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a b s t r a c t

In this article we address the numerical simulation of fluid–structure interaction (FSI) problems featuring
large added-mass effect. We analyze different preconditioners for the coupled system matrix obtained
after space–time discretization and linearization of the FSI problem. The classical Dirichlet–Neumann
preconditioner has the advantage of ‘‘modularity” because it allows to reuse existing fluid and structure
codes with minimum effort (simple interface communication). Unfortunately, its performance is very
poor in case of large added-mass effects. Alternatively, we consider two non-modular approaches. The
first one consists in preconditioning the coupled system with a suitable diagonal scaling combined with
an ILUT preconditioner. The system is then solved by a Krylov method. The drawback of this procedure is
that the combination of fluid and structure codes to solve the coupled system is not straightforward. The
second non-modular approach we consider is a splitting technique based on an inexact block-LU factor-
ization of the linear FSI system. The resulting algorithm computes the fluid velocity separately from the
coupled pressure–structure system at each iteration, reducing the computational cost. Independently of
the preconditioner, the efficiency of semi-implicit algorithms (i.e., those that treat geometric and fluid
nonlinearities in an explicit way) is highlighted and their performance compared to the one of implicit
algorithms. All the methods are tested on three-dimensional blood-vessel systems. The algorithm com-
bining the non-modular ILUT preconditioner with Krylov methods proved to be the fastest.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

In coupled fluid–structure systems, the fluid acts over the struc-
ture as an extra mass (usually called added-mass [27]) at the inter-
face. The importance of the extra inertia term appearing in the
structure equation increases with the quotient qf=qs, where qf

and qs are the fluid and the structure density, respectively. There-
fore, when the structure density is much bigger than the fluid one,
the added-mass effect is almost negligible. However, some prob-
lems involve a fluid and a structure whose densities are of the
same order of magnitude. We focus on those cases, in which the
added-mass effect becomes important.

Fluid–structure interaction problems are usually solved via par-
titioned procedures, stemming from a domain decomposition
viewpoint. These algorithms consist in the evaluation of indepen-
dent fluid and structure problems, coupled via transmission condi-
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tions in an iterative fashion. The Dirichlet–Neumann (DN)
algorithm is one of the most popular partitioned procedures in
FSI. A Dirichlet boundary condition (continuity of velocities) is im-
posed at the interface for the fluid sub-problem, whereas the struc-
ture sub-problem is supplemented with Neumann boundary
conditions (continuity of stresses). The DN-algorithm iterates over
these two problems until convergence. These are Richardson (also
called fixed point) iterations on the interface displacement and
they are denoted as coupling iterations.

Fluid–structure algorithms were initially developed for aero-
elastic applications, where typically qs � qf . In this case, the clas-
sical DN-algorithm (that we will denote by DN–Richardson)
converges in a few iterations. Thus, it is common practice in com-
putational aeroelasticity to use an explicit treatment of the cou-
pling, that is only one coupling iteration is performed per time
step (see, e.g., [30,15]). Unfortunately, the convergence properties
of the DN–Richardson algorithm depend heavily on the added-
mass effect. In fact, when the density of the structure is compara-
ble to the fluid one, the method fails to converge (see, e.g., [28,35]).
In order to enforce convergence, relaxation is needed [26]. The
relaxation parameter diminishes as the added-mass effect
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increases and it might become so small that convergence is
reached extremely slowly [11].

Many interesting applications are located in the large added-
mass effect range, like most of FSI problems involving light and
thin-walled structures (e.g., sail–wind systems or airbags). In par-
ticular, we are interested in the simulation of the deformation of
the arterial walls, whose density is almost identical to the blood
one, in the circulatory system.

Despite its inefficiency in case of a large added-mass effect, the
DN–Richardson algorithm has still been used. The reason relies on
its modularity. A FSI algorithm that only requires interface data
transfer between the two codes, without any modification of the
sources, is called modular. A modular FSI algorithm allows to reuse
existing (and already optimized) fluid and structure codes. For the
DN–Richardson method, the interface communication consists in
the transfer of the proper boundary conditions on the interface. A
simple master code can perform the communication between
codes only by handling interface information. Furthermore, Neu-
mann and Dirichlet boundary conditions are input data for any
fluid and structure solver and no change needs to be made on these
two solvers.

Since the nineties, many works have been focused on the devel-
opment of FSI algorithms capable of improving the convergence
velocity of modular algorithms. Some of them suggested the use
of dynamic evaluations of the relaxation parameters based on
line-search techniques, like steepest descent or Aitken acceleration
(see e.g. [26]). In this minimization approach, robust Krylov meth-
ods have replaced Richardson iterations in [21,17,25]. Other works
proposed to diminish the computational cost by reducing the cou-
pled fluid–structure problem to a pressure–structure problem,
using the continuous projection method [16] or algebraic block-
LU factorizations [5]. A third approach consists in modifying the
boundary conditions at the interface. The Neumann–Dirichlet
method has even worse convergence properties than the DN one.
The Neumann–Neumann algorithm slightly reduces the number
of iterations, but every iteration is more expensive, making its effi-
ciency similar to the one of the DN (see [13]). Recently, two im-
proved partitioned procedures have been designed: one sets
Robin boundary conditions on the interface [4], while the other en-
forces the continuity of velocities in a weak way by applying Nit-
sche’s method and introducing a penalization term that acts as a
pseudo-compressibility [10].

In [18] a simplified monolithic FSI algorithm embedding the
structure into the fluid problem has been proposed. There, the
ðd� 1Þ-dimensional (d being the space dimension) structure is
modeled as a membrane. The same idea of writing the FSI prob-
lem only in terms of fluid unknowns is presented in [29], where
an algebraic law for approximating the structure problem is
employed. In this paper, we consider the elasticity equation for
a d-dimensional structure. In any case, the use of non-modular
preconditioners for the FSI system has received much less atten-
tion. The first reason is the fact that they are not needed in appli-
cations with a negligible added-mass effect because partitioned
procedures are very efficient. The second reason is the loss of
modularity. Existing fluid and structure codes can still be reused,
but the coupling of the codes is more involved than bare interface
communication. In fact, fluid and structure matrices must be
stored in a unique FSI matrix, which has to be accessed to com-
pute the preconditioner. However, as we show in the present
work, non-modular algorithms should not be dismissed. We claim
the efficiency of non-modular preconditioners for problems af-
fected by a large added-mass effect.

The basic aspects of our non-modular approach are the use of
fluid and structure problems in terms of velocities, the use of a sin-
gle finite element partition for the whole domain and the use of the
same velocity finite element space for fluid and structure problems
(that can easily be attained by using stabilization techniques). In
this frame, the continuity of velocities is straightforward and the
continuity of stresses is imposed weakly.

The solution of the monolithic system is preconditioned in two
steps. Since fluid and structure entries are not of the same order,
we first apply a suitable scaling of the FSI system. In a second
step, the scaled system is preconditioned by an incomplete LU
factorization (the ILUT preconditioner). The preconditioned FSI
system is solved using a Krylov method, e.g. GMRES or BiCGStab.
We denote this combination by ILUT-GMRES and ILUT-BiCGStab,
respectively. Every iteration of the Krylov method requires to
solve a linear system with the preconditioner as system matrix.
The solution of this systems is very simple and cheap thanks to
the ILU structure of the preconditioner. This is a main difference
with respect to the DN preconditioner, where the solution of the
system with the preconditioner as system matrix involves expen-
sive fluid and structure evaluations. Thus, for an equal number of
outer Krylov method iterations, the non-modular approach is
much faster.

The third method we consider is a non-modular FSI algorithm
based on the reduction of the FSI system to a coupled pressure–
structure system. This method, denoted by the name PIC (pres-
sure-interface correction), originates from an inexact block-LU fac-
torization of the FSI system (see [5]). The approximation
introduced by the inexact factors perturbs the system but does
not spoil the accuracy when using first order algorithms.

All the approaches listed above aim at reducing the computa-
tional cost by abating coupling iterations. Another way to serve
the same purpose is to reduce the nonlinear iterations by adopting
more efficient linearization techniques. The use of a full Newton
algorithm is suggested in [17]. Even though the Newton method
reduces the number of nonlinear iterations, every iteration is more
expensive because shape derivative evaluations are needed, mak-
ing the implementation complicated. Quasi-Newton algorithms
have been suggested in [20,24,21]. In this paper, we insist on the
idea of considering the nonlinearity in an explicit way, leading to
semi-implicit algorithms. Semi-implicit procedures do not endan-
ger the stability whereas the computational cost is drastically re-
duced (no nonlinear iterations are performed). The accuracy of
semi-implicit algorithms has already been studied in [5].

