
Towards Superinstructions for Java Interpreters

Kevin Casey1, David Gregg1, M. Anton Ertl2, and Andrew Nisbet1

1 Department of Computer Science, Trinity College, Dublin 2, Ireland
{Kevin.Casey,David.Gregg,Andy.Nisbet}@cs.tcd.ie

2 Institut für Computersprachen, TU Wien, A-1040 Wien, Austria
anton@complang.tuwien.ac.at

Abstract. The Java Virtual Machine (JVM) is usually implemented by
an interpreter or just-in-time (JIT) compiler. JITs provide the best per-
formance, but interpreters have a number of advantages that make them
attractive, especially for embedded systems. These advantages include
simplicity, portability and lower memory requirements. Instruction dis-
patch is responsible for most of the running time of efficient interpreters,
especially on pipelined processors. Superinstructions are an important
optimisation to reduce the number of instruction dispatches. A superin-
struction is a new Java instruction which performs the work of a common
sequence of instructions. In this paper we describe work in progress on
the design and implementation of a system of superinstructions for an
efficient Java interpreter for connected devices and embedded systems.
We describe our basic interpreter, the interpreter generator we use to
automatically create optimised source code for superinstructions, and
discuss Java specific issues relating to superinstructions. Our initial ex-
perimental results show that superinstructions can give large speedups
on the SPECjvm98 benchmark suite.

1 Motivation

The Java Virtual Machine (JVM) is usually implemented by an interpreter or
just-in-time (JIT) compiler. JITs provide the best performance, but interpreters
have a number of advantages that make them attractive, especially for embedded
systems. First, interpreters require much less memory than JITs, both for the
interpreter itself and the Java bytecode. For example, Hoogerbrugge et al. [13]
found that a bytecode representation of a program could be up to five times
smaller than the corresponding machine code. Many embedded systems have
small memories giving interpreters a decisive advantage.

A second important advantage of interpreters is that they can be constructed
to be trivially portable to new architectures, assuming that a C compiler for the
new architecture already exists. In contrast, it can take many months to port
the back end of a JIT compiler. Portability means that the Java interpreter can
be rapidly moved to a new architecture, reducing time to market. There are
also significant advantages in different target versions of the interpreter being
compiled from the same source code. The various ports are likely to be more
reliable, since the same piece of source code is being run and tested on many

A. Krall (Ed.): SCOPES 2003, LNCS 2826, pp. 329–343, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by MURAL - Maynooth University Research Archive Library

https://core.ac.uk/display/297029962?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

330 Kevin Casey et al.

different architectures. A single version of the source code is also significantly
cheaper to maintain. There are other parts of the JVM that are more difficult to
port (such as the Java Native Interface for calling machine code functions), but
many embedded JVMs, such as Sun’s KVM [19] for mobile devices, have limited
support for these unportable features.

A third advantage of interpreters is that they are significantly smaller and
simpler than JIT compilers. Simplicity makes them more reliable, quicker to con-
struct and easier to maintain. When building a JIT compiler one must not only
debug the code for the compiler, but must often also debug the code generated
by the compiler. This is not an issue for interpreters. A final smaller advantage of
interpreters is that they do not necessarily have to compile the bytecode into an-
other format before execution. Sun’s Hotspot mixed mode compiler/interpreter
JVM takes advantage of this by only compiling code that has been shown to
be frequently executed. The compilation overhead for rarely used code is often
greater than the time needed to execute that code on an interpreter. A similar
strategy is used by Transmeta for their Crusoe processor which emulates the x86
instruction set through a combination of interpreting and binary translation.

A weakness of using interpreters is that they run most code much slower than
JITs. Even very efficient interpreters are typically about ten times slower than a
JIT compiler [13]. The goal of our work is to narrow that gap, by applying speed
optimisations to Java interpreters. One such optimisation is the use of superin-
structions. Certain sequences of VM instructions (such as ALOAD 0 GETFIELD)
occur frequently in Java bytecode. A superinstruction is a new instruction that
behaves in the same way as a sequence of simple Java instructions. By replacing
such sequences with the corresponding superinstruction, the work of several in-
structions can be performed, but with the interpreter overhead of only a single
VM instruction.

Superinstructions have been used for many years to optimise interpreters.
Traditionally, the addition of superinstructions to an interpreter made it much
less maintainable, because they increased the size of the source code. We use
an interpreter generator to automatically generate source code for superinstruc-
tions, based on a specification of the component instructions. Our generator
system automatically optimises the source code for superinstructions to avoid
unnecessary loads and stores by keeping intermediate values in registers, and by
combining stack pointer updates.

