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Introduction

The objective of  this article is to present a view on the 
potential impact of  Artificial Intelligence (AI) on processing 
medical images, in particular in relation to diagnostic. This 
topic is currently attracting major attention in both the 
medical and engineering communities, as demonstrated 
by the number of  recent tutorials [1-3] and review articles 
[4-6] that address it, with large research hospitals, as well 
as engineering research centers contributing to the area. 
Furthermore, several large companies like General Electric 
(GE), IBM/Merge, Siemens, Philips or Agfa, as well  as 
more specialized companies and startups are integrating  
AI into their medical imaging products. The evolution of  
GE in this respect is interesting. GE SmartSignal software 
was developed for industrial applications to identify 
impending equipment failures well before they happen. As 
written in the GE prospectus, with this added lead time, 
one can transform from reactive maintenance to a more 
proactive maintenance process, allowing the workforce to 
focus on fixing problems rather than looking for them. 
With this background experience from the industrial 
field, GE developed predictive analytics products for 
clinical imaging, that embodied the Predictive component 
of  P4 medicine (predictive, personalized, preventive, 
participatory). Another interesting example is the Illumeo 
software from Philips that embeds adaptive intelligence, i. 
e. the capacity to improve its automatic reasoning process 
from its past experience, to automatically pop out related 
prior exams for radiology in face of  a concrete situation. 
Actually, with its capacity to tackle massive amounts of  
data of  different sorts (imaging data, patient exam reports, 
pathology reports, patient monitoring signals, data from 
implantable electrophysiology devices, and data from 
many other sources) AI is certainly able to yield a decisive 
contribution to all the components of  P4 medicine. For 
instance, in the presence of  a rare disease, AI methods have 
the capacity to review huge amounts of  prior information 
when confronted to the patient clinical data.

Medical Image Processing
For the purpose of  computer processing, an image is 
described as a table of  numbers, with image elements called 
pixels for 2 dimensional images, or voxels for 3 dimension 
pictures. A plethora of  technologies to visualize inside 
the human body are available and generate image data. 
Examples include ultrasound (US), computed tomography 
(CT), magnetic resonance imaging (MRI), positron emission 
tomography (PET), and single photon emission computed 
tomography (SPECT). The use of  a specific sensing device 
depends on the medical field of  application. 
Processing medical images comprises two broad classes 
of  problems: Obtaining enhanced images and providing 
them to the clinician through a suitable man/machine 
interface, and automatic generation of  diagnostic decisions 
(possibly involving the clinician). The first problem is the 
realm of  image processing methods that comprise image 
reconstruction (build images from sensor data), image 
filtering (separation of  image useful information from 
“noise”), and image segmentation (isolation of  single 
elements of  interest in the image), that may refer to single 
images or to video sequences. The second class of  problems 
is related to computer-aided diagnosis and is tightly related 
to AI. Computer aided diagnosis (CAD)10 systems based on 
multimodal information, that is to say, clinical  information 
from different sources, are commonly used today to support 
therapeutic and surgical decisions in several medical fields.11 
The diagnosis and characterization of  the atherosclerotic 
disease of  the carotid is a paradigmatic example where 
this type of  systems has been successfully used in support 
decision-making of  endarterectomy, the surgical approach 
for atherosclerotic plaque removal.  This is a critical surgical 
procedure on the neck with significant medical risks that 
should be avoided when the risk of  plaque disruption and 
carotid stenosis are small.  In12 a new score is proposed to 
assess the stability of  the plaque and indirectly quantify the 
risk of  stroke mainly in asymptomatic patients. The novelty 
of  the method relies on putting together automatic textural 
and morphological features extracted from ultrasound 
images of  the plaque with traditional clinical information 
provided by the medical doctor. This diagnosis strategy has 
also proven to be very useful in the diagnosis of  chronic 
liver disease13 where sophisticated and complex image 
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processing algorithms coexist harmoniously with the 
classic, sometimes subjective, techniques used in clinical 
practice producing more accurate tools for diagnosis.
While in the classical architecture the work of  the image 
processing engineer is to define handcraft features, 
conveying information about the decision to be made (e.g., 
color or texture histograms), the end-to-end approach does 
not require this intermediate step and attempts to produce 
the decision directly from the input image. This approach is 
much more difficult since, instead of  using a few hundred 
features to produce the decision, it considers the full image 
with thousand or millions of  pixels/voxels, and relies on 
deep neural-networks with thousands of  coefficients. On 
the other hand, the end-to-end approach does not depend 
on the ability of  the engineer to reduce the input image into 
a “small” set of  feature but, instead, the image features are 
internal variables that are trained from the data.7,8,9

