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a b s t r a c t

In this work we propose a stabilized finite element method that permits us to circumvent discrete inf–
sup conditions, e.g. allowing equal order interpolation. The type of method we propose belongs to the
family of symmetric stabilization techniques, which are based on the introduction of additional terms
that penalize the difference between some quantities, i.e. the pressure gradient in the Stokes problem,
and their finite element projections. The key feature of the formulation we propose is the definition of
the projection to be used, a non-standard Scott–Zhang projector that is well-defined for L1ðXÞ functions.
The resulting method has some appealing features: the projector is local and nested meshes or enriched
spaces are not required.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Many physical problems in science and engineering are mod-
eled with partial differential equations without a coercivity prop-
erty, e.g. the (Navier–)Stokes equations for incompressible flows,
Darcy’s problem for flux in porous media, and some versions of
the Maxwell equations. At the continuous level, these saddle-point
problems are well posed by virtue of some inf–sup condition. As
model problem, let us consider Stokes’ system on a bounded open
domain X with homogeneous boundary conditions:

�mDuþrp ¼ f ; r � u ¼ 0; uj@X ¼ 0; ð1Þ

where u is the velocity, p the pressure, m the fluid viscosity and f the
body force. Using standard notation, we can state the problem in
weak form: find ðu;pÞ 2 H1

0ðXÞ � L2
0ðXÞ such that

cðu;p;v ;qÞ :¼ mðru;rvÞ�ðp;r�vÞþðq;r�uÞ¼ hf ;vi¼: ‘ðvÞ ð2Þ

for any ðv ; qÞ 2 H1
0ðXÞ � L2

0ðXÞ. For the Stokes problem, pressure sta-
bility relies on the following inf–sup condition: for any p 2 L2

0ðXÞ,
there exists a vp 2 H1

0ðXÞ with unit norm such that
bkpkP ðp;r � vpÞ, for some b > 0. Unlike coercivity, inf–sup condi-
tions are not inherited by sub-spaces of functions, complicating
Galerkin approximations. We have to explicitly build finite element
(FE) spaces that satisfy discrete versions of the inf–sup conditions,
and appealing choices such as equal-order interpolation for all the
ll rights reserved.
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unknowns cannot be used [8]. The situation is slightly more in-
volved in general, since the well-posedness of saddle-point prob-
lems only requires coercivity on the kernel of the constraint
operator, e.g. the Maxwell and Darcy problems [14].

The use of inf–sup stable formulations can be particularly
impractical in multi-physics simulations of saddle-point systems,
i.e. inductionless magnetohydrodynamics (MHD) (coupling Stokes
and Darcy-type problems, see [21]) or incompressible visco-resis-
tive MHD (coupling Stokes and Maxwell-type problems, see [3]).
This approach requires different FE spaces for the different un-
knowns [22], complicating the integration subroutines and the ma-
trix graph (a different graph for every block of the full matrix is
needed). In other situations, in which different asymptotic limits
of the problem (in terms of the physical parameters) lead to differ-
ent saddle-point systems, e.g. the Brinkman model for creeping
flow in porous media, the inf–sup stable approximation cannot
lead in general to unconditional stability, since different limits re-
quire different FE spaces (see [1]).

Alternatively, we can consider stabilized FE techniques, which
consist in the introduction of additional (stabilization) terms that
provide the numerical method with the proper stability without
the need to satisfy discrete inf–sup conditions. Initially, the stabil-
ization terms were based on the residual at FE interiors, as in the
popular Galerkin/least-squares (GLS) method [16] and the im-
proved Variational Multiscale (VMS) method [17] proposed by
Hughes and co-workers. Let us consider a partition T h of X into tet-
rahedra/hexahedra, denoted by K, and conforming FE spaces
Vh � Qh � H1

0ðXÞ � L2
0ðXÞ. The stabilized methods GLS (h ¼ �1)

and VMS (h ¼ 1) read as:
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cðuh;vh;ph; qhÞ þ
X
K2T h

dKð�Duh þrph; hDvh þrqhÞK

¼ ‘ðvhÞ þ
X
K2T h

dKhf ; hDvh þrqhiK ; ð3Þ

where dK is a numerical parameter to be defined later. These meth-
ods allow equal-order interpolation, are consistent and exhibit opti-
mal convergence rates. On the other side, they are usually criticized
for giving unphysical pressure boundary layers [5], for the addi-
tional cost involved in the evaluation of higher order derivatives
and the weak inconsistency for first order approximations [18],
the fact that the forcing term is also affected by the stabilization
and the hard extension to transient problems [13], usually carried
out via expensive space–time FEs (see e.g. [24]). Probably, the main
shortcoming of GLS, VMS and related residual-based formulations is
manifested when dealing with multi-physics applications. These
stabilized FE formulations include a large number of additional cou-
pling terms, which fill blocks that are zero for the Galerkin method;
see [21,3] for MHD applications. Another important problem related
to these methods is the fact that they destroy the skew-symmetric
form of the off-diagonal blocks (stabilized gradient and divergence
matrix) in the Navier–Stokes and MHD systems, making pressure-
segregation (fractional step) methods to lose their unconditional
stability (see [4]).