This paper describes the design and implementation of a system of superin-
structions for an optimised Java interpreter. Preliminary experimental results
show that superinstructions can greatly increase the speed of a portable Java
interpreter, allowing it to significantly outperform commercial Java interpreters
hand-coded in assembly language.

2 Superinstructions

A superinstruction is a new virtual machine instruction that consists of a se-
quence of several existing VM instructions. There are several advantages in

Towards Superinstructions for Java Interpreters 331

combining instructions in this way. First, it reduces the number of instruction
dispatches required to perform a certain sequence of instructions. This is im-
portant since instruction dispatch is usually the most time consuming part of
executing and instruction1. Secondly, it allows us to optimise the interpreter
source code. For example, our interpreter generator automatically reuses val-
ues across VM instructions without reloading them, eliminates cancelling stack
pointer updates, and performs other small stack optimisations when generating
C code from the instruction definition. Thirdly, combining the source code for
instructions together exposes a larger “window” of code to the C compiler, which
allows greater opportunities for optimisation.

We use the interpreter generator vmgen [7] to allow us to generate superin-
structions using profiling information. vmgen takes in an instruction definition,
and outputs an interpreter in C which implements the definition. The inter-
preter generator translates the stack specification of the instruction definition
into pushes and pops of the stack, adds code to invoke following instructions,
and makes it easy to apply optimizations to all virtual machine instructions,
without modifying the code for each separately.

Figure 1 shows the instruction definition for the JVM instruction ILOAD (load
integer local variable). The # symbol in the definition means that it takes an
immediate value from the VM instruction stream. Note that we need to update
the instruction pointer by two positions, since the VM instruction consists of the
ILOAD opcode followed by an immediate operand containing the number of the
local variable to load onto the stack.

ILOAD (#iIndex -- iResult) 0x21

{

iResult = locals[iIndex];

}

Fig. 1. Definition of ILOAD VM instruction

By adding ILOAD-IADD to the list of superinstructions for our code copying
compiler, vmgen will produce the source code in figure 2, which is generated
automatically from the instruction definitions of ILOAD and IADD.

There are a number of notable features about this code. First, all used stack
items are loaded from memory into local variables at the start of the code. The
different VM instructions within the superinstruction communicate by reading
from and assigning to these local variables.

Presuming that the C compiler is able to allocate these local variables to
registers, this will greatly reduce the amount of memory traffic from accessing the
VM stack. IADD alone requires two loads and one store to access the stack, and
1 Instruction dispatch is expensive on modern architectures because it involves a
difficult-to-predict indirect branch. In the case of threaded code interpreters, superin-
structions not only reduce the number of dispatches, but also make the remaining
branches more easily predictable using a branch target buffer (BTB) [6].

332 Kevin Casey et al.

ILOAD requires one store. In contrast, the superinstruction ILOAD-IADD requires
only one load and one store access to the stack to perform the same work. Thus
stack memory traffic is reduced by 50%.

START_ILOAD_IADD: /* start label */

{

int sp0; /* synthetic names */

int sp1;

int ip1; /* synthetic name for item in VM instruction stream */

ip1 = *(ip+1); /* fetch immediate value */

sp0 = *(sp);

{ /* ILOAD */

int iIndex; /* declare stack item */

int iResult;

/* fetch stack item to local variable */

iIndex = ip1;

{ /* user provided C code */

iResult = locals[iIndex];

}

sp1 = iResult; /* store stack result */

}

{ /* IADD */

int iValue1; /* declare stack items */

int iValue2;

int iResult;

iValue1 = sp1; /* fetch stack items to */

iValue2 = sp0; /* ...local variables */

{ /* user provided C code */

iResult = iValue1 + iValue2;

}

sp0 = iResult; /* store stack result */

}

*(sp) = sp0;

ip += 3; /* update VM ip */

}

NEXT; /* indirect goto */

Fig. 2. Simplified Vmgen output for ILOAD-IADD superinstruction

Another notable feature of the code in figure 2 is that there is no stack pointer
update. ILOAD increases the size of the stack by one, and IADD reduces its size
by one. Vmgen detects that the two stack pointer updates are redundant, and
eliminates them. In addition, there is only one instruction pointer update.

