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Resumo
Esta tese trata de modelos matemáticos para descrever o surgimento e tratamento de
tumores avasculares. Os modelos são baseados em sistemas de equações diferenciais
ordinárias. Primeiramente, propomos um modelo para descrever o surgimento do câncer
como um processo multi-passo, envolvendo transições entre células normais, células pré-
malignas, e células tumorais, e considerando instabilidade genética como um fator que
aumenta a taxa de mutações. O modelo prevê que a agressividade das células tumorais abre
espaço para a sobrevivência das células menos adaptadas. Simulações numéricas mostram
que o tempo para o tumor alcançar um tamanho detectável varia de cinco a oitenta
anos, em razão de alterações mínimas nos parâmetros. Em seguida, estudamos um caso
particular do primeiro modelo de um ponto de vista da teoria da Resiliência Ecológica. Os
resultados ilustram como o surgimento e o tratamento efetivo do câncer podem ser vistos
como a alternância entre dois estados de equilíbrio estáveis antagônicos. Neste contexto,
alterações genéticas em uma escala de tempo lenta podem levar à destruição ou perda
de estabilidade de um destes estados, tornando impossível tanto a cura ou o surgimento
da doença. Na etapa seguinte, estudamos um modelo para quimioterapia metronômica
em tumores avasculares, e mostramos como este tipo de tratamento pode levar à cura
do paciente. Uma condição relacionando a toxicidade do tratamento aos parâmetros do
modelo surge naturalmente e sua interpretação indica que a terapia metronômica tem
baixa toxicidade quando administrada em tumores de crescimento lento, tumores com alta
agressividade e competitividade por recursos, ou tumores com alta capacidade de suporte.
Na última etapa, consideramos tratamentos não-autônomos visando comparar diversos
regimes de dosagem em busca de protocolos ótimos. Mostramos como a utilização de uma
abordagem simples para parametrizar a função que descreve o tratamento implica em
facilidades tanto para a aplicação de métodos de otimização, quanto para a elaboração de
critérios de otimalidade que englobem diversas características, como toxicidade, risco de
recidiva, tempo de recuperação, e limitações na dosagem de droga.

Palavras-chave: Câncer. Carcinogenese. Quimioterapia. Equações diferenciais ordinárias.
Dinâmica não-linear.



Abstract
This thesis studies mathematical models describing the onset and treatment of avascular
tumors. The models are based on systems of ordinary differential equations. Initially, we
propose a model to the onset of cancer as a multi-step process, involving transitions among
normal cells, pre-malignant cells and tumor cells. The model considers genetic instability
as a factor that enhances the mutation rates. Results predict that aggressiveness of tumor
cells opens space to survival of less adapted cells. Numerical simulations show that the
time for the tumor attains a detectable size ranges from five to eighty years, depending
on minimal changes in parameters. Next, we study a particular case of the first model,
from the point of view of Ecological Resilience. Results illustrate how the onset and the
effective treatment of cancer may be seen as the switching between two alternative stable
states. In this context, genetic alterations in a slow time-scale may cause the destruction
or the loss of stability of one of these states, what makes impossible either the cure or the
beginning of the disease. In the next stage, we study a model for metronomic chemotherapy
in an avascular tumor, and we show how this treatment may lead to cure. A condition
regarding toxicity and related to parameters arises naturally. Its interpretation indicates
that metronomic chemotherapy has lower toxicity when administered in slow-growing
tumors, tumors with high aggressiveness or competitiveness, and tumors with a high
support capacity. In last, we consider non-autonomous treatments in order to compare
different dosage regimes seeking for an optimal protocol. We show how the use of a
simple approach for parameterizing the function which describes the treatment implies in
advantages both for applying optimization methods as well as for formulating optimality
criteria encompassing diverse features such as toxicity, relapse risk, recovery time and drug
dosage.

Keywords: Cancer. Carcinogenesis. Chemotherapy. Ordinary differential equations. Non-
linear dynamics.
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1 Introdução

Muitas são as estatísticas existentes a respeito do câncer e sua crescente
incidência na população mundial, sobre o grande número de mortes causadas por ele, os
elevados gastos governamentais com tratamento de pacientes e investimentos em pesquisa
(1). Assim, é de suma importância estudar e conhecer a fundo as causas de seu surgimento,
os seus mecanismos de desenvolvimento, e os diversos tipos e estratégias de tratamento e
de diagnóstico.

A Biomatemática é uma área de pesquisa que vem se firmando e atraindo
cada vez mais pesquisadores nas últimas décadas (2). Em linhas gerais, ela trata de
descrever problemas e fenômenos biológicos utilizando a matemática como linguagem
básica e, resolvendo os problemas matemáticos resultantes, devolver à biologia algum novo
entendimento sobre o fenômeno, levando ao direcionamento de testes e experimentos que
validem tais conclusões. Assim, por estar situada na interface entre Matemática e Biologia,
é uma área dinâmica, em constante mudança e crescimento. Se, por um lado, a necessidade
de se descrever problemas biológicos numa linguagem matemática tem impulsionado o
desenvolvimento e aprimoramento de métodos e teorias matemáticas, por outro lado, as
várias conclusões matemáticas a respeito destes fenômenos tem levado biólogos, médicos e
ecólogos a um melhor entendimento dos fenômenos naturais. Por isto, a Matemática tem
sido chamada “o novo microscópio da Biologia”, enquanto esta tem sido chamada “a nova
Física da Matemática” (3).

A “Oncologia Matemática” é o ramo da Biomatemática que diz respeito ao
câncer. A modelagem matemática tem sido usada já há um bom tempo como ferramenta
para auxiliar nesta luta contra o câncer (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15). Devido
a complexidade desta doença e ao enorme número de fatores envolvidos, o auxílio da
matemática pode ser muito proveitoso ao entendimento dos diversos aspectos relacionados a
ela. De fato, se os modelos matemáticos conseguirem capturar alguns mecanismos essenciais
envolvidos, os resultados das predições e simulações destes modelos podem ser confrontados
com resultados clínicos e experimentais, ora corroborando hipóteses pré-existentes, ora
lançando luz ou novos questionamentos sobre determinados aspectos (16, 17). Ainda, e
principalmente, os modelos podem ser também uma primeira baliza e fonte de predições
para testes experimentais e protocolos de tratamento, com a vantagem de poderem ser
repetidos inúmeras vezes, sem possíveis danos a saúde dos pacientes e sem o alto custo
financeiro decorrente dos experimentos em laboratório e testes clínicos.

Nesta tese, propomos e analisamos modelos matemáticos de Equações Di-
ferenciais Ordinárias para descrever a fase inicial e o tratamento de um tumor sólido
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avascular.

No Capítulo 2, consideramos a fase inicial da doença, estudando um modelo
para crescimento de um tumor a partir do surgimento de uma população de células pré-
malignas que adquirem mutações específicas e posteriormente se tornam células tumorais.
Aspectos como instabilidade genética são considerados para formular as taxas de transição
entre as populações de células.

No Capítulo 3, abordamos o crescimento e tratamento de câncer de um ponto
de vista de Ecologia Teórica. Mais especificamente, examaminamos as consequências da
aplicação de conceitos de Resiliência Ecológica a um modelo simples para crescimento
tumoral. Neste contexto, o surgimento e tratamento da doença podem ser vistos de maneira
geral como a alternância entre dois estados de equilíbrio, e aspectos relacionados a bacias
de atração se tornam cruciais para o entendimento desta alternância.

No Capítulo 4, apresentamos um modelo para tratamento de um tumor sólido
avascular por quimioterapia metronômica. O modelo é analisado em detalhes, com uso da
Teoria de Sistemas Competitivos. A interpretação destes resultados matemáticos fornece
critérios para avaliação da toxicidade da quimioterapia metronômica em diferentes tipos
de tumor.

No Capítulo 5, modificamos o modelo anterior para considerar diversos regimes
de tratamento quimioterápico. A forma utilizada para modelar o tratamento permite a
aplicação de métodos de otimização em dimensão finita para comparar diferentes estratégias
de tratamento e buscar o que seria um protocolo ótimo segundo algum critério estabelecido.
Além disso, mostramos como diferentes efeitos de cada tratamento podem ser quantificados
de forma a comporem uma função objetivo que englobe diversas características que deseja-se
otimizar.

No Capítulo 6, apresentamos as conclusões desta tese e indicamos perspectivas
futuras para continuação desta pesquisa. Os Capítulos 2 a 5 foram escritos em formato de
artigo, em inglês, para publicação em periódicos internacionais. As demais partes da tese
estão escritas em português.
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2 Modeling dynamics for oncogenesis encom-
passing mutations and genetic instability

Abstract. Tumorigenesis has been described as a multistep process, where each step is
associated with a genetic alteration, in the direction to progressively transform a normal
cell and its descendants into a malignant tumor. In this work, a mathematical model
is proposed for cancer onset and development, considering three populations: normal,
premalignant, and cancer cells. The model takes in account three hallmarks of cancer (self-
sufficiency on growth signals, insensibility to anti-growth signals, and evading apoptosis)
and includes genetic instability as an enabling characteristic. Mathematical analysis was
performed in detail. Results indicate that apoptosis and tissue repair system are the first
barriers against tumor progression. One of these mechanisms must be corrupted for cancer
to develop from a single mutant cell. Further, aggressive tumors have an extra protection
against the tissue repair system and elevations in the apoptotic rate. Results also show that
the presence of aggressive cancer cells opens way to survival of less adapted premalignant
cells. Numerical simulations were performed with parameter values based on real data of
breast cancer, and the necessary time taken for cancer to reach a detectable size from a
single mutant cell was estimated with respect to some parameters. We find that the rates
of apoptosis and mutations have a large influence on the pace of tumor progression and
on cancer occurrence within a clinically detectable time.

Keywords: Multi-step tumorigenesis; Avascular tumour growth; Stability; Bifurcations.

2.1 Introduction
Cancer is a complex disease that has more than a hundred different types and

can occur in almost all tissues in the body. Although each type of cancer has unique
characteristics, the mechanisms that lead to its development are similar and share a few
cellular and molecular characteristics. In this way, one can say that almost all cancer types
obey certain universal rules (18, 19, 20).

Cancer begins when a mutation occurs in a cell and leaves it to escape one of
the mechanisms that regulate the process of growth, division and death. The mutant cell
becomes deaf to the proliferation control imposed to normal cells at the tissue, and divides
in a frequency higher than the normal one. In fact, only one mutation is not enough to
originate a malignant tumor, because the organism and the own cells have mechanisms
that lead the mutant cells to die, thus preserving the system integrity. It is necessary
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that, over the generations, the descendants of this mutant cell accumulate other very
specific mutations that allow them to surpass the various barriers imposed by the organism
against uncontrolled growth. Thus, tumorigenesis is a multistep process, where each step
is associated with a genetic change, in the direction of progressive transformation of a
normal cell and its descendants into a malignant tumor (21, 18, 19). It is worth to note
that some clinical analyses revealed lesions that would be cells in intermediary stages
during the process of cancer formation (22). Other experiments also comproved that all
cells in a tumor descend from only one common ancestral (23). For a detailed description
of the biology of cancer, we refer to the book (20).

Hanahan and Weinberg (18, 19) proposed that all the genetic alterations and
the various cancer cellular genotypes can be grouped and conceptually described in eight
acquired capabilities, essential alterations in the cellular physiology, which were denomi-
nated the Hallmarks of Cancer. They are: self-sufficiency in growth signals; insensitivity to
anti-growth signals; evading apoptosis; limitless replicative potential; sustained angiogenesis;
tissue invasion and metastasis; reprogramming energy metabolism; evading immune des-
truction. They also included two enabling characteristics, which represent the means that
enable populations of premalignant cells to reach the above hallmarks: genetic instability;
and tumor-promoting inflammation.

Several works have developed mathematical models in the context of car-
cinogenesis and evolution of cancer through its different stages, using different mode-
ling approaches such as ODE models (24, 25, 26, 27, 28, 29, 30, 31), PDE models
(32, 33, 34, 35, 36, 37), discrete models (38, 39), and computational models (cellular
automata, agent-based, and boolean network models) (40, 41, 42, 43, 44). A review can
be found in (45).

From the point of view of model formulation, the model presented here is more
similar to those in (24), (25), (26) and (32), which consider each mutation (hallmark
acquisition) as a transition between compartments. Spencer et. al (24) developed an ODE
model to analyze how the interplay among angiogenesis, apoptosis, genetic instability,
and abnormal growth gives rise to different kinetics in the development of cancer. They
parametrized the model with values based on breast cancer, and identified particular
ordering of mutations under which cancer develops faster. The same group adapted this
model in a cellular automata model and included the hallmark of limitless replicative
potential by considering a division counter for each cell, based on telomere length (40).
The group of Gentry also developed ODE models (25, 26) that incorporate the sequential
acquisition of mutations as transitions between compartments. In order to simulate the
cancer stem cell hypothesis (46, 47), they also considered tissue hierarchy, by considering
three cell types: stem, progenitor and mature cells. In a more recent work (26), they
included the mechanisms of chemical signaling and interaction with the niche to control
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stem cell self-renew, like the effect of mature cells on the proliferation and division of
stem cells. Their model was parametrized with values based on the hematopoietic system.
They find that the order in which mutations occur have a significant influence on the
pace of tumorigenesis and on tumor final composition. Also, they analyzed the impact of
disrupting the feedback mechanisms that maintain system homeostasis through the control
that mature cells exert on stem cells. If this mechanism remains intact, a tumor can grow
but attains a stationary size, while, if this regulation is lost, then cancer is easily initiated
and grows exponentially. The model of Enderling et al. (32) considered the development
of breast cancer as a step-wise process that involves the loss of function of two tumor
suppressor genes by breast stem cells. They also included a spatial dynamics (random
motion and haptotaxis) for cancer cells. The model predicted that genetic instability or a
high number of breast stem cells are necessary conditions in order to a tumor rises within
a clinically observable time, i.e. within 30 years after puberty. They also found that the
likelihood of a tumor arising in a breast is increased when a first mutation in stem cells
occurs very early so that it forms a field of non-normal cells that later will give rise to a
tumor.

This work presents and analyzes a mathematical model to the onset of cancer
at an initial, avascular stage, with the following three characteristics: self-sufficiency in
growth signals; insensitivity to antigrowth signals; and evading apoptosis. We also consider
in the formulation of the model the enabling characteristic genetic instability. The model
is based on a system of three nonlinear ordinary differential equations, describing three
cell populations: normal, premalignant and cancer cells.

A fundamental difference of the model presented in this work from previous
ones lies in the terms describing the transition between cell compartments. All models
considered linear transitions between the pools. Additionally, based on the relations of
cause and effect between genetic instability and tumor progression, we adopt different
transition terms here: a pulse transition from normal to precancer cells, and a nonlinear
transition from precancer to cancer.

Our goal is to perform qualitative and quantitative extensive analyses in the
parameter space, and compare the outcomes predicted by the model in different parameter
ranges. With these analyses, we expect to elucidate the individual role of each physiological
change (uncontrolled growth, evading apoptosis) and of genetic instability in the process
of tumorigenesis, but also the combined effect of these factors. The mathematical results
are applied to breast cancer. As will be seen, small changes in nonlinear parameters
that are difficult, if not impossible, to estimate, give rise to very distinct qualitative and
also quantitative behaviors. Thus, this comprehensive and detailed analysis exhausts all
different possibilities predicted by the model, what sheds some light on the discussion and
deepens the biological implications. The paper is organized as follows. Section 2.2 deals
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with the mathematical modeling. In Section 2.3 we present the mathematical analysis
of the model. To a better reading, some mathematical results are only stated and their
proofs are presented in Appendix 2.A. In Section 2.4, we present numerical simulations of
the model with parameter values based on literature data. In Section 2.5, we discuss the
biological implications of both analytical and numerical analysis. Finally, in Section 2.6,
the conclusions are presented.

2.2 Mathematical modeling
The model we propose considers three distinct cell populations: Nptq represents

the normal cells at the tissue; Gptq represents premalignant cells exhibiting a first hallmark
corresponding to self-sufficiency in growth signals; and Aptq stands for cancer cells, with
the hallmarks self-sufficiency in growth signals and evading apoptosis. Due to the similarity
between the hallmarks of self-sufficiency in growth signals and insensitivity to anti-growth
signals, we consider both as a single characteristic acquired by cells G and A.

We start by presenting the full model describing the dynamics of these popu-
lations, then we present the model hypothesis and parameters, and finally we perform
simplifications and obtain a final model which accentuates the characteristics we are
interested. The model equations are

dN

dt
� rN � µNN � β1NA� β4NG�G0δpt� t0q, (2.1a)

dG

dt
� rGG

�
1� G

KG



� pµG � εGqG� β2NG� β5AG�G0δpt� t0q � σG2

ξ �G
, (2.1b)

dA

dt
� rAA

�
1� A

KA



� pµA � εAqA� β3NA� β6AG� σG2

ξ �G
. (2.1c)

The hypothesis behind this model are the following.

Parameter rN represents the total constant reproduction of normal cells, and
µN is their natural mortality. We use this constant flux vital dynamics for normal cells,
and not a density-dependent one, like logistic growth, generally assumed by other models
(48, 49, 50, 51), because the production of new normal cells does not depend directly on
the total number of living normal cells, but is an intrinsic property of the tissue, described
here by the term rN . In fact, in a normal tissue, the imperative dynamics is not the cells
intraspecific competition by nutrients, but the maintenance of a homeostatic state, through
the natural replenishment of old and dead cells (52). Here the homeostatic state in absence
of mutations (G � 0 � A and G0 � 0) is given by rN{µN . Further, due to the limitation in
the number of divisions that a cell can pass, this cellular replacement many times depends
on special cells, like stem cells or progenitor cells, localized in specific regions of the tissue,
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that provide new cells with a large life span (53, 52). It is easy to anticipate that this
choice of a constant flux implicates that there will be no trivial equilibrium with N � 0,
i.e., normal cells can never be extinct, on the contrary of other models that consider the
logistic growth for normal cells. We believe that this is not a problem, but, on the contrary,
it is a realistic outcome. In fact, roughly speaking, what makes cancer dangerous is not
the fact that it kills all cells in the organ, but the fact that it reaches dangerous size that
disrupt the well functioning of the tissue, which ends up with a lower level of its initial
number of healthy cells (20). Finally, we note that a constant flux term was already taken
by other well-know models to describe the growth of normal cells, specifically, the growth
of immune cells (54, 55).

On the other hand, precancer and cancer cells, due to the self-sufficiency in
growth signals, are at proliferative state and keep their own growth program, independent
of tissue’s structure, like an embrionary tissue in growth phase (56, 57). Thus, in this case,
a density dependent growth is considered. Since the model refers to the onset of cancer
and its establishment at an avascular stage, where there are constrains in nutrients and
oxygen that preclude the tumor growth beyond a maximum size, a saturating growth term
must be used. We opt for the logistic growth due to its simplicity. Thus, rG and rA are
the per capita growth rates of populations G and A, and KG and KA are their carrying
capacity. In a future work, we intend to include angiogenisis and the tumor growth beyond
this limit (58).

Parameters µG and µA are the natural mortality rates of populations, while
parameters εG and εA represent the extra mortality rates of populations G and A due to
apoptosis, since mutations they present are recognized by their internal apoptotic program
(59, 60). As A cells have evaded apoptosis or diminished it, εA is thought to be less than
εG and can be zero.

Parameters βi, with i � 1, . . . , 6, represent the interactions between the three
cell populations. While in general the terms with βi can be thought as representing the
interspecific competition by space and nutrients, here, they also comprise other effects
and interactions. For instance, parameters β2 and β3 embrace the response of the tissue
repair system, activated by normal cells in the presence of mutant populations (61). On
the other hand, β1 and β4 describe the damage imposed by mutant cells against normal
cells, not only by depletion of nutrients or space, but also by introducing changes in the
local micro-environment that disrupt the homeostasis of the tissue, like increasing the
local acidity due the abnormal metabolism of mutant cells (62, 63). Parameters β5 and β6

describe the negative effects caused by population G on A, and vice-versa.

We now consider the transition from normal cells to premalignant cells, and
from these to cancer cells. These transitions can occur through mutations or activation of
oncogenes (19). In most mathematical models in this context (24, 26, 32), they are modeled



Chapter 2. Modeling dynamics for oncogenesis encompassing mutations and genetic instability 19

by linear terms like pN or qG, where p and q represent the probabilities of occurrence of
mutations/activation of oncogenes, per cell per division, that turns on the corresponding
hallmarks. These probabilities are of order of 10�8 to 10�6 (64, 65, 24), but not always
constant (66, 67, 68). Indeed, as tumor progression proceeds, the genomes of tumor cells
often become increasingly unstable, and the rate at which mutations are acquired during
each cell generation increases and may exceed the rate at which Darwinian selection can
eliminate the less-fit sub-clones of cells. Thus, a linear probability rate oversimplifies the
reality of cancer and does not capture this departure from the genome’s highly stable state
when tumor proceeds ((20), Sec. 11.7 and Chap. 12; (66, 67, 68)). This step-wise process
occurs differently in each phase of tumor development.

The first successful transition of a normal cell to a mutant cell is probabilistic
((20), Chap. 11). Once this viable transition from N to G occurs, the first precancer cell
will proliferate soon due to its accelerated growth program. It acts as a spark to activate
cancer and we are interested in analyzing whether or not its progeny will be able to survive
enough to reach the next transition stage, from G to A. Also, as the initial proliferation of
these cells will be high, the entering of other normal cells in this pool can be neglected.
Therefore, we model the first effective transition from N to G by a Dirac Delta term

�G0δpt� t0q,
representing that G0 normal cells passed to population G at time t0, with the possibility
to have G0 � 1 cell.

After the onset of these precancer cells, their viable mutation is propagated
trough cell generations, and there is an increase of genetic instability, so they will be
subject to continuous transition from G to A. We also note that there is biological evidence
that some of the same mutations that increase cell proliferation are also responsible for
enchanced genetic instability (67, 68). Here, it is exactly the case of premalignant cells G,
which have achieved high proliferative rates. This fact jointly with the effect of increased
genetic instability as tumor progresses justifies the continuous transition from G to A. In
order to capture this threshold effect, instead of considering a linear transition, qG, with a
constant per capita probability q, we model the transition from G to A by

� δG2

G� ξ
,

with a nonlinear per capita mutation rate given by δG{pG� ξq. This per capita probability
is small when there are few cells, increases as the number of cells increases, and saturates
to the level δ when the number of these cells surpass the threshold described by ξ.

Thus, while other models consider linear flow between all cell compartments
(24, 26, 32), here, based on the role and causes of genetic instability, the first transition is
reduced merely to a pulse, and the second one is a nonlinear flow that approaches a linear
one, at a high rate, only when there is a large number of cells.
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Now, we perform some simplifications in the model. Because of the control
imposed to abnormal cells, premaligant cells G probably will be eliminated soon if they do
not acquire the hallmark of evading apoptosis, by triggering the activation of the pool of
cancer cells. Thus, we are interested in the appearing of G cells as an intermediary stage
in the process of tumor formation, and, then, the values of interest in the dynamics of
G are relatively low, so that the negative effect caused by them on normal and cancer
cells can be neglected, and also the negative effect suffered by them due to the interaction
with cancer cells. Thus we disregard the interaction terms �β4NG in (2.1a), �β5AG in
(2.1b) and �β6AG in (2.1c). By the same reasons, we also disregard the saturation term
�rGG2{KG. It is a simplifying hypothesis on the dynamics of G cells, but it allows us
to perform a more detailed mathematical analysis that focuses in the slow dynamics of
cancer cells A. If in some conclusions and simulations we observe that GÑ 8, it will be
understood that population G has survived and reached a stationary state far from G � 0,
which is what would happen if the logistic term was included. The term �β2NG in (2.1b)
cannot be disregarded because it encompasses the tissue response to precancer cells, which
may occur at the very beginning of tumor formation. On the contrary to G cells, A cells
constitute the final step in this avascular phase of cancer, and therefore the terms �β1NA

in (2.1a) and �β3NA and �rAA2{KA in (2.1c) must be included for.

With these remarks, we obtain a simplified version of system (2.2) that accen-
tuates the characteristics we want to examine. Translating the time axis to set the time of
first mutation, t0, to be t � 0, the model becomes

dN

dt
� rN � µNN � β1NA, (2.2a)

dG

dt
� rGG� β2NG� pµG � εGqG� δG2

ξ �G
, (2.2b)

dA

dt
� rAA

�
1� A

KA



� β3NA� pµA � εAqA� δG2

ξ �G
, (2.2c)

supplied with initial conditions

pNp0q, Gp0q, Ap0qq � pN0 �G0, G0, 0q.

2.3 Model Analysis
In this section, a mathematical analysis of system (2.2) is performed. The

equilibrium points are obtained by setting derivatives in (2.2) equal to zero. The stability
of each equilibrium depends on the eigenvalues of the Jacobian matrix of (2.2), JpN,G,Aq,
evaluated at the equilibrium. We obtain conditions about positiveness and stability for
each equilibrium and discuss the results.
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2.3.1 Trivial equilibrium

We start by analyzing the trivial equilibrium,

P0 �
�
rN
µN

, 0, 0


.

Stability of P0 is easily determined, since the eigenvalues of the Jacobian matrix JpP0q are

λ
p0q
1 � �µN , λp0q2 � rN

µN
pβth3 � β3q, and λ

p0q
3 � rN

µN
pβth2 � β2q,

where
βth2 � µN

rN
lG, with lG � rG � µG � εG, and (2.3)

βth3 � µN
rN

lA, with lA � rA � µA � εA. (2.4)

Parameters lG and lA can be thought as the liquid reproduction rates of cells G and A,
respectively, and both will be assumed to be positive (otherwise cells G and A would be
extinct naturally without interaction with normal cells). Thus, P0 is stable if and only if,

β2 ¡ βth2 � lG
N0

and β3 ¡ βth3 � lA
N0

,

where N0 � rN{µN is the total normal cells population at equilibrium in absence of cancer.
It means that if the responses β3 and β2 of normal cells population to mutant cells A and
G are high, then the tissue is able to eliminate the few mutant cells that arise. If the tissue
repair system is not good enough, and one of the two conditions above is not satisfied,
P0 will be unstable, and the appearing of a few mutant cells, small disturbances of P0,
will break the tissue homeostatic state free of cancer and will lead to cancer progression
with presence of one or two types of mutant cells. Further, larger values of the carrying
capacity N0 decrease the thresholds βthi , and thus increase the protection against cancer.
On the other hand, larger values of reproduction rates lG and lA (achieved by evading
apoptosis for instance) increase the thresholds, and thus, increase the risk of cancer onset.

2.3.2 Boundary equilibria

Now, we analyze the boundary equilibria corresponding to absence of precancer
cells. Solving dN{dt � 0 � dA{dt with A � 0, we obtain the solution

P̄ � pN̄ , 0, Āq �
�

rN

µN � β1Ā
, 0, Ā



,

where Ā is a root of the second degree polynomial

qpAq � aA2 � bA� c, (2.5)
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with coefficients

a � β1
rA
KA

¡ 0, b � µN
rA
KA

� β1lA, c � rNβ3 � lAµN . (2.6)

This equilibrium point represents the establishment of tumor in absence of premalignant
cells. We will denote the smaller root of qpAq by Ā1 and the largest by Ā2. Thus, there
can be up to two equilibrium points P̄ , denoted by P̄i, i � 1, 2.

2.3.2.1 Existence

Let us determine conditions for P̄1 and P̄2 being positive. As N̄i ¡ 0 if Āi ¡ 0,
it is enough to obtain the conditions for the roots of qpAq to be positive. We consider the
signals of b and c. They can be rewritten as

b � lA
�
βth1 � β1

�
, c � rN

�
β3 � βth3

�
,

where
βth1 � µNrA

lAKA

. (2.7)

Note that this threshold for tumor aggressiveness increases as the mortality µN of normal
cells increases, and decreases as the effective carrying capacity of tumor cells lAKA{rA
increases.

I) Suppose β3 ¡ βth3 . Thus, c ¡ 0. If β1   βth1 , then b ¡ 0. By the Descartes’
Rule of Signs (69), no root Āi is positive, and no P̄i is positive. If β1 ¡ βth1 , then b   0.
We can have two or zero positive roots Āi. We must analyze the sign of the discriminant
∆ � b2 � 4ac, which is written in terms of the thresholds as

∆ � l2A

�
β2

1 � p2βth1 � 4ηqβ1 � pβth1 q2
	
, (2.8)

where η � rArNpβ3 � βth3 q{pKAl
2
Aq ¡ 0. Therefore, we must consider a second threshold,

βth1,∆, given by the value of β1 ¡ βth1 for which ∆ � 0. Solving this equation, we obtain

βth1,∆ � βth1 � 2η � 2
b
ηpβth1 � ηq ¡ βth1 . (2.9)

If β1   βth1,∆, then ∆   0. Thus, no root Āi exists. Again there is no P̄i positive, the
same result corresponding to β1   βth1 , and we can consider both as a single case. II) If
β1 ¡ βth1,∆, then ∆ ¡ 0, and the two roots Āi are positive. Equilibria P̄1 and P̄2 are positive.
III) Suppose now that β3   βth3 . Then, c   0. Again by the Descartes’ rule of signs, we
conclude that qpAq has exactly one positive root, which is Ā2. The value of b does not
matter. Only P̄2 is positive in this case. These three cases are summarized as follows:

I) If β3 ¡ βth3 and β1   βth1,∆, there is no positive boundary equilibrium.

II) If β3 ¡ βth3 and β1 ¡ βth1,∆, three are two positive boundary equilibria, P̄1 and P̄2.
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III) If β3   βth3 , P̄2 is the unique positive boundary equilibrium.

As these inequalities with β1 and β3 will appear frequently, from now on we refer to them
as cases, or regions, I, II and III.