The introduction of symmetric stabilization techniques repre-
sented one step further in the improvement of FE stabilization
techniques, since they solve all the problems commented above.
Instead of considering residual-based terms, these methods intro-
duce penalty terms over the difference between some quantities,
i.e. the pressure gradient for the Stokes problem, and their projec-
tions. This family of methods does not perturb the right-hand side
of the problem, and stabilizes the bilinear form as follows:

cðuh;vh;ph; qhÞ þ
X
K2T h

dKðrph � phðrphÞ;rqh � phðrqhÞÞK ¼ ‘ðvhÞ;

where phð�Þ is a FE projector; different definitions for phð�Þ lead to
different techniques. The resulting method is only weakly consis-
tent, i.e. the stabilization term does not cancel for the exact solution
but vanishes as the mesh size h& 0 in such a way that optimal con-
vergence is kept. Motivated by the inherited stability of fractional
step methods, Codina and Blasco provided in their pioneering work
[12] the first algorithm of this kind, based on the L2ðXÞ-orthogonal
projector, coined orthogonal subscales (OSS). Unfortunately, this
projector is global, i.e. the stabilization term leads to a dense matrix.
Certainly, the method is never computed this way, and the projec-
tion is usually sent to the right-hand side of the linear system. In
case of solving transient problems, it can simply be treated explic-
itly. In those situations, for reasonably small time step sizes, the OSS
method has perfect sense and it is an effective and simple algo-
rithm, since the CPU cost per time step used for the computation
of the global projections in negligible. On the contrary, to send
the projection term to the right-hand side, and make it implicit
via Richardson iterations (usually merged with nonlinear iterations
[11]) is not advisable unless a very small time-step size is used,
since it can drastically increase the number of nonlinear iterations
or simply diverge; this approach is even harder to justify for linear
problems as the Stokes system. An alternative consists in dealing
with the exact matrix, explicitly solving the mass matrix systems
for the projection evaluations at every iteration of an external Kry-
lov solver. This approach is hard to implement and prevent us to use
direct solvers, and by extension substructuring domain decomposi-
tion techniques with exact local solvers [25].

Becker and Braack envisaged in [5] an original way to avoid the
global projections in [12]. Their method was later called local pro-
jection stabilization (LPS). The price to pay is a tighten requirement
over the mesh partitions: specific hierarchical meshes were
needed, since the method is based on the definition of fine and
coarse FE spaces. On the other hand, the projection is not over
the original FE space, as in [12], but on a discontinuous space of
functions. The original LPS formulation has been lately denoted
as two-level LPS, due to the requirement of two nested meshes
for the definition of the stabilization terms. A one-level LPS formu-
lation has also been designed [19], in which the fine space is at-
tained with an enrichment of the coarse one via additional
functions of bubble type. This way, we can eliminate the stringent
mesh requirement but now a particular type of enriched FE spaces
must be used.

The development of stabilized FE methods that allows one to
circumvent inf–sup conditions has been almost entirely developed
for the Stokes problem and the nonlinear Navier–Stokes equations.
The extension to problems that only present coercivity in the ker-
nel of the constraint operator is more recent. We refer to [2] for a
detailed exposition of VMS and symmetric projection stabilization
schemes for Darcy’s and Maxwell’s problems.

The purpose of this work is to present a new method, based on a
particular L1ðXÞ Scott–Zhang projector that shares all the afore-
mentioned benefits of symmetric stabilization techniques as well
as: only local projections are required, no assumption over the mesh
partition (e.g. nested meshes) is needed and no assumption over the
FE spaces (e.g. equal-order Lagrangian FEs can be used without
additional enrichment) is needed.

In Section 2, we introduce some notation, as well as the defini-
tion of the method and implementation aspects. Section 3 is de-
voted to the numerical analysis of the algorithm, both stability
and a priori error estimates. Some numerical tests are presented
in Section 4. Finally, we draw some conclusions in Section 5.

2. Definition of the method

Let us consider the Stokes problem (2) for an open, bounded
polyhedral domain X in Rd, where d ¼ 2;3 is the space dimension.
We will use standard notation for Sobolev spaces (see [7]). In par-
ticular, the L2ðxÞ scalar product will be denoted by ð�; �Þx for some
x � X, but the domain subscript is omitted for x � X (analogously
for the duality pairing h�; �i). The L2ðXÞ norm is denoted as k � k. We
will define the velocity and pressure spaces as V0 � H1

0ðXÞ and
Q � L2

0ðXÞ, endowed with the norms kvkV :¼ m1
2krvk and

kqkQ :¼ m�1
2kqk, properly scaled with the fluid viscosity m. C0ð�XÞ de-

notes the space of continuous functions. We will omit the d super-
script in vector-valued functional spaces.