Let us give the outline of the article. In Section 2, we state the
mathematical formulation of the FSI problem and detail the
choices of our monolithic approach. In Section 3, we recall the
DN–Richardson and DN-GMRES algorithms. In Section 4, we intro-
duce the ILUT preconditioner for the monolithic system. Section 5
is devoted to an inexact block-LU factorization of the FSI system. In
Sections 6 and 7, we carry out a set of numerical experiments.
Then, in Section 8, we draw some important conclusions on the
optimal range of applicability of the methods here proposed.
2. Problem setting

Consider an heterogeneous mechanical system which covers a
bounded, polyhedral and moving domain Xt � Rd (d ¼ 2;3, being
the space dimension), where time t spans the interval of analysis
½0; T�. This domain is divided into a domain Xs

t occupied by a solid
structure and its complement Xf

t occupied by the fluid. The fluid–
structure interface Rt is the common boundary between Xf

t and Xs
t ,

i.e. Rt ¼ oXf
t \ oXs

t . Furthermore, nf is the outward normal of Xf
t on

Rt and ns is its counterpart for the structure domain. The initial
configuration X0 at t ¼ 0 is considered as the reference one. In par-
ticular, we assume an incompressible and Newtonian fluid and an
elastic structure.

The fluid problem is governed by the incompressible Navier–
Stokes equations:
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dtuþ u � ru� 1
qf
r � rf ¼ f f in Xf

t � ð0; TÞ;

r � u ¼ 0 in Xf
t � ð0; TÞ;

where u is the fluid velocity, rf the Cauchy stress tensor and f f the
body force. For Newtonian fluids, rf has the following expression:

rf ðu;pÞ ¼ �pIþ 2l�ðuÞ;

where p is the pressure, l is the fluid viscosity, and

�ðuÞ ¼ 1
2
ðruþ ðruÞTÞ

is the strain rate tensor, with r denoting the spatial gradient
operator.

The structure is governed by the elastodynamics equation

o2
t g�

1
qs
r � rs ¼ f s in Xs

t � ð0; TÞ;

where g is the structure displacement and f s the body force. This
equation must be supplemented with a constitutive law that relates
the structural displacement g and the Cauchy stress tensor rs. As a
simple example, in our numerical simulations we used the linear
Saint-Venant Kirchhoff three-dimensional elastic model, where
the solid stress is defined as:

rsðgÞ ¼ 2l‘�ðgÞ þ k‘ðr � gÞI;
Here, �ðgÞ ¼ ðrgþ ðrgÞTÞ=2;l‘ and k‘ are the Lamé constants. Of
course, other structure models can be chosen according to the spe-
cific problem under consideration.

These two problems are coupled on the interface by two trans-
mission conditions. Due to the fact that we are dealing with vis-
cous fluids, the continuity of velocities (normal and tangential)

u ¼ otg on Rt � ð0; TÞ

must be satisfied. On the other hand, the continuity of stresses

rs � ns þ rf � nf ¼ 0 on Rt � ð0; TÞ

must hold, due to the action–reaction principle.
In order to describe the evolution of the whole domain Xt , we

define two families of mappings:

L : Xs
0 � ½0; T� ! Xs

t ; ðx0; tÞ ! x ¼Lðx0; tÞ ð1Þ

and

A : Xf
0 � ½0; T� ! Xf

t ; ðx0; tÞ ! x ¼Aðx0; tÞ: ð2Þ

The map Lt ¼Lð�; tÞ tracks the solid domain in time, At ¼Að�; tÞ
the fluid domain and they must agree on Rt:

Lt ¼At on Rt ; ð3Þ

in order to define an homeomorphism over Xt .
We adopt a purely Lagrangian approach for the structure. Thus,

if ĝ denotes the displacement of the solid medium evaluated at the
reference configuration, then:

Ltðx0Þ ¼ x0 þ ĝðx0; tÞ:

Apart from (3), the fluid domain mapping At is arbitrary. This
mapping can be defined as an appropriate extension operator of
its value on the interface:

Atðx0Þ ¼ x0 þ Extðĝðx0; tÞjR0
Þ:

A classical choice is to consider a harmonic extension in the refer-
ence domain. At is called the Arbitrary Lagrangian–Eulerian (ALE)
mapping, since in general it does not track the fluid particles (in that
case the formulation would be purely Lagrangian).
We can now write the velocity ALE time derivative (for the
fluid):

dtujx0
¼ otuþw � ru;

which is the variation of the velocity for a particle that moves with
the fluid mapping At . The domain velocity w is calculated using the
following expression:

wðx; tÞ ¼ dtxjx0
¼ dtAt �A�1

t ðxÞ:

The fluid–structure problem (where the fluid problem is stated in
the ALE formulation) in its strong form reads as follows:

(i) Geometry problem: Find the fluid domain displacement:

Atðx0Þ ¼ x0 þ ExtðĝjR0
Þ;

w ¼ otAt �A�1
t ; Xf

t ¼AtðXf
0Þ: ð4Þ

(ii) Fluid–structure problem: Find velocity u, pressure p and dis-
placement g such that

dtujx0
þ ðu�wÞ � ru� 1

qf
r � rf ¼ f f in Xf

t � ð0; TÞ;

r � u ¼ 0 in Xf
t � ð0; TÞ;

@2
t g�

1
qs
r � rs ¼ f s in Xs

t � ð0; TÞ;

u ¼ @tg on Rt � ð0; TÞ;
rs � ns þ rf � nf ¼ 0 on Rt � ð0; TÞ:

ð5Þ
2.1. Weak formulation

For the variational formulation of the fluid–structure problem
(4) and (5), we indicate with L2ðXÞ the space of square integrable
functions in a spatial domain X and with H1ðXÞ the space of func-
tions in L2ðXÞwith first derivatives in L2ðXÞ. We use ð�; �ÞX and h�; �iX
to denote the L2 product and a duality pair in X, respectively.

Let us define the following spaces, for any given t 2 ½0; TÞ:
Vf ðtÞ :¼ fv : Xf

t ! Rd; v ¼ v̂ � ðAtÞ�1
; v̂ 2 ðH1ðXf

0ÞÞ
dg;

Vf
0ðtÞ :¼ fv 2 Vf ðtÞ; vjRt

¼ 0g;
QðtÞ :¼ fq : Xf

t ! R; q ¼ q̂ � ðAtÞ�1
; q̂ 2 L2ðXf

0Þg;bV s :¼ fv̂ : Xs
0 ! Rd; v̂ 2 ðH1ðXs

0ÞÞ
dg:

A�1
t is assumed Lipschitz continuous in order for Vf ðtÞ � ðH1ðXf

t ÞÞ
d

and QðtÞ � L2ðXf
t Þ. The variational formulation of the fluid–structure

problem is: given t 2 ð0; TÞ, find ðu;p; ĝÞ 2 Vf ðtÞ � QðtÞ � bV s such
that

qf ðdtujx0
; vf

0ÞXf
t
þNðu�w; u;p; vf

0; qÞXf
t
¼ hf f ; v

f
0iXf

t
; ð6aÞ

qsðott ĝ; v̂sÞXs
0
þ hr̂s;rv̂siXs

0
¼ hf̂ s; v̂siXs

0
� hrf � nf ; vsiRt

; ð6bÞ

u ¼ ot ĝ � ðAtÞ�1 on Rt ; ð6cÞ

for all ðvf
0; q; v̂

sÞ 2 Vf
0ðtÞ � QðtÞ � bV s, where

Nða; u;p; v; qÞX ¼ 2lð�ðuÞ; �ðvÞÞX þ qf

Z
X
ða � ruÞ � v dX

� ðp;r � vÞX þ ðr � u; qÞX:
The continuity of velocities has been enforced in a strong way by
(6c). On the contrary, the continuity of stresses on the interface is
satisfied in a weak way by choosing test functions vf 2 Vf ðtÞ for
the momentum conservation equation of the fluid problem. In fact,
the fluid interface load can be seen as the variational residual of the
weak form of the momentum conservation equation for test func-
tions that do not vanish on Rt:
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hrf � nf ; vf iRt
¼ qfðdtujx0

; vf ÞXf
t
þNðu�w; u; p; vf ; qÞXf

t
� hf f ; v

f iXf
t

¼ �hRðu;pÞ; vf iXf
t
:

Therefore, for the last term in Eq. (6b) we have the following
equality:

hrf � nf ; vsiRt
¼ �hRðu;pÞ;EtðvsjRt

ÞiXf
t

for all vs 2 VsðtÞ (where, abusing of notation, VsðtÞ ¼LtðbV sÞÞ;Et

being an arbitrary extension operator from the trace space associ-
ated to VsðtÞ to Vf ðtÞ.

The weak transmission of the fluid loads at the interface is cru-
cial when carrying out stability and convergence analysis. We refer
to [9] for an insight on the improved rates of convergence obtained
by using weak definition of fluxes. Stability results for the FSI prob-
lem relying on this weak transmission can be found in [35,28].

