order
to better separate the effects of risk aversion and market turbulence. Employing the unchanged
VDAX index does not change our results qualitatively.
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Table 5.9: European Bonds: GDCCX Models with Two Exogenous Variables

Countries Risk Aversion Market Turbulence

DE FR −0.033* (0.019) −0.172 (0.128)
DE IT −0.037 (0.029) −0.263 (0.346)
DE GR −0.007 (0.045) −1.742** (0.809)
DE IR −0.130 (0.083) −0.305 (0.502)
DE PT −0.122 (0.087) −0.424 (0.512)
DE ES −0.020 (0.014) −0.549 (0.506)

FR IT 0.001 (0.010) −0.078 (0.226)
FR GR −0.003 (0.023) −1.383** (0.705)
FR IR −0.080 (0.061) −0.354 (0.435)
FR PT −0.071 (0.055) −0.222 (0.301)
FR ES −0.001 (0.012) −0.425 (0.358)

IT GR 0.017 (0.019) −0.546*** (0.202)
IT IR 0.056 (0.038) −0.364 (0.302)
IT PT 0.012 (0.015) −0.264** (0.107)
IT ES 0.011 (0.007) −0.444* (0.261)

GR IR 0.021 (0.049) −0.621 (0.483)
GR PT 0.004 (0.015) −0.916*** (0.323)
GR ES 0.020 (0.025) −1.191** (0.589)

IR PT −0.037 (0.040) −0.147 (0.262)
IR ES −0.016 (0.047) −1.076 (1.046)

PT ES −0.008 (0.018) −0.325 (0.230)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model for EMU
government bonds. We estimate volatility with a GARCHX model. The c parameter measures the influence
of the exogenous variable on the respective conditional correlations. We estimate conditional correlations
with two exogenous variables simultaneously and for each country pair separately. Risk aversion is proxied
by the VDAX volatility index, market turbulence is the upper first percentile of the VDAX index, and GDP
growth is quarterly Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

In summary, we find that conditional correlations between bond indices fall as GDP

growth declines and if there is market turbulence. From a portfolio perspective this is

a very favorable result since it implies that the benefits of international diversification

increase in times of market turmoils.
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Table 5.10: European Bonds: GDCCX Models with Three Exogenous Variables

Countries Risk Aversion Market Turbulence GDP

DE FR −0.033* (0.019) −0.167 (0.122) 0.061 (0.083)
DE IT −0.037 (0.030) −0.235 (0.333) 0.412 (0.417)
DE GR 0.049 (0.035) −1.585** (0.774) 1.762* (1.022)
DE IR −0.033 (0.082) −0.187 (0.501) 2.142** (0.888)
DE PT −0.072 (0.076) −0.240 (0.515) 2.265*** (0.780)
DE ES −0.024* (0.014) −0.555 (0.539) 0.217 (0.137)

FR IT 0.002 (0.010) −0.058 (0.201) 0.192 (0.228)
FR GR 0.050* (0.027) −1.153* (0.630) 1.985*** (0.731)
FR IR −0.024 (0.048) −0.273 (0.428) 1.790** (0.698)
FR PT −0.011 (0.034) −0.063 (0.263) 1.683*** (0.585)
FR ES 0.003 (0.010) −0.399 (0.349) 0.298* (0.167)

IT GR 0.057*** (0.016) −0.415** (0.176) 1.866*** (0.538)
IT IR 0.044 (0.035) −0.135 (0.319) 1.594** (0.808)
IT PT 0.025 (0.017) −0.210** (0.105) 0.752 (0.618)
IT ES 0.011 (0.007) −0.442* (0.263) 0.016 (0.193)

GR IR 0.042 (0.056) −0.522 (0.531) 1.787 (1.139)
GR PT 0.007 (0.018) −0.910*** (0.319) 0.138 (0.479)
GR ES 0.054** (0.025) −1.085** (0.547) 1.118* (0.655)

IR PT −0.018 (0.049) −0.136 (0.274) 0.652 (0.521)
IR ES 0.032 (0.049) −0.846 (0.820) 1.428** (0.601)

PT ES 0.006 (0.018) −0.279 (0.228) 0.640* (0.367)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model
EMU stock indices. We estimate volatility with a GARCHX model. The c parameter measures the
influence of the exogenous variable on the respective conditional correlations. We estimate conditional
correlations with three exogenous variables simultaneously and for each country pair separately. Risk
aversion is proxied by the VDAX volatility index, market turbulence is the upper first percentile of
the VDAX index, and GDP growth is quarterly Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.
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Table 5.11: European Stocks: Univariate GARCH Models

Countries α0 α1 α2

US 36.068** (14.971) 0.192*** (0.065) 0.773*** (0.060)
DE 109.276** (50.962) 0.266** (0.123) 0.671*** (0.113)
FR 24.859** (11.738) 0.163*** (0.055) 0.831*** (0.037)
IT 44.727** (17.642) 0.285*** (0.103) 0.715*** (0.064)
GR 17.147 (13.316) 0.064*** (0.023) 0.930*** (0.026)
IR 35.084* (19.370) 0.129*** (0.042) 0.855*** (0.038)
PT 50.419** (20.537) 0.233*** (0.079) 0.730*** (0.066)
ES 10.714 (6.857) 0.098*** (0.022) 0.902*** (0.026)

Note: The table reports the GARCH (1,1) model estimates for stock indices in our sample.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

5.3.2 European Stocks

We repeat the analysis with the same set of countries but now for stock indices. Sim-

ilar to the bond sample, GARCH estimates as shown in Table 5.11 indicate volatility

clustering. This confirms results reported by Cappiello et al. (2006a).

Turning to the results of the GARCHX model for stocks as reported in Table 5.12, we

find that stock volatilities in the US, in Germany, in France, and in Italy are influenced

by the exogenous variables. By contrast, we have previously shown these variables

do not affect conditional bond variances. Specifically, stock volatility increase if risk

aversion grows or if there are market turbulences. It is important to stress the difference

between market turbulences and volatility. We define market turbulences as extremes

in the VDAX index. This index is a gauge of future volatility as expected by the market

whereas the estimated variance is the current volatility. In addition to risk aversion and

market turbulences, also negative GDP growth results in rising volatility. Interestingly,

for Greece, Ireland, Portugal, and Spain, we cannot reject the hypothesis that our set

of exogenous variables does not influence conditional variances.

Table 5.13 reports the results of DCC(1,1) models on stock indices. Most parameters

are significantly different from zero. Employing the Engle and Sheppard (2001) correla-

tion test we cannot reject the hypothesis that conditional correlations are time-varying

for pair-wise correlations between almost all countries included. Remarkably, the DCC

model innovation parameter a is lower for stocks than for bonds. Accordingly, con-

ditional stock correlations plotted in Figure 5.3 are smoother than conditional bond

correlations (see Figure 5.1).
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Table 5.12: European Stocks: Univariate GARCHX Models

Countries Risk Aversion Market Turbulence GDP

US 42.727*** (4.975) 49.489** (24.441) −342.353*** (110.439)
DE 43.716*** (5.324) 187.362*** (41.410) −321.999*** (115.045)
FR 41.934*** (4.643) 120.828*** (30.574) −332.296*** (96.468)
IT 19.768*** (6.087) 63.211** (31.751) −145.851* (79.036)
GR 0.664 (0.760) −9.683 (8.715) 8.989 (21.461)
IR −0.663 (2.002) 1.222 (22.377) 3.365 (28.217)
PT 16.149** (6.524) 71.128 (49.529) −41.909 (72.162)
ES 35.413 (39.370) 123.966 (141.369) −242.405 (341.251)

Note: The table reports the GARCHX model estimates for stock indices in our sample. We use three
exogenous variables simultaneously. We estimate conditional correlations for each country pair separately.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

Table 5.13: European Stocks: DCC Models

Countries a b Corr-Test

DE FR 0.115** (0.049) 0.851*** (0.063) 51.956***
DE IT 0.128** (0.061) 0.767*** (0.093) 24.739
DE GR 0.027 (0.018) 0.957*** (0.017) 39.735***
DE IR 0.033** (0.014) 0.951*** (0.020) 53.485***
DE PT 0.123*** (0.039) 0.766*** (0.085) 45.135***
DE ES 0.052** (0.026) 0.916*** (0.047) 24.789

FR IT 0.084** (0.041) 0.874*** (0.063) 18.058
FR GR 0.025 (0.018) 0.958*** (0.015) 30.083*
FR IR 0.032** (0.013) 0.957*** (0.018) 38.567**
FR PT 0.098** (0.039) 0.832*** (0.057) 32.198*
FR ES 0.023 (0.015) 0.955*** (0.027) 15.337

IT GR 0.023 (0.015) 0.959*** (0.017) 42.481***
IT IR 0.050 (0.035) 0.920*** (0.059) 30.685*
IT PT 0.087*** (0.029) 0.837*** (0.053) 42.803***
IT ES 0.045 (0.033) 0.917*** (0.061) 29.336

GR IR 0.032 (0.022) 0.940*** (0.035) 34.768**
GR PT 0.021 (0.014) 0.954*** (0.020) 34.828***
GR ES 0.022 (0.015) 0.961*** (0.014) 42.375***

IR PT 0.009 (0.006) 0.982*** (0.010) 41.479***
IR ES 0.027** (0.013) 0.954*** (0.018) 41.255***

PT ES 0.013 (0.008) 0.978*** (0.017) 41.978***

Note: The table reports the DCC(1,1) model estimates for EMU stock indices in our sample.
Corr-Test denotes the Engle Sheppard (2002) test for testing the null of constant correlation
(Rt = R ∀ t).
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.
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Figure 5.3: European Stocks Conditional Correlations (DCC(1,1) Model)

Figure 5.3 allows us to discuss the trends in conditional stock correlations during the last

years. Berben and Jansen (2009) find that correlations rise between 1995 and 1997, and

Cappiello et al. (2006b) note that correlations for large EMU countries increase in the

second half of the 1990s. By contrast, we cannot observe a major trend in conditional

correlations during the sample period. However, our stock sample starts 5/8/1998.

At this time, the transition to a regime with higher correlations might already have

been completed. In addition, the level of the conditional correlations is fluctuating
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Table 5.14: European Stocks: GDCCX Models with One Exogenous Variable

Countries Risk Aversion Market Turbulence GDP

DE FR −0.137 (0.139) −0.080 (0.123) −0.640 (0.566)
DE IT −0.437 (0.290) −0.995 (0.682) 0.296 (5.952)
DE GR −0.036 (0.171) 0.681* (0.411) −11.786 (7.200)
DE IR 0.075 (0.157) 0.341 (0.388) −3.188*** (0.812)
DE PT −0.627 (0.638) −0.259 (2.351) −9.801 (12.676)
DE ES 0.089 (0.344) 0.536 (0.529) −3.319 (2.493)

FR IT −0.178 (0.120) −0.641** (0.250) 0.043 (1.548)
FR GR −0.076 (0.155) 0.729** (0.317) −12.504** (5.192)
FR IR 0.058 (0.181) 0.074 (0.372) −3.116*** (0.840)
FR PT −0.448 (0.684) −0.195 (1.006) −17.848 (21.393)
FR ES −0.388 (1.480) 1.130 (1.141) −39.475** (15.919)

IT GR −0.251* (0.145) 0.258 (0.865) −8.168* (4.891)
IT IR −0.125 (0.376) −0.001 (0.668) −3.944 (2.725)
IT PT −0.907 (0.723) 0.322 (1.249) −6.814 (18.298)
IT ES 0.117 (0.522) 0.572** (0.246) −3.207 (4.842)

GR IR 0.192 (0.471) 2.561*** (0.196) −15.758*** (4.819)
GR PT −0.130 (0.228) 1.440*** (0.504) −10.589*** (2.864)
GR ES −0.022 (0.217) 1.172*** (0.275) −9.476** (4.170)

IR PT 0.127 (0.230) 1.432*** (0.302) −5.579 (3.484)
IR ES 0.080 (0.305) 0.674* (0.385) −57.065 (36.351)

PT ES 0.120 (0.101) 3.141* (1.677) −59.855* (31.401)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model
for EMU stocks. We estimate volatility with a GARCHX model. The c parameter measures
the influence of the exogenous variable on the respective conditional correlations. We estimate
conditional correlations for each country pair separately. Risk aversion is proxied by the VDAX
volatility index, market turbulence is the upper first percentile of the VDAX index, and GDP
growth is quarterly Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

around 0.8 for the larger countries while it is lower for correlations involving Greece,

Ireland, or Portugal. This finding is in line with other studies (Cappiello et al., 2006b).

Overall, we conclude that the trend of convergence observed at the end of the 1990s has

not continued since. Notably, all correlation estimates have another common feature:

Conditional correlations jump on average about 0.17 from 10/10/2008 to 10/17/2008

as stock markets contemporaneously plunged due to the enlargening financial crisis.

