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Abstract  23 

In recent years a large body of literature has been devoted to study reactive transport of 24 

solutes in porous media based on pure Lagrangian formulations. Such approaches have 25 

also been extended to accommodate second-order bimolecular reactions, in which the 26 

reaction rate is proportional to the concentrations of the reactants. Rather, in some cases, 27 

chemical reactions involving two reactants follow more complicated rate laws. Some 28 

examples are (1) reaction rate laws written in terms of powers of concentrations, (2) 29 

redox reactions incorporating a limiting term (e.g. Michaelis-Menten), or (3) any 30 

reaction where the activity coefficients vary with the concentration of the reactants, just 31 

to name a few. We provide a methodology to account for complex kinetic bimolecular 32 

reactions in a fully Lagrangian framework where each particle represents a fraction of 33 

the total mass of a specific solute. The method, built as an extension to the second-order 34 

case, is based on the concept of optimal Kernel Density Estimator, which allows the 35 

concentrations to be written in terms of particle locations, hence transferring the concept 36 

of reaction rate to that of particle location distribution. By doing so, we can update the 37 

probability of particles reacting without the need to fully reconstruct the concentration 38 

maps. The performance and convergence of the method is tested for several illustrative 39 

examples that simulate the Advection-Dispersion-Reaction Equation in a 1D 40 

homogeneous column. Finally, a 2D example of application is presented evaluating the 41 

need of fully describing non-linear chemical kinetics in a randomly heterogeneous 42 

porous medium.   43 

 44 

 45 

Index terms: Groundwater Transport (1832), Computational Hydrology (1805), 46 

Stochastic Hydrology (1869), Modeling (1847), Geochemical Modeling (1009) 47 
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1. Introduction 50 

Random Walk Particle Tracking Methods (RWPTMs) offer a convenient Lagrangian 51 

numerical approach to simulate solute transport in porous media. RWPTMs have been 52 

demonstrated to be particularly efficient in dealing with aquifer heterogeneities and 53 

non-reactive transport involving a large variety of complex processes such as non-54 

Fickian transport and multiple porosity systems [Wen and Gómez-Hernández, 1996; 55 

LaBolle et al., 1996; Sanchez-Vila and Solis-Delfin, 1999; Salamon et al., 2006a, 56 

2006b; Riva et al., 2008; Delay and Bodin, 2001; Cvetkovic and Haggerty, 2002; 57 

Berkowitz et al., 2006; Zhang and Benson, 2008; Dentz and Castro, 2009; Benson and 58 

Meerschaert, 2009; Tsang and Tsang, 2001; Huang et al., 2003; Willmann et al., 2013; 59 

Henri and Fernàndez-Garcia, 2014, 2015]. This family of methods essentially consist 60 

of discretizing the solute mass (existing initially or injected through the boundaries with 61 

time) into a finite number of particles, each representing a fraction of the total mass, and 62 

then moving such particles according to simple relationships that represent the transport 63 

mechanisms considered (e.g., advection, dispersion or diffusion into stagnant zones). 64 

RWPTMs are mass conservative by construction, and avoid some of the inherent 65 

numerical difficulties associated with Eulerian approaches, i.e., numerical dispersion 66 

and oscillations [Salamon et al., 2006a; Benson et al., 2017].  67 

 68 

However, several disadvantages have prevented the general use of RWPTMs in reactive 69 

transport problems with few limited exceptions. The main roadblock is that most 70 

chemical reactions are written in terms of concentrations (or chemical activities), which 71 

are not directly accessible at any given time, unless previously reconstructed from 72 

discrete particle information. At this stage, one needs to keep in mind that a naive 73 

reconstruction, such as the use of histograms, is an error prone process that can lead to 74 
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spurious fluctuations [e.g., Boso et al., 2013]. Consequently, as concentrations - and in 75 

some cases their gradients [e.g., De Simoni et al., 2007] - are reaction drivers, errors can 76 

propagate to reaction rates. Albeit recent works [Fernàndez-Garcia and Sanchez-Vila, 77 

2011; Pedretti and Fernàndez-Garcia, 2013; Schmidt et al., 2017] have shown that the 78 

spurious fluctuations of the concentrations reconstructed from particles can be largely 79 

minimized by using a post-processing analysis based on kernels, modeling complex 80 

reactive transport problems with RWPTMs is still a challenge.  81 

 82 

The focus of this paper is on kinetic chemical reactions. In this context, several methods 83 

have been proposed in the literature to simulate reactive transport with RWPTMs. 84 

Simple linear kinetic reactive transport problems such as first-order network reactions 85 

and slow sorption can easily be treated with transition probabilities, without having to 86 

estimate the concentrations during the course of the simulations [e.g., Kinzelbach, 1987; 87 

Andricevic and Foufoula-Georgiou, 1991; Michalak and Kitanidis, 2000; Henri and 88 

Fernàndez-Garcia, 2014, 2015]. Reconstruction here is an efficient post-processing tool 89 

with little drawbacks.  90 

 91 

However, the incorporation of non-linear chemical reactions involving more than one 92 

chemical species into the RWPTM is remarkably cumbersome. In this case, one needs 93 

to either re-estimate solute concentrations at any given time step or to use particle 94 

proximity relationships. Both these approaches present important disadvantages, which 95 

have hindered the widespread use of RWPTMs – since the most common processes in 96 

geochemistry and biogeochemistry are complex, being non-linear, multi-species and 97 

affected by water-rock interaction. The first approach is a hybrid Lagrangian-Eulerian 98 

method by which reaction rates are determined from concentrations. Here, a 99 
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compromise between CPU time and the back and forth transformation of particles to 100 

concentrations is necessary [Tompson, 1993; Tompson et al., 1996; Cui et al., 2014]; as 101 

aforementioned, this process is either error-prone or computationally expensive. The 102 

second approach is purely Lagrangian, and sophisticated search algorithms are needed 103 

to calculate proximity relationships [Paster et al., 2014]. Along this line, Benson and 104 

Meerschaert [2008] studied a simple bimolecular system (A + B → C) with second-105 

order kinetics, and found that the probability of reaction of two isolated particles 106 

depends on both thermodynamics and the probability of collocation of two particles. 107 

Paster et al. [2013, 2014] extended these concepts to higher dimensions, and Ding and 108 

Benson [2015] used this bimolecular type of reaction as a building block to simulate the 109 

Michaelis-Menten enzyme kinetic model. Rahbaralam et al. [2015] demonstrated that 110 

the support volume of particles in the probability of collocation can be determined by 111 

using an optimal kernel bandwidth approach. This method speeds up the algorithm and 112 

avoids incomplete mixing due to the use of a limited number of particles. A first field 113 

application of the Benson and Meerschaert [2008] method has been recently presented 114 

by Ding et al. [2017], who simulated the degradation of Carbon Tetrachloride at the 115 

Schoolcraft, MI site, under anaerobic conditions. All existing variations of this method 116 

share an important limitation: they can only reproduce second-order kinetics, with the 117 

exception of those complex reactions that can be modeled as a combination of first-118 

order monomolecular reactions and second-order bimolecular reactions, such as the 119 

aforementioned Michaelis-Menten enzyme kinetic model. 120 

 121 

In some other Lagrangian approaches such as SPH [e.g. Tartakowsky and Meakin. 122 

2005; Tartakovsky et al., 2007; Herrera et al., 2009, 2017] each particle represents a 123 

volume of fluid, so concentrations are directly attributed to particles and 124 
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diffusion/dispersion is simulated by exchanging mass between particles. A similar 125 

approach was used by Benson and Bolster [2016] to propose a particle tracking method 126 

for the simulation of chemical reactions of arbitrary complexity, based on mass 127 

exchange between particles which could contain any variety of chemical compounds. 128 