Let us consider now a partition T h of X into d-simplices, quad-
rilaterals (d ¼ 2) or hexahedra (d ¼ 3) where every K 2 T h is the
image of a reference element bK through an affine mapping
FK : bK ! K (see [9, Chp. 2]); we can assume that every edge of bK
has length one. PrðbK Þ is the space of complete polynomials of de-
gree r on bK . For d-simplicial FE partitions, we define the space of
element-wise discontinuous functions

Dh :¼ fvh : vhjK � FK 2 PrðbK Þ; K 2 T hg:
The continuous FE spaces are obtained by enforcing continuity,
namely Vh :¼ Dh \ C0ð�XÞ and Qh :¼ Dh \ C0ð�XÞ \ L2

0ðXÞ for the veloc-
ity and pressure respectively. We will also make use of the FE space
with null trace Vh;0 :¼ Vh \ H1

0ðXÞ. The order of approximation r to
be used for velocity and pressure approximations can be different.
For quadrilaterals and hexahedra, the spaces are obtained by replac-
ing PrðbK Þ by QrðbK Þ, the space of polynomials with maximum degree
r in each reference space coordinate on bK .

For the FE space Vh we denote by N h the set of all interpolation
nodes related to T h and by f/aga2N h

the corresponding nodal basis
of Vh. We also denote by N hðKÞ the set of all nodes that belong to a
FE K. Continuous FE functions can be written as vh ¼

P
a2N h

va
h/

aðxÞ,
where va

h denotes the nodal value of vh corresponding to a. Analo-
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gously, f/aðxÞjKgK2T h ;a2N hðKÞ is the basis for Dh and discontinuous FE
functions are written as vh ¼

P
K2T h

P
a2N hðKÞvhjaK/aðxÞjK , where vhjaK

is the value of vh in the node a at element K. Further, we denote the
adjacency list And

h ðaÞ of a node a 2 N h as the set of nodes c 2 N h

such that a; c 2 N hðKÞ for some K 2 T h, i.e. the set of neighbor
nodes. On the other hand, Ael

h ðaÞ is the set of elements K 2 T h such
that a 2 N hðKÞ, i.e. the set of neighbor elements.

2.1. Nodal projection stabilization

At this point, let us introduce a variant of the Scott–Zhang pro-
jector [23] which is well-defined for L1ðXÞ functions. The analysis
in [23] does apply for this projector even though it is not the stan-
dard version, because it does not keep homogeneous boundary
conditions (see Remark 1). We can build a node-to-element map
j : N h ! T h; for interior nodes there is only one choice, two
choices for nodes on faces and possibly more for nodes on edges
or vertices. Following [23], for any a 2 N h there is only one dual
function wa 2 PrðKÞ (analogously for QrðKÞ) such thatZ

jðaÞ
waðxÞ/bðxÞdx ¼ dab; for any b 2 N hðjðaÞÞ: ð4Þ

Now, we construct the projector ih : L1ðXÞ ! Vh as follows:

ihðvÞ :¼
X
a2N h

/aðxÞ
Z

jðaÞ
waðxÞvðxÞdx: ð5Þ

Let us also define i?h ðvÞ :¼ v � ihðvÞ. With this notation, we are in
position to state the proposed algorithm: find ðuh;phÞ 2 Vh;0 � Qh

such that:

chðuh;vh; ph; qhÞ :¼ cðuh; vh;ph; qhÞ þ ði
?
h ðrphÞ; i

?
h ðrqhÞÞd

¼ ‘ðvhÞ for any ðvh; qhÞ 2 Vh;0 � Q h; ð6Þ

with ð�; �Þd :¼
X
K2T h

dKð�; �ÞK ; dK :¼ cdh2
K

m
: ð7Þ

dK : T h ! R is the so-called stabilization parameter, cd being an
algorithmic constant independent of h. A variable viscosity can eas-
ily be handled, e.g. by taking mK ¼

R
K mðxÞdx, but a constant viscosity

is assumed for the sake of clarity. We will refer to this method as
nodal projection stabilization (NPS), since ihð�Þ is a local projection
defined node-wise. The method clearly belongs to the family of
symmetric stabilization techniques.

Motivated by the stability analysis in the next section, we con-
sider an alternative NPS scheme (6) by introducing a nodal defini-
tion of the stabilization parameter, denoted by da. Given a
(generally discontinuous) FE element function vh 2 Dh, we define
dðvhÞðxÞ :¼

P
K2T h

P
a2N h

davhjaK/jaKðxÞ 2 Dh. We define d
1
2ð�Þ analo-

gously, by replacing da with d
1
2
a. Let us remark that dð�Þ keeps conti-

nuity and homogeneous boundary conditions, i.e. given
vh 2 Vh; dðvhÞ 2 Vh (idem for Vh;0). The method consists in (6) with
a different definition of the d-product:

ð�; �Þd :¼ ðd1
2ð�Þ; d1

2ð�ÞÞ; da :¼ cdh2
a

m
; with ha :¼ hjðaÞ: ð8Þ

Alternative definitions of ha are possible (see Lemma 4). In this case,
the stability analysis in Theorem 6 becomes slightly simpler.