2.3.2.2 Local Stability

Now, we analyze the linear stability of P̄i, i � 1, 2. The Jacobian matrix
JpN̄ , 0, Āq is given by,

JpN̄ , 0, Āq �

�
���
�β1Ā� µN 0 �β1N̄

0 lG � β2N̄ 0
�β3Ā 0 lA � 2 rA

KA

Ā� β3N̄

�
��� . (2.10)

The characteristic polynomial ppλq of JpN̄ , 0, Āq factors as
ppλq � plG � β2N̄ � λqp2pλq

where p2pλq is the characteristic polynomial of the submatrix jpP̄ q,

jpP̄ q �
�
� �β1Ā� µN �β1N̄

�β3Ā � rA
KA

Ā

�
� ,

obtained from (2.10) using the fact that N̄ and Ā satisfy

lA � rA
KA

Ā� β3N̄ � 0. (2.11)

Thus, the eigenvalues λpiq1 and λpiq2 of JpP̄iq, i � 1, 2, are the eigenvalues of jpP̄iq. The third
eigenvalue is λpiq3 � lG � β2N̄i � rN

µN � β1Āi
pβth,i2,λ � β2q, where

βth,i2,λ � βth2 � lGβ1Āi
rN

¡ βth2 . (2.12)

Let us analyze the eigenvalues of jpP̄ q. We see that whenever P̄ is a positive equilibrium,
the trace of jpP̄ q is negative. Thus, when P̄ is positive, both eigenvalues of jpP̄ q will have
a negative real part if detpjpP̄ qq ¡ 0. Using equation (2.11) and expressions of a and b in
(2.6), we obtain

detpjpP̄ qq � Āp2aĀ� bq. (2.13)

As Ā1 is the smallest root of qpAq and Ā2 is the largest, we have, whenever P̄i is a positive
equilibrium, i � 1, 2,

detpjpP̄1qq � �Ā1
?

∆   0, and detpjpP̄2qq � Ā2
?

∆ ¡ 0,

where ∆ is the discriminant given in (2.8). Therefore, we conclude that P̄1 will be unstable
whenever it is positive, having one eigenvalue with positive real part if β2 ¡ βth,12,λ , and two
eigenvalues with a positive real part otherwise. For the point P̄2, if β2 ¡ βth,22,λ , it will be
stable whenever it is positive (cases II and III). Otherwise, P̄2 will be unstable whenever
it is positive, having one positive eigenvalue.
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2.3.2.3 Asymptotic behavior of boundary subsystem G � 0

As G cells work only as a trigger to cancer onset, it is expected that, in some
cases, G Ñ 0 after a transient period of time. Thus, it is worth to study dynamical
properties of system (2.2) restricted to the boundary G � 0 (N � A plane), which is
invariant with respect to the flux. From analysis above, it is easy to see that equilibria
on this plane are P0, P̄1, and P̄2. Further, the first two eigenvalues, λpiq1 and λpiq2 , of each
Jacobian matrix JpP0q, JpP̄1q and JpP̄2q dictate the stability of equilibria in this subsystem
since they correspond to directions (eigenvectors) parallels to plane N �A, while the third
corresponds to a direction pointing outside this plane. Thus, the value of β2 does not
matter. Therefore, considering cases I, II and III above, we can summarize the following
about the stability of positive equilibria in this subsystem. In case I, P0 is stable. In case
II, P0 and P̄2 are stable, and P̄1 is a saddle point. In case III, P0 is unstable and P̄2 is
stable.

Let us characterize the global asymptotic behavior of this subsystem. We first
show that it is dissipative. In fact, we have:

dN

dt
� rN � µNN � β1NA ¤ rN � µNN,

and
dA

dt
� rAA

�
1� A

KA



� β3NA� pµA � εAqA ¤ lAA

�
1� rAA

lAKA



.

Therefore, by classical comparison principles (70), all solutions pNptq, 0, Aptqq starting
at this plane remain restricted to region B �

�
0, rN
µN

�
� t0u �

�
0, lA
rA
KA

�
when t Ñ 8.

Applying the Dulac Criterion with upN,Aq � 1{NA, we have

∇ �
�

1
NA

�
dN

dt
,
dA

dt




� �rANA�KArN

KAAN2   0

for pN,Aq P B. Thus, subsystem N �A has no periodic orbits. By the Poincaré-Bendixson
Theorem (71) we conclude that all trajectories converge to an equilibrium point. Joint with
the previous results, we conclude that subsystem N � A has one of the three behaviors:

I) If β3 ¡ βth3 and β1   βth1,∆: P0 is globally stable. Cancer is eliminated, whatever the
initial conditions;

II) If β3 ¡ βth3 and β1 ¡ βth1,∆: P0 and P̄2 are locally stable; P̄1 is a saddle point and
its stable manifold is the separatrix between the basins of attraction of P0 and
P̄2. Cancer may develops or be eliminated. The outcome depends on the initial
conditions.

III) If β3   βth3 : P̄2 is globally stable. Cancer develops, whatever the initial conditions.
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Figure 1 presents the phase portrait in each case. Figure 2 presents the bidimensional
bifurcation diagram of P0, P̄1 and P̄2 depending on β1 and β3, and regions I, II and III in
the β3 � β1 plane are presented.

Figure 1 – Phase portraits of subystem N �A in cases I, II e III. In case I), P0 is globaly
stable. In case II), the stable manifold of P̄1 divides the phase plane in basins of
attraction of P0 and P̄2. In case III), P̄2 is globally stable for initial conditions
Ap0q ¡ 0.

Figure 2 – Bidimensional bifurcation diagram depending on β1 and β3 (left) and regions I,
II and III in the β3 � β1 plane, together with equilibria behavior (right). When
β3 varies, it is observed the occurrence of a forward bifurcation if β1   βth1 , and
a backward bifurcation if β1 ¡ βth1 , with the rising of a fold in region II.

2.3.2.4 Discussion

Let us discuss the results above. By looking Figure 2, we see that the first
necessary condition to have no cancer cells is β3 ¡ βth3 , which was already discussed above
in the analysis of P0. However, this condition may not be sufficient, due the role played
by tumor aggressiveness β1. When the tumor is not very aggressive, β1   βth1 , the above
condition indeed is sufficient. In this case a simple forward bifurcation occurs between
regions III and I when β3 increases. On the other hand, when β1 ¡ βth,∆1 , region II arises
between regions I and III, presenting bistability between P0 and P̄2, and a tumor may



Chapter 2. Modeling dynamics for oncogenesis encompassing mutations and genetic instability 26

grow even if β3 ¡ βth3 , provided initial conditions are large enough. Now, a backward
bifurcation occurs when β3 varies. In order to guarantee that no cancer cells can survive, it
is necessary that β3 surpasses another threshold, the one defined by the curve βth1,∆, which
is greater than βth3 and is increasing with β1. Thus, we conclude that aggressive cancer
cells have an extra chance of survival, but depend on extrinsic factors which increase their
initial number. Further, from expression of βth1 in (2.7), we see that condition β1   βth1 is
more likely to be satisfied in tumors which arise in rapidly regenerating tissues, and which
have limited nutrients supply.

2.3.3 Internal Equilibria

Now, we deal with the mathematical analysis of the internal equilibrium points
for system (2.2), which are given by

P̃ � pÑ , G̃, Ãq,

where
Ñ � rN

pµN � β1Ãq
, G̃ � ξ

�
lGpµN � β1Ãq � β2rN

�
β2rN � plG � δqpµN � β1Ãq

, (2.14)

and Ã is a root of the fourth degree polynomial equation

fpAq � gpAq, (2.15)

with

fpAq � β1plG � δq A qpAq pAM � Aq and gpAq � ξ l2G β
2
1 pA� Amq2 . (2.16)

Here, qpAq is the second degree polynomial given in (2.5), and Am and AM are given by

Am � rN
β1lG

�
β2 � βth2

�
, AM � rN

β1plG � δq
�
β2 � βth2,δ

�
, with βth2,δ �

µNplG � δq
rN

, (2.17)

where βth2 � µN lG
rN

is the threshold introduced in (2.3).

2.3.3.1 Existence

As it is a fourth degree polynomial equation, (2.15) admits up to four roots,
which will be labeled in the order Ã3   Ã4   Ã5   Ã6. Thus, there can be up to
four equilibrium points P̃i � pÑi, G̃i, Ãiq, i � 3, 4, 5, 6. We analyzed the existence and
positiveness of equilibria P̃i in the entire parameter space and the results are summarized
in Figure 3. Proofs and additional details are left to Appendix 2.A. In order to obtain
these conditions, the following thresholds were considered:

βth,i2,δ � βth2,δ �
plG � δqβ1Āi

rN
, i � 1, 2, δ1 � lGβ1pĀ2 � Ā1q

µN � β1Ā2
and δ2 � lGβ1Ā2

µN � β1Ā2
. (2.18)
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Figure 3 – Existence of positive equilibria P̃i, i � 3, 4, 5, 6, depending on β2 and δ. On
top left, we have the case I) β3 ¡ βth3 and β1   βth1,∆; on top right, case III)
β3   βth3 ; on bottom, the case II) β3 ¡ βth3 and β1 ¡ βth1,∆. At regions where
there is the word “OR”, the existence depends also on other conditions. Details
are in Appendix 2.A.

2.3.3.2 Local Stability

Stability analysis of equilibria P̃i, i � 3, 4, 5, 6, is dealt by studying the roots of
the characteristic equation of JpP̃iq,

λ3 � a1λ
2 � a2λ� a3 � 0,

whose coefficients are

a1 � β1Ã� µN � ξplG � β2Ñq
G̃� ξ

� d,

a2 � �d
�
ξplG � β2Ñq

G̃� ξ
� β1Ã� µN



� ξplG � β2Ñq

G̃� ξ

�
β1Ã� µN

�� β1β3ÑÃ,

a3 � �dξplG � β2Ñq
G̃� ξ

�
β1Ã� µN

�� β1Ñ
plG � β2Ñq
G̃� ξ

�
β2G̃pG̃� 2ξq � β3Ãξ

�
,

where Ñ , G̃ are given in (2.14), Ã is a root of (2.15), and d � plA � 2 rA
KA

Ã� β3Ñq. The
Routh-Hurwitz criteria (72) says that an equilibrium P̃ is stable if

a1 ¡ 0, a3 ¡ 0, and a1a2 � a3 ¡ 0. (2.19)
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These conditions were studied numerically, through bifurcation diagrams shown in Appen-
dix 2.A. Results obtained are summarized in Figures 4 and 5, where the stability of each
positive equilibrium P̃i in each region of parameter space is indicated. For further details
and explanations see Appendix 2.A.

Figure 4 – This figure shows which equilibria are locally stable in each sub-region of
parameter space. On top left, we have the case I) β3 ¡ βth3 and β1   βth1,∆; on
top right, case III) β3   βth3 ; on bottom, the case II) β3 ¡ βth3 and β1 ¡ βth1,∆.
At regions where there is the word “OR”, the existence depends also on other
conditions. Details are in Appendix 2.A. These results were obtained numerically
as presented in Appendix 2.A.

Corresponding phase portraits to each case of Figure 5 were obtained in order
to illustrate conclusions. Some of them are presented in Figure 6. In many cases it can be
seen that some solutions converge to point at “infinity” such as pN,G,Aq � pN,8,8q,
which will be denoted by P8. As commented before, P8 represents the survival of G cells
at a quantity very far from G � 0, due to the lack of a logistic term in the dynamics of G.
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Figure 5 – This scheme shows which equilibrium points are positive in each region of
parameters space. In each region where “(M)” appears after two points, a
collision between these two points can occur depending on other parameters,
and the points can be both positive or not. Stability of equilibria is also
indicated: black for stable, and red for unstable. Highlighted cells represent
regions of parameter space where P0 is stable, i.e., cancer can be eliminated.
All results for points P0, P̄1 and P̄2, and those about positiveness of points P̃i,
i � 3, 4, 5, 6 were mathematically proved, while results about stability of P̃i,
i � 3, 4, 5, 6 and P8 were obtained numerically. See Appendix 2.A for details.

We also see in Figures 5 and 6 that there are regions on parameters space where the phase
space is divided into three basins of attraction, with the boundaries between them being
the two-dimensional stable manifolds of saddle points.

Before discussing the qualitative results above, we numerically simulate system
(2.2) with realistic parameters values to assess how some key parameters influence its
quantitative behavior.
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Figure 6 – Phase portraits of system (2.2) for parameters values corresponding to some
cases of Figure 5. Case II)d): phase space is divided in the basins of attraction
of P0 and P8. Region II) g): phase space is divided in the basins of attraction
of P0, P̃5 and P8. Case II)h): phase space is divided in the basins of attraction
of P0, P̄2 and P8. Case III)c): phase space is divided in the basins of attraction
of P̄2 and P8.

2.4 Numerical Results
In this section, based on values found in the literature, we evaluate critical

values of the parameters, and perform numerical simulations. Due to the available data in
literature, we choose as an application of our model the breast cancer.

We assume that the lifetime of a normal cell is 100 days and that the number
of normal cells in the breast cannot pass N0 � 108 cells (24). Thus, we have µN � 1{100
days�1. In order to adjust the equilibrium of N cells in the absence of cancer, given by
rN{µN , to be N0 � 108 cells, we consider rN � 106 cells/day. For the mutated cells, we
assume the same lifetime of normal cells, µG � µA � 1{100 days�1. We assume that the
induced intrinsic apoptosis in G cells doubles its mortality rate, thus εG � 1{100 days�1.
The ratio birth rate / death rate is 1 for a normal tissue, in order to maintain a homeostatic
state. Following (24), we assume that the first mutation from N to G increases this ratio
by a factor of five for a mutant cell. Thus, we have rG � 5{100 days�1. We suppose that
the reproduction rate of A cells is the same as G cells, rA � 5{100 days�1. The difference
between the order of the values of rN against rA or rG is due to the fact rN that is the total
reproduction rate of N cells, while rG and rA are the per capita growth rates of G and A.
For the apoptotic rate of A cells, we use several values in the range 0 ¤ εA ¤ εG � 1{100.
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Without angiogenesis supplying blood, some early in situ carcinomas reach a size of 106

cells (73). Thus, as we are considering the avascular phase of tumor growth, we would have
KA � 106. But as it is a conservative estimate, and in order to have the maximum number
of cancer cells being 10% of the normal cells, we consider KA � 107. In the literature, the
probability of occurring a mutation in a gene during cell division is estimated to be 10�8

to 10�6 (64, 65). Also, it is assumed that approximately 100 genes are involved in a same
physiological change that characterizes a hallmark, like evading apoptosis or self-sufficiency
in growth signals. Thus, we consider the gene mutation probability to be 10�7 and multiply
it by 100 in order to obtain the maximal mutation rate δ � 10�5. The value at which
the effective mutation rate reaches half the value of δ is set to be G � ξ � 103 cells. The
values of interacting parameters β1, β2 and β3, in units of cell�1day�1, are unknown a
priori but, by substituting the values of other parameters, it is possible to obtain at least
the values for the thresholds to β1, β2 and β3.

We re-scale the populations, by setting N̂ � N{N0, Â � A{N0, and Ĝ � G{N0.
With this change of scale, the new equations are

dN̂

dt
� r̂N � µNN̂ � β̂1N̂Â, (2.20a)

dĜ

dt
� rGĜ� β̂2N̂Ĝ� pµG � εGqĜ� δĜ

Ĝ

ξ̂ � Ĝ
, (2.20b)

dÂ

dt
� rAÂ

�
1� Â

K̂A

�
� β̂3N̂Â� pµA � εAqÂ� δĜ

Ĝ

ξ̂ � Ĝ
, (2.20c)

where r̂N � rN{N0, ξ̂ � ξ{N0, K̂A � KA{N0, and β̂j � βjN0, j � 1, 2, 3. The initial
conditions are rewritten as

N̂p0q � 1�G0{N0, Ĝp0q � G0{N0, Âp0q � 0, (2.21)

representing the mutation of G0 normal cells to precancer cells at time t � 0, with
1 ¤ G0 Î N0.

Dropping the hats as usual, we see that system (2.20) is the same system (2.2),
but now with N , G and A being cell populations in units of 108 cells. Re-scaled parameters
are given by

rN � 0.01, µN � µG � µA � εG � 0.01, rG � rA � 0.05,
KA � 0.1, δ � 10�5, ξ � 10�5, εA P r0, 0.01s. (2.22)

As systems (2.20) and (2.2) are equivalent, the mathematical analysis devised in the
preceding section is still valid. With the numerical values above, the thresholds βth2 and
βth3 are given by

βth2 � 0.03 and βth3 � 0.04� εA. (2.23)
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As we want to observe the different behaviors when βi, i � 1, 2, 3, are greater or lesser
than these thresholds, we start with the following basal values for them:

β1 � 0.035, β2 � 0.035, β3 � 0.035. (2.24)

Next, we present some simulations of system (2.20). A 10th order implicit Runge-Kutta
solver was used to perform them.

The effect of apoptosis and tissue response

First we analyze the outcome of varying εA and β3, with all other parameters
fixed, assuming values in (2.22) and (2.24). We suppose that a single precancer cell arises
at time t � 0, i.e., G0 � 1.

Initially, we consider that apoptotic rate of cancer cells is 40% less than the
rate of precancer cells, εA � 0.006, what gives us the threshold βth3 � 0.034. In the first
simulation, the tissue response to cells A and G is the same, β3 � 0.035 ¡ βth3 . In Figure
7)a) we see that mutant cells are eliminated. With these parameters values, we are in case
I, where P0 is locally stable. Diminishing the value of β3 below the threshold βth3 � 0.034,
we pass to case III, where P0 is unstable and cancer onset is possible. In Figure 7)b), we
see the result with β3 � 0.033. With this value, tumor cells survive and spend 85 years to
reach the stationary population of 0.25� 106 cells. Based on (74), we assume that cancer
is detectable when attains a tumor mass of 106 cells, weightening 1 mg, with a volume of 1
mm3. Thus, in this simulation the final tumor volume is 0.25 mm3, clinically undetectable.
The final tumor volume and the time that tumor cells spend to reach this stationary value
are very sensible with respect to β3. Diminishing it to β3 � 0.029 leads to a tumor which
spends 18 years to reach the equilibrium population of 0.12� 107 cells, with a detectable
tumor volume of 1.2 mm3, as can be seen in Figure 7)c). If we decrease β3 even more, to
β3 � 0.012, the tumor reaches the equilibrium 0.47� 107 cells, 4.7 mm3, in 5 years. This
result is shown in Figure 7)d).

The effect of diminishing the intrinsic apoptotic rate is similar. If we fix
β3 � 0.035, then condition β3   βth3 becomes εA   0.005. When εA � 0.006, there is no
cancer (Figure 7)a)). If cancer cells have its apoptotic rate reduced below the threshold, to
εA � 0.004, then cancer develops and spends 85 years to reach the stationary population
of 0.25� 106 cells. If A cells completely evade apoptosis, εA � 0, then, cancer spends only
18 years to reach the equilibrium population of 1.3 � 106 cells. Figures resulting from
these simulations are very similar to those on Figure 7)b) and c), respectively, and are not
shown here.

Now, we analyze how β3 and εA modify the necessary time for cancer to attain
a clinically detectable size. Simulations of system (2.20), with initial conditions (2.21),
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Figure 7 – Simulations of system (2.20) with εA � 0.010 and different values of β3: a)
β3 � 0.035; b) β3 � 0.029; c) β3 � 0.025; d) β3 � 0.012. Initial conditions are
(2.21) with G0 � 1, and parameters values are given in (2.22) and (2.24).

G0 � 1, and different values of εA and β3 were performed. In each simulation, we seek for
the first time at which cancer cells (either A or G) reached the detectable size of 106 cells.
Results are shown in Figure 8. We see that diminishing both the tissue response and tumor
intrinsic apoptotic rate lead to a smaller time for tumor development, which can vary from
larger values, like 21 years, to small ones, like 2 years. Thus, besides predicting qualitatively
that evading apoptosis allows cancer development, the model also agrees quantitatively
with biological facts by showing that evading apoptosis increases the velocity of tumor
progression. It is also worth noting that there are intervals of parameters β3 and εA for
which the tumor attains a maximum size smaller than the clinically detectable size. So
the model also predicts the onset and establishment of cancer at non-detectable, avascular
stage, but ready to suffer other mutations that allow angiogenesis and subsequent invasion
and metastasis.

The effect of genetic instability

Finally, we analyze the effect of genetic instability. Tissue exposure to car-
cinogenic factors increases the mutation rate of cells, or increases the initial number of
premaligant cells.
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Figure 8 – Necessary time for cancer to reach detectable size (106 cells), beginning with
a single mutant cell G. On the left, the effect of varying β3 is shown (with
εA � 0.006 fixed): for values of β3 near zero, cancer attains detectable size in
only 2.5 years; as the tissue response is increased, this time grows up to 17
years; for 0.029   β3   0.034, the maximum tumor size is below detectable
size; for β3 ¡ 0.034 � βth3 , cancer cells are eliminated (P0 is stable). On the
right, the effect of varying εA is assessed (with β3 � 0.029 fixed): we see that
the necessary time to reach a detectable size varies from 7 years (when εA � 0)
to 21 years (with εA � 0.007); for 0.007   εA   0.010, the maximum tumor
size is below detectable size; for εA ¡ 0.010 (not showed here), cancer cells are
eliminated (P0 is stable).

In Figure 9 (left), we see the results of changing the value of the maximum
mutation rate, δ. Parameters values are those in (2.22) and (2.24), with β3 � 0.0029 and
εA � 0.006. If δ � 10�8, cancer attains a detectable size in 20 years. As log δ increases,
the time T for cancer to reach the detectable size diminishes linearly according with
T � 10.05� 1.26 log δ. So, a 10 fold increase in the mutation rate diminishes the time T
by 1.26 years. At the standard value δ � 10�5 we have T � 16.3 years. When δ � 10�3,
we have T � 13.8 years.

A similar behavior is observed when the initial number of mutant cells is
changed. This behavior is illustrated in the plot of T versus log2G0 in Figure 9 (right).
The parameters values are those in (2.22) and (2.24), with β3 � 0.0029, εA � 0.006. When
G0 � 1, we have T � 16.3 years. As G0 increases, T decreases linearly with log2G0

according to equation T � 16.30� 0.74 log2G0. Therefore, doubling the initial number of
precancer cells leads to a reduction of 0.74 years, approximately 9 months, in the time
taken for the tumor to reach 106 cells.

2.5 Discussion
By looking qualitative results summarized on Figure 5 and numerical results

from the previous Section, we now turn to discuss their biological implications.
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Figure 9 – Necessary time for cancer to reach the detectable size (106 cells), beginning
with a G0 mutant cells. On the right, the effect of varying δ, with G0 � 1 fixed.
On the right, the effect of varying G0, with δ � 10�5 fixed. Parameters values
are indicated in the text.

Cancer onset

First, we analyze these results from the point of view of cancer onset from
very few mutant cells. We restrict our attention to specific regions of parameters space
where tumor progression is possible. We must restrict to regions where P0 is not stable,
because the more biologically relevant initial conditions in this standpoint will be small
disturbances from P0. Since these are very small disturbances, they will return to P0 if it
is stable, and cancer will be eliminated.

If we disregard the mutation from G to A for a moment (δ � 0), we have the
following. When β2   βth2 , then normal cells fail to prevent the growth of G cells, because
G Ñ 8. In this case, there is no need for G cells to acquire a second hallmark. On the
other hand, if β2 ¡ βth2 , normal cells are capable of preventing the growth of G cells, and
G Ñ 0. In this case, the hallmark of self-sufficiency in growth signals is not enough for
the development of these mutant cells, and it is necessary that these cells acquire another
hallmark that increases their survival possibility.

Thus, if we require that the mutation from G to A is a necessary step, then, the
more biologically plausible regions are those where β2 ¡ βth2 . Following these conditions,
we observe that in regions I and II, when β3 ¡ βth3 , there is no chance of cancer onset,
since in all sub-regions, P0 is locally stable if β2 ¡ βth2 . Therefore, cancer onset is possible
only in region III, with β3   βth3 . This condition is equivalent to

β3 � rN
µN

εA   rN
µN

prA � µAq.

Therefore, if the repair system is not good enough or the intrinsic apoptotic rate of
cancer cells is reduced, P0 is unstable, and the tissue is not able to prevent tumor growth.
The appearing of a few mutant cells, i.e., small disturbances of P0, will break the tissue
homeostatic state free of cancer and lead to the formation of a tumor with presence of
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one or two types of mutant cells. Thus, the first barrier to tumor progression is broken
by evading apoptosis (diminishing εA) and/or the disruption of the repair system against
cancer cells (diminishing β3). The mutation from G cells to A cells represents the conditions
of mutant cells to adapt, which requires evading apoptosis and/or acquiring more resistance
to tissue response. These conclusions agree with the evidences that the probability of
tumor progression is often enhanced in injured organs and tissues that display lost or
diminished regenerative ability (75).

Even with the above conditions satisfied, apoptosis and tissue response are also
barriers to tumor progression, from a quantitative point of view. In fact, as illustrated
by numerical simulations in Figure 7, the time elapsed by the cancer cells to reach a
stationary or detectable size vary from few to many years as these parameters increase.
Further, as seen in Figure 8 if the above conditions are satisfied but very near the equality,
tumor attains a undetectable size. Thus, it may be possible that a tumor starts to grow
but the lifetime of a person is not enough to cancer achieve a harmless stage.

We now compare sub-cases in region III. In the subsystem N � A, we have
cancer progression, since P̄2 is globally stable in this subsystem. To understand what
happens in the full system, we must consider two possibilities: δ   lG and δ ¡ lG, according
to Figure 5.

The first one can be rewritten as δ � εG   rG � µG. Thus, the sum of mutation
rate and additional apoptotic rate of G is low, lesser than the net growth rate. In this
scenario, we have the following. Case a): If β2   βth,22,δ (which is possible even with β2 ¡ βth2

- see Figure 5), P8 is globally stable and cancer grows in the tissue achieving a high number
of cells. It happens because the presence of tumor cells A resistant to the tissue response
lead to a decrease in the quantity of N cells. These cells, in a lesser number, do not make
enough pressure to eliminate G cells. Thus, while at an initial instant precancer cells G
work as a trigger to development of cancer cells A, at a subsequent instant, cancer cells A
open space in the tissue for the development of less adapted cells, which would not survive
in the absence of the more adapted A cells. This feedback implicates in a heterogeneous
tumor, with distinct cell subpopulations. Case b): Increasing tissue aggressiveness against
G cells, if βth2,δ   β2   βth2,λ, P̃5 becomes stable. Thus, initial conditions near P0 will converge
to P̃5. A heterogeneous tumor yet establishes in the tissue, but attains a steady state level
less than the encountered in the previous case. Case c): increasing the tissue response,
β2 ¡ βth2,λ, P̃5 ceases to exist and P̄2 becomes stable. Thus, initial conditions near P0 will
converge to P̄2. Therefore, in this case, the tissue high aggressiveness against G cells does
not allow the survival of them, and the final tumor is not heterogeneous as in the previous
case. However, the onset of precancer cells works at least as a trigger to tumor progression,
since it enables A cells, originated from G, to attain a positive stationary state.

The other possibility, δ � εG ¡ rG � µG is very similar to those of the previous
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case. The difference is that the high apoptotic rate εG does not allow G cells to attain
high levels (P8 is not stable).

Finally, we briefly discuss the possibility of cancer onset when P0 is locally
stable. In this case, mutant cells will be removed, unless another nontrivial equilibrium is
stable and the initial number of mutant cells is large enough to drive the system outside the
basin of attraction of P0. This large number of initial mutations may be achieved through
exposure to carcinogenic factors. A study of the quantitative behavior of this threshold for
initial conditions is not performed in this work. However, in highlighted cells of case II in
Figure 5, we note that eight different regimens of multistability (d,e,f,g,h,j,k,l) may arise
depending on parameters. Three of them (e,g,h) exhibit three basins of attraction, the
one of P0, and two other corresponding to two different final tumor volumes. Thus, the
model predicts that, in some cases, the amount of exposure to carcinogenic factors may
have influence on the final tumor volume.

Genetic instability

Let us depict the role of G cells and their mutation to A cells. We turn attention
to region I of parameters space, where A cells would be extinct if there would not be G
cells, since P0 is globally stable in subsystem N �A. However, in the full system, we see in
Figure 5 that P0 is not globally stable anymore. Under the more realistic condition β2 ¡ βth2

(discussed above), P0 is only locally stable. Therefore, under high genome instability which
increases initial conditions favorable for cancer cells, the constant transition from G cells
to A cells may sustain the tumor progression in scenarios where A cells would not survive
alone.

Finally, results in Figure 9 show that changes in the mutation rate or the initial
number of mutant cells have a large impact on the pace of tumor progression. These results
illustrate the fact that the differences between a cancer patient and a healthy person may
not be structural or qualitative differences between their intrinsic cellular systems, i.e.,
differences in parameters that lead to different regions on parameters space, where P0 is
stable and other where P0 is unstable. On the contrary, the unique difference between
these people would be only quantitative, in the sense that virtually both will have cancer
some day, but after different times, due to the differences between the mutation rates or
exposure to carcinogenic factors. From this point of view, genetic instability is the major
factor that leads to tumor progression within a clinically observable time. These results
agree with the fact that genetic instability is an enabling characteristic of cancer (19), and
with results of (32), which predicts that normal mutation rates give rise to a tumor within
a clinically observable time only if genetic instability is a driving force of the mutation
pathway or if there is high number of breast stem cells and tumor suppressor genes.
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2.6 Conclusion
An ordinary differential equation model considering normal, precancer and

cancer cells was proposed to describe cancer onset and establishment at a normal tissue.
The model incorporates in its hypothesis three hallmarks of cancer: self-sufficiency on
growth signals, insensibility to anti-growth signals, and evading apoptosis. Transitions
between compartments are modeled differently from previous works, by using Dirac Deltas
and a continuous nonlinear flux in order to capture the effects of genetic instability as a
factor that enhances the probabilities of mutations.

Dynamics of the boundary subsystem without precancer cells was globally
characterized. This subsystem consisting only of normal and cancer cells is a simple
system but presents an interesting behavior and captures well the possibility of tumor
growth depending on parameters. It can be used as a basis to building more complex
models by incorporating other phenomena. In a future work we will extend it by including
angiogenesis and treatments like chemotherapy.

The full model was also studied in detail. The existence of nontrivial equilibria
was characterized in the entire parameters space. Stability analysis of these equilibria was
done numerically. From the point of view of cancer onset, the analysis of the model predicts
that the first important barrier to cancer is the intrinsic apoptosis and the tissue repair
system. Corruption of these systems revealed essential to cancer development from few
mutant cells. The model also predicts that the presence of aggressive tumoral cells opens
way to survival of less adapted cells which would not survive alone, leading to formation
of a heterogeneous tumor. On the other hand, under high genome instability, the constant
mutation from precancer cells to cancer cells may sustain the tumor growth in a scenario
at which cancer cells would not persist in the absence of premalignant cells. Numerical
simulations were performed with parameter values based on real data of breast cancer.
The model predictions are similar, in quantitative and qualitative aspects, to biological
observations. The necessary time for tumor progression and diagnosis were estimated with
respect to some parameters of the model. This time may ranges from a few to eighty
years, being very sensible to parameters like the intrinsic apoptotic rate of cancer cells,
the mutation rate of premalignant cells, and the initial number of mutant cells. These
parameters also have a major influence which determine whether the final tumor volume
will be detectable or not.

