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In this work, we propose a Robin–Robin preconditioner combined with Krylov iterations for the solution
of the interface system arising in fluid–structure interaction (FSI) problems. It can be seen as a partitioned
FSI procedure and in this respect it generalizes the ideas introduced in [S. Badia, F. Nobile, C. Vergara, J.
Comput. Phys. 227 (2008) 7027–7051]. We analyze the convergence of GMRES iterations with the Robin–
Robin preconditioner on a model problem and compare its efficiency with some existing algorithms. The
method is shown to be very efficient for many challenging fluid–structure interaction problems, such as
those characterized by a large added-mass effect or by enclosed fluids. In particular, the possibility to
solve balloon-type problems without any special treatment makes this algorithm very appealing com-
pared to the computationally intensive existing approaches.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction that solve only once (or just few times) per time step the fluid
In this paper, we focus on the solution of the time-dependent
fluid–structure interaction (FSI) problem, which arises when an
incompressible fluid interacts with a structure. In particular, we fo-
cus on modular algorithms that allow to reuse pre-existing fluid
and structure codes.

We are interested in those FSI problems where the added-mass
effect is high, that is when the ratio between the fluid and structure
densities is close to one (or larger). This typically appears in hemo-
dynamic applications. It has been reported in the literature
[41,9,18,29] that the solution of the FSI system using explicit par-
titioned approaches (also called loosely coupled) is problematic in
this situation. We refer to [44] for a discussion about the added-
mass effect for compressible flows. In general, explicit algorithms
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and structure sub-problems are unstable, unlike for low added-
mass problems such as those arising in aeroelasticity.

To obtain stable numerical schemes to solve the monolithic sys-
tem, one has then to consider algorithms that enforce exactly at
each time step the continuity of the velocity and normal stresses
at the fluid–structure interface. Among them, we consider modular
algorithms that involve separate fluid and structure evaluations
and that interact through the exchange of suitable transmission
conditions on the interface. These algorithms are based on domain
decomposition preconditioners (see [11]), which are applied to the
interface equation (Schur complement) related to the whole FSI sys-
tem. Then, the preconditioned system is solved using an iterative
solver. Let us note that any approach employing domain decompo-
sition preconditioners is monolithic, in the sense that it provides
the monolithic solution. Thus, at convergence, they guarantee the
continuity of the velocity and the normal stress at the interface
(strong coupling).

These preconditioned systems are usually solved with (relaxed)
Richardson iterations as iterative solver. The most popular of such
schemes is the so-called Dirichlet–Neumann (DN) algorithm, which
consists in solving iteratively the fluid equations, given the structure
velocity at the FSI interface (Dirichlet boundary condition), and the
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Fig. 1. Example of domain Xt . Fluid domain Xt
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s (right).
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structure equations, given the fluid normal stress at the interface
(Neumann boundary condition). However, it has been shown in
[9] that in presence of a large added-mass effect, the DN procedure
needs a strong relaxation and features a very slow convergence. In
[11], Neumann–Dirichlet and Neumann–Neumann preconditioners
(see [37]) have been applied with Richardson iterations. In [2] a new
class of iterative procedures based on Robin transmission conditions
has been introduced (Robin–Robin (RR) schemes), which generalizes
the Dirichlet–Neumann approach. In particular, the results in [2]
indicate that among all possibilities, the Robin–Neumann (RN) algo-
rithm exhibits very good performances for a wide range of added-
mass and is by far more efficient than the DN strategy. More re-
cently, in [5] RR schemes have been extended to a fluid coupled with
a poroelastic incompressible structure.

On the same lines, [27] and more recently [3] propose precon-
ditioned Krylov iterations over the interface equation, instead of
Richardson iterations. In particular, [27] considers preconditioned
Newton–Krylov methods, whereas [3] analyzes both theoretically
and numerically the DN preconditioned GMRES method applied
to a suitable linearization of the interface equation. The results in
[3] have highlighted the better performance of DN-GMRES
compared to the DN-Richardson version, in presence of a large
added-mass effect.

For completeness, we also mention other monolithic ap-
proaches that have been recently proposed, which however are
not modular and do not lead to separate solutions of fluid and
structure subsystems. Again, the efficiency of non-modular
approaches will depend on how good (and cheap) is the precondi-
tioning. Among these, we mention the strategies based on the
application of GMRES to the monolithic system [23,16]. Realistic
vascular problems have been solved in [6,7] using a diagonal pre-
conditioner and GMRES iterations over the whole FSI system (see
also [42,43]). In [3], more elaborated non-modular ILUT precondi-
tioners and Schur complement preconditioners (called PIC
schemes) have been compared in terms of computational cost for
test problems with large added-mass effect. In [14], the authors
propose a particular coupled FSI problem where the well-known
Chorin–Temam method is used for the fluid subsystem. The pres-
sure Poisson equation is kept strongly coupled to the structural
problem to obtain a stable discretization. Similar ideas, but on a
purely algebraic level, have been investigated in [33,4] where the
algebraic Chorin–Temam scheme (see [31]) and the Yosida scheme
(see [35,34]), have been extended to the FSI problem. Finally, we
mention the work [8] which proposes a global weak formulation
relying on the imposition of the kinematic coupling conditions
(continuity of the velocity at the interface) by the Nitsche method.

The goal of the present work is two-fold. Firstly, moving from
the idea proposed in [27,3], we reinterpret the Robin–Robin parti-
tioned scheme introduced in [2] as a preconditioned Richardson
algorithm (RR-Richardson) over the Schur complement equation,
and identify the corresponding preconditioner. This allows us to
further apply the RR-preconditioner together with more efficient
Krylov methods such as GMRES (RR-GMRES). In particular, we fo-
cus on the Robin–Neumann GMRES method (RN-GMRES) and pro-
vide a theoretical convergence analysis for a model linear FSI
problem as well as a numerical comparison of performances
among RN-Richardson, RN-GMRES and DN-GMRES.

We also study the sensitivity of RN-Richardson and RN-GMRES
with respect to the coefficient appearing in the Robin transmission
condition. A good candidate for such coefficient has been given in
[30] in the context of hemodynamics applications.

The second goal of this paper is to propose the algorithms based
on the RN preconditioner as effective tools to solve enclosed fluid
problems, where only Dirichlet or flow rate boundary conditions
are prescribed on the fluid boundary (excluding the FS interface).
It is well known that this kind of problems cannot be solved with
a straightforward application of the DN technique, since the mass
conservation law is in general violated [22,29], and specific treat-
ments, such as the introduction of Lagrange multipliers or artificial
compressibility, must be considered (see Section 7.1).

In both cases, the computational costs are quite high. On the
contrary, our Robin condition-based algorithms can be straightfor-
wardly applied to this kind of problems. Let us note that non-mod-
ular preconditioners have no difficulty solving fluid–structure
interaction problems in fully enclosed domains (see [7,42]).

The outline of the paper is as follows. In Section 2 we set the FSI
problem both in its continuous and time-discrete forms and derive
the algebraic interface problem. In Section 3, we reinterpret the RR
partitioned procedure proposed in [2] as partitioned Richardson
iterations on the algebraic interface problem and identify the cor-
responding preconditioner. In Section 4, we analyze the RR-GMRES
solver and reducing it to a sequence of calls to fluid and structure
solvers with suitable Robin boundary conditions, whilst in Section
5 we highlight its modularity. In Section 6, we provide the conver-
gence analysis of the RN-GMRES scheme applied to a model linear
FSI problem. In Section 7, we review the difficulties related to the
solution of enclosed flow problems by traditional partitioned pro-
cedures (such as DN) and show how RR-preconditioned Krylov
methods naturally overcome such difficulties In Section 8, we pres-
ent several 2D and 3D numerical results, confirming the theoretical
observations of the previous sections and finally in Section 9 we
draw some conclusions.
2. Problem setting

2.1. The continuous FSI problem

Let us consider the fluid–structure domain Xt � Rd (d ¼ 2;3,
being the space dimension), where t here denotes time. This do-
main is divided into a sub-domain Xt

s occupied by an elastic struc-
ture and its complement Xt

f occupied by the fluid (see Fig. 1). The
fluid–structure interface Rt is the common boundary between Xt

s

and Xt
f , i.e. Rt ¼ @Xt

s \ @X
t
f . Furthermore, nf is the outward normal

to Xt
f on Rt and ns ¼ �nf is its counterpart for the structure do-

main. The initial configuration X0 at t ¼ 0 is considered as the ref-
erence one. In order to describe the evolution of the whole domain
Xt we define two families of mappings:

L : X0
s � ð0; TÞ ! Xt

s; ðx0; tÞ# x ¼Lðx0; tÞ

and

A : X0
f � ð0; TÞ ! Xt

f ; ðx0; tÞ# x ¼Aðx0; tÞ:

The maps Lt ¼Lð�; tÞ and At ¼Að�; tÞ track the solid and the
fluid domains in time. Due to the continuity of the velocity at the
interface, the two mappings have to satisfy the condition

Lt ¼At on Rt; 8t 2 ð0; TÞ: ð1Þ

To describe the structure kinematics we use a Lagrangian
framework. Therefore, the solid mapping Lt is straightforwardly
determined by
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Ltðx0Þ ¼ x0 þ ĝðx0; tÞ;

where ĝ denotes the displacement of the solid medium with respect
to the reference configuration.

The fluid problem is stated in an Arbitrary Lagrangian–Eulerian
(ALE) framework (see e.g. [24,13]). The fluid domain mapping At

is defined by an arbitrary extension of its value on the interface,
which is given by condition (1):

Atðx0Þ ¼ x0 þ Extðĝðx0; tÞjR0 Þ:

A classical choice is to consider a harmonic extension operator
in the reference domain. This mapping does not necessarily track
the fluid particles far from the interface Rt .

For any function ĝ : X0
s � ð0; TÞ ! R defined in the reference so-

lid configuration, we denote by g ¼ ĝ � ðLtÞ�1 its counterpart in the
current domain:

g : Xt
s � ð0; TÞ ! R; gðx; tÞ ¼ ĝððLtÞ�1ðxÞ; tÞ:

An analogous notation is adopted for the fluid domain: given
f̂ : X0

f � ð0; TÞ ! R defined in the reference fluid configuration, we
denote by f ¼ f̂ � ðAtÞ�1 its counterpart in the current fluid
domain.