Artificial Intelligence

Artificial Intelligence includes many problems and 
paradigms. The class of  problems addressed in this article 
fits into the scope of  supervised data-based learning that 
consists of  using known data and past decisions to learn 
how to predict the decision for new data.
AI decision algorithms comprise many methods, including 
statistical [14] or neuronal methods such as
• Bayes classifier
• Linear classifiers (Logistic regression, linear discriminant 

analysis)
• Support vector machines
• Decision trees (often used in Medicine because they 

provide a justification for the decision)
• Random forests. An extension of  decision trees that 

uses multiple trees, trained under different conditions. 
It has the advantage over decision trees of  improving 
the decision process, but the drawback of  loosing the 
justification.

• Neural networks (based on a collection of  simple 
processing units inspired in the human brain; these units 
are nonlinear, highly interconnected and they are often 
organized in processing layers). When the number of  
layers is higher then three, the network is called a deep 
neural network and the learning phase is called deep 
learning.

Deep-learning4,8,9,15 is solving problems in a scale that was 
not conceivable up to 5 years ago,  but has the drawback of  
requiring large amounts of  annotated data (many thousands 
of  annotated examples). Tackling this problem is easy in 
areas where data is freely available through the internet but 
it is much more difficult in areas such as medical diagnosis 
where annotated data is scarce. In such areas, either it is 
possible to develop new algorithms that are able to achieve 
similar performance with a smaller amount of  data or one 
has to rely on conventional decision methods with hand-
crafted features, or a mixture of  both.

Selected Future Prospects

Although the application of  AI to Radiology is manifold, 
only two possible developments are considered hereafter, 
that have been selected because of  their relevance.

Deep learning in relation to clinically inspired decision 
systems
Clinically Inspired Decision Systems are systems that 
provide explanations for the final decision that are similar 
to the ones yielded by a human expert medical doctor. 
The interest for this type of  systems stems from the fact 
that medical doctors are reluctant to accept unjustified 
decisions. Currently, the diagnosis based on medical images 
partially relies on the existence of  text reports that describe 
the exams and highlight the most relevant findings (e.g., the 
identification and sizing of  nodules on chest X-rays). This 
makes one wonder what will be the real acceptability of  the 
deep learning based systems, which lack these descriptive 
properties and are usually perceived as “black-boxes” 
among clinicians and patients.16 This section addresses the 
previous issue and the possibility to develop deep learning 
systems that yield explanations and decisions similar to that 
of  human experts.
One of  the simplest strategies is to go beyond simply 
diagnosing a 2D or 3D scan using a deep learning 
architecture, and extend it to the localization of  relevant 
organs, regions or lesions (e.g., nodules, tumors, and micro-
bleedings).17 Such modification provides the clinicians 
with visual cues to understand the diagnosis. In some 
cases, it is possible to refine the location of  the relevant 
structure, leading to its segmentation, that in turn allows a 
quantitative analysis of  useful shape and volumetric clinical 
parameters. Among the segmentation-based convolution 
neural network architectures, the most popular is the U-net, 
that was proposed by Ronneberger et al.18 to segment cells 
in light microscopy images. 
The main limitation of  the aforementioned systems is the 
lack of  a large amount of  data, namely segmentations, to 
train the deep learning models. Some researchers tackled this 
issue using text reports to train deep learning architectures 
in a weakly supervised fashion. In this case, the models try 
to associate key words in the reports with specific regions 
of  the medical images. An example is the work of  Hwang 
et al. that used this framework to detect nodules in chest 
X-rays and lesions in mammography.19 The generation 
of  reports, such as the prediction of  BI-RADS for breast 
lesions,20 has also been investigated. These works rely on 
methods developed for image caption generation21 and use 
two types of  deep learning architectures: a convolution 
neural network  for image analysis and a recurrent neural 
network for text generation. The production of  automatic 
reports may be useful to understand what the network is 
responding to.  
Another interesting line of  research is applying deep 
learning to perform content-based image retrieval. The 
idea is to discover similar cases in databases, i.e., make use 
of  previous knowledge, as would happen with clinicians 
that are exposed to several cases through their years of  
practice. In this case, deep learning architectures may be 
used to obtain suitable image representations.22