This method is strongly related to the OSS formulation proposed
by Codina and Blasco in [12], which uses instead the L2ðXÞ projec-
tor phðvÞ 2 Vh, defined as the solution of

ðphðvÞ;whÞ ¼ ðv;whÞ; for any wh 2 Vh: ð9Þ

However, this projector is not local, since it involves the solu-
tion of a global linear system with a Gramm matrix. On the other
hand, LPS techniques share with NPS the fact that the projections
are local, but the projectors are not defined over Vh and they re-
quire additional assumptions over the mesh or FE spaces to be
used. We refer to [5,19] for a detailed definition of LPS techniques.
Remark 1. For the OSS formulation, it has been proposed to use
the L2ðXÞ projector ph;0 onto Vh;0 instead, i.e. the solution
ph;0ðvÞ 2 Vh;0 of

ðph;0ðvÞ;whÞ ¼ ðv ;whÞ; for any wh 2 Vh;0: ð10Þ

It does not require Assumption 5 below to hold but can exhibits
pressure boundary layers. Analogously for NPS, we can consider a
projector ih;0 onto Vh;0. It can be accomplished by modifying the pro-
jector (5) at nodes a 2 @X only. For these boundary nodes, we can
use the technique in [23], based on edge integrals, since ih;0 is only
applied over rQh functions, which have well-defined traces on @X.
Alternatively, we can use the modification proposed by Girault and
Lions [15], which simply consists in taking ihðrqhÞ

a equal to zero for
boundary nodes. In fact, for the FE functions to be projected in
method (6) these two techniques are equivalent.
2.2. Implementation aspects

In this section we will assume the equal-order interpolation
case for the sake of clarity. Let us discuss how to implement the
stabilization term in (6). The key ingredient is the computation
of ihðrphÞ. By linearity we only need to consider the projection of
the basis fr/aga2Nh

of the discontinuous FE space rQ h. We have
the following result.

Lemma 2. Let us assume that rp 6 ru þ 1, where ru and rp are the
order of approximation for the velocity and pressure respectively.
Then, the matrix associated to the term ðihðr�Þ; ihðr�ÞÞ : Qh ! Q 0h, can
be built as follows: for any a; b 2 N h

ðihðr/aÞ; ihðr/bÞÞ ¼
X

c2And
h ðaÞ

X
d2And

h ðbÞ

r/ajcjðcÞ � r/bjdjðdÞð/
c;/dÞ:
Proof. By the definition of the projector (5), we have: for any
a 2 N h

ihðr/aÞ ¼
X

c2And
h ðaÞ

ihðr/aÞc/c; where ihðr/aÞc

¼
Z

jðcÞ
r/aðxÞwcðxÞdx: ð11Þ

We have used the simple fact that r/ajcjðcÞ ¼ 0 if c R And
h ðaÞ, since

a R jðcÞ and so r/ajjðcÞ ¼ 0. Now, let us use the fact that, given a
FE K, for any qh 2 Qh there exists a vh 2 Vh such that rqhjK ¼ vhjK .
This is true since rp 6 ru þ 1. Then, we can write r/ajK ¼P

b2N hðKÞr/ajbK/bjK . Using this result in (11) and the definition of
the dual functions in (4) we readily get:

ihðr/aÞc ¼
X

b2N hðjðcÞÞ

Z
jðcÞ
r/ajbjðcÞ/

bðxÞwcðxÞdx

¼ r/ajcjðcÞ; for c 2 And
h ðaÞ

and ihðr/aÞc ¼ 0 otherwise. It proves the theorem. h

The inequality rp 6 ru þ 1 will naturally be satisfied. The cases
of interest are ru ¼ rp (for implementation simplicity) or
ru ¼ rp þ 1 (from a priori estimates, see Corollary 9). Otherwise,
we should simply use formula (5).

In terms of implementation, it is better to build the stabilization
terms as indicated in Algorithm 1 (for the most usual element-
based integration/assembly); the equivalence is easily checked.
Algorithm 1 implements the stabilization matrix for method (6).
We can still implement this algorithm in different ways, depending
on the treatment of r/ajcjðcÞ. We can consider to store this array,
which has the size of the velocity unknowns array times the num-
ber of nodes per element, i.e. for linear simplicial FEs this factor is
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dþ 1. This memory usage is acceptable in an implicit FE code com-
pared to preconditioned solver requirements and it is well-suited
for parallelization. Otherwise, it can be computed every time is
used, with a slight growth of the operation counter. Finally let us
note that we are not required to store it for interior nodes, and that
vertex-based and edge-based integration algorithms could be con-
sidered instead.