We define the ALE time derivative as follows:

@t f jx0
: Xt

f � ð0; TÞ ! R; @tf jx0
ðx; tÞ ¼ @t f̂ � ðAtÞ�1ðxÞ:

Moreover, we calculate the fluid domain velocity w as

wðx; tÞ ¼ @txjx0
¼ @tA

t � ðAtÞ�1ðxÞ:

The solid is assumed to be an elastic material, characterized by
a constitutive law relating the Cauchy stress tensor Ts to the defor-
mation gradient FðĝÞ ¼ I þrĝ.

The fluid is assumed to be homogeneous, Newtonian and
incompressible. We denote by T f its Cauchy stress tensor:

T f ðu; pÞ ¼ �pI þ 2lðruþ ðruÞTÞ;

where p is the pressure u the velocity and l the dynamic viscosity.
In order to write the fluid problem in ALE form, let us apply the

chain rule to the velocity time derivative:

@tujx0
¼ @tuþw � ru;

where @tu is the partial time derivative in the spatial frame (Euleri-
an derivative).

Then, the fluid–structure problem in strong form reads:

1. Fluid–structure problem. Find the fluid velocity u, pressure p and
the structure displacement ĝ such that

qf @tujx0
þ qf ððu�wÞ � rÞu�r � T f ¼ f f in Xt

f � ð0; TÞ; ð2aÞ
r � u ¼ 0 in Xt

f � ð0; TÞ; ð2bÞ

qs@tt ĝ�r �cT s ¼ cf s in X0
s � ð0; TÞ; ð2cÞ

u ¼ @tg on Rt � ð0; TÞ; ð2dÞ
T s � ns þ T f � nf ¼ 0 on Rt � ð0; TÞ: ð2eÞ

2. Geometry problem. Find the fluid domain displacement

Atðx0Þ ¼ x0þExtðĝjR0 Þ; w¼ @tA
t � ðAtÞ�1

; Xt
f ¼AtðX0

f Þ: ð3Þ

Here, qf and qs are the fluid and structure densities and f f andcf s the forcing terms. Two transmission conditions are enforced at
the interface: the continuity of fluid and structure velocities (2d), due
to the adherence condition, and the continuity of normal stresses
(2e), expressing the action–reaction principle. The fluid and struc-
ture problems are also coupled by the geometrical condition (3),
leading to a nonlinear problem. Finally, system (2) and (3) has to
be endowed with suitable boundary conditions on @Xt n Rt and ini-
tial conditions. Since the choice of boundary and initial conditions
is not essential in the forthcoming discussion, they will not be de-
tailed here.

2.2. The time discretization and the algebraic problem

In what follows we discretize in time system (2) and (3). Let Dt
be the time step size and tn ¼ nDt for n ¼ 0; . . . ;N. We denote by zn

the approximation of a time dependent function z at time level tn.
Let us define the backward difference operator dt as dtznþ1 ¼
ðznþ1 � znÞ=Dt. The discrete ALE derivative is evaluated by the fol-
lowing expression:

dtznþ1jx0
¼ ðznþ1 � zn �An � ðAnþ1Þ�1Þ=Dt:

We consider a backward Euler scheme for the time discretiza-
tion of the fluid problem and an implicit first order BDF scheme
for the structure problem. Observe, however, that all the parti-
tioned procedures proposed in this work can be easily extended
to other, high order, time marching schemes.

In all cases we obtain a nonlinear problem, since the convective
term and the interface position are unknown, and possibly the
structure is non-linear. Several strategies have been proposed to
solve such monolithic problem. To handle all nonlinearities, one
could consider implicit strategies, obtained for example by a full
Newton method (where the tangent operator include shape deriv-
atives, see [15]), by quasi-Newton (for instance by dropping the
shape derivatives in the tangent operator, see [20]) or by other
fixed-point type iterations where no shape derivatives are in-
volved. Alternatively, one can treat the non-linear terms in an ex-
plicit way by extrapolation from previous time steps (semi-implicit
algorithm, see, e.g., [14,30,4]). Whatever strategy is adopted, a se-
quence of linearized FSI problems (implicitly coupled through the
interface conditions (2d) and (2e)) has to be solved.

Let us now consider the algebraic counterpart of such linearized
problem. To this aim, let X� be the (known) domain where this
problem is solved. X� is the domain obtained at the previous sub-
iteration in the fixed point loop if an implicit treatment of the
interface position is considered, while it is a suitable extrapolation
of fluid domains from previous time steps if a semi-implicit algo-
rithm is applied. We introduce a suitable triangulation of the FSI
domain X� (for the sake of simplicity assumed conforming at the
interface R�) and consider a finite element discretization in space.
For the sake of exposition we skip the details and we refer the
reader to [4].

By this procedure, we are led at each time step to the solution of
the following linear system of equations

Cff CfR 0 0
0 MR �MR 0

CRf CRR NRR NRs

0 0 NsR Nss

26664
37775

Vf

VR

UR

Us

26664
37775 ¼

bf

0
bR

bs

26664
37775; ð4Þ

where we have split the degrees of freedom associated to nodes
interior to the fluid and structure domain from the degrees of free-
dom associated to the FSI interface and we have omitted the time
step superscript for simplicity. The vector Vf contains interior veloc-
ity values and all the pressure values for the fluid, Us contains inte-
rior velocity values for the structure problem, whereas VR and UR

contain the interface velocity values for the fluid and for the struc-
ture, respectively.

The first row is the fully discrete version of the momentum and
mass conservation equations for the fluid problem in the interior
nodes, while the second row states the continuity of the velocities
at the interface. Indeed, we have indicated by MR the interface
mass matrix, which is invertible, so that the second equation is
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equivalent to VR ¼ UR. The third equation enforces continuity of
normal stresses in a weak form. Finally, the fourth row is the struc-
ture problem in the interior nodes.

The right-hand side (RHS) includes time derivative terms, body
forces and other terms which come from the fact that the structure
problem has been rewritten in terms of velocities instead of
displacements.

2.3. The interface problem

As suggested in [11,27] the FSI problem can also be understood
as an interface problem in which the only unknown is the velocity
at the fluid–structure interface. At the continuous level, the inter-
face problem can be written using the fluid and structure Steklov–
Poincaré operators (see e.g. [11]). For the fully discrete FSI system,
the interface problem is obtained by means of the fluid and struc-
ture Schur complement matrices (discrete versions of the Steklov–
Poincaré operators, see [3]). System (4) is equivalent to

ðeCR þ eNRÞUR ¼ ~bR; ð5Þ

whereeCR ¼ CRR � CRf C
�1
ff CfR; ð6aÞeNR ¼ NRR � NRsN
�1
ss NsR ð6bÞ

are the fluid and structure Schur complement matrices andebR ¼ bR � CRf C�1
ff bf � NRsN

�1
ss bs

is the corresponding body force for the interface problem.
It is well known (see e.g. [37]) that for finite element approxi-

mation the system matrix of the interface problem (5) has a condi-
tion number of order Oðh�1Þ whereas the one for the global system
matrix in (4) is Oðh�2Þ. Anyway, this matrix is still ill-conditioned
and an optimal preconditioner that will cure the dependence of
the condition number of the matrix with respect to the mesh size
is required. The development of preconditioners for interface prob-
lems is one of the main goals of domain decomposition theory (see
e.g. [37]). We refer to [11] for an extension of the domain decom-
position theory to fluid–structure interaction problems.

In particular, it has been shown in [11] that the classical parti-
tioned procedure known as the Dirichlet–Neumann scheme (see,
e.g., [32,29]) can be interpreted as a Richardson method over the
preconditioned system

eN�1
R ðeCR þ eNRÞUR ¼ eN�1

R
ebR ð7Þ

the preconditioner being PDN ¼ eNR. In what follows, we refer to this
scheme as DN-Richardson. It is well known that this method is opti-
mal with respect to h since the condition number of the precondi-
tioned matrix is uniform with respect to the characteristic mesh
size h (see [37]). However, for the heterogeneous domain decompo-
sition encountered in FSI, the efficiency of this preconditioner
strongly depends on the fluid and structure physical parameters
and the time step size (see e.g. [9]). In particular, the performance
of the preconditioner deteriorates when the ratio qs=qf decreases
(increasing theadded-mass effect, see [41,9,18]), or when slender do-
mains are considered. Therefore, an optimal preconditioner for the
FSI interface problem has to be optimal also with respect to the
added-mass effect.

Alternatively to Richardson iterations, one could use more effi-
cient algorithms. In particular, it is possible to consider Krylov
methods over the preconditioned system (7) (see [27]). As in [3]
we will focus in this work on the GMRES method. Every iteration
of this algorithm requires a matrix–vector multiplication with
the system matrix eN�1

R ðeNR þ eCRÞ. This matrix–vector product can
be easily computed in a modular way if one disposes of separate
fluid and structure codes. In [3] it has been shown that the DN pre-
conditioner combined with GMRES iterations (DN-GMRES) per-
forms much better than DN-Richardson for large added-mass
effects. However, its performance is still negatively affected by
the added-mass and by the time step size.