2.A Mathematical analysis of nontrivial equilibria
In this Appendix, proofs and details concerning the existence and stability of

nontrivial equilibria are presented.



Chapter 2. Modeling dynamics for oncogenesis encompassing mutations and genetic instability 39

2.A.1 Existence

The roots of (2.15) are the intersection points of graphs of fpAq and gpAq in
(2.16). The roots of fpAq are A � 0, AM , Ā1 and Ā2 (where Ā1   Ā2 are the roots of qpAq),
and their relative positions determine the intervals where fpAq ¡ 0. The polynomial gpAq
is always positive and has a double root A � Am. If we know the relative positions of
roots of f and g, we can determine, through graphical analysis, the position of roots Ãi,
i � 3, 4, 5, 6, and then, know which of them give rise to a positive equilibrium P̃i.

Notice that Ñ ¡ 0 whenever Ã ¡ 0. Thus, from the expression of G̃ in (2.14),
we obtain the following conditions for a equilibrium point P̃i be positive:

1. If δ   lG and β2   βth2 , then P̃i is positive if and only if, the root Ãi lies in the
interval I1 � r0, AM s (which is empty if β2   βth2,δ).

2. If δ   lG and β2 ¡ βth2 , then P̃i is positive if and only if, the root Ãi lies in the
interval I2 � rAm, AM s.

3. If δ ¡ lG and β2   βth2 , then P̃i is positive if and only if the root Ãi lies in the
interval I3 � r0,8q.

4. If δ ¡ lG and β2 ¡ βth2 , then P̃i is positive if and only if, the root Ãi lies in the
interval I4 � rAm,8q.

From definitions of βth2 , βth,i2,λ , Am, AM and βth,i2,δ , in (2.3), (2.12), (2.17) and
(2.18), we obtain the following relations

Am ¡ 0 ðñ β2 ¡ βth2 , (2.25)

AM ¡ 0 ðñ β2 ¡ βth2,δ and δ   lG, (2.26)

Āi   Am ðñ β2 ¡ βth,i2,λ , i � 1, 2, (2.27)

Āi   AM ðñ β2 ¡ βth,i2,δ and δ   lG, i � 1, 2. (2.28)

Further, we have that

lim
AÑ�8

fpAq � �8, if δ   lG,

lim
AÑ�8

fpAq � �8, if δ ¡ lG, and

lim
AÑ�8

|fpAq{gpAq| � �8.
(2.29)

Also, from (2.18), notice that in case II, with 0   Ā1   Ā2, we have

0   δ1   δ2   lG. (2.30)
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With relations (2.25-2.30), and considering each of the cases I, II and III which
determine the existence of positive roots Ā1 and Ā2 for qpAq, we have all information
about the roots of fpAq and gpAq and we can determine which root Ãi, i � 3, 4, 5, 6, lies
in the appropriate interval Ij. The thresholds for β2 and δ in each case can be seen in
Figure 3, as well a summary of the results. Some cases below are illustrated in Figure 10.

Figure 10 – Graphics of fpAq and gpAq in various subcases. The roots of equation (2.15)
are the intersecting points of both graphs, and must occur at an appropriated
interval Ij, in order to give origin to positive equilibria P̃i. The roots of fpAq
are A � 0, AM , Ā1 and Ā2 and their relative positions determine the intervals
where fpAq ¡ 0. The polynomial gpAq is always positive and has a double
root A � Am.

1. If β3 ¡ βth3 and β1   βth1,∆, the roots Āi, i � 1, 2, are complex or negative.

For δ   lG, the thresholds for β2 which are of interest are 0   βth2,δ   βth2 . We have:
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a) If β2   βth2,δ, the feasibility interval I1 is empty. Thus, there is no positive
equilibrium P̃i.

b) If βth2,δ   β2   βth2 , then, from (2.25) and (2.26), we have Am   0   AM . The
graphics of fpAq and gpAq may intersect zero or twice in the interval I1. It depends
on the value of ξ. For ξ below a certain threshold ξth, the graphic of gpAq intersects
the curve of fpAq twice. For ξ ¡ ξth, the graphics do not intersect. The value of ξth

is the value of ξ such that the graphics of f and g are tangent at a root Ã. Thus,
pξth, Ãq is a solution to the system#

fpAq � gpAq
f 1pAq � g1pAq . (2.31)

Thus, two equilibria, say P̃5 and P̃5, are both positive, or all equilibria are non-
positive.

c) If β2 ¡ βth2 , we have 0   Am   AM . The graphics of f and g intersect at Ã5   Am

and at Ã6 P I2. Therefore, P̃6 is the unique positive equilibrium P̃i.

For δ ¡ lG, the thresholds for β2 satisfy βth2,δ   0   βth2 . We have:

d) If β2   βth2 , then AM   Am   0. As f is a fourth degree polynomial, while g
has degree two, from (2.29) we have that fpAq ¡ gpAq for A sufficiently large. As
fp0q � 0   gp0q, there is at least one root Ãi in the interval I3 � r0,8q. Other two
roots can both lie in this interval, depending on other parameters, such as above.
Therefore, equilibrium P̃4 is positive, and P̃5 and P̃6 may be both positive.

e) If β2 ¡ βth2 , then AM   0   Am. The graphics of f and g intersect at one root
in the interval p0, Amq, which do not result in a positive P̃i. It is possible that the
graphics intersect twice or zero in the interval pAm,8q. Thus, no point P̃i is positive,
or P̃5 and P̃6 are both positive.

2. If β3 ¡ βth3 and β1 ¡ βth1,∆, the roots Ā1 and Ā2 are positive, with Ā1   Ā2.

If δ   lG, we have:

a) If β2   βth2,δ, there is no positive P̃i, since I1 is empty.

b) If βth2,δ   β2   mintβth2 , βth,22,δ u, we have Am   0   mintĀ1, AMu   maxtĀ1, AMu  
Ā2. Thus, fpAq is positive only in the interval I2 for values A P r0,mintĀ1, AMus.
As gpAq ¡ 0 for A ¡ Am, the graphics of f and g may intersect zero or twice in I2,
again depending on ξ. Therefore, either there are no positive equilibria P̃i, or P̃3 and
P̃4 are positive.
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c) If βth,22,δ   β2   βth2 , then Am   0   Ā1   Ā2   AM . The graphics of f and g may
intersect zero or twice in the interval r0, Ā1s, and also zero or twice in the interval
rĀ2, AM s. Thus, the equilibria P̃3 and P̃4 may be both positive or not and the same
happens with P̃5 and P̃6. Therefore, we may have zero, two or four positive equilibria
P̃i.

d) If βth2   β2   mintβth,12,λ , β
th,2
2,δ u, then 0   Am   mintĀ1, AMu   maxtĀ1, AMu  

Ā2. Thus, as fpAq is positive only in the interval I2 if A P rAm,mintĀ1, AMus, and
as gpAmq � 0, the unique root in the interval I2 is Ã4, and only P̃4 is positive.

e) If maxtβth2 , βth,22,δ u   β2   βth,12,λ , then 0   Am   Ā1   Ā2   AM . We have fpAq ¡ 0
for A P pAm, Ā1q Y pĀ2, AMq. As gpAmq � 0, the unique root in pAm, Ā1q is Ã4. The
roots Ã5 and Ã6 may both lie in pĀ2, AMq, or both do not exist, depending on the
value of ξ. Therefore, P̃4 is positive and P̃5 and P̃6 may be both positive.

f) If βth,12,λ   β2   βth,22,δ , then 0   Ā1   Am   AM   Ā2. Therefore, fpAq   0 in I2,
in such way no P̃i is positive, i � 3, 4, 5, 6.

g) If maxtβth,22,δ , β
th,1
2,λ u   β2   βth,22,λ , then 0   Ā1   Am   Ā2   AM . At I2, we have

fpAq ¡ 0 only if A P rĀ2, AM s. Thus, the graphics of f and g can intersect zero or
twice (at Ã5 and Ã6) in the interval I2. Therefore, only P̃5 and P̃6 may be positive.

h) If β2 ¡ βth,22,λ , then 0   Ā1   Ā2   Am   AM . The graphics of f and g intersect
exactly once in I2, at Ã6. Only P̃6 is positive.

For δ ¡ lG:

i) If β2   βth2 , then mintAm, AMu   maxtAm, AMu   0   Ā1   Ā2. At the interval
I3, f is positive when 0   A   Ā1 or A ¡ Ā2. As gpAmq � 0, from (2.29), there is a
root Ã6 ¡ Ā2. At the interval 0   A   Ā1, the graphics can intersect zero or twice
(at Ã4 and Ã5). Therefore, P̃6 is positive and P̃4 and P̃5 may be positive.

j) If βth2   β2   βth,12,λ , then AM   0   Am   Ā1   Ā2. The graphics of f and g

intersect twice, at Ã5   Ā1 and Ã6 ¡ Ā2. P̃5 and P̃6 are positive.

k) If βth,12,λ   β2   βth,22,λ , we have AM   0   Ā1   Am   Ā2. The graphics intersect
exactly once in the interval I4, at Ã6 ¡ Ā2. Therefore, only P̃6 is positive.

l) If β2 ¡ βth,22,λ , we have AM   0   Ā1   Ā2   Am. Therefore, the four roots of
fpAq are positioned before Am, in such way that f is a strictly increasing function
for A ¡ Am, because the three possible points where f 1pAq � 0 lie between the
roots of f . As fpAmq ¡ 0 � gpAmq, the graphics can not intersect in the interval I4.
Therefore, no P̃i is positive.

3. If β3   βth3 , then Ā1   0   Ā2.
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For δ   lG, we have:

a) If β2   βth,22,δ , there is no positive P̃i. Indeed, if β2   βth,22,δ , we have Am   AM  
0   Ā2, and the interval I1 is empty. If βth2,δ   β2   βth,22,δ , we have A1   0   AM   Ā2,
in such way that fpAq   0 for A P r0, AM s. As gpAq ¥ 0, there is no root Ãi in the
intervals I1 (for β2   βth2 ) and I2 (for β2 ¡ βth2 ).

b) If βth,22,δ   β2   βth,22,λ , then A1   0   Ā2   AM . Thus, fpAq ¡ 0 in the interval
rĀ2, AM s. As Am   Ā2, the graphics of fpAq and gpAq may intersect zero or twice
in the interval rĀ2, AM s � Ij, j � 1, 2. Therefore, there may be zero or two positive
equilibria P̃i, P̃5 and P̃6.

c) If β2 ¡ βth,22,λ , then A1   0   Ā2   Am   AM . Thus, there is exactly one root Ãi
in the interval I2. Thus, only P̃6 is positive.

If δ ¡ lG, we have:

d) If β2   βth,22,λ , then mintĀ1, AMu   maxtĀ1, AMu   0   Ā2, with Am   Ā2. If
A ¡ maxtAm, 0u, fpAq is positive only if A ¡ Ā2. Thus, there is only one root
Ãi ¡ maxtAm, 0u, which is Ã6. Therefore, only P̃6 is positive.

e) If β2 ¡ βth,22,λ , we have mintĀ1, AMu   maxtĀ1, AMu   0   Ā2   Am. The
graphics of f and g can intersect zero or twice (at Ã5, Ã6 ¡ Am) in the interval I4.
Thus, or P̃5 and P̃6 are positive, or no P̃i is positive.

2.A.2 Stability

Now, we present numerical results concerning the stability of the nontrivial
equilibria P̃i, i � 3, 4, 5, 6. Conditions (2.19) were studied numerically. By varying β2,
bifurcation diagrams were obtained and stability of equilibria P̃i was inferred. In each
of the cases I, II and III, we fixed δ in a determined region, according to Figure 3, and
allowed β2 to vary, obtaining the bifurcation diagrams for each value of δ. In general, a
bifurcation occurs when β2 surpasses the thresholds that limit the subregions a), b), c),
etc. The obtained diagrams are presented in Figures 11, 12 and 13, referring to cases I, II
and III respectively. In the main graphic of each figure, the behavior of roots Ãi depending
on β2 is presented, together with the values of Am and AM , which delimit the interval
where the roots Ãi give origin to positive P̃i (see subsection 2.A.1 for details). Plotting is
continuous, dashed, or dotted, according the corresponding equilibrium is stable, unstable,
or not positive, respectively. Stability of points P̃i was determined by observing the smaller
graphics, where coefficients a1, a3 e a1a2 � a3 are plotted against β2. The values A0 � 0,
Ā1 and Ā2, corresponding to equilibria P0, P̄1 and P̄2, whose existence does not depend
on β2, but stability does, also are plotted in the main graphic.
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Based on these diagrams, and corroborated by numerical simulations (not
shown) and phase portraits like those of Figure 6, we conclude the following about the
asymptotic behavior of system (these conclusions were obtained numerically for a discrete
set of parameter values, and may be not valid for all parameter space, although they are
valid in small open neighborhoods of these values):

Figure 11 – Bifurcation diagram of equilibria P̃i depending on β2, in case I.

I) If β3 ¡ βth3 and β1   βth1,∆, P0 is locally stable, while P̄1 and P̄2 are not positive.
Corresponding bifurcation diagrams are presented in Figure 11.

For δ   lG, we have:

a) If β2   βth2,δ, there is no positive P̃i, and P0 is unstable. Numerical results indicate
that all solutions tend to P8.

b) If βth2,δ   β2   βth2 , P0 is unstable, and P̃5 and P̃6 can be positive, depending on
ξ. If they are, numerical simulations indicate that P̃5 is stable and P̃6 is unstable,
separating solutions that converge to P̃5 from those that tend to P8.

c) If β2 ¡ βth2 , P0 and P̃6 are the positive equilibria. P0 is stable and P̃6 is unstable,
separating the basins of attraction of P0 and P8.

If δ ¡ lG, according the bottom diagram on Figure 11, we have:
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d) If β2   βth2 , P0 is unstable. P̃4 is positive and stable. P̃5 and P̃6 can be both
positive, depending on ξ. If they are not, numerical simulations indicate that all
solutions converge to P̃4. If P̃5 and P̃6 are positive (not shown in Figure 11), P̃5 is
unstable, separating the basins of attraction of P̃4 and P̃6, which are stable.

e) If β2 ¡ βth2 , P̃4 is no longer positive and P0 becomes stable; a forward bifurcation
occurs. P̃5 and P̃6 can be both positive, and the results are analogous to the previous
case.

Figure 12 – Bifurcation diagram for equilibria P̃i depending on β2, in case II.

II) If β3 ¡ βth3 and β1 ¡ βth1,∆, then P0, P̄1 and P̄2 are positive. P̄1 is unstable. In order to
analyze bifurcations with respect to β2, we must consider four different intervals to
parameter δ, separated by 0   δ1   δ2   lG (see Figure 5). Corresponding bifurcation
diagrams are presented in Figure 12.

For δ   δ1, we have:

a) If β2   βth2,δ, P0 and P̄2 are unstable and there is no positive equilibrium P̃i. All
solutions go to P8.
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b) If βth2,δ   β2   βth2 , P0 and P̄2 are unstable. Equilibria P̃3 e P̃4 can be positive (see
Appendix 2.A for details). If it occurs, P̃3 is stable and P̃4 is unstable, separating
the basins of attraction of P̃3 and P8.

d) If βth2   β2   βth,12,λ , P0 is stable and P̄2 is unstable. P̃4 is positive and unstable,
separating the basins of attraction of P0 and P8. The phase portrait of this case can
be seen in Figure 6.

f) If βth,12,λ   β2   βth,22,δ , P0 is stable and P̄2 unstable. Equilibria P̃i, i � 3, 4, 5, 6, are
not positive. P̄1 separates the basins of attraction of P0 and P8.

g) If βth,22,δ   β2   βth,22,λ , P0 is stable and P̄2 is unstable. P̃5 and P̃6 can be positive. If
it happens, P̃5 is stable and P̃6 is unstable, which separates the basins of attraction
of P̃5 and P8. P̄1 separates the basins of attraction of P0 and P̃5 (or P0 and P8,
when P̃5 and P̃6 are not positive). There can be three basins of attraction. The phase
portrait of this case can be seen in Figure 6.

h) If β2 ¡ βth,22,λ , P0 and P̄2 are stable, and their basins of attraction are separated
by P̄1. P̃6 is positive and unstable, separating the basins of attraction of P̄2 and P8.
There are three basins of attraction. The phase portrait of this case can be seen in
Figure 6.

If δ1   δ   δ2, transitions occur through regions a), b), d), e), g) and h), as can be
seen in Figure 3. The corresponding bifurcation diagram is very similar to that of
the previous case. The same happens in the interval δ2   δ   lG, were transitions
occur through regions a), b), c), e), g), and h). For sake of brevity, the detailed
descriptions for these two cases are omitted, as well the bifurcation diagrams.

For δ ¡ lG, we have:

i) If β2   βth2 , P̃6 is positive and stable. P̃4 and P̃5 can be both positive. If it happens,
P̃4 is stable, and P̃5 unstable, separating the basins of attraction of P̃6 and P̃4. If
they are not positive, all solutions converge to P̃6.

j) If βth2   β2   βth,12,λ , P̃6 is positive and stable. P0 is also stable. P̃5 is positive and
unstable, separating the basins of attraction of P0 and P̃6.

k) If βth,12,λ   β2   βth,22,λ , P̃6 is positive and stable. P0 also is stable. Their basins of
attraction are separated by P̄1.

l) If β2 ¡ βth,22,λ , P0 and P̄2 are stable, and their basins of attraction are separated by
P̄1.

III) If β3   βth3 , P0 and P̄2 are positive. P0 is unstable. Corresponding bifurcation
diagrams are presented in Figure 13.
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Figure 13 – Bifurcation diagram of equilibria P̃i depending on β2, in case III.

For δ   lG, we have:

a) If β2   βth,22,δ , P̄2 is unstable and there is no positive P̃i, i � 3, 4, 5, 6. All solutions
converge to P8.

b) If βth,22,δ   β2   βth,22,λ , P̄2 is unstable and P̃5 and P̃6 can be both positive. If it
happens, P̃5 is stable and P̃6 is unstable, separating the basins of attraction of P̃5

and P8.

c) If β2 ¡ βth,22,λ , P̄2 is stable and P̃6 is unstable, separating the basins of attraction
of P̄2 and P8. The phase portrait of this case can be seen in Figure 6.

For δ ¡ lG, we have:

d) If β2   βth,22,λ , P̄2 is unstable and P̃6 is the unique positive equilibrium P̃i, i �
3, 4, 5, 6, and it is stable.

e) If β2 ¡ βth,22,λ , P̃6 becomes negative and P̄2 becomes stable.
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3 An ecological resilience perspective on can-
cer: insights from a toy model

Abstract. In this paper we propose an ecological resilience point of view on cancer, where
tumor growth and treatment are seen as transitions between alternative stable states.
This view is based on the analysis of a simple ODE model for the interactions between
cancer and normal cells. The model presents two regimes for tumor growth. In the first,
cancer arises due to three reasons: a partial corruption of the functions that avoid the
growth of mutated cells, an aggressive phenotype of tumor cells and exposure to external
carcinogenic factors. In this case, treatments may be effective if they drive the system to
the basin of attraction of the cancer cure state. In the second and more dangerous regime,
cancer arises because the repair system is intrinsically corrupted. In this case, the cure
is not possible since the cancer cure state is no more stable, but tumor recurrence may
be delayed if treatment is prolonged. In the second part of the paper we review three
indicators of the resilience of a stable equilibrium, related with size and shape of its basin
of attraction: latitute, precariousness and resistance. A novel method to calculate these
indicators is proposed. This method is simpler and more efficient than those currently used,
and may be easily applied to other population dynamics models. We apply this method to
the model and investigate how these indicators behave with parameters changes. Results
indicate that the cancer state has more resilience than the cure state.

Keywords: Tumor growth; Chemotherapy; Resilience; Basins of attraction; Regime shifts;
Critical transitions.

3.1 Introduction
The ecological resilience perspective is an emerging approach for understanding

the dynamics of social-ecological systems (76, 77, 78, 79, 80, 81). While the stability point of
view emphasizes the equilibrium and the maintenance of present state, the resilience point
of view focus on shifts between alternative basins of attraction, thresholds, uncertainty
and unexpected disturbances. External forces or random events may cause state variable
perturbations that drive a nonlinear system, which is initially near a stable state, to enter
a undesirable basin of attraction. In this case, the resilience of the original steady state is
related with the size and shape of its basin of attraction, and the capacity of the system
to persist in this basin of attraction when subject to state variable perturbations. Three
different indicators are established in the literature as measures of the resilience of a stable
state with respect to state variable perturbations (82, 83): the latitute of an equilibrium
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point, which is a measure of the volume of its basin of attraction; the precariousness of an
equilibrium point, which is related with the minimal state space disturbance needed to
drive the system outside its basin of attraction; and the resistance of an equilibrium point,
which is a measure of the deepness of its basin of attraction.

On the other hand, changes in system parameters occur in a slow time scale, due
to evolutionary forces acting on the system or by modifying the intensities of interactions
and forces governing such system. In this case, parameters modify the resilience of the
system with respect to state variable perturbations. Further, when parameters do change
enough, the system may undergo several bifurcations and the phase portrait may change
substantially. In this case, one can measure the resilience of the system with respect to
parameters changes as the distance to the threshold values for which bifurcations occur.
As a consequence of such bifurcations, an undesirable alternative stable state may be
created, and its basin of attraction can be achieved by state variable perturbations, as
commented above. A more dramatic outcome happens when parameters changes lead to
loss of stability of the original steady state or even its disappearance. In this case, a regime
shift occurs and the system moves to another state. Now, the question of reversibility
takes place. Of first importance is the question whether it is possible or not to return the
parameters to their original values. When parameters change due to evolutionary factors,
it is more likely that this change can not be undone. Changes due to external forces can be
undone more easily through the correct manipulation of those forces (if possible). However,
even if the original values can by restored, the reversal to the original stable state may
not be completely achieved if the system exhibits hysteresis.

In this paper we illustrate how these concepts of ecological resilience can be
applied to cancer, a complex disease whose causes are far from being well understood
and whose cure is far from being achieved. Indeed, despite the intense efforts that led
the elucidation of many biochemical mechanisms developed by cancer cells to survive
(19), there is a current debate on which are the major factors that allow the onset of
cancer cells. While some arguee that alterations in intrinsic cellular processes are the main
reasons that some tissues become cancerous (84), others defend the view that most cases
of cancer result from extrinsic factors such environmental exposure to toxic chemicals and
radiation (85). With respect to cancer treatment, although the development of new drugs
and strategies to treat cancer in the last fifty years achieved good results in many cases,
another large portion of cancer patients did not respond well to treatments, or presented
tumor recurrence, indicating that there is still a long road in the fight against cancer
(86, 17).

We propose a toy model for tumor growth and apply the above concepts to
suggest a framework for viewing the arising of cancer and its effective treatment as critical
transitions between two alternative stable states. In this framework, tumor growth and
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tumor treatment depend ultimately on ecological resilience questions. Further, we briefly
review the three resilience indicators commented above, propose a method to calculate
these indicators and apply this method to the model. As far as we know, this novel method
we propose is simpler and more efficient than those currently used, and can be applied
to other population dynamics models to improve their analysis through this resilience
perspective.

The paper is organized as follows. In Section 3.2 the model is presented. In
Section 3.3 the analysis of the model is performed. In Section 3.4, the results are discussed
in the ecological resilience perspective. In Section 3.5, the method to calculate resilience
indicators is presented and applied to the model. Finally, conclusions are presented in
Section 3.6.

3.2 A toy model for tumor growth
We present a toy model consisting of a system of ODEs describing tumor

growth and its effect on normal tissue, together with the tissue response to tumor. Our
goal is not to consider the several aspects of tumor growth and to reproduce quantitative
behavior with very accuracy, but to use the model to give some insights about a resilience
point of view on cancer. The model equations are given by

dN

dt
� rN � µNN � β1NA, (3.1a)

dA

dt
� rAA

�
1� A

KA



� β3NA� pµA � εAqA, (3.1b)

where N and A stand for normal and tumor cells, respectively. This system is a limit
case of a three-dimensional model for oncogenesis encompassing mutations and genetic
instability (87).

Parameter rN represents the total constant reproduction of normal cells, and
µN is their natural mortality. Thus, a constant flux for normal cells is considered in the
vital dynamics, and not a density-dependent one, like the logistic growth generally assumed
(48, 49, 50, 51). The reason for this choice is that at a normal and already formed tissue
the imperative dynamics is not the cells intraspecific competition by nutrients, but the
maintenance of a homeostatic state, through the natural replenishment of old and dead
cells (52).

On the contrary, cancer cells have a certain independence on growth signals
released by the tissue and keep their own growth program, like an embrionary tissue in
growth phase (56, 57). Thus a density dependent growth is considered. Several growth
laws could be used, such as the Gompertz, generalized logistic, Von Bertanlanfy and others
(88). We choose the logistic growth due its simplicity, and a natural mortality µA. An
extra mortality rate εA due to apoptosis (60) is also included.
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Several models for tumor growth consider the phenomena of tumor angiogenesis,
i.e., the formation of new blood vessels to feed the tumor, in response to signals released by
tumor cells (89, 58). In order to keep the model as simple as possible, we do not consider
angiogenesis here.

Parameter β3 encompasses, in the simplest way possible, all negative responses
of the many cell types in normal tissue due to the presence of tumor cells. These interactions
include the release of anti-growth and death signals by host cells (19), the immune-system
response (90), competition by nutrients with tumor cells and so on. Similarly, parameter
β1 covers all mechanisms developed by tumor cells which damage the normal tissue, like
increasing local acidity (63), supression of immune cells (91), release of death signals (19),
and competition with normal cells.

System (3.1) is similar to the classical Lotka-Volterra model of competition
(92), commonly used in models for tumor growth (48, 49, 50, 51) and biological invasions
(93), but has a fundamental difference. The use of a constant flux instead a logistic growth
to normal cells breaks the symmetry present in the classical Lotka-Volterra model, so
that no equilibrium with N � 0 will exists. Thus, normal cells will never be extinct, on
the contrary to the models that consider the logistic growth for normal cells. We believe
that this is not a problem, but, on the contrary, is a realistic outcome. Indeed, roughly
speaking, cancer ‘wins’ not by the fact that it kills all cells in the tissue, but by the fact
that it reaches a dangerous size that disrupt the well functioning of the tissue and threaten
the health of the individual. A constant flux term was already taken in other well-know
models for cancer, specifically, to describe the growth of immune cells (54, 55, 94).

3.3 Analysis of the model
We now present the analysis of system (3.1). Biological implications are dis-

cussed in Section 3.4.

3.3.1 Equilibrium points

System (3.1) has a trivial equilibrium

P0 �
�
rN
µN

, 0


,

and up to two nontrivial equilibria

Pi � pNi, Aiq �
�

rN
µN � β1Ai

, Ai



, i � 1, 2.

Here, A1 and A2 are the roots of the second degree equation

aA2 � bA� c � 0, (3.2)
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with coefficients

a � β1rA
KA

¡ 0, b � lA
�
βth1 � β1

�
, c � rN

�
β3 � βth3

�
.

where
βth1 � µNrA

lAKA

, and βth3 � µN
rN

lA. (3.3)

When A1 and A2 are real, we label them in the order A1   A2. Conditions for having
positive equilibria P1 and P2 are obtained by Descartes’ Rule of Signs (69). Together with
the trivial equilibrium P0, the results are summarized as follows:

I) If β3 ¡ βth3 and β1   βth1,∆, the unique nonnegative equilibrium is the trivial equili-
brium P0.

II) If β3 ¡ βth3 and β1 ¡ βth1,∆, three nonnegative equilibria are P0, P1 and P2.

III) If β3   βth3 , the nonnegative equilibria are P0 and P2.

The threshold βth1,∆, defined for β3 ¡ βth3 , is the value of β1 ¡ βth1 for which the discriminant
∆ � b2 � 4ac is zero, and is given by

βth1,∆ � βth1 � 2η � 2
b
ηpβth1 � ηq, (3.4)

where η � rArNpβ3 � βth3 q{pKAl
2
Aq.

3.3.2 Local Stability

Stability of P0 is easily determined. The eigenvalues of the Jacobian matrix of
system (3.1) evaluated at P0 are given by

λ1 � �µN , and λ2 � rN
µN

pβth3 � β3q.

Thus, P0 is locally asymptotically stable if β3 ¡ βth3 , and is a saddle otherwise.

We now study the local stability of Pi, i � 1, 2. Using the fact that Ni and Ai
satisfy

lA � rA
KA

Ai � β3Ni � 0, (3.5)

we find that the Jacobian matrix of system (3.1) evaluated at Pi is given by

jpPiq �

�
�� �β1Ai � µN �β1

β3
plA � rA

KA

Aiq
�β3Ai � rA

KA

Ai

�
�� .

Whenever Pi is a positive equilibrium, the trace of jpPiq is negative. Thus, when Pi is
positive, both eigenvalues of jpPiq will have negative real part if detpjpPiqq ¡ 0, and we
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have opposite signs in the other case. Solving equation (3.2) for Ai, and calculating the
determinant we obtain

detpjpPiqq � Aip2aAi � bq.
As A1   A2, we have, whenever Pi is a positive equilibrium, i � 1, 2,

detpjpP1qq � �A1
?

∆   0, and detpjpP2qq � A2
?

∆ ¡ 0,

where ∆ is the discriminant of (3.2). Thus, P1 will be a saddle point whenever it is positive
(case II above), and P2 will be stable whenever it is positive (cases II and III above).

3.3.3 Asymptotic behavior and global stability

Let us show the boundedness of trajectories of (3.1). By noting that

dN

dt
¤ rN � µNN,

and
dA

dt
¤ lAA

�
1� rA

lAKA

A



,

we may apply classical comparison principles (70) and conclude that all solutions pNptq, Aptqq
with non-negative initial values remain restricted in the box

B �
�

0, rN
µN

�
�
�

0, lA
rA
KA

�
(3.6)

when tÑ 8.