Results for the GDCCX analysis which incorporates exogenous variables are presented

in Table 5.14. Similar to the bond sample, conditional correlations between European

stock indices are barley influenced by risk aversion as measured by the VDAX volatility

index.
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Employing our proxy for market turbulence as an exogenous variable reveals an impor-

tant difference between bonds and stocks. Although conditional correlations between

bonds indices decline in times of market turbulences, they rise for stock indices. This is

a clear indication of contagion in stock markets in times of market stress. These effects

can be observed for most markets and especially for the peripheral countries.

Table 5.15: European Stocks: GDCCX Models with Two Exogenous Variables

Countries Risk Aversion Market Turbulence

DE FR −0.151 (0.137) −0.047 (0.161)
DE IT −0.569 (0.370) −0.032 (0.457)
DE GR −0.161 (0.183) 0.696* (0.364)
DE IR 0.028 (0.175) 0.325 (0.392)
DE PT −0.708 (0.932) −0.409 (1.184)
DE ES 0.000 (0.387) 0.536 (0.650)

FR IT 0.057** (0.026) −0.617*** (0.132)
FR GR −0.202 (0.168) 0.758*** (0.246)
FR IR 0.066 (0.217) 0.023 (0.365)
FR PT −0.554 (0.872) −0.148 (0.782)
FR ES −1.143 (1.380) 0.710 (1.088)

IT GR −0.442** (0.189) 0.681 (0.480)
IT IR −0.191 (0.462) 0.161 (0.624)
IT PT −1.202 (0.909) 0.102 (1.070)
IT ES −0.083 (0.384) 0.553** (0.264)

GR IR −0.305 (0.332) 2.442*** (0.187)
GR PT −0.379 (0.236) 1.461*** (0.378)
GR ES −0.261 (0.193) 1.144*** (0.242)

IR PT −0.123 (0.210) 1.419*** (0.272)
IR ES −0.120 (0.316) 0.694** (0.351)

PT ES −0.319 (2.334) 3.028* (1.635)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model. We estimate
volatility with a GARCHX model. The c parameter measures the influence of the exogenous variable on
the respective conditional correlations. We estimate conditional correlations with two exogenous variables
simultaneously and for each country pair separately. Risk aversion is proxied by the VDAX volatility index,
market turbulence is the upper first percentile of the VDAX index, and GDP growth is quarterly Eurozone
GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

Turning to GDP growth as exogenous variable, we note another interesting difference

between stock and bond markets as presented in the third column in Table 5.14. We

find that higher GDP growth results in lower conditional correlations between stock

markets. Yet, if GDP growth turns negative, conditional correlations between stock

markets actually increase. These are additional indications of contagion effects be-
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tween stock markets in adverse market conditions. However, in the previous section

we did not find any signs of contagion for bond markets. Specifically, conditional bond

return correlations fall in times of falling GDP growth while conditional stock return

correlations rise.

Next, we repeat our analysis with two exogenous variables simultaneously. We use our

general measure of risk aversion9 and our proxy for market turbulence as exogenous vari-

ables. Table 5.15 presents the results. Yet, it turns out that coefficients and standard

errors change only marginally. Our proxy for risk aversion does not explain conditional

correlations in this specification whereas market turbulences increase correlations.

Finally, we examine all three exogenous variables together (see Table 5.16). Controlling

for risk aversion as well as market turbulences, the effect of GDP growth on conditional

correlations is even more pronounced than in the specification in which GDP growth

is the only explaining variable (see Table 5.16). For example, all conditional stock

correlations that include Greece rise when GDP growth turns negative.

By contrast, the effect of market turbulences on conditional correlations diminishes.

The influence of GDP growth seems to dominate in the peripheral countries. Exceptions

are the Greece-Ireland, Greece-Portugal, and Greece-Spain conditional correlations.

Interestingly, all coefficients for the exogenous variable risk aversion are negative while

only some are significantly different from zero.

In summary, we find that conditional stock correlations increase when there is negative

GDP growth,. If there are market turbulences, conditional correlations increase even

further, however, only for a limited set of countries. This diminishes any diversifica-

tion benefits in portfolios of European stock indices. We also note that the effects

of market turbulences on conditional correlations that we found in the one exogenous

variable model mostly disappear once we take GDP growth into account. In order to

avoid incorrect conclusions, we strongly suggest to examine several exogenous variables

simultaneously. That is also a strong argument for choosing correlation models that

allow for several exogenous variables (e.g. GDCCX, DCCX) instead of those that can

only allow for one or two variables (e.g. STCC, DSTCC).

9Similar to our analysis with bonds, we remove the first percentile from the VDAX index when
employing both the risk aversion and the market stress proxy to better separate both effects.
Employing the unchanged VDAX index does not change our results qualitatively.
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Table 5.16: European Stocks: GDCCX Models with Three Exogenous Variables

Countries Risk Aversion Market Turbulence GDP

DE FR −0.356 (0.532) −0.217 (0.356) −3.054 (3.559)
DE IT −0.873* (0.450) −0.218 (0.450) −5.371 (3.501)
DE GR −0.326 (0.345) 0.540 (0.492) −11.682* (6.951)
DE IR −0.084 (0.287) −0.465 (2.005) −4.633 (5.729)
DE PT −1.059 (1.520) −0.906 (1.012) −12.711 (18.234)
DE ES −0.243 (0.335) 0.327 (0.482) −4.481 (3.090)

FR IT −0.100 (0.100) −1.103*** (0.426) −3.222*** (0.640)
FR GR −0.531* (0.296) 0.319 (0.238) −13.032*** (3.983)
FR IR −0.522 (0.386) −0.141 (0.328) −6.452*** (2.398)
FR PT −0.017 (0.133) −0.197 (0.404) −4.742*** (1.283)
FR ES −1.916 (1.840) −0.337 (1.220) −43.106*** (11.211)

IT GR −0.709** (0.283) 0.079 (0.628) −10.386** (4.648)
IT IR −0.401 (0.277) −0.350 (0.626) −6.607*** (1.939)
IT PT −1.807* (1.005) −0.395 (0.817) −18.037 (11.019)
IT ES −0.342 (0.415) 0.403 (0.268) −3.851 (3.091)

GR IR −0.585 (0.516) 1.899*** (0.341) −15.387*** (5.948)
GR PT −0.721** (0.316) 0.994** (0.402) −12.413*** (3.342)
GR ES −0.530** (0.260) 0.798*** (0.255) −9.325** (3.673)

IR PT −0.217 (0.684) 0.771 (4.358) −4.811** (1.971)
IR ES −0.363 (0.411) 0.467 (0.391) −4.167 (2.838)

PT ES −0.042 (0.324) 0.250 (0.477) −4.435 (3.406)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model EMU
government bonds. We estimate volatility with a GARCHX model. The c parameter measures the
influence of the exogenous variable on the respective conditional correlations. We estimate conditional
correlations with three exogenous variables simultaneously and for each country pair separately. Risk
aversion is proxied by the VDAX volatility index, market turbulence is the upper first percentile of
the VDAX index, and GDP growth is quarterly Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

5.3.3 US and Europe: Bonds and Stocks

Last, we extend our sample and include the US. First, we estimate time-varying cor-

relations with a DCC(1,1) model. Results are presented in Table 5.17 for both bonds

and stocks. Most parameters are significantly different from zero and shocks to corre-

lation are typically highly persistent since the b parameter is close to one while the a

parameter is close to zero. As expected, the average half-life of the innovations is much

higher for bonds than for stocks. Furthermore, we employ the Engle and Sheppard

(2001) correlation test for testing the null hypothesis that Rt = R ∀ t. We find strong

evidence against the assumption of a constant conditional coefficient for most US and
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European stock and bond markets. An exception are bond conditional correlations

between the US and France as well as between the US and Germany. That most likely

reflects the equal perception of these government bonds as being “save havens”.

Table 5.17: US and Europe: DCC Models

Countries a b Corr-Test

Government Bonds

US DE 0.013 (0.014) 0.963*** (0.042) 18.698
US FR 0.018 (0.015) 0.965*** (0.034) 20.767
US IT 0.036*** (0.011) 0.961*** (0.013) 98.233***
US GR 0.046*** (0.012) 0.948*** (0.014) 56.930***
US IR 0.050*** (0.010) 0.945*** (0.012) 212.865***
US PT 0.038*** (0.014) 0.957*** (0.016) 146.163***
US ES 0.069*** (0.012) 0.928*** (0.013) 83.482***

Stocks

US DE 0.046 (0.130) 0.933*** (0.243) 31.144*
US FR 0.017 (0.017) 0.971*** (0.042) 28.844
US IT 0.043* (0.023) 0.925*** (0.049) 34.052**
US GR 0.018 (0.017) 0.961*** (0.021) 32.091*
US IR 0.041 (0.029) 0.920*** (0.052) 43.784***
US PT 0.044** (0.018) 0.912*** (0.040) 40.512***
US ES 0.027 (0.018) 0.946*** (0.070) 50.121***

Note: The table reports the DCC(1,1) model estimates for US and Eurozone government bond
indices and stock indices in our sample. Correlation test denotes the Engle Sheppard (2002) test
for testing the null Rt = R ∀ t.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses. Returns have been
multiplied by 1000 to improve the numerical performance of the estimation routine.

Figures 5.4 and 5.5 further illustrate the estimated conditional correlations for bond and

stock markets, respectively. The level of the time-varying correlations is generally lower

between the US and the EMU countries than within the EMU countries (see Figure

5.1). We determine a positive bond return linkage for most of the sample period in the

range between 0.5 and 0.8. Recently, these correlations have decreased dramatically

to around zero and even below zero for Italy, Greece, Ireland, Portugal, and Spain

indicating a flight-to-quality during the European sovereign debt crisis. By contrast,

conditional correlations between the US and Germany as well as US and France remain

almost stable during that period.

Turning to the stock correlations in Figure 5.5, we find that - as expected - the level of

conditional correlations is lower for Greece, Ireland, and Portugal. However, we observe
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Figure 5.4: US Government Bond Conditional Correlations (DCC(1,1) Model))

some volatility in conditional correlations in the wake of the financial crisis at the end

of 2008. However, the jump we find in the conditional correlations between European

stock markets between 10/10/2008 and 10/17/2008 is less pronounced and limited to

the correlations between the US and Greece as well as between the US and Portugal.
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Figure 5.5: US Stocks Conditional Correlations (DCC(1,1) Model)

Comparing the stock and the bond correlations, it is remarkable that there are no

trends within stock correlations as observed within bond correlations after 10/2008.

Table 5.18 reports the results of employing the GDCCX model with one exogenous

variable. Since now the US are included in our sample, we measure risk aversion using
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the VIX index.10 Moreover, our proxy for market turbulence is the first percentile of

the VIX index and our indicator for the business cycle is European GDP growth.

Table 5.18: US and Europe: GDCCX Models with One Exogenous Variable

Countries Risk Aversion Market Turbulence GDP

Government Bonds

US DE −0.203 (0.431) −0.411 (0.616) 0.926* (0.486)
US FR −0.108 (0.145) −0.400 (0.457) 1.512 (1.905)
US IT −0.210** (0.102) −1.043** (0.420) 5.908*** (1.504)
US GR −0.456*** (0.176) −1.129** (0.515) 8.012*** (2.914)
US IR −0.318*** (0.086) −0.980** (0.468) 6.773*** (1.510)
US PT −0.293** (0.125) −0.752* (0.391) 6.264*** (1.844)
US ES −0.266** (0.112) −1.078*** (0.418) 5.426*** (1.711)

Stocks

US DE 0.001 (0.036) 0.017 (0.080) −1.714* (0.911)
US FR −4.848 (12.750) −0.058 (0.143) −2.379*** (0.296)
US IT −0.301*** (0.106) −0.828** (0.419) 0.370 (2.792)
US GR −0.210*** (0.053) 0.074 (0.541) −11.372*** (3.483)
US IR −0.296 (0.352) −0.243 (0.789) −3.188*** (1.209)
US PT −0.530 (0.714) −0.731 (1.159) −23.329 (18.695)
US ES −0.171 (0.139) 0.027 (0.338) −4.826*** (1.346)

Note: The table reports the c coefficients of the exogenous variable employing a GDCCX model.
We estimate volatility with a GARCHX model. The c parameter measures the influence of the
exogenous variable on the respective conditional correlations. We estimate conditional corre-
lations for each country pair separately. Risk aversion is proxied by the VIX volatility index,
market turbulence is the upper first percentile of the VIX index, and GDP growth is quarterly
Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

The first column of Table 5.18 shows that risk aversion significantly explains conditional

correlations between bond markets in different countries. The effect is less pronounced

for stock markets. However, the effects of risk aversion almost completely disappear

when allowing for more than one exogenous variable (see Tables 5.19 and 5.20). Again,

this is a strong argument in favor of employing conditional correlation models that

allow for many exogenous variables.