2.2. The fully discrete problem: space and time discretization

Let bV f
h � ½H

1ðXf
0Þ�

d
; bV f

0;h � ½H
1
0ðX

f
0Þ�

d
; Q̂ f

h � L2ðXf
0Þ and bV s

h � ½H
1

ðXs
0Þ�

d�1 be the finite element spaces approximating Vf ;Vf
0;Q andbV s at the reference configuration, respectively. With an abuse of

notation, we can define the finite element spaces for a given time

step tn using the domain maps (1) and (2), e.g. Vf
hðt

nÞ ¼Atn ðbV f
hÞ.

The standard Galerkin approximation of the incompressible
Navier–Stokes equations may fail for two different reasons. First,
the method exhibits instabilities when the convective term is dom-
inant. On the other hand, pressure stability can only be obtained
for velocity–pressure finite element spaces ðQ f

h;V
f
hÞ that satisfy a

discrete inf–sup condition (see [7]). The simplest combinations of
velocity–pressure pairs (e.g. equal order nodal interpolation) do
not satisfy this condition and are unstable.

Both pitfalls can be overcome by resorting to a stabilized formu-
lation. In this work, we consider the orthogonal subgrid scales (OSS)
technique proposed by Codina in [12]. It allows to use equal order
velocity–pressure pairs (like the P1 � P1 pair adopted in this work)
and stabilizes the convective term for high Reynolds numbers. We
refer to [2] for the numerical analysis of the OSS technique in the
ALE framework. The stabilized version of the fluid problem is ob-
tained by using the form

Nsðah;uh;ph;vh;qhÞX :¼Nðah;uh;ph;vh;qhÞXþSðah;uh;ph;vh;qhÞX;

where the perturbation term introduced by OSS (in its quasi-static
form) reads

Sðah; uh;ph; vh; qhÞX ¼ ðs1P
?ðah � ruh þrphÞ;ah � rvh þrqhÞX

þ ðs2P
?ðr � uhÞ;r � vhÞX: ð7Þ

Here, P?ð�Þ is the L2 orthogonal projection onto the finite element
space, i. e.:

P?ð�Þ ¼ Ið�Þ �Pð�Þ

where Pð�Þ is the L2 projection onto the finite element space and
Ið�Þ the identity operator. We use the following expressions for
the stabilization parameters

s1 ¼ c1
l

qh2 þ c2
jahj
h

" #�1

; s2 ¼
h2

c1s1
;

where c1 and c2 are appropriate constants, justified in [12] through
a Fourier analysis. We refer to [12] for a thorough description of this
stabilization technique.

With regard to time discretization, we have considered the
backward Euler scheme for the fluid equations and the mid-point
rule for the structure [35] for simplicity. In any case, the splitting
methods suggested below can be easily extended to other time
integration schemes. By defining the backward Euler operator dt

as dt f nþ1 ¼ ðf nþ1 � f nÞ=dt and denoting by Exthð�Þ a discretized ver-
sion of the extension operator Extð�Þ, at each time level tnþ1, the
fully discretized fluid–structure problem reads:

(i) Geometry problem: Find the fluid domain displacement
Atnþ1 ðx0Þ ¼ x0 þ Exthðĝnþ1
h jR0

Þ; wnþ1
h ¼ dtAtnþ1 �A�1

tnþ1 ;X
f
tnþ1

¼Atnþ1 ðXf
0Þ: ð8Þ
(ii) Fluid–structure problem: Find ðunþ1
h ; pnþ1

h ; ĝnþ1
h Þ 2 Vf

h � Qh � V̂ s
h

such that
qfðdtunþ1
h jx0

; vf
hÞXf

tnþ1
þNsðunþ1

h �wnþ1
h ; unþ1

h ; pnþ1
h ; vf

h; qhÞXf

tnþ1

¼ hf nþ1
f ; vf

hiXf

tnþ1
ð9aÞ

qs

_̂gnþ1
h � _̂gn

h

dt
; v̂s

h

 !
Xs

0

þ rs ĝnþ1
h þ ĝn

h

2

� �
;r � v̂s

h

� �
Xs

0

¼ hf̂ nþ1
s ; v̂s

hiXs
0
� hRðunþ1

h ; pnþ1
h Þ;Ehðvs

hjRt
ÞiXf

tnþ1
; ð9bÞ

_̂gnþ1
h þ _̂gn

h

2
; v̂s

h

 !
Xs

0

¼ ĝnþ1
h � ĝn

h

dt
; v̂s

h

� �
Xs

0

; ð9cÞ

unþ1
h ¼ dt

_̂gnþ1
h �A�1

tnþ1 on Rt ð9dÞ

for all ðvf
h; qh; v̂s

hÞ 2 Vf
0;h � Qh � bV s

h.
The fluid domain Xf
tnþ1 defined by Atnþ1 does depend on ĝnþ1

h and
the fluid problem depends on Xf

tnþ1 in a nonlinear way. We consider
a fixed point algorithm to linearize both this dependence and the
convective term in (9a). The linearization of the fluid–structure
problem (8) and (9) by the fixed point algorithm consists of: given
the predictions ~gnþ1

h and ~unþ1
h

Step 1: Calculate the fluid domain displacement as in (8) but
replacing the first equation with

Atnþ1 ðx0Þ ¼ x0 þ Exthð~gnþ1
h jR0

Þ:

Step 2: Solve the fluid–structure problem as in (9) but replacing
the momentum Eq. (9a) by the linearized version:

qf ðdtunþ1
h jx0

; vf
hÞXf

tnþ1
þNsð~unþ1

h �wnþ1
h ; unþ1

h ;pnþ1
h ; vf

h; qhÞXf

tnþ1

¼ hf nþ1
f ; vf

hiXf

tnþ1
: ð10Þ

Step 3: Check the stopping criterion. If it is not satisfied, update
~gnþ1

h ¼ ĝnþ1
h ; ~unþ1

h ¼ unþ1
h and go to Step 1.

We have ended up with a fully discretized and linearized fluid–struc-
ture problem that can be solved by a linear solver. Notice that the
fluid and structure problems are strongly coupled: the fluid solu-
tion depends on ĝnþ1

h through (9d), whereas to solve the structure
problem in (9b) unþ1

h and pnþ1
h are needed.

A method that deals with the fluid–structure coupling in an ex-
plicit way replaces (9d) by the condition unþ1

h ¼ dt~g
nþ1
h �A�1

tnþ1 .
Otherwise, the coupling is implicit (also called strong coupling).

There exist two ways for an algorithm to treat the nonlinearities
given by the convective term and by the fluid domain: explicitly
and implicitly. In the first case, only one fixed point iteration is per-
formed per time step. In the other case, nonlinear iterations are
performed till convergence of the fixed point, Newton or quasi-
Newton algorithm.

The FSI algorithms treating nonlinearity explicitly are called
semi-implicit. In general, the treatment of the fluid domain in an
explicit way does not affect the unconditional stability of the cou-
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pled FSI problem, even when the added-mass effect is critical. Let
us remark that this is not the case for the fluid–structure coupling.
Explicit or weak coupling is unstable when the added-mass effect
is important.

In particular, if the problem is discretized with a first order
method (in time) and the condition

~unþ1
h ¼ wnþ1

h ; on Rt ;

is satisfied (e.g. by taking ~unþ1
h ¼ un

h and ~gnþ1
h ¼ ĝn

h), the semi-implicit
method keeps the stability properties of the implicit procedure (see
[28]). Examples of semi-implicit algorithms can be found in [16,5].
Semi-implicit methods treat explicitly nonlinearity (reducing CPU
cost) and implicitly the fluid–structure coupling (keeping stability).
The optimal convergence of the monolithic semi-implicit method
has been checked in [5].

2.3. The linear fluid–structure system

We aim at writing the fluid–structure system yielded by the lin-
earized and fully discretized FSI problem. We start by introducing
the unknowns for the fluid problem: Unþ1

f ;Unþ1
r and Pnþ1 are the

arrays of nodal values for the velocity of the inner nodes, the
velocity of the interface nodes, and the pressure. The structural
unknowns are Dnþ1

s and _Dnþ1
s , the arrays of nodal values for ĝnþ1

h

and _̂gnþ1
h . We also consider the structure velocity Unþ1

s ¼ dtD
nþ1
s .

Assuming matching grids and equal interpolation spaces for the
fluid velocity and structure displacement, we can state the discrete
continuity of velocities as follows:

Unþ1
r ¼ dtD

nþ1
r :

More involved situations would require the use of mortar methods
(see, e.g., [6]), for example.