Towards Superinstructions for Java Interpreters 333

3 Design Issues

3.1 Which Sequences?

The main determinant of the usefulness of superinstructions is whether the se-
quences we choose to make into superinstructions account for a large proportion
of the running time of the programs that run on the interpreter. The set of su-
perinstructions must be chosen when the interpreter is constructed, most likely
at a time when one doesn’t know which programs will be run on the interpreter.
Thus, one must somehow guess which superinstructions are likely to be useful
for a set of programs that one has never seen.

The most common way to make guesses at the behaviour of unseen programs
is to measure the behaviour of a set of standard benchmarks programs, and hope
that these benchmarks resemble the real programs. A question remains, however,
as to how the benchmarks should be measured to identify useful superinstruc-
tions. Gregg and Waldron [12] tested a wide range of strategies for choosing
superinstructions for Forth programs. They found, perhaps surprisingly, that
the best strategy was to simply choose those sequences that appear most fre-
quently in the static code. We use this strategy for the main experiments in this
paper.

One complication in a Java interpreter is that the JVM comes with a large
library of classes that are used internally by the JVM and by running programs.
Approximately 33% of the executed bytecode instructions in the SPECjvm98
benchmark suite [18] are in library rather than program methods [21]. This
library code is available at the time the interpreter is built, so there is potential
for choosing superinstructions specifically for commonly used library code.

3.2 Parsing

The use of superinstructions is in many respects the same problem as dictionary-
based text compression [2]. Dictionary-based compression attempts to find com-
mon sequences of symbols in the text, and replaces them with references to a
single copy of the sequence. Thus, when designing a superinstruction system, we
can draw on a large body of theory and experience on text compression.

Parsing is the process of modifying the original sequence of instructions by
replacing some subsequences with superinstructions. The simplest strategy is
known as greedy parsing, where at each VM instruction we search for the longest
superinstruction that will match the code from that point.

For example, consider the basic block in figure 3. Assume that we have two
superinstructions available: ILOAD-ILOAD and ILOAD-IADD-ISTORE. Following a
greedy strategy, we would find the longest sequence that matches a superin-
struction from the start of the basic block. Thus, we would replace the first two
instructions with the superinstruction ILOAD-ILOAD, and reduce the number of
dispatches needed to execute this code by one. The main advantage of greedy
parsing is that it is very fast — an important factor in an optimisation that we
apply to a Java method at run time, the first time that it is invoked. Greedy
parsing is also simple to implement and requires little memory.

334 Kevin Casey et al.

ILOAD 4 ; load local 4

ILOAD 5 ; load local 5

IADD ; integer add

ISTORE 6 ; store TOS to local 6

ILOAD 6 ; load local 6

IFEQ 7 ; branch by 7 if TOS == 0

Fig. 3. Example basic block

The weakness of greedy parsing becomes apparent when we consider whether
a better parse of the code in figure 3 is possible. Clearly, it would be better
to replace the second, third and fourth instructions with the superinstruction
ILOAD-IADD-ISTORE. This would reduce the number of dispatches by two. To be
sure of always finding the best possible parse, an optimal parsing algorithm must
be used. Fortunately, optimal parsing can be solved using dynamic programming
[2], so efficient algorithms are available. However, our preliminary experiments
show that even fast implementations are measurably slower than greedy parsing.
Furthermore, these preliminary experiments show optimal parsing reducing the
number of instruction dispatches by less that 5%.

Our current implementation uses a simple version of greedy parsing. In the
bytecode translator, we always keep a buffer of the most recently generated
threaded code instruction in the basic block. When we generate the next in-
struction, we check whether it can be combined with the one in the buffer. If it
can, then the instruction in the buffer is replaced with the corresponding com-
bined superinstruction. If not, the instruction in the buffer is written to the the
code area for that method, and it is replaced in the buffer by the just generated
instruction. This strategy is simple to implement, requires little memory, and
makes the check for replacement with superinstructions extremely fast.

One weakness of this strategy, however, is that for a long superinstruction
to be usable, all prefixes of the instruction must also be valid superinstructions.
For example, if we have the superinstruction ILOAD-ILOAD-IADD-ISTORE, then
we must also have the superinstructions ILOAD-ILOAD and ILOAD-ILOAD-IADD.
In practice, this is not a problem, since we usually select superinstructions based
on the frequency of sequences in real programs, and by definition subsequences
have a frequency at least equal to that of the longer sequence. However, in future
implementations we intend to relax this restriction to allow us to exploit more
complicated superinstruction selection strategies.