Market turbulences significantly influence conditional bond correlations but not stock

correlations. Specifically, if there are market turbulences, conditional correlations be-

tween the bonds fall. The effect is robust to the inclusion of other exogenous variables

10Reapting all analysis with the VDAX index instead of the VIX index leaves results qualitatively
unchanged.
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Table 5.19: US and Europe: GDCCX Models with Two Exogenous Variables

Countries Risk Aversion Market Turbulence

Government Bonds

US DE 0.162 (0.221) −0.575 (0.718)
US FR 0.094 (0.152) −0.473 (0.508)
US IT 0.000 (0.060) −1.043** (0.446)
US GR −0.209 (0.164) −0.972* (0.514)
US IR −0.078*** (0.021) −1.305*** (0.212)
US PT −0.107 (0.102) −0.676* (0.389)
US ES 0.000 (0.122) −1.078* (0.615)

Stocks

US DE 0.013 (0.039) 0.005 (0.082)
US FR −4.306 (5.856) 0.763 (2.634)
US IT −0.050 (0.115) −0.778* (0.402)
US GR −0.332*** (0.109) 0.331 (0.359)
US IR 0.061 (0.409) −0.295 (0.957)
US PT 0.072 (0.478) −0.751 (1.371)
US ES 0.349 (0.226) −0.057 (0.208)

Note: The table reports the c coefficients of the exogenous variable employing a generalized DCCX model.
We estimate volatility with a GARCHX model. The c parameter measures the influence of the exogenous
variable on the respective conditional correlations. We estimate conditional correlations with two exogenous
variables simultaneously and for each country pair separately. Risk aversion is proxied by the VIX volatility
index, market turbulence is the upper first percentile of the VIX index, and GDP growth is quarterly
Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.

such as risk aversion. Interestingly, most coefficients for bonds and for stocks are nega-

tive. By contrast, remember that market turbulences resulted in increasing conditional

correlations between stocks in Europe. This is an indication that the European stock

market are subject to contagion whereas the US is not affected.

Third, we find that the most important driver of correlations between the US and

Europe are effects of the business cycle. Positive GDP growth results in increasing

correlations between bonds but decreasing correlations between stocks. That is true

both for bonds and for stocks and is robust to including risk aversion and market

turbulence as exogenous variables.
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Table 5.20: US and Europe: GDCCX Models with Three Exogenous Variables

Countries Risk Aversion Market Turbulence GDP

Government Bonds

US DE 0.156 (0.162) −0.888* (0.502) −4.495** (1.757)
US FR 0.036 (0.030) −0.103 (0.193) 1.125 (0.842)
US IT 0.069 (0.043) −0.586* (0.346) 3.929*** (1.454)
US GR −0.081 (0.210) −0.736 (0.498) 4.621 (4.722)
US IR −0.071 (0.060) −0.529 (0.322) 3.836* (1.978)
US PT −0.016 (0.089) −0.396 (0.346) 4.764** (2.180)
US ES 0.024 (0.039) −0.717** (0.364) 2.473* (1.350)

Stocks

US DE −0.086 (0.059) −0.235 (0.170) −3.781*** (1.138)
US FR −5.531 (3.799) 0.051 (1.013) −49.242** (23.881)
US IT −0.145 (0.184) −1.288** (0.512) −5.608 (4.450)
US GR −0.362*** (0.125) 0.233 (0.558) −1.746 (2.839)
US IR −0.085 (0.175) −0.414 (0.471) −6.473*** (2.401)
US PT 0.014 (0.426) −0.992 (2.675) −9.193 (8.510)
US ES 0.328* (0.177) −0.408 (0.322) −4.683*** (1.489)

Note: The table reports the c coefficients of the exogenous variable employing a generalized DCCX model.
We estimate volatility with a GARCHX model. The c parameter measures the influence of the exogenous
variable on the respective conditional correlations. We estimate conditional correlations with three exogenous
variables simultaneously and for each country pair separately. Risk aversion is proxied by the VIX volatility
index, market turbulence is the upper first percentile of the VIX index, and GDP growth is quarterly
Eurozone GDP.
* p < 0.10, ** p < 0.05, *** p < 0.01, robust standard errors in parentheses.
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5.4 Summary

In this chapter, we employ both DCC and GDCCX models and investigate the effects

of exogenous variables on bond and stock market correlations in the US and in the

Eurozone between 1998 and 2011. We model volatility with a GARCHX model in

order to separate the effects of the exogenous variables on volatility from the effects on

the dependence structure. At first, we examine conditional correlations using the DCC

model. We find no trend of further convergence among linkages between Eurozone bond

and stock indices. By contrast, Eurozone bond correlations have dramatically fallen

since the begin of the financial crisis.

Moreover, we show that both GDP growth and market turbulences drive conditional

correlations whereas risk aversion has almost no effect. The impact of market turbu-

lences is most pronounced for the peripheral countries. There is an important difference

between bonds and stocks: When there is negative GDP growth, conditional bond cor-

relations fall, but European stock correlations increase strongly which is a clear sign

of contagion. If, in addition, there are market turbulences, this effect becomes even

more pronounced, but not for all countries. In line with Hunter and Simon (2005), we

conclude that international diversification benefits for stock investors but not for bond

investors are diminished in times of crisis.

In addition, it is useful to examine the impact of several exogenous variables on con-

ditional correlations simultaneously. For example, the effects of market turbulences on

conditional correlations nearly disappear once we account for GDP growth. In order to

avoid incorrect conclusions, we strongly suggest to examine several exogenous variables

simultaneously. That is also a strong argument for choosing correlation models that

allow for several exogenous variables such as the DCCX or the GDCCX model instead

of those that can only allow one or two variables such as the STCC model.
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6 Stock-Bond Correlations and Real Time

Macroeconomic Announcements

6.1 Introduction

In this chapter, we present another application of the econometric framework, we em-

ploy in the previous chapters. Correlation dynamics between major asset clases are of

special interest for asset allocation and risk management. For example, time-varying

correlations might either impede or enhance the diversification benefits of a portfolio.

As we examined the conditional correlations between different sectors of the same asset

class in the previous chapter, in this chapter, we study correlations between different as-

set classes. More precisely, we investigate how risk aversion and macro announcements

influence high-frequency correlations between bonds and stocks in the Eurozone.

Against this background, central questions remain unanswered. Is risk aversion deter-

mining conditional correlations or do macroeconomic announcements drive prices? Did

the recent financial crisis have any (lasting) effects on stock-bond correlations? Is the

direction or the size of macroeconomic announcements surprise of higher importance?

Generally, do these variables change the stock-bond dependence structure or just the

volatility, or both? Although there are numerous studies that investigate stock-bond

correlations,1 the literature is not yet conclusive.

Specifically, employing a high-frequency dataset, Andersen et al. (2007) and Boyd et al.

(2005) find that macroeconomic announcements affect correlations. Furthermore, they

show that the impact of news varies considerably during the business cycle. Christiansen

and Ranaldo (2007) analyze realized correlations and highlight that the occurrence of a

macroeconomic announcement but not the actual announced figure plays an important

role for stock-bond correlations.

1An incomplete sample of relevant papers includes: Li (2002); Ilmanen (2003); Pástor and Stambaugh
(2003); Boyd et al. (2005); Connolly et al. (2005); Kim et al. (2006); Andersen et al. (2007);
Christiansen and Ranaldo (2007); Connolly et al. (2007); Corsi and Audrino (2007); Andersson
et al. (2008); Baur and Lucey (2009); Panchenko and Wu (2009); Yang et al. (2009); Aslanidis
and Christiansen (2010); Baele et al. (2010); Bansal et al. (2010) and Aslanidis and Christiansen
(2011).
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Using daily or lower frequency but not high-frequency data, several studies present

evidence for stock and bond prices moving in the same direction during periods of higher

uncertainty about long-term expected inflation (Li, 2002), high inflation expectations

(Andersson et al., 2008), or high inflation rates (Yang et al., 2009). Moreover, Ilmanen

(2003) suggests that the inflation level as well as the business cycle explain stock-bond

correlations. By contrast, Baele et al. (2010) argue that macroeconomic factors do not

drive conditional correlations. Employing quarterly data and a dynamic conditional

correlation framework model, they provide evidence that rather illiquidity and flight-

to-quality are important for correlations. Additionally, Bansal et al. (2010) find that

correlations vary across two regimes. A high-stress regime coincides with higher risk

aversion, higher trading volumes and lower stock-bond correlation. Several other studies

focus on the influence of risk aversion on correlations and confirm the flight-to-quality

effect (Connolly et al., 2005, 2007; Aslanidis and Christiansen, 2010, 2011; Kim et al.,

2006).

We contribute to the literature across several dimensions. Using a high-frequency

dataset for Eurozone stocks and bonds, we simultaneously estimate the influence of

risk aversion, macroeconomic announcements, and other exogenous variables on both

conditional correlations and conditional variances. We analyze conditional correlations

using a GDCCX model and estimate variances with a GARCHX model as described

in the previous chapters. That approach allows us to separate the effects of the exoge-

nous variables on the dependence structure from those on the volatility. The correct

specification of the variance equation is of particular importance as our sample covers

the recent financial crisis, a period of extreme volatility.

We include 15 macroeconomic announcements from the US and 5 from the Eurozone

and compare their influence on volatility and stock-bonds correlations. We employ

real-time data, i.e. news that are available to market participants at the time of the

release. Accordingly, we can analyze the information content of specific announcements

and compare the importance of US to European news. For example, news that convey

information regarding future cash-flows should primarily move stocks thus reducing

conditional stock-bond correlations. Falling conditional correlation might also be caused

by a flight-to-quality. If the announcement can be interpreted as news about the future

discount rates, bond and stock prices should move in the same direction (Andersen

et al., 2007).
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Furthermore, most papers which analyze stock-bond correlations focus on the stock and

bond correlations in the US.2 Yet, we use a high-frequency dataset for European stocks

and bonds as we want to know if the driving forces of high-frequency correlations in

the Eurozone are similar to those already documented for the US.

To preview our results, we find that both risk aversion and macroeconomic announce-

ments separately drive conditional correlations. Conditional correlations fall as risk

aversion rises even when simultaneously accounting for the influence of macroeco-

nomic announcements on conditional correlations and the influence of these variables

on volatility. Interestingly, the additional effects of the financial crisis on correlations

are only small. Generally, the most important news are nonfarm payrolls in the US and

the European Central Bank (ECB) rate decision in Europe. For most macroeconomic

announcements, the absolute value of the surprise is of higher importance for correla-

tions than the mere occurrence of the announcement. Moreover, most macroeconomic

news result in falling conditional correlations. Yet, the publication of news concerning

future interest rates or inflation figures moves bond and stock prices in the same direc-

tion. We do not find any evidence that the influence of economic announcements on

conditional correlations changes during the cycle. This conclusion is driven from the

observation that splitting the effects of the macroeconomic variables between expansion

and recession does not alter the results. Turning to the results on volatility, we present

evidence that the occurrence of any macroeconomic announcement results in a higher

volatility as do surprises for both stocks and bonds.

The outline of the chapter is as follows. We start by describing the data in section

6.2. We report and discuss the empirical results in section 6.3. Section 6.4 provides

concluding remarks.

6.2 Data

6.2.1 Bond and Stock Returns

The data employed for this study consist of stock and bond returns as well as economic

variables. As we focus on the Eurozone, we choose the Euro Stoxx 50 Future to represent

the stock market. It is based on the Dow Jones Euro Stoxx 50 index which is composed

2Exceptions are Li (2002); Andersen et al. (2007); Connolly et al. (2007) and Andersson et al. (2008).
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of 50 large blue chip companies in the Eurozone that is widely applied as benchmark

index for Eurozone equities.

We use the Bund Future to calculate bond market returns. The underlying security of

this future is the German 10 year treasury bond. We analyze the German bond market

as it is considered to be the safest investment in the Eurozone and it is regarded as a

representative of a liquid, risk-free government bond in the Eurozone. Similar to Faust

et al. (2007), we prefer the Bund future over other bond market futures (such as the

Bobl or the Schatz) as it is by far the most actively traded bond future in the Eurozone.

Both the bond and the stock future are traded at the Eurex from 8 am to 10 pm and

are highly liquid with a daily trading volume of more than 0.7 million and more than

0.9 million, respectively.

There are several advantages in using futures instead of cash indices. First, futures

markets lead cash markets in terms of price discovery (Hasbrouck, 2003). Second, the

contracts are actively traded, transaction costs are minimal, and no legal constraints

on short selling are imposed. Third, high frequency data for futures are available from

several vendors. Therefore, previous studies on correlations and volatility also focus on

futures markets.3

Following several other studies (Andersen et al., 2007; Aslanidis and Christiansen, 2010,

2011; Andersson, 2010; Hussain, 2011), we obtain raw tick-by-tick transaction prices

from Tick Data Inc.4 The symbols are BN for the Bund future and XX for the Euro

Stoxx 50 future. Both futures have four delivery months (March, June, September and

December), and several contracts are traded at a time. Thus, we construct a continuous

return series employing the most liquid contract. As almost all trading takes place in

the contract closest to expiry, we use this contract. In practice, futures are rolled to

next contract a few days prior to expiry. Similarly, we switch to the next-maturity

contract as soon as the trading volume is higher in the second nearby contract, which

is usually two days before maturity (McMillan and Speight, 2003).5

3For example Christiansen and Ranaldo (2007); Corsi and Audrino (2007); Andersson (2010); Bansal
et al. (2010); Aslanidis and Christiansen (2010, 2011); Christiansen et al. (2011) study futures
instead of cash markets.