Engdahl et al. [2017] recently generalized the capabilities of the method by coupling it 129 

to the reaction engine PhreeqcRM [Parkhurst and Wissmeier, 2015]. Each particle can 130 

be seen as a mobile bin containing a fixed volume of water, and reactions occur inside 131 

particles according to the particle-specific solute concentrations. Some limitations can 132 

be attributed to these kind of methods. For instance, one needs to artificially inject 133 

empty particles in places where solutes can potentially diffuse, or to add immobile 134 

particles and use very small time steps to represent linear sorption.  135 

 136 

Most of these approaches to Lagrangian modeling of reactive transport use kernel 137 

functions to account for either dispersion or reaction between particles. Kernels have 138 

also been widely used in other fields of science like fluid mechanics [e.g., Wu and Li, 139 

2007; Yue et al., 2004], computer vision and image processing [e.g., Chang and Ansari, 140 

2005; Stoessel and Sagerer, 2006; Takeda et al., 2007], or 3D animation [e.g., Ihmsen et 141 

al., 2011], just to name a few. 142 

 143 

In this paper, we propose a new random walk particle tracking method capable of 144 

simulating different sorts of complex kinetic reactions occurring between two reactants 145 

(thus generalizing the existing methods to simulate second-order kinetics), while 146 

maintaining the classical interpretation of a particle (a fraction of the total mass of a 147 

given species). To simulate reactions, we determine the probability that any particle 148 

reacts based on particle interactions, the reaction rate law and the stoichiometry. The 149 
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idea behind the proposed method is to equipped each particle with an optimal kernel 150 

function that defines the particle support [Fernàndez-Garcia and Sanchez-Vila, 2011; 151 

Rahbaralam et al., 2015] from the beginning of the simulation. For convenience, 152 

complex reaction rates are expressed as the product of a second-order bimolecular 153 

reaction and a compensation function (𝑔𝑔) that depends on the reactant concentrations. 154 

An approximate solution of the probability of reaction is then determined, providing a 155 

fully Lagrangian approach that does not entail any kind of spatial discretization. The 156 

probability of reaction is demonstrated to depend on the particle interaction, expressed 157 

as the volume integral of the product between particle kernel functions, and on the 158 

point-value of 𝑔𝑔 at a weighted mid-position between the two particles. 159 

 160 

We then show four example column transport (1D) applications to illustrate the 161 

performance and the convergence of the method as a function of the initial number of 162 

particles for different chemical systems. To achieve this, the random walk particle 163 

tracking solution is compared with a highly-discretized finite difference solution that is 164 

assumed to represent the exact solution. The four examples represent a wide sample of 165 

the most common problems in biogeochemistry: two examples of non-linear aqueous 166 

reactions and two examples of non-linear reactions considering the water-rock 167 

interaction. Finally, a 2D example of application is presented evaluating the need of 168 

fully describing non-linear chemical kinetics in a randomly heterogeneous porous 169 

medium.   170 

 171 
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Although the example applications are 1D or 2D reactive transport problems in 172 

stationary flow, the proposed method has no limitations regarding the number of spatial 173 

dimensions or the effect of variable velocity with time (full 4D).  174 

 175 

2. Second-order kinetic reactions  176 

In order to lay the groundwork for the implementation of arbitrarily complex kinetic 177 

reactions, we start by reviewing some concepts and then reformulating the mathematical 178 

expressions corresponding to second-order bimolecular reactions. Let us consider a 179 

simple bimolecular irreversible reaction 𝛼𝛼A + 𝛽𝛽B → 𝛾𝛾C with a reaction rate 180 

proportional to the concentration of both reactants,  181 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) = 𝑘𝑘𝑓𝑓 𝑐𝑐A(𝐱𝐱, 𝑡𝑡) 𝑐𝑐B(𝐱𝐱, 𝑡𝑡), #(1)  

where 𝑐𝑐𝑠𝑠 is the concentration of the sth-species {𝑠𝑠 = A, B, C}, 𝑘𝑘𝑓𝑓 is the forward reaction 182 

coefficient, {𝛼𝛼,𝛽𝛽, 𝛾𝛾} are the stoichiometric coefficients, and 𝑟𝑟(𝐱𝐱, 𝑡𝑡) is the reaction rate at 183 

the 𝐱𝐱 location and time 𝑡𝑡, defined as: 184 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) =
1
𝛾𝛾
𝑑𝑑𝑐𝑐C
𝑑𝑑𝑡𝑡

=  −
1
𝛼𝛼
𝑑𝑑𝑐𝑐A
𝑑𝑑𝑡𝑡

= −
1
𝛽𝛽
𝑑𝑑𝑐𝑐B
𝑑𝑑𝑡𝑡

#(2)  

We refer to chemical reactions that follow equation (1) as second-order kinetic 185 

reactions, also implying that the reaction is of first-order with respect to each reactant. 186 

Although here we study an irreversible reaction, reversibility can be modeled as a 187 

combination of a forward reaction and a backward reaction. Further details are given at 188 

the end of section 3. 189 

 190 

2.1. The particle pair annihilation method 191 
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Benson and Meerschaert [2008] found that this problem could be solved by simply 192 

analyzing how two isolated A and B particles react to form a C particle when 𝛼𝛼 = 𝛽𝛽 =193 

1. Although the original expression was developed for a general application, here we 194 

present it incorporating explicitly the effect of porosity for the particular case of porous 195 

media. In one dimension, the probability of reaction of these two particles in a given 196 

time interval Δ𝑡𝑡 is given by the expression,  197 

𝑃𝑃(A → C,Δ𝑡𝑡) = 𝜙𝜙−1 𝑘𝑘𝑓𝑓Δ𝑡𝑡 𝑚𝑚 
1

√4𝜋𝜋ℎ2
exp �−

(𝑋𝑋A − 𝑋𝑋B)2

4ℎ2
� , #(3)  

which is obtained as the product of the probability that the two particles will occupy the 198 

same differential volume times the conditional probability that, upon collocation, the 199 

particles will react during the time step ∆𝑡𝑡. Equation (3) is written in terms of the 200 

particle mass 𝑚𝑚 (or amount of substance, depending on how 𝑘𝑘𝑓𝑓 is defined; thus, in this 201 

work the term particle mass is used in a general sense). Here, the mass of all particles is 202 

assumed equal to 𝑚𝑚 = Ω 𝜙𝜙[A]0
𝑁𝑁0

, where Ω is the initial volume occupied by the injected 203 

particles, 𝜙𝜙 is porosity, [A]0 is the initial concentration of species A, and 𝑁𝑁0 the number 204 

of A particles injected. Finally, ℎ = √2𝐷𝐷Δ𝑡𝑡 is the length of influence of one particle 205 

defined only in terms of local diffusion and/or dispersion. 206 

 207 

Once the probability of reaction of two particles is calculated, chemical reactions in the 208 

random walk method can be incorporated by particle annihilation, i.e., when two 209 

particles react, they disappear. This means that the number of particles of the reactant 210 

species decreases as the simulation progresses, and numerical resolution problems may 211 

arise at low concentrations. This limitation was addressed by Bolster et al. [2016], who 212 
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showed that a change in the particle mass is also a valid alternative to particle 213 

annihilation.  214 

 215 

There is another strong limitation in the particle pair annihilation method. Chemical 216 

reactions depend on the activities of the reactants rather than on their concentrations. 217 