Algorithm 1: Assembly of the pressure stabilization matrix S
in scheme (6) (equal-interpolation case)

For every K 2 T h:
Compute dK

For every c; d 2 N hðKÞ:
ComputeR

K /cðxÞ/dðxÞdx;
R

K r/cðxÞ � r/dðxÞdx;
R

K /cðxÞr/dðxÞdx

Assemble Scd  Scd þ dK
R

K r/cðxÞ � r/dðxÞdx
For every a 2 N hðjðcÞÞ:

Sad  Sad � dKr/ajcjðcÞ �
R

K /cðxÞr/dðxÞdx,

Sda  Sda � dKr/ajcjðcÞ �
R

K /cðxÞr/dðxÞdx

For every a 2 N hðjðcÞÞ and b 2 N hðjðdÞÞ:
Sab  Sab þ dKr/ajcjðcÞ � r/bjdjðdÞ

R
K /cðxÞ/dðxÞdx
Remark 3. In principle, we could consider the Clément interpolant
[10] as an alternative to the Scott–Zhang projector (5), since this
interpolation is still local. However, the Clément interpolant is not
a projection and does not satisfy homogeneous boundary condi-
tions, in case it is required. The fact that it is not a projector has
some undesired effects, e.g. the resulting method does not pass a
patch test. That is to say, for an exact solution u 2 Vh, the FE
solution uh differs from u in general. Further, let us show in Fig. 1
the stencil for a FE, in the worst-case and best-case scenario, as
well as the stencil for Clément’s interpolant. It can be observed in
Fig. 1 that Clément’s interpolant leads to a wider stencil of the
resulting matrix (a node is coupled to its neighbors’ neighbors).
These facts motivated the introduction of the Scott–Zhang-type
projector (5).
3. Numerical analysis

In this section, we analyze the stability and accuracy of the
numerical method (6) for both (7) and (8) versions of the
Fig. 1. Stencil related to the stabilization term
P

a;b2N hðKÞ
R

K i?h ðr/aÞi?h ðr/bÞdx for a given
elements are those needed to compute it. We consider three situations: (a) the Scott–Zhan
is the set of nodes on element K), (b) the same projector in the worst case scenario (where
references to colour in this figure legend, the reader is referred to the web version of th
stabilization term. Let hK denote the diameter of K 2 T h and
h :¼maxK2T h

hK . We assume a non-degenerate partition: there ex-
ists a constant r 2 ð1;1Þ independent of h such that
maxK2T h

hK
qK
6 r, where qK denotes the radius of the largest closed

ball contained in K. The analysis is simpler for regular partitions,
i.e. minK2T h

qK P rh. We will make use of the local inverse estimate

krvhkK 6 cih
�1
K kvhkK ; for any K 2 T h; ð12Þ

where ci > 0 can depend on r (as other constants defined below)
but not on h. Further, we use the general approximation theory of
the Scott–Zhang projector. Let v 2Wk

pðXÞ and 0 6 s 6 k 6 r þ 1:
there exists ce > 0 independent of h such that

kv � ihðvÞkWs
pðKÞ 6 cehk�s

K kvkWk
pðSK Þ;

X
K2T h

kv � ihðvÞkp
Ws

pðKÞ

 !1
p

6 cehk�skvkWk
pðXÞ

; ð13Þ

where SK is a domain made of the elements neighboring K (see [6])
and r denotes the order of approximation of the corresponding FE
space. The global estimate holds for non-degenerate partitions only.
The same estimates hold for ih;0 (the interpolant that keeps null
traces) as soon as v 2 H1

0ðXÞ.
Finally, the symbol K is used to denote < up to a positive con-

stant independent of h (idem for J and g).

3.1. Stability results

First, we consider some technical results that will allow us to
accommodate the analysis for non-degenerate partitions. We can
easily check that na

r :¼ cardðAel
h ðaÞÞ (the maximum number of ele-

ments around a) is bounded, depends on r and a but is indepen-
dent of h. In fact, we can also find a global integer
nr :¼maxa2N h

na
r independent of h.

Given two elements K1; K2 2 Ael
h ðaÞ, we can always find a se-

quence of elements

Phða;K1;K2Þ ¼ fK1 � K1
12;K

2
12; . . . ;Km

12 � K2g � Ael
h ðaÞ

where m 6 na
r;

such that Ki
12 and Kiþ1

12 (i ¼ 1; . . . ;m� 1) share an edge (for d ¼ 2;3).
We have the following lemma.