In [2] a new family of partitioned procedures, based on Robin
transmission conditions, has been introduced. Some of these
schemes look very attractive, since their dependence on the
added-mass effect is limited, as revealed by the convergence anal-
ysis and numerical tests proposed therein. In the next section, we
interpret these partitioned schemes as preconditioned Richardson
iterations on the interface problem and identify the corresponding
RR preconditioner to be used later with more efficient Krylov solv-
ers (such as GMRES).
3. The Robin–Robin preconditioners

Let us recall the sequential Robin–Robin partitioned scheme for
the solution of 4 introduced in [2]. For general sequential Robin–
Robin schemes in the framework of domain decomposition we re-
fer, e.g., to [26,1,19]. This algorithm is suitable for problems with
large added-mass effect, such as in hemodynamic applications
(blood-vessel systems). Both fluid and structure sub-problems
are supplemented with Robin transmission conditions, obtained
by linear combinations of the interface conditions with coefficients
af and as, respectively. The choice of the coefficients in these com-
binations is crucial to achieve good convergence properties. A pos-
sible choice that provides very good performance in hemodynamic
applications has been proposed in [2] and has been obtained start-
ing from the simplified fluid and structure models presented in
[9,30], respectively. By setting as ¼ 1 or as ¼ 0 in the structure
problem, one recovers other coupling strategies, namely Robin–
Dirichlet and Robin–Neumann, respectively. Among all possible
choices, the Robin–Neumann algorithm turns out to be the most
efficient (see [2]). In particular, it is much more efficient than the
classical Dirichlet–Neumann scheme in problems with large
added-mass effects. However, for completeness, in the next section
we discuss the more general Robin–Robin approach.

The sequential Robin–Robin scheme consists of the following
steps:

Algorithm 1: Sequential Robin–Robin
Let k be the iteration index. Given ðUk

R;U
k
s Þ and the quantities at

the previous time steps, we solve

1. Fluid sub-problem (Robin)

Cff CfR

CRf CRR þ af MR

� � Vkþ1
f

Vkþ1
R

" #
¼

bf

bR

� �
�

0
NRsU

k
s þ ðNRR � af MRÞUk

R

� �
:

ð8aÞ

2. Structure sub-problem (Robin)

NRR þasMR NRs

NsR Nss

� �
Ukþ1

R

Ukþ1
s

" #
¼

bR

bs

� �
� CRf V

kþ1
f þ ðCRR �asMRÞVkþ1

R

0

" #
ð8bÞ

with af ;as > 0, and iterate until convergence on ðUk
R;U

k
s Þ.

Let us now reinterpret this scheme as preconditioned Richard-
son iterations over system (5).

We have the following:

Lemma 1. The sequential Robin–Robin scheme (8) is equivalent to
solve the interface problem (5) using preconditioned Richardson
iterations with preconditioner
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PRR ¼
1

af þ as
ðeCR þ af MRÞM�1

R ðeNR þ asMRÞ: ð9Þ

Proof. Every preconditioned Richardson iteration of the method
consists of: given Uk

R compute Ukþ1
R such that

1
af þ as

ðeCR þ af MRÞM�1
R ðeNR þ asMRÞdUkþ1

R

¼ ~bR � ðeCR þ eNRÞUk
R; ð10Þ

where dUkþ1
R ¼ Ukþ1

R � Uk
R. We can split (10) into two different steps

ðeCR þ af MRÞdVkþ1
R ¼ ~bR � ðeCR þ eNRÞUk

R; ð11aÞ
ðeNR þ asMRÞdUkþ1

R ¼ ðaf þ asÞMR dVkþ1
R : ð11bÞ

Setting now dVkþ1 ¼ Vkþ1
R � Uk

R and rearranging (11a), we have

ðeCR þ af MRÞVkþ1
R ¼ ~bR � ðeNR � af MRÞUk

R: ð12Þ

Using the definitions (6b) in (12), we get

1. Auxiliary structure sub-problem (Dirichlet)

Nss
eUkþ1

s ¼ bs � NsRUk
R:

2. Fluid sub-problem (Robin)

Cff CfR

CRf CRR þ af MR

� � Vkþ1
f

Vkþ1
R

" #

¼
bf

bR

� �
�

0
NRs

eUkþ1
s þ ðNRR � af MRÞUk

R

� �
:

On the other hand, using (12) and (11b) we get:

ðeNR þ asMRÞUkþ1
R ¼ ðeNR þ asMRÞðUk

R þ dUkþ1
R Þ

¼ ðeNR þ asMRÞUk
R þ ðaf þ asÞMRdVkþ1

R

¼ ðeNR � af MRÞUk
R þ ðaf þ asÞMRVkþ1

R

¼ ~bR � ðeCR þ af MRÞVkþ1
R þ ðaf þ asÞMRVkþ1

R

¼ ~bR � ðeCR � asMRÞVkþ1
R ;

which corresponds to

(3) Structure sub-problem (Robin)

NRR þ asMR NRs

NsR Nss

� �
Ukþ1

R

Ukþ1
s

" #

¼
bR

bs

� �
� CRf Vkþ1

f þ ðCRR � asMRÞVkþ1
R

0

" #
:

Observe that the second equation of the third step and the first
step coincide. Then, the solution of the auxiliary problem is simplyeUkþ1

s ¼ Uk
s . Moreover, if we set eU1

s ¼ Uold
s , with Uold

s the solution at
the previous time step, the auxiliary problem can be eliminated at
all. Thus the Richardson algorithm preconditioned with (9) coin-
cides with (8). h

We point out that the preconditioner PRR is called sequential be-
cause fluid and structure Robin sub-problems must be performed
in a sequential fashion. In what follows, we refer to this scheme
as RR-Richardson.

Remark 1. An alternative version of the RR preconditioner,
introduced in context of domain decomposition methods, can be
obtained as a natural extension of the Neumann–Neumann (NN)
preconditioner (see [12,21]). Applied to the FSI problem (5) it is
defined as:
PkRR ¼ ðbðeCR þ af MRÞ�1 þ ð1� bÞðeNR þ asMRÞ�1Þ�1
;

where b 2 ð0;1Þ is arbitrary and affects the convergence rate (paral-
lel RR preconditioner). It entails the solution of two fluid and two
structure sub-problems at each iteration. However, the numerical
results obtained for this method are fairly disappointing and have
not been included.
4. RR-preconditioned GMRES method

The reinterpretation of the RR partitioned procedures as pre-
conditioned Richardson iterations on the interface system is not
just formal. It allows us to use more efficient (orthonormal) Krylov
methods on the (preconditioned) interface problem instead of
Richardson iterations (see [3] for the DN algorithm). In particular,
we can consider the GMRES algorithm, obtaining the RR-GMRES
scheme. In order to do that, we have to generate the Krylov basis
associated to the matrix Q ¼ P�1

RR ðeCR þ eNRÞ, started with the initial
preconditioned residual r0 ¼ P�1

RR ½~bR � ðeCR þ eNRÞU0
R�, where U0

R is
the initial guess for the interface velocity. The Krylov space that
is generated at the mth iteration of the GMRES method is

Km :¼ spanfr0;Qr0;Q 2r0; . . . ;Q m�1r0g:

In fact, the GMRES method uses an orthonormal basis fzjg such
that

spanfz0; z1; . . . ; zm�1g ¼Km:

Given zk, in order to get zkþ1 we have to evaluate a matrix–vec-
tor product

w ¼ P�1
RR ðeNR þ eCRÞzk; ð13Þ

and then compute zkþ1 ¼ w�PKM w, where PKM is the orthogonal
projection operator onto KM .

For the sequential RR preconditioner, the following result holds:

Lemma 2. The matrix–vector product (13) can be rearranged in the
following three steps:

ðeCR þ af MRÞ~vR ¼ ðeNR � af MRÞzk; ð14aÞ

ðeNR þ asMRÞvR ¼ ðeCR � asMRÞ~vR; ð14bÞ

w ¼ zk � vR: ð14cÞ

Proof. From (14a) and (14b), we have

vR ¼ ðeNR þ asMRÞ�1ðeCR � asMRÞðeCR þ af MRÞ�1ðeNR � af MRÞzk:

Then, from (14c), we obtain

w ¼ ½I � ðeNR þ asMRÞ�1ðeCR � asMRÞðeCR þ af MRÞ�1ðeNR � af MRÞ�zk

¼ ðeNR þ asMRÞ�1½ðas þ af ÞMR

þ ðas þ af ÞMRðeCR þ af MRÞ�1ðeNR � af MRÞ�zk

¼ P�1
RR ðeNR þ eCRÞzk

with PRR as in (9). h

We can rewrite the matrix–vector product (13) as a set of sub-
problems. In particular, the first two equations in (14) leads to the
following

Algorithm 2: Sequential Robin–Robin GMRES (matrix–vector
multiplication)

1. Auxiliary structure sub-problem (Dirichlet)

Nss ~vs ¼ �NsRzk:



Table 1
Sub-problems characterizing the different algorithms: R and D indicate that the sub-
problem is equipped with a Robin or a Dirichlet boundary condition at the interface.

Richardson GMRES

PRR Fluid 1R – Struct. 1R Fluid 1R – Struct. 1D + 1R
PkRR Fluid 1D + 1R – Struct. 1D+1R Fluid 1D + 1R – Struct. 1D + 1R

Ωf

Σ

Γ

Γ

Γ1 2

3

L

R

Fig. 2. Reference domains Xf .
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2. Fluid sub-problem (Robin)

Cff CfR

CRf CRR þ af MR

� �
~vf

~vR

� �
¼

0
NRs ~vs þ ðNRR � af MRÞzk

� �
:

3. Structure sub-problem (Robin)

NRR þ asMR NRs

NsR Nss

� �
vR

vs

� �
¼

CRf ~vf þ ðCRR � asMRÞ~vR

0

� �
:

We point out that the auxiliary structure sub-problem arises
from the matrix–vector product eNRzk which involves the product
N�1

ss NsRzk, that is a structure problem with Dirichlet boundary con-
ditions. The same occurs for the matrix–vector product eCRevR that
involves a fluid sub-problem with Dirichlet boundary conditions.
However, in this case we have C�1

ff CfR ~vR ¼ ~vf and this sub-problem
can be skipped.

From a computational point of view, the extra cost of one
GMRES iteration (matrix–vector multiplication (13)) with respect
to one Richardson iteration is given by the auxiliary structure prob-
lem in step (1), which must be solved and cannot be avoided (as
done in Lemma 1 for the Richardson iterations). Note that also
DN-GMRES requires only two sub-problems per iterations (see
[3]). In any case, the extra sub-problem is a structural one, which
in most real applications (such as in hemodynamics) is much
cheaper than the fluid one.