It is important to bear in mind that medical images convey 
only  part of  the useful information. Clinicians also rely 
on a set of  medical covariates, such as the gender, age, 
patient and familial history, as well as demographics to 
complement the diagnosis procedure. Although recent 
works have shown that incorporating this information 
in a deep learning system improves the performance,23 
combining such distinct information is not trivial and few 
works have explored this possibility.4



Brain imaging
Artificial intelligence is playing a rapidly expanding role in 
brain imaging, including clinical applications in neurology 
and psychiatry as well as new tools for neuroscience 
research. Magnetic resonance imaging (MRI) is by far 
the most important modality for brain imaging, not 
only allowing the visualization of  cerebral anatomy with 
exquisite detail, but also providing information on cerebral 
micro-structure (using diffusion-weighted imaging) as 
well as multiple physiological and functional parameters 
(such as blood perfusion and oxygenation, cerebrovascular 
reactivity and neuronal activity).31,32 The availability of  the 
latter advanced techniques opens the applicability of  MRI 
to subtle brain pathology that eludes macroscopic structure. 
This is the case of  cerebrovascular and microstructural 
changes preceding white matter lesions in cerebrovascular 
disease (e.g.24), or functional changes preceding brain 
atrophy in dementia (e.g.25). Physiological imaging is 
also needed to monitor brain tumors and evaluate their 
response to treatment (e.g.26), while alterations in functional 
brain networks are a hallmark of  psychiatric diseases such 
as schizophrenia and depression where no morphological 
changes are observed (e.g.27). 
The remarkable developments in MRI technology over the 
past decade have pushed brain imaging to unprecedented 
levels of  sensitivity and spatial resolution, attainable with 
previously unimagined speed, which offers extraordinary 
possibilities for the application of  AI methods. On the one 

hand, the development of  increasingly faster acquisition 
schemes motivates the use of  machine learning for image 
reconstruction from under-sampled or noisy data (e.g.28). 
On the other hand, AI methods can be employed at 
various levels of  image post-processing, including artifact 
correction, image registration or lesion segmentation, as 
well as parameter quantification (e.g.29). Moreover, AI is 
clearly needed for the identification of  imaging biomarkers 
of  brain disease, that can be used to support early diagnosis 
and outcome prediction as well as to monitor disease 
progression and assess response to treatment, including the 
evaluation of  novel therapeutic approaches in clinical trials 
(e.g.30) – this is the field of  radiomics.

Conclusion

AI software is permeating the field of  Radiology with 
commercial products already available. This fact does not 
mean that the progress is towards a situation in which the 
medical doctor is no longer needed, but instead that he will 
have an enhanced role, free from repetitive tasks, and able 
to concentrate on the core clinical decisions. Indeed, future 
applications of  AI to Radiology will provide an enhancement 
of  the quality of  diagnosis combining multiple data and 
integrating the clinician as a crucial element. The progress 
in this area will rely on a deep cooperation between medical 
doctors and engineers to develop complex computer aided 
diagnostic systems.
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