Thus, the aforementioned approach cannot reproduce second-order reactions correctly 218 

unless the ionic strength is not affected by the reaction or its effect on the activity 219 

coefficients is negligible. This is particularly relevant when modelling reactions that 220 

have an important impact on the ionic strength of the solution.  221 

 222 

2.2. The optimal kernel approach 223 

2.2.1 Representation of a particle 224 

The RWPTM satisfies the transport equation in the limit when the number of particles 225 

approaches infinity. Considering that each ith particle associated with species s at time t 226 

is located at a point 𝐗𝐗𝑠𝑠𝑖𝑖 , and that no size is attributed to it, its spatial distribution can be 227 

expressed as a Dirac delta distribution and then the concentration of a given species can 228 

be written formally as,  229 

𝑐𝑐𝑠𝑠(𝐱𝐱, 𝑡𝑡) =
1

𝜙𝜙(𝐱𝐱)�𝑚𝑚𝑠𝑠
𝑖𝑖  𝐸𝐸 �𝛿𝛿 �𝐱𝐱 − 𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡)��

𝑛𝑛𝑠𝑠

𝑖𝑖=1

, #(4)  

where 𝑚𝑚𝑠𝑠
𝑖𝑖  is the mass of the ith particle of species s, 𝜙𝜙(𝐱𝐱) is the location dependent 230 

porosity, and 𝐸𝐸{⋅} is the expectation operator over all particle realizations. The 231 

expectation of the Dirac delta function is the probability density function (pdf) of the 232 

particle position, 𝑝𝑝𝑠𝑠𝑖𝑖(𝐱𝐱; 𝑡𝑡). In practice, simulations cannot use an infinite number of 233 
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particles and the inference of 𝑝𝑝𝑠𝑠𝑖𝑖(𝐱𝐱; 𝑡𝑡) becomes the Achilles heel of all random walk 234 

methods. Typically, the concentration field is estimated by averaging the mass over a 235 

fixed support volume 𝑉𝑉(𝐱𝐱) centered at the 𝐱𝐱 location. This can be achieved by counting 236 

the mass of particles in fixed bins or by projection functions [Tompson and Gelhar, 237 

1990; Tompson et al., 1996]. However, these methods suffer from the same problems as 238 

those associated with the estimation of pdfs through histograms, i.e., results depend on 239 

the discretization of the domain or the bin size.  240 

 241 

An alternative approach was introduced by Fernàndez-Garcia and Sanchez-Vila [2011]. 242 

The method recognizes the uncertainty associated with subsampling an infinite number 243 

of particles by equipping each particle with a pdf (the kernel function). The estimation 244 

of concentrations can then be written as a direct extension of (4), 245 

𝑐𝑐𝑠𝑠(𝐱𝐱, 𝑡𝑡) =
1

𝜙𝜙(𝐱𝐱)�𝑚𝑚𝑠𝑠
𝑖𝑖  𝑊𝑊�𝐱𝐱 − 𝐗𝐗𝑠𝑠𝑖𝑖  ;𝐇𝐇𝑠𝑠�

𝑛𝑛𝑠𝑠

𝑖𝑖=1

, #(5)  

where 𝐇𝐇𝒔𝒔 is the kernel bandwidth matrix associated to species 𝑠𝑠 and 𝑊𝑊(𝐮𝐮 ;𝐇𝐇) is the 246 

scaled kernel function, for which several shapes have been suggested, the most common 247 

one being the Gaussian kernel function,  248 

𝑊𝑊(𝐮𝐮;𝐇𝐇) = (2𝜋𝜋)−
𝑑𝑑
2|𝐇𝐇|−

1
2 exp �−

1
2

 𝐮𝐮𝑇𝑇𝐇𝐇−1𝐮𝐮� , #(6)  

where 𝑑𝑑 is the space dimension. In the Gaussian kernel (6), the bandwidth matrix is the 249 

covariance matrix. Expression (5) is valid for an infinite domain or away from the 250 

domain boundaries. The particular treatment of boundaries is discussed in the 251 

subsequent sections. Note that the concentration of a given species at any given 𝐱𝐱 252 

location does not depend only on the subset of particles falling into an arbitrary bin, but 253 
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on all existing particles associated with that species. Assuming that 𝐇𝐇𝑠𝑠 = ℎ𝑠𝑠2 𝐈𝐈𝑑𝑑 (we will 254 

refer to this case later as the isotropic kernel) the optimal bandwidth ℎ𝑠𝑠 associated with 255 

a given species s (also denoted  as particle support) can be determined based on the 256 

amount of particles 𝑛𝑛𝑠𝑠 and their distribution in space, by minimizing the Asymptotical 257 

Mean Integrated Squared Error (𝐴𝐴-𝑀𝑀𝑀𝑀𝑀𝑀𝐸𝐸). This is a well-known procedure in statistics 258 

[e.g., Silverman, 1986; Härdle, 1991]. For a second-order kernel, 259 

ℎ𝑠𝑠 = �
 𝑑𝑑 𝑅𝑅(𝑊𝑊)

𝑅𝑅(∇2𝑝𝑝𝑠𝑠)𝜇𝜇22(𝑊𝑊)𝑛𝑛𝑠𝑠
�

1
𝑑𝑑+4

, #(7)  

where 𝑅𝑅 is the 𝐿𝐿2 norm of a function, 𝜇𝜇2 is the second moment, and 𝑝𝑝𝑠𝑠 is the normalized 260 

concentration, 261 

𝑝𝑝𝑠𝑠(𝐱𝐱, 𝑡𝑡) =
𝑐𝑐𝑠𝑠(𝐱𝐱, 𝑡𝑡)

∫ 𝑐𝑐𝑠𝑠(𝐱𝐱, 𝑡𝑡) 𝑑𝑑𝐱𝐱Ω𝑑𝑑

, #(8)  

where Ω𝑑𝑑 is the 𝑑𝑑-dimensional domain of the model. Note that, in this setup, the 262 

estimation of 𝑐𝑐𝑠𝑠 is not explicit, i.e. the estimator (7) depends circularly on the estimation 263 

(5). Hence, one needs to either use an iterative method or make an assumption on the 264 

approximate shape of the particle plume. The former approach can be computationally 265 

intensive, whereas the latter can lead to a suboptimal bandwidth choice, hindering the 266 

convergence rate of the estimation with respect to the number of particles. We refer to 267 

Engel et al. [1994] for details on the calculation of ℎ𝑠𝑠. Since 𝑝𝑝𝑠𝑠 in RWPTMs changes 268 

over time, the kernel bandwidth matrix 𝐇𝐇𝑠𝑠 is a time-dependent variable that not only 269 

accounts for local diffusion and/or dispersion but also for the spreading and stretching 270 

of each particle plume. This approach has been used in subsurface hydrology to 271 

reconstruct key variables associated with a wide variety of problems, e.g., reaction rates 272 

and mixing measures [Fernàndez-Garcia and Sanchez-Vila, 2011], power-law tailing in 273 
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breakthrough curves [Pedretti and Fernàndez-Garcia, 2013], and human health risk 274 

estimates [Siirila-Woodburn et al., 2015].  275 

 276 

2.2.2. The probability of reaction of a particle 277 

This section derives the probability of reaction of a given particle for a second order 278 

reaction with arbitrary stoichiometric coefficients. For the derivation, we assume that 279 

the problem domain Ω𝑑𝑑 is infinite, so expression (5) is valid at any location. At the end 280 

of section 3 it is discussed how the methodology can be adapted to simulate reactions 281 

near the boundaries of a finite domain. The chemical reaction is still represented by 282 

𝛼𝛼A + 𝛽𝛽B → 𝛾𝛾C and the reaction rate follows equation (1). The probability that a particle 283 

reacts in the time interval [𝑡𝑡, 𝑡𝑡 + Δ𝑡𝑡]  can be simply expressed as mass consumed per 284 

unit of mass,  285 

𝑃𝑃�A𝑖𝑖 → C𝑘𝑘 ,Δ𝑡𝑡� = −
Δ𝑚𝑚A

𝑖𝑖

𝑚𝑚A
𝑖𝑖 , #(9)  