In conclusion, we can compute the matrix–vector product (13),
which allows us to build the new basis element of the Krylov space,
by solving the same systems that appear when using Richardson
iterations, the only modification being the extra auxiliary structure
sub-problem.

Remark 2. The last step (Robin problem for the structure) could be
replaced by

ðeNR þ asMRÞw ¼ ðaf þ asÞð~vR þ zÞ

slightly reducing the computational cost.

In Table 1 we indicate the sub-problems that have to be solved
at each iteration for the methods considered.

5. On the modularity of the RR algorithms

In [2] we pointed out the modularity of the sequential RR-Rich-
ardson scheme, that is the possibility of using ‘‘black-box” fluid and
structure solvers. Here, we want to stress that also the sequential
RR-GMRES schemes is modular.

The building block of all algorithms presented so far (Algo-
rithms 1 and 2) is the solution of Robin problems as (8a) and
(8b). Our goal is to show that all quantities appearing in (8a) are
easily accessible when using ‘‘black-box” fluid and structure solv-
ers. Therefore, the proposed algorithms are actually modular.

Let us split the boundary forcing term in (8a) as bR ¼ bf
R þ bs

R

and assume that the term Us satisfies the algebraic system (as it
is the case in Algorithms 1 and 2)

NssUs ¼ bs � NsRUR
corresponding to a Dirichlet structure problem. The residual of the
structure equation on the interface nodes, given in algebraic form
by

Rðbs;Us;URÞ ¼ NRsUs þ NRRUR � bs
R

represents the structure normal stress at the interface in a weak
form (i.e. already integrated against the structure shape functions
corresponding to the interface degrees of freedom, see e.g. [4]).
Hence, system (8a) can be rewritten as

Cff CfR

CRf CRR þ af MR

� �
Vf

VR

� �
¼

bf

bf
R

" #
�

0
Rðbs;Us;URÞ � af MRUR

� �
:

ð15Þ

Let us denote by _gh the finite element function whose nodal val-
ues are given by the vectors ðUs;URÞ (structure velocity), gh the cor-
responding structure displacement, and ðuh; phÞ the finite element
fluid functions corresponding to the vectors ðVf ;VRÞ. It is easy to
see that system (15) corresponds to a standard fluid problem with
the following Robin boundary conditions at the interface:

af uh þ T f ðuh; phÞ � nf ¼ �T sðghÞ � ns þ af _gh:

Exactly the same considerations apply to the structure Robin
problem (8b). We see that the algorithms we have proposed so
far are modular provided we dispose of fluid and structure solvers
that allow us to impose Robin boundary conditions with non-zero
right hand side and that can output the velocity and normal stress
on the interface, information that has to be passed to the other
sub-problem.

6. Analysis of a model problem

In this section, we analyze the convergence of the RN-GMRES
algorithm for a FSI model problem and compare its reduction fac-
tor to the one found in [3] for DN-GMRES (see also [28] for a
numerical investigation of DN-GMRES in the compressible case).
The RN-GMRES scheme is obtained from the general RR-GMRES
setting as ¼ 0. The simplified FSI model considered here has been
previously introduced in [9] for the analysis of the DN-Richardson
scheme. We refer to [9,2] for the analysis of DN-Richardson
scheme, to [3] for the analysis of DN-GMRES and to [2] for the anal-
ysis of RN-Richardson.

The model problem is a simplified blood-vessel system. We take
a rectangular fluid domain Xf 2 R2 of height R and length L (see
Fig. 2), which will be considered fixed in time.

The structure is placed on the top side of Xf and is considered a
one-dimensional body, that is Xs 	 R, where R denotes the (fixed)
fluid–structure interface. We assume that it is described by the
generalized string model (see e.g. [36]) and that only normal dis-
placements are possible. The model for the fluid is linear, incom-
pressible and inviscid. The fluid problem is discretized in time by
using the implicit backward Euler scheme. A first order BDF
scheme is considered for the structure. Then, the FSI coupled prob-
lem, discretized in time reads as:
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qf dtuþrpnþ1 ¼ 0 in Xf � ð0; TÞ; ð16aÞ
r � u ¼ 0 in Xf � ð0; TÞ; ð16bÞ
u � nf ¼ dtgnþ1 on R� ð0; TÞ; ð16cÞ

qsHs
gnþ1 � 2gn þ gn�1

Dt2 þ agnþ1 � b@xxgnþ1 ¼ pnþ1 in Xs � ð0; TÞ;

ð16dÞ

with suitable boundary conditions on Xf n R. Here, g ¼ gðx; tÞ is the
displacement in the direction of nf ;Hs is the thickness of the struc-
ture, a ¼ EHs=R2ð1� m2Þ; E being the Young modulus and m the Pois-
son coefficient, b ¼ kGHs;G being the shear stress modulus and k the
Timoshenko shear correction factor. We observe that the continuity
of the normal stress at the interface is given by the structure equa-
tion itself. In [9,2], it has been shown that the previous problem can
be reduced to the following interface equation

ðqsHsIþ qfMÞ
gnþ1 � 2gn þ gn�1

Dt2 þ agnþ1 þNgnþ1

¼ p̂nþ1 in Xs � ð0; TÞ;

where I is the identity operator, p̂nþ1 takes into account non-homo-
geneous boundary conditions on @Xf nR and M : H�1=2ðRÞ !
H1=2ðRÞ stands for the added-mass operator which consists of: given
c 2 H�1=2ðRÞ, find q 2 H1ðXf Þ such that

� Dq ¼ 0 in Xf ;

q ¼ 0 on C1 [ C2;

@q
@n
¼ 0 on C3;

@q
@n
¼ c on R:

and extract the value of the solution q on R. Moreover, N ¼ �@xx.
We refer to [9] for a more detailed illustration of the model problem
under consideration We can write the interface problem in more
compact form as

Qgnþ1 ¼ f nþ1
R ;

where the operator Q is given by

Q ¼ qsHs

Dt
þ aDt

� �
Iþ bDtNþ

qf

Dt
M

and fR includes all the forcing terms. We will not detail it since its
expression does not play any role in the subsequent analysis.

We can split Q into its fluid and structure contributions, Qf and
Qs respectively:

Qf ¼
qf

Dt
M; Qs ¼

qsHs

Dt
þ aDt

� �
Iþ bDtN:

Then, the RN-GMRES consists of applying the GMRES algorithm
over the preconditioned interface problem

P�1
RNQgnþ1 ¼ P�1

RN f nþ1
R ;

where in analogy with (9), the Robin–Neumann preconditioner is

PRN ¼
1
af
ðQf þ afIÞQs:

Let us show that operator P�1
RNQ is symmetric, positive. We observe

that the operators M and N are symmetric, positive and diagonal-
ize for the L2ðRÞ orthonormal basis

gi ¼
ffiffiffi
2
L

r
sin ip x

L

� �
; i ¼ 1;2; . . . :

The associated eigenvalues are

liðMÞ ¼
L

ip tanh ip R
L

	 
 and kiðNÞ ¼
ip
L

� �2

; for i ¼ 1;2; . . . ;
respectively (see [9,2]). We also denote by wi ¼ qf li=Dt the eigen-
values of the operator Qf . Then, first of all we notice that operator
Q is symmetric, positive, satisfying Qgi ¼ ðwi þ aopt

f þ bDtkiÞgi. More-
over, in [2], it has been shown that an optimal choice for the param-
eter af is given by

aopt
f ¼ qsHs

Dt
þ aDt ð17Þ

so that Q�1
s gi ¼ 1

ðbDtkiþaopt
f
Þ gi and ðQf þ aopt

f IÞ�1gi ¼ 1
ðwiþaopt

f
Þ gi. Then,

P�1
RN ¼ aopt

f Q�1
s ðQf þ aopt

f IÞ�1 is symmetric, positive since Q�1
s and

ðQf þ aopt
f IÞ�1 are symmetric, positive, and share the same eigen-

functions. Moreover, P�1
RN gi ¼

aopt
f

ðwiþaopt
f
ÞðbDtkiþaopt

f
Þ gi, and therefore also

Q and P�1
RN share the same eigenfunctions gi, so that also operator

P�1
RNQ is symmetric, positive.

It is known that the residual rðkÞ at the current iteration k of GMRES
applied to a symmetric, positive operator R satisfies the following
estimate

krðkÞk 6 1� rmin

rmax

� �k=2

krð0Þk; ð18Þ

where rð0Þ is the initial residual and

rmin ¼ inf
g – 0

Rg;gð Þ
ðg;gÞ ; rmax ¼ sup

g–0

ðRg;gÞ
ðg;gÞ ;

(see [40]). In order to compare the effectiveness of different precon-
ditioners, we define an ‘‘average” reduction factor between two
subsequent iterations, q, as

q :¼ krðkÞk
krð0Þk

� �1=k

:

Therefore, thanks to (18), q satisfies

q 6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rmin

rmax

r
: ð19Þ

Since we have shown that P�1
RNQ is symmetric, positive, we can

use bound (19) with

rmin ¼ inf
g–0

ðP�1
RNQg;gÞ
ðg;gÞ ; rmax ¼ sup

g – 0

ðP�1
RNQg;gÞ
ðg;gÞ :

We have the following result:

Proposition 1. The RN-GMRES method, with the optimal choice aopt
f

given in (17), applied to the simplified system (16), always converges
to the monolithic solution, with reduction factor bounded by

qRN 6

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ qsHsþaDt2

bDt2k�i
þ qsHsþaDt2

qf l�i
þ ðqsHsþaDt2Þ2

bDt2k�iqf l�i

vuut ; ð20Þ

where �i ¼ argmini¼1;2;...
bDtkiwi

ðwiþaopt
f
ÞðbDtkiþaopt

f
Þ

� �
Proof. Let us evaluate rmin and rmax with the notation introduced
above. The operator P�1

RNQ can be written as

P�1
RNQ ¼ I�P�1

RNðPRN � QÞ:

On the other hand, we have that

PRN ¼
1

aopt
f

ðQf þ aopt
f IÞðaopt

f Iþ bDtNÞ

¼ Qf þ
1

aopt
f

Qf bDtNþ aopt
f Iþ bDtN ¼ 1

aopt
f

Qf bDtNþ Q:

Thanks to the last two identities, we get:

P�1
RNQ ¼ I� 1

aopt
f

P�1
RNQf bDtN:
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At this point, we can easily evaluate the eigenvalues of P�1
RNQ

associated to gi, and denoted by ci:

P�1
RNQgi ¼ 1� bDtkiwi

ðwi þ aopt
f ÞðbDtki þ aopt

f Þ

 !
gi :¼ cigi:

The supremum of ci is attained for i!1, and its value is 1. This
is due to the fact that ki !1 and wi ! 0 as i!1. Therefore,
rmax ¼ 1. It is easy to see that 0 < ci < 1. However, it does not exhi-
bit a monotone behavior with respect to i. Let us denote by �i the
value of i for which the minimum is attained so that rmin ¼ c�i.
The reduction factor reads as:

qRN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c�i

p
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bDtk�iw�i

ðw�i þ aopt
f ÞðbDtk�i þ aopt

f Þ

s

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bDt2k�iqf l�i

ðqf l�i þ qsHs þ aDt2ÞðbDt2k�i þ qsHs þ aDt2Þ

vuut ;

and the thesis follows. h

The reduction factor for DN-GMRES has been derived in [3] and
is given by:
Table 2
Fluid and structure physical properties.