Lemma 4. Given a non-degenerate partition T h, for every node
a 2 N h, there exists ha > 0 such that:

r�~na
rþ1hK 6 ha 6 r~na

r�1hK ; for any K 2 Ael
h ðaÞ;
FE element K (in red). The big nodes are those coupled due to this term, and the blue
g projector (5) in the best case scenario (K � jðn1Þ � jðn2Þ � jðn3Þ, where fnigi¼1;2;3

all these FEs are different) and (c) the Clément interpolant.(For interpretation of the
is article.)
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where

~na
rðKiÞ :¼ max

Kj2Ael
h ðaÞ

cardðPhða;Ki;KjÞÞ; ~na
r :¼ min

Ki2Ael
h ðaÞ

~na
rðKiÞ 6 na

r:
Proof. Suppose the affine mapping FKð~xÞ ¼ B~xþ x0. Given two ele-
ments K1;K2 sharing an edge, denoted by E, we can easily prove
(see [9, Th. 3.1.3]):

jB�1
Ki
j�1
6 measðEÞ 6 jBKi

j; jBKi
j 6 hKi

; jB�1
Ki
j 6 q�1

Ki
; for i ¼ 1;2:

Therefore, we get r�1hK1 6 hK2 6 rhK1 . Now, let us take
K1 2 arg min

Ki2Ael
h ðaÞ

~na
rðKiÞ and define ha

:¼ hK1 . For any Kj 2 Ael
h ðaÞ, using

the definition of the sequence Phða;K1;KjÞ, we have:

max
Kj2Ael

h ðaÞ

ha

hKj

¼ max
Kj2Ael

h ðaÞ

hK1

hK2
1j

. . .
hKm�1

1j

hKj

6 r~na
r�1:

By its definition, ~na
r 6 na

r. Let us note that for nodes on faces na
r ¼ 2,

and on interior nodes the same result applies for na
r ¼ 1. It proves

the lemma. h

Let us define the d-weighted norm kvkd :¼ ðv ;vÞ
1
2
d, with the def-

inition of the d-weighted inner product in (7) or (8), depending on
the case considered. Finally, we note that rQ h � Dh, and so
dði?h ðrphÞÞ is well-defined. In the next theorem, we state the stabil-
ity of the numerical method (6). It relies on the following assump-
tion, which is also required for the OSS method. We define
p?h ðvÞ :¼ v � phðvÞ, where phðvÞ has been defined in (9).

Assumption 5. For any vh 2 Dh

cHkvhkd 6 kp?h ðvhÞkd þ kph;0ðvhÞkd
for some cH > 0 independent of h.

This assumption says that the d-weighted projection of vh on
Vh \ V?h;0 can be uniformly bounded by its Vh;0 and V?h projections.
We refer to [12] for the proof that this condition holds for simpli-
cial meshes. The OSS formulation also relies on this assumption, as
soon as we consider the projector phð�Þ. Both OSS with ph;0ð�Þ and
NPS with ih;0ð�Þ do not need this assumption anymore.

Theorem 6. For the definition of the d-product in (7) or (8), for any
ph 2 Qh

bkphkQ 6 sup
vh2Vh;0

ðph;r � vhÞ
kvhkV

þ ki?h ðrphÞkd

for some b > 0 independent of h.
Proof. Let us consider the numerical analysis for the element-wise
case (7), since the one for the nodal-based case (8) is slightly sim-
pler. Since dðph;0ðrphÞÞ 2 Vh;0 by construction, we get:

�ðph;r�dðph;0ðrphÞÞÞ¼ ðrph;dðph;0ðrphÞÞÞ
¼ ðph;0ðrphÞ;dðph;0ðrphÞÞÞ
¼
X
K2T h

X
a;b2N hðKÞ

daph;0ðrphÞ
aph;0ðrphÞ

bð/a;/bÞK

Jkph;0ðrphÞkd:

We have used the definition of the projector (10) and the inequality
c�1

1 dK 6 da 6 c1dK for 0 < c1 6 r2ðnr�1Þ, consequence of Lemma 4.
Using the local inverse inequality (12), we get

kdðph;0ðrphÞÞk
2
V 6

X
K2T h

mh�2
K kdðph;0ðrphÞÞÞk

2
K K kph;0ðrphÞkd:
Combining these results, we get:

kph;0ðrphÞkd K sup
vh2Vh;0

ðph;r � vhÞ
kvhkV

:

Clearly, the stabilization term provides control over ði?h ðrphÞ;
i?h ðrphÞÞd ¼ ki