In order to rule out periodic orbits for system (3.1) we apply the Dulac Criterion
(71) with upN,Aq � 1{NA, obtaining

∇ �
�

1
NA

�
dN

dt
,
dA

dt




� �rANA�KArN

KAAN2   0

for pN,Aq P B. Thus, system (3.1) has no periodic orbits.

By the Poincaré-Bendixson Theorem we conclude that all trajectories converge
to an equilibrium point (71). It implies that equilibria P0 and P2 are globally stable in cases
I and III, respectively (in the latter, P2 is globally stable for initial conditions Ap0q ¡ 0,
since the N axis is the stable manifold of P0). In case II, the plane N � A is divided in
the basins of attraction of P0 and P2. The stable manifold of P1 is the separatrix between
these basins. All these results are summarized in Theorem 3.1.

Teorema 3.1. System (3.1) has the following behavior:

I) If β3 ¡ βth3 and β1   βth1,∆, then P0 is globally stable.
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II) If β3 ¡ βth3 and β1 ¡ βth1,∆, then P0 and P2 are locally stable. Equilibrium P1 is a
saddle point whose stable manifold is the separatrix between the basins of attraction
of P0 and P2.

III) If β3   βth3 , then P2 is globally stable for initial conditions Ap0q ¡ 0.

The division of the β1 � β3 plane into regions I, II and III is showed in Figure
14.

Figure 14 – Left: Regions I, II and III in the β3 � β1 plane of parameters space, together
with equilibria behavior. Right: bidimensional diagram of the A coordinates
of equilibria P2 (red, stable), P1 (orange, unstable) and P0 (blue, stable for
β3 ¡ βth3 ), when β3 and β1 vary.

3.3.4 Numerical simulations

We now present numerical simulations in order to stimulate discussions in next
sections. Figure 15 shows simulations of system (3.1) in cases II and III. Parameters values
were based on data from the literature, specially for breast cancer, according the procedure
below. A summary of the parameter values is presented in Table 1.

We assume that the lifetime of a normal cell is 100 days, thus µN � 1{100
days�1. The number of normal cells in the breast cannot pass N0 � 108 cells (24). Thus,
in order to adjust the equilibrium rN{µN of normal cells in the absence of cancer to be
108 cells, we consider rN � 106 cells/day. For cancer cells, we assume the same natural
mortality, µA � 1{100 days�1. For the apoptotic rate of A cells, we use εA � 1{100 days�1.
The ratio birth rate/death rate is 1 for a normal tissue, in order to maintain a homeostatic
state. Following (24), we assume that cancer cells have increased this ratio by a factor
of five. Thus, we have rA � 5{100 days�1. In order to have the maximum number of
cancer cells being 75% of the normal cells, we consider KA � 7.5 � 107. The values of
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Figure 15 – Solutions os system (3.1) when parameters correspond to cases II (left) and III
(right), using values in Table 1. Initial conditions are Np0q � rN{µN �A0 and
Ap0q � A0, representing that the tissue was initially at its homeostatic state
when A0 cells have become cancerous. The values of A0 are: A0 � 0.06� 108

and A0 � 0.07 � 108 (left); A0 � 1 and A0 � 0.07 � 108 (right). In the left
panel, the gray dotted curve represents the separatrix between the basins of
attraction of P0 and P2. The green and blue numbers indicate the time (in
years) corresponding to the trajectory.

Table 1 – Parameters description and values adopted in simulations.

Parameter Description Value
µN 1{µN is the lifetime of a normal cell 0.01 day�1

rN total constant reproduction of normal cells 106 cell day�1

rA tumor cells growth rate 0.05 day�1

KA tumor carrying capacity 0.75� 108 cells
µA natural mortality rate of cancer cells 0.01 day�1

εA extra mortality rate of cancer cells 0.01 day�1

β1 cancer cells aggressiveness 0.40� 10�9 cell�1day�1

βII3 tissue response to cancer cells - case II 0.28� 10�9 cell�1day�1

βIII3 tissue response to cancer cells - case III 0.32� 10�9 cell�1day�1

interacting parameters β1 and β3, in units of cell�1day�1, are unknown a priori but, by
substituting the values of other parameters, we obtain the thresholds for β1 and β3: the
threshold βth3 which separates cases II and III has the value βth3 � 0.30 � 10�9. So, we
assume two possible values for β3: βIII3 � 0.28�10�9, and βII3 � 0.32�10�9. Each of these
values will originate a different behavior of subsystem NA (see Figure 14). If β3 � βIII3

we are in case III, for every value of β1. If β3 � βII3 , we have βth1,∆ � 0.37 � 10�9, so we
assume β1 � 0.40 � 10�9 ¡ βII3 , which is reasonable since cancer cells are supposed to
cause more damage to normal cells than the contrary. With these values we are in case II.
In all numerical simulations in this paper, we use these parameter values, and β3 � βIII3

or β3 � βII3 , depending on the interest to simulate cases III or II.
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3.4 An ecological resilience perspective on cancer
We now discuss the biological implications of the previous analysis. Our goal is

to look to system (3.1) as being a simple cartoon, a toy model, of the underlying system
governing tumor growth in a cancer patient and thus apply the perspective of ecological
resilience to discuss the results above. Although this is a rough approximation, it may be
instructive illustration on our understanding of cancer onset and cancer treatment. By
cartoon or an approximation, we mean that the underlying system of cancer in real life,
despite being very complex, may presents three qualitative distinct regimes, corresponding
to regimes I, II and III of system (3.1). In this analogy, an equilibrium state corresponding
to the presence of a tumor is not necessarily a static equilibrium, but a state of the system
where a tumor is growing and developing. Let us discuss the differences between these
regimes.

3.4.1 Cancer onset as a critical transition

Initially, we look to cancer onset as a critical transition. Let us first comment
at the ‘natural repair system of the patient’, a mechanism which is operated at a variety of
levels and by many agents. In the tissue level, it is operated by the immune system, trough
lymphocytes and natural killers cells, for example (90). The presence of cancer cells at a
given site stimulate the locomotion of immune system cells to that site in order to eliminate
the cancer cells. In the cellular level, many cell components watch some parameters of the
own cell and its neighbors, as the DNA integrity, the products of cellular metabolism, the
concentration of growth factors, etc. When abnormal conditions are detected inside the
cell, it kills itself through apoptosis (60). When abnormal conditions are detected on its
neighbourhood, it releases death or inhibitor factors to control the undesired growth in
its vicinity (19). We consider all these mechanisms as the natural barrier to cancer. In
system (3.1), they are roughly described by the parameters β3 and εA. Greater the value of
these parameters, better is the natural repair system. In our toy model (3.1), these are the
parameters most subject to changes in a slow-time scale, through the multistep process of
genetic alterations which transform the descendants of a normal cell in a malign tumor,
where each genetic alteration confers some advantage for cancer cells (19). Parameter β1

also is thought to be a varying parameter in this slow-time scale, since it encompasses the
many types of negative interactions which cancer cells impose to the host tissue, specially
due to changes in their metabolism which increase local acidity or lead to starvation of
oxygen and nutrients for normal cells.

In the first regime (region I), we have a healthy person, since P0 is globally
stable. In this case, we have an efficient tissue response, since condition β3 ¡ βth3 can be
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written as
β3 � εA

µN
rN

¡ µN
rN
prA � µAq.

Further, we have a limited aggressiveness of cancer cells, β1   βth1,∆. This condition depends
also on β3, because βth1,∆ depends on β3 (see Figure 14, left). Therefore, for a fixed β1,
condition β1   βth1,∆ is equivalent to β3 ¡ βth3,∆, where βth3,∆ is the inverse function of βth1,∆.
Thus, for each level of aggressiveness of cancer cells, we have a second threshold that
the tissue response must be above in order to completely eliminate the chance of cancer.
More aggressive are the cancer cells, higher is this threshold. Thus, region I corresponds
to parameters such that, although new mutant cells may arise all the time, they are not
so much aggressive and the intrinsic repair system is capable to eliminate them.

In the second regime (region II), we have the possibility of having cancer,
since P0 and P2 are both stable. Condition β3 ¡ βth3 implies that the tissue response is
efficient, but condition β1 ¡ βth1,∆, which is equivalent to β3   βth3,∆, implies that the tissue
response is not completely capable to face the aggressiveness of cancer cells. Thus, region
II corresponds to a partially corrupted repair system due to the aggressiveness of cancer
cells. In this region, the resilience of the cancer cure equilibrium P0 plays an important role.
The survival and installation of a tumor mass depends on an increased genetic instability
and/or exposure to external carcinogenic factors, in such way the mutations from normal
to cancer cells increase the initial conditions of cancer cells allow them to surpass the
threshold separating the basins of attraction of P0 and P2; see simulation in Figure 15
left. Thus, the protection against cancer depends on the resilience of P0. Therefore, it is
important to analyze how the resilience of P0 behave as key parameters are changed. In
the next Section we develop this ‘resilience analysis’. We refer to (87) for a model that
comprises an intermediary pre-cancer population that continuously ‘feed’ the population
A with new individuals.

Finally, case III represents a dramatic corruption of the repair system, β3   βth3 .
Now, the cancer equilibrium P2 is globally stable, and the onset and development of cancer
is possible for any initial number of cancer cells. However, distinct quantitative behaviors
may be observed, depending on the initial number of cancer cells. In Figure 15 we see that
the time that the tumor reaches a detectable size (approximately 106 cells (74)) is more
than ten years if a single mutant cell arises. As the number of initial cancer cells increases,
this time decreases.

Based on these discussions, we may look at the onset of cancer as a critical
transition, involving changes in parameters and state-space disturbances. At a normal
stage without disease, all people correspond to regime I. In this regime, although abnormal
cells arise all the time, the intrinsic repair system is capable to eliminate them. Due to
probabilistic mutations, exposure to carcinogens, or genetic propensity, parameters change
in a slow time-scale, a transition from regime I to II or III happens. Transition to regime II
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is more likely to occur first since parameters need to change less. If this transition occurs,
the tissue is protected yet against small disturbances of the homeostatic state. Merely a
high exposure to extrinsic factors is capable to drive the underlying system to cross the
boundary of the basins; resilience is a key factor here. On the other hand, transition to
regime III depends on a high decrease of β3 and εA, and it also may occur after an initial
transition from regime I to II. When regime III is achieved, tumor growth is a matter of
time, and exposure to extrinsic factors may accelerate this process.

In order to illustrate and analyze the different transitions which may occur, we
present in Figure 16 bifurcation diagrams when β3 and β1 vary. When β3 varies with β1

fixed, two different cases occur (Figure 16, top panels). In the first case, the tumor is not
much aggressive to normal cells, β1   βth1 , and we have a transition between regimes I and
III through a transcritical bifurcation. In the second case, the tumor is very aggressive,
β1 ¡ βth1 , and we have transitions from regimes I to II (saddle-node bifurcation) and from
II to III (transcritical bifurcation). Before entering regime III, there is a previous and
additional interval, βth3   β3   βth3,∆ that allows cancer onset depending on initial conditions
(regime II). The comparison of cases (i) and (ii) contributes to the debate of whether
intrinsic or extrinsic factors are the major responsible for cancer onset (85, 84). Due to the
possibility of a direct transition from regime I to II in case (ii), we conclude that extrinsic
factors appear to be the major cause of aggressive tumors (high β1), but combined with
small contribution of intrinsic factors (diminishing β3). On the other hand, the possibility
of direct transition from I to III in case (i) implicates that only non-aggressive tumors
arise due to intrinsic factors only.

When β1 varies while β3 is kept constant, we have a different effect (Figure
16, bottom panels). In the case when the tissue response to tumor is low, β3   βth3 , no
bifurcation occurs and we remain in regime III for all β1. In the second case, the tissue
response is high, β3 ¡ βth3 , and a transition between regimes I and II occurs through a
saddle-node bifurcation. We remain in regime II for all values of β1 ¡ βth1,∆, and no transition
to regime III occurs, on the contrary to case (b) when β3 varies with a high aggressiveness of
tumor. Comparison of diagrams (ii) and (b) lead to an interesting conclusion. While normal
cells are able with their own characteristics (strong repair system) to guarantee tissue
integrity against aggressive tumors, aggressive cancer cells, on the other hand, depend on
genetic instability (initial conditions) when fighting aggressive normal cells. Thus, the first
important barrier against cancer is the intrinsic response. If it is not corrupted, no cancer
will arise. If it is only partially corrupted (regime II in case (b)), then cancer onset will
depend entirely on the tissue being exposed to carcinogenic factors.
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Figure 16 – Top: bifurcation diagrams of coordinate A of equilibrium points when β3
varies, with β1   βth1 (left), and β1 ¡ βth1 (right). Down: bifurcation diagrams
when β1 varies, with β3   βth3 (left), and β3 ¡ βth3 (right). Continuous plot
corresponds to stable equilibrium, while dashed plot corresponds to unstable
equilibrium. These diagrams are particular cases (horizontal sections i and ii
and vertical sections a and b) of the bidimensional one, shown in Figure 14.

3.4.2 Cancer treatment as an attempt to allow a critical transition

Now, let us consider cancer treatment. We focus on application of chemotherapy
due to its widely use, but some of the general results may be extend to other types of
treatment, like radiotherapy or surgery. The simplest way to include chemotherapy in
system (3.1) is to consider the following equations:

dN

dt
� rN � µNN � β1NA� αNγNND, (3.7a)

dA

dt
� rAA

�
1� A

KA



� pµA � εAqA� β3NA� αAγAAD, (3.7b)

dD

dt
� vptq � γNND � γAAD � τD. (3.7c)

Here, D is the chemotherapeutic drug. It is administered according to a treatment function
vptq, and has a clearance rate τ . The terms γNND and γAAD describe drug absorption by
normal and cancer cells, while the killing terms αAγAAD and αNγNND follow the log-kill
hypotheses (17). The treatment function can be described as a finite sum of Dirac Deltas,

vptq �
ņ

i�1
ρδpt� iT q,

representing n doses of ρ mg of drug each, every T days. Figure 17 shows simulations
of the model with treatment, system (3.7), in cases II and III. In these simulations, we
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assumed the values τ � 2.5 day�1, γA � 0.3� 10�8 cell�1day�1, and αA � 0.5� 108 cell
mg�1. Since the chemotherapeutic agent is supposed to be more specific to cancer cells
than normal cells, the values γN � 0.6γA and αN � 0.6αA were assumed for normal cells.
The treatment parameters were ρ � 10 mg, T � 7 days, and n � 4, 5, 6, 7 doses.

Figure 17 – Solutions of system (3.7) when parameters correspond to cases II (left) and
III (right), with n � 4, 5, 6, 7 doses. The small black (large blue) numbers on
phase portrait indicate the time in months (weeks) in which the solution was
at each point. Initial conditions were pAp0q, Np0qq � P2, representing that the
treatment was initiated only after the tumor reached the steady state P2. In
the left panel, the gray dotted curve represents the separatrix between the
basins of attraction of P0 and P2.

More important than the form used to modeling the treatment vptq, the general
property is that all chemotherapeutic treatments cease after some time tf ¡ 0, i.e., vptq � 0
for all t ¡ tf . Thus, Dptq ¤ �τD and so D Ñ 0 when tÑ 8. Therefore all solutions of
system (3.7) approach solutions of system (3.1). This fact have an important consequence
in our ecological perspective. In the real system underlying tumor growth, the treatment
would have only the effect of moving the points on the state space, and do not altering
the intrinsic dynamics. This important feature reveals that the possibility of cure, above
all, concerns questions of stability and resilience. Figure 17 provides an illustration of this
fact.

If tumor growth in a patient is described by some underlying dynamical system
which does not have a cancer cure stable equilibrium, then a complete cure is not possible.
This is what happens in case III, due to the weakness of the repair system, and it is
illustrated in the right panel of Figure 18. After getting near this equilibrium through the
treatment, the system moves back to the cancer equilibrium, even if it takes a long time.
Thus, it is necessary a systemic change that alters the dynamics permanently. However, as
also shown in Figure 17, even in this regime of instability of the cure equilibrium, treatment
may lead to large time survival. Indeed, closer the system gets to the cure equilibrium,
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longer it takes to tumor recurrence be observable. This fact is related with the large time
necessary to pass through a saddle-point. In this case, an important feature will be the
slope of the basin of attraction of the cancer equilibrium. A flat basin implicates in a large
time to tumor recurrence.

On the other hand, even if the system has a cancer cure stable equilibrium, as
in case II here, the treatment may be ineffective if the solution does not achieve the basin
of attraction of the cure equilibrium. It is the case of simulation with n � 4 in case II,
shown in Figure 17, left panel. In other words: a necessary condition to a treatment be
effective is that the underlying system must have a stable cancer cure equilibrium; and
the sufficient condition for the treatment be effective is that the treatment must move the
trajectory to the basin of attraction of this equilibrium (simulations with n � 5, 6, 7 in
case II). Once it has been reached, the treatment can stops, since the own patient repair
system will eliminate the reminiscent cancer cells, and move the trajectory in direction to
the cure equilibrium. Thus, the resilience of cancer equilibrium plays an important role:
if this equilibrium has a large and deep basin, and is located at a large distance from
the basin boundary, then more doses, or more intense doses, will be necessary in order
to make the treatment be effective. Further, it also suggests a mechanism through which
two individuals with similar diagnosis and treatments may have different fates: some of
those treatments which end very near the separatrix (simulation with n � 5 in Figure 17,
left) may become ineffective due tostochastic fluctuations which can drive the system to
the cancer basin again, while other may continue effective due to very small fluctuations.
This indicates that truly effective treatments should drive the system to a safe distance
from the boundary of the basin. This rationale also agrees with the fact that treatments
which consist of single surgery or radiotherapy may be reinforced if followed by adjuvant
treatment in order to preclude tumor relapse (95).

3.5 Resilience Analysis
The ecological point of view on cancer discussed above is illustrated through

the stability landscape in Figure 18. Of course, this view oversimplifies the reality of cancer,
since there are many intermediary stages in the disease progression, but it provides at
least a theoretical framework which sheds some light on the understanding of begin and
the end of the disease. The better view of this landscape is that where it is not static, but
a shaking landscape, due to the stochastic disturbances occurring all the time both on
parameters and on state variables (96). Also, some features discussed above may not be
correctly represented in Figure 18, where one can easily think that the escape from the
cancer cure equilibrium in case III, a saddle point, will be as fast as a ball falls from the
top of the hill, which is indeed false.
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Regime I Regime III

Regime II Regime II

Figure 18 – An ecological view on cancer onset and treatment as the switching between
two states, a cancer cure state (positions of blue balls) and a cancer state
(positions of red balls). Perturbations on state variables are due to exposure to
external carcinogenic factors and genetic instability (small red arrows), which
favor the moving in the direction to the cancer state, or to chemotherapy,
radiotherapy and surgery (small blue arrows), which move the system towards
the cancer cure equilibrium. Perturbations in parameters (large arrows) lead
to transitions between the three different regimes (I, II and III), create or
destroy equilibria, or lead to changes of stability in these equilibria, what can
makes impossible either the cure or the onset of cancer.

In the stability landscape in Figure 18, the creation of the cancer equilibrium
and the loss of stability by the cancer cure equilibrium (large red and orange arrows) is
achieved by the sequential acquiring of genetic alterations that improve the fitness of cancer
cells (the hallmarks of cancer (19)), both by deregulating mechanisms of control or by
creating mechanisms which favor cancer cell functions. The transition from I to III (large
orange arrow) occurs only if tumor aggressiveness is low. Destruction of cancer equilibrium
and creation of stability of the cancer cure equilibrium (opposite directions of large red
and orange arrows) may be achieved by restoring the control systems (immunostimulation
for example) or by limiting cancer cells functions (through anti-angiogenic treatments for
example, which decrease the value of KA in theory). Finally, combination of small changes
in parameters with perturbations on state variables also have a fundamental role, since
the former can diminish the basin of attraction while the latter push the system to cross
the basin boundary.

Let us analyze the effect of parameter changes on the resilience of stable
equilibria of system (3.1), i.e., on size and shape of their basins of attraction. To perform
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this analysis we briefly review the measurements which may be of importance when
analyzing the resilience of an equilibrium (83, 81, 82, 80). As far as we know, very few
papers have dealt with this kind of analysis for population dynamics models (83, 92, 93),
although it is not an uncommon approach for systems modeling power grids (80). Recently,
Mitra et al. applied these measures to the nonlinear pendulum, the daisy-world model,
and to an one-dimensional model of desertification in Amazon forest (83). As far as we
know, the methods provided here to calculate these measures are novel and more efficient
than the currently used ones.

3.5.1 The latitude LpP q of an equilibrium point

The latitude of an equilibrium point corresponds to the volume of the basin
of attraction. It measures the resilience of that equilibrium with respect to state-space
perturbations. Larger the latitude of an equilibrium, smaller is the chance that external
or probabilistic events will drive the system outside the basin of attraction. For two
dimensional systems, the latitude corresponds to the area of the basin of attraction.
However, as it may happens that the basin of attraction has infinite area, it may be the
case to consider its area inside a relevant bounded region. In the case of system (3.1), all
trajectories remain in the box B given in (3.6). This box could be this bounded region
of interest. However, biological relevant perturbations of P2 � pN2, A2q will diminish the
value of both coordinates, and relevant perturbations of P0 � prN{µN , 0q will diminish
the first coordinate and increase the second. Thus, we consider the smallest box C which
contains P0 and P2 as our bounded region of interest. It is clear that

C � r0, rN{µN s � r0, A2s.

Thus, if ApP q denotes the basin of attraction of P , then the latitude of P in our case is
defined by

LpP q � Area pApP q X Cq
Area pCq . (3.8)

We divide by the total area of C to obtain a non-dimensional quantity normalized between
0 and 1. In the case when system presents bistability (region II of parameters space) it is
clear that

LpP0q � LpP2q � 1.

Extreme cases are regions I and III. In region I, when P0 is globally stable, we have

LpP0q � 1, LpP2q � 0,

In region III, when P2 is globally stable,

LpP0q � 0, LpP2q � 1.
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We present a simple and efficient method to calculate LpP q for two dimensional
systems. It consists of two steps. The first step is to obtain the terms of a series expansion
for a parametric representation of the stable manifold of saddle point in a two-dimensional
system. The second step involves the use of Green’s Theorem to transform the area of the
basin of attraction in a line integral calculated along the stable manifold approximated
in the first step. As far as we know it is a novel method and more efficient than those
used in general, which consist in integrating the system in many points of the phase
space, assigning each point to some basin of attraction, and then approximating the area.
Throughout this section, we use the notation R2 � tX � pN,Aq; N,A P Ru.

Summary of first step

Let X� be a saddle point of the two-dimensional system

X 1 � F pXq, X P R2,

where F is a C1 vector field. In the vicinity of X�, this system can be re-written as

X 1 � JpX �X�q �GpXq,
where GpXq � Op||X �X�||2q and J � F 1pX�q is the Jacobian matrix evaluated at X�.
Let J �MKM�1 its Jordan decomposition, with k11   0   k22 (which are real since X�

is a saddle-point). With the change of coordinates

U �M�1pX �X�q,
the previous system becomes

U 1 � KU �RpUq,
where RpUq �M�1GpX� �MUq � Op||U ||2q. This system can be written in coordinates
U � pu, vq as

u1 � fpu, vq,
v1 � gpu, vq.

The origin is a saddle point for this system. Its stable manifold is tangent to v � 0, and
is locally the graph of a function v � ppuq. Substituting it into v1 � gpu, vq we obtain a
nonlinear ODE for ppuq:

p1puqfpu, ppuqq � gpu, ppuqq.
Although this ODE cannot be solved in general, we can write a series expansion

ppuq � c2u
2 � c3u

3 � � � �
and solve term by term, obtaining the coefficients cj recursively. For large k, the truncated
polynomial pkpuq � c2u

2�� � �� ckuk provides a good approximation of the stable manifold
near the origin. Backing to the original coordinates,

skpuq � X� �M pu, pkpuqqT

is a parametric approximation of the stable manifold of X�, for small ||u||.



Chapter 3. An ecological resilience perspective on cancer: insights from a toy model 65

Summary of the second step

Now we explain how to calculate

LpP q � Area pApP q X Cq
Area pCq �

´
ApP qXC

dAdN´
C
dAdN

. (3.9)

The infinitesimal area element is denoted by dAdN . The integral in the denominator is
easy to calculate in general; in our case C is a rectangle. The difficult lies in calculating the
integral in the numerator. However, it can be easily calculated by using the approximation
of the stable manifold obtained in the first part and the Green’s Theorem. Indeed, the
boundary of the region R � ApP q X C is formed by four curves, BR � S Y L1 Y L2 Y L3,
where S is the part of the stable manifold of P1 which is contained in C, and Li, i � 1, 2, 3,
are line segments contained in the boundary of C. By Greens’ Theorem, the integral can
be written as ¼

ApP qXC

dAdN �
¾
BR

NdA �
»
S

NdA�
3̧

i�1

»
Li

NdA,

with the correct orientation defined for these curves. The summation terms are easily
computed, and a good approximation for the integral in S is given by using the parametric
approximation obtained in the first step. With this approach, we have a very good
approximation of LpPiq, i � 1, 2.

Let us comment on the applicability of this method. First of all, the method
works when the boundary of the basin is formed by invariant manifolds of saddle points
(97). If many saddle points lie in the boundary, then the first step needs to be applied to
each point. Second, the bounded region C must be such that this area is easily calculated.
These first two requirements are very general (97). The last and most restrictive condition
is that, for each saddle point on the boundary, the local approximation obtained in
the first step must be a good approximation in all points inside C. The method fails
when this requirement is not satisfied. In our case, for parameters values in Table 1, the
approximation for the stable manifold of P1 with 25 terms was obtained in a few seconds
by Mathematica c©, and provided a very good approximation for points inside C. The
boundary of the basin in Figures 15, 17 and 19 was plotted with this approximation.

3.5.2 The precariousness PrpP q of an equilibrium point

Another important measure is the precariousness of an equilibrium point.
Roughly speaking, it is defined as the the minimum perturbation required to drive the
system to another basin of attraction. As a basin of attraction of interest may be large
but the equilibrium may be located near the boundary, the precariousness is an important
measure. It can be defined as

PrpP q � inftdistpP,Xq, X P BApP qu,
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where BU stands for the boundary of the set U , and distpX, Y q is the Euclidean distance.
However, it may happens that perturbations of relevance may not occur in the direction
where this minimum distance is achieved. Thus, one can consider

PrpP q � inftdistpP,Xq, X P BApP q X ZpP qu,

where ZpP q is a specified set containing the relevant directions for perturbations from P .
For system (3.1), all relevant perturbations of P2 will diminish both coordinates. Thus we
define

PrpP2q � inftdistpP2, Xq, X P BApP2q X ZpP2qu, ZpP2q � r0, N2s � r0, A2s. (3.10)

Let us now consider which are the relevant perturbations of P0. As new cancer cells may
arise in the tissue, we may consider perturbations which increase the value of A. Thus,
it would be the case to consider a single direction, ~v1 � p0, 1q. However, as cancer cells
arise during mitosis, roughly speaking, the number of normal cells diminish by one when a
cancer cell arise. Thus, it would be the case to consider the direction given by ~v2 � p�1, 1q.
Therefore, we consider all directions between ~v1 and ~v2, what give us the set

ZpP0q � tpN,Aq P R2
�, N � A ¥ rN{µNu.

Thus, the precariousness of P0 is given by

PrpP0q � inftdistpP0, Xq, X P BApP0q X ZpP0qu. (3.11)

An illustration of regions ZpP1q and ZpP2q can be seen in Figure 19.

In extreme cases I and III we do not have bistability, and PrpP q must be
defined appropriately. In case III, when P2 is globally stable, we define PrpP2q as the
tumor volume, PrpP2q � A2, meaning that the removal of the entire tumor leads the
system outside the basin of attraction of P2. Indeed, this removal leads the system to the
N -axis, which is the invariant manifold of P0. Analogously, in case I, when P0 is globally
stable, we define PrpP0q � N0. However, in this case the A-axis is not invariant, and
another choice would be PrpP0q � 8.

The result obtained in the first step of the previous section can be used
to calculate the precariousness of an equilibrium straightforwardly. In our case, let be
skpuq � ps1

kpuq, s2
kpuqq the approximation for the stable manifold of P1 obtained in that

step. To calculate PrpP0q, for instance, we first must find the interval I0 of values of u
such that skpuq P ZpP0q. By the definition of ZpP0q, this can be done solving equations

s
p1q
k puq � rN{µN
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Figure 19 – Phase portrait of system (3.1). ZpP2q is the box with P2 in one of the vertices.
ZpP0q is the triangular region with P0 in its vertices. The blue points are the
nearest points of P0 and P2 inside regions ZpP0q and ZpP2q respectively. The
intensity of color on background correspond to the value of the local resistance
RpN,Aq defined in sub-section 3.5.3.

and
s
p1q
k puq � s

p2q
k puq � rN{µN

for u. The solutions are the extrema of interval I0. With this, PrpP0q is obtained by solving
the minimization problem

min ||snpuq � P0||
u P I0

which can be easily solved. The precariousness of P2 is calculated in an analogous way.

3.5.3 The resistance RpP q of an equilibrium point

Finally, the third important measure concerning resilience of an equilibrium is
termed as the resistance of this equilibrium. It refers to “the ease or difficulty of changing
the system, related to the topology of the basin - deep basins of attraction indicate that
greater forces or perturbations are required to change the current state of the system away
from the attractor” (82). Thus, a resistant system will overcome perturbations rapidly,
while a system with small resistance can be driven to a basin transition through a series of
small perturbations that are not absorbed enough. This description concerns exactly the
illustration provided by Figure 17. There, if P2 was more resistant, more chemotherapeutic
doses, or more intense doses, would be necessary to drive the system to the basin of
attraction of P0.
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The task of characterizing the sizes and frequencies of perturbations that a
basin of attraction can absorb is currently a research area (81). Recently, Mitra and others
(83) proposed an approach to measure the resistance of a point in state-space to local
pertubations using local Lyapunov expoents (98). Consider a n-dimensional system

X 1 � F pXq,

where F is a C1 vector field. The instantaneous Jacobian matrix at X is defined as

JdtpXq � In�n � JpXqdt

where JpXq is the Jacobian at X and dt is a infinitesimal time. Let σipXq, i � 1, � � � , n
the square roots of the eigenvalues of the right Cauchy-Green tensor JdtpXqTJdtpXq. The
σipXq’s are also the singular values of JdtpXq. They measure the instantaneous stretching
of the neighborhood of the trajectory at X. The n local Lyapunov exponents evaluated at
the state X are defined as

λipXq � 1
dt

ln pσipXqq , i � 1, � � � , n.

and measure the rate of stretching at X. Therefore, the local resistance RpN,Aq at the
state X � pN,Aq may be defined as

RpXq � �maxtλ1pXq, λ2pXqu, (3.12)

where λi are the local Lyapunov exponents. Thus, the resistance of an equilibrium point
can be measured as

RespP q �
´
ApP qXC

RpN,Aq dNdA´
C
RpN,Aq dNdA . (3.13)

The division by the total resistance on C is made to obtain a non-dimensional quantity
normalized between 0 and 1.