Fluid density: qf ¼ 1:0 g=cm3 Fluid viscosity: l ¼ 0:035 poise
Structure density: qs ¼ 1:1 g=cm3 Wall thickness: h ¼ 0:1 cm
Lamé constants: l‘ ¼ 106 dyne=cm2; k‘ ¼ 1:73� 106 dyne=cm2
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Fig. 3. Reduction factor for RN-GMRES (solid line with circles) and for DN-GMRES (dashe
reference value.
qDN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

qf l1

qsHs þ aDt2 þ Dt2bk1

s
: ð21Þ
6.1. Sensitivity analysis of the reduction factors

Let us compare the bounds for the reduction factor q of RN-
GMRES and DN-GMRES for the physical parameters given in Table
2 with Dt ¼ 4� 10�4. We check the sensitivity of the analytical
expression of q given in (20) and (21) for the two methods, with
respect to some important values: qf ;qs;Dt and the Young’s mod-
ulus E. For every parameter, we consider the problem for the refer-
ence parameter times a factor in the range ½10�4;104�. This is a very
wide range and extremal values can be of no interest for real appli-
cations, but it allows to identify the asymptotic behavior. Let us re-
mark that the reduction factor plots in Figs. 3 and 4 are obtained
from its analytical expression and not from numerical experimen-
tation. In the x-coordinate of these plots we have the factor we
multiply the reference parameter by.

In order to analyze the sensitivity with respect to the added-
mass, we consider variations of the structure density qs. It is clear
from Fig. 3a that RN-GMRES is more efficient than DN-GMRES. For
the typical range in hemodynamics (factor 
1), the reduction fac-
tor for RN-GMRES is around 0.5, whereas it is almost 1 for DN-
GMRES. The bad behavior of DN-GMRES in hemodynamics applica-
tions has been reported in [3]. Variations of Hs and a have a similar
effect on the reduction factor of both methods, as we can see from
(20), (21). Let us comment that for aeroelastic applications (factor

 102 � 103) both methods are very effective. However, in the
whole range of qs, RN-GMRES proves to be more effective than
DN-GMRES.
10−4 10−2 100 102 104
0

0.2

0.4

0.6

0.8

1

re
du

ct
io

n 
fa

ct
or

factor (fluid density)

10−4 10−2 100 102 104
0

0.2

0.4

0.6

0.8

1

re
du

ct
io

n 
fa

ct
or

factor (Young modulus)

d line with x) with respect to several parameters. The horizontal scale is relative to a



10
−4

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

re
du

ct
io

n 
fa

ct
or

structure density

RN−GMRES
DN−GMRES
RR−GMRES (j=1)
RR−GMRES (j=5)
RR−GMRES (j=10)
RR−GMRES (j=50)
RR−GMRES (j=100)

10
−4

10
−2

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

re
du

ct
io

n 
fa

ct
or

structure density

RN−GMRES
DN−GMRES
RR−GMRES (k=4)
RR−GMRES (k=3)
RR−GMRES (k=2)
RR−GMRES (k=1)
RR−GMRES (k=0)
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An alternative way to show the added-mass sensitivity is to
play with qf (see Fig. 3b). Again, RN-GMRES always exhibits smal-
ler reduction factor (faster convergence). In this case, for both
schemes the reduction factor tends to 1 for extremely large fluid
density, as for qf 
 1000qs. However, as far as we know, there
are no applications of interest in this ultra-large added-mass range.

Another negative point of the DN-GMRES algorithm is its bad
behavior for small time step sizes. In Fig. 3c we solve the FSI
problem for different values of Dt. It is clear from this figure that
DN-GMRES barely converges as Dt ! 0. On the contrary, the con-
vergence of RN-GMRES is not deteriorated in the small time step
limit. As would be expected from (20), the reduction factor tends
to 0 (no iterations needed) very fast in this limit.

Finally, we vary the stiffness of the material, multiplying the
reference Young’s modulus by a factor in ½10�4;104�. We see in
Fig. 3d that DN-GMRES barely converges as the stiffness of the
material is reduced. On the contrary, RN-GMRES always converges.

In conclusion, we can state that RN-GMRES scheme exhibits a
much better behavior than the DN-GMRES scheme for a wide range
of parameters.

We turn now to the more general RR-GMRES algorithm. The
reduction factor for RR-GMRES and a generic as can be obtained
in a similar way as for RN-GMRES. We omit the proof and the
expression of the reduction factor in this case. The value of as must
be a good approximation of the operator Qf . We consider the fol-
lowing expression (see [2]):

as ¼ 10�k qf L

Dtjp tanh jp R
L

	 
 ; ð22Þ

where 10�k; k P 0; is a factor smaller than one which multiplies a
single eigenvalues of Qf , for a chosen j (the value j ¼ 1 refers to
the maximum eigenvalue).

We show in Fig. 4 the reduction factor for RN-GMRES, DN-
GMRES and RR-GMRES. For RR-GMRES we have considered a wide
set of choices for j and k. The direction of growth of j and k is
marked with arrows. It is easily inferred that the reduction factor
for RR-GMRES is always smaller than DN-GMRES but larger than
RN-GMRES. As expected, the method tends to RN-GMRES as
as ! 0 (that is to say, increasing k and/or j). On the other hand,
the algorithm performs as DN-GMRES for the case k ¼ 0 and
j ¼ 1, which consists in taking as equal to the maximum eigenvalue
of Qf . As a conclusion, for the model problem, the RN-GMRES algo-
rithm is the optimal choice. For a more realistic problem (where
the fluid is governed by the Navier–Stokes equation) and Richard-
son coupling iterations are performed, a slight improvement of
RR-Richardson with respect to RN-Richardson was found in [2]
for specific choices of as. In any case, finding an appropriate as is
not easy and the improvements are very small. For this reasons,
we will consider only the RN preconditioner in the numerical
experiments of Section 8. Anyway, the use of RR algorithms can
be of great interest in case of dealing with fully submerged incom-
pressible structures (see Section 7).
7. Enclosed fluid sub-problem

In the previous sections, we did not specify the fluid boundary
conditions on @Xf n R because they do not play any role in the de-
sign of partitioned procedures. However, there is a pathological
case in which these boundary conditions can make the Dirichlet–
Neumann partitioned procedures inadequate. Let us assume that
the fluid sub-problem is supplemented on @Xf n R with the Dirich-
let boundary conditions

u � nf ¼ ud on @Xf n R: ð23Þ

When using the Dirichlet–Neumann method and the boundary
condition (23) is prescribed, the fluid sub-problem is supple-
mented with Dirichlet boundary conditions on its whole boundary.
As a consequence, the fluid matrix becomes singular because the
pressure is only determined up to a constant. To overcome this
problem, it is possible to fix the value of the pressure in a node
or project the pressure equation onto the subspace of functions
with zero average. However, the pressure for the original unsplit
FSI system is unique, since it is determined by the interaction with
the structure.

On the other hand, from the fluid continuity equation, the struc-
ture displacement has to satisfy the condition

�
Z

Xf

r � u ¼
Z
@Xf nR

ud þ
Z

R
@tg � nf ¼ 0: ð24Þ

However, there is no guarantee that in the ‘‘Neumann” step, the
structure solver computes a structure velocity satisfying (24) and if
this does not happen, the fluid Dirichlet datum is incompatible,
meaning that at the algebraic level, the right hand side of the fluid
sub-problem is not admissible. Therefore, an algorithm based on
the DN preconditioner cannot be straightforwardly applied in this
case.

In the following, we review some existing strategies to over-
come this difficulty and finally tackle this problem with the Ro-
bin–Robin algorithm.
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7.1. Review of existing strategies

One modification of the DN algorithm which makes this algo-
rithm suitable for balloon-type problems has been suggested in
[25], by the introduction of a Lagrange multiplier. Here we want
to derive the interface problem related to this equation and the
corresponding DN-interface preconditioner, in order to extend
such a strategy to GMRES iterations.

The system matrix Cff is singular in this case. Indeed, the kernel
of this matrix, KerðCff Þ, is of dimension one, and a basis is given by
the element ½Uf ;P�T ¼ ½0;1�T . In order to make the fluid sub-prob-
lem well posed (with a uniquely defined pressure), let us introduce
the pressure finite-dimensional space Qh;0 	 Qh n KerðCff Þ corre-
sponding to pressure functions with zero mean value, and matrix
C0

ff obtained by projection of Cff onto Q h;0, which is not singular
anymore. Therefore, we can define the interface operator (Schur
complement) eC0

R ¼ CRR � CRf ðC0
ff Þ
�1CfR.