4In order to verify the accuracy of the data we reconcile the data with intraday-data available on
Bloomberg.

5Switching to the next-maturity contract earlier as done in Andersen et al. (2007) and Christiansen
and Ranaldo (2007) or at a fixed date prior to expiry as in Bansal et al. (2010) or in Fleming et al.
(2003) would result in more missing observations.
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6.2.2 Exogenous Variables

We test several exogenous variables. Since the futures data we obtained includes details

on each trade, we can calculate the trading volume in any time interval. However,

Bansal et al. (2010) point out that the futures volume is heavily affected by rolling

activity in the week before the expiry of the contract. In addition, there might be a

time trend. Therefore, we adjust the trading volume by regressing the volume on a

constant, a time trend and a dummy indicating the five trading days prior to expiry.

We employ the regression residuals as our volume variable.

Bansal et al. (2010) argue that higher trading volume is associated with high-stress

regimes that also feature higher volatility. Accordingly, we primarily see trading volume

as a proxy for high volatility. In addition, futures trading volume is generally much

lower before holidays but much higher during and after macroeconomic announcements

(Balduzzi et al., 2001). Hence, we can also think of it as a proxy for liquidity.

As pointed out in section 3.3.2.2, option-implied volatility is widely regarded as a good

proxy for risk aversion as it incorporates all information available to market participants

on future volatility. Numerous studies on volatility and conditional correlations6 use

this measure as an estimate of market uncertainty. We obtain data on the Euro Stoxx

50 Volatility Index (VSTOXX). The index is derived from prices of the underlying

Euro Stoxx 50 options and is computed daily from 9.15am to 5.30pm. We obtain

intraday-data on this index from CQG Inc., which is an official Eurex data vendor.7

The sampling interval for our VSTOXX data is two minutes. For all our analysis, we

compute the log differences of the VSTOXX index.

Christiansen et al. (2011) argue that the term spread is an important variable for mod-

eling bond and stock volatility. Therefore, we also include the daily difference between

10 year and 3 months interest rates provided by J.P. Morgan. We have neither intra-

day data nor a specific announcement time for this variable. Thus, we increase the

frequency by allowing the variable to remain constant throughout the day.8 Further-

6For example Andersson et al. (2008), Aslanidis and Christiansen (2010, 2011), Cai et al. (2009),
Connolly et al. (2005, 2007), and Kim et al. (2006) analyze the VIX or the VDAX index. Bansal
et al. (2010) use the VXO index.

7Other studies such as Le and Zurbruegg (2010), Hashimoto (2005) or Martens and Zein (2002) also
employ CQG data.

8This transformation of data has already been applied to convert monthly to daily (Cai et al., 2009)
or to weekly data (Aslanidis and Christiansen, 2010).
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more, interest rates differences are lagged by one day to make sure that we keep the

dataset in chronological order.

In order to measure the influence of the financial crisis in 2008 and 2009, we construct

a dummy variable that is one from October 2008 to April 2009 coinciding with the

financial crisis.9

6.2.3 Real Time Macroeconomic Announcements

We also want to investigate the effect of various macroeconomic variables on stock-

bond correlations. During European trading hours macroeconomic announcements oc-

cur both in the Eurozone and in the US. Accordingly, announcements made in both

regions are included.10 Moreover, previous studies suggest that the US macroeconomic

announcements are not only important for US but also for European markets (Ander-

sen et al., 2003, 2007; Faust et al., 2007; Albuquerque and Vega, 2009; Hussain, 2011;

Mittnik et al., 2011).

All announcements occur at a predefined time and are released instantaneously at a

precise time. European announcements take place in the morning starting with the

German unemployment rate at 9.55 am CET and ending with the ECB interest rate

announcement at 1.45 pm CET (see Table 6.1). US announcements are in the afternoon

starting at 2.30 pm CET.11 All announcement data are available during our whole

sample period.

Similar to Bollerslev et al. (2000) and Mittnik et al. (2011), our source for announce-

ments and market expectations is Bloomberg. We obtain the date and time as well as

the actual release and the market consensus.12 The Bloomberg market expectation is

the median forecast of a large number of economists and is widely considered as consen-

9As with any recession or crisis it is difficult to determine a definite starting point or. Although the
collapse of Lehman Brothers was at mid September 2008, stock and bond market reacted strongest
in mid October 2008 and did not rebound until April 2009.

10The Federal Reserve System (FED) rate decision is an exception as the release time is not included
in our sample and thus not included in our analysis.

11Since 2007 the daylight savings time in the US starts on the second Sunday in March and ends on
the first Sunday in November while in Europe it is three weeks shorter starting on the last Sunday
in March and ending on the last Sunday in October. Therefore, the time difference is only 5 hours
in the non-overlapping period so that announcements are one hour earlier in CET.

12Furthermore, in order to verify the accuracy of the release data, we reconcile Bloomberg data with
data available on the website of the respective institution.
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Table 6.1: Macroeconomic Announcements

Data Release Sourcea
Number
of Obser-
vations

Units
Release time

(CET)

U.S. Announcements

Capacity utilizatione FRB 48 % of capacity 15:15
Construction spending BC 47 % change mom 16:00
Consumer confidence CB 48 Diffusion index 16:00
Consumer prices BLS 48 % change mom 14:30
Durable good orders BC 46 % change mom 14:30
Factory orders BC 47 % change mom 16:00
U.S. GDPb BEA 48 % change qoq 14:30
Industrial productione FRB 48 % change mom 15:15
Initial claims DOL 204 Thousands 14:30
ISM index ISM 45 Diffusion index 16:00
New home sales BC 47 % change mom 16:00
Nonfarm payroll employmente BLS 47 Change in thousands 14:30
Producer price index BLS 48 % change mom 14:30
Retail sales BC 48 % change mom 14:30
Unemployment ratee BLS 47 % rate 14:30

German Announcements

IFO index IFO 48 Diffusion index 10:00
Unemployment FLO 49 % rate 9:55

Eurozone Announcements

ECB rate decision ECB 49 Change in pct pts 13:45
Eurozone HCPIc ES 49 % change yoy 11:00
Eurozone GDPb ES 48 % change qoq 11:00

Note: All frequencies are monthly except for the Initial claims which are announced weekly.
a Acronyms for the sources are as follows:
Bureau of Economic Analysis (BEA), Bureau of Labor Statistics (BLS), Bureau of the Census (BC), Department
of Labor (DOL), European Central Bank (ECB), Eurostat (ES), Federal Labour Office (FLO), Federal Reserve
Board (FRB), Ifo Institute (IFO).
b Quarterly GDP figures are reported three times: advance, preliminary, and final.
c HCPI is the Harmonized Consumer Price Index Flash estimatate.
d Manufacturing PMI is the Manufacturing Purchasing Managers’ Index.
e The following economic figures are announced at the same time: capacity utilization and industrial production;
nonfarm payroll employment and the unemployment rate.

sus estimate of the market. Furthermore, we test whether the survey data is unbiased

over our sample period (Flannery and Protopapadakis, 2002). For all economic mar-

ket expectations except of the German unemployment rate, we cannot reject the null

hypothesis that the mean of the consensus data is zero at the 5% level. Accordingly,

market expectations are unbiased.

In line with Balduzzi et al. (2001), Bollerslev et al. (2000), and Andersen et al. (2003),

we are especially interested in the surprise component of the announcement since, given
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rational markets, expectations should already be reflected in prices. The surprise is sim-

ply calculated as the median forecast minus the released value. Moreover, we standard-

ize the surprise by its respective standard deviation in order to correct for the different

units of measurement of the economic variables. It may be that the magnitude of the

surprise is more important than the actual direction of the surprise when it comes

to modeling correlations or volatilities. As in Christiansen et al. (2011), we also test

the absolute value of the surprise. As suggested by Christiansen and Ranaldo (2007)

and Andersen et al. (2003), dummy variables for each macroeconomic announcement

are included to separate the influence of a mere presence of a specific announcement

from any corresponding surprise. A dummy variable which becomes one if there is any

macroeconomic announcement is constructed to capture the general announcement ef-

fect.13

Once it is established that a macroeconomic announcement influences correlations, it

is still unclear how long the effect will last. Different time windows have been chosen

in the previous literature. While Andersen et al. (2003) focus on the 15 minutes after

the economic news, Andersen et al. (2007) consider 20 minutes for the influence of

announcements on asset returns and 70 minutes on asset volatility. Our approach is

different, as the persistence of any news is modeled within the DCC framework and

assumed to follow a geometric lag with parameters being estimated from the data.

Therefore, announcement variables take on the value of the surprise only at the time

of the announcement.

6.2.4 The Dataset

The dataset covers the period from 4/30/2007 to 4/30/2011. This period includes both

the tranquil period before the start of the financial crisis, the financial crisis itself and

the initial recovery thereafter. Corresponding to the trading time of the VSTOXX

index, the daily time interval in the sample starts at 9.15 am and ends at 5.30 pm.

Similar to most studies that employ high frequency data,14 we split trading days into

5-minute intervals. This is a compromise between microstructure biases which arise

due to nonsynchronous trading and the desire to sample at a high frequency (Bollerslev

13Henceforth, we will label that dummy all announcements dummy.
14A sample of papers that use 5 minute data includes Andersen and Bollerslev (1998); Bollerslev et al.

(2000); Andersen et al. (2001, 2003, 2007); Christiansen and Ranaldo (2007); Andersson (2010)
and Aslanidis and Christiansen (2010, 2011).
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et al., 2000; Andersen et al., 2001; Hansen and Lunde, 2006). As the VSTOXX sampling

frequency is two minutes (i.e. we have 248 observations per day), we synchronize the

data by using the last recorded VSTOXX price in any five minute interval.

Table 6.2: Descriptive Statistics

Name Obs. Mean Std. Dev. Min. Max. Skewn. Kurt.

Bund Futurea 100,625 0.00% 0.03% -0.50% 0.35% −0.35 11.13***
Euro Stoxx 50 Futurea 100,624 0.00% 0.14% -2.10% 4.84% 0.23 28.85***
Vstoxx Indexa 100,108 0.00% 0.42% -8.48% 10.27% 0.57 28.10***
Trading Volume Bonds 100,625 7,122 6,432 30 120,393 3.46 26.09***
Trading Volume Stocks 100,624 9,041 8,987 14 374,769 3.80 50.07***

Note: The table reports descriptive statistics for the high-frequency variables employed in the analysis.
*** denotes series that differ from a normal distribution at 1% level as indicated by a Jarque–Bera
test; aLog change of the variable.

Compared with daily or lower frequency data, high-frequency data is subject to more

extreme outliers. Table 6.2 shows that, even after ignoring the overnight return, the

Bund future minimum is a 16 standard deviation event whereas the maximum of the

Euro Stoxx 50 future is a 34 standard deviations away from the mean. The same is true

for our risk aversion measure15 as well as for most of the other high-frequency variables.

However, the estimation procedure is sensitive to extreme outliers. In addition, extreme

observations of the exogenous variable might set implicit boundaries to the parameter

space of the GDCCX model.16 Therefore, we follow Silvennoinen and Teräsvirta (2005)

as well as Boudt and Zhang (2010) and truncate all observations that deviate more than

10 standard deviations from the mean allowing us to keep the information contained in

the outliers.17

Following Andersen and Bollerslev (1997), we ignore the overnight return, i.e. from the

close in t-1 to the first observation in t. This period is special because it incorporates

15The minimum is 20 standard deviations away from the mean while the maximum 24 standard
deviations outlier.

16An intuitive explanation is as follows: The exogenous variable influences the estimated conditional
correlation with the strength of the effect measured by the parameter c. For example, the effect of
an exogenous variable on conditional correlations is positive for a positive c and any observation
of the exogenous variable greater than zero. Furthermore, the greater the c parameter and the
observation, the greater is the effect on conditional correlations. Yet, conditional correlations are
bounded between plus and minus one. Therefore, given a large outlier, the c parameter must be
smaller just to make sure that the conditional correlation remain between plus and minus one for
that single observation. That establishes an implicit boundary on the c parameter.

17I.e., all outliers are set to 10 standard deviations.
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all information accumulated overnight and over-weekend and consequently has a much

higher volatility.

Sometimes, there is no trading within a 5 minute interval.18 Following Bollerslev et al.