3.3 Quick Instructions

Several Java bytecode instructions must perform various class initialisations on
the first time that they are executed. On subsequent executions no initialisations
are necessary. A common way to implement this functionality is with “quick” in-
structions. The first time a given instruction of this type is executed, it performs
the necessary initialisations, and then replaces itself in the instruction stream

Towards Superinstructions for Java Interpreters 335

with a corresponding quick instruction, which does not do these initialisations.
On subsequent executions of this code, the quick instruction is executed.

Quick instructions are vital to the performance of most Java interpreters,
since the check for class initialisation is expensive, and because they are among
the most commonly executed instructions. For example, in the SPECjvm98
benchmarks GETFIELD and PUTFIELD account for about one sixth of all exe-
cuted instructions, and run very slowly unless converted to quick versions [21].
Eller [3] found that adding quick instructions to the Kaffe interpreter could speed
it up by almost a factor of three.

A problem with quick instructions is that they make it difficult to replace
sequences of instructions with superinstructions. No instruction that will be re-
placed with another instruction at run time can be placed in a superinstruction,
since that would involve replacing the entire superinstruction. Furthermore, some
instructions, such as LDC (load constant from constant pool) and INVOKEVIR-
TUAL become different superinstructions depending on the value of their inline
arguments, or the type of class or method they belong to.

An additional complication when dealing with non-quick instructions is race
conditions. Due to the threaded nature of the Java interpreter, during quick-
ening it is quite possible for two threads to almost simultanuously access a
non-quick instruction triggering a potential race condition. Such race conditions
are avoided in the current implementation of cvm by using mutually exclusive
locks, but adding support to allow quickened instructions to become part of a
superinstruction after translation could lead to race conditions.

Our current implementation does not allow any “quickable” instructions to
participate in superinstructions. However, we are experimenting with a wide
range of strategies to change this. Perhaps our most promising is to simply add
an extra routine to the quickening process to reparse the basic block once the
original instruction has been replaced. This approach is greatly simplified by
leaving gaps for removed instructions in the code, as is outlined in the next
subsection.

3.4 Across Basic Blocks

Superinstructions are normally only applied to instructions within basic blocks.
However, with relatively small modifications, it is possible to extend superin-
structions across basic block boundaries in two specific situations. First, we con-
sider control flow joins. A join is a point in the program with incoming control
flow from two or more different places. Usually one of those places is simply the
proceeding basic block, and control falls through to the join without any branch-
ing. In these cases, the falling-though code is simply a straight-line sequence of
instructions. However, it is not normally safe to allow a superinstruction to be
formed across the join, because it would not then be clear where the other in-
coming control-flow paths should branch to.

The solution we use is to create superinstructions, but not to remove the
gaps that are created by eliminating the original instructions. In fact, we leave
the original instructions in these gaps. Figure 4 shows an example of, where we

336 Kevin Casey et al.

ILOAD ILOAD

4 4

ILOAD ILOAD-IADD

5 5

join: IADD join: IADD

ISTORE ISTORE

6 6

Fig. 4. Original code (left) and same code with ILOAD-IADD superinstruction
(right)

have replaced the sequence ILOAD, IADD with the superinstruction ILOAD-IADD.
We actually replace the ILOAD instruction with ILOAD-IADD, but leave the IADD
instruction where it is. When we fall-through from the first basic block to the
second, we execute ILOAD-IADD, which performs its normal work and then skips
over the IADD instruction. On the other hand when we branch to the second
basic block from elsewhere, we branch to the IADD instruction which executes
and continues as normal. This scheme allows us to form superinstructions across
fall-though joins.

We believe that this scheme is particularly valuable for while loops. The
standard javac code generation strategy appears to be to place the loop test
at the end of the loop, and on the first iteration to jump directly to this test.
Unfortunately, the result is that there is a control flow join just before the loop
test that would normally hinder optimisation. We believe we have successfully
overcome this problem.