?
h ðrphÞk

2
d . Let us recall the following result, that fol-

lows from [14, Lemma 9.7] and the fact that ð/a;/aÞK ghd
K for any

a 2 N hðKÞ. For any FE K 2 T h and any FE function vh 2 Dh

c�1
m

X
a2N hðKÞ

ðva
hÞ

2ð/a;/aÞK 6
X

a;b2N hðKÞ
va

hv
b
hð/

a;/bÞK

6 cm

X
a2N hðKÞ

ðva
hÞ

2ð/a;/aÞK ð14Þ

for a constant cm > 0 that does not depend on r or h. We have:

kp?h ðrphÞk
2
d K

X
K2T h

X
a2N hðKÞ

dKðp?h ðrphÞ
aÞ2ð/a;/aÞK Kðp?h ðrphÞ;dðp?hrphÞÞ

¼ ðp?h ðrphÞ;dðp?h ðrphÞÞþðp?h ðrphÞ;dðphðrphÞ� ihðrphÞÞ

¼ ðp?h ðrphÞ;dði
?
h ðrphÞÞ

Kkp?h ðrphÞkdki
?
h ðrphÞkd;

where we have used the relation ðp?h ðrphÞ;whÞ ¼ 0 for any wh 2 Vh,
obtained from (9). Combining these results with Assumption 5 we
get:

krphkd K sup
vh2Vh;0

ðph;r � vhÞ
kvhkV

þ ki?h ðrphÞkd: ð15Þ

Now, using the continuous inf–sup condition, for any ph 2 Q
there exists vp 2 V0 with kvpkV ¼ 1 such that
bkphkQ 6 ðph;r � vpÞ. Using the Scott–Zhang projector ih;0 onto
Vh;0 that satisfies homogeneous boundary conditions, we have:

bkphkQ 6 ðrph; vp � ih;0ðvpÞÞ þ ðph;r � ih;0ðvpÞÞK krphkd

þ jðph;r � ih;0ðvpÞÞj
kihðvpÞkV

; ð16Þ

where we have used integration by parts, the interpolation estimate
(13) and the stability of the Scott–Zhang projector (obtained from
(13) for k ¼ s). We prove the theorem invoking (15) in (16). The
analysis for the nodal definition of d in (8) follows in a similar
way, with slight modifications. It is based on the fact that
ðd1

2ðvhÞ; d
1
2ðvhÞÞgðvh; dðvhÞÞ, which is a consequence of (14). h

The analysis for ih;0ð�Þ is straightforward and does not require
Assumption 5. The following corollary is a direct consequence of
this theorem and the coercivity of the viscous term mðru;ruÞ
¼ kuk2

V .

Corollary 7. The stabilized bilinear form chð�Þ defined in (6) and (7)
(or (6)–(8)) satisfies

b 6 inf
ðuh ;phÞ2Vh;0�Qh

sup
ðvh ;qhÞ2Vh;0�Qh

chðuh;ph;vh; qhÞ
ðkuhkV þ kphkQ ÞðkvhkV þ kphkQ Þ

for some b > 0 independent of h.
3.2. Convergence analysis

Finally, we show that method (6) is optimally convergent.

Theorem 8. The solution ðuh; phÞ of the discrete problem (6) and (7)
(or (6)–(8)) satisfies:

ku� uhkV þ kp� phkK inf
ðwh ;rhÞ2Vh;0�Qh

ðku�whkV þ kp� rhkQ Þ

þ ki?h ðrpÞkd:



Fig. 2. Sensitivity of GLS/VMS and NPS methods for some error quantities with respect to the stabilization parameter constant cd . The mesh refinement level is ‘ ¼ 6.
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Proof. Subtracting the continuous problem (2) and the discrete
one (6), we easily obtain:

chðwh � uh; rh � ph;vh; qhÞ ¼ chðwh � u; rh � p;vh; qhÞ
þ ði?h ðrpÞ; i?h ðrqhÞÞd ð17Þ

for any ðwh; rhÞ; ðvh; qhÞ 2 Vh;0 � Qh. Using the local estimate in (13)
with k ¼ l and the local inverse inequality (12), we have

ki?h ðrrhÞk2
d K

X
K2T h

dKkrrhk2
SK

K
X
K2T h

dK h�2
K krhk2

SK
K krhk2

Q : ð18Þ

This result can be used to prove the continuity of the bilinear form
chðwh � uh; rh � ph;vh; qhÞ in V � Q , i.e.

chðwh; rh;vh; qhÞ 6 ðkwhkV þ krhkQ Þ � ðkvhkV þ kqhkQ Þ;
for any ðwh; rhÞ; ðvh; qhÞ 2 Vh;0 � Q h: ð19Þ

Finally, invoking the stability result in Corollary 7 and inequalities
(18) and (19) in (17), we obtain:

kwh � uhkV þ krh � phkQ K ku�whkV þ kp� rhkQ þ ki
?
h ðrpÞkd:

Using the triangle inequality we prove the theorem. h

As a consequence, using e.g. the approximability properties of
the Scott–Zhang projector, we have the following corollary.