𝑃𝑃�B𝑗𝑗 → C𝑘𝑘 ,Δ𝑡𝑡� = −
Δ𝑚𝑚B

𝑗𝑗

𝑚𝑚B
𝑗𝑗 . #(10)  

Here, A𝑖𝑖 refers to the ith-particle associated with species A, 𝑃𝑃�A𝑖𝑖 → C𝑘𝑘,Δ𝑡𝑡� is the 286 

probability that A𝑖𝑖 is transformed into a new particle C𝑘𝑘 in the time interval Δ𝑡𝑡, and 287 

Δ𝑚𝑚A
𝑖𝑖  is the increment of mass of the particle A𝑖𝑖  due to the chemical reaction. This 288 

relationship was used by Salamon et al. [2007] and Henri and Fernàndez-Garcia [2014, 289 

2015] to develop particle transition probabilities for modeling solute transport with 290 

multi-rate mass transfer and network reactions. From the definition of reaction rate 291 

given in (2), expressions (9) and (10) can be rewritten as:  292 
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𝑃𝑃�A𝑖𝑖 → C𝑘𝑘,Δ𝑡𝑡� =
𝛼𝛼
𝑚𝑚A
𝑖𝑖  � � 𝜙𝜙 𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡′)  𝑑𝑑𝐱𝐱 𝑑𝑑𝑡𝑡′

Ω𝑑𝑑

𝑡𝑡+Δ𝑡𝑡

𝑡𝑡

≈
𝛼𝛼
𝑚𝑚A
𝑖𝑖  Δ𝑡𝑡 � 𝜙𝜙 𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡)  𝑑𝑑𝐱𝐱

Ω𝑑𝑑

, #(11)  

𝑃𝑃�B𝑗𝑗 → C𝑘𝑘,Δ𝑡𝑡� =
𝛽𝛽
𝑚𝑚B
𝑗𝑗  � � 𝜙𝜙 𝑟𝑟B

𝑗𝑗(𝐱𝐱, 𝑡𝑡′)  𝑑𝑑𝐱𝐱 𝑑𝑑𝑡𝑡′
Ω𝑑𝑑

𝑡𝑡+Δ𝑡𝑡

𝑡𝑡

≈
𝛽𝛽
𝑚𝑚B
𝑗𝑗  Δ𝑡𝑡 � 𝜙𝜙 𝑟𝑟B

𝑗𝑗(𝐱𝐱, 𝑡𝑡)  𝑑𝑑𝐱𝐱
Ω𝑑𝑑

, #(1  

where 𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡) and 𝑟𝑟B
𝑗𝑗(𝐱𝐱, 𝑡𝑡) are particle reaction rates. The products 𝛼𝛼 𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡) and 293 

𝛽𝛽 𝑟𝑟B
𝑗𝑗(𝐱𝐱, 𝑡𝑡) define the amount of particle mass consumed per unit volume of liquid in a 294 

unit of time. The particle reaction rates can be derived as it follows. Substituting (5) into 295 

(1), it is possible to find an expression of the total chemical reaction rate as a function of 296 

particle kernel distributions,  297 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) =
𝑘𝑘𝑓𝑓
𝜙𝜙2��𝑚𝑚A

𝑖𝑖 𝑚𝑚B
𝑗𝑗

𝑛𝑛B

𝑗𝑗=1

 𝑊𝑊�𝐱𝐱 − 𝐗𝐗A𝑖𝑖 ;𝐇𝐇A� 𝑊𝑊�𝐱𝐱 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇B�

𝑛𝑛A

𝑖𝑖=1

. #(13)  

The reaction rate of any particle A𝑖𝑖 or B𝑗𝑗 is determined, respectively, from the 298 

interaction of A𝑖𝑖 with all existing B-particles and the interaction of B𝑗𝑗 with all existing 299 

A-particles. Thus, the total reaction rate can be decomposed as 300 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) = �𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡)
𝑛𝑛A

𝑖𝑖=1

= �𝑟𝑟B
𝑗𝑗(𝐱𝐱, 𝑡𝑡)

𝑛𝑛B

𝑗𝑗=1

, #(14)  

where 301 

𝑟𝑟A𝑖𝑖 (𝐱𝐱, 𝑡𝑡) =
𝑘𝑘𝑓𝑓
𝜙𝜙2 𝑚𝑚A

𝑖𝑖 �𝑚𝑚B
𝑗𝑗  

𝑛𝑛B

𝑗𝑗=1

𝑊𝑊�𝐱𝐱 − 𝐗𝐗A𝑖𝑖 ;𝐇𝐇A� 𝑊𝑊�𝐱𝐱 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇B�, #(15)  

𝑟𝑟B
𝑗𝑗(𝐱𝐱, 𝑡𝑡) =

𝑘𝑘𝑓𝑓
𝜙𝜙2 𝑚𝑚B

𝑗𝑗 �𝑚𝑚A
𝑖𝑖

𝑛𝑛𝐴𝐴

𝑖𝑖=1

 𝑊𝑊�𝐱𝐱 − 𝐗𝐗A𝑖𝑖 ;𝐇𝐇A� 𝑊𝑊�𝐱𝐱 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇B�. #(16)  
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Each term in the summation represents the interaction between two individual particles 302 

A𝑖𝑖 and B𝑗𝑗. In the particular case of a Gaussian kernel function, the kernel product can be 303 

rewritten as 304 

 𝑊𝑊�𝐱𝐱 − 𝐗𝐗A𝑖𝑖 ;𝐇𝐇A� 𝑊𝑊�𝐱𝐱 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇B� = 𝑊𝑊�𝐱𝐱 − 𝐗𝐗AB

𝑖𝑖𝑗𝑗 ;𝐇𝐇AB� 𝑊𝑊�𝐗𝐗A𝑖𝑖 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇A + 𝐇𝐇B�, #(17)  

where  305 

𝐇𝐇AB = (𝐇𝐇A
−1 + 𝐇𝐇B

−1)−1, #(18)  

𝐗𝐗AB
𝑖𝑖𝑗𝑗 = 𝐇𝐇AB�𝐇𝐇A

−1𝐗𝐗A𝑖𝑖  + 𝐇𝐇B
−1𝐗𝐗B

𝑗𝑗 �, #(19)  

which means that the product of two Gaussian kernel density functions associated with 306 

particles A𝑖𝑖 and B𝑗𝑗 is proportional to another Gaussian kernel function centered at 𝐗𝐗AB
𝑖𝑖𝑗𝑗  307 

with a covariance matrix 𝐇𝐇AB. Figure 1 illustrates this equivalence in one dimension. 308 

This indicates that the reaction between two individual particles is occurring mostly 309 

around 𝐗𝐗AB
𝑖𝑖𝑗𝑗 . The second kernel function on the right hand side of (17) is a constant 310 

scaling factor that only depends on the separation between particles.  311 

 312 

In the case where 𝐇𝐇A and 𝐇𝐇B are isotropic (𝐇𝐇𝑠𝑠 = ℎ𝑠𝑠2𝐈𝐈𝑑𝑑), then it derives from (18) that 313 

𝐇𝐇AB is also isotropic (𝐇𝐇AB = ℎAB2 𝐈𝐈𝑑𝑑) and 314 

ℎAB = �
ℎA2ℎB2

ℎA2 + ℎB2
#(20)  

is proportional to the harmonic mean of the squares of ℎA,ℎB. As aforementioned, 𝐗𝐗AB
𝑖𝑖𝑗𝑗  315 

is the position with maximum probability density of collocation of particles A𝑖𝑖 and B𝑗𝑗; 316 

in the isotropic case, expression (19) can be rewritten so that 𝐗𝐗AB
𝑖𝑖𝑗𝑗   is simply the mid-317 
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position of the particle pair weighted by their corresponding squared particle support, 318 

i.e., 319 

𝐗𝐗AB
𝑖𝑖𝑗𝑗 =

𝐗𝐗A𝑖𝑖  ℎB2 + 𝐗𝐗B
𝑗𝑗 ℎA2

ℎA2 + ℎB2
. #(21)  