(2000) and Andersen and Bollerslev (1997), we linearly interpolate all intraday data in

these cases. Calculating continuously compounded five minute returns for 1017 trading

days with 99 observations per day (excluding the overnight return) gives us 100,682

observations.19 As in section 3.3.2, we multiply the return series with 1000 and divide

the exogenous variables by 100 to avoid the accumulation of rounding errors. As the

mean of the time series is non-zero, we furthermore demean all time series except the

dummy variables.

6.3 Empirical Results

6.3.1 The DCC Model

At first, we are interested in the conditional correlations between high-frequency returns

of bonds and stocks in the Eurozone and ignore any economic explanations. We estimate

a DCC(1,1)-GARCH(1,1) model (see section 2.2) as a benchmark model. Table 6.3

shows the results.

In line with previous literature, the results of the GARCH(1,1) model indicate volatil-

ity clustering. As the sums of the αi and βi parameters are close to one, we conclude

that conditional variances are highly persistent. Turning to the correlation equation,

we find clear evidence for time-varying conditional correlations. The estimated param-

eters of the DCC(1,1) model are highly significant and the Engle and Sheppard (2001)

test20 clearly rejects the null hypothesis of constant conditional correlations. Moreover,

the innovations to the conditional correlations are highly persistent: the half-life is

approximately 2 hours and 15 minutes.21

18The number of missing observations for the Bund future (0.06%) and the Eurostoxx 50 future (0.06%)
is very low. Specifically, trading at the EUREX stopped shortly at 11/18/2009 and 2/4/2009 due
to technical difficulties. However, on both days there were no significant market moves. Other
missing occur especially if there is trading on a public holiday or just before a public holiday. The
number of missing observations for the VSTOXX index is higher but still acceptable (0.24%).

19Furthermore, we remove the observation 3/28/2008 at 12:20 pm as there has been a mistrade
affecting the Bundfuture only and reversing itself within less than two minutes.

20See section 2.3 for details.
21Please see section 2.2 for details on the calculation of the half-life of the innovations.
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Table 6.3: European Bonds and Stocks: Univariate GARCH and DCC Models

Univariate GARCH (1,1) Models Multivariate DCC (1,1) Models

Bonds Stocks DCC Model Corr-Test

ωi 0.004*** (0.000) 0.024*** (0.002) a 0.009*** (0.003) 95.722***
αi 0.089*** (0.004) 0.108*** (0.004) b 0.987*** (0.005)
βi 0.877*** (0.006) 0.886*** (0.004)

Note: The table reports the univariate GARCH(1,1) and DCC(1,1) estimates for European
bonds and stocks. Robust standard errors in parentheses. Corr-Test denotes the Engle and
Sheppard (2001) test for testing the null of constant correlation (Rt = R ∀ t).
*p < 0.10, **p < 0.05, ***p < 0.01.

The time-varying nature of the conditional correlations is highlighted by Figure 6.1.

Conditional correlations fluctuate in the range between 0.31 and -0.79. Although corre-

lations are persistent, there is no clear time trend. The highest conditional correlations

are at the beginning of the sample (mid-2007) while they are lower for the rest of our

sample. Interestingly, there is no distinctive change in the correlations during the recent

financial crisis on the first view.

6.3.2 The GARCHX Model

We now turn to the estimation of conditional variances which allows for effects of ex-

ogenous variables. Employing a GARCHX(1,1) model and a single exogenous variable

gives us a first idea which variables can help explaining volatility.22 Results for the γ

parameter are presented in Table 6.4 and 6.5 for the bond and stock market, respec-

tively.

As expected, a rise in the VSTOXX results in higher volatility for both bonds and

stocks. Notably, the effect is much stronger for stocks - possibly reflecting the overall

higher stock volatility. The parameter for the financial crisis dummy is also positive

and highly significant. As expected, stock and bond volatility rose during the financial

crisis. Similarly, the effect is more pronounced for stocks than for bonds. In line with

Christiansen et al. (2011), we find that the term spread matters for bond but not for

stock volatility. The negative sign of the parameter is plausible as the term spread often

becomes negative during recessions. Finally, our variable indicating the stock trading

volume is significant whereas the bond volume seems to have less explanation power

22Please see section 4.3 for details on the GARCHX model.
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Figure 6.1: European Bonds and Stocks Conditional Correlations (DCC(1,1) Model)

when considered as the only exogenous variable.23 Thus, lower trading volume in stocks

coincides with lower volatility. This situation well describes periods before holidays or

at specific times during day when volatility is low.

A glance through Tables 6.4 and 6.5 immediately indicates that volatility rises signifi-

cantly during almost all economic announcements as most coefficients are positive. In

addition, the coefficient for the all announcements dummy is positive and significant

for both bonds and stocks. The effect is larger for stocks indicating that the macro

news are of higher importance for stocks than for bonds. Furthermore, all models are

23One might argue that bond and stock trading volume should influence volatility similarly as the
unconditional correlation between the level of the bond and stock trading volume is 0.44. However,
the unconditional correlation between the log change of the two variables is negative (-0.37) making
different effects on the respective change rates more plausible.
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Table 6.4: European Bonds: GARCHX Model Separate Estimations

High-Frequency
Variables

VSTOXXa 22.634** (9.795)
Trading Vol. Bondsa 0.001 (0.014)
Trading Vol. Stocksa 0.366*** (0.090)
Financial crisis 0.426*** (0.062)
Term spread −0.053*** (0.014)

Announcement
Dummyb

Absolute Surprisec Surprise

All announcements 12.306*** (1.120)

U.S. Announcements

Capacity utilizationd 3.917** (1.633) 20.453** (8.585) 1.596 f (4.615)
Construction spending 17.680*** (4.311) 71.261*** (18.413) 5.698 (5.090)
Consumer confidence 5.554*** (1.686) 28.175*** (8.383) −3.426 f (3.140)
Consumer prices 15.425*** (2.272) 81.203*** (14.701) 0.506 f (1.817)
Durable good orders 11.080*** (1.844) 55.555*** (9.833) 0.463 f (0.391)
Factory orders 6.913*** (2.480) 33.795*** (12.288) −8.873**f (4.282)
U.S. GDP 9.613*** (2.482) 49.462*** (13.694) 6.779* (3.629)
Industrial productiond 3.917** (1.633) 19.373** (8.254) 5.355 f (4.752)
Initial claims 14.385*** (1.479) 41.013*** (4.510) −0.737 f (0.674)
ISM index 17.886*** (4.500) 90.560*** (22.876) 3.258 f (5.212)
New home sales 6.065*** (1.545) 32.086*** (8.155) −1.890 f (2.017)
Nonfarm payroll empl.e 59.040*** (7.959) 302.555*** (41.241) 0.943 f (2.979)
Producer price index 17.828*** (3.796) 88.127*** (19.396) 2.613 f (4.725)
Retail sales 22.965*** (4.367) 121.425*** (22.782) 1.828 f (3.346)
Unemployment ratee 59.040*** (7.959) 592.980*** (200.487) −3.896 (4.019)

German and Eurozone Announcements

IFO index 14.527*** (4.394) 72.371*** (21.890) 7.404 (5.307)
German unemployment −1.555*f (0.808) −7.110*f (4.048) −11.267**f (5.078)
ECB rate decision 24.538*** (7.428) 198.904*** (58.413) 140.062*** (36.109)
Eurozone HCPI 2.178 (2.373) 17.697 (13.343) 9.135 (7.533)
Eurozone GDP −1.954***f (0.639) −7.223**f (3.630) −10.140**f (4.960)

Note: The table reports the γ estimates of a GARCHX(1,1) model (see Equation 4.18) for the Bund future. We
run separate estimations for each γ presented. Robust standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable; bAnnouncement Dummy is an indicator function
that takes on the value 1 if there is an announcement and 0 otherwise; cAbsolute value of the surprise is employed.
d, e Economic figures are announced at the same time; fA GARCH (1,1) model is preferred to this estimation
according to the BIC criterion.

compared to each other using the bayesian information criterion (BIC).24 It turns out

that the GARCHX model which employs the all announcements dummy fits the data

best.

24Details on the bayesian information criterion are provided in in Table 6.12 in the appendix 6.A1.
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Table 6.5: European Stocks: GARCHX Model Separate Estimations

High-Frequency
Variables

VSTOXXa 719.603*** (98.890)
Trading Vol. Bondsa 0.388 (0.334)
Trading Vol. Stocksa 3.018*** (0.503)
Financial crisis 8.732*** (1.121)
Term spread 0.154 (0.158)

Announcement
Dummyb

Absolute Surprisec Surprise

All announcements 112.019*** (10.025)

U.S. Announcements

Capacity utilizationd 52.610*** (16.835) 254.716*** (80.796) 44.895 f (41.199)
Construction spending 179.266*** (37.098) 844.819*** (178.269) 127.834*** (39.056)
Consumer confidence 103.867*** (32.064) 523.969*** (173.396) −22.364 f (41.268)
Consumer prices 144.651*** (38.527) 786.370*** (214.720) −23.714 f (24.963)
Durable good orders 167.355*** (30.400) 863.755*** (166.680) 9.290 f (7.977)
Factory orders 68.663*** (24.651) 308.829** (129.336) 1.733***f (0.184)
U.S. GDP 195.108*** (41.104) 1067.918*** (263.671) 57.778** (26.845)
Industrial productiond 52.610*** (16.835) 254.764*** (97.528) 61.587 f (40.242)
Initial claims 166.650*** (20.360) 494.929*** (62.955) 21.562* (12.742)
ISM index 201.615*** (43.322) 1005.700*** (232.612) 4.157**f (2.055)
New home sales 150.584*** (34.652) 737.961*** (151.454) −21.616 f (52.886)
Nonfarm payroll empl.e 583.817*** (89.933) 2980.946*** (534.776) 11.814 f (44.073)
Producer price index 104.699*** (30.026) 518.100*** (155.553) 99.279*** (35.882)
Retail sales 180.913*** (45.800) 955.876*** (227.243) −3.289**f (1.518)
Unemployment ratee 583.817*** (89.933) 4450.223*** (745.169) 12.510 f (119.559)

German and Eurozone Announcements

IFO index −14.949*f (8.544) −60.442 f (83.864) 159.977**f (64.073)
German unemployment −21.652*** (3.724) −99.030*** (17.258) −87.680***f (26.105)
ECB rate decision 90.919*** (33.133) 786.484** (322.700) 752.003** (317.972)
Eurozone HCPI −29.990*** (0.124) −117.363*** (27.940) −65.472*f (33.603)
Eurozone GDP −13.876 f (9.327) −101.964***f (22.627) 2.708***f (0.287)

Note: The table reports the γ estimates of a GARCHX(1,1) model (see Equation 4.18) for the Euro Stoxx 50
future. We run separate estimations for each γ presented. Robust standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable; bAnnouncement Dummy is an indicator function
that takes on the value 1 if there is an announcement and 0 otherwise; cAbsolute value of the surprise is employed.
d, e Economic figures are announced at the same time; fA GARCH (1,1) model is preferred to this estimation
according to the BIC criterion.

Looking at the macro indicators in detail, we see that the announcement of nonfarm

payroll employment that coincides with the announcement of the unemployment rate

results in the highest volatility.25 Moreover, the two models that include this dummy

25Nonfarm payrolls and the unemployment rate are announced simultaneously. As both figures are
drawn from different samples their economic interpretation might be divergent. However, most of
the time the direction and size of the surprise are comparable.
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as exogenous variable are - according to the BIC - the best among all models which use

any of the single announcements. This is not surprising as Andersen et al. (2007) and

Andersen and Bollerslev (1998) argue those are most important announcement for all

markets.

There is a remarkable difference between the announcements in the US and the Euro-

zone. While the occurrence of an US announcement always results in rising conditional

variances, this does not hold for all European announcements. For example, the disclo-

sure of the IFO index results in higher volatility for bonds but lower volatility for stocks.

Also, the publication of Eurozone GDP and German unemployment rate coincide with

lower volatility. Calculating the BIC indicates that the GARCHX model is simply not

suitable for these variables as a GARCH (1,1) model fits the data better. Thus, a

specification without these exogenous variables is preferable. There might also be an

economic reason why the GARCHX model does not fit the data for these European

announcements. As the financial crisis started in the US and covers a large part of our

sample, market participants might pay specific attention to the US announcements.

Also, it might be that large parts of the volatility in this period is caused by market

participants in the US who do not react to early European announcements instantly

due to the time differences.26 This would also explain why the effect of the ECB deci-

sions, which is the latest European announcement at 1.45 pm, results in significantly

higher volatility for both stocks and bonds.

As discussed in section 6.2.3, we compute the absolute value of the standardized surprise

of each announcement in order to employ it as exogenous variable. Results are presented

in the second column in Tables 6.4 and 6.5 and are highly significant. The second

column shows that the greater the absolute surprise of each announcement, the larger

the volatility. The effect is stronger for stocks than for bonds, and again an absolute

surprise in nonfarm payroll employment as well as in the unemployment rate drive

conditional variances the most. Similar to the estimations with the announcement

dummy, we are puzzled by the negative signs of some estimations involving news from

the Eurozone. Again, besides ECB rate decisions, most of the models that include the

absolute surprise of news from Germany or the Eurozone do not fit the data better

than a GARCH (1,1) model.