For system (3.1), analytical expressions for λipXq, i � 1, 2, at state X � pN,Aq
can be calculated in Mathematica c©. The density plot of RpN,Aq is showed in Figure 19.
With these expressions, we can calculate integrals in (3.13). The unique concern is with
respect to the region of integration in the first integral, ApP q X C. However, this integral
can be calculated using the approximations for the stable manifold of P1 obtained in the
first step of 3.5.1.

3.5.4 Application of resilience analysis to system (3.1)

We analyze the behavior of above measures when parameters of system (3.1)
vary. Figure 20 shows the results when β3 varies while other parameters are kept constant,
with β1 ¡ βth1 , which corresponds to bifurcation diagram (ii) in Figure 16 (center), where a
transition I-II-III is observed. Results when other parameters vary are similar (not shown
here).
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Figure 20 – Values of LpPiq (top), PrpPiq (center) and RespPiq (bottom), i � 0, 2, as β3
varies, with β1 ¡ βth1 , which corresponds to the bifurcation diagram (ii) in
Figure 16 (top, right). As β3 varies, we observe transitions between regimes
III, II and I.

To discuss these results, we first consider the point of view of cancer onset
and analyze the resilience measures of P0. In region I, P0 is globally stable and all these
measures are equal to the unity. When β3 becomes lesser than βth3,∆ and enters region II,
equilibrium P0 is no longer globally stable, and its resilience measures undergo an abrupt
jump and decay rapid in a small strip near βth3,∆. The most notorious jump occurs with
PrpP0q. For values in the midpoint between the two thresholds separating region II from
regions I and III, the values of PrpP0q and LpP0q are very small. These features are due
to the up-concave shape of the graphs of LpP0q, PrpP0q and RespP0q, and indicate that
in the bistable regime the healthy state P0 is threaten by small disturbances which may
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easily drive the system to the basin of attraction of P2.

On the other hand, let us consider the point of view of treatment, and discuss
the results concerning P2. In regime III, this equilibrium is globally stable and LpP2q,
PrpP2q and RespP2q are equal to the unity. As β3 becomes larger than βth3 , these measures
decay very slowly and are greater than the respective measures of P0, until β3 reaches
the small strip near the next threshold, βth3,∆. Now, these features are due to the down-
concave shape of the graphs, and implicate that P2 is relatively protected against small
perturbations.

By comparing these differences on the resilience measures of P0 and P2 we
conclude that it is much more easy to drive the system outside the basin of attraction
of the cure equilibrium P0 when it loses its global stability, than driving the system out
the basin of attraction of the cancer equilibrium P2 when it reaches the bistable regime,
unless the parameters get very near the next bifurcation threshold at which P2 loses its
stability. In other words, our analysis reveal that, in the bistable regime, although these
are different phenomena, it is more likely to mutations or exposure to carcinogenic factors
drive cancer onset than chemotherapy, surgery or radiotherapy lead to tumor regression.

3.6 Conclusion
In this paper, an ecological resilience framework to think of cancer as the

alternance between two states is presented. This framework is based on the analysis of
a simple ODE model for tumor growth considering the interaction with the host tissue.
Despite the simplicity of the model, the approach adopted here gives interesting theoretical
insights that shed some light on several relevant issues concerning cancer onset and
treatment, and may help to improve the way we view cancer.

The model exhibits three regimes. These regimes are used to illustrate three
different possibilities which may occur in clinical cases in general. The first regime corres-
ponds to a healthy person where cancer onset is not possible since the cancer cure state is
globally stable. The second regime corresponds to a person which can develop cancer if
exposed to external carcinogenic factors, due to a partially corrupted repair system and/or
a high aggressive phenotype of tumor cells. This regime presents bistability between the
cancer and the cancer cure states. The third regime corresponds to a person in which
cancer will arise due to intrinsic factors, i.e., the total corruption of repair systems. In this
regime, the cancer state is globally stable.

Based on the general property that treatments are finite and, therefore, do not
change the global dynamics in the phase space, we discuss the possibility of cure, which
concerns stability and resilience questions above all. In the bistable regime the cure is
possible if the treatment is able to drive the system to the basin of attraction of the cure
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equilibrium. Tumor recurrence in this case is associated with treatments which are unable
to cross the separatrix between the basins, or which do not end at a safe distance from
the separatrix. In the third regime, the cure is not possible at all, since the repair system
is intrinsically weak, but tumor recurrence may be delayed if the treatment is prolonged,
because the system takes a long time to pass around the cure equilibrium, which is a
saddle point. However, toxicity is not assessed in this model.

Besides perturbations on state variables, a view in the switching between these
three regimes due to parameters changes in a slow time scale is discussed and the roles of
the most important parameters in these transitions are assessed. Results indicate that only
aggressive tumors may arise if intrinsic repair systems are not totally corrupted. However,
in this scenario, these aggressive tumors also depends on external carcinogenic factors for
arising.

Finally, we review the use of three different measures to assess the resilience of
a stable equilibrium. We propose simple and efficient methods to calculate these measures.
After applying this analysis to the model we conclude that in the bistable regime the
cancer equilibrium has much more resilience than the healthy equilibrium, with respect to
state variable perturbations as parameters changes.

This paper contributes to the current understanding on cancer by raising some
issues in an ecological view, and also demonstrates how a ‘resilience analysis’ may be
applied to population dynamics models in order to improve the understanding of nonlinear
phenomena.
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4 Minimal model for metronomic chemothe-
rapy in avascular tumors: global dynamics
and medical implications

Abstract. In the last years, a new era in the fight against cancer has began. An important
example of new treatment strategy is metronomic chemotherapy, which consists in the
frequent application of low doses of cytotoxic agents, with few or no interruptions. In
this paper, we propose an ODE model for metronomic chemotherapy in avascular tumors,
considering populations of normal and cancer cells, together with drug concentration,
and taking in account the drug deactivation by cancer and normal cells, an interaction
generally disregarded by other models. By using tools of competitive systems theory, a
global analysis of this system is performed in the entire parameters space. Thresholds to
the drug infusion rate are obtained for the system has a cancer cure equilibrium globally
stable. The inclusion of normal cells allow us to measure the toxicity of a given treatment,
and a condition is obtained which gives a way to compare the toxicities of metronomic
chemotherapy in diverse tumor types. The results indicate that metronomic chemotherapy
has a low toxicity in slow-growing tumors, highly competitive tumors and tumors with
large carrying capacity.

Keywords: Cancer treatment; Toxicity; Global stability; Bifurcations; Competitive systems.

4.1 Introduction
In the last five decades of fight against cancer, the treatment which has prevailed

was conventional chemotherapy (86). In this kind of treatment, citotoxic agents aiming to
target proliferative cancer cells are administered according to the logic that "the more is
better", i.e., the doses are the highest possible, in the very limit of a toxicity that does
not threaten the patients life, and they are administered as a single or few number of
doses, with long time intervals between them to allow the recovery of patients. This dosage
regimen is named Maximum Tolerated Dose (MTD) (99). Despite the intense efforts, such
as the development of a number of different chemotherapeutic agents and the performing
of many clinical trails, a large number of patients are not cured or have a small survival
rate (100, 1). One reason to these disappointing results is that in many times tumor cells
have developed, or already had, resistance to the chemotherapeutics (acquired and intrinsic
resistances). Further, the side effects of conventional chemotherapy, besides limiting the
dosage and efficacy of these treatments, have a high price to the health of the patient,
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since the cytotoxic activity of such drugs also harms other rapidly regenerating tissues in
the human body, like hair-follicle cells, gut mucosa and bone marrow. Finally, currently
there is no consensus of what would be the optimal protocol, i.e., the dose intensities and
intervals which would give the best response with the lowest toxicity, and many clinical
trials are done aiming to improve these outcomes (86, 101).

Therefore, new approaches are necessary, both with respect to treatment
strategies (changing the standard protocols), as well as to new therapeutic targets (anti-
angiogenic treatments, imunostimulation, and oncolytic virus therapy). Indeed, in the last
years, a new era in the fight against cancer already has began and many strategies and
therapeutic targets have come as an alternative to traditional chemotherapy, fueled mainly
by biochemical deciphering of molecular and cellular interactions involved in the tumor
microenvironment (1). In the near future, one can expect that personalized treatments
based on individual factors of each patient, by combining several medicines and targets,
will come into action (17, 1).

A relatively new therapy is known as metronomic chemotherapy (102, 86, 101).
Motivated by the challenge to circumvent acquired drug resistance, and taking advantage
of cytotoxic effects of conventional chemotherapeutics, Kerbel suggested in 1991 that
low doses of these drugs could have a potential anti-angiogenic effect, because many of
those endothelial cells that form the tumor vasculature are immature and are in constant
proliferative state (103). Thus, the therapeutic target would become tumor vasculature
instead tumor cells. Due to the genetic stability of normal endothelial cells, in contrast with
the high genetic instability of cancer cells, this treatment would not face drug resistance.
Besides, it would bring almost none side effect, since the low doses would harm only the
immature tumor vasculature, because the other endothelial cells on the body are mature
and do not proliferate like the immature ones (103).

A few years later, experiments with mouse showed that tumors which exhibited
drug resistance when conventional MTD treatment was administered, responded well to
low and frequent doses. These and many other studies have been changing the paradigm
that MTD is the best way of chemotherapy administration (101). Thus, the new therapies
would not preclude the use of standard chemotherapeutics, but change the way we dose
it. In 2000, Hanahan et al. created the term "metronomic therapy", which refers to the
frequent application of low doses of chemotherapeutics, with small or none intervals
between applications (102). In the past decade, phase II clinical trails have shown the
efficacy and low toxicity of metronomic chemotherapy with different drugs in diverse tumor
types, specially in refractory tumors or those which relapsed after conventional treatments.
Combinations like MTD treatments followed by metronomic chemotherapy also improved
the overall results in some types of cancer (101).

The rationales behind the good outcomes of metronomic therapy against MTD
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therapies are largely based on interactions in the tumor microenviroment (101). First,
as commented above, it has anti-angiogenic effects. Standard high doses of conventional
chemotherapy kill the tumor immature vasculature, but the long breaks necessary to
allow the patient to recover are also large enough to this vasculature repair itself and
return to feed the tumor. Thus this effect is achieved only at low (which are enough to
kill the dividing endothelial cells) and frequent doses. Moreover, by targeting these cells,
metronomic therapy is also able to destroy drug-resistant cancer cells by starvation of
nutrients or induction of hypoxia. Second, an increasing body of researches has shown
that metronomic therapy has also important immuno-stimulatory properties. While the
phenomena of tumor escape from immune-surveillance have been described as an emerging
hallmark of cancer (19), recent studies have demonstrated that certain drugs administered
in a metronomic schedule were able to restore immuno-surveilance through the inhibition
of TREG cells, which in many cancers are responsible for inhibition of anti-tumor immune
response.

Several papers have been dealing with mathematical modeling of traditional or
metronomic chemotherapy (104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 115, 116).
Many other papers deal with the task of obtaining the best treatment protocols, mainly
based on application of optimal control theory (117, 118, 119, 120, 121, 122, 123, 50, 124,
125, 126, 127). Other works focus on drug resistance, by considering structured populations
of tumor cells (128, 129).

In this paper we propose a minimal model for the effect of metronomic chemo-
therapy on cancer cells and host tissue. Our goal is to perform a detailed mathematical
analysis and thus assess the role of each parameter in the dynamical behavior of the
system and analyze the biological implications. We seek for biological conditions from
which different outcomes may emerge, i.e., when metronomic therapy is able to eradicate
the tumor, and when it leads only to tumor dormancy. Another question is how much
the host tissue is affected by the toxicity of chemotherapeutics, and which are the critical
parameters that control this toxicity. As our model does not focus on a specific cancer,
these global results allow us to compare, from a theoretical point of view, the effectiveness
and toxicity of metronomic chemotherapy on diverse tumor types, since the qualitative
differences between various tumor types would correspond to different parameter values
on parameter space.

Some models cited above explicitly consider the effects of chemotherapy in
the tumor microenvironment, like tumor-immune response, angiogenic signaling, acid-
mediated invasion, stem-cell sub-populations, etc. As commented before, some of these
interactions are very important and connected with the efficacy of metronomic therapy.
However, aiming to obtain the simplest possible model for which a detailed description of
the parameter space can be obtained, we consider that the drug acts directly on cancer
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cells and normal cells. As we will comment in the Conclusion Section, a second stage in
this work can be the inclusion of dynamical equations for tumor mature and immature
vasculature, immune cells like TREG and killer or effector cells, and their coupling with
equations for the drug, cancer cells and normal cells.

The paper is structured as follows. In Section 4.2 the mathematical model and
its hypotheses are presented. In Section 4.3, a summary of the mathematical results is
presented. In Section 4.4, the biological implications are discussed. In Section 4.5, we give
the final conclusions and discuss possible future directions. In Appendix 4.A we present
the proofs and mathematical details.

4.2 Mathematical modeling
A model we propose considers the interactions among normal cells, cancer cells,

and chemotherapeutic agent in a tissue of the human body. The model equations are the
following:

dN

dt
� rN � µNN � β1NA� αNγNDN, (4.1a)

dA

dt
� rAA

�
1� A

KA



� β3NA� pµA � εAqA� αAγADA, (4.1b)

dD

dt
� ν � γADA� γNDN � τD. (4.1c)

Here N , A and D represent, respectively, the number of normal and cancer cells, and
drug concentration. The hypotheses that led to these equations and the meaning of each
parameter are discussed below.

A variety of growth laws can be used to describe cancer growth, such as
Gompertzian, Malthusian, generalized logistic, etc., since they present a good agreement
with real data of distinct tumor types (88). But, due its simplicity and analytical tractability,
we consider a logistic growth to cancer cells, with a per capita growth rate rA and carrying
support KA. Cancer cells present a natural mortality rate µA, and also an extra mortality
rate εA due to apoptosis induced to control undesirable growth of mutant cells (59).

On the other hand, for normal cells, a distinct growth law consisting of a
constant total reproduction rate rN is considered, together with a natural per capita
mortality µN . The reasons for that are the different characters of the growth of the normal
cells at a certain tissue, compared with cancer cells. While the growth of cancer cells is
similar to an embryonic tissue, with a small initial number of cells which can develop or
not depending on a series of factors, the creation of new normal cells at a mature tissue is
intended to replenish the old ones, in order to maintain a homeostatic state, which, in this
model, is given by rN{µN . Furthermore, in general, this replenishment is performed by a
few precursor cells, like stem cells, in a manner that the growth rate of normal cells is not
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directly connected with the total cell population, as in the logistic case, but is a intrinsic
property of the tissue.

The interaction between cancer and normal cells is given by terms �β1NA and
�β3NA. While these terms are commonly described as the competition between these
cells, here, we adopt a point of view that they encompass, in a simplified fashion, a lot of
other interaction phenomena between these cells. For example, the term �β1NA, besides
accounting for the killing of normal cells by the lack of nutrients and oxygen gathered by
cancer cells, can also describes the acid mediated killing of normal cells, due the acidity
produced by the metabolism of cancer cells (63). On the other hand, the term �β3NA can
encompass phenomena such as the effect of death and inhibitor factors released by normal
cells, and the immune response of the tissue to mutant cells, which is activated by the
detection of cancer cells, and which is performed by lymphocytes and other cells. Thus,
in this model, the normal cells population is thought of as a pool of many types of cells,
which operate in conjunction to maintain the tissue integrity and normal functioning. In
this manner, we will refer to β1 as the aggressiveness of cancer cells, and β3 as the tissue
response to cancer cells.

Now, the hypotheses that lead to equation (4.1c) describing the drug phar-
macokinetics and pharmacodynamics are presented. The drug has a clearance rate τ .
The drug absorption and deactivation rates by normal and cancer cells is described by
mass action law terms with rates γN and γA. Following the linear log-kill hypothesis
(17), we suppose that the quantities of absorbed drug by normal and cancer cells, γNND
and γAAD, kill these cells with rates αN and αA, respectively. Finally, the parameter ν
represents a constant infusion rate, and approximates a metronomic dosage, i.e., an almost
continuous and long-term administration of the drug. Although many models of cancer
treatment do not consider drug absorption and deactivation explicitly, we believe that
it is an important fact to consider, since this phenomena contributes to decrease drug
concentration as the time pass by.

4.3 Main Results
In this section, we state the results of mathematical analysis of system (4.1).

4.3.1 Subsystem without drug

Initially, in order to better understanding the effect of chemotherapy on system
(4.1), it is important to analyze the behavior of this system without the drug, i.e., equations
(4.1a-4.1b) with D � 0, which will be refereed as subsystem NA. This subsystem was
analyzed in a previous paper (130, 87). Here we briefly present the results. Throughout
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this paper, the parameter lA � rA�µA� εA is assumed to be always positive, since cancer
would die even with no interaction with normal cells if lA   0.

Subsystem NA, (4.1a-4.1b) with D � 0, has the following equilibrium points:
the cancer cure equilibrium

P0 � pN0, A0q �
�
rN
µN

, 0


, (4.2)

and two cancer equilibria,

Pi � pNi, Aiq �
�

rN
µN � β1Ai

, Ai



, i � 1, 2, (4.3)

where A1   A2 are the roots of a second degree polynomial equation in A

β1
rA
KA

A2 �
�
µN

rA
KA

� β1lA



A� prNβ3 � lAµNq � 0. (4.4)

This system exhibits one of the following three possible behaviors, depending
on parameters:

1. If β3 ¡ βth3 and β1   βth1,∆: P1 and P2 are negative; P0 is globally stable.

2. If β3 ¡ βth3 and β1 ¡ βth1,∆: P1 and P2 are positive; P0 and P2 are locally stable. The
phase plane NA is divided in two basins of attraction, and P1 is the turning point
dividing these basins.

3. If β3   βth3 : P1 is negative, and P2 is positive and globally attracting for initial
conditions with A ¡ 0.

The thresholds which separate cases I, II and III are given by

βth3 � µN
rN

lA, βth1 � µNrA
lAKA

, and βth1,∆ � βth1 � 2η � 2
b
ηpβth1 � ηq, (4.5)

where η � rA
KA

l2ArNpβ3 � βth3 q. From now on, we will refer to these cases as I, II and III.
The division of the parameter space β1 � β3 into these three regions can be seen in Figure
21, together with representative phase portraits of subsystem NA in cases II and III.

These results implicate that there are three different regimens concerning tumor
growth (130). The first region of parameter space corresponds to a healthy person where
cancer onset is not possible. In the second, cancer can either develop or die, depending on
initial conditions. In the third, a tumor will be formed from any initial number of cancer
cells. From the point of view of treatment, it is needed only in cases II and III. Thus our
analysis of system (4.1) will be restrict to these regions.
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Figure 21 – Left: the plane β3 � β1 divide into regions I, II and III. Center and right: the
phase plane on cases II and III.

4.3.2 Trivial equilibrium

We now present the results of analysis of system (4.1). First, we analyze the
trivial equilibrium and establishes conditions for its local stability and also global stability.
It is easy to see that system (4.1) has an unique ‘cancer cure equilibrium’,

P �
0 � pN�

0 , 0, D�
0 q �

�
N�

0 , 0,
ν

γN�
0 � τ



,

where N � N�
0 is a root of the second degree equation

prN � µNNqpγNN � τq � αNγNνN. (4.6)

Graphing the two sides of (4.6), it is straightforward that it has one negative root, and one
positive root inside the interval r0, rN{µN s. As D�

0 ¡ 0 when N�
0 ¡ 0, there is an unique

biologically feasible cure equilibrium. We also note that the value of N�
0 is decreasing with

respect to ν, and N�
0 pν � 0q � N0 � rN{µN and N�

0 pν Ñ 8q � 0.

Local Stability

A straightforward calculation shows that two eigenvalues of the Jacobian matrix
of system (4.1) evaluated at P �

0 , λ1 and λ2, corresponding to eigenvectors in the ND plane,
are the roots of

λ2 � pN�
0 γN � αNγND

�
0 � µN � τqλ� pµNγNN�

0 � ταNγND
�
0 � µNτq � 0.

Since all coefficients in this equation are positive, the Routh-Hurwitz criteria implies
that λ1 and λ2 have negative real part. Thus, stability of P �

0 depends only on the third
eigenvalue, which corresponds to the A-direction, and is given by

λ3 � lA � β3N
�
0 �

αAγAν

γN�
0 � τ

. (4.7)

It is worth to note that in analysis of subsystem without drug, the condition to have the
stability of the trivial equilibrium P0 � pN0, 0q is

β3 ¡ βth3 � lA
N0

.
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When we introduce drug, by the above expression for λ3 we see that the cure equilibrium
P �

0 is stable if
β3 ¡ lA

N�
0
� αAγAν

N�
0 pγN�

0 � τq .

Thus, we see that the role of ν is to decrease the threshold βth3 , enhancing the chances
of P �

0 being stable. However, as N�
0 decreases with ν, we see that increasing ν may also

increase the new threshold. To fully understand this nonlinear interaction, we must analyze
λ3 in terms of ν. Solving equation (4.6) explicitly for N�

0 and replacing the result in (4.7),
we obtain, after many algebra, that λ3 can be written as

λ3 � C0gpνq � C0pagν2 � bgν � cgq, (4.8)

where C0 ¡ 0. Details about these calculations and expressions for C0, ag, bg and cg are
given in Appendix 4.A.1. Therefore, stability of P �

0 depends whether the second degree
polynomial gpνq is negative. We denote by ν1 and ν2 the two roots of gpνq, and label them
in the order ν1   ν2 when they are real. In Appendix 4.A.1 we obtain that the leading
coefficient ag is negative, and we show that ν1, ν2 and P �

0 have the following behavior:

1. If β3   βth3 (region III) we have ν1   0   ν2, and P �
0 is locally stable if ν ¡ ν2.

2. If β3 ¡ βth3 (region II) and γN ¡ γ#
N , then 0   ν1   ν2, and P �

0 is locally stable if
ν   ν1 or ν ¡ ν2.

3. If β3 ¡ βth3 (region II) and γN   γ#
N , then ν1, ν2 are complex conjugate or negative

and P �
0 is locally stable for all ν ¥ 0.

Expressions for ν1, ν2 and γ#
N are given in Section 4.A. Figure 22 shows the surfaces ν1

and ν2 in parameter space γN � β3 � ν. In particular, if ν ¡ ν2, then P �
0 is locally stable

in cases II and III. Thus, ν2 is the minimal infusion rate for the constant treatment to be
effective. However, ν ¡ ν2 does not guarantee that P �

0 is globally stable, since nontrivial
equilibria may exist and be stable.

4.3.2.1 Global Stability

Now, we proof the following result concerning global stability of P �
0 .

Teorema 4.1. If system (4.1) has no other non-negative equilibria, then P �
0 is globally

stable.

Proof. Initially, we prove the boundedness of solutions of system (4.1). From (4.1a) we
obtain pdN{dtq ¤ rN�µNN . By comparison principles (131), it follows that Nptq ¤ rN{µN
when tÑ 8. An analogous reasoning applied to (4.1b) and (4.1c) gives the upper bounds
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Figure 22 – Surfaces ν � ν1 (orange) and ν � ν2 (green) as functions of γN and β3. P �
0 is

locally stable outside the region delimited by ν1 and ν2, and is unstable inside
this region.

Aptq ¤ plAKAq{rA and Dptq ¤ ν{τ when t Ñ 8. Substitution of these bounds in (4.1a),
give us

dN

dt
¥ rN � µNN � β1

lA
rA
KAN � αNγN

ν

τ
N

for large t. Again by comparison principles, we obtain, for large t,

Nptq ¥ rN

µN � β1
lAKA

rA
� αNγN

ν
τ

.

In the same way, using the upper bounds for Nptq and Aptq in (4.1c) implies

Dptq ¥ ν

τ � γN
rN

µN
� γA

lAKA

rA

for large t.

Thus, all trajectories pN,A,Dq of system (4.1) remain in the box

Z �
�

rN

µN � β1
lA
rA
KA � αNγN

ν
τ

,
rN
µN

�
�
�

0, lA
rA
KA

�
�
�

ν

τ � γN
rN

µN
� γA

lA
rA
KA

,
ν

τ

�
(4.9)

for large t.

Now, we claim that the ω-limit sets of all trajectories are equilibria or periodic
orbits contained in Z. This statement follows from a straightforward application of the
Poincaré-Bendixon Theorem for Competitive Systems in R3. Theorem 4.1, p. 41 of (132)
states that a compact limit set of a competitive system in R3 that contain no equilibrium
points is a periodic orbit. Since all off-diagonal entries of the Jacobian matrix of system
(4.1) are non-positive for all points pN,A,Dq with non-negative coordinates, it follows
that this system is competitive in R3

� (see (132), p. 34), thus the result holds.
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Therefore, to establishing global stability of P �
0 , it remains to show that system

(4.1) has no nontrivial periodic orbits under the hypothesis that no other equilibrium is
positive. Suppose, by contradiction, that system (4.1) has a nontrivial periodic orbit Γ.
Then, Γ � Z. Suppose that Γ touches the face A � 0 of Z. Since this face is invariant
by system (4.1), Γ would be entirely contained in this face. In this case, we know from
index theory that there would be at least one equilibrium point in the region surrounded
by Γ (71). Since there are no other non-negative equilibria than P �

0 , and since P �
0 is in

the very edge of Z and thus cannot be this equilibrium sorrounded by Γ, it follows that Γ
does not touches the face A � 0 of Z. Thus, if W is the smallest box containing Γ, then
A ¡ 0 for all points pN,A,Dq P W and W � Z. As system (4.1) is competitive in R3

�, it
follows from Proposition 4.3, p. 44 of (132) that W contains an equilibrium point. It is a
contradiction, since P �

0 is the unique positive equilibrium point and P �
0 R W . Thus, such a

nontrivial periodic orbit Γ cannot exists. Therefore, all trajectories must converge to an
equilibrium point, which must be P �

0 .

Note that we didn’t have supposed that ν ¡ ν2, which is the condition for P �
0

being locally stable. The unique hypothesis was that there were no other non-negative
equilibria. Therefore, we can expect that ν ¡ ν2 is a necessary condition to have no other
non-negative equilibria.

4.3.3 Nontrivial equilibria

We pass now to study the nontrivial equilibria of system (4.1). Calculations in
Appendix 4.A.2 show that there are up to four nontrivial equilibria

P �
i � pN�

i , A
�
i , D

�
i q �

�
N�
i ,
ppN�

i q
dN�

i

,
qpN�

i q
αAγAdN



, i � 1, 2, 3, 4, (4.10)

where N � N�
i is a root of the fourth degree equation

qpNqrpNq � hpNq, (4.11)

and
ppNq � κNplA � β3Nq � prN � µNNq,
qpNq � rA

KA

prN � µNNq � β1NplA � β3Nq,

rpNq � dNpγNN � τq � γAppNq,
hpNq � αAγAνd

2N2,

d � rA
KA

αNγN
αAγA

� β1.

(4.12)

(4.13)

(4.14)

(4.15)

(4.16)

Our analysis of these nontrivial equilibria is based on the fact that two nontrivial
equilibria of system (4.1) are ‘perturbations’ of equilibria P1 and P2 of subsystem without
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drug. To see this, note that when ν � 0, we have hpNq � 0, and then, the roots of (4.11)
are the roots of qpNq and rpNq. We claim that the roots of qpNq are the N -coordinates
of equilibria Pi � pNi, Aiq, i � 1, 2, of subsystem without drug. In fact, remember
that A � Ai is a root of (4.4), and Ni � rN{pµN � β1Aiq. Writing Ai in terms of Ni,
Ai � prN � µNNiq{β1Ni, and substituting in (4.4), we obtain

rN
β1N2

i

qpNiq � 0, i � 1, 2. (4.17)

Thus, the roots of qpNq are N1 and N2. Now, substituting these roots in expressions of A�
i

and D�
i , we conclude that A�

i � Ai and D�
i � 0, i � 1, 2, when ν � 0. Therefore, when

ν � 0, two nontrivial equilibria P �
i coincide with the nontrivial equilibria of subsystem

without drug. We label them as P �
1 � P1 and P �

2 � P2. As ν ¡ 0 increases, hpNq increases
while qpNqrpNq is kept constant. Thus, the original roots move and possible enter or leave
the feasibility interval or collide one with another. Therefore, our strategy was to track
the behaviors of intersections of qpNqrpNq and hpNq as ν increases starting from ν � 0.
With this approach, we analyzed the existence of nontrivial equilibria P �

i in the entire
parameter space. Details are given in Appendix 4.A.

We also analyzed the stability of these equilibria. Under the hypothesis that
a Hopf bifurcation does not occurs with P �

2 , we characterized the number of nontrivial
equilibria and their stability in the entire parameter space. Extensive numerical analysis
have shown that this behavior is general and we believe that indeed no Hopf bifurcation
occurs, although we were unable to prove it. Results are presented in next subsection.

4.3.4 Global analysis

The results of analysis of system (4.1) reveal that the three regimes of parameters
presented by subsystem without drug (regions I, II and III) are somehow reproduced
also in the parameter space of system (4.1): there are three regions in parameter space,
which we call A, B and C, with the following behavior. In region A, we have no nontrivial
equilibrium and P �

0 is globally stable. In region B, the positive nontrivial equilibrium are
P �

1 and P �
2 ; P �

0 and P �
2 are locally stable and their basins of attraction are separated by

the two-dimensional invariant manifold of P �
1 . In region C, the unique positive nontrivial

equilibrium is P �
2 , and it is globally stable.

Representative phase portraits of system (4.1) in each of cases A, B and C,
are presented in Figure 23. We observe the occurrence of two distinct time scales. In a
fast time scale, the value of D changes rapidly, while N and A remain almost constant,
and the solutions approach the surface defined by dD{dt � 0 (green surface). After D
attaining this quasi steady-state value, solutions move on this surface and converge to
equilibrium on a slow time scale.
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Figure 23 – Phase portraits of system (4.1) in cases A (top left), B (top right) and C
(bottom). Equilibria P �

0 , P �
1 and P �

2 are represented respectively by black,
red and orange points. The green surface represents surface dD{dt � 0. The
purple surface in case B is the stable manifold of P �

1 .