In order to integrate expressions (11) and (12), we assume a locally constant porosity 320 

over the kernel product support centered at 𝐗𝐗AB
𝑖𝑖𝑗𝑗  and represented by 𝐇𝐇AB. By 321 

substituting (15) and (16) into (11) and (12) respectively and integrating, we finally 322 

obtain that  323 

𝑃𝑃�A𝑖𝑖 → C𝑘𝑘 ,Δ𝑡𝑡� =
𝛼𝛼 𝑘𝑘𝑓𝑓

𝜙𝜙(𝐗𝐗AB
𝑖𝑖𝑗𝑗 )

Δ𝑡𝑡�𝑚𝑚B
𝑗𝑗

𝑛𝑛B

𝑗𝑗=1

𝑊𝑊�𝐗𝐗A𝑖𝑖 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇A + 𝐇𝐇B�, #(22)  

𝑃𝑃�B𝑗𝑗 → C𝑘𝑘,Δ𝑡𝑡� =
𝛽𝛽 𝑘𝑘𝑓𝑓

𝜙𝜙(𝐗𝐗AB
𝑖𝑖𝑗𝑗 )

Δ𝑡𝑡�𝑚𝑚A
𝑖𝑖

𝑛𝑛A

𝑖𝑖=1

𝑊𝑊�𝐗𝐗A𝑖𝑖 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇A + 𝐇𝐇B�. #(23)  

In the particular one-dimensional case where only one particle of each reactant is 324 

present, porosity 𝜙𝜙 is constant in space, 𝛼𝛼 = 𝛽𝛽 = 1, 𝐻𝐻A = 𝐻𝐻B = ℎ2, and all particles 325 

share the same mass m, we have 326 

𝑃𝑃(A → C,Δ𝑡𝑡) = 𝑃𝑃(B → C,Δ𝑡𝑡) =
𝑘𝑘𝑓𝑓
𝜙𝜙
Δ𝑡𝑡 𝑚𝑚 

1
√4𝜋𝜋ℎ2

exp�−
(𝑥𝑥A − 𝑥𝑥B)2

4ℎ2
� , #(24)  

and we directly recover the probability of reaction between two isolated particles 327 

obtained by Benson and Meerschaert [2008]. We note that ℎ in (24) is not ℎ = √2𝐷𝐷Δ𝑡𝑡 328 

but rather it is defined as an optimal kernel support that changes with time according to 329 

the number of particles remaining and the actual shape of the solute plume. We claim 330 

that this difference in the definition of ℎ is very significant. Benson and Meerschaert 331 

[2008] simulate incomplete mixing by using a low number of uniform- randomly 332 

distributed particles, which limits the reaction rate after some time as the A-particles 333 
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become isolated from the B-particles (described by the authors as “islands of particles”). 334 

Along the same line, Paster et al. [2013, 2014] derive a relationship between the initial 335 

particle density and the noise of the initial condition, suggesting that the simulation of 336 

smoother initial conditions requires a higher number of particles. In contrast, 337 

Rahbalaram et al. [2015] show that using the adaptive kernel makes it possible to 338 

highly reduce the dependence of the numerical solution on the number of particles. 339 

Another important difference between the two approaches becomes evident when more 340 

than one particle of each reactant is present. In this case, the probability of reaction of a 341 

particle given by (22) or (23) can be seen as the sum of independent particle pair 342 

interactions. This is only satisfied by the particle pair annihilation method in the limit 343 

when ∆𝑡𝑡 → 0. Otherwise, the reaction between two particles is not a disjoint event. 344 

Section 4 provides the details of the new particle tracking algorithm.  345 

 346 

3. Extension to kinetic reactions with arbitrary reaction rate laws 347 

The challenge in extending second-order reactions to arbitrary reaction rate laws resides 348 

in that now the total reaction rate cannot be simply split into combinations of kernel 349 

functions between particle pairs. Consequently, the rate at which two particles react 350 

depends also on all other surrounding particles. In this case, without any loss of 351 

generality, it is convenient to represent the total reaction rate as the product of a second-352 

order reaction times 𝑔𝑔, a function of any arbitrary shape involving the reactants’ 353 

concentrations, and denoted as compensation function, 354 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) = 𝑘𝑘𝑓𝑓𝑐𝑐A(𝐱𝐱, 𝑡𝑡)𝑐𝑐B(𝐱𝐱, 𝑡𝑡) 𝑔𝑔�𝑐𝑐A(𝐱𝐱, 𝑡𝑡), 𝑐𝑐B(𝐱𝐱, 𝑡𝑡)�. #(25)  

Applying 𝑔𝑔 = 1 implies recovering (1). Substituting (5) into (25), and then 355 

decomposing as in (14) and substituting into (11) and (12), we now have, 356 
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 357 

𝑃𝑃�A𝑖𝑖 → C𝑘𝑘 ,Δ𝑡𝑡� = 

𝛼𝛼 𝑘𝑘𝑓𝑓
𝜙𝜙(𝐗𝐗AB

𝑖𝑖𝑗𝑗 )
Δ𝑡𝑡�𝑚𝑚B

𝑗𝑗
𝑛𝑛B

𝑗𝑗=1

𝑊𝑊�𝐗𝐗A𝑖𝑖 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇A + 𝐇𝐇B� � 𝑊𝑊�𝐱𝐱 − 𝐗𝐗AB

𝑖𝑖𝑗𝑗 ;𝐇𝐇AB�
Ω𝑑𝑑

𝑔𝑔�𝑐𝑐A(𝐱𝐱, 𝑡𝑡), 𝑐𝑐B(𝐱𝐱, 𝑡𝑡)� 𝑑𝑑𝐱𝐱, #(26) 

 358 

𝑃𝑃�B𝑗𝑗 → C𝑘𝑘,Δ𝑡𝑡� = 

𝛽𝛽 𝑘𝑘𝑓𝑓
𝜙𝜙(𝐗𝐗AB

𝑖𝑖𝑗𝑗 )
Δ𝑡𝑡�𝑚𝑚A

𝑗𝑗
𝑛𝑛A

𝑗𝑗=1

𝑊𝑊�𝐗𝐗A𝑖𝑖 − 𝐗𝐗B
𝑗𝑗 ;𝐇𝐇A + 𝐇𝐇B� � 𝑊𝑊�𝐱𝐱 − 𝐗𝐗AB

𝑖𝑖𝑗𝑗 ;𝐇𝐇AB�
Ω𝑑𝑑

𝑔𝑔�𝑐𝑐A(𝐱𝐱, 𝑡𝑡), 𝑐𝑐B(𝐱𝐱, 𝑡𝑡)� 𝑑𝑑𝐱𝐱, #(27) 

 359 

Because the compensation function 𝑔𝑔(𝐱𝐱, 𝑡𝑡) depends on 𝐱𝐱 in a complex manner, the 360 

integration of (26) and (27) is no longer direct. To overcome this problem, we 361 

approximate this integral by localizing the function 𝑔𝑔(𝐱𝐱, 𝑡𝑡) about the point 𝐱𝐱 = 𝐗𝐗AB
𝑖𝑖𝑗𝑗 , 362 

i.e., at the centroid of the kernel product (see figure 1), using a truncated first-order 363 