In order to write the fully discretized coupled problem for a
given time value tnþ1, we need to define a set of matrices. We
denote by Kab the matrix that includes viscous and convective
terms, where the subindexes a and b indicate the position of fluid
nodes: the value r is used for nodes on Rt ; f otherwise. Using the
same notation, we also define the mass matrices Mab, the fluid
matrix Cab ¼ 1

dt Mab þ Kab, the gradient matrix Ga and the diver-
gence matrix Da. In these matrices we already include the corre-
sponding stabilization terms. We also indicate with Ls

p the matrix
associated to the pressure stabilization. Finally, let us denote with
Nab the matrix associated to the structure written in terms of struc-
ture velocity, where the subindexes a and b take the values r for
interface nodes and s for inner structure nodes.

At a given time value tnþ1, Eqs. (10), (9b), (9c) and (9d) can be
written in matrix form as:

AXnþ1 ¼ bnþ1
; ð11Þ

where

A ¼

Cff Gf Cfr 0
Df Ls

p Dr 0
Crf Gr Crr þ Nrr Nrs

0 0 Nsr Nss

26664
37775;

Xnþ1 ¼

Unþ1
f

Pnþ1

Unþ1
r

Unþ1
s

266664
377775; bnþ1 ¼

bnþ1
f

bnþ1
p

bnþ1
r

bnþ1
s

2666664

3777775; ð12Þ

The right-hand side terms bnþ1
f ;bnþ1

p ;bnþ1
r and bnþ1

s account for body
forces, time integration and stabilization terms, and the structure
terms related to the fact that the structure equation is stated in
terms of velocities.
We refer to [5] for a more detailed exposition of the discrete FSI
system.

Remark 1. It is also possible to linearize the fluid and structure
problems through Newton methods. Again, the block structure of
matrix A is left unchanged and our procedures can be applied.

Remark 2. The orthogonal projection in the stabilization term (7)
complicates the assembling of the fluid block. Therefore, for prac-
tical purposes, only the term

ðs1ð~unþ1
h � runþ1

h þrpnþ1
h Þ; ~unþ1

h � rvf
h þrqhÞXf

tnþ1

þ ðs2ðr � unþ1
h Þ;r � vf

hÞXf

tnþ1
ð13Þ

is assembled in the matrix, whereas the missing term is treated
explicitly and sent to the right-hand side

ðs1Pð~un
h � run

h þrpn
hÞ; eunþ1

h � rvf
h þrqhÞXf

tnþ1

þ ðs2Pðr � un
hÞ;r � vf

hÞXf

tnþ1
: ð14Þ

Alternatively, we could use the algebraic subgrid scales (ASGS)
technique (see [22]), which introduces the stabilization term

ðs1ðqfdtunþ1
h jx0

þ ~unþ1
h � runþ1

h þrpnþ1
h Þ; ~unþ1

h � rvf
h þrqhÞXf

tnþ1

þ ðs2ðr � unþ1
h Þ;r � vf

hÞXf

tnþ1
:

Remark 3. Ls
p is a weighted Laplacian matrix that comes from the

term ðs1rpnþ1
h ;rqhÞXf

tnþ1
.

Remark 4. In case of considering non-matching grids and a mortar
method on the interface, the monolithic system has to be modified.
Two different interface arrays must be considered: the interface
fluid velocity Unþ1

r;f and the interface structure velocity Unþ1
r;s . For

instance, considering the structure interface as the master, and
the fluid interface as the slave, we can easily define the rectangular
matrix Y that projects the structure interface velocity into the fluid
interface space. The continuity of velocities is imposed as

Unþ1
r;f ¼ YUnþ1

r;s :

Matrix Y involves an inverse mass matrix (better if lumped) on the
fluid interface. Then, we must multiply the blocks Crf , Gr and Crr by
Y on the right and solve the problem with Unþ1

r;s as interface un-
known. The assembling of these matrices is advised for the precon-
ditioning of the system matrix by ILU-type preconditioners.
2.4. Features of the monolithic system

In this section, we describe our monolithic formulation. Our
goal is to end up with a simple FSI system suitable for iterative
solvers and ILU-type preconditioners.

Firstly, we rely on a finite element partition of the overall do-
main. It implies matching grids on the fluid–structure interface.
This approach is reasonable when there is an interest in solving
the problem with non-modular preconditioners (one whole
system).

On the other hand, we make use of the same finite element
spaces for fluid velocity and structure displacement (or velocity).
This is extremely simple when using stabilization techniques be-
cause the velocity–pressure pair can circumvent the discrete inf–
sup condition. In that case, the same finite element interpolation
spaces can be used for fluid velocity, pressure and structure un-
knowns. For example, for the numerical experiments in Sections
6 and 7, we use P1=P1 finite elements for the fluid and P1 finite ele-
ments for the structure.
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Moreover, we reformulate the structure equations in terms of
velocities. This is attained by a simple modification of the right-
hand side and does not affect at all the generality of the
formulation.

By virtue of the previous conditions, the velocity unknowns are
defined over the whole domain (fluid and structure), the problem
is discretized using one finite element partition and all the un-
knowns are interpolated with the same finite element space.

In this frame, the transmission conditions are easily imposed.
The continuity of velocities on the interface is implicitly enforced
by the finite element space interpolation used over the whole do-
main. The continuity of stresses is imposed weakly. The weak
transmission of stresses simply arises from the fact that shape
functions on the interface nodes have support on fluid and struc-
ture sub-domains (see [5]). In this way, the final system has the
clear form reported in (12).

Another option would be to impose the transmission of stresses
in a strong form. Once the fluid problem is computed, the stresses
are integrated on the boundary elements by evaluating the fluid
stress on the Gauss points, and passed to the structure solver.
The monolithic matrix in this case reads as

A ¼

Cff Gf Cfr 0
Df Ls

p Dr 0
Jrf Jp Nrr Nrs

0 0 Nsr Nss

26664
37775;

where Jrf comes from the term

hmnf � runþ1
h vs

hiRt

and Jp from

h�pnþ1
h I � nf ; vs

hiRt
:

This approach destroys the symmetry of the system (in case of
using the Stokes problem), affects the unconditional stability of
(12) and spoils the order of accuracy of the method (see [9]). For
these reasons, we consider the weak transmission of stresses.

Last but not least, an appropriate fluid formulation is important
for the efficiency of ILU-type preconditioners applied to the FSI sys-
tem. Inf–sup stable elements yield linear systems that are indefi-
nite since they represent saddle-point problems. By using
stabilized formulations the zero pressure block of these systems
is replaced by a semi-positive definite matrix. This improves
remarkably the efficiency of iterative solvers preconditioned with
ILU-type preconditioners (see e.g. [34,1,19,8]).

In the next sections, we consider different preconditioners for
the monolithic FSI system.

3. The Dirichlet–Neumann preconditioner

The FSI system can be reformulated as an interface problem.
This is achieved by writing system (12) only in terms of Ur thanks
to the Schur complements of fluid and structure sub-problems.
Omitting the time step superscript for simplicity, the interface
problem is:

ð~Cr þ ~NrÞUr ¼ ~br;

with

~Cr ¼ Crr � ½Crf Gr�
Cff Gf

Df Ls
p

" #�1
Cfr

Dr

� �
;

~Nr ¼ Nrr � NrsN
�1
ss Nsr;

~br ¼ br � ½Crf Gr�
Cff Gf

Df Ls
p

" #�1
bf

bp

� �
� NrsN

�1
ss bs:
The interface system preconditioned with the Dirichlet–Neumann
preconditioner ~Nr reads as follows:
~N�1

r ð~Cr þ ~NrÞUr ¼ ~N�1
r

~br: ð15Þ

This Schur complement preconditioner can also be understood as
an incomplete block-LU factorization of the FSI system matrix A
(see [31]). The preconditioned system must be solved with a
matrix-free iterative solver. In the next two sections, we introduce
two different choices.

3.1. Richardson algorithm for the preconditioned interface system

The classical Dirichlet–Neumann algorithm can be understood
as Richardson iterations over system (15):

Ukþ1
r ¼ Uk

r þ ~N�1
r ð~br � ð~Nr þ ~CrÞUk

rÞ:

We can easily infer that it is equivalent to the following iterative
procedure:

(i) Fluid problem (Dirichlet boundary condition)

Cff Gf

Df Ls
p

" #
Ukþ1

f

Pkþ1

" #
¼

bf � CfrUk
r

bp � DrUk
r

" #
ð16aÞ

(ii) Structure problem (Neumann boundary condition)

Nrr Nrs

Nsr Nss

� �
Ukþ1

r Ukþ1
s

h i
¼

bkþ1
r � CrrUkþ1

r � Crf Ukþ1
f � GrPkþ1

bkþ1
s

" #
:

ð16bÞ

This is the most appealing feature of the DN–Richardson meth-
od: every iteration of the algorithm can be performed by separate
fluid and structure solvers. We only need to modify the boundary
conditions.