The division of regions II and III of parameters space into regions A, B and
C is showed in Figure 24. The curves which separate these regions are defined by the
thresholds ν1 and ν2, which are values for which a transcritical bifurcation occurs between
P �

0 and some P �
i , i � 1 or 2 (remember that P �

0 has a zero eigenvalue when ν � νi), and
by a third threshold ν� which is a value for a saddle-node bifurcation between P �

1 and P �
2 .

Proofs and details are given in Appendix 4.A.

Figure 24 – On left, region III of parameter space divided in sub-regions A, B and C. On
right, region II of parameter space divided in regions A, B and C.
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In our analysis of the behavior of nontrivial equilibria, an important condition
arose which have implications on the toxicity of the treatment. We proved that the value
of N�

2 is strictly increasing with respect to ν if

rAγNαN   KAβ1γAαA, (4.18)

and is strictly decreasing otherwise. This condition is equivalent to

γN   γdN � KAβ1αAγA{rAαN ,

see Figure 24. This condition will have implications on the toxicity of metronomic chemo-
therapy, as will be commented in next Section. The behavior of nontrivial equilibria P �

i

when ν increases starting from zero, in the case where this condition is satisfied and in
the case it is not, is showed in Figure 25.
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Figure 25 – These graphs show the behavior of projection nontrivial equilibria P �
1 and P �

2
on the N � A plane, as ν increases starting from zero. On left, the case when
condition (4.18) is satisfied, and N�

2 increases as ν increases. On right, this
condition is not satisfied, and N�

2 decreases as ν increases. These two cases
correspond to diagrams (IIA T) and (IIB T) in Figure 26.

Our analysis also reveal that are nine qualitative distinct bifurcation diagrams
of equilibria as ν varies. Each of them correspond to a vertical strip on Figure 24 (four in
Region III, and five in Region II). These bifurcation diagrams are shown in Figure 26.

Finally, in Figure 27, we present how the introduction of a infusion rate ν ¡ 0
modifies the thresholds separating regions I, II and III. Compare Figures 21 and 27.

4.4 Discussion
Let us discuss the biological implications of the findings. Hypothetically, the

scenario is the following. Before tumor detection and treatment, subsystem NA is ‘running’.
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Figure 26 – Bifurcation diagrams showing behavior of coordinates N�
i of equilibrium P �

i ,
i � 0, 1, 2, 3, 4, 5, of system (4.1) when ν varies. Continuous plot corresponds
to stable equilibria, and dashed plot corresponds to unstable equilibria. All of
these diagrams correspond to take vertical sections γN � cte on the planes
γN � ν in Figure 24 (one section in each vertical strip showed in Figure 24).
The label in each panel here indicates the corresponding region where the
vertical section is made in Figure 24. For regions with sub-index ‘A’, the value
of N�

2 is decreasing with ν (condition (4.18) is satisfied). For regions with
sub-index ‘B’, the value of N�

2 is decreasing with ν (condition (4.18) is not
satisfied). For regions with label ‘T’, we have a transcritical bifurcation before
P �

0 becomes globally stable. For regions with label ‘SN’, we have a saddle
bifurcation before P �

0 becomes globally stable.

Due to some disruption in the mechanisms of intrinsic repair system, we are in regions
II or III, where the cancer equilibrium P2 is stable. In region III, a tumor grows for any
initial number of cancer cells. In region II a tumor will growth provided the initial number
of tumor cells is high enough; cancer onset in this case depend on factors as genetic
instability and exposure to carcinogenic factors. In both cases, the tumor grows and system
NA approaches equilibrium P2. When the tumor is detected at some time, metronomic
chemotherapy starts and equation (4.1c) is ‘turned on’.

Eficacy of metronomic chemotherapy and tumor relapse after treatment

In case III, where the stability of P0 was lost, analysis of P �
0 reveals that there

is a minimal infusion rate ν � ν2 which must be surpassed in order to the treatment be
effective, i.e., ν ¡ ν2 gives back the stability to the cancer free equilibrium (now a cure
equilibrium) P �

0 . In some parameters regions, those labeled with T in Figures 24 and 26,
an infusion rate above ν2 is able to make the tumor completely regrets, since P �

0 is globally
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Figure 27 – Behavior of thresholds separating regions I, II and III in vertical sections
β3�β1 as ν increases. The section with ν � 0 corresponds to the plane showed
in Figure 21 (left panel).

stable in these cases. On the other hand, in regions labeled with SN, if ν ¡ ν2 but ν   ν�

the cancer equilibrium P �
2 is stable together with P �

0 . Backward bifurcation diagrams occur
in these cases, on the contrary to case T, where we have forward bifurcations (compare
panels (IIIB T) and (IIIB SN) in Figure 26 for instance). Thus, in cases SN, metronomic
therapy alone is not able to lead to tumor extinction at this level of infusion rate. There
are two possibilites to achieve this goal. The first is to increasing the infusion rate until
ν ¡ ν�, which makes P �

0 globally stable. After a while, when system trajectory approaches
this equilibrium, it is possible to reduce the infusion rate again to the interval ν2   ν   ν�.
If this first approach of increasing ν is not possible due toxicity constraints, then the
combination of metronomic chemotherapy with a procedure that decreases the initial
tumor volume, like surgery or radiotherapy, may be effective, since this procedure will take
the system to the basin of attraction of P �

0 . It is important to note that in all these cases,
that tumor relapse will be observed if the treatment stops, since P �

0 � P0 is unstable when
ν � 0 and solutions will back to P2. However, if solutions get very near P �

0 during the
treatment phase, they will take a very long time to depart from P0 and tumor relapse may
be avoided for a large time.

A very similar behavior is observed in case II. The unique difference is that now
the treatment can be ‘turned off’ after the tumor is no more detectable. This is because
here the cancer free equilibrium P0 is locally stable and a tumor has growth due initial
conditions. However, even the tumor being undetectable, there is a risk that the number
of cancer cells was high enough to the system be settled at the basin of attraction of P2

when the treatment ceases. Thus, it is important that the treatment lasts the time enough
to eliminate almost all cancer cells.

Summarizing, we have two kinds of cancer patients, corresponding to cases
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II and III. In case II, the treatment can stops (ν � 0) after tumor regression, but there
is chance of relapse under much genomic instability or if treatment ceases before the
tumor achieves a minimal volume. In case III, the treatment must continues indefinitely,
since the disruption of the patient repair system is more severe than in case II. In order
to avoid drug resistance (not modeled here) and other harmful outcomes of continued
chemotherapy, it is necessary (but not necessarily possible) to change the intrinsic behavior
of the repair system, through, for instance, immunostimulation (also not modeled here).
However, tumor relapse may be delayed if the treatment is administered for a large time.
This comparison of two kinds of patients leads suggests that those patients which presented
tumor relapse after metronomic chemotherapy may be appointed to immunotherapies or
return to metronomic chemotherapy if no side-effects nor drug resistance were observed.

Toxicity

Now, we discuss the toxicity constraints of metronomic chemotherapy based on
the results obtained. As the value of N�

0 decreases with ν, the minimal efficient infusion
rate may not be possible to achieve in practice due to a high toxicity. However, condition
(4.18) sheds some light in this issue, as shown in Figure 28. If this condition is satisfied,
the tumor diminishes and the normal tissue recover as the treatment begins. It means
that, besides eliminating the tumor the treatment also restores the normal tissue, bringing
it to a healthier state than before. Thus, the thresholds ν2 or ν� can be achieved with
no side-effect. On the contrary, if condition 4.18 is not satisfied, then there is a decrease
in the number of both tumor and normal cells (compare panels (IIIB T) and (IIIA T) in
Figure 26 for instance). The treatment eliminates the tumor, but also brings together a
toxicity that harm the normal tissue more than when it was damaged only by the presence
of tumor cells. In this case, it is possible to maintain the tumor in a ‘dormant state’ (low,
stable A�

2), but with a poor state for the patient (low N�
2 ), with 0   ν   ν2. Thus, an

analysis of what is worst need to be made.

Observing condition (4.18), we can examine tumor types were this low-toxicity
may achieved more easily. We see that low values of γN and αN increase the chance of
(4.18) be satisfied. It means that a low sensitivity of normal cells leads to a low toxicity. In
the same manner, (4.18) is probably satisfied when the values γA and αA are high. Thus,
a high sensitivity of tumor cells also leads to low toxicity. These two conditions are quite
obvious, and point to the necessity of discovering high specific drugs. Let us examine
the others. We see that low rA contributes to (4.18) being satisfied. This indicates that
metronomic chemotherapy may have a lower toxicity when applied to slow-growing tumors.
The same happens for aggressive tumors (those which cause high damage to tissue), since
a high β1 increases the chance of (4.18) being satisfied. Finally, we note that metronomic
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Figure 28 – This scheme shows the volumes of normal (N - blue) and cancer (A - red)
cells for three different values of the infusion rate ν in cases when (4.18) is
satisfied and not satisfied. The value νc � maxtν2, ν�u is the threshold above
which the cure equilibrium P �

0 is globally stable (see Figure 24).

chemotherapy also may lead to low toxicity when applied to tumors with increased support
capacity (high KA).

4.5 Conclusion
In this paper we propose a minimal model for metronomic chemotherapy of an

avascular tumor. The model is an ODE system which considers the populations of tumor
cells and normal cells, together with the concentration of a chemotherapeutic agent. We
perform a detailed mathematical analysis of this system and use the theory of competitive
systems in R3 to establish global stability results.

Despite its simplicity, the model predicts interesting results. First, we prove that
for all parameters values, there is a minimal value of the drug infusion rate above which the
cancer cure equilibrium is globally stable. It can be achieved in two ways. In the first, as
the drug infusion rate increases, the tumor volume decreases continuously and disappears
when a threshold for the infusion rate is achieved (a transcritical bifurcation occurs in this
case). In the second, the tumor decreases very slowly as the drug infusion rate increases,
and does not disappears when the threshold of the previous case is surpassed. However,
the cure equilibrium becomes stable, and a bistability regime emerges. As the infusion rate
continues to increase, the tumor volume decreases slowly and sudden disappears when
a second threshold is reached (we have a saddle-node bifurcation now). The differences
among these two cases indicates the same infusion rate of metronomic chemotherapy may
lead to tumor regretion in some patients, while, in others, procedures such as surgery or
radiotherapy are needed before treatment, in order to decrease the initial tumor size.

Interesting, there are also two regimes with respect to the response of host tissue
when the drug infusion rate changes. In the first, the number of normal cells decreases
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as the drug infusion rate increases. On the other hand, in the other regime, the number
of normal cells increases as the drug infusion rate increases. Thus, this second regimen
clearly presents a better prognosis from the point of view of the health of the patient.
We investigate the biological conditions underlying the existence of these two regimens.
We concluded that the second regimen is more likely to happen in tumors with one or
more of the following characteristics: slow-growing tumors, aggressive tumors (which cause
high damage to normal cells), tumors with high carrying capacity, or tumors which are
much more sensible to the drug than the normal cells. These conclusions can provide some
insights to clinical oncologists by telling them which tumor types would respond better to
metronomic chemotherapy, and which ones would require a more careful treatment.

In a recent work, Ledzewicz et al. proposed a minimal model for metronomic
therapy considering interactions in the tumor microenvironment (106). They combined
the model of angiogenic signalling of Hahnfeldt et al. with a model by Stepanova which
consider the tumor inhibiting effects of tumor-immune system interactions (104, 133).
However, their model considers drug kinetics only in the steady state, and does not take in
account the drug deactivation or absorption by cells, nor its effect on normal cells, as was
considered in our model. Finally, nor our model nor the model of Ledzwicz et al. accounts
for the phenomena of immuno-surveilance regulated by TREG cells (91). Therefore, it
would be very important to consider the dynamics of these cells explicitly and a possible
extension of our work would be the adequate combination of our model with the one of
Ledzwicz et al, in addition with the modeling of TREG cells dynamics.

4.A Proofs and mathematical details
In this Appendix, we present the proofs of results from Section 4.3.

4.A.1 Stability of trivial equilibrium

Solving equation (4.6) for N�
0 and substituting the result in (4.7), we obtain

λ3 � U � V � U2 � V 2

U � V
,

where

U � lA � αAγAµN
αNγN

�
�

αAγA
2αNγNτ

� β3

2γNµN



W, V �

�
αAγA

2αNγNτ
� β3

2γNµN


?
Y ,

W � prNγN � αNγNν � µNτq , and Y � W 2 � 4rNγNµNτ.

As
?
Y �W ¡ 0, the denominator U � V is positive. Therefore, the sign of λ3 is the same

of the numerator, which can be written as a second degree polynomial in ν,

U2 � V 2 � gpνq � agν
2 � bgν � cg, (4.19)
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with coefficients

ag � �αAαNβ3γA
µNτ

,

bg �
�
β3 � βth3

� pγN � γsNq
p2rNαAγA � τ lAαNq

γNµNτ
� pγN � γmN q

lAprNαAγA � τ lAαNq
rNγNτ

,

cg �
�
βth3 � β3

� rN
µNαNγNτ

prNαAγAγN � τplAαNγN � αAγAµN � αNβ3τqq ,
(4.20)

where
γmN � αAγAµN

lAαN
and γsN � γmN

1� 2rNαAγA
τ lAαN

  γmN . (4.21)

This proofs equation (4.8), with C0 � 1{pU � V q.

Regions of interest by varying parameters

In order to study the signs of gpνq, we divide regions II and III in different
sub-regions on the γN � β3 plane. These regions will also be useful for further analysis of
the nontrivial equilibria. First, note that condition β1 ¡ βth1,∆ for region II can be rewritten
(see Figure 21, left panel) as

βth3   β3   βth3,∆ and β1 ¡ βth1 , (4.22)

where
βth3,∆ � βth3 � KA

4β1rArN

�
µNrA
KA

� β1lA


2

. (4.23)

Thus, the regions of interest for the mathematical analysis of system (4.1) are

III � tβ3   βth3 u and II � tβth3   β3   βth3,∆, β1 ¡ βth1 u. (4.24)

Now, we note that the discriminant ∆g � b2
g � 4agcg of gpνq can be written in two ways:

∆g � 4rNαAαNγAγN
�
βth3,# � β3

�� 1
τκ

� β3

γNµN


2

, (4.25)

and

∆g � plAαNq2
�
γN � γ%

N

� �
γN � γ#

N

	� 1
τκ

� β3

γNµN


2

, (4.26)

where,

βth3,# � βth3 � pκlA � µNq2
4κrN

¥ βth3 , κ � αNγN
αAγA

γ#
N � γmN

βth3

�
2β3 � βth3 �

b
β3pβ3 � βth3 q



,

(4.27)

(4.28)

and
γ%
N � γmN

βth3

�
2β3 � βth3 �

b
β3pβ3 � βth3 q



. (4.29)
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Let us obtain the intersection of curves β3 � βth3,∆ and β3 � βth3,# in the γN � β3 plane.
Solving equation βth3,∆ � βth3,# for γN , we have two solutions,

γdN � KAβ1αAγA
rAαN

, and γeN � rAµ
2
NαAγA

KAl2Aβ1αN
. (4.30)

On the other hand, the intersection βth3,# � βth3 occurs only at γN � γmN . As β1 ¡ βth1 in
region II, we have γeN   γmN   γdN . Further, as βth3   β3   βth3,∆, from (4.25-4.29), it is
possible to show that

γeN   γ%
N   γmN   γ#

N   γdN (4.31)

for parameters in Region II. Thus, we define the following sub-regions of regions II and
III, in the γN � β3 plane:

IIA �
 
β1 ¡ βth1 , β

th
3   β3   βth3,λ, γN ¡ γdN

(
,

IIB �
!
β1 ¡ βth1 , β

th
3   β3   βth3,λ, γ

#
N   γN   γdN

)
,

IIC �
 
β1 ¡ βth1 , β

th
3   β3   βth3,λ, γN   γ%

N

(
,

IID �
!
β1 ¡ βth1 , β

th
3   β3   βth3,λ, γ

%
N   γN   γ#

N

)
,

IIIA �
 
β3   βth3 , γN ¡ γdN

(
,

IIIB �
 
β3   βth3 , γN   γdN

(
.

(4.32)

These regions are shown in Figure 29. We now analyze the stability of P �
0 in each of these

regions.

Figure 29 – The plane γN � β3 is divided in regions, and in each of them the feasibility
interval I for nontrivial equilibrium is given (see Appendix 4.A.2 below).

Region III: In both sub-regions IIIA and IIIB we have cg ¡ 0. As ag   0 it
follows that ν1   0   ν2. Thus, gpνq ¡ 0 if ν1   ν   ν2, and gpνq   0 otherwise. Thus, P �

0

is unstable if 0   ν   ν2, and is LAS if ν ¡ ν2.
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Region II: In this case, we have ag   0 and cg   0. Let us analyze bg and ∆g in
each sub-region.

In sub-regions IIA and IIB, γN ¡ γ#
N . Therefore, ∆g ¡ 0. Since γ#

N ¡ γmN ¡ γsN ,
we have bg ¡ 0. Thus, ν1 and ν2 are real and positive. Therefore, gpνq ¡ 0 for ν1   ν   ν2,
and gpνq   0 otherwise. Thus, P �

0 is LAS when 0   ν   ν1 or ν ¡ ν2.

In sub-region IID, γ%
N   γN   γ#

N . Thus, ∆g   0 and gpνq has no real root.
Since ag   0, gpνq   0 for all ν ¡ 0. Therefore, P �

0 is LAS for all ν ¡ 0.

Finally, in sub-region IIC , we have γN   γ%
N   γmN . We claim that bg   0. In

fact, it is immediate from (4.20) if γN   γsN . When γsN   γN   γmN , we have that bg   0 if,
and only if,

β3   βth3,b � βth3 � pγmN � γNqlAµN prNαAγA � τ lAαNq
pγN � γsNq rN p2rNαAγA � τ lAαNq .

But, in this case, we have βth3,b ¡ βth3,#, since

βth3,b � βth3,# � pγmN � γNq pγmN � γNq l2AαNp2rNαAγAγN � τ lAαNγN � αAγAµNτq
pγN � γsNq 4rNαAγAγNp2rNαAγA � τ lAαNq ¡ 0.

As γN   γ%
N , we have β3   βth3,#. Therefore, condition β3   βth3,b is satisfied and bg   0.

Thus, ν1   ν2   0 and gpνq   0 for all ν ¡ 0. Therefore P �
0 is LAS for all ν ¡ 0.

The union IIC Y IID is equivalent to γN   γ#
N , while the union IIA Y IIB

corresponds to γN ¡ γ#
N . This proofs statements of Section 4.3.2 with respect stability of

P �
0 .

4.A.2 Nontrivial equilibria

Setting the derivatives equal to zero in (4.1), getting D from dA{dt � 0 with
A � 0, and substituting the result in dN{dt � 0 and dD{dt � 0, we obtain$'''''''&

'''''''%

rN � µNN � β1NA � αNγN
αAγA

N

�
lA � rA

KA

A� β3N



,

D � 1
αAγA

�
lA � rA

KA

A� β3N



,�

lA � rA
KA

A� β3N



pγAA� γNN � τq � ναAγA.

(4.33)

(4.34)

(4.35)

Solving (4.33) for A in terms of N , and substituting the result in (4.34) and (4.35), we
obtain the expressions of A�

i and D�
i in (4.10), and equation (4.11) for N�

i , with ppNq,
qpNq, rpNq and hpNq as given in (4.12-4.16).

Now, we show that N1 and N2, which are the N -coordinates of P1 and P2 and
the roots of qpNq, satisfy 0   N2   N1 in regions II and III. Indeed, the discriminant of
qpNq,

∆q � 4rArNβ1

KA

�
βth3,∆ � β3

�
,
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is positive in regions II and III. Thus N1 and N2 are real. By Descartes’ Rule of Signs
both are positive. Finally, as A1   A2 and expression Ni is decreasing with Ai, we have
0   N2   N1.

The roots of the second degree polynomials ppNq and rpNq will be denoted,
respectively, by M1 and M2, and O1 and O2. Whenever a pair of these roots is real, we
label them in the order x2   x1, for x �M,O.

As (4.11) is a fourth degree polynomial equation in N , it follows that there
are at most four nontrivial equilibrium points P �

i , i � 1, 2, 3, 4. The conditions to have
a non-negative equilibrium P �

i are the following. In order to have A�
i ¡ 0 and D�

i ¡ 0,
from (4.10) we conclude that d, ppN�

i q and qpN�
i q must have the same sign. Further, as

the right side of (4.11) is positive, rpN�
i q must have the same sign of qpN�

i q. Finally, since
the left side of (4.34) will be positive at a feasible equilibrium, we conclude that both sides
of (4.33) must be positive. This implies that the following two conditions must hold:

N�
i  

lA
β3

and N�
i  

rN
µN

.

Thus, we conclude that an equilibrium P �
i is non-negative if, and only if, N � N�

i satisfy

0   N   min
"
rN
µN

,
lA
β3

*
, and ppNq, qpNq, rpNq have the same sign of d. (4.36)

We define I as the feasibility interval, i.e., the set of values of N such that (4.36) holds.
The following Lemma establishes expressions for the feasibility interval in each region of
parameters space. As the proof of Lemma 4.1 is a quite tedious, we postpone it to the next
Appendix. The results of Lemma 4.1 are summarized in Figure 29, where I is indicated in
each sub-region of the parameters space.

Lema 4.1. In each sub-region of parameters space, the feasibility interval I is given by:

1. In region IIIA, I � rM2, N2s.

2. In region IIIB, I � rN2,M2s.

3. In region IIA, I � rM2, N2s Y rN1,M1s.

4. In region IIB, I � rN2,M2s Y rM1, N1s.

5. In region IICYIID, I � rN2, N1s.

Now, we have all elements to analyze the existence of roots N�
i in interval I at

each region of the parameter space. Note that I does not depends on ν.

In order to analyze also the local stability of nontrivial equilibria, let us comment
which bifurcations can occur with them as ν varies. Since all other parameters are kept
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constant, only one-parameter bifurcations can occur (134). If we assume that a Hopf
bifurcation cannot occur, then the unique possibility is a fold bifurcation. A necessary
condition for this bifurcation is a zero eigenvalue of the Jacobian matrix of system (4.1)
evaluated at P �

i (135, 134). This matrix can be written as

JpP �
i q �

�
����

� rN
N�
i

�β1N
�
i �αNγNN�

i

�β3A
�
i � rA

KA

A�
i �αAγAA�

i

�γND�
i �γAD�

i �τ � γNN
�
i � γAA

�
i

�
���� . (4.37)

Substituting expressions for A�
i and D�

i from (4.10), the determinant of JpP �
i q can be

written as

detpJpP �
i qq �

ppN�
i q

pdN�
i q2

�
q1pN�

i qrpN�
i q � qpN�

i qr1pN�
i q � 2qpN

�
i qrpN�

i q
N�
i



. (4.38)

We see that a zero eigenvalue can occur only if

ppN�
i q � 0, (4.39)

or if
q1pN�

i qrpN�
i q � qpN�

i qr1pN�
i q � 2qpN

�
i qrpN�

i q
N�
i

. (4.40)

The first possibility, (4.39), implies in A�
i � 0 and thus P �

i becomes P �
i � pN�

i , 0, D�
i q, the

same form of the trivial equilibrium P �
0 . Further, (4.39) also implies that N�

i is equal to
some of the roots of ppNq, M1 or M2. By looking to Lemma 4.1, we see that these roots in
general are extrema of the feasibility interval I. For these reasons, we can expect that the
zero eigenvalue bifurcation which P �

i undergoes when (4.39) is satisfied, is a transcritical
bifurcation between P �

i , i � 1 or 2, and P �
0 .

On the other hand, let us examine the second possibility of a zero eigenvalue,
equation (4.40). Two roots N�

i and N�
j will collide if the graphs of qpNqrpNq and hpNq

intersect tangentially. It happens for some ν � ν� if N � N�
i and ν � ν� are solutions of

the system consisting of equation (4.11) together with

q1pN�
i qrpN�

i q � qpN�
i qr1pN�

i q � 2ναAγAd2N�
i . (4.41)

But (4.11) and (4.41) imply in (4.40). Thus, we expect that (4.40) corresponds to a
saddle-node bifurcation between two nontrivial equilibria P �

i and P �
j .

Finally, we note the following. When ν � 0, the entries a31 and a32 of the
Jacobian matrix of system (4.1) are zero. Thus, for each i � 1, 2, two eigenvalues of JpP �

i q,
say, λ1 and λ2, are the eigenvalues of the Jacobian matrix of subsystem NA evaluated in
Pi, while the third is λ3 � �τ � γNN

�i � γAA
�
i   0. Moreover, for small enough ν ¡ 0,

the signs of λ1 and λ2 will be preserved and, as ν increases, they will change only when
one of equations (4.39) or (4.40) is satisfied.
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With these remarks, let us present the behavior as ν varies for each sub-region
in (4.32). It will be needed only to assume that P �

2 does not undergoes a Hopf bifurcation.
We illustrate the general behavior and its analysis in details for region IIIA. At other
regions, the analysis is analogous.

Region IIIA. When ν � 0, the unique root N�
i in I is N�

2 � N2. As stated before,
as qpN2q � 0, D�

2 � 0 and P �
2 � pN�

2 , A
�
2 , 0q coincides with equilibrium P2 � pN2, A2q of

subsystem NA. As ν increases, hpNq increases and then N�
2 decreases inside I. Thus, P �

2

is a perturbation of P2 due the introduction of ν ¡ 0. We have two different cases as ν
increases. An illustration of these cases can be seen in Figure 30.

Figure 30 – Graphs of the left side qpNqrpNq (blue) and the right side hpNq (yellow) of
equation (4.11), in function of N (horizontal axis) when parameters values
correspond to region IIIA, with the feasibility interval given by I � rM2, N2s.
The black dots at the intersection of these graphs correspond to feasible roots
N�
i for equation (4.11). On the left panel we have case T, with a value of ν

such that 0   ν   ν2, before the transcritical bifurcation which occurs when
N�

2 exits the interval at N �M2 and ν � ν2. On the right panel we have case
SN, with a value of ν such that ν2   ν   ν�, after the transcritical bifurcation
which occurs when N�

4   N�
2 enters the interval at N �M2 and ν � ν2, and

before the collision between N�
4 and N�

2 , which occurs when ν � ν�.

Case T: If qpNqrpNq and hpNq do not intersect tangentially in any N P
I as ν increases, then, N�

2 decreases in I until reach N�
2 � M2. See Figure 30, left

panel. As commented before, since M2 is a root of ppNq, we have A�
2 � 0 from (4.10).

Thus, equilibrium P �
2 becomes P �

2 � pN�
2 , 0, D�

2 q and collides with the trivial equilibrium
P �

0 � pN�
0 , 0, D�

0 q (by the uniqueness of P �
0 ). We claim that the value of ν such that

N�
2 �M2 � N�

0 , is ν � ν2. In fact, for ν � ν2 the third eigenvalue λ3 � 0 of JpP �
0 q is zero.

Setting λ3 � 0 in (4.7) leads to

plA � β3N
�
0 qpγNN�

0 � τq � αAγAν. (4.42)

As N�
0 is a root of (4.6), we also have

pγNN�
0 � τq � αNγNνN

�
0

rN � µNN�
0
. (4.43)
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Substituting (4.43) in (4.42), we obtain

ppN�
0 q � κN�

0 plA � β3N
�
0 q � prN � µNN

�
0 q � 0.

Thus, N�
0 coincides with one of the roots of ppNq, M1 or M2. As N�

0   rN{µN  M1 (see
proof of Lemma 4.1), it follows that N�

0 �M2 � N�
2 when ν � ν2, which proofs the claim.

For ν ¡ ν2, N�
2  M2 and there is no root N�

i inside the feasibility interval I. Thus there
is no feasible equilibrium P �

i for ν ¡ ν2. Of course, we see that qpNqrpNq and hpNq will
intersect tangentially for some ν� ¡ ν2, but outside I. Furthermore, if no Hopf bifurcation
occurs with P �

2 , then by the previous remarks no other bifurcation will occur with P �
2

until ν increases between 0 and ν2. Thus, the eigenvalues of P �
2 are all negative while

0   ν   ν2, and it is locally stable in this case.

Summarizing, we have the following. For 0 ¤ ν   ν2, we have M2   N�
2 ¤ N2,

P �
2 is locally stable, and P �

0 is unstable. For ν � ν2, we have N�
2 �M2 � N�

0 and P �
2 � P �

0 ,
i.e., a transcritical bifurcation occurs between P �

0 and P �
2 . For ν ¡ ν2 we have N2 R I and

P �
0 is stable. We label this case with ‘T’ because only this transcritical bifurcation occurs

in this case. The bifurcation diagram of this case is shown in Figure 26, panel (IIIB T).

Case SN: Now, suppose that qpNqrpNq and hpNq intersect tangentially at some
N�
i in I, for some ν � ν�. Then, for ν   ν� sufficiently near from ν�, there are two roots

of (4.11) in I, which we denote by N�
4 and N�

2 , with N�
4   N�

2 . See Figure 30, right panel.
The root N�

2 is that originated from N2 when ν � 0, as in the case T. The other root,
N�

4 , is originated from O2 when ν � 0. As ν increases, N�
4 increases outside I, while N�

2

decreases inside I and is the unique root in I while ν   ν2. For the same reasons above,
P �

2 is locally stable if ν   ν2. When ν � ν2, N�
4 enters I at N�

4 � M2 and then A�
4 � 0.

Clearly, we have a transcritical bifurcation between P �
4 and P �

0 . For ν2   ν   ν�, P �
0 and

P �
2 are locally stable, while P �

4 is unstable. Indeed, since there are no other equilibria,
P �

4 must have a two-dimensional stable manifold which separates the basins of attraction
of P �

2 and P �
0 . When ν � ν�, a saddle-node bifurcation occurs between P �

2 and P �
4 . For

ν ¡ ν� ¡ ν2, P �
0 becomes the unique positive equilibrium and it is globally stable. We label

this case with ‘SN’ because the last bifurcation which occurs with P �
2 is a saddle-node.

The bifurcation diagram of this case is shown in Figure 26, panel (IIIA SN). For sake of
simplifying statements in the main text and unifying results, we re-labeled the point P �

4

as P �
1 in this case.