Let Ud be the array of (assigned) velocity nodal values on the
boundary @Xf n R. We use the subscript d for vectors and matrices
associated to boundary nodes. Moreover, if Uf denotes the velocity
degrees of freedom (on interior nodes only), the Dirichlet fluid sub-
problem consists of: find Uf and P such that

Aff Gf

Df 0

� �
Uf

P

� �
¼

bf

0

� �
�

AfdUd þ AfRUR

DdUd þ DRUR

� �
; ð25Þ

where
Aff Gf

Df 0

� �
¼ Cff . Then, the projected fluid sub-problem will

be equivalent to the original one only if the right hand side b of
(25) satisfies the solvability condition

projKerðCT
ff Þ
ðbÞ ¼ 0; ð26Þ

that is

1T � ðDdUd þ DRURÞ ¼ 0:

Denoting by wi and /i the pressure and velocity basis functions,
if j is related to a node on the interface R, we have

1T � DRUR ¼
X

i

X
j

Z
Xf

wir � /juj

¼ �
X

i

X
j

Z
Xf

rwi /juj þ
X

i

X
j

Z
R

wi /j � nf uj

¼ �
X

j

Z
Xf

X
i

rwi

 !
/j; uj þ

X
j

Z
R

X
i

wi

 !
/j � nf uj

¼
Z

R

X
j

/j � nf uj;

where the last equality comes to the partition of unity satisfied by the
basis functions wi. An analogous term comes from 1T � DdUd. There-
fore, the solvability condition (26) can be equivalently written as

hT � UR ¼ �g; ð27Þ

where

ðhÞj ¼
Z

R
/j � nf ;

j being a node on the interface and

g ¼
Z

Xf nR
ud:

Eq. (27) can be seen as a constraint on the interface velocity. Let
us force this constraint through the introduction of a Lagrange
multiplier k (see [25]). We are led, therefore, to the ‘‘augmented”
interface problem
eNR þ eC0
R h

hT 0

" #
UR

k

� �
¼

~bR

�g

" #
: ð28Þ

Having defined an augmented interface problem one can now
define the ‘‘augmented” DN preconditioner aseNR h

hT 0

" #
:

When applied together with Richardson or GMRES iterations,
this entails, in particular, the solution of a fully Dirichlet fluid
sub-problem and a constrained structure problem at each
iteration.

We point out however that the enforcement of the solvability
condition on the structure sub-problem couples all the interface
nodes, with the subsequent dramatic increase of the matrix band
width. Furthermore, this approach leads to a saddle-point problem
for the structure, loosing the typical semi-positive definiteness.

An alternative strategy to tackle balloon-type problems using
the DN preconditioner consists in adding a pseudo-compressibility
term. This has been proposed in [38] as a way to make the fluid
problem non-singular and has been relaxed along the iterative pro-
cess (pseudo-compressibility iterations). The idea is to introduce in
the mass conservation equation of the fluid formulation a term

1
�
ðpkþ1

h � pk
h; qhÞ;

where k is the iteration counter and � a positive numerical param-
eter. Therefore, once convergence is reached, the compressibility
vanishes and the incompressible solution is attained. With the
new term, the fluid problem is not singular anymore.

For the solution of such a problem one can deal with nested
loops. Unfortunately, this method is too expensive because in-
volves as many FSI solvers (using DN) as pseudo-compressibility
iterations are needed. The DN method is very expensive by itself,
and this method multiplies the CPU cost of DN by the number of
pseudo-compressibility iterations. In order to make the method
slightly less expensive, one-loop algorithms dealing with coupling
and pseudo-compressibility iterations have been designed in [38].
However, it cannot be straightforwardly used with GMRES
iterations.

7.2. Robin transmission conditions

Finally, we propose the schemes based on Robin transmission
conditions as effective tools for the solution of FSI problems where
the fluid is entirely enclosed by Dirichlet boundary conditions at
@Xf n Rt . Indeed, using the partitioned procedures suggested in
[2] and the related preconditioners proposed in this work, bal-
loon-type problems can be straightforwardly solved without any
extra modification.

In particular, focusing on the sequential RR Algorithm 1 the use
of a Robin transmission condition for the fluid problem guarantees
that the fluid matrix is invertible and the problem solvable no mat-
ter what boundary conditions are enforced on @Xf n R. Hence, we
do not need to enforce any solvability condition to the structure
problem, nor projecting the fluid equation on the subspace of zero
average pressures. Furthermore, by imposing a Robin (or Neu-
mann) boundary condition at the interface for the structure prob-
lem, it is also possible to deal with fully submerged incompressible
structures.

A RR preconditioner to the interface problem (28) can be writ-
ten as

PRR ¼
eC0

R þ af MR h

hT 0

" #
1

afþas
M�1

R 0

0 1

" # eNR þ asMR 0
0 1

" #
:



2778 S. Badia et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2768–2784
Observe that the solution of a fluid problem with matrix

FR ¼
eC 0

R þ af MR h
hT 0

" #
corresponds to a fluid problem with Robin

boundary conditions at the interface, with no special modifica-
tions. Indeed, the Lagrange multiplier (mean pressure) can be
added to the zero average pressure degrees of freedom to recover
the original pressure space and, in fact, the matrix FR coincides
with the matrix ðeCR þ af MRÞ considered in (9).

Following the same arguments as in Lemmas 1 and 2 it can be
shown that, also in case of an enclosed fluid problem, the RR-pre-
conditioned Richardson algorithm leads to exactly the same se-
quence of solves described in Algorithm 1 whereas the RR-
preconditioned GMRES algorithm leads to the same sequence of
solves described in Algorithm 2. Therefore, these algorithms can
be applied with no modification to encolsed flow problems.

As shown in [2], algorithms based on Robin transmission condi-
tions are superior to DN in terms of efficiency, especially for high
added-mass effect. For balloon-type problems, where modified
(and even more expensive) versions of DN are needed, the use of
RR methods are even more justified.

Remark 3. The same pathological case arising when DN precon-
ditioners are applied to FSI problems with Dirichlet conditions over
@Xf n R, occurs when flow rate boundary conditionsZ
@Xf nR

u � nf dc ¼ Q

for a given scalar Q, are prescribed (see [17]). Also in this case RR
methods can be applied with no modifications.
8. Numerical experimentation

In this section, we carry out some numerical tests in order to
show the performances of the RN-GMRES algorithm with respect
to RN-Richardson, DN-Richardson and DN-GMRES algorithms for
problems with large added-mass effect and balloon-type problems.
In all cases, multifrontal solvers have been used for fluid and struc-
ture sub-problems.

For both problems we choose a conforming space discretization
between fluid and structure: stabilized P1 � P1 finite elements for
the fluid, where the stabilization is the orthogonal subgrid scales
approach (see e.g. [10]), and P1 finite elements for the structure.
In all tests, the structural problem is a d-dimensional (where d is
the space dimension) linear elastic solid. We refer to [4] for a de-
tailed exposition of the formulation of the structural problem
and to Table 2 for the parameters used for the fluid and structure
problems.

The software that has been used is ZEPHYR, a multi-physics fi-
nite element code written in Fortran and developed at CIMNE-UPC
(Barcelona). For the solution of the linear systems we have used
SPARSKIT, developed by Yousef Saad (see [39]).

In particular, in Section 8.1.1 we analyze the sensitivity of RN-
GMRES and RN-Richardson with respect to the value af and the
performances of RN-GMRES and DN-GMRES algorithms for a wide
range of structure densities in two-dimensional problems. In Sec-
tions 8.1.2 and 8.1.3, we show the effectiveness of RN-GMRES for
three-dimensional problems. Finally, in Section 8.2 we show the
numerical results obtained for a balloon-type problem consisting
of a 3d cavity with one elastic wall and one inlet wall with pre-
scribed flux. The remaining walls are rigid.

8.1. Hemodynamics applications with large added-mass effect

Three different problems with a large added-mass effect have
been considered:
� A fully 3d problem, whose fluid domain is a cylinder of radius
R0 ¼ 0:5 cm and length L ¼ 6 cm;

� Its 2d approximation, obtained by intersecting the pipe with a
plane;

� A carotid bifurcation using a realistic geometry.

Our goal is to simulate the propagation of a pressure pulse in an
artery with deformable boundaries as the structure density varies.
The fluid and structure physical parameters used in the simula-
tions are the same as the ones employed in the analysis of Section
6.1 (see Table 2). However, the listed wall thickness does not apply
for the carotid bifurcation test.

On the inflow section we impose the following Neumann
boundary condition:

T f � nf ¼
Pin
2 1� cos pt

2:5�10�3

� �h i
;nf ; t < 5� 10�3;

0 t P 5� 10�3;

8<:
while on the outflow section an homogeneous Neumann condition
has been imposed. The amplitude Pin of the pressure pulse has been
taken equal to 2� 104 dyne=cm2 and the time duration of the pulse
is 5 ms. We solve the problem over the time interval [0, 0.012] s.
Otherwise indicated, the time step size is Dt ¼ 4� 10�4 s.

8.1.1. A 2d straight artery
We start by solving a classical benchmark in FSI interaction (see

e.g. [29]). We consider a mesh with 1823 finite elements. In all
cases, the stopping criterion is based on the relative difference be-
tween the interface velocity at two subsequent iterations

Ek
U :¼ kU

kþ1
R � Uk

Rk
kUk

Rk
;

which is known to be a good estimate of the relative error if the er-
ror reduction factor

r :¼ lim
k!1

rk; rk :¼ kUR � Ukþ1
R k

kUR � Uk
Rk

ð29Þ

is sufficiently small. Indeed, we have

kUR � Uk
Rk 6

1
1� rk

kUkþ1
R � Uk

Rk: ð30Þ

In particular, we require that kEk
Uk < e, where the tolerance e

has been set equal to 10�6.
A good value of the parameter af in the interface Robin condi-

tion for the fluid sub-problem can be obtained from the structure
simplified model proposed in [30] and is given by

aopt
f ¼ qsHs

Dt
þ DtHsE

1� m2 ð4q2
1 � 2ð1� mÞq2Þ; ð31Þ

where q1 and q2 are the mean and the Gaussian curvature of the
interface, respectively. In this case, aopt

f is a function of the position
on the interface. In many realistic geometries the values of the cur-
vatures are not easily available or even not computable directly (as
in a geometry with edges). It is therefore reasonable, in these situ-
ations, to use an approximate value (even constant in space) for af

(see Section 8.1.3). We are then interested in testing the robustness
of the RR-based schemes with respect to the parameter af . To this
aim, as first test we consider the RN-based schemes and a rectangu-
lar computational domain, for which a good value of af is known
and given by (17) (see [30,2]). Using the values of Table 2, we have
aopt

f ¼ 743:4. In particular, this test consists of comparing the per-
formance of RN-GMRES and RN-Richardson (with no relaxation)
for different values of af . We consider af ¼ caopt

f with different
values of c. The nonlinearities given by the domain position and
by the convective term are treated in a semi-implicit way. The mean



S. Badia et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2768–2784 2779
number of iterations per time step and, in parentheses, the compu-
tational cost normalized to the cost of RN-GMRES with c ¼ 1 are
summarized in Table 3.