The iterative process must be supplemented with an appropri-
ate stopping criterion. For instance, for the numerical experiments
in Sections 6 and 7 we use:

kUkþ1
r � Uk

rk
kU0

rk
6 �: ð17Þ

Every iteration of the DN–Richardson algorithm is expensive, be-
cause it involves to solve one fluid and one structure problem. A
cheaper preconditioner has been suggested in [36]. The fluid and
structure problems are replaced by ILU-type preconditioners of
the respective system matrices. This preconditioner is not modular
and less effective than the original one, but the computational cost
of every iteration is reduced.

3.2. GMRES algorithm for the preconditioned interface system

Instead of using Richardson iterations, we can apply the GMRES
algorithm to the preconditioned interface problem (15). The result-
ing method is denoted by DN-GMRES. It is much faster and robust
than DN–Richardson, because it involves orthonormal iterations.
Moreover, convergence is always assured, at worst after as many
iterations as degrees of freedom at the interface (not practical for
real applications). The GMRES methods requires to compute and
store the Krylov base associated to Q ¼ ~N�1

r ð~Cr þ ~NrÞ, starting from
the preconditioned residual r0 ¼ ~N�1

r ½~br � ð~Cr þ ~NrÞU0
r�, where U0

r
is the initial guess. The Krylov space generated for the m-th itera-
tion of the GMRES method is

Km :¼ spanfr0;Qr0;Q 2r0; . . . ;Q mr0g ¼ spanfz0; z1; . . . ; zmg: ð18Þ

Given zk, in order to get zkþ1 we must evaluate a matrix-vector
product
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~N�1
r ð~Nr þ ~CrÞzk ¼ zk þ ~N�1

r
~Crzk

This algorithm can be rearranged in such a way that every matrix-
vector product is evaluated by the DN–Richardson code, simply set-
ting to zero the body force:

(i) Given U0
r, solve one Richardson iteration of (16a) to get U1

r
and compute the initial residual as:
r0 ¼ U1
r � U0

r:
(ii) Initialize the Krylov base with z0 ¼ r0=kr0k and at every
GMRES iteration (see [33], Section 6.5]) obtain the matrix
vector product w ¼ Qzk as follows:
(a) Fluid problem (Dirichlet boundary conditions and zero

forcing term)" #� � " #

Cff Gf

Df Ls
p

vf

q
¼ � Cfrzk

Drzk
; ð19aÞ
(b) Structure problem (Neumann boundary conditions and
zero forcing term)
Nrr Nrs

Nsr Nss

� �
vr

vs

� �
¼ � Crrzk þ Crf vf þ Grq

0

" #
: ð19bÞ
(c) Evaluate w ¼ zk � vr.

Implementing the DN-GMRES method by reusing the DN–Rich-
ardson master allows to use separate fluid and structure solvers.
Unluckily, the performance of the DN-GMRES algorithm is still
negatively affected by the added-mass effect.

Remark 5. At every GMRES iteration we get

Uk
r ¼ argmin

y2Kk

k~N�1
r ½~br � ð~Cr þ ~NrÞy�k;

which can also be written as

k~Ukþ1
r � Uk

rk;

where ~Ukþ1
r is obtained from Uk

r by solving one iteration of the Rich-
ardson algorithm (16a). By taking �kU0

rk as tolerance, we impose
the same stopping criterion used for the DN–Richardson method.
This is the choice adopted in the numerical experiments.

Remark 6. The GMRES algorithm is performed over the interface
unknowns. Therefore, the Krylov base elements only have the
dimensions of Ur. The memory requirements are clearly reduced.

Remark 7. The DN-GMRES algorithm could be implemented in a
modular way. The computation of the initial residual is nothing else
but one iteration of the DN–Richardson algorithm and the rest of
the matrix-vector products can be computed using (19a), with sep-
arate fluid and structure evaluations. However, we must set to zero
the right-hand side term in both sub-problems. Assuming that this
can be done without modifying the source codes, the DN-GMRES
would keep modularity. In any case, a modular DN-GMRES algo-
rithm is extremely inefficient; fluid and structure matrices do not
change in the iterative process and could be assembled only once.
An efficient implementation of the DN-GMRES algorithm requires
a master with access to fluid and structure blocks to perform the
iterative process without reassembling matrices.
3.3. The reduction factor for the residual norm of the DN-GMRES
method for a model problem

The purpose of this subsection is to understand how the added-
mass effect affects the convergence of the DN-GMRES algorithm.
To fulfill it, we consider the simplified fluid–structure model pro-
posed in [11].

We take a rectangular fluid domain Xf 2 R2 of height R and
length L (see Fig. 2 in [11]). The structure domain Xs coincides with
the interface, that is Xs ¼ R. Under the hypothesis of dealing with a
thin structure, having a membrane behaviour and neglecting all
the displacements but the normal one, we derive the structure
model:

qshottgþ ag� boxxg ¼ fRðx; tÞ in Xs � ð0; TÞ:

Here, g ¼ gðx; tÞ is the displacement in the direction of nf ;h is
the thickness of the structure, a ¼ Eh=R2ð1� m2Þ; E being the Young
modulus and m the Poisson coefficient, b ¼ kGh, G being the shear
stress modulus and k the Timoshenko shear correction factor,
and fRðx; tÞ the forcing term coming from the fluid.

The model for the fluid is linear, incompressible, and inviscid.
The deformation of the structure is assumed to be so small that
the fluid domain Xf can be considered fixed. Hence, the fluid model
is the following:

qfdtuþrp ¼ 0 in Xf � ð0; TÞ;
r � u ¼ 0 in Xf

t � ð0; TÞ;
u ¼ dtg on R� ð0; TÞ;

with suitable boundary conditions on oXf n R and initial conditions;
u denotes u � nf on R.

For the time discretization of the FSI system we choose the im-
plicit Euler scheme for the fluid problem and first order backward
difference scheme for the structure one. The time-discrete problem
reads:

qfdtunþ1 þrpnþ1 ¼ 0 in Xf � ð0; TÞ;
r � unþ1 ¼ 0 in Xf

t � ð0; TÞ;
u ¼ dtgnþ1 on R� ð0; TÞ;

ð20Þ

and

qsh
gnþ1 � 2gn þ gn�1

dt2 þ agnþ1 � boxxgnþ1

¼ pnþ1 in Xs � ð0; TÞ: ð21Þ

It can be shown [11,4] that problem (20) and (21) corresponds to
the following discrete added-mass problem for the structure:

ðqshIþ qfMÞ
gnþ1 � 2gn þ gn�1

dt2 þ agnþ1 þ bLgnþ1

¼ p̂nþ1 on Xs � ð0; TÞ; ð22Þ

where I denotes the identity operator, M : H�1=2ðRÞ ! H1=2ðRÞ
stands for the added-mass operator and L ¼ �oxx is the Laplace
operator. p̂nþ1 takes into account non-homogeneous boundary con-
ditions on oXf n R.

Let us indicate with Q the linear, invertible, and continuous
operator

Q ¼ qsh
dt2 þ a

� �
Iþ bLþ qf

dt2 M;

which can be split as Q ¼ Qf þ Qs, where Qf and Qs are the linear
operators associated to the fluid and structure sub-domains:

Qf ¼
qf

dt2 M; Qs ¼
qsh
dt2 þ a

� �
Iþ bL:

Solving (22) with the DN-GMRES algorithm means to solve the
problem Qgnþ1 ¼ G (G accounting for gn;gn�1 and p̂nþ1) with the
GMRES method based on Qs as preconditioner. To analyze the DN-
GMRES algorithm we express g as
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g ¼
X1
i¼1

gigi; with gi ¼
ffiffiffi
2
L

r
sin ip x

L

	 

:

The functions gi are eigenfunctions of both the added-mass and the
Laplace operators. Let li (see [11]) and ki (see [4]) be the respective
eigenvalues:

li ¼
L

ip tanh ip R
L

� � ; and ki ¼
ip
L

� �2

;

for i ¼ 1; . . . ;1. The operator Qs is continuous and coercive. Also Qf

is continuous [11].
The reduction factor q for the residual norm of the DN-GMRES

method is given by:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rmin

rmax

r
; ð23Þ

(see, e.g., [14]), where

rmin ¼ inf
g6¼0

ðQ�1
s Qg;gÞ
ðg;gÞ ; rmax ¼ sup

g6¼0

ðQ�1
s Qg;gÞ
ðg;gÞ :

We have:

rmin ¼ inf
g6¼0

ðQ�1
s ðQf þ QsÞg;gÞ
ðg;gÞ ¼ 1þ inf

g6¼0

ðQ�1
s Qfg;gÞ
ðg;gÞ ¼ 1; ð24Þ

since the operator Qf is positive on L2ðRÞ and li ! 0 and ki !1 as
i!1. For the supremum we get:

rmax ¼ 1þ sup
g6¼0

ðQ�1
s Qfg;gÞ
ðg;gÞ ¼ 1þ qflmax

qshþ adt2 þ dt2bkmin
:

In [4], it is proved that the DN–Richardson algorithm applied to the
simplified problem (22) converges to the monolithic solution only if
the relaxation parameter x 2 ð0;xmax�, with

xmax ¼
2

1þ qf l1
qshþadt2þdt2bk1

:

Thus, rmax ¼ 2
xmax

. Plugging this result and (24) into (23), we obtain

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�xmax

2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
qfl1

qfl1 þ qshþ adt2 þ dt2bk1

s
:

Since 0 < q < 1, the advantage of the DN-GMRES algorithm is
that convergence is always reached, whereas the DN–Richardson
method has a constraint on the relaxation parameter. However, as
the added-mass effect gets critical, xmax ! 0; so the reduction
factor q! 1 and convergence slows down.