26This does not imply that the information is generally not taken into account by these market
participants but that the exact time when the news is incorporated cannot be identified.
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In column three in Tables 6.4 and 6.5, we display estimation results for GARCHX mod-

els that include the actual surprise values of the respective macroeconomic announce-

ment. Yet, most coefficients are not significantly different from zero. Calculating the

BIC indicates that both a GARCH (1,1) and models that use absolute values of the

surprise fit the data better.

Again, we are interested whether the combination of several exogenous variables im-

proves the fit to the data. We estimate several combinations of exogenous variables that

include the high-frequency variables and macroeconomic announcements27 and select

the best model according to the BIC criterion. Tables 6.6 and 6.7 present the two best

models for bonds and stocks, respectively. It turns out that the inclusion of the fol-

lowing macroeconomic announcements improves the fit of the model: nonfarm payroll

employment, US GDP (stocks only), consumer prices, and initial jobless claims.

Table 6.6: European Bonds: GARCHX Model Combined Effects

2nd Best Model Bonds Best Model Bonds

VSTOXXa 19.005*** (9.518) 19.045*** (10.271)
Trading Vol. Bondsa 0.145*** (0.055) 0.145*** (0.059)
Trading Vol. Stocksa 0.468*** (0.073) 0.468*** (0.073)
Financial crisis 1.016*** (0.163) 1.017*** (0.169)
All Announcements 11.116*** (1.608) 11.219*** (1.588)
Term spread −0.061*** (0.017) −0.061*** (0.017)
Nonfarm payroll empl.b 93.848*** (15.190) 93.804*** (15.042)
U.S. GDPb 2.315 (7.411)
Consumer pricesb 10.207*** (3.454) 10.106*** (3.398)
Initial claimsb 9.707*** (2.430) 9.792*** (2.426)

BIC 41876.685 41866.258

Note: The table reports the γ estimates of a GARCHX(1,1) model (see Equation 4.18) for the Bund future.
All parameters in each column are estimated simultaneously. Robust standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable. b Dummy variable indicating the
macroeconomic announcement.

The interpretation of the single news dummies changes as now both the individual

macroeconomic news dummies and the all announcements dummy are included. They

now explain the effects of the individual announcement on volatility in excess of the

general effect of a macroeconomic announcement. The estimated coefficients are mostly

similar to those already reported. An exception is the coefficient of all announcements

27That means that we use a specific to general approach in variable selection. Including all possible
exogenous variables in a single estimation might result in a better fit. However, it might make
numerical optimization infeasible due to the very large number of parameters that have to be
estimated.
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Table 6.7: European Stock: GARCHX Model Combined Effects

Best Model Stocks 2nd Best Model Stocks

VSTOXXa 467.678*** (80.563) 467.879*** (103.874)
Trading Vol. Bondsa −0.377*** (0.218) −0.384*** (0.209)
Trading Vol. Stocksa 5.230*** (0.497) 5.275*** (0.778)
Financial crisis 15.144*** (1.396) 15.276*** (3.351)
All Announcements 63.027*** (8.749) 66.950*** (10.858)
Term spread 0.232*** (0.094) 0.239 (0.385)
Nonfarm payroll empl.b 635.441*** (108.775) 634.096*** (120.251)
U.S. GDPb 129.108*** (51.951)
Consumer pricesb 77.030*** (45.604) 71.608 (46.193)
Initial claimsb 90.207*** (21.454) 102.298*** (22.815)

BIC 306473.893 306505.300

Note: The table reports the γ estimates of a GARCHX(1,1) model (see Equation 4.18) for the Euro Stoxx 50
future. All parameters in each column are estimated simultaneously. Robust standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable. b Dummy variable indicating the
macroeconomic announcement.

dummy for stocks. It nearly halves as we separate the most important macroeconomic

announcements. The coefficients for the individual macroeconomic announcements are

also smaller. However, adding the coefficient from the all announcements dummy

roughly yields the same effects. Therefore, it is not surprising that the variable US GDP

is not significant in the combined bond volatility estimation as its effect on conditional

variances is not significantly different from announcements already included in the all

announcements dummy.

Interestingly, the coefficient on the log change in the VSTOXX is smaller in the com-

bined stock volatility estimation than in the model presented in Table 6.5 but remains

significant. Most likely, the announcement of some macroeconomic variables coincides

with rising risk aversion. Estimating the same specification but without any macroe-

conomic variables reveals that the coefficient on risk aversion rises again.

Turning to the other high-frequency variables, we find similar results as before for

the bond volatility estimation. Surprisingly, in the stock volatility estimation, the

coefficients for both the measure for the bund future trading volume and the term

spread are now significant and change the sign.

In summary, we conclude the occurrence of any macroeconomic announcement results

in a higher volatility as do surprises for both stocks and bonds in an univariate anal-

ysis. However, it does not matter if it is a negative or positive surprise. As expected,
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higher risk aversion results in higher volatility even when taking into account various

macroeconomic announcements. Corroborating the results of the previous chapters,

we also find that a multivariate analysis that includes multiple exogenous variables is

preferable as the effects partly overlap.

6.3.3 The GDCCX model

We now turn to the estimation of conditional stock-bond correlations employing a

GDCCX model (see section 2.4.2) with exogenous variables. Volatility is modeled with

a GARCHX model as shown in Tables 6.6 and 6.7 for bonds and stocks, respectively.

At first, we are interested in the separate effects of variables on correlations. Results

can be found in the left panel in Table 6.8. Similar to previous studies (Connolly et al.,

2005, 2007), we see that risk aversion - as measured by the change in the VSTOXX index

- is an important driver of conditional correlations. As risk aversion rises, conditional

correlations between stocks and bonds fall. However, both the term spread and the

dummy for the financial crisis do not significantly influence conditional correlations

which contrasts with our findings on volatility. Yet, another very important driver of

conditional correlations are macroeconomic announcements. The effect of the dummy

that covers all announcements is negative and significant. The model that uses this

dummy fits the data best according to the BIC. Lastly, we find that both higher trading

volume in stocks and in bonds result in lower conditional correlations. This confirms

findings of Bansal et al. (2010). They argue that higher bond and stock trading volume

is associated with a high-stress regime that exhibits lower correlations between stocks

and bonds. However, it might also be a result of higher trading volume coinciding with

higher risk aversion or macroeconomic announcements.

Therefore, next, we estimate conditional correlations employing all previous variables

simultaneously. Results are shown in right panel in Table 6.8. The effect of trading

volume is now smaller but still significant. Moreover, the coefficient for the dummy

on the financial crisis is now significant and positive, i.e. conditional correlations rose

during the financial crisis. This is remarkable as other studies (Andersen et al., 2007;

Ilmanen, 2003) demonstrate that stock bond correlations tend to rise in expansions but

decrease in recessions. Yet, these studies cover different time periods. Again, there

is no effect of the term spread on correlations and the coefficients of the change in
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Table 6.8: European Bond and Stock Correlations in a GDCCX Model: Effect of High
Frequency Variables

Separate
Estimations

Combined
Estimation

VSTOXXa −64.116* (36.201) −65.760*** (14.184)
Trading Vol. Bondsa −0.374*** (0.090) −0.216*** (0.059)
Trading Vol. Stocksa −0.374*** (0.108) −0.273*** (0.087)
All announcements −10.253*** (1.325) −12.298*** (1.285)
Financial crisis 0.082 (0.104) 0.353*** (0.118)
Term spread −0.009 (0.007) −0.008 (0.023)

Note: The table reports the c estimates of a GDCCX model (see Equation 2.11) for European bonds and
stocks. We model volatility with a GARCHX (1,1) model (see Equation 4.18 and Table 6.6 and 6.7). In the
left panel, we run separate estimations for each c presented whereas in the right panel, all parameters are
estimated simultaneously. Robust standard errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable

the VSTOXX index and on the dummy for the macroeconomic announcements remain

negative and significant confirming our previous results.

We want to explore the effect of the specific macroeconomic announcements in more

detail. Therefore, we repeat our previous estimation and consecutively add each an-

nouncement (one at a time). We employ all variables from above except the term

spread as the coefficient has never been significant. Thus, a single estimation includes

the respective macroeconomic announcement, VSTOXX, Trading Vol. Bonds, Trading

Vol. Stocks, the all announcements dummy, and the Financial Crisis Dummy as exoge-

nous variables. Table 6.9 contains the estimated c coefficients and standard errors. We

analyze two different variables for each announcement: a dummy variable that takes

the value 1 at the time of the announcement and 0 else as well as the absolute value of

the announcement surprise.28

Table 6.9 highlights the importance of each single macroeconomic announcement: al-

most all coefficients are significant. Furthermore, we find that in almost all estimations

the coefficient on risk aversion is negative and significant. We conclude that even after

taking account for all kinds of macroeconomic news, risk aversion still drives conditional

stock-bond correlations on a high-frequency level.

28Thus, we take another approach than Christiansen and Ranaldo (2007) as we do not use the actual
value of the surprise as variable. A preliminary analysis including the actual value, the absolute
value, and the dummy variable shows that, according to the BIC, models that employ the actual
value of the macroeconomic announcements do not fit the data in almost all cases. The BIC values
of this preliminary analysis are presented in Table 6.13 in appendix 6.A2.
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Table 6.9: European Bond and Stock Correlations in a GDCCX Model: Macroeconomic Announcements and
High-Frequency Variables

Best Model Employs Single Announcement
All Announcements

Dummy
VSTOXXa

U.S. Announcements

Capacity utilizationb Dummy −3.317*** (0.951) −12.126*** (1.279) −65.809*** (18.980)
Construction spending Dummy −6.237** (2.778) −11.891*** (1.283) −66.604** (26.470)
Consumer confidence Dummy −2.517** (1.267) −12.214*** (1.113) −66.013* (37.993)
Consumer prices Absolute Surprise 106.456*** (40.445) −13.235*** (1.250) −64.655** (26.792)
Durable good orders Absolute Surprise −76.351*** (23.393) −11.683*** (1.122) −65.051** (27.080)
Factory orders Dummy −4.296*** (0.771) −12.114*** (1.718) −66.014*** (8.805)
U.S. GDP Absolute Surprise −38.829*** (3.042) −12.048*** (1.765) −65.954*** (17.755)
Industrial productionb Dummy −3.317*** (0.951) −12.126*** (1.279) −65.809*** (18.980)
Initial claims Dummy 2.067*** (0.420) −12.744*** (1.184) −66.060 (42.157)
ISM index Absolute Surprise −38.163 (26.881) −11.839*** (1.705) −65.886 (57.273)
New home sales Absolute Surprise −9.894*** (3.140) −12.209*** (1.007) −66.475*** (18.458)
Nonfarm payroll empl.c Dummy −23.046*** (3.057) −11.230*** (1.014) −64.842*** (24.240)
Producer price index Absolute Surprise 13.319*** (1.884) −12.454*** (1.215) −65.715*** (24.389)
Retail sales Dummy −5.514 (3.910) −11.886*** (3.556) −65.389 (74.133)
Unemployment ratec Dummy −23.046*** (3.057) −11.230*** (1.014) −64.842*** (24.240)

German and Eurozone Announcements

IFO index Absolute Surprise 73.924*** (15.989) −12.920*** (1.892) −62.999*** (14.733)
German unemployment Absolute Surprise −6.540*** (2.424) −12.253*** (0.965) −65.794*** (9.858)
ECB rate decision Absolute Surprise 169.103*** (38.264) −13.561*** (1.382) −68.807*** (15.811)
Eurozone HCPI Absolute Surprise 6.340*** (2.454) −12.315*** (1.315) −65.494*** (15.632)
Eurozone GDP Absolute Surprise 35.348*** (10.186) −12.349*** (1.403) −65.872*** (9.099)

Note: The table reports the c estimates of a GDCCX model (see Equation 2.11) for European bonds and stocks. We model volatility with a GARCHX
(1,1) model (see Equation 4.18 and Table 6.6 and 6.7). Each row in the table represents a single estimation that includes the respective macroeconomic
announcement, VSTOXX, Trading Vol. Bonds, Trading Vol. Stocks, the all Announcements Dummy, and Financial Crisis Dummy as exogenous
variables. Best model describes if the absolute surprise or the a simple dummy is taken for of the respective announcement. Robust standard errors
in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, aLog change of the variable; b, c Economic figures are announced at the same time.
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According to the BIC,29 the most important announcement for conditional correlations

are the nonfarm payroll and the US unemployment rate announcement that are always

released at the same time. That matches our results from the volatility equation.

Moreover, the ECB interest rate decision as well as the US consumer prices are almost

as important as nonfarm payrolls.