Taylor series expansion (i.e., linearizing it in terms of location), 364 

𝑔𝑔(𝐱𝐱, 𝑡𝑡) ≅ 𝑔𝑔�𝐗𝐗AB
𝑖𝑖𝑗𝑗 , 𝑡𝑡� + ∇𝑔𝑔�𝐗𝐗AB

𝑖𝑖𝑗𝑗 , 𝑡𝑡�
𝑇𝑇
�𝐱𝐱 − 𝐗𝐗AB

𝑖𝑖𝑗𝑗 �#(28)  

The validity of this approximation is subjected to the significance of higher order terms 365 

of 𝑔𝑔 over the kernel product domain represented by 𝐇𝐇AB. Note that the truncation error 366 

will always converge towards zero with an increasing number of particles, namely, as 367 

𝐇𝐇AB approaches the Dirac delta. Introducing (28) into (26) and (27), and given that the 368 

first moment of the kernel about its centroid equals zero, we obtain  369 

𝑃𝑃�A𝑖𝑖 → C𝑘𝑘 ,Δ𝑡𝑡� =

𝛼𝛼 𝑘𝑘𝑓𝑓
𝜙𝜙(𝐗𝐗𝐴𝐴𝐴𝐴

𝑖𝑖𝑗𝑗 )
Δ𝑡𝑡�𝑚𝑚B

𝑗𝑗
𝑛𝑛𝐵𝐵

𝑗𝑗=1

𝑊𝑊�𝐗𝐗𝐴𝐴𝑖𝑖 − 𝐗𝐗𝐴𝐴
𝑗𝑗 ;𝐇𝐇𝐴𝐴 + 𝐇𝐇𝐴𝐴�𝑔𝑔 �𝑐𝑐𝐴𝐴�𝐗𝐗𝐴𝐴𝐴𝐴

𝑖𝑖𝑗𝑗 , 𝑡𝑡�, 𝑐𝑐𝐴𝐴�𝐗𝐗𝐴𝐴𝐴𝐴
𝑖𝑖𝑗𝑗 , 𝑡𝑡�� , #(29)
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𝑃𝑃�𝐵𝐵𝑗𝑗 → 𝐶𝐶𝑘𝑘,Δ𝑡𝑡� =

𝛽𝛽 𝑘𝑘𝑓𝑓
𝜙𝜙(𝐗𝐗𝐴𝐴𝐴𝐴

𝑖𝑖𝑗𝑗 )
Δ𝑡𝑡�𝑚𝑚𝐴𝐴

𝑖𝑖

𝑛𝑛𝐴𝐴

𝑖𝑖=1

𝑊𝑊�𝐗𝐗𝐴𝐴𝑖𝑖 − 𝐗𝐗𝐴𝐴
𝑗𝑗 ;𝐇𝐇𝐴𝐴 + 𝐇𝐇𝐴𝐴�𝑔𝑔 �𝑐𝑐𝐴𝐴�𝐗𝐗𝐴𝐴𝐴𝐴

𝑖𝑖𝑗𝑗 , 𝑡𝑡�, 𝑐𝑐𝐴𝐴�𝐗𝐗𝐴𝐴𝐴𝐴
𝑖𝑖𝑗𝑗 , 𝑡𝑡�� . #(30)

 

The evaluation of 𝑔𝑔 �𝑐𝑐A�𝐗𝐗AB
𝑖𝑖𝑗𝑗 , 𝑡𝑡�, 𝑐𝑐B�𝐗𝐗AB

𝑖𝑖𝑗𝑗 , 𝑡𝑡�� in (29) and (30) requires an approximate 370 

solution of the concentrations of the species A and B at the specific location 𝐗𝐗AB
𝑖𝑖𝑗𝑗 . One 371 

possibility is to estimate these concentrations directly using the kernel estimator given 372 

in (5). However, this would require an excessive amount of calculations. To minimize 373 

CPU time, here we estimated these concentrations as a linear interpolation of the 374 

concentrations obtained only at the particle positions, estimated a priori by (5). This is 375 

possible as long as 𝐗𝐗A , 𝐗𝐗AB and 𝐗𝐗B are aligned, i.e., 𝐇𝐇A and 𝐇𝐇B are isotropic, a 376 

condition that is inherently true in one dimension. This approach constitutes a 377 

simplification, and therefore it introduces some error in the solution. In the subsequent 378 

sections, we show that this error is small for a relatively low number of particles 379 

injected.  380 

 381 

In the case where the reaction is reversible, it can be solved by combination of a 382 

forward and a backward reaction probability [Benson and Meerschaert, 2008]. For 383 

example, if the backward reaction is a first-order decay, i.e., 384 

1
𝛾𝛾
𝑑𝑑𝑐𝑐C
𝑑𝑑𝑡𝑡

= 𝑘𝑘𝑓𝑓 𝑐𝑐A(𝐱𝐱, 𝑡𝑡) 𝑐𝑐B(𝐱𝐱, 𝑡𝑡) − 𝑘𝑘𝑏𝑏𝑐𝑐C(𝐱𝐱, 𝑡𝑡), #(31)  

where 𝑘𝑘𝑏𝑏 is the backward reaction coefficient, then the probability of backward reaction 385 

is simply, 386 

𝑃𝑃�C𝑘𝑘 → A𝑖𝑖 + 𝐵𝐵𝑗𝑗,Δ𝑡𝑡� = 𝛾𝛾 𝑘𝑘𝑏𝑏 Δ𝑡𝑡, #(32)  
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and the mass of the disappearing particle C𝑘𝑘 has to be distributed between the generated 387 

particles A𝑖𝑖 and 𝐵𝐵𝑗𝑗 in proportion to their stoichiometric coefficients. This, just like the 388 

separate treatment of transport and reaction described in the following section, 389 

constitutes a split operator approach, which implies that the time step ∆𝑡𝑡 should not be 390 

too large in order to avoid error and instabilities. 391 

 392 

Expressions (29) and (30) were derived under the assumption that particles are not at 393 

close distance from the domain boundaries. Should this condition not be fulfilled, 394 

different methods exist in the literature to make KDE valid near domain boundaries. A 395 

simple one, in principle only valid for regular boundaries, is the reflection method 396 

[Silverman, 1986]: for every particle that is at close distance from a boundary (beneath 397 

some significance threshold) an identical virtual particle is placed as a reflection on the 398 

other side of that boundary. This complies with mass conservation inside the domain 399 

(∫ 𝑐𝑐𝑠𝑠(𝐱𝐱, 𝑡𝑡) 𝑑𝑑𝐱𝐱Ω𝑑𝑑 = ∑ 𝑚𝑚𝑠𝑠
𝑖𝑖𝑛𝑛𝑠𝑠

𝑖𝑖=1 ), and also imposes a zero-gradient boundary condition. 400 

Then, the methodology that we describe in this paper can be used as long as the virtual 401 

particles are considered in the computation of the right hand side of (29) and/or (30). 402 

 403 

4. The random walk algorithm 404 

In the proposed method, reactive transport is solved in two stages, one corresponding to 405 

the chemical reactions, and another one to the standard advection-dispersion equation. 406 

This split operator approach is known in the literature as RT [Simpson and Landman, 407 