Before passing to other regions, let us examine which condition distinguishes
cases T and SN. A tangent intersection between qpNqrpNq and hpNq occurs if N � N�

and ν � ν� are solutions of system formed by (4.11) and (4.41). Isolating ν in (4.41) and
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substituting in (4.11), we obtain an equivalent system$''&
''%
ν � q1pNqrpNq � qpNqr1pNq

2αAγAd2N
,

qpNqrpNq � N

2 pq1pNqrpNq � qpNqr1pNqq .

(4.44)

(4.45)

Thus, N� is a solution of (4.45), which does not depends on ν, and ν� is given by (4.44)
with N � N�. We see that what distinguishes cases T and SN is whether N� lies in interval
I or not. As seen in Lemma 4.1, the possibility of N� lying in I will be equivalent to
whether of conditions N�  Mi or N� ¡Mi, i � 1 or 2, will be satisfied. Thus, the curves
in parameter space which separate cases T and SN are equation (4.45) with N �Mi, i � 1
or 2. Substituting the expression for rpNq in (4.45), remembering that ppMiq � 0 and
simplifying the result, we obtain the equation

Hip~λq :� q1pMiqdMipγNMi � τq � qpMiqpγAp1pMiq � dτq � 0. (4.46)

where ~λ � prN , µN , rA, lA, KA, β1, β3, αN , αA, γN , γA, τq. Thus, for Hip~λq ¡ 0 we have one
of the cases SN or T, and for Hip~λq   0 we have the another case. From the expressions for
I in Lemma 4.1, we note that only the curve H2 � 0 will be of interest in region III, while
both curves H1 � 0 and H2 � 0 will be of interest in region II. An analytical investigation
of equation (4.46), with the study of which regions are divided in sub-regions Hi   0 and
Hi ¡ 0 is out of the scope of this paper. However, using realistic parameters values, we
showed numerically that these curves can intersect all sub-regions of the parameter space,
except region IICYIID. This result can be seen in Figure 31.

We now pass to analyzing the behavior of the nontrivial equilibria P �
i in the

other sub-regions. The same mechanism of birth and death of feasible roots occurs in these
regions. Thus, for sake of brevity, we only state the results. The bifurcation diagram of
each case is showed in Figure 26.

Region IIIB, I � rN2,M2s. If ν � 0, we have a single root N�
2 � N2, and

P �
2 � P2. The results are the same of region IIIA, with the only difference that N�

2

increases as ν increases. Case T: If qpNqrpNq and hpNq do not intersect tangentially in I,
then N�

2 increases until reach M2, when ν � ν2. A transcritical bifurcation occurs at this
point and P �

2 � P �
0 . For ν ¡ ν2, N�

2 leaves I and P �
2 is not feasible anymore. Moreover, if

Hopf bifurcations do not occur then P �
2 is globally stable if ν   ν2, and P �

0 is globally stable
when ν ¡ ν2. Case SN: If, for some ν � ν� ¡ 0, qpNqrpNq and hpNq intersect tangentially
in I, then we have the following. For ν   ν2 there is a single feasible equilibrium, P �

2 . For
ν � ν2, a root N�

4 �M2 enters the interval I. As ν increases, with ν2   ν   ν�, then N�
4

decreases, with the collision between N�
2 and N�

4 occurring at some ν � ν�. There is a
transcritical bifurcation at ν � ν2 and a saddle-node bifurcation at ν � ν�. If no Hopf
bifurcation occurs, then P �

2 is stable and P �
4 is unstable when they are positive.
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Figure 31 – The curves of H1 � 0 (red) and H2 � 0 (green) on the plane γN � β3 separate
each region in two sub-regions, labeled T and SN. Both panels in Figure 24
correspond to horizontal sections in this plane.

In regions IIA and IIB, remember that 0   ν1   ν2 and that P �
0 undergoes

a transcritical bifurcation when ν � νi, i � 1, 2, since λ3 is zero for these values of ν.
Also, as seen above, N�

0 equals some of the roots of ppNq when ν � νi, i � 1, 2. As N�
0 is

strictly decreasing with ν and as M2 ¡M1 ¡ 0 in this regions, we conclude that the first
transcritical bifurcation as ν increases occurs at ν � ν1, with N�

0 �M1, and the second
occurs at ν � ν2 when N�

0 �M2. Now, let us consider each region separately.

Region IIA, I � rM2, N2s Y rN1,M1s. From the proof of Lemma 4.3 below, if
ar   0 we have that 0   O2   M2 and M1   O1. Thus, when ν � 0 we have four roots
for (4.11), N�

1 � N1, N�
2 � N2, N�

3 � O1 and N�
4 � O2, but only N�

1 and N�
2 are feasible.

First, we examine the right part of the interval I. As ν increases, N�
1 increases inside I

while N�
3 decreases outside I. They will collide at some ν � ν�, when qpNqrpNq and hpNq

intersect tangentially. If this collision occurs outside I, we are in a typical T case, with a
transcritical bifurcation between P �

1 and P �
0 occurring when ν � ν1   ν� and N�

1 �M1. If
the collision occurs inside I, we are in a typical SN case, when a transcritical bifurcation
occurs between P �

3 and P �
0 , when N�

3 enters the interval I at N �M1. A similar behavior
is observed at the left part of the interval I, where N�

2 decreases inside I and N�
4 increases

outside I as ν increases, with ν   ν2. In case T, N�
2 exits the interval I at N �M2 when

ν � ν2. In case SN, N�
4 enters the interval I at N �M4 when ν � ν2, and later collide with

N�
2 when ν � ν�. The occurrence of cases T or SN in each part of interval I is independent

in each part, so we can have a total of four different cases: T-T, T-SN, SN-T, and SN-SN.
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The behavior when ar ¡ 0 is very similar. The unique difference now is that
O1   0 (by the proof of Lemma 4.1 below). Thus, the root N�

3 starts at N � O1 when
ν � 0 and decreases as ν increases. A SN case cannot occur in the right part of the
interval, rN1,M1s, because it would imply in the existence of two roots of (4.11) to the
right of N�

1 , for ν slight greater than ν1 and lower than ν2. As N�
2 and N4� are real roots

for these values of ν (pertubations of M2 and O2), (4.11) would have at least five roots, a
contradiction. So, we have only two possible cases: T-T and SN-T.

Region IIB, I � rN2,M2sYrM1, N1s. This case is analogous to case IIA, ar   0.
The unique difference is that N�

2 and N�
3 increase while N�

1 and N�
4 decrease as ν increases.

Again, there are four possible cases: T-T, T-SN, SN-T, and SN-SN.

Finally, in the last region, IIC Y IID, we have I � rN2, N1s and qpNqrpNq ¥ 0
in I. When ν � 0, we have N�

2 � N2 and N�
1 � N1. As ν increases, N�

2 increases while N�
1

decreases until they collide for ν � ν�. There is no transcritical bifurcation in this case,
P �

0 is always stable. If ν   ν�, P �
2 is also locally stable. For ν ¡ ν�, P �

0 is globally stable.

4.A.3 Proof of Lemma 4.1

We now present the proof of Lemma 4.1. The following Lemmas will be useful.

Lema 4.2. Let M2 and M1 be the roots of ppNq. Thus, M2 and M1 are complex in region
IID, and are real and positive in all other regions of the parameters space.

Proof. The discriminant ∆p of ppNq is given by

∆p � 4κrN
�
βth3,# � β3

� � �
lAαN
αAγA


2 �
γN � γ%

N

� �
γN � γ#

N

	
. (4.47)

The Lemma follows from (4.26), (4.32) and from the Descartes’ Rule of Signs applied to
ppNq.

Lema 4.3. Denote the roots of rpNq by O1 and O2. Then

1. In regions IIIB, IIB and IIC, rpNq   0, for all N P p0,M2s Y rM1,8q.

2. In region IID, rpNq   0 for all N ¥ 0.

3. In region IIIA and IIA, rpNq ¡ 0 for all N P rM2,M1s.

Proof. 1. In regions IIIB, IIB and IIC , we have d   0 and ppNq   0 in p�8,M2q Y
pM1,8q, with 0   M2   M1. Thus, from (4.14), rpNq   γAppNq ¤ 0 for all
N P p0,M2s Y rM1,8q.

2. In region IID, we have ppNq   0 for all N and d   0. Thus, rpNq ¤ γAppNq   0 for
all N ¥ 0.
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3. In regions IIIA and IIA we have d ¡ 0 and then, rpNq ¡ γAppNq. Thus, the leading
coefficient ar of rpNq � arN

2� brN � c3 may be positive or negative. If ar   0, then

rp0q � γApp0q   0, rpMiq � dMipγNMi � τq ¡ 0, i � 1, 2, rp8q � �8.

Thus, the roots of rpNq satisfy O2 P r0,M2s, O1 P rM1,8q, and rpNq ¡ 0 for
all N P rM2,M1s. On the other hand, if ar ¡ 0, then rp�8q � 8. Therefore,
O2 P r0,M2s, O1 P p�8, 0s, and rpNq ¡ 0 for all N ¡ O2. Thus rpNq ¡ 0 for all
N P rM2,M1s.

Proof of Lemma 4.1. First, we define the following expressions:

fipNq � spNq � yilpNq, i � 1, 2

spNq � NplA � β3Nq,
lpNq � rN � µNN,

y1 � 1
κ
¡ 0,

y2 � rA
KAβ1

¡ 0.

(4.48)

(4.49)

(4.50)

(4.51)

(4.52)

Thus, ppNq and qpNq are written in terms of f1pNq and f2pNq as

ppNq � κf1pNq and qpNq � �β1f2pNq. (4.53)

The roots M1 and M2 of ppNq are the roots of f1pNq, and the roots N1 and N2 of qpNq
are the roots of f2pNq. Note that

fip0q � �rNyi, i � 1, 2

fiprN{µNq � prN{µNq2pβth3 � β3q, i � 1, 2

fiplA{β3q � yirN
β3

pβth3 � β3q, i � 1, 2

fip�8q � �8, i � 1, 2

f1pNq � f2pNq � µNpy2 � y1qprN{µN �Nq,

d � β1

�
y2

y1
� 1



� αNrA
αAγAKA

�
γN � γDN

�
,

fipNq � �β3N
2 � plA� yiµNqN � yirN .

(4.54)

(4.55)

(4.56)

(4.57)

(4.58)

(4.59)

(4.60)

We start with region III. As rN{µN   lA{β3, I is contained in r0, rN{µN s. Since fip0q  
0   fiprN{µNq and fiplA{β3q ¡ 0 ¡ fip8q, the roots x1 and x2 of fipNq, with x �M for
i � 1, and x � N for i � 2, satisfy

0   x2   rN{µN   lA{β3   x1. (4.61)
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Thus, we have 0   M2, N2   rN{µN . We now consider sub-regions IIIA and IIIB

separately.

In sub-region IIIA we have d ¡ 0. Thus, from (4.59), y2 ¡ y1. Also, from (4.58),
we have f1pNq ¡ f2pNq for 0   N   rN{µN . Therefore, as 0   N2   rN{µN , from (4.54)
we have

f1p0q   0 � f2pN2q   f1pN2q.
Thus, the root M2 of f1pNq lies in the interval p0, N2q. As d ¡ 0, we conclude that I must
be such that ppNq, qpNq and rpNq are positive. From Lemma 4.3, rpNq ¡ 0 in rM2,M1s.
From (4.53), conditions ppNq, qpNq ¡ 0 correspond to f2pNq   0   f1pNq. From (4.60),
we see that both fipNq have negative leading coefficient. Since f2pNq   f1pNq in the
interval r0, rN{µN s, we conclude that I � rM2, N2s in this case.

In sub-region IIIB, we have d   0 and y2   y1. From (4.58), it follows that
f2pNq ¡ f1pNq for 0   N   rN{µN . As 0  M2   rN{µN , we have

f2p0q   0 � f1pM2q   f2pM2q.

In this case, the root N2 of f2pNq lies in the interval r0,M2s. By an analogous reasoning
with the previous case, as d   0, I is such that f1pNq   0   f2pNq, what lead us to
I � rN2,M2s.

We now pass to region II. From Lemma 4.3, 0   N2   N1. AsNi � rN{pµN�Aiq
and Ai ¡ 0, we have Ni   rN{µN , i � 1, 2. Further, lA{β3   rN{µN , since β3 ¡ βth3 . As
spNq ¤ 0 for N ¥ lA{β3, and lpNq ¡ 0 for N   rN{µN , it follows that

f2pNq � spNq � y2lpNq   0, for lA{β3 ¤ N   rN{µN .

Thus, the roots N2   N1 of f2pNq occur before lA{β3. Therefore, we have

0   N2   N1   lA{β3   rN{µN . (4.62)

It remains to analyse positions of roots Mi of f1pNq and ppNq.
In sub-region IIA, we have d ¡ 0 and y2 ¡ y1. Thus, f1pNq ¡ f2pNq if

N P p0, rN{µNq. Therefore,

f1p0q   0 � f2pN2q   f1pN2q and f1pN1q ¡ f2pN1q � 0 ¡ f1plA{β3q.

Thus, the roots Mi of f1pNq satisfy

0  M2   N2   N1  M1   lA{β3   rN{µN . (4.63)

As d ¡ 0, I must be such that f1pNq ¡ 0 ¡ f2pNq in I. Finally, from Lemma 4.3, we
conclude that I � rM2, N2s Y rN1,M1s.
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In regions IIB and IIC , we have d   0, y1 ¡ y2, and 0   M2   M1. From
(4.58), we have

f1pNq   f2pNq for N P p0, rN{µNq, and f1pNq ¡ f2pNq for N ¡ rN{µN . (4.64)

As f2pNq ¤ 0 when N P r0, N2q Y pN1, rN{µN s, we see from (4.64) that there are two
possibilities to where the roots of f1pNq occur: either they occur in pN2, N1q, or in
prN{µN ,8q. Now note the following. As f1pNq is a second degree polynomial in N with
negative leading coefficient, its derivative f 11pNq changes its sign only once, from positive
to negative. We calculate the derivative in N � lA{β3 and analyze each case separately.
We have

f 11plA{β3q � lA
β3
pγmN � γNq.

In sub-region IIB, we have γN ¡ γmN , which implies that f 11plA{β3q is negative. So
f 11pNq will not change its sign as N increases. As f1plA{β3q   0, it means that f1pNq   0 for
N ¡ lA{β3. Therefore, the roots M2  M1 must occur before lA{β3. Since lA{β3   rN{µN ,
we have the first option above, i.e., the roots occur in pN2, N1q. Therefore,

0   N2  M2  M1   N1   lA{β3   rN{µN . (4.65)

As d   0 the feasibility interval is such that f1pNq   0   f2pNq, what lead us to
I � rN2,M2s Y rM1, N1s.

In sub-region IIB, γN   γmN . Thus, f 11plA{β3q ¡ 0. Now, as f1plA{β3q   0, we
have f1pNq   0 for N   lA{β3. Therefore, the roots M2   M1 must occur after lA{β3,
what lead us to the second option, since N2   lA{β3. Thus, M2  M1 occur in prN{µN ,8q.
Therefore,

0   N2   N1   lA{β3   rN{µN  M2  M1. (4.66)

Again, the feasibility interval is such that f1pNq   0   f2pNq, but, in this case, as it must
be contained in r0, lA{β3s, we have I � rN2, N1s.

In sub-region IID, we have ∆p   0. Thus f1pNq and ppNq have complex roots
M1 and M2, and are always negative. As d   0, I must be such that f1pNq   0   f2pNq
for N P p0, rN{µNq. Therefore I � rN2, N1s.
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5 An alternative approach to modeling and
optimizing cancer chemotherapy

Abstract. Despite the widely use of chemotherapeutic treatments against cancer in last
fifty years, questions concerning which are the best scheduling strategies remains unsolved.
In this paper, we investigate the implications of using a simple approach to modeling and
optimizing chemotherapy. By using parametrized forms for the function which describes
treatment, we are able to reproduce a variety of realistic dosage regimes, and the optimiza-
tion problem is restricted to a finite dimensional space. These features are illustrated by
applying this approach to a simple model for tumor growth. Based on numerical simula-
tions, we discuss how different treatment indicators may be calculated in order to compose
an objective functional encompassing aspects such as toxicity, drug constraints, recovery
time and risk of tumor relapse. Two toxicity measures are considered, one which considers
the total number of host cells killed by treatment, and other which tracks the health level
of the patient during the treatment. Numerical experiments are performed varying the
interval between doses, doses intensities and the number of doses in each treatment. The
results indicate that maximum tolerated dose regimes minimize recovery time, risk of
tumor relapse and the total number of cells killed by treatment, but has harmful effects
on the health of the patient during the treatment. On the contrary, metronomic schedules
present best performance only with respect to the health level during the treatment. This
paper illustrates the potential biological and mathematical advantages of this approach if
applied to more complex models for specific tumor types.

Keywords: Maximum tolerated dose; Metronomic chemotherapy; Optimal treatments;
Differential equations.

5.1 Introduction
Despite being the major treatment against cancer in the last fifty years, the use

of chemotherapy did not achieved a satisfactory stage yet (100, 86, 101). It remains the
quests for the best schedules of treatment, the combination with other therapies which have
different targets, the elucidation of the role of cytotoxic agents in the immune response
and many other specific features of each tumor type (17, 100).

In the last fifteen years, there has been a changing in the paradigm that
regimes of maximum tolerated dose (MTD - administration of high and spaced in time
doses) are the best ones, and recent clinical studies have been evaluated and showed that
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metronomic schedules (administration of low and frequent doses) has presenting promising
results, largely due to its anti-angiogenic effects (102, 86, 101). However, other more recent
studies have shown that metronomic treatment must be at a sufficient high dose and
also sufficiently spaced in time to induce a strong antitumor immune response which
contributes to tumor regression (136). Therefore, it appears that an optimization problem
remains unsolved, and even unformulated, due to the several effects of cytotoxic drugs on
the tumor microenvironment which remain to be elucidated.

Mathematical models have joined this quest for optimizing cancer treatment
very long ago. The majority of these mathematical studies in optimizing cancer therapy
use the optimal control approach (118, 126, 123, 117, 125, 50, 124, 127, 137). The goal of
this paper is to explore how the use of a simple approach to model chemotherapy may lead
to advantages on the tasks of defining criteria for optimal treatments and finding them
in fact. The approach is illustrated in a toy model for cancer growth and treatment. But
our point of view is that the same ideas can be used in other more specific and complex
models, focusing in particular types of cancer.

While the optimal control approach deals with the problem to find, at an
infinite dimensional function space, a function vptq, of any form, which minimizes an
objective functional like Φ, the approach of this work reduces the function space to a
finite dimensional one, by restricting the form of vptq to a simple form which reproduces
traditional protocols and their variations. Three advantages of this approach over the
optimal control one can be commented. First, the optimal control approach sometimes
encounters solutions that are difficult to implement in practice, since they predict irregular
time intervals between doses, or very specific time-dependent dosages. On the contrary,
the present approach seeks optimal solutions in a space of more realistic protocols, and
solutions are more easily implementable from the medical point of view. Second, the search
for an optimal treatment protocol in a finite dimensional space avoid many numerical and
mathematical issues encountered in the infinite dimensional case of the optimal control
approach. On the other hand, it is expected that solutions of the optimal control approach
give best (lower) values of the objective functional to be minimized, since the search is in
a large space. Third, our approach allow us to define several quantities that can be taken
in account when searching for the optimal solution. In other words, our approach allows to
the inclusion of several features of interest for cancer treatment in the objective functional.
In general, the objective functional of the optimal approach includes a small number of
these features, and the complexity of the problems increase a lot by adding other features
to the functional.

This paper is organized as follows. In Section 5.2 a mathematical model for
tumor growth and parametric modeling for chemotherapeutic protocols are presented.
Section 5.3 concerns the asymptotic behavior of the model. In Section 5.4, some numerical
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simulations and their biological implications are discussed. In Section 5.5, we define criteria
for optimal treatments and perform numerical experiments to compare different scheduling
regimes. Finally, in Section 5.6 we discuss the results and point future research directions.

5.2 Modeling of chemotherapeutic treatments
The model we consider in this paper is given by the following system of

differential equations:

dN

dt
�rN � µNN � β1NA� αNγNDN, (5.1a)

dA

dt
�rAA

�
1� A

KA



� β3NA� pµA � εAqA� αAγADA, (5.1b)

dD

dt
�vptq � γADA� γNDN � τD. (5.1c)

In this system, N represents the normal cells at a given tissue of the human body, A
stands for tumor cells in this tissue, and D represents the concentration of a cytotoxic
drug used to treat this tumor. Similar versions of this model were presented and studied
in other papers, thus we discuss its hypothesis very briefly (87, 130, 138).

The vital dynamics of normal cells is described by a constant flux term rN

representing the formation of new normal cells as an intrinsic property of the tissue aiming
to maintain its architecture and a homeostatic state, together with a natural mortality
µN . On the other hand, as tumor cells have a certain independent, but limited growth, a
logistic term is used together with natural mortality µA and an extra mortality εA due to
apoptosis. Competition parameters β1 and β3 encompass in a simple manner the many
interactions among tumor and tissue cells. Parameters γN and γA represent the rates of
drug absorption and deactivation by normal and cancer cells, and αN and αN are the rates
of death of cells due to the drug, according to the log-kill hypothesis.

Now, the modeling of the treatment function vptq is presented. The protocols
commonly used in clinical practice have a robust and easily implementable schedule, with
the doses values being almost the same, or the treatment consisting of cycles comprising
some sequence of prescribed doses (136, 99). In order to mimic these protocols, we consider
functional forms for vptq parametrized by a few parameters which are allowed to vary. The
first functional form that can be assumed for vptq is

vptq �
nḑ

i�1
ρiδpt� Tiq, (5.2)

where δptq represents the Dirac Delta function. With this expression, the treatment is
described by a sequence of nd doses, each with quantity ρi (in milligrams) being given at
time Ti. This pulse functional form describes exactly the case of treatments administered
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by oral way, where the chemotherapeutic agent is given at a single time. For treatments
by infusion on blood stream, the administration lasts from minutes or hours, but this
interval of time is small when compared with the interval between the doses and with the
time of physiological response of the patient. Thus, these kinds of treatment can also be
roughly considered as instantaneous doses. This assumption is commonly done in many
mathematical models. If the infusion time is an important variable, this approach also
covers these situations by substituting the Dirac deltas δpt� Tiq in (5.2) by

1
IT
pHpt� Tiq �Hpt� Ti � IT qq ,

where H is the Heaviside function and IT stands for the infusion time. For simplicity we
will not consider this case here.

Expression (5.2) allows to describe many possible pulse protocols, since the
values of each ρi and Ti can vary, but this generality does not occur in standard chemothe-
rapy, where the given doses are the same, or cyclically repeated. To reproduce and compare
these simpler protocols, more implementable at clinician routine, but still allowing some
generality, we consider that the treatment consists of cycles which are repeated periodically.
Thus, the treatment is modeled by

vptq �
nc�1̧

i�0
cpt� iT � T0q. (5.3)

Here, we have nc cycles cptq with period of T days, the first starting at day T0.

To construct the cycles cptq, we must consider the maximum tolerated dose
(MTD) which can be administered each T days. This is a specific property of each medicine,
and depends on the toxicity and side effects resulting from the treatment. It will be denoted
as a function mpT q. We assume that mpT q is linear with respect to T , i.e.,

mpT q � ρT,

where ρ is the average daily maximum tolerated dose. But, other expressions may be
considered, like mpT q � c1T {pc2 � T q, since, there is a saturation effect in mpT q when the
time interval T is very large.

We assume that each cycle cptq gives at most a quantity mpT q during the cycle
period, distributed in a sequence of nd doses, given at days T1, T2, ... , Tnd

, along the cycle
period, from day 0 to day T . Each dose gives a proportion σi of the maximum cycle dose
mpT q. Thus we have

cptq �
nḑ

i�1
σi mpT q δpt� Tiq, (5.4)

where 0 ¤ T1   T2   ...   Tnd
¤ T , 0 ¤ σ1, σ2, ..., σnd

¤ 1 and σ1 � σ2 � ... � σnd
¤ 1. If

equality holds in this last condition, the treatment prescribes the MTD in each cycle.
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Expressions (5.3) and (5.4) allow us to reproduce standard treatment schedules.
For example, a treatment which gives the MTD each week, during 16 weeks, is described
by parameters

nc � 16, T � 7, nd � 1, σ1 � 1, T1 � 0. (5.5)

Another example is given by

nc � 6, T � 21, nd � 3, σ1 � σ2 � 0.5, σ3 � 0, T1 � 0, T2 � 7, T3 � 14. (5.6)

In this case, the treatment comprises 18 weeks divided in 6 cycles of 3 weeks. Each cycle
gives the MTD in two weekly equal doses, which are followed by a rest period of one week
with no dose.

5.3 Asymptotic behavior
Since vptq � 0 for t ¡ tF � T0 � nCT , it is easy to see that solutions of system

(5.1) approach solutions of system (5.1a-5.1b) with D � 0. Therefore, the treatment only
move the points in the phase space and do not alters the global dynamics of the system.
This fact has interesting consequences from the point of view of ecological resilience applied
to tumor growth and treatment. See (130) for a discussion.

Thus, it is enough to understanding the asymptotic behavior of system (5.1a-
5.1b) with D � 0, which will be referred as the NA subsystem. Let us briefly present
previous results concerning the analysis of this system (130, 87). It has a trivial equilibrium

P0 �
�
rN
µN

, 0



(5.7)

and up to two nontrivial equilibria (CE)

P1 � pN1, A1q, and P2 � pN2, A2q,

where A1 and A2 are the roots of the second degree equation

β1
rA
KA

A2 �
�
µN

rA
KA

� β1lA



A� prNβ3 � lAµNq � 0.

Further, this subsystem presents three possible parameters regimes:

I) If β3 ¡ βth3 and β1   βth1,∆, P0 is globally stable.

II) If β3 ¡ βth3 and β1 ¡ βth1,∆, P0 and P2 are locally stable. Equilibrium P1 is a saddle
point whose stable manifold is the separatrix between the basins of attraction of P0

and P2.

III) If β3   βth3 , P2 is globally stable.

Expressions for thresholds βth3 , βth1 and βth1,∆ can be found in (130, 87).
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5.4 Numerical simulations
We now deal with the simulation of system (5.1) in order to stimulate the

defining of criteria for effectiveness, efficiency and low-toxicity of protocols. These criteria
will be used in the next section to optimize treatments. We perform numerical simulations
only in regimes II and III of subsystem NA, which the ones of interest for applying
treatment, since regime I corresponds to a healthy person. In all simulations, we used
parameters values presented in Table 2. These values were obtained from data in literature
according procedures described in (130, 87).

Table 2 – Parameters description and values adopted in simulations.

Parameter Description Value
µN 1{µN is the lifetime of a normal cell 0.01 day�1

rN total constant reproduction of normal cells 106 cell day�1

rA tumor growth rate 0.05 day�1

KA tumor carrying capacity 0.75� 108 cells
µA natural mortality rate of cancer cells 0.01 day�1

εA extra mortality rate of cancer cells 0.01 day�1

β1 cancer cells aggressiveness 0.40� 10�9 cell�1day�1

βII3 tissue response to cancer cells - case II 0.28� 10�9 cell�1day�1

βIII3 tissue response to cancer cells - case III 0.32� 10�9 cell�1day�1

γN drug absorption rate by normal cells 0.18� 10�8 cell�1day�1

γA drug absorption rate by cancer cells 0.3� 10�8 cell�1day�1

αN death rate of normal cells due chemotherapy 0.3� 108 cell mg�1

αA death rate of cancer cells due chemotherapy 0.5� 108 cell mg�1

τ drug decay rate 2.5 day�1

We present results of simulation of protocols (5.5) and (5.6) in cases II and
III. Since P2 is globally stable in regime III, we may expect that no solution will lead to
complete tumor regression. On the other hand, in case II we have bistability and may
expect some solutions that lead to cure. Initial conditions are pNp0q, Ap0qq � P2 and
Dp0q � 0, meaning that the cancer of our hypothetical patient has attained a dangerous
stationary size, which needs urgently to be treated, since, on the contrary it can evolve to
more a malignant and lethal tumor and the patient will die soon. In order to simulate
a small initial period without treatment, we use the value T0 � 7 in all simulations.
Since each drug has a specific dosage, the value of ρ depends on the drug and the tumor
type. We adopt a value ρ � 0.71 mg/day, which corresponds to 5 milligrams per week. If
another values were adopted, the quantitative results below would change, but the overall
qualitative behaviour and its implications would still be valid.

Figures 32 and 33 show simulations of protocols (5.5) and (5.6) in case III, with
two values of nc in each protocol: nc � 12 (dashed lines) and nc � 24 (continuous lines) for
protocol (5.5) and nc � 6 (dashed lines) and nc � 12 (continuous lines) for protocol (5.6).
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Figure 32 – Solutions of system (5.1) when parameters correspond to case II and protocol
(5.5). The numbers on panel (A) indicate the time (in months) in which the
solution was at each point.

Figure 33 – Solutions of system (5.1) when parameters correspond to case II and protocol
(5.6). The numbers on panel (A) indicate the time (in months) in which the
solution was at each point.

As expected, in all simulations of case III, we see the relapse of cancer after
some time. As the doses are applied, cancer cells are killed and solutions get near the
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N axis. After the treatment, they move in direction to P0. But it is a saddle-point, and
this transient of apparent cure is due the proximity with the stable manifold of P0. After
getting near P0, solutions spend a long time to pass through this point and began to come
back to P2. This recurrence rate increases as the number of doses given increases.

Figures 34 and 35 show, respectively, simulations of protocols (5.5) and (5.6)
applied in case II. Each figure show simulations of these protocols with three different
numbers of cycles applied: nc � 11 (dotted lines), nc � 12 (dashed lines), and nc � 16
(continuous lines) for protocol (5.5), and nc � 3 (dotted lines), nc � 4 (dashed lines), and
nc � 6 (continuous lines) for protocol (5.5). The time tC at which the trajectory crosses
the separatrix is indicated in panel (C) of each Figure.

Figure 34 – Solutions of system (5.1) when parameters correspond to case II and protocol
(5.5). The numbers on panel (A) indicate the time (in months) in which the
solution was at each point.