IFNULL (#aTarget aRef --) 0xc6

{

if (aRef == NULL) {

SET_IP(aTarget);

TAIL;

}

}

Fig. 5. Definition of a branch VM instruction

A second opportunity for cross-basic block superinstructions is with the fall-
through direction of VM conditional branches. Currently, superinstructions are
not allowed to extend across branches. However, vmgen already provides a facility
for specifying a taken branch. Figure 5 shows the instruction definition for a
branch instruction. Inside the if statement the vmgen keyword TAIL is used to
specify that a copy of the dispatch code that normally appears at the end of
the instruction should be placed here. We believe that with some modifications
to vmgen, the same facility can be used to create superinstructions that extend

Towards Superinstructions for Java Interpreters 337

across untaken branches, with the necessary code for the taken path generated
using the TAIL mechanism.

4 Experimental Evaluation

The primary purpose of the work presented here was to evaluate the effect of
adding superinstructions to the JVM. By adding superinstructions, we reduced
the number of stack updates and also eliminated branch target mispredictions
for instructions within the superinstruction. As a result, we expected to see
significant improvements as more and more superinstructions were added to
our JVM (subject to some limitations). It was also strongly suspected that the
method used to select which superinstructions to add would have a substantial
effect on the superinstructed JVM. The benchmarks selected for evaluating the
effect of changes to the JVM were taken from the SPECjvm98 suite.

In order to obtain a JVM with support for superinstructions it was neces-
sary to modify Sun Microsystem’s CVM for embedded processors. Apart from
converting the JVM to work with dynamically threaded code, the bulk of the
work was in porting the main interpreter loop to Vmgen in a satisfactory man-
ner to allow for superinstructions. Once the interpreter loop had been ported to
vmgen, the selection of candidate superinstructions and the actual inclusion of
superinstructions in the JVM became a relatively straightforward process due
to the nature of Vmgen.

To select superinstructions to add to the JVM, two contrasting approaches
were taken. In the first approach, all benchmarks were run and all sequences of
bytecode (and their subsequences) encountered for the first time were recorded.
When all benchmarks were completed, a histogram of these sequences was built
up. From this histogram the most common statically appearing sequences of
bytecodes were selected.

The second approach was more aggressive from an optimization point of
view. In this approach we ran each benchmark separately and for each bench-
mark recorded all sequences of bytecodes encountered during the execution of
the benchmark (i.e. not just the first time they are encountered). Thus the same
sequence of superinstructions could be recorded several times, for example if
they occurred within the body of a loop. Then, for each individual benchmark a
histogram of the most commonly encountered superinstructions was generated.
Then, to optimize for a particular benchmark, the histogram for that partic-
ular benchmark was used to select the most commonly executed (dynamically
appearing) sequences.

Generating superinstructions based on static frequency may appear to be
over-simplistic, but as an initial method of selecting superinstructions, it does
seem more realistic than the dynamic approach. One of the main reasons is that
for the static approach we attempted to optimize the JVM for all benchmarks
at once. With the dynamic approach, the JVM was optimized separately for
each benchmark before running that benchmark. Despite the artificial nature
of the dynamic approach, it does give us a standard by which to measure the
performance of the static approach.

338 Kevin Casey et al.

When selecting superinstructions from the histogram in either approach,
some superinstructions are not permitted. For example superinstructions con-
taining “quickable” (see section 3.3) instructions are dispensed with, as there is
currently no facility for dealing with them in our modified JVM.

In our modified JVM, translation takes place when a method has been called
for the first time, but before any bytecodes in that method have been exe-
cuted. At this point in time only immutable opcodes can be included in su-
perinstructions, since superinstructions themselves are immutable. One possi-
ble workaround would be to try to quicken all instructions in the method and
then try to translate the code to superinstructed code. However this approach
would inevitably lead to the quickening of code that may never be run, and
also may force static initializers to be run before they are supposed to be. An-
other approach would be to allow superinstructions to be added dynamically as
instructions get quickened in the usual way.

The modified version of CVM used for these tests was compiled under GCC
2.96. Optimization flags ”-O4 fomit-frame-pointer” were used. The ”-fno-gcse”
flag was used additionally to compile the file containing the main interpreter
loop. This is used to disable global common subexpression elimination, which
can interact badly with GNU C labels as values, which are used by our interpreter
for efficient instruction dispatch [5]. The hardware used to run the benchmarks
was based on a Pentium IV 1.6 Ghz with 1GB of memory.

Each benchmark was run with no superinstructions to establish a reference
time. Then the benchmarks were run on versions of CVM compiled with 8,
16, 32, 64, 128, 256, 512 and 1024 superinstructions. The results were then
graphed as a speedup over the time it took each benchmark to complete with no
superinstructions. All SPEC benchmarks were run using the largest (size 100)
input sets.