The second column in Table 6.9 reports whether the best model according to the BIC

either includes the dummy variable of the announcement or the absolute value of the

announcement-surprise. Although Christiansen and Ranaldo (2007) show that the oc-

currence of an announcement by itself influences conditional correlations, we notice

that the absolute surprise of an announcement sometimes drives correlations even more.

That is true for all announcements in the Eurozone as well as the inflation (consumer

and producer prices) and the GDP release in the US. Furthermore, for all announce-

ments that are released at the same time,30 we favor the model with an announcement

dummy. That points towards our measure for the surprise being imprecise in case of si-

multaneously released announcements since the actual surprise might be a combination

of the surprises of both announcements.

Interestingly, the signs of the coefficients vary among announcements. In order to

calculate the total effect of a specific announcement the coefficient of the respective

announcement and of the all announcements dummy must be added. Most releases

indicating real economic shocks (i.e. GDP, unemployment, surveys of activity etc.)

have a negative effect on conditional correlations in the US. However, for consumer

prices in the US and in the Eurozone as well as for the ECB rate decision, we find

that conditional correlations rise the more the larger the surprise. Yet, in case of

no surprise, the general effect of all macroeconomic announcements dominates and

conditional correlations fall as well.

This fits well theoretical models in which equity prices are determined by the present

value of future cash flows.31 Furthermore, if monetary policy is strictly anti-inflationary,

market participants will assume that higher inflation makes future interest rate rises

more likely and vice versa. Hence, interest rate and inflation announcements should

influence the prices of bonds and stocks via the discount rate in the same way resulting

29Table 6.14 in appendix 6.A2 displays the BIC values for Table 6.9.
30The announcement of nonfarm payrolls and unemployment rate as well as the release of the industrial

production and capacity utilization are the same time.
31An example might be the Gordon (1959) growth model.



6.3 Empirical Results 124

in rising conditional correlations. By contrast, if an announcement such as GDP or

the unemployment rate conveys information about future cash flows, conditional cor-

relations between bonds and stocks should fall. Another interpretation is that these

announcements trigger a flight-to-quality. Interestingly, in Eurozone the announcement

of the IFO index and the GDP result in rising conditional correlations. Probably, in

the Eurozone these announcements are more informative for future interest rates than

for future cash flows.

Table 6.10: European Bonds and Stock Correlations in a GDCCX Model:
Macroeconomic Announcements during Recession and Expansion

Best Model
Announcement in

Recession
Announcement in

Expansion

U.S. Announcements

Capacity utilizationa Dummy −7.125 (9.396) −21.857* (11.719)
Construction spending Dummy −13.446*** (2.574) −17.318*** (2.094)
Consumer confidence Dummy −6.434*** (0.653) −15.747*** (1.811)
Consumer prices Abs. Surpr. 68.510*** (13.766) 48.527*** (10.324)
Durable good orders Abs. Surpr. −68.884*** (10.145) −211.228*** (22.215)
Factory orders Abs. Surpr. −58.861** (25.070) −121.827** (48.871)
U.S. GDP Dummy 2.684*** (0.736) −26.586*** (3.546)
Industrial productiona Dummy −7.125 (9.396) −21.857* (11.719)
Initial claims Dummy −1.761*** (0.573) −16.108*** (2.731)
ISM index Abs. Surpr. −116.103*** (7.511) −124.382*** (34.656)
New home sales Abs. Surpr. −33.415*** (9.339) −59.784*** (11.411)
Nonfarm payroll empl.b Dummy −31.129** (12.864) −33.463*** (3.286)
Producer price index Dummy −12.599*** (1.958) −6.855 (6.859)
Retail sales Dummy −24.503*** (3.846) −12.674*** (1.745)
Unemployment rateb Dummy −31.129** (12.864) −33.463*** (3.286)

German and Eurozone Announcements

IFO index Abs. Surpr. 73.721*** (22.421) 19.617*** (5.990)
German unemployment Abs. Surpr. 65.188* (37.665) −129.100** (50.584)
ECB rate decision Abs. Surpr. 79.795*** (22.929) −0.133 (0.254)
Eurozone HCPI Dummy −5.209 (3.664) −14.170*** (4.700)
Eurozone GDP Dummy 13.917*** (3.072) −12.972* (7.883)

Note: The table reports the c estimates of a DCCX(1,1) model (see Equation 2.11) for European bonds and
stocks. We model volatility with a GARCHX(1,1) model (see Equation 4.18 and Table 6.6 and 6.7). Each
row in the table represents a single estimation that includes the respective macroeconomic announcement,
VSTOXX, Trading Vol. Bonds, and Trading Vol. Stocks as exogenous variables. Best model describes if
the absolute surprise or the a simple dummy is taken for of the respective announcement. Robust standard
errors in parentheses.
*p < 0.10, **p < 0.05, ***p < 0.01, a, b Economic figures are announced at the same time.

Previous studies have shown that announcement effects can vary with the business

cycle (Andersen et al., 2007; Boyd et al., 2005; Christiansen and Ranaldo, 2007). On

average, macroeconomic announcements should not drive conditional correlations as the

effects should cancel out over the full cycle. In order to further investigate the influence
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of the business cycle, we repeat the analysis but split the announcement variables in

two parts: a recession and an expansion variable.32 We define the beginning of the

recession as the time when market participants learn that the European GDP growth

turned from positive to negative and the end when GDP growth turns positive again.33

Furthermore, we drop the all announcements dummy and the dummy for the financial

crisis to clearly separate the effects of recession and expansion. Table 6.10 reports

the results. The analysis confirms that the sign of most coefficients does not differ

between periods of recession and periods of expansion. Moreover, the models that do

not distinguish between contraction and expansion periods fit the data better according

to the BIC.34

There are several possible explanations for these results. First, since our sample covers

only four years, we at most cover one full cycle. This period might be too short for a

valid analysis of the business cycle. Second, the shock of the financial crisis might last

longer than the effects on the real economy. Therefore, we re-estimate our previous

analysis but assume that the recession lasted at least until the end of our sample.

However, results are qualitatively unchanged. Third, numerous definitions for the exact

start and end of a recession can be applied which might also change our results. Fourth,

the sample period of Andersen et al. (2007) runs from 1994 to 2002, Christiansen and

Ranaldo (2007) cover the years 1988 to 2003 so that the years after the burst of the

dot-com bubble are not covered. Possibly, there has been a structural break with

market participants becoming more risk averse. Accordingly, announcements cause

conditional stock-bond correlations to become more negative, and a flight-to-quality

can be observed more often. However, a longer sample will be necessary to ultimately

answer these questions.

32The variables that measure announcements in a recession take the value of the announcement during
a recession and 0 else. The variables that measure announcements in an expansion take the value
of the announcement during an expansion and 0 else.

33According to our definition the economy is contracting from 8/14/2008 to 11/13/2009.
34Table 6.15 in appendix 6.A2 displays the BIC values for Table 6.10.



6.4 Summary 126

6.4 Summary

In this chapter, we analyze the influence of risk aversion, macroeconomic announce-

ments, and other variables on high-frequency correlations between bonds and stocks

in the Eurozone. We find that both risk aversion and macroeconomic announcements

separately drive conditional correlations and variances of bonds and stocks in the Eu-

rozone. Conditional correlations fall as risk aversion rises even when controlling for

the influence of macroeconomic announcements and the influence of these variables

on volatility. Interestingly, the additional effects of the financial crisis on conditional

correlations are only small. For most macroeconomic announcements, the absolute

value of the surprise is of higher importance for correlations than the mere occurrence

of the announcement. We get similar results when analyzing stock and bond volatil-

ity. Moreover, macroeconomic news result in falling conditional correlations. Yet, the

publication of news concerning future interest rates or the release of inflation figures

moves bond and stock prices in the same direction. These news convey information

concerning future cash-flows or trigger a flight-to-quality. We do not find that the ef-

fect of economic announcements on conditional correlations changes during the cycle

as splitting the effects of the macroeconomic variables between expansion and recession

does not alter the results and offer several explanations. However, we cannot assess if

this represents a structural break in the data or is caused by the particular period we

cover in our dataset. Comparing the effects of Eurozone and US announcements, we

find evidence that the most important announcements in the US are news on nonfarm

payroll employments while in Europe the announcement of the ECB rates receives most

attention.

Hence, the analysis of high-frequency data corroborates the findings of the previous

chapter: A sensible approach to incorporate exogenous information in correlation mod-

els should explicitly allow for exogenous effects in both volatilities and correlations.

Moreover, the advantage of multivariate exogenous variables models as compared to

models allowing for just one exogenous driver has again been underlined.

Our results have also important implications for both investors as well as risk managers.

We demonstrate that the stock-bond correlation falls and, hence, the diversification of

a stock-bond portfolio benefits in times of rising risk aversion i.e. at the time when

diversification benefits are needed most. This is an important result as it is well known

that stock-stock correlations rise in times of market turbulence.
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6.A Appendix

6.A1 GARCHX Modell: Bayesian Information Criterion

Table 6.11: European Bonds: GARCHX Model - Bayesian Information Criterion

High-Frequency
Variables

VSTOXXa 47556.676
Trading Vol. Bondsa 47600.873
Trading Vol. Stocksa 47170.859
Financial crisis 47224.536
Term spread 47474.874

Announcement
Dummyb

Absolute Surprisec Surprise

All announcements 43815.434

U.S. Announcements

Capacity utilizationd 47586.567 47585.911 47600.680
Construction spending 47298.972 47379.348 47588.441
Consumer confidence 47563.415 47560.135 47598.967
Consumer prices 47380.324 47428.147 47600.793
Durable good orders 47452.321 47467.049 47600.804
Factory orders 47562.629 47563.818 47592.100
U.S. GDP 47486.977 47494.600 47587.426
Industrial productiond 47586.567 47586.027 47598.557
Initial claims 46781.375 46843.125 47598.075
ISM index 47305.032 47301.092 47596.084
New home sales 47564.550 47561.475 47600.412
Nonfarm payroll empl.e 45494.565 45501.870 47598.039
Producer price index 47277.226 47282.450 47596.340
Retail sales 47095.341 47080.820 47598.023
Unemployment ratee 45494.565 45876.565 47567.510

German and Eurozone Announcements

IFO index 47345.566 47342.778 47572.583
German unemployment 47596.058 47596.058 47592.831
ECB rate decision 47355.989 47342.322 47374.050
Eurozone HCPI 47585.783 47570.453 47582.578
Eurozone GDP 47592.017 47597.998 47597.102

Note: The table reports the Bayesian Information Criterion of a GARCHX(1,1) model (see Equation 4.18) for the
Bund future. Coefficients are reported in table 6.4. We run separate estimations for each model presented. The
best model for each macroeconomic variable is indicated in bold.
aLog change of the variable; bAnnouncement Dummy is an indicator function that takes on the value 1 if there is an
announcement and 0 otherwise; cAbsolute value of the surprise is employed. d, e Economic figures are announced
at the same time.
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Table 6.12: European Stocks: GARCHX Model - Bayesian Information Criterion

High-Frequency
Variables

VSTOXXa 311414.671
Trading Vol. Bondsa 311688.665
Trading Vol. Stocksa 311381.442
Financial crisis 311288.786
Term spread 311698.549

Announcement
Dummyb

Absolute Surprisec Surprise

All announcements
U.S. Announcements

Capacity utilizationd 311690.523 311691.688 311709.672
Construction spending 311496.276 311518.379 311669.811
Consumer confidence 311650.160 311648.173 311710.755
Consumer prices 311455.901 311484.559 311707.664
Durable good orders 311447.518 311454.310 311710.694
Factory orders 311668.759 311675.245 311711.245
U.S. GDP 311409.067 311443.410 311694.796
Industrial productiond 311690.523 311691.971 311708.191
Initial claims 310642.410 310678.285 311676.504
ISM index 311476.665 311490.292 311711.186
New home sales 311587.013 311587.505 311710.381
Nonfarm payroll empl.e 309956.569 310021.888 311707.797
Producer price index 311566.748 311573.343 311672.805
Retail sales 311413.486 311409.317 311711.189
Unemployment ratee 309956.569 309992.329 311707.999

German and Eurozone Announcements

IFO index 311708.523 311709.538 311703.884

German unemployment 311696.853 311696.854 311704.409
ECB rate decision 311641.320 311640.666 311643.278
Eurozone HCPI 311675.080 311696.761 311709.567
Eurozone GDP 311706.417 311704.599 311711.247

Note: The table reports the Bayesian Information Criterion of a GARCHX(1,1) model (see Equation 4.18) for
the Euro Stoxx 50 future. Coefficients are reported in table 6.5. We run separate estimations for each model
presented. The best model for each macroeconomic variable is indicated in bold.
aLog change of the variable; bAnnouncement Dummy is an indicator function that takes on the value 1 if there is an
announcement and 0 otherwise; cAbsolute value of the surprise is employed. d, e Economic figures are announced
at the same time.
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6.A2 GDCCX Modell: Bayesian Information Criterion

Table 6.13: European Bond and Stock Correlations in a GDCCX Model with only one
exogenous variable: Bayesian Information Criterion