2007]. Of course, other split operator approaches could also be implemented in a similar 408 

way. Morshed and Kaluarachchi [1995] show that operator splitting in non-linear 409 

reactive transport can have significant restrictions on the time step size to obtain 410 
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accurate solutions. Simpson and Landman [2007] show that the error associated to 411 

operator splitting can be removed by using an alternating scheme provided ∆𝑡𝑡 is 412 

sufficiently small. Paster et al. [2014] derive some practical criteria for the selection of 413 

the time step in a Lagrangian model of reactive transport with second order kinetics. In 414 

this work, the time step was simply chosen small enough in each example to reach 415 

convergence of the solution. Alternatively, an adapted time step can be estimated by 416 

fixing the maximum probability of reaction. This way, the time step is respectively 417 

small or large at stages where the reaction is fast or slow. 418 

 419 

The procedure used in this work to simulate kinetic reactions based on the probabilities 420 

determined by (29) can be written as it follows: First, for each time step Δ𝑡𝑡, the 421 

probability of reaction of only one of the reactants (A or B) is estimated. For simplicity, 422 

and without any loss of generality, we will assume it to be the reactant A. Then, a 423 

uniform [0, 1] random number 𝜇𝜇 is drawn for each A-particle and compared to the 424 

corresponding probability of reaction, 𝑃𝑃�A𝑖𝑖 → C𝑘𝑘,Δ𝑡𝑡�. If 𝜇𝜇 ≤ 𝑃𝑃�A𝑖𝑖 → C𝑘𝑘 ,Δ𝑡𝑡�, it is 425 

considered that particle A𝑖𝑖 does not react and the algorithm continues with the next A-426 

particle. On the contrary, if 𝜇𝜇 > 𝑃𝑃�A𝑖𝑖 → C𝑘𝑘,Δ𝑡𝑡�, the A-particle reacts with a number of 427 

nearby B-particles (the closest ones). To satisfy stoichiometry, the number of B-428 

particles reacting with the A-particle, denoted here as 𝑛𝑛𝑟𝑟, is a positive integer value that 429 

should fulfill the following expression, 430 

𝛼𝛼�𝑚𝑚B
𝑗𝑗

𝑛𝑛𝑟𝑟

𝑗𝑗=1

= 𝛽𝛽 𝑚𝑚A
𝑖𝑖 . #(33)  

When the reaction occurs, one C-particle is injected at each 𝐗𝐗AB
𝑖𝑖𝑗𝑗  position located 431 

between the reacting particle pairs {A𝑖𝑖, B𝑗𝑗}. These reacting particle pairs disappear after 432 
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that. Again, by stoichiometry, the mass associated with each new C-particle should 433 

fulfill that 434 

�𝑚𝑚C
𝑘𝑘

𝑛𝑛𝑟𝑟

𝑘𝑘=1

=
𝛾𝛾

𝛼𝛼 + 𝛽𝛽
�𝑚𝑚A

𝑖𝑖 + �𝑚𝑚B
𝑗𝑗

𝑛𝑛𝑟𝑟

𝑗𝑗=1

 � . #(34)  

If all particles associated with a given species share a constant mass, these expressions 435 

reduce to the following simple relationships,  436 

𝑚𝑚A

𝑚𝑚B
=
𝛼𝛼
𝛽𝛽

 𝑛𝑛𝑟𝑟 , #(35)  

𝑚𝑚C =
𝛾𝛾
𝛽𝛽

 𝑚𝑚B. #(36)  

To satisfy (35) when 𝑛𝑛𝑟𝑟 is a real value, this expression simply requires to slightly 437 

modify the particle mass associated with the reactants prior to the beginning of the 438 

simulation. In the case of an instantaneous injection or to reproduce an initial condition, 439 

this will imply choosing an adequate ratio between the number of particles of each 440 

reactant. A valid alternative, not implemented in this work although perfectly 441 

compatible with the presented method, is to change the particle mass upon reaction 442 

[Bolster et al., 2016], using (9) and (10) to determine the particle mass variation from 443 

the computed probability. Another alternative is to decide the reaction of particle pairs 444 

{A, B} based on Bernoulli trials with a probability of failure determined by 𝑓𝑓 = 𝑛𝑛𝑟𝑟 −445 

𝐹𝐹(𝑛𝑛𝑟𝑟). Here, 𝐹𝐹(𝑥𝑥) is the floor function defined as the greatest integer less than or equal 446 

to 𝑥𝑥. However, in this case, stoichiometry is only fulfilled in an average sense. The 447 

latter approach is used in Example 1.   448 

 449 
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After this, following the standard random walk method, each particle is moved 450 

according to a drift term and a Brownian motion to respectively simulate advection and 451 

dispersion,  452 

𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡 + Δ𝑡𝑡) = 𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡) + 𝐯𝐯𝑠𝑠 �𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡)�  Δ𝑡𝑡 + 𝐄𝐄𝑠𝑠 �𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡)� 𝛏𝛏√Δ𝑡𝑡, #(37)  

where 𝐗𝐗𝑠𝑠𝑖𝑖 (𝑡𝑡) is the ith particle position associated with species 𝑠𝑠, 𝐯𝐯𝑠𝑠 is the particle 453 

velocity associated with species s given by 𝐯𝐯𝑠𝑠 = 𝐪𝐪
𝜙𝜙𝑅𝑅𝑠𝑠

+ 1
𝜙𝜙𝑅𝑅𝑠𝑠

∇ ⋅ (𝜙𝜙𝐃𝐃𝑠𝑠), 𝑅𝑅𝑠𝑠 is the 454 

retardation factor associated with species 𝑠𝑠, 𝐃𝐃𝑠𝑠 is the local hydrodynamic dispersion 455 

tensor associated with species 𝑠𝑠, 𝐄𝐄𝑠𝑠 is the Brownian displacement matrix determined by 456 

𝐄𝐄𝑠𝑠𝐄𝐄𝑠𝑠𝑇𝑇 = 2𝐃𝐃𝑠𝑠/𝑅𝑅𝑠𝑠, and 𝛏𝛏 is a vector of 𝑑𝑑 standard normally distributed random numbers. 457 

Note that the method can directly support species-dependent properties such as effective 458 

particle velocity (affected by retardation) and dispersion. Note also that alternative 459 

equations to the advection-dispersion could be used in this step (e.g., Continuous Time 460 

Random Walks), as the processes of transport and reaction are fully decoupled. 461 

 462 

5. Performance and convergence of the method 463 

Four simple hypothetical case examples were solved using the proposed methodology to 464 

evaluate the performance and convergence of the method as a function of the number of 465 

injected particles. The selected problems illustrate a wide range of possible applications. 466 

For each problem, we simulate reactive transport in a one-dimensional column of unit 467 

(1 m2) cross-section, with constant velocity, porosity, and dispersion, to emphasize only 468 

the relevance of the complex reactions. The parameter values adopted in each example 469 

are given in tables 1-4. 470 

 471 
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Simulations are performed in a Monte Carlo framework consisting of 100 random walk 472 

particle tracking realizations. Results are compared with those obtained from a very 473 

finely discretized finite difference solver for the ADRE with explicit time stepping and 474 

upwind differences in space for the advection term, which was checked for spatial and 475 

temporal convergence. The finite difference solution is assumed to represent the true 476 

solution. As explained in the previous section and although other approaches could be 477 

used, we assigned equal mass to all particles belonging to the same species so that 478 

stoichiometry is fulfilled exactly. Whenever possible, we imposed that the ratio of the 479 

reactant masses matches that of the stoichiometric coefficients, i.e., 𝑛𝑛𝑟𝑟 = 1 in (35). The 480 

method was implemented in a Random Walk Particle Tracking code written in Matlab. 481 

At the start of each simulation, 5000 particles of each reactant were injected following 482 

Gaussian distributions in space characterized by the mean, the standard deviation and 483 

the total amount of substance indicated in tables 1-4. In all cases, the concentration of 484 

all compounds in the inflow is zero at all times.  485 

 486 

The support of each species was estimated through (7) by assuming a Gaussian shape of 487 

the particle plume. This leads to a suboptimal approximation of the particle support 488 

volume written as [e.g. Silverman, 1986], 489 

ℎ𝑠𝑠 = 1.06 𝜎𝜎𝑥𝑥,𝑠𝑠 𝑛𝑛𝑠𝑠
−15, #(38)  

where the index s denotes the chemical species, 𝑛𝑛𝑠𝑠 is the number of particles of the sth 490 

species, and 𝜎𝜎𝑥𝑥,𝑠𝑠 is the standard deviation of the particle positions of the sth species at a 491 

given time.  492 

 493 

5.1. Description of the chemical systems 494 
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Example 1. A Generic reaction with fractional exponents 495 