4. ILU preconditioners

The first problem related to the monolithic FSI matrix is the dis-
crepancy between the entries in the different blocks. In order to
solve this issue, we consider a diagonal scaling of the matrix (ap-
plied on the left). The diagonal scaling we performed for the
numerical simulations in Sections 6 and 7 is the following. Let D
be the diagonal matrix whose element are the diagonal coefficients
of A (12). Instead of solving system (11), we solve:bAXnþ1 ¼ b̂nþ1;

where bA :¼ D�1A and b̂nþ1 :¼ D�1bnþ1.
The system matrix bA is preconditioned by an incomplete LU fac-

torization P, the so-called ILUT preconditioner (see [33]). The ILUT
preconditioner allows to fix a threshold (entries smaller than the
threshold are discarded) and the level of fill-in (that defines the
maximum number of non-zero entries per row). Again, we make
use of left-preconditioning:
P�1bAXnþ1 ¼ P�1b̂nþ1 ð25Þ

This method is non-modular, in the sense that the whole monolithic
matrix is needed to compute the preconditioner.

In the non-modular approach, we aim at solving the FSI linear
system through standard iterative methods. The preconditioned
system is solved by a matrix-free Krylov method. Because of the
non-symmetric nature of the system, we consider the GMRES
and BiCGStab algorithms. The GMRES method is based on the min-
imization of the residual of the preconditioned system (25). This
algorithm requires to store the Krylov base, where every element
of the base is an array of size the number of unknowns. Due to
memory constraints, the maximum number of Krylov elements
that can be stored must be limited. When this limit is reached,
the GMRES method must be re-started. The BiCGStab algorithm
is based on a quasi-minimization of the residual that does not re-
quire to store the Krylov base, drastically reducing the memory
usage. The GMRES algorithm (without re-starting) requires a lower
number of iterations than BiCGStab; however, the latter performs
better than the re-started GMRES.

5. An inexact block-LU factorization

In [5] two semi-implicit algorithms have been derived from
splitting techniques designed for the FSI problem at the fully dis-
crete level. In that work, inf–sup stable finite element pairs were
used for velocity and pressure, and the methods (called PIC and
FSY) were tested on a 2D benchmark involving a one-dimensional
structure. Now, the goal is to solve realistic 3D applications with
the PIC and FSY schemes in order to understand their efficiency
and compare it to that of the methods presented in Sections 3
and 4.

In this section, we briefly extend the semi-implicit algorithms
based on inexact factorizations to stabilized finite element meth-
ods with equal velocity–pressure interpolation and generalize
them to the case of a d-dimensional structure. Letting the subscript
S indicate both the inner structure and interface nodes, the matrix
and the vectors in (12) can be rewritten as

A ¼
Cff Gf CfS

Df Ls
p DS

CSf GS NS

264
375;

Xnþ1 ¼
Unþ1

f

Pnþ1

Unþ1
S

264
375; bnþ1 ¼

bnþ1
f

bnþ1
p

bnþ1
S

2664
3775: ð26Þ

The PIC and FSY schemes derive from an inexact block-LU factoriza-
tion, carried out over the FSI system matrix in (26). The exact L and
U factors read:

A ¼
Cff 0 0
Df Spp SpS

CSf SSp SSS

264
375 I C�1

ff Gf C�1
ff CfS

0 I 0
0 0 I

264
375 ¼ LU; ð27Þ

where the S-matrices are Schur complements. Their formal defini-
tion is:

Spp ¼ Ls
p � Df C

�1
ff Gf ;

SpS ¼ DS � Df C
�1
ff CfS;

SSp ¼ GS � CSf C
�1
ff Gf ;

SSS ¼ NSS � CSf C
�1
ff CfS:

The presence of the inverse fluid matrix C�1
ff makes the exact LU fac-

torization unaffordable. Therefore, we resort to inexact factoriza-
tions in order to reduce the computational complexity. The exact



Table 1
Fluid and structure physical properties for the numerical tests

Fluid density: qf ¼ 1:0 g=cm3 Fluid viscosity: l ¼ 0:035 poise
Structure density: qs ¼ 1:1 g=cm3 Wall thickness: h ¼ 0:1 cm
Young modulus: E ¼ 7� 105 dyne=cm2 Viscoelastic parameter:

c ¼ 10�1 dyne s
Shear modulus:

G ¼ 2:5� 105 dyne=cm2
Poisson coefficient: m ¼ 0:4

Lamé constants: l‘ ¼ 106 dyne= cm2; k‘ ¼ 1:73� 106 dyne=cm2
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L and U factors in (27) are replaced by inexact ones in which C�1
ff is

substituted by the zeroth order term of its Neumann expansion:

C�1
ff ¼

1
dt

Mff þ Kff

� ��1

¼ dtM�1
ff þ Oðdt2Þ ’ dtM�1

ff : ð28Þ

Remark 8. In order to reduce the computational cost, a lumped
mass matrix Mff is used.

Remark 9. When using the OSS technique, none of the stabiliza-
tion terms is multiplied by dt�1; the time derivative terms in the
residual disappear with the orthogonal projection. We can include
all the stabilization terms in Kff and use the previous expansion
with a lumped mass matrix. However, for some other techniques,
like algebraic subgrid scales or Galerkin/least-squares, there are sta-
bilization terms that are multiplied by dt�1. Matrix Mff is not a
standard mass matrix anymore and cannot be lumped, making
its inversion more involved.

We denote by Tab the approximated Schur complements, in
which C�1

ff is replaced by dtM�1
ff . The subindexes a and b can take

the values p for pressure and S for interface and inner structure
nodes. Consequently, the lower block-triangular matrix L is
approximated by:

LPIC :¼
Cff 0 0
Df Tpp TpS

CSf TSp TSS

264
375:

Using the same approximation (28) for the upper block-triangular
matrix U, the following inexact U factor is obtained:

UPIC :¼
I dtM�1

ff Gf dtM�1
ff CfS

0 I 0
0 0 I

264
375:

The system matrix for the PIC scheme is obtained by replacing
matrices L and U with LPIC and UPIC (APIC ¼ LPICUPIC), while the FSY
algorithm substitutes only the L factor (AFSY ¼ LPICU).

An inexact factorization involves a perturbation error that can
be reduced if it is applied to the incremental system (instead of
the non-incremental (11)):

AðXnþ1 � X	Þ ¼ bnþ1 � AX	; ð29Þ

where X	 is the vector made of U	f ;P
	 and U	S which are predictions

of Unþ1
f ;Pnþ1 and Unþ1

S . For instance, a first order prediction would be
X	 ¼ Xn.

The algorithms based on the inexact factorizations applied to
the incremental FSI system can be rearranged into three-steps pro-
cedures. For the PIC scheme that procedure is the following:

(i) Computation of the intermediate velocity:

Cff
~Unþ1

f ¼ bnþ1
f � Gf P

	 � CfSU	S; ð30aÞ

(ii) Solution of the coupled pressure-interface system:

Tpp TpS

TSp TSS

� �
Pnþ1 � P	

Unþ1
S � U	S

" #
¼

�Df
eUnþ1

f

bnþ1
S � CSf

eUnþ1
f

" #
�

0 DS

GS NSS

� �
P	

U	S

� �
;

ð30bÞ

(iii) Computation of the end-of-step velocity:

1
dt

Mff Unþ1
f ¼ 1

dt
Mff

eUnþ1
f � Gf ðPnþ1 � P	Þ � CfSðUnþ1

S � U	SÞ: ð30cÞ

The incremental version of the FSY scheme shares the first two
steps (30a) and (30b) with the PIC method, whereas the third
one becomes
(iv) Computation of the end-of-step velocity:

Cff Unþ1
f ¼ Cff

eUnþ1
f � Gf ðPnþ1 � P	Þ � CfrðUnþ1

r � U	rÞ:

The latter step differs from (30c) and is actually more expensive
due to the presence of the stiffness matrix Cff . Since we are inter-
ested in comparing the efficiency of different methods, in the
numerical simulations we will only consider the PIC algorithm.