As expected, RN-GMRES has the minimum number of iterations
for c ¼ 1 (optimal value of af ). The number of iterations increases
when we take af smaller or larger than the optimal value. In any
case, the increase is much more important for smaller values of
af . These results show that RN-Richardson is much more sensitive
to af . For the optimal value, the performance is similar to the one of
RN-GMRES, as proved by the computational costs. Taking a tenth of
the optimal af the convergence is so slow that we reach the max-
imum number of iterations without reaching tolerance.

In Fig. 5 we show the relative difference between the interface
velocity at two subsequent iterations Ek

U along the iterative process
at a given time step. The RN-Richardson method seems to converge
(even though extremely slowly) to the solution, as we can see in
Fig. 5b. However, for af much larger than the optimal value (ten
times or more), the RN-Richardson does not converge (indeed, its
behavior tends to the one of DN-Richardson which does not con-
verge without any relaxation).

From this first test, we conclude that RN-GMRES is moderately
sensitive to the choice of af , but much less than RN-Richardson. For
this reason, the RN-Richardson algorithm is very useful when a
sharp evaluation of af is available, but it does not work if we can-
not get a good expression for af . On the contrary, the RN-GMRES
scheme, thanks to its robustness, can be used with good perfor-
mances also for those geometries for which an optimal value of
af cannot be evaluated with precision, such as in the enclosed-do-
main simulation shown in Section 8.2.

The second test consists in evaluating the sensitivity of both
RN-GMRES and DN-GMRES to the added-mass effect. A semi-im-
plicit treatment of convective and domain nonlinearities is
adopted. We have solved the 2d straight artery with the following
values of the structure density:

qs ¼ 1;10;100;1000 g=cm3:
Table 3
2d Straight artery: average number of iterations and normalized CPU cost for RN-
GMRES and RN-Richardson for different values of cðaf ¼ caopt

f Þ.

c RN-GMRES RN-Richardson

0.01 21.53 (3.43) >max. it.
0.1 15.47 (2.58) >max. it.
1.0 5.07 (1.00) 8.933 (1.02)
10.0 10.13 (1.79) No conv.
100.0 10.80 (1.83) No conv.
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Fig. 5. 2d Straight artery: norm of Ek
U vs. iteration number for (a) R
For RN-GMRES, we have used the optimal value of af in (17).
The results are listed in Table 4. RN-GMRES is extremely insensi-
tive to the added-mass effect. On the contrary, as proved in [3],
DN-GMRES is fairly sensitive to the added-mass effect. The number
of fluid elements is 3.7 times larger than the structure elements.
Therefore, the additional computational cost of the RN-GMRES
iterations (one extra structural sub-problem) is not very important
and the RN-GMRES algorithm is better than DN-GMRES both in
number of iterations and CPU cost for large added-mass effect.
From these results, we can state that RN-GMRES becomes more
efficient than DN-GMRES as the added-mass effect increases and
the CPU cost of the structure problem is small compared to the
fluid one. These results are in good agreement with the previous
theoretical analysis. In fact, the previous analysis says that the
RN-GMRES reduction factor remains far from 1 as qs is reduced
whereas the DN-GMRES reduction factor tends to 1 (see Fig. 3a).

We finally consider one test comparing RN-GMRES and
RN-Richardson for implicit treatment of the nonlinearities. For
RN-Richardson, it is very easy to treat coupling iterations and non-
linearities using the same loop (one-loop algorithm). Therefore,
only one tolerance is needed, simplifying the implementation.
For RN-GMRES, we consider instead nested loops: an external loop
for nonlinearities and an internal loop (GMRES iterations) for the
FSI coupling. In this case, two tolerances are required. The nonlin-
ear tolerance is set to 10�3. The performance of the algorithm is
highly dependent on an appropriate choice of the internal toler-
ance. In Table 5 we show that a very tight tolerance for the inter-
nal GMRES iterations leads to a very poor performance. The
internal GMRES tolerance is so small that it requires lots of itera-
tions, for every nonlinear iteration, that in fact are not needed.
Using a much looser tolerance, the method ‘‘tends to a one-loop
algorithm”. In this case, the GMRES iterations easily converge
and the tolerance that dictates the convergence is the external
one. In any case, we can state that the one-loop RN-Richardson
algorithm performs better than RN-GMRES for implicit treatment
of the nonlinearities.

8.1.2. A 3d straight artery
The second problem we solve is the 3d straight artery, in order

to show that the behavior that we have observed for a 2d problem
also applies in the 3d case. We consider a semi-implicit scheme.
Two different values of the coupling tolerance have been consid-
ered, 10�3 and 10�6. When the tolerance is not reported, it has been
set to 10�3. Otherwise indicated, the time step size is Dt ¼ 10�4.
The finite element mesh used for the computations has 21,575
finite elements.

The sensitivity of RN-GMRES and RN-Richardson algorithms
with respect to the value of af is shown in Table 6 and Fig. 6.
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Table 4
2d Straight artery: average number of iterations and CPU cost normalized to the cost
of RN-GMRES - qs ¼ 1, for RN-GMRES and DN-GMRES for different values of qs .

qs RN-GMRES DN-GMRES

1 5.20 (1.00) 11.73 (1.92)
10 6.00 (1.12) 7.87 (0.99)
100 4.73 (0.92) 5.93 (0.79)
1000 4.60 (0.90) 4.80 (0.66)

Table 5
2d Straight artery: average of accumulated RN-GMRES iterations for two different
values of the GMRES tolerance vs. average of accumulated RN-Richardson iterations
(one-loop algorithm).

Internal tol. RN-GMRES RN-Richardson

(One-loop) 6 93
10�1 7.87
10�6 24.20

Table 6
3d Straight artery: average number of iterations and CPU cost normalized to the cost
of RN-GMRES - c ¼ 1, for RN-GMRES and RN-Richardson for different values of
cðaf ¼ caopt

f Þ. The first table corresponds to a tolerance of 10�3 and the second one to
10�6.

c RN-GMRES ð10�3Þ RN-Richardson ð10�3Þ

0.1 9.13 (2.01) >max. it.
1.0 4.00 (1.00) 6.67 (0.98)
10.0 5.73 (1.34) No conv.

RN-GMRES ð10�6Þ RN-Richardson ð10�6Þ

0.1 16.20 (1.60) >max. it.
1.0 6.60 (1.00) 10.00 (1.41)
10.0 9.40 (0.54) No conv.

Table 7
3d Straight artery: average number of iterations and normalized CPU cost for RN-
GMRES and DN-GMRES for different values of qs . The first value corresponds to a
tolerance of 10�3 and the second one to 10�6.

qs RN-GMRES ð10�3Þ DN-GMRES ð10�3Þ

1 4.00 (1.00) 6.47 (1.04)
10 3.80 (0.96) 4.47 (0.75)
100 2.13 (0.63) 3.07 (0.56)
1000 2.53 (0.71) 3.00 (0.57)

RN-GMRES ð10�6Þ DN-GMRES ð10�6Þ

1 7.00 (1.00) 10.00 (0.95)
10 5.40 (0.81) 6.00 (0.61)
100 3.90 (0.62) 5.00 (0.52)
1000 3.90 (0.59) 4.00 (0.45)

Table 8
3d Straight artery: average number of iterations and CPU cost normalized to the cost
of RN-GMRES – Dt ¼ 10�5, for RN-GMRES and DN-GMRES for different values of Dt.
The values correspond to a tolerance of 10�6.

Dt RN-GMRES DN-GMRES

10�5 8.10 (1.00) 13.00 (1.28)
5� 10�4 7.25 (0.92) 10.05 (1.02)
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The behavior is very similar to the one observed in the 2d case. RN-
GMRES is less sensitive to af than in the 2d case. RN-Richardson is
efficient for the optimal value of af but again has a very slow con-
vergence or does not converge for bad choices of this parameter.

The sensitivity of RN-GMRES and DN-GMRES algorithms with
respect to the added-mass effect is shown in Table 7. Again, RN-
GMRES requires less iterations to reach convergence. This
improvement is more evident increasing the added-mass effect.
The number of iterations is a fair comparison of both methods in
FSI applications where the structural problem is much cheaper
than the fluid one. This is the situation in most real applications
of interest. However, when the CPU cost related to the structural
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Fig. 6. 3d Straight artery: norm of Ek
U vs. iteration number for (a)
problem is an important part of the overall CPU cost, one RN-
GMRES iteration (that involves an additional structure problem)
becomes more expensive than one DN-GMRES iteration. We have
considered a problem with 2.14 fluid elements per structure ele-
ment. Moreover, we have listed in Table 7 the CPU cost normalized
to the cost of RN-GMRES with qs ¼ 1 (in parentheses). The
improvement of RN-GMRES over DN-GMRES is reduced as the
structure problem CPU cost increases with respect to the fluid one.

In Table 8 we report a comparison of DN-GMRES and RN-
GMRES methods for two different time step sizes. The RN-GMRES
algorithm seems to be less sensitive to the time step size, whereas
the number of DN-GMRES iterations clearly increases as the time
step size decreases. In this case we have considered a tolerance
of 10�6 for the GMRES loop. Therefore, the RN-GMRES algorithm
also becomes more effective than DN-GMRES as the time step size
is reduced.