On the contrary to case III, on case II some treatments are effective (lead to
cure). It happens if the treatment diminishes the number of cancer cells enough to move
the trajectory to the basin of attraction of P0. Treatment (5.5) is effective with nc ¥ 12,
and it is ineffective if nc ¤ 11. Similar facts happen for protocol (5.6), which is effective
for nc ¥ 4, and ineffective if nc ¤ 3.

A closer look to Figures 34 and 35 reveals some interesting facts about effective
treatments and give us another insights.
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Figure 35 – Solutions of system (5.1) when parameters correspond to case II and protocol
(5.6). The numbers on panel (A) indicate the time (in months) in which the
solution was at each point.

First, we conclude that given a prescribed form of the cycle (5.4), there exists a
minimal number of these cycles, which will be denoted by nminc , that must be administered
by the treatment in order to it be effective. Most important, this minimal number is
patient-specific, since the position of P1 and of the separatrix depend on the values of β1

and β3 which may be a little different for two patients with similar tumors. It lead us to
the conclusion that it is important to, by some way, assess the cancer aggressiveness and
the condition of immune system for each patient and take this information in account
when designing the treatment.

Second, we focus in the transient period of about one year after the treatment.
At this period, it is difficult to distinct between the behaviour of the ‘minimal cure solution’
(that with nc � nminc , dashed lines) and the ‘last non-cure solution’ (that with nc � nminc �1,
dotted lines). This resemblance occurs because when the treatment ceases, both solutions
are very near the separatrix, one at each side, and it takes a long time to the solutions
pass trough the saddle point P1. Only after passing trough P1 they take distinct ways.
Even in treatments with more cycles than the minimum necessary (continuous lines), this
transient period with a small growth of cancer cells is observed. From the medical point of
view it implies that the short-term response to the treatment can be different from the
long-term response. Thus, monitoring of patients must be precise and continued after the
treatment.

Further, we also note that there is a risk of tumor relapse even after effective
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treatments, if they give the minimal number of doses or a few more. In fact, trajectories of
these treatments are very near the separatrix and can be shifted by random fluctuations
that can occur at any real system. These fluctuations can be caused by changes in the
patient’s health during the treatment, or an increase in mutations of cancer cells, or by
acquired drug-resistance by these cells. So, a effective and safe treatment must give some
additional doses in order to damp small disturbances and ensure the long-term recovery.

Another advantage of prolonged treatments can be depicted by looking the
time that solutions take to pass through P1 and reach P2. While minimal cure solutions
spend more than 10 years to attain the stationary state P2, cure solutions with a greater
number of cycles take much less time to reach the cure state. This means that a prolonged
treatment leads to a smaller recovery time.

We also see that the during this worst phase of the treatment, the population
of normal cells attain very low levels, about 35% of the natural size, and 55% of the initial
size before the beginning of the treatment. The more prolonged is the treatment, lower is
this level. So, tissue’s health can suffer high damage during treatments and it may be a
complication.

Finally, we look at the period of time ranging from the beginning of the
treatment until the time the solutions cross the separatrix. We observe that initial doses
are very successful in decrease the tumor size, while in the second half of the treatment,
when trajectories are near the separatrix, there is an enormous difficult to diminish the
number of cancer cells, with each dose killing very few cells. Looking the phase portraits
(A) and (B) in each Figure, we see that at this stage, the solution is squeezed in a zig-zag
fashion inside a narrow strip along the separatrix. Looking to panel (C) in each Figure,
we see that the last doses after the crossing time have a very small killing effect on cancer
cells. From the medical point of view, this fact can implicate that facing resistance in
the diminishing of cancer cells during treatment may be a signal that the treatment is
near the transition between non-cure and cure long-term expectancy, and, with a little
more persistence, it will leads to cure. Of course, it is only a hypothesis and may be false,
since this model does not account for acquired drug-resistance, which is an explanation
for tumor persistence.

5.5 Optimal treatment strategies
The above results shed some light on model behavior and on what may be

expected of an effective treatment with low toxicity. Based on the previous discussion, we
define some indicators to quantify specific features of each protocol, in order to compare
and classify the various possible treatments, allowing us to choose those that would be the
best ones. We take in account the following features: side effects, recovery time, likely of
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tumor relapse and total amount of drug.

In order to account for the side effects, we define N: as the number of normal
cells killed by the chemotherapeutic agent by the treatment:

N: �
» 8

0
γNαNNptqDptqdt.

We also define Nmin as
Nmin � mintNptq, t ¥ 0u.

It is a different indicator for side effects which tracks the level of health of the patient
during the treatment.

Another indicator we define is

R � �prN{µN �NptF qq2 � AptF q2
�1{2

.

where tF � T0 � ncT is the final time of the treatment. R measures the distance of the
solution pNptq, Aptqq at time tF from point P0. As seen in Figures 34 and 35, treatments
that end at more distant points from the separatrix lead to a smaller recovery time. Also,
treatments that end very near from the separatrix offer more risk of cancer re-incidence,
since small perturbations can move the solution to the basin of attraction of P2. Thus, R
is a indicator of the recovery time and relapse risk.

Finally, we count the total drug given by the treatment, since it can be a
limitation due the high cost of some drugs. This quantity is given by

DΣ �
» 8

0
vptqdt � ncρT pσ1 � ...� σnd

q.

For convenience of the reader, the meaning of parameters in treatment expres-
sions (5.3-5.4) and the indicators defined above are summarized in Table 3.

Table 4 shows the value of the indicators above calculated for protocols (5.5)
and (5.6). Note that all values of N: and A: are greater than the initial values Np0q and
Ap0q, implicating that an effective treatment basically renews the entire tissue.

5.5.1 Experimental results of an in silico lab

With indicators defined above, we can construct a functional to classify the
various possible effective protocols. Given a cycle form, which is defined by variables T ,
nd, T1, ..., Tnd

, σ1, ..., σnd
, a treatment consisting of nc ¥ nminc cycles is applied, and we

calculate the following functional:

ΦpT, nd, T1, ..., Tnd
, σ1, ..., σnd

, ncq � w1N: � w2pN0 �Nminq � w3R � w4DΣ,

where wi are weighting factors. The first and second terms measure the side effects of the
treatment, the third term intends to measure the recovering time of the patient and the
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Table 3 – Treatment parameters and treatment indicators.

Parameter/Quantity Meaning
ρ daily MTD

mpT q � ρT MTD which can be given in T days
nc number of cycles of the treatment
nd number of doses in each cycle
T0 starting day of the treatment
T period of each cycle
Ti day in which the ith dose is given in each cycle
σi fraction of mpT q which is given in the ith dose
nmin
c minimal number of cycles for a protocol be effective
tC crossing time
N: number of normal cells killed by chemotherapy
A: number of cancer cells killed by chemotherapy
Nmin minimum number of normal reached during the treatment
tF final day of the treatment
R distance of solution at the end of treatment from the point P0
DΣ total drug given by treatment

Table 4 – Values of treatment indicators for protocols (5.5) and (5.6).

nc tL tC tF N: A: Nmin DΣ NR AR
cycles days days days 108 cells 108 cells 108 cells mg - -

(5.5) 12 84 84.1 91 0.61 0.176 0.37 60.0 0.84 0.04
(5.5) 16 112 84.1 119 0.79 0.187 0.36 80.0 0.90 0.02
(5.6) 4 84 77.2 91 0.61 0.174 0.35 60.0 0.84 0.04
(5.6) 6 126 77.2 133 0.88 0.189 0.34 90.0 0.92 0.01

relapse risk, and the last term describes the need to minimize the total amount of drug
given. Of course, if one is interested in minimizing only one of the indicators above, the
weights wi can all be chosen to be zero, excepted the one corresponding the quantity of
interest.

With this, we have, roughly speaking, an in silico lab where different treatments
can be compared. One can test many different treatment protocols varying some key
parameters of vptq and then assess their effects in features of interest or solve an optimization
problem (minimize Φ) in a finite dimensional space of parameters of interest which are
allowed to vary, while other parameters are kept constant.

We now present results concerning the comparison of various protocols and
the seek for optimal ones. As cure is not possible in case III, we focus the applying of
short-term treatments on case II. Due the difficult of calibrating the weights wi, at this
initial stage we do not perform an optimization of the functional Φ, but only present the
variation on indicators above when some treatment parameters vary.
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In order to better understand the differences between protocols, we introduce
two quantities. The first is the total duration of the treatment, denoted by t∆, and given
by

t∆ � ncT.

The second quantity we introduce defined as the ‘average infusion rate’ of a given protocol,
denoted by v̄, and given by the ratio between the total drug given, DΣ, and the total
duration, t∆. Thus,

v̄ � DΣ

t∆
� ncρT pσ1 � ...� σnd

q
ncT

� ρpσ1 � ...� σnd
q.

Let us present the result of different experiments.

Experiment I

In the first experiment, we assess the differences between treatments that give
the same amount of drug and last the same time, but have different cycle periods, each
cycle having a single doses. We consider 10 different treatments that last 120 days, each
with period given by T � 1, 2, 3, 4, 5, 6, 8, 10, 12, 15 (divisors of 120), and number of cycles
given by nc � 120{T . The cycles are described by nd � 1, σ1 � 1, T1 � 0. The total
amount of drug given by all protocols is the same, DΣ � 85.71 mg, and also the average
infusion rate, v̄ � 0.71 mg/day. Results are shown in Figure 36.

On the one hand, low values of T mimic metronomic therapy, with the lower
value, T � 1 day, prescribing 120 daily doses of 0.71 mg. On the other hand, large values
of T resemble standard chemotherapy, with spaced, higher doses. The treatment with
the larger value gives 8 doses of 10.71 mg, one each T � 15 days. From Figure 36, we
conclude that the greater is the interval between doses, the lesser are the values of N: and
R, implicating that treatment regimes with more spaced and higher doses kill less cells and
have a faster recovery and less recurrence risk, compared with regimes of frequent, lower
doses. On the other hand, the health of the patient during treatment is more protected by
metronomic therapy regimes, since the value of Nmin increases when T decreases.

Experiment II

In Experiment I, the effects of changing T and nc simultaneously were assessed.
In order to deepen these results and examine the effects of varying T and nc separately,
we perform a second experiment. We run protocols with periods T � 1, 2, 3, . . . , 120 and
number of cycles nc � 4, 5, 6, . . . , 30 satisfying ncT ¤ 120. The cycles are described by
nd � 1, T1 � 0, and σ1 � 120{pncT q. Thus, each protocol prescribes cycles with a single
dose at day 0, with absolute value σ1mpT q � σ1ρT � 120ρ{nc mg. The total amount of
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Figure 36 – Results from simulations in Experiment I.

drug is the same for all protocols, and the same of Experiment I, DΣ � ncρTσ1 � 85.71.
The average infusion rate for each protocol is v̄ � 85.71{pncT q mg/day. Results are shown
in Figure 37.

Suppose that the period T between the doses (cycles) is fixed and nc vary.
Then, we have different protocols that dilute the total amount of drug in different numbers
of doses. If this number increases, the quantity of drug given in each dose decreases and
also the average infusion rate. We see that more diluted and prolonged regimes (with more
doses) have the same features of metronomic regimes in Experiment I, with greater values
of N:, R and Nmin. Now, suppose that nc is fixed and T vary. In this case, all protocols
have the same number of doses, and the same absolute value for each dose, but the interval
T between the doses vary. As T increases, the average infusion rate v̄ decreases and the
values of N:, R and Nmin increase. Thus, in this case, more spaced regimes have the same
effects of metronomic regimes, on the contrary to Experiment I. Therefore, we conclude
that it is not the interval of time T itself that reproduces features of metronomic regimes
when it is low, but the key quantity is the average infusion rate v̄: the lower v̄, the greater
N:, R and Nmin; and, for different protocols with the same average infusion rate, the
case of Experiment I, metronomic regimes are more similar to those regimes with greater
number of doses.
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Figure 37 – Results from simulations in Experiment II.

Experiment III

We now turn attention to treatments with cycles comprising two different
doses. We simulate treatments with different values of T P t2, 4, 6, 8, 10, 12, 20, 24, 30u and
σ1 P r0, 1s. Each cycle is given by nd � 2, σ2 � 1� σ1, T1 � 0 and T2 � T {2. Thus, each
cycle gives the MTD and the doses are given at the beginning and at half the cycle. Each
protocol gives nc � 120{T doses and lasts 120 days. Thus, the quantity of drug and the
average infusion rate of all protocols are the same, DΣ � 85.71 mg and v̄ � 0.71 mg/day.
Results are show in Figure 38.

With T fixed and σ1 varying, the maximum values of N:, Nmin and R occur
when σ1 � 0.5, implicating that σ2 � 0.5, while the minimum values of these quantities
occur when σ1 � 0 or 1, and then, σ2 � 1 or 0. Therefore, regimes with more equally
distributed doses present the features of metronomic regimes. When σ1 is fixed and T

varies, the same results of Experiment I are observed: N:, Nmin and R increase when T
decreases.
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Figure 38 – Results from simulations in Experiment III.

Experiment IV

Finally, we asses the effect of three different doses in each cycle. In this
Experiment, all treatments consist of nc � 6 cycles of T � 21 days, each with nd � 3
weekly doses (T1 � 0, T2 � 7 and T3 � 14). The proportions of the first and second doses,
σ1 and σ2, vary in the interval P r0, 1s, with the restriction σ1�σ2 ¤ 1, and the proportion
of the third dose is σ3 � 1 � σ1 � σ2, implicating that the treatment gives the MTD in
each cycle. The total duration, total drug given, and the average infusion rate are the
same in all treatments: t∆ � 126 days, Dσ � 90 mg and v̄ � 0.71 mg/day. Results are
shown if Figure 39.

Results are very similar to those of the previous Experiment. The maximum
values of N:, Nmin and R occur when σ1 � σ2 � σ3 � 1{3, and the minimum occur at
the vertices, where one of the doses is maximal and the other two are zero. The absolute
minimum of R occur at σ1 � 1, σ2 � 0, since this protocol starts to apply the maximal
dose before protocol with σ1 � 0, σ2 � 1, or with σ1 � 0, σ2 � 0.
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Figure 39 – Results from simulations in Experiment IV.

5.6 Discussion
In this paper we propose an approach to modeling and optimizing cancer

therapies based on parametric functional forms for treatment functions. This approach
restricts the functional space of treatments to more real and implementable protocol
schedules and also simplifies the mathematical problem of optimizing treatments. The
approach in this paper focus on chemotherapy but may be extended to other therapies,
such as radiotherapy or immunotherapies.

We apply this modeling of treatments to a simple model for tumor growth and
perform numerical simulations. The results of these simulations allow us to observe different
features of effective treatments. We introduce indicators for measuring side effects, recovery
time, risk of tumor relapse and total drug given. These indicators are easily calculated for
each solution of the system of differential equations. In particular, two different indicators
of side effects are considered. One of these accounts for the total number of tissue cells
killed by the treatment, a posterior and global indicator. On the other hand, the other
indicator tracks the instantaneous health level of the tissue during the treatment period, a
local indicator.

We then illustrate how an objective functional encompassing all these indicators
may be constructed and then applied to optimization methods in finite dimensional spaces
in order to find the best protocols according to these criteria. This approach allows
for considering multiples features of tumor treatment which in general are considered
individually in optimal control problems. However, the choice of weights in the functional
expression is not a straightforward task.

Some experiments were performed to compare different schedules regimes. We
considered experiments varying the interval between doses, doses intensities and the
number of doses in each treatment cycle. In all these experiments we see a duality between
metronomic scheduling and MTD scheduling concerning the two indicators of side effects.
In all experiments, we observe that metronomic scheduling minimizes the side effects
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during the treatment, but maximizes the total size effects. On the other hand, protocols
with higher and more spaced doses minimize the indicator accounting for the total side
effects and maximize the instantaneous side effects. In other words, due to the almost
constant infusion rate, metronomic regimes present a more smooth passage towards the
cure equilibrium and the tissue maintain higher health levels, but this smoothness implies
in the killing of more cells during the entire period of treatment.

Our numerical experiments also indicated that MTD regimes minimize the
recovery time and the risk of tumor relapse. These results show the importance of a correct
choice for the optimality criteria, and also illustrate the problem of choosing the weights
correctly when combining these criteria.

The approach presented here may be applied to more specific models for
tumor treatment which explicitely consider important interactions within the tumor
microenvironment, such as the role of innate immune response, the role of angiogenesis,
drug resistance, and etc. We believe that the application of this approach to a specific
tumor type will shed some light on the issue of dose scheduling and may serve as a beacon
to clinicians. In this case, a careful choice for the quantities of interest to optimizing and a
study of how to combine these quantities correctly will be necessary.
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6 Conclusão e perspectivas futuras

Nesta tese, foram desenvolvidos e analisados modelos matemáticos para a fase
inicial e tratamento de tumores.

No Capítulo 2, estudamos e modelamos a fase inicial, abordando a formação de
um tumor como um processo multipasso onde alterações genéticas transformam uma célula
normal e suas descendentes em um tumor avascular. A análise do modelo proposto indica
que o surgimento de uma população de células mutantes com fenótipo mais agressivo, a
partir de células mutantes menos adaptadas, abre espaço no tecido para a sobrevivência
destas células menos adaptadas, o que leva à formação de um tumor heterogêneo. Além
disso, apesar de ser um modelo simples que não contempla toda a complexidade do câncer,
as simulações numéricas com parâmetros baseados na literatura exibiram resultados
quantitativos de acordo com o observado na realidade. De fato, vimos que pequenas
alterações nas taxas de apoptose ou de mutações alteram o tempo necessário para o tumor
alcançar um tamanho clinicamente detectável, diminuindo este tempo de 80 para 5 anos.

No Capítulo 3, estudamos de um ponto de vista diferente um modelo simples
para crescimento tumoral. Apesar de ser muito conhecido na Ecologia e já contar com
um certo ferramental matemático teórico, o ponto de vista da Resiliência Ecológica é
pouco abordado e aplicado em modelos matemáticos. De fato, os conceitos de Latitude,
Precariedade e Resistência de um ponto de equilíbrio estável, relacionados à sua bacia de
atração, estão definidos há algum tempo na literatura, mas poucas vezes foram aplicados
quantitativamente a modelos matemáticos, e os métodos para calculá-los ainda são incipi-
entes. Neste Capítulo, propusemos métodos alternativos que são mais precisos e possuem
menos custo computacional. Além disso, acreditamos que a discussão sobre o surgimento e
tratamento de câncer como transições críticas pode colaborar no entendimento sobre a
doença, especialmente ao fato de que a recidiva tumoral após aplicação de tratamentos
pode estar ligada à existência de uma instabilidade intrínsica dos sistemas celulares do
paciente, sendo assim necessário considerar terapias que possibilitam a criação de uma
estabilidade mínima para evitar tal recidiva.

O Capítulo 4 de certa forma tenta apresentar uma solução simplificada para este
problema. Analisamos como a manutenção de um regime de tratamento contínuo de longo
prazo, via quimioterapia metronômica, descrita por um termo de infusão constante, pode
devolver a estabilidade intrínsica perdida pelo sistema de reparo natural. É uma solução
simplificada, pois fatores como resistência à droga e angiogênese não foram considerados.
Para análise deste modelo de três dimensões, utilizamos ferramentas da Teoria dos Sistemas
Competitivos em R3. Com isto, foi possível obter resultados de estabilidade global, e realizar
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uma análise do modelo em todo o seu espaço de parâmetros. Ao realizar esta análise,
uma condição sobre os parâmetros apareceu naturalmente, possuindo uma interessante
interpretação biológica. Quando os parâmetros satisfazem esta condição, o tratamento com
quimioterapia metronômica, além de diminuir o número de células tumorais, restabelece
a população de células normais do tecido. Por outro lado, quando esta condição não é
satisfeita, o tratamento diminui o número de ambas populações celulares. Um exame
de quando esta condição tem mais chances de ser satisfeita indica que a quimioterapia
metronômica seria mais recomendada para tumores de crescimento lento, tumores com
alta capacidade de suporte e tumores altamente competitivos.

Finalmente, no Capítulo 5, apresentamos uma abordagem para modelar e
otimizar protocolos de tratamento por quimioterapia. Por restringir a forma dos protocolos
de tratamento a um espaço de dimensão finita, esta abordagem traz vantagens no processo
de encontrar protocolos ótimos, e também do ponto de vista prático, pois os protocolos
reproduzidos são aqueles utilizados de fato na rotina clínica e também as soluções encontra-
das, sendo as mesmas facilmente implementadas. Outra vantagem desta abordagem é que a
busca pelo melhor protocolo pode levar em diversos aspectos da aplicação de um protocolo
de tratamento, como toxicidade, custo financeiro, risco de recidiva e tempo de recuperação,
pois estes fatores podem ser calculados para cada protocolo e combinados em um único
funcional objetivo. Contudo, surge a dificuldade de calibrar pesos para combinação de
todos estes fatores. Realizamos experimentos numéricos variando o intervalo entre doses,
intensidades das doses e número de doses diferentes em cada ciclo. Todos os resultados
indicaram que regimes metronômicos (doses frequentes e baixas) são os que mantêm a
saúde do paciente em um melhor nível durante o tratamento, mas são os regimes de dose
máxima tolerada (doses altas e espaçadas no tempo) que minimizam o risco de recidiva
e tempo de recuperação. Acreditamos que a abordagem apresentada neste Capítulo é
promissora e pode ser aplicada em modelos mais completos, podendo ajudar de fato na
busca de melhores protocolos de tratamento.

Para desenvolvimento desta tese foram consultadas diversas referências sobre a
Biologia do Câncer. Pudemos constatar como a complexidade desta doença emerge da
combinação de aspectos envolvendo alterações genéticas e rotas de sinalização intracelulares
com aspectos extracelulares, como as várias interações intercelulares no tecido tumoral.
Além disso, chama atenção a existência de tantos mecanismos intrincados apresentados
pelas células do corpo humano para evitar e controlar o crescimento de células mutantes.
Ainda, chega-se ao final desta tese acreditando que realmente é possível que a Matemática
Aplicada auxilie no combate ou, pelo menos, no controle do câncer. Contudo, para que os
modelos alcancem resultados que de fato possam influenciar decisões ou testes clínicos,
percebemos que é essencial uma forte colaboração interdisciplinar com médicos e biólogos.

A seguir, apresentamos duas linhas diferentes de perspectivas para trabalhos
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futuros.

O papel das células T reguladoras na progressão tumoral

A primeira delas trata de modelar o papel das células T reguladoras na evasão
tumoral da imunovigilância (91). Pesquisas recentes tem mostrado que estas células são
recrutadas pelo tumor para o microambiente tumoral e então inibem a resposta imune ao
tumor, desempenhada por células T citotóxicas e outras. Esta inibição da resposta imune
parece ser essencial para o desenvolvimento do tumor e foi apontada como um Hallmark
emergente do câncer (19). Apesar de existirem inúmeros modelos matemáticos descrevendo
a resposta imune ao câncer (94), poucos tem tratado destas descobertas recentes (139).
Temos elaborado um modelo neste contexto e o apresentamos a seguir.

O modelo considera inicialmente as populações de células tumorais (T ), células
T citotóxicas no local do tumor (E), células T reguladoras no local do tumor (R), células
T citotóxicas na corrente sanguínea (EB), células T reguladoras na corrente sanguínea
(RB). Supomos que as células T na corrente sanguínea são recrutadas ao local do tumor
quando encontram com células tumorais, de acordo com a lei de ação de massas:

dT

dt
� aT p1� bT q � d1TE, (6.1a)

dE

dt
� c1EBT � µEE � d2TE � d3RE, (6.1b)

dR

dt
� c2RBT

2 � µRR, (6.1c)
dEB
dt

� rE � µEE � c1EBT, (6.1d)
dRB

dt
� rR � µRRB � c2RBT

2. (6.1e)

Contudo, assumimos que o recrutamento das células T reguladoras tem uma dependência
não-linear do número de células tumorais, descrita pelo termo c2RBT

2. Com isto, o
recrutamento é baixo quando o tumor é pequeno. Aplicando a hipótese de que as células
T na corrente sanguínea, EB e RB, estão em equilíbrio quase-estacionário,

dEB
dt

� 0, dRB

dt
� 0 ùñ EB � rE

µE � c1T
, RB � rR

µR � c2T 2 .

obtemos o sistema reduzido:

dT

dt
� aT p1� bT q � d1TE, (6.2a)

dE

dt
� rEc1T

µE � c1T
� µEE � d2TE � d3RE, (6.2b)

dR

dt
� rRc2T

2

µR � c2T 2 � µRR. (6.2c)
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Uma versão adimensional deste sistema é dada por:

dT

dt
� αT p1� T q � β1TE, (6.3a)

dE

dt
� ρ1T

1� ρ1T
� E � β2TE � β3RE, (6.3b)

dR

dt
� δ

�
ρ2T

2

1� ρ2T 2 �R



, (6.3c)

onde
T̄ � bT, Ē � µEE

rE
, R̄ � µRR

rR
, t̄ � µEt,

e os parâmetros adimensionais são

α � a

µE
, ρ1 � c1

bµE
, β1 � d1rE

µ2
E

, ρ2 � c2

b2µR
, β2 � d2

µEb
, β3 � d3rR

µEµR
, δ � µR

µE
.

Os pontos de equilíbrio deste sistema são:

1. P0 � p0, 0, 0q, que é sempre instável, e

2. P � pT,E,Rq �
�
T, αβ�1

1 p1� T q, ρ2T
2

1� ρ2T 2



, onde T é raiz da equação

β1

α

ρ1T p1� ρ2T
2q

p1� ρ1T qp1� T q �
�
1� β2T p1� ρ2T

2q � β3ρ2T
2� . (6.4)

É possível mostrar que a equação (6.4) sempre possui ou uma ou três raízes reais entre 0 e 1.
Portanto, o sistema sempre possui ou um ou três pontos de equilíbrio não trivais. Diagramas
de bifurcação indicam a ocorrência de histerese para alguns valores dos parâmetros, como
mostra a Figura 40. Esta Figura mostra como os parâmetros ρ2 (recrutamento das células
T reguladoras) β3 (taxa de inativação da resposta imune pelas células T reguladoras)
influenciam na progressão tumoral. Para valores baixos destes parâmetros, o tumor possui
um tamanho muito pequeno, correspondendo a um tumor controlado pela resposta imune.
À medida que estes parâmetros aumentam, o volume do tumor quase não se altera.
Quando cada um destes parâmetros ultrapassa certo limiar, este estado controlado do
tumor desaparece e então o tumor alcança um tamanho muito maior. Devido ao efeito da
histerese, mesmo que estes parâmetros diminuam um pouco, o tumor ainda continua neste
tamanho.

Além do papel na imunoevasão tumoral, tem sido evidenciado que as células T
reguladoras também contribuem para a angiogênese tumoral (91). Assim, supondo que a
vascularização tumoral é descrita implicitamente pelo parâmetro K � b1, investigamos o
comportamento quando K varia. Os resultados podem ser vistos na Figura 41. No primeiro
gráfico, para certos valores dos parâmetros, observamos a não-ocorrência de histerese.
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Figura 40 – Diagramas de bifurcação dos pontos de equilíbrio não-triviais do sistema (6.3)
mostrando ocorrência de histerese. Eixo vertical: células tumorais T . Eixo
horizontal: parâmetros ρ2 (esquerda) e β3 (direita).

Contudo, à medida que K aumenta, o volume tumoral diminui até um certo valor e depois
aumenta rapidamente. No segundo gráfico, para outros valores dos parâmetros, vemos um
forte efeito de histerese à medida que K varia.
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Figura 41 – Diagramas de bifurcação dos pontos de equilíbrio não-triviais do sistema (6.3)
mostrando ocorrência de histerese. Eixo vertical: células tumorais T . Eixo
horizontal: capacidade de suporte do tumor K � b�1.

Assim, uma possível extensão do modelo apresentado acima é considerar expli-
citamente a dinâmica angiogênica. Um possível modelo seria o seguinte:

dT

dt
� rTT

�
1� T

KT � αV



� d1TE, (6.5)

dE

dt
� rEpc1 � e1V qT

µE � c1T
� µEE � d2TE � d3RE, (6.6)

dR

dt
� rRpc2 � e2V qT 2

µR � c2T 2 � µRR, (6.7)

dV

dt
� ηRV

κ� V
� µV V. (6.8)

Neste caso, células T reguladoras promovem a angiogênese por meio a formação de
uma vasculatura V , e esta nova vasculatura alimenta o tumor com mais nutrientes e
oxigênio (termo αV ), mas também traz mais células T, reguladoras e citotóxicas, para o
microambiente do tumor (termos e1V e e2V ).
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Avaliação de combinação de tratamentos em tumores angiogênicos

Uma segunda linha de pesquisa para trabalhos futuros é a aplicação da aborda-
gem apresentada no Capítulo 5 a modelos mais completos considerando tumores específicos.
Por exemplo, tumores como gliobastoma e câncer coloretal são tumores angiogênicos que
tem sido tratados com combinação de quimioterápicos com inibidores de angiogênese.
Assim, pode-se incluir angiogênese tumoral naquele modelo, introduzindo-se uma equação
para a neovascularização, descrita por V . Além disso, a dosagem de um tratamento quimi-
oterápico é limitada pela toxicidade que este causa em células do organismo que, em geral,
não são as células do órgão onde o tumor se desenvolve. Portanto, a toxicidade é avaliada
em uma população de células normais N2 que não interage diretamente com o tumor, ao
contrário das células normais do tecido, descritas por N1. Além do efeito dos inibidores
angiogênicos (descritos por I) pode-se considerar também os efeitos de radioterapia nas
populações celulares, descritos pelos termos giptq. Assim, teríamos o sistema:

dN1

dt
� rN � µNN1 � β1N1A� αNγNDN1 � g1ptq, (6.9)

dA

dt
� rAA

�
1� A

KA � kV



� β3NA� pµA � εAqA� αAγADA� g2ptq, (6.10)

dV

dt
� bA� dV A� µV V � κηIV � g3ptq, (6.11)

dD

dt
� vDptq � γADA� γN1DN1 � γN2DN2 � τDD, (6.12)

dI

dt
� vIptq � ηIV � τII, (6.13)

dN2

dt
� rN � µNN2 � αN2γN2DN2 � g4ptq. (6.14)

(6.15)

Aplicando a abordagem do Capítulo 5, podemos parametrizar as funções que
descrevem os tratamentos (vDptq, vIptq, giptq) e combinar diversos índices como toxicidade,
custo total do tratamento, risco de recidiva, tempo de recuperação para buscar quais
seriam as combinações ótimas de tratamento.
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