The static results are shown in figure 6. All results are averages of 5 runs
of the benchmark under the same conditions. In this figure we see a small im-
provement for most benchmarks, even at 8 superinstructions. Two benchmarks
with 8 superinstructions perform worse, however. One possible reason for the
lack of improvement in compress and mtrt is that the 8 superinstructions added
simply do not occur frequently, if at all, in these benchmarks. One explanation
for the reduction in performance (albeit less than 1%) could be the overhead
of scanning through code at translation time to see if superinstructions can be
formed. Other possible reasons are discussed below.

As superinstructions are added, there is a general trend upwards in perfor-
mance which is what we would expect. Benchmarks mpegaudio, compress and to
a lesser degree db, all spend much of their time in a small number of methods
[21]. It seems most likely that some superinstructions are being introduced into
these commonly used methods, giving the significant performance boost. The
benchmark that gets greatest benefit from superinstructions is mpegaudio, with
a maximum speedup of about 1.56. It is interesting to note that this benefit is
not substantial until 256 superinstructions are introduced.

It is not always the case that the addition of extra superinstructions im-
proves performance. A temporary drop-off in performance can be seen in all

Towards Superinstructions for Java Interpreters 339

benchmarks at some stage, the most spectacular being when moving from 32 su-
perinstructions to 64 superinstructions in both jack and jess. There are a number
of possible explanations for these drop-offs. One possibility is that the register
allocation mechanism in gcc is breaking down for superinstructions added at
these points. Another is that superinstructions are causing conflict misses in the
instruction cache or branch predictor. Finally, the process of scanning through
a method to find possible superinstructions is slowed by the addition of extra
superinstructions to the JVM.

Superinstructions − Static Frequency

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

_213_javac _228_jack _222_mpegaudio _202_jess _209_db _201_compress _227_mtrt

Superinstructions

S
p

ee
d

u
p

8 16 32 64 128 256 512 1024

Fig. 6. Running times of the benchmarks with varying numbers of superinstruc-
tions. Superinstructions are chosen on the basis of static frequency of sequences
across all SPECjvm98 programs

In figure 7 the performance of CVM with superinstructions based on dynamic
frequency for this particular program can be seen. Performance is much better,
but this is expected since CVM is optimized for each benchmark separately. This
time the maximum speedup is 1.90 (mpegaudio). As before, the benchmarks that
register the greatest improvements are those that spend much of their execution
time in a limited set of methods. It can be surmised that a substantial number
of superinstructions are being created in these methods.

At certain stages, the JVMs based on dynamically selected superinstructions
suffer from the same drop-off in performance seen in figure 6. This time javac

340 Kevin Casey et al.

Superinstructions − Dynamic Frequency

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

1.55

1.60

1.65

1.70

1.75

1.80

1.85

1.90

1.95

_213_javac _228_jack _222_mpegaudio _202_jess _209_db _201_compress _227_mtrt

Superinstructions

S
p

ee
d

u
p

8 16 32 64 128 256 512 1024

Fig. 7. Running times of the benchmarks with varying numbers of superinstruc-
tions. Superinstructions chosen are the most frequent dynamically executed se-
quences based on a training run of the same program

and mtrt both suffer a degradation in performance when moving from the 128
superinstruction JVM to a 256 superinstruction JVM.

Table 1 shows the absolute running times of the SPECjvm98 benchmarks on
three different JVMs. The first is our base interpreter with no superinstructions.
We also show running times for Sun’s HotSpot mixed-mode interpreter and
JIT compiler, and for HotSpot using only the interpreter. Overall, the Hotspot
interpreter is on average 20.4% faster than the our interpreter.

Table 1. Comparison of running time of our base interpreter (without su-
perinstructions) with the Sun HotSpot Client VM Interpreter, and mixed mode
interpreter—JIT compiler on the SPECjvm98 benchmark programs

Benchmark Our Base Interp. Hotspot Interp. Hotspot Mixed-mode

javac 55.79 44.38 10.16
jack 33.48 27.68 5.19
mpeg 150.08 139.65 9.55
jess 48.14 34.38 4.35
db 116.63 86.27 26.6
compress 170.01 153.19 18.9
mtrt 52.41 43.56 6.06