8.1.3. The carotid bifurcation
Finally, we employ the RN-GMRES on a real geometry of a hu-

man carotid, in physiological conditions. The finite element mesh
consists of 42,304 finite elements. In Fig. 7, the pressure wave trav-
eling along the carotid is shown at 4 different instants.
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As observed from expression (31), in this case the optimal value
based on a simplified structural model for af is not constant. How-
ever, in this example we take a simplified approach and construct a
constant af using expression (17) where an average value of the ra-
dius ð0:33 cmÞ and thickness ð0:08 cmÞ of the carotid are used. The
use of non-constant af depending on the curvature will be investi-
gated in a future work.

Due to the fact that the value of af is not so good as for the pre-
vious examples, the behavior of RN-Richardson, as expected, is
much worse than the one of RN-GMRES, which is much less sensi-
tive to af (see Fig. 8b). Moreover, the error reduction factor (29) can
be approximated by the quantity
Fig. 7. Propagation of the initial pressure pulse in the carotid geometry, m

0 2 4 6 8
10−4

10−3

10−2

10−1

100

101

number of iterations

|| 
E^

k_
U

 ||

RN/GMRES
DN/GMRES

a b

Fig. 8. Carotid bifurcation: norm of Ek
U vs. iteration number for (a) RN
rk ’ kU
kþ1
R � Uk

Rk
kUk

R � Uk�1
R k

:

Referring to the carotid bifurcation simulation, we estimate
rk ’ 0:18 for RN-GMRES and rk ’ 0:36 for DN-GMRES (see
Fig. 8a). Therefore, despite the non-optimal value of af , RN-GMRES
seems to be superior to DN-GMRES in terms of convergence rate.
Moreover, in both cases the approximated error reduction factor
is sufficiently small to consider Ek

U as a good estimate of the relative
error (see (30)). In Table 9, we show the average number of itera-
tions for these two algorithms, with different values of af for
RN-GMRES. The sensitivity of RN-GMRES with respect to af is
oving from the inflow to the outflow section. Solution at every 3 ms.

0 10 20 30 40 50 60
10−4

10−2

100

102

|| 
E^

k_
U

 ||

number of iterations

-GMRES with aopt
f and DN-GMRES; (b) RN-Richardson with aopt

f .



2782 S. Badia et al. / Comput. Methods Appl. Mech. Engrg. 198 (2009) 2768–2784
similar to what we have observed from the previous tests. The RN-
GMRES algorithm with the optimal choice of af reduces the CPU
cost (in Table 9 normalized to the cost of RN-GMRES - c ¼ 1) even
for 1.95 fluid elements per structure element. In applications
where the ratio between the number of structure elements and
fluid elements is smaller, this saving in CPU time should increase.

8.2. Enclosed domains: a balloon-type problem

With respect to balloon-type problems, we have solved a 3d
cavity with one elastic wall, in which we have enforced the inflow
velocity. We have simulated the inflation and deflation processes.
Table 9
Carotid bifurcation: average number of iterations and normalized CPU cost for RN-
GMRES and DN-GMRES for different values of af ¼ caopt

f .

c RN-GMRES DN-GMRES

0.1 7.80 (1.32)
1.0 5.13 (1.00) 8.80 (1.10)
10.0 8.33 (1.40)
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two values of af .

Fig. 10. Balloon problem: deformed configuration of the balloon pro

Table 10
Balloon problem: average number of iterations for RN-GMRES and two different
values of c and Dt.

Dt ¼ 10�3 Dt ¼ 5� 10�3

c ¼ 1 6.32 8.68
c ¼ 10 4.02 3.81
In particular, we consider a problem similar to the one in [38]:
the fluid domain Xf is the unit cube ½0;1� � ½0;1� � ½0;1� cm. The
domain has been partitioned into 14,851 finite elements. The side
on the plane x ¼ 0 is where we enforce the inflow Dirichlet bound-
ary condition

uðx; tÞ ¼ f ðtÞvðxÞ;

where vðxÞ is the parabolic profile

vx ¼ 16ðy2 � yÞðz2 � zÞ;
vy ¼ 0;
vz ¼ 0;

and f ðtÞ ¼ sin pt
0:04

	 

defines the time evolution. The side on the plane

x ¼ 1 is the fluid–structure interface R. The structure is a wall of
thickness 0.1 cm. On the remaining sides of @Xf , no-slip boundary
conditions are imposed. As we can see from the inflow boundary
conditions, at t ¼ 0:08 we must recover the initial volume of
1 cm3. On the other hand, at t ¼ 0:04 the maximum volume is at-
tained. In the numerical experiments the tolerance in the FSI itera-
tions is 10�4 and the time step size is 10�3 (if not otherwise
indicated). The nonlinearities are treated in a semi-implicit way.

The same properties in Table 2 have been used in this case, as
well as similar spatial dimensions. Therefore, this problem is in
the range of hemodynamics applications.

In this case it is not so easy to get a good constant estimate for
af and then we have considered the following choice:

af ¼
cqsHs

Dt
; ð32Þ

where c > 0, i.e. af is obtained from (31) by dropping the terms
including the curvatures and weighting the remaining ‘‘inertial”
term with a suitable coefficient c. An improved expression of af

could be obtained by evaluating the curvature of the structure
(see [30]). First, we have solved the problem using RN-Richardson.
As commented above, this approach is very sensitive to af , and re-
quires a very good expression of this value in order to be effective.
In this case, where af only involves inertia terms, its behavior is not
good. We show the reduction of the interface residual for RN-Rich-
ardson in Fig. 9, using (32) with c ¼ 1 and 10. The method performs
better for the larger value of af , but it does not converge for c ¼ 100.
On the other hand, we have solved the problem using the more ro-
bust RN-GMRES algorithm. In Table 10 we show the average num-
ber of iterations for the same values of c used for RN-Richardson
and two different time step sizes. The method exhibits a better
behavior for c ¼ 10 although the convergence is attained in a fairly
low number of iterations in both cases. From the expression (32),
we can see that the value of af increases as the time step size
decreases and therefore the importance of the inertia term with
blem and contour fill of displacements at two different instants.
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respect to other structural terms increases. For this reason, for a
smaller time step size, the improvement of using c ¼ 10 instead
of 1 is not so clear as for the large time step size. In any case, for
both methods the choice of c ¼ 10 is clearly the best one.

Fig. 10a shows the deformed configuration and the displace-
ment (in modulus) at time t ¼ 0:04 s, when the maximum volume
is attained. Fig. 10b shows the same at t ¼ 0:08 s, where the initial
configuration has been recovered without loss of volume.

In conclusion, we can state that the RN-GMRES is able to solve
this balloon-type problem without any modification in the scheme
(such as the introduction of a Lagrange multiplier or a pseudo-
compressibility term) with physical and numerical properties in
the range of hemodynamics applications (which implies a large
added-mass effect) in a fairly low number of iterations. Let us re-
mind that a direct application of the DN preconditioner is
unfeasible.
9. Conclusions

In this article, we have reinterpreted the Robin–Robin (RR) par-
titioned procedure proposed in [2] as preconditioned iterations
over the interface FSI problem. This has allowed us to define an
interface RR preconditioner and apply it together with GMRES iter-
ations, leading to the so-called RR-GMRES algorithm. Two different
RR preconditioners have been designed, a parallel and a sequential
one. The sequential preconditioner performs much better than the
parallel one. Therefore, only the former has been extensively
analyzed.

The convergence of the RN-GMRES algorithm has been analyzed
on a simplified blood-vessel system. We have obtained the expres-
sion of the reduction factor and we have analyzed its sensitivity
with respect to some important parameters. In particular, a com-
parison of the reduction factor of RN-GMRES and DN-GMRES (the
latter found in [3]) leads to the following conclusions:

� The RN-GMRES always guarantees better performances, in par-
ticular in the range of parameters which leads to a high
added-mass effect and for small time steps, situations where
the DN-based schemes is known to be characterized by a slow
convergence (see [3]).

� A good coefficient for the Robin transmission condition on the
structure problem may be hard to find. Even reasonable choices
of as (which however are difficult to generalize to complex prob-
lems) leads to performances of the RR strategy poorer than the
RN one.

Numerical tests confirm the behavior foreseen by the theoreti-
cal investigation and to draw further conclusions:

� The new RN-GMRES algorithm becomes superior to the DN-
GMRES algorithm as the added-mass effect increases or the time
step size is reduced and the CPU cost of solving the structure
sub-problem is small compared to the one of the fluid.

� RN-GMRES is more robust with respect to some geometrical and
physical parameters than RN-Richardson. In particular, it is
shown to be less sensitive to the parameter af used in the inter-
face Robin condition for the fluid sub-problem. This has a very
practical consequence, since it suggests to use RN-GMRES
instead of RN-Richardson in those situations where the curva-
tures of the FS interface are not available or difficult to compute.

� RN-Richardson is still competitive for an implicit treatment of
the nonlinearity when a very effective Robin transmission con-
dition can be motivated. This is due to the fact that we can adopt
a one loop strategy dealing with interface coupling and nonlin-
ear iterations at the same time. On the contrary, Using GMRES,
there is not a straight way to merge these two iterative pro-
cesses, but the CPU cost can be clearly reduced using a loose tol-
erance for the inner (coupling) loop.

� Balloon-type problems cannot be solved with the classical DN
preconditioner. Modified DN algorithms specifically designed
for this kind of problems reduce the modularity (straight use
of pre-existing fluid and structure solvers without internal mod-
ification) and increase the computation cost. RR (or RN)-based
algorithms applied to this kind of problems are very effective
and do not need any modification in the fluid and/or structure
codes.Again, RN-GMRES performs much better than RN-Richard-
son when a sharp estimate of af is not available.

All these considerations allow us to state that the RN-GMRES
algorithm is the most robust and most efficient modular approach
for the solution of hemodynamics applications (or similar situa-
tions) and balloon-type problems among the methodologies con-
sidered in this work.
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