Announcement
Dummyb

Absolute Surprisec Surprise

U.S. Announcements

Capacity utilizationd 333680.763 333683.468 333689.020
Construction spending 333671.524 333676.385 333694.296
Consumer confidence 333690.727 333690.782 333691.882
Consumer prices 333691.369 333694.860 333693.834
Durable good orders 333661.650 333662.912 333694.235
Factory orders 333684.659 333683.479 333681.827

U.S. GDP 333677.017 333678.793 333694.835
Industrial productiond 333680.763 333684.533 333690.078
Initial claims 333649.333 333654.589 333693.065
ISM index 333676.002 333674.557 333693.595
New home sales 333692.664 333690.041 333694.849
Nonfarm payroll empl.e 333604.076 333609.924 333691.031
Producer price index 333691.539 333691.922 333694.803
Retail sales 333671.219 333679.409 333693.064
Unemployment ratee 333604.076 333635.860 333691.363

German and Eurozone Announcements

IFO index 333694.002 333693.044 333694.099
German unemployment 333689.231 333689.231 333694.844
ECB rate decision 333692.203 333694.807 333694.007
Eurozone HCPI 333692.965 333694.301 333694.825
Eurozone GDP 333694.543 333690.837 333691.551

Note: The table reports the Bayesian Information Criterion of a of a GDCCX model (see Equation 2.11) for
European bonds and stocks. We model volatility with a GARCHX (1,1) model. We run separate estimations
for each model presented where the macroeconomic variable is the only exogenous variable employed. The
best model for each macroeconomic variable is in bold.
bAnnouncement Dummy is an indicator function that takes on the value 1 if there is an announcement and
0 otherwise; cAbsolute value of the surprise is employed. d, e Economic figures are announced at the same
time.
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Table 6.14: European Bond and Stock Correlations in a GDCCX Model: Bayesian
Information Criterion

Announcement
Dummyb

Absolute Surprisec

U.S. Announcements

Capacity utilizationd 333332.064 333332.354
Construction spending 333328.547 333330.654
Consumer confidence 333332.366 333332.456
Consumer prices 333323.348 333310.478

Durable good orders 333317.544 333314.779

Factory orders 333331.316 333331.406
U.S. GDP 333330.208 333328.748

Industrial productiond 333332.064 333332.431
Initial claims 333331.841 333332.547
ISM index 333328.541 333326.721

New home sales 333332.815 333332.566

Nonfarm payroll empl.e 333285.720 333289.240
Producer price index 333332.477 333332.192

Retail sales 333329.591 333331.390
Unemployment ratee 333285.720 333302.033

German and Eurozone Announcements

IFO index 333317.464 333314.608

German unemployment 333332.714 333332.713

ECB rate decision 333307.032 333305.570

Eurozone HCPI 333332.900 333332.576

Eurozone GDP 333332.698 333331.691

Note: The table reports the Bayesian Information Criterion of a of a GDCCX
model (see Equation 2.11) for European bonds and stocks. We model volatility
with a GARCHX (1,1) model. Coefficients are reported in table 6.9. We run
separate estimations for each model presented. Each model includes the respec-
tive macroeconomic announcement, VSTOXX, Trading Vol. Bonds, Trading Vol.
Stocks, the all Announcements Dummy, and Financial Crisis Dummy as exoge-
nous variables. The best model for each macroeconomic variable is indicated in
bold.
bAnnouncement Dummy is an indicator function that takes on the value 1 if there
is an announcement and 0 otherwise; cAbsolute value of the surprise is employed.
d, e Economic figures are announced at the same time.
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Table 6.15: European Bonds and Stock Correlations in a GDCCX Model with
Macroeconomic Announcements during Recession and Expansion:

Bayesian Information Criterion

Best Model BIC

U.S. Announcements

Capacity utilizationa Dummy 333536.421
Construction spending Dummy 333530.805
Consumer confidence Dummy 333547.249
Consumer prices Abs. Surpr. 333555.227
Durable good orders Abs. Surpr. 333499.532
Factory orders Abs. Surpr. 333541.496
U.S. GDP Dummy 333526.463
Industrial productiona Dummy 333536.421
Initial claims Dummy 333508.935
ISM index Abs. Surpr. 333528.902
New home sales Abs. Surpr. 333548.813
Nonfarm payroll empl.b Dummy 333472.287
Producer price index Dummy 333550.453
Retail sales Dummy 333524.860
Unemployment rateb Dummy 333472.287

German and Eurozone Announcements

IFO index Abs. Surpr. 333555.538
German unemployment Abs. Surpr. 333540.661
ECB rate decision Abs. Surpr. 333553.553
Eurozone HCPI Dummy 333550.783
Eurozone GDP Dummy 333550.861

Note: The table reports the Bayesian Information Criterion of a of a
GDCCX model (see Equation 2.11) for European bonds and stocks. We
model volatility with a GARCHX (1,1) model. Coefficients are reported
in table 6.10. Each row in the table represents a single estimation that
includes the respective macroeconomic announcement, VSTOXX, Trad-
ing Vol. Bonds, and Trading Vol. Stocks as exogenous variables. Best
model describes if the absolute surprise or the a simple dummy is taken
for of the respective announcement.
*p < 0.10, **p < 0.05, ***p < 0.01, a, b Economic figures are announced
at the same time.
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7 Summary and Conclusion

In this dissertation, the influence of exogenous variables on conditional correlations is

investigated. First, it is examined how to model the possible effects of exogenous vari-

ables. Various correlation models proposed by the previous literature are introduced:

the DCC, the DCCX, the STCC, and the Sheppard model. In a next step, the DCCX

model is generalized and the GDCCX model is proposed. In that model exogenous

variables can drive conditional correlations in different ways. In addition, it is guar-

anteed that the exogenous variables affect conditional covariances but not conditional

variances.

Following the investigation of the finite sample properties of all estimators, the models

are compared. A simulation experiment is conducted, and estimated correlations are

compared with the true conditional correlations. In order to ensure that the exogenous

variable has some forecast ability, the lagged conditional correlations are employed

as exogenous variable. The results show that the GDCCX model uses the information

contained in the exogenous variable best as the mean absolute error is lowest for several

different settings. By contrast, the Sheppard model performs even worse than a simple

DCC model that does not use any exogenous data. Moreover, by accounting for the

influence of exogenous variables it is possible to reduce the mean absolute error by about

two thirds. This further strengthens the argument for employing exogenous variables

when conditional correlations are sought to be explained.

Going forward, the models are compared to each other employing real data. As the

true conditional correlations are unknown, the testing criteria developed by Engle and

Colacito (2006) are used to compare the models. The DCC, the DCCX, and the GD-

CCX model significantly outperform the STCC and the Sheppard model. In addition,

the benefits of using the GDCCX model rise as the number of time series included

increases. Since real bond market data is analyzed, the interpretation of the results is

meaningful. The results indicate that conditional correlation between government and

corporate bonds fall as risk aversion increases, a clear sign of a flight-to-quality. This is

good news from a portfolio management perspective as diversification benefits remain

intact in times of crisis.
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Up to this point, it is assumed that conditional variances are not influenced by the ex-

ogenous variables and can be explained with a GARCH model. However, several recent

studies suggest that this assumption may not hold. Possible consequences of this mis-

specification of the variance equation on the estimation of conditional correlations are

examined. First, a theoretical model of Forbes and Rigobon (2002) is consulted. It is

demonstrated that a change in the conditional variance of one of the time series caused

by an exogenous variable can result in higher conditional correlations between that

time series and a second one although the dependence structure does not change. Yet,

this result is based on assumptions concerning the transmission and the specific vari-

ance of the second time series. Second, a simulation study is carried out to investigate

the estimation of conditional correlations if conditional variances but not correlations

are driven by the exogenous variable. It is shown that the influence of the exogenous

variable on the conditional correlation cannot be distinguished from the the exogenous

variable driving the dependency structure in certain settings. However, once the influ-

ence of the exogenous variable on conditional variances is modeled with a GARCHX

model, the effect of the exogenous variable on conditional correlations and variances is

correctly specified in all settings. Going forward, conditional variances are estimated

with the GARCHX model and conditional correlations with the GDCCX model.

Employing the econometric framework developed in the previous parts, several em-

pirical research questions are addressed. First, the effects of risk aversion, market

turbulence, and the business cycle on conditional correlations between weekly Euro-

pean bonds and between weekly European stock returns are examined. In a first step,

the influence of each variable is analyzed separately. In a second step, all variables

are included simultaneously. That allows investigating whether the effect of one vari-

able is dominating and whether the effects are persistent after taking account for other

exogenous variables. The results indicate that, while both GDP growth and market

turbulences influence conditional correlations, the effect of risk aversion vanishes once

the other variables are included in the analysis. As expected, the impact of market

turbulences is most pronounced in the peripheral countries. The empirical results also

show that there is an important difference between bonds and stocks. While market

turbulences result in decreasing conditional correlations between international bond

markets, conditional correlations between stock markets rise strongly. These are clear

signs of contagion in the stock market diminishing the diversification within a stock

market portfolio. Diversification is further impeded by negative GDP growth which

results in higher stock return correlations. By contrast, diversification benefits remain



7 Summary and Conclusion 135

intact in a bond portfolio since lower GDP growth coincides with decreasing bond

return correlations.

In the final empirical analysis, the sample frequency is substantially increased. The

dataset adopted to examine intra-day stock-bond correlations consists of 5 minute

stock and bond returns. Specifically, the effects of risk aversion and macroeconomic an-

nouncements both in Europe and in the US on stock-bond correlations are investigated.

Since volatility can also be influenced by exogenous variables, conditional correlations

are estimated using a GDCCX model and conditional variances are modeled using a

GARCHX model. Estimating the effects of the announcements on both conditional

correlations and variances is particularly important since previous studies found that

volatility increases considerably at the time of announcements. The results indicate

that both risk aversion and macroeconomic announcements are important drivers of

conditional stock-bond correlations. Conditional correlations fall as risk aversion rises.

While previous studies found that the mere occurrence of an announcement matters

most for correlations, the results demonstrate that the absolute value of the announce-

ment surprise is even more important. This is also true for stock volatility. Generally,

news on nonfarm payroll employments in the US and the announcement of the ECB

rates drive conditional correlations most. The publication of almost all announcements

results in falling conditional correlations. An exception are interest rates and infla-

tion announcements. These news drive conditional correlations upwards. It can be

concluded that these figures convey information concerning future cash-flows or that

they trigger a flight-to-quality. Furthermore, the results show that the effect of the

macroeconomic variables is not sensitive to the business cycle.

The results of this thesis have important implications for both academics and practition-

ers. It is highlighted that diversification benefits remain intact in a portfolio consisting

of stocks and bonds or of different bond sectors. Moreover, a powerful econometric

framework that is particularly suited for the empirical analysis of influencing factors

of conditional correlations has been developed. The combination of the GDCCX and

the GARCHX model allows for the simultaneous analysis of the effects of one or more

exogenous variables on conditional variances and correlations. Moreover, the effects of

exogenous variables on variances can be distinguished from those on the dependency

structure. Therefore, this econometric framework is especially useful if a researcher is

unsure whether the exogenous variables drive conditional variances, conditional corre-

lations or both.
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In the empirical analysis, the focus lies on the effects of risk aversion and macroeco-

nomic figures on correlations between different asset classes. Assessing the correlations

between different asset classes is important both for portfolio and risk management.

The econometric framework can easily be applied to various research areas. For exam-

ple, the CAPM postulates that the expected return of a security is a function of its

correlation with the market. Remaining questions are whether price changes are caused

by changes of the correlation of the security with the market and what the determinants

of this correlation change are. Moreover, changes in correlations between markets in

different countries are often associated with the notion of contagion. The econometric

framework presented in this thesis can be employed to reveal triggers of correlation

changes. Prospective studies might also investigate the ability of exogenous variables

to forecast changes in correlations. This is especially interesting for applied portfolio

and risk management, as exogenous variables might improve the forecasting perfor-

mance of DCC models in this context. In practice, a forecasted increase in conditional

correlations might induce hedging of some parts of a portfolio.

Yet, there are some interesting model extensions that remain for future research. While

the GDCCX model is based on the assumption that the effect of the exogenous variable

on Qt is linear, that is not necessarily true. Another reasonable assumption is that the

effect varies with the sign of the estimated conditional correlation. For example, it

might be that the absolute value of the conditional correlations is a function of the

exogenous variables. For example, the conditional correlation between two time series

increases to 1 or decreases to -1, i.e. the economic connection strengthens, with larger

values of an exogenous variable but decreases to 0 as a result of smaller values of the

exogenous variable. If that is true, the estimated c coefficient of the GDCCX model

will turn the sign depending on the conditional correlation estimated previously. Thus,

the assumption that the effect of the exogenous variable is independent of the sign of

previous estimated conditional correlations could be relaxed in further generalizations

of the model.
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