Towards Superinstructions for Java Interpreters 341

There are two main reasons for this. Firstly, Hotspot has a much faster run
time system than CVM. This can be seen especially strongly in the db bench-
mark, which runs 34% faster on Hotspot. The Hotspot run time system is large
and sophisticated, and would not be suitable for an embedded system. Further-
more, much effort has been put into tuning the Hotspot run time system as it is
more widely used than CVM. The second reason that Hotspot outperforms our
version of CVM is that the Hotspot interpreter is faster than our interpreter.
Its dynamically-generated, highly-tuned assembly language interpreter is able
to execute bytecodes more quickly than our portable interpreter written in C.
The difference in speeds of the interpreter cores can be seen by examining the
benchmarks that spend most of their time in the interpreter core: compress is
9.1% faster and mpeg is 5.2% faster on the Hotspot interpreter. Finally, the
mixed-mode compiler- interpreter is very much faster than either our interpreter
or the Hotspot interpreter. Where speed is more important than memory use,
portability, and maintainability, a JIT compiler is the correct solution.

5 Related Work

Some recent important developments in interpreters include the following. Stack
caching [4] is a general technique for storing the topmost elements of the stack
in registers. Ertl and Gregg [5] showed that interpreters (especially those using
switch dispatch) spend most of their time in branch mispredictions on modern
desktop architectures. Interpreter software pipelining [13] is a valuable technique
for architectures with delayed branches (e.g. Philips Trimedia) or prepare to
branch instructions (e.g. PowerPC), which makes the target of the dispatch
branch available earlier by moving much of the dispatch code into the previous
VM instruction. Costa [17] discusses various smaller optimizations.

The Sable VM [9] is an interpreter-based research JVM. This interpreter uses
a run-time code generation system [15], not dissimilar from a just-in-time com-
piler. Sable uses a novel system of preparation sequences [10,8] to deal with byte-
code instructions that perform initialisations the first time they are executed,
which make code generation difficult. We believe that the same procedure could
also be used to allow such instructions be part of superinstructions.

Venugopal et al. [20] present an embedded JVM system, which uses seman-
tically enriched code (sEc). The sEc technique generates a custom JVM for each
application. In addition, aggressive optimizations are applied to the program to
allow it to make the best use of the custom JVM features. This tight coupling of
the program and the interpreter allows large speedups. The weaknesses of this
approach are that the code to be run must be available at the time the JVM is
created, and that the JVM is no longer general purpose.

Combining operations using an interpreter generator system was previously
explored in the context of superoperators [16]. A superoperator is pattern of
more than one operator in a tree representation of an expression. Superoperators
chosen for a particular program allowed speedups of about a factor of two in an
interpreter using switch dispatch. Switch dispatch is so expensive that almost
anything that reduces the number of dispatches is worthwhile.

342 Kevin Casey et al.

Gregg et al. [11] and Ertl et al. [7] presented a prototype interpreter based
on the Cacao research JVM [14]. This interpreter was built using Vmgen and
used the facility for generating superinstructions. With large numbers of superin-
structions, reductions in running time of the order of one third were possible.
Unfortunately, the system was rather unstable and could run only a handful
of programs. It also did not support a number of language features such as
multithreading and correct initialisation of classes. In contrast, the interpreter
described in this paper is a full, stable version that fully supports the standard
and runs all programs that we have tried.

6 Conclusion

We have described a system of superinstructions for a portable, efficient Java
interpreter. Our interpreter generator automatically creates source code for su-
perinstructions from instruction definitions. Stack access code is optimised to
reuse the topmost stack items between the component instructions in a superin-
struction. This can significantly reduce stack traffic. Furthermore, our interpreter
generator optimises stack pointer updates by combining and possibly eliminating
them across component instructions. Our interpreter generator also provides a
profiling system to identify common sequences of instructions. Experimental re-
sults show that significant speedups of up to 90% are possible with large numbers
of appropriate superinstructions, due to reduction in dispatches and optimised
superinstruction code.

Although our superinstruction system is stable and gives speedups in most
configurations, considerable work remains for the future. The most important
future development will be a scheme to allow “quickable” instructions to partic-
ipate in superinstructions. Many of the most frequently executed Java instruc-
tions such as field access (16.4% of executed instructions in SPECjvm98 [21]) and
method invokes (5.7%) are “quickable”. We believe that allowing these instruc-
tions to participate in superinstructions will greatly increase the running speed
of our interpreter. We also plan work in the area of better heuristics for choosing
superinstruction, better parsing algorithms, and superinstructions across basic
block boundaries.