Corollary 9. Let us assume that the solution of the continuous problem
(1) satisfies ðu; pÞ 2 H1þaðXÞ � HaðXÞ for some a P 1. The solution
ðuh; phÞ of the discrete problem (6) and (7) (or (6)–(8)) satisfies:

ku� uhkV þ kp� phkK hlðm1
2kukH1þlðXÞ þ m�1

2kp� rhkHlðXÞÞ;
with l :¼minðru; rp þ 1;aÞ;

where ru and rp are the order of approximation of Vh and Qh

respectively.
4. Numerical experiments

4.1. h-convergence and cd-dependence

In order to test the convergence of the proposed method, we
analyze its convergence towards the exact solution as h& 0. We
have considered the Stokes problem on the unit square with exact
solution:

uðx; yÞ ¼ ð20xy3;5x4 � 5y4Þ; pðx; yÞ ¼ 60x2y� 20y3:

This test problem has been proposed in [20] and also used in [5]. We
have compared the GLS method, which coincides with VMS for lin-
ear FEs, and the NPS method in (6) and (7). We have used a family of
regular triangular FE meshes with h ¼ 2�l, with ‘ ¼ 1;2;3;4;5;6. For
this test problems, the difference between choices (7) and (8) is not
appreciable, since the family of meshes used in the convergence
analysis are regular. The difference between the element-wise and
nodal-wise definition of the stabilization parameter is expected to
be more significant for non-degenerate meshes, i.e. using adaptive
refinement, and remarkable for anisotropic meshes.

First of all, we have analyzed the sensitivity of both the GLS for-
mulation (3) and the NPS formulation (6). In Fig. 2 we have plotted
some quantities of the velocity and pressure error with respect to
cd. The GLS method has an optimal behavior at cd � 0:1 for all
quantities, but increasing cd has a clear negative impact on accu-
racy. On the contrary, the NPS formulation is quite insensitive to
cd; this behavior is particularly relevant for the L2-norm of the
velocity error in Fig. 2(a). Further, the NPS formulation seems to
sligthly improve for larger values of cd.

Taking the optimal value cd ¼ 0:1 for the GLS formulation, we
have plotted the error against the mesh size h in Fig. 3 for both
methods. We observe an almost identical behavior for both formu-
lations. Optimal quadratic convergence is attained for the L2-norm
of the velocity error, and a super-convergence order of 3

2 is ob-
served for the rest of quantities.



Fig. 3. Convergence analysis of GLS/VMS and NPS methods for some error quantities.

Fig. 4. Contour lines of the pressure field for the Poiseuille flow test.
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4.2. Pressure error on the boundary

The artificial pressure boundary layers that appear with GLS/
VMS formulations are well-known. Let us consider the Poiseuille
flow test in [12] for a structured mesh of 1,250 linear triangular
FEs; we refer to this work for a complete discussion about the mis-
behavior of the GLS/VMS formulation. We show the pressure con-
tours for both formulations in Fig. 4. The GLS/VMS formulation
produces a wrong solution, motivated by the fact that @np ¼ 0 is
weakly enforced on the boundary. On the other hand, even though
u R Vh, the NPS solution leads to the exact pressure, as the LPS for-
mulation in [5] (see this reference for a super-convergence proof).

5. Conclusions

In this work, we have considered a symmetric stabilization
method based on a non-standard version of the Scott–Zhang pro-
jector that is well-posed for L1ðXÞ functions. This low regularity
requirement is needed, in order to project FE pressure gradients,
which are discontinuous element-wise polynomials. Further, the
application of this projector over this type of functions is very sim-
ple and cheap and allows for an efficient implementation of the
method.
This projector has important benefits compared to the existing
choices: the L2ðXÞ projector in OSS [12] and the local projections in
LPS techniques [5,19]. On one hand, the projector is local, i.e. no
global linear system must be solved to compute the projections.
It allows to explicitly have the system matrix in memory, which
is required e.g. for ILU preconditioning of the full FE system matrix,
the use of direct solvers or substructuring domain decomposition
techniques for parallelization. Further, for iterative solvers, a global
projector requires nested solvers, one for the FE problem and
another one (per iteration) for the projection computation. So,
the local projection is very desirable in order to facilitate imple-
mentation, reduce CPU cost and work on distributed memory
machines. In particular, the extended stencil of the proposed meth-
od seems to be minimal. On the other hand, the proposed method
lightens the requirements of LPS techniques, since it does not
require any particular macro-element topology of the mesh or
bubble-enriched FE spaces.

Different alternatives of the method have been proposed,
depending on the nature of the stabilization parameter (nodal vs.
element definition) and the enforcement of Dirichlet boundary
conditions in the projector. Some implementation issues have been
addressed. Numerical analysis shows optimal stability and conver-
gence properties, which have also been checked via numerical
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experimentation. Compared to the GLS/VMS formulations, the
resulting method is less sensitive to the choice of the stabilization
parameter and does not exhibit the pressure misbehavior on the
boundary.

The method has been presented for the Stokes problem. How-
ever, we can apply it to Darcy’s or Maxwell’s systems, using the
ideas in [2], by replacing the L2ðXÞ projections by the Scott–Zhang
projector proposed herein.
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