Clearly, the numerical complexity of the PIC scheme lies in Step
2, where the pressure is coupled to the structure velocity. In the
following, we will denote by T the system matrix of the pres-
sure–structure problem (30b). The added-mass can only have an
effect on matrix T, whose size is much smaller than that of the ori-
ginal FSI system matrix (26). For the solution of system (30b) we
adopt a matrix-free method, which prevents us from assembling
the matrix. In particular, in Section 7 we consider the GMRES
and the BiCGStab algorithms and the corresponding PIC schemes
are called PIC-GMRES and PIC-BiCGStab.

A key point in the solution of system (30b) is the choice of a good
preconditioner for T. The computation of the ILU preconditioner
would require the evaluation of the elements of T. Hence, it is too
expensive and does not make much sense, since we want to avoid
the cost of assembling T by adopting a matrix-free method. In the
simulation of the carotid bifurcation (Section 7), we employed
two preconditioners: the point-diagonal and the block-diagonal
one. The former proves to be cheaper in terms of CPU time (see
Fig. 10a).

Remark 10. Herein, the PIC algorithm has been considered as a
solver, with the corresponding perturbation. However, this inexact
block-LU factorization can also be used as preconditioner (see [5]).
6. Numerical results for the straight cylindrical pipe

Through our numerical experimentation we aim at analyzing
how the added-mass effect affects the performance of the different
FSI algorithms considered above. Our goal is to simulate the prop-
agation of a pressure pulse in a straight pipe with deformable
boundaries as the structure density varies. We consider both the
fully 3D problem, whose fluid domain is a cylinder of radius
R0 0:5 cm and length L ¼ 6 cm, and its 2D approximation, obtained
by intersecting the pipe with a plane. The fluid and structure phys-
ical parameters used in the simulations are listed in Table 1: a dou-
ble line separates the common ones from the ones of the 2D
problem only (see [28]), which are separated also from the param-
eters of the 3D problem (see [13]).

On the inflow section we impose the following Neumann
boundary condition:

r
f
in ¼ �

Pin

2
1� cos

pt

2:5� 10�3

� �� �
nf ;

while on the outflow section an homogeneous Neumann condition
has been imposed. The amplitude Pin of the pressure pulse has been
taken equal to 2� 104 dyne=cm2 and the time duration of the pulse
is 5 ms. We solve the problem over the time interval [0, 0.012] s.
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For both problems we choose a conforming space discretization
between fluid and structure: stabilized P1 � P1 finite elements for
the fluid and P1 finite elements for the structure.

The software that has been used is ZEPHYR, a multi-physics fi-
nite element code written in Fortran and developed at CIMNE-UPC
(Barcelona). For the ILUT preconditioner and iterative solvers, we
have used SPARSKIT, developed by Saad (see [32]). All the simula-
tions were performed on a 3.2 GHz Pentium 4 with 2 GB of RAM.

6.1. Comparison between the DN–Richardson and DN-GMRES methods

We solve the 2D problem with the DN–Richardson and DN-
GMRES algorithms (semi-implicit version) on a structured mesh
of 61� 21 fluid nodes and 61� 4 structure nodes, with time step
dt ¼ 2� 10�4 s. We consider different values of the structure den-
sity qs ¼ 500;100;50;10;5;1 g=cm3. Similar results have been re-
ported in [11,28] for inf–sup stable finite elements for the fluid
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different time step sizes.
and simplified structural models under the hypotheses of plane
stress and membrane deformations.

We choose to adopt the explicit treatment of the nonlinearities
in order to focus on the fluid–structure coupling iterations.

Fig. 1 shows the number of coupling iterations needed by the
two algorithms to satisfy the stopping criterion ((17) with toler-
ance 10�4) at each time step, for the different densities. The num-
ber of subiterations for the DN–Richardson algorithm increases
dramatically as the structure density approaches the fluid one.
Notice in the legend the relaxation parameter x taken in each case:
it corresponds to the highest value under which we have conver-
gence of the coupling iterations. The relaxation parameter can be
interpreted as an index of ‘‘stiffness” of the fluid–structure cou-
pling. When using the DN-GMRES algorithm the number of subit-
erations increases only slightly as the structure density decreases.
In fact, the two methods are almost equivalent in the case of high
structure densities, but the advantage of employing GMRES instead
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of Richardson iterations becomes clear in presence of a strong
added-mass effect. Moreover, no relaxation is needed for the con-
vergence of the DN-GMRES algorithm.

To better show the improvement of the DN-GMRES algorithm
we report in Fig. 2 the average number of coupling iterations over
the time interval for the two methods as the structure density var-
ies. Both methods are fairly insensitive to mesh size variations. The
coarser structured mesh used for the comparison has 41� 16 fluid
nodes and 41� 3 structure nodes.

6.2. The DN-GMRES method: implicit and semi-implicit versions

In order to check the computational savings allowed by the ex-
plicit treatment of the nonlinearities, we compare the implicit and
semi-implicit versions of the DN-GMRES algorithm for the 2D
problem.
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Fig. 3a shows the average number of nonlinear iterations of a
fixed point algorithm for two different time step sizes, two differ-
ent tolerances of the nonlinear loop, and for all the structure den-
sities specified in Section 6.1. For high qs the nonlinearity is mainly
due to the convective term in the fluid equations, while as qs de-
creases the domain nonlinearities become more important.

The implicit DN-GMRES method uses two nested loops: an
external one dealing with the nonlinearity and an internal one
solving every linearized system. Thus, the implicit method is com-
putationally intensive, with a high number of fluid structure eval-
uations (loosely speaking, number of nonlinear iterations times
number of average coupling iterations). We plot the accumulative
number of iterations, i.e. the sum of the number of GMRES itera-
tions required by every fixed point iteration, of the implicit DN-
GMRES for the 2D test problem in Fig. 3b. On the contrary, the
DN–Richardson method allows to use only one loop that deals with
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both nonlinear and coupling iterations (see [3]). Even though the
nonlinear iterations are not so ill-posed as coupling iterations,
the number of accumulative iterations increases a lot. In Fig. 3b,
we compare the average number of GMRES iterations per time step
for the implicit and semi-implicit versions of DN-GMRES, as qs var-
ies. In the case of a low density structure, an explicit treatment of
the nonlinearity reduces drastically the CPU cost because no non-
linear iterations must be performed; when using the ALE formula-
tion, every nonlinear iteration of the shape domain involves to
compute a Laplacian problem. The difference between the CPU cost
of semi-implicit and implicit schemes gets even bigger with a tigh-
ter tolerance, as expected. Therefore, in hemodynamics applica-
tions it is very appealing to deal explicitly with the geometrical
and fluid nonlinearities, while keeping the fluid–structure system
coupled.
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The computational savings obtained by a semi-implicit treat-
ment of the nonlinearity are also reported in Section 7.3 for a real-
istic 3D problem.

6.3. The ILUT-GMRES and ILUT-BiCGStab methods

We apply our non-modular approach to the 2D and 3D prob-
lems for the same values of qs reported in Section 6.1. The precon-
ditioners adopted are the incomplete LU factors of the scaled
monolithic system with 20 non-zero entries per row and threshold
0.1. For the GMRES method, two different values for the maximum
dimension of the Krylov space (20 and 50 for the 2D problem, 50
and 80 for the 3D one) are taken into account. Again, we consider
the semi-implicit versions. The main goal of this section is not
to compare re-started GMRES and BiCGStab iterative solvers; as
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commented in Section 4, the best choice will strongly depend on
the available computer memory. Our purpose is rather to show how
ILUT preconditioners behave as the structure density approaches the
fluid one.

For the 2D problem, the meshes are the same used for the tests
in Section 6.1. For the 3D case we considered two unstructured
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Fig. 8. Propagation of the initial pressure pulse, moving from
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meshes: the coarse one with average element size h ¼ 0:14 (4347
nodes and 21163 tetrahedra) and the fine one with average ele-
ment size h ¼ 0:12 (6452 nodes and 32190 tetrahedra). The toler-
ance used for the iterative solvers is 10�4.