References

1. J.R. Bell. Threaded code. Commun. ACM, 16(6):370–372, 1973.
2. T. Bell, J. Cleary, and I. Witten. Text Compression. Prentice Hall, 1990.
3. H. Eller. Threaded code and quick instructions for kaffe.

http://www.complang.tuwien.ac.at/java/kaffe-threaded/.
4. M.A. Ertl. Stack caching for interpreters. In SIGPLAN ’95 Conference on Pro-

gramming Language Design and Implementation, pages 315–327, 1995.
5. M.A. Ertl and D. Gregg. The behaviour of efficient virtual machine interpreters

on modern architectures. In Euro-Par 2001, pages 403–412. Springer LNCS 2150,
2001.

http://www.complang.tuwien.ac.at/java/kaffe-threaded/

Towards Superinstructions for Java Interpreters 343

6. M.A. Ertl and D. Gregg. Optimizing indirect branch prediction accuracy in vir-
tual machine interpreters. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation (PLDI 2003), San Diego,
California, June 2003. ACM. to appear.

7. M.A. Ertl, D. Gregg, A. Krall, and B. Paysan. vmgen — A generator of efficient
virtual machine interpreters. Software—Practice and Experience, 32(3):265–294,
2002.

8. E. Gagnon. A Portable Research Framework for the Execution of Java Bytecode.
PhD thesis, Mc Gill University, December 2002.

9. E. Gagnon and L. Hendren. SableVM: A research framework for the efficient
execution of Java bytecode. In First USENIX Java Virtual Machine Research and
Technology Symposium, Monterey, California, April 2001.

10. E. Gagnon and L. Hendren. Effective inline-threaded interpretation of java byte-
code using preparation sequences. In Proceedings of the 12th International Con-
ference on Compiler Construction, LNCS 2622, pages 170–184, April 2003.

11. D. Gregg, A. Ertl, and A. Krall. Implementation of an efficient Java interpreter. In
Proceedings of the 9th High Performance Computing and Networking Conference,
LNCS 2110, pages 613–620, Amsterdam, The Netherlands, June 2001.

12. D. Gregg and J. Waldron. Primitive sequences in general purpose forth programs.
In 18th Euroforth Conference, pages 24–32, Vienna, Austria, September 2002.

13. J. Hoogerbrugge, L. Augusteijn, J. Trum, and R. van de Wiel. A code compres-
sion system based on pipelined interpreters. Software—Practice and Experience,
29(11):1005–1023, Sept. 1999.

14. A. Krall and R. Grafl. CACAO – a 64 bit JavaVM just-in-time compiler. In G. C.
Fox and W. Li, editors, PPoPP’97 Workshop on Java for Science and Engineering
Computation, Las Vegas, June 1997. ACM.

15. I. Piumarta and F. Riccardi. Optimizing direct threaded code by selective inlining.
In SIGPLAN’98 Conference on Programming Language Design and Implementa-
tion, pages 291–300, 1998.

16. T. A. Proebsting. Optimizing an ANSI C interpreter with superoperators. In
Principles of Programming Languages (POPL’95), pages 322–332, 1995.

17. V. Santos Costa. Optimising bytecode emulation for Prolog. In LNCS 1702,
Proceedings of PPDP’99, pages 261–267. Springer-Verlag, September 1999.

18. SPEC. SPEC releases SPEC JVM98, first industry-standard benchmark for mea-
suring Java virtual machine performance. Press Release, August 19 1998.
http://www.specbench.org/osg/jvm98/press.html.

19. Sun Microsystems Inc. Java 2 Platform Micro Edition (J2ME) Technology for
Creating Mobile Devices, May 2000.

20. K.S. Venugopal, G. Manjunath, and V. Krishnan. sEc: A portable interpreter
optimizing technique for embedded java virtual machine. In Second USENIX Java
Virtual Machine Research and Technology Symposium, San Francsico, California,
August 2002.

21. J. Waldron. Dynamic bytecode usage by object oriented java programs. In Pro-
ceedings of the Technology of Object-Oriented Languages and Systems 29th Inter-
national Conference and Exhibition, Nancy, France, June 7-10 1999.

http://www.specbench.org/osg/jvm98/press.html

	Motivation
	Superinstructions
	Design Issues
	Which Sequences?
	Parsing
	Quick Instructions
	Across Basic Blocks

	Experimental Evaluation
	Related Work
	Conclusion