In Figs. 4 and 5, we observe the number of GMRES iterations for
the bi-dimensional and three-dimensional problems, respectively,
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on two different meshes and with two different time step sizes
(dt ¼ 2� 10�4 s and dt ¼ 4� 10�4 s). Refining the mesh causes
an increase in the iterations number, while the number of itera-
tions decreases with the time step. This can be explained by the
fact that the starting point for the GMRES method is the solution
at the previous time step. However, the difference in the number
of iterations with respect to the mesh size and the time step re-
duces as the Krylov space dimension gets bigger and as the
added-mass effect becomes important. For both problems increas-
ing the maximum dimension of the Krylov space ensures faster
convergence of the GMRES method, because it reduces the re-start-
ing of the method. Furthermore, the algorithm shows better con-
vergence properties for problems with large added-mass effect.

The convergence of the ILUT-BiCGStab algorithm for the 2D and
3D case is shown in Fig. 6a and b, respectively. ILUT-BiCGStab
shows the same behavior than ILUT-GMRES in the 2D problem
(Fig. 6a), while the trend is more irregular for the 3D test (Fig. 6b).

As a conclusion, non-modular ILUT preconditioners are suitable
for large added-mass problems, because they do not exhibit the ill
behavior of the DN preconditioner as qs=qf decreases (reported in
Fig. 2).

6.4. Comparison between the ILUT-solver and PIC-solver

We compare now CPU cost and number of iterations of the two
non-modular preconditioners with respect to the structure density
for the 3D straight artery. The solver iterations and CPU cost for the
ILUT-GMRES and PIC-BiCGStab methods are reported in Fig. 7. For
large added-mass effect, ILUT-GMRES requires less CPU cost
whereas PIC-BiCGStab is cheaper for larger values of qs. The CPU
cost of ILUT-GMRES decreases as the added-mass effect becomes
more important while the BiCGStab method exhibits a slight in-
crease of CPU cost.

7. Numerical results for the carotid bifurcation

Our goal is now to simulate a pressure wave in the carotid bifur-
cation using the same fluid and solid properties as in the straight
pipe case. The geometry is a realistic one first used in [23]. The
fluid and the structure are initially at rest and the same Neumann
boundary conditions of the straight pipe are imposed at both the
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Fig. 10. (a) Average number of GMRES iterations and (b) CPU time for the PIC-GM
inlet and the outlet. The average inflow diameter is 0.67 cm, the
time step used is dt ¼ 2� 10�4 s and the time interval is
½0;0:012� s. Fig. 8 shows the fluid pressure together with the struc-
tural deformation amplified by a factor 10 at time
t ¼ 3;6;9;12 ms.

Again we choose a conforming space discretization between
fluid and structure: stabilized P1 � P1 finite elements for the fluid
and P1 finite elements for the structure.

7.1. Comparison between the ILUT-solver, PIC-solver and DN-GMRES
methods

We first compare the ILUT-solver and the PIC methods. Numer-
ical tests for the PIC method similar to those for the ILUT-GMRES in
the previous section can be found in [5] for inf–sup stable ele-
ments. In particular, we consider the ILUT-BiCGStab method, the
ILUT-GMRES one with different fill-ins for the preconditioners,
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the PIC-GMRES and PIC-BiCGStab algorithms. The tolerance for the
iterative method is 10�4 for all the schemes. When the GMRES
method is adopted the maximum dimension of the Krylov base is
set to 40. The unstructured mesh we used has diameter h ¼ 0:11
(8737 nodes and 40814 tetrahedra).

Fig. 9a shows the average number of solver iterations for the
structure densities

qs ¼ 500;100;50;10;5;1 g=cm3:

As already noticed in Section 6.3, the decreasing of the structure
density improves the performances of the ILUT-GMRES method.
Moreover, increasing the fill-in of the preconditioners reduces the
number of GMRES iterations up to qs ¼ 100. This reduction in the
number of iterations does not correspond to a decrease in the
CPU time for qs > 1, as it can be seen in Fig. 9b. In fact, the more
accurate ILU factorizations require fewer iterations to converge
but the cost to compute the incomplete factors (and sometimes
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the overall CPU cost) increases. For low structure densities the
ILUT-BiCGStab behaves worse than the ILUT-GMRES. In any case,
both methods have very similar CPU cost for large added-mass ef-
fect problems. The choice of the iterative solver (GMRES vs. BiCG-
Stab) will depend on the size of the problem and computer
memory (see Section 4). While the PIC-BiCGStab method always
converges in less iterations and faster than the PIC-GMRES.

The PIC-solver methods whose results are reported in Fig. 9 em-
ploy the point-diagonal preconditioner to solve system (30b). We
also considered the block-diagonal one. Obviously, this latter dras-
tically reduces the number of solver iterations (Fig. 10a) but it is
much more time consuming than the point-diagonal precondition-
er (Fig. 10b).

The DN-GMRES algorithm is much more expensive in terms of
CPU time than the other two methods. That is the reason why
the results are not reported in the same graph but in a separated
one (Fig. 11). Even though it represents an improvement with
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respect to the DN–Richardson algorithm, the DN-GMRES one is not
competitive for realistic hemodynamics problem (see Fig. 12).

7.2. The ILUT-GMRES and the PIC-BiCGStab methods for
hemodynamics problems

Now we restrict our attention to the problem with the largest
added-mass effect, i.e. we set qs ¼ 1. Fig. 3a reports the average
number of solver iterations and Fig. 3b the CPU time required by
the ILUT-GMRES and PIC-BiCGStab methods to solve the bifurcation
problem on four different meshes. From the coarsest to the finest,
the meshes we used have 6796, 8737, 13,148 and 16,402 nodes
(31,138, 40,418, 62,879 and 79,528 tetrahedra, respectively). The
PIC-BiCGStab method takes always more iterations to converge
than the ILUT-GMRES one. The gap between the iterations number
seems to increase with the refinement of the mesh. The CPU times
needed by the two methods to complete the simulation show the
same tendency. Thus, the ILUT-GMRES algorithm remains the less
time-consuming also when the size of the problem increases.

7.3. The ILUT-solver: implicit and semi-implicit versions

As done in Section 6.2 for the DN-GMRES method and the 2D
straight artery, we show the efficiency of a semi-implicit treatment
of the nonlinearity for ILUT preconditioners. We solved the carotid
bifurcation problem with ILUT-BiCGStab. We considered two dif-
ferent time step values and all the structure densities specified in
Section 7.1. Fig. 13a shows the average number of fixed point iter-
ations (with tolerance 10�2) for the implicit treatment of the non-
linearity. The CPU cost is reported in Fig. 13b. For the implicit
algorithm, the number of nonlinear iterations is fairly insensitive
to structure density variations whereas the CPU cost reduces when
qs increases. In any case, the computational savings associated to a
semi-implicit treatment of the nonlinearity are clear in all
situations.
8. Conclusions

In this work, we focused on the numerical simulation of FSI
problems characterized by a strong added-mass effect. We took
into account two different preconditioners for the coupled system
obtained after linearization and full discretization of the FSI
problem.

The first one is the classical Dirichlet–Neumann preconditioner.
Two modular algorithms based on that preconditioner (the DN–
Richardson and the DN-GMRES ones) have been considered. The
reduction factor for the DN-GMRES method has been obtained
for a model problem.

The second preconditioner is a non-modular ILUT precondition-
er for the whole FSI system. We have introduced an appropriate
monolithic formulation to be used with this preconditioner. Sev-
eral aspects of this formulation have been also discussed in [18,35].

The theoretical negative impact of the added-mass effect on the
reduction factor agrees with the numerical experiments. The per-
formances of DN–Richardson and DN-GMRES have been compared
to those of two methods (ILUT-GMRES and ILUT-BiCGStab) yielded
by the non-modular ILUT preconditioner for the whole FSI system.

Another non-modular approach has been considered: the PIC
scheme presented in [5], here extended to the case of d-dimen-
sional structure and the use of stabilized finite elements methods.

The advantages of the explicit treatment for the nonlinearities
of the FSI problem have been underlined. Thus, we dealt with the
semi-implicit versions of all the methods mentioned above. This
allowed us to focus on the fluid–structure coupling and on the ef-
fects of the added-mass.
We have carried out a broad set of numerical experiments. For
problems with large added-mass effect we can draw the following
conclusions:

– The DN-GMRES algorithm represents an improvement of the
DN–Richardson one. However, they both perform well in case
of high structure densities but suffer in case of critical added-
mass effects.
– Unlike the DN-algorithms, the performance of the ILUT-solver
methods is not deteriorated when the structure density
approaches the fluid one. This good behavior in the large
added-mass effect range pays off for the loss of modularity, also
in the case of the PIC methods.
– The ILUT-solver method proved to be the least expensive in
terms of CPU time for large problems. The PIC scheme is very
competitive for smaller problems. Anyways, both non-modular
preconditioners prove to be much more efficient than the mod-
ular DN-algorithm approach for the applications under
consideration.
– A clear reduction of the CPU cost can be attained by considering
a semi-implicit treatment of the nonlinearities.
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