In this first example, we consider a generic kinetic reaction with arbitrary stoichiometric 496 

coefficients, 𝛼𝛼 A + 𝛽𝛽 B → 𝛾𝛾 C. The reaction rate is written as 497 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘𝑓𝑓 𝑐𝑐A𝑐𝑐B 𝑔𝑔(𝑐𝑐A, 𝑐𝑐B), #(39)  

where the compensation function g in this case is 498 

𝑔𝑔(𝑐𝑐A, 𝑐𝑐B) = 𝑐𝑐A
𝜃𝜃A−1 𝑐𝑐B

𝜃𝜃B−1. #(40)  

Here, 𝜃𝜃A and 𝜃𝜃B are arbitrary real values, often (but not always) associated with the 499 

stoichiometric coefficients. To illustrate that any reaction with fractional exponents can 500 

be properly simulated, we chose 𝜃𝜃A = 𝛼𝛼 = 2.3 and 𝜃𝜃B = 𝛽𝛽 = 1.3. The parameters 501 

adopted during the simulations are summarized in Table 1. 502 

 503 

Example 2. Aerobic Michaelis-Menten degradation considering linear 504 

sorption of organic carbon 505 

In this example we reproduce the aerobic biodegradation of an organic chemical 506 

compound dissolved in groundwater. The organic compound (CH2O) is subject to linear 507 

sorption, with a retardation factor 𝑅𝑅 = 3. Microbial growth and decay is neglected, and 508 

the dissolved organic carbon is assumed to react with dissolved oxygen to form carbon 509 

dioxide and water, CH2O + O2 → CO2 + H2O. The reaction rate follows the Michaelis-510 

Menten kinetic model written here as 511 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘𝑓𝑓 𝑐𝑐CH2O 𝑐𝑐O2 𝑔𝑔�𝑐𝑐CH2O, 𝑐𝑐O2�, #(41)  

with function g being defined in this case as 512 

𝑔𝑔�𝑐𝑐CH2O, 𝑐𝑐O2� =
1

𝑘𝑘CH2O + 𝑐𝑐CH2O
 

1
𝑘𝑘O2 + 𝑐𝑐O2

. #(42)  
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𝑘𝑘CH2O and 𝑘𝑘O2 are the half-saturation constants associated with the dissolved organic 513 

carbon and oxygen, respectively.  514 

 515 

The plume of oxygen rapidly migrates towards the organic chemical compound with an 516 

effective retardation of 𝑅𝑅 = 1. We assumed that the carbon dioxide produced by the 517 

chemical reaction remains dissolved in groundwater as CO2 (aq). The degradation 518 

constant value and the half-saturation constant values are taken from Rolle et al. [2008] 519 

and Nagy et al. [2009]. The parameters adopted during the simulations are summarized 520 

in Table 2. 521 

 522 

Example 3. Calcite precipitation  523 

This example simulates the precipitation of calcium carbonate that takes place at the 524 

contact fringe of two moving solute plumes of Ca2+ and CO3
2−. Remarkably, we 525 

consider the effect of the nontrivial activity coefficients involved in the chemical 526 

reaction. We neglect the changes in the hydraulic properties of the porous medium 527 

resulting from precipitation. Back-dissolution is also omitted. The chemical reaction is 528 

formally written as Ca2+ + CO3
2− →  CaCO3(s). The rate of precipitation is represented 529 

by [e.g., Nancollas, 1979], 530 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘𝑜𝑜𝑏𝑏𝑠𝑠(Ω − 1), #(43)  

where 𝑘𝑘𝑜𝑜𝑏𝑏𝑠𝑠 is an observed or effective rate constant and Ω is the saturation state. We can 531 

rewrite this expression as: 532 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘′cCa2+  cCO32− � 𝛾𝛾Ca2+  𝛾𝛾CO32− −
𝑘𝑘𝑒𝑒𝑒𝑒

cCa2+  cCO32−
� . #(44)  
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Here, 𝛾𝛾𝐶𝐶𝑎𝑎2+ , 𝛾𝛾𝐶𝐶𝑂𝑂32− are the activity coefficients of 𝐶𝐶𝑎𝑎2+ and 𝐶𝐶𝑂𝑂32−, respectively, 𝑘𝑘𝑒𝑒𝑒𝑒 is 533 

the equilibrium or solubility constant, and 𝑘𝑘′ = 𝑘𝑘𝑜𝑜𝑏𝑏𝑠𝑠/𝑘𝑘𝑒𝑒𝑒𝑒. From this, the compensation 534 

function associated with this chemical reaction is expressed as 535 

𝑔𝑔�cCa2+ , cCO32−� =  𝛾𝛾𝐶𝐶𝑎𝑎2+  𝛾𝛾𝐶𝐶𝑂𝑂32− −
𝑘𝑘𝑒𝑒𝑒𝑒

cCa2+  cCO32−
. #(45)  

We assume that Ca2+ and CO3
2− are the only ions with significant concentrations in the 536 

solution. Then, by using the extended Debye-Hückel formula, the activity coefficients 537 

𝛾𝛾Ca2+  𝛾𝛾CO32− are calculated as,  538 

log10�𝛾𝛾Ca2+  𝛾𝛾CO32−� =

−4𝑘𝑘1

⎝

⎜
⎜
⎛ 1

1

�2�cCa2+ + cCO32−�
+ 𝑘𝑘2 åCa2+

 +  
1

1

�2�cCa2+ + cCO32−�
+ 𝑘𝑘2 åCO32−

⎠

⎟
⎟
⎞

, #(46)
 

where 𝑘𝑘1 = 0.018846 m3/2/mol1/2 and 𝑘𝑘2 = 0.103755 m3/2/mol1/2 𝑛𝑛𝑚𝑚 for water at 539 

25ºC (assuming that the density of water is 𝜌𝜌𝑤𝑤 = 1 Kg/dm3), and åCa2+ , åCO32− are the 540 

hydrated radii of the respective ions [Garrels and Christ, 1965]. Values for 𝑘𝑘𝑜𝑜𝑏𝑏𝑠𝑠, 𝑘𝑘𝑒𝑒𝑒𝑒 541 

were taken from van Breukelen [2003] and Appelo and Postma [2005], respectively. 542 

The parameters adopted during the simulations are summarized in Table 3. 543 

 544 

Example 4. Acidic dissolution of Fluorite:  545 

This example describes the acidic dissolution of fluorite. The chemical reaction is 546 

CaF2 + 2H+ →   Ca2+ + 2HF0, and the dissolution rate is typically represented by 547 

[Zhang et al., 2006], 548 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘 𝑀𝑀𝑠𝑠 (𝑐𝑐H+
2 /𝑐𝑐Ca2+)𝛼𝛼, #(47)  
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Where 𝑀𝑀𝑠𝑠 is the mineral (CaF2) surface per cubic meter of the porous medium, and 𝑘𝑘 549 

and 𝛼𝛼 are experimental parameters. Zhang and coworkers found that at 25ºC log 𝑘𝑘 550 

ranged approximately between −2 and −4 for different experimental conditions, 551 

whereas 𝛼𝛼 had values between 0.495 and 1.146. Here, we chose log 𝑘𝑘 = −4 and 552 

𝛼𝛼 = 0.8, so that 553 

𝑟𝑟(𝑥𝑥, 𝑡𝑡) = 𝑘𝑘 𝑀𝑀𝑠𝑠 𝑐𝑐H+
θH+  𝑐𝑐Ca2+

θCa2+ , #(48)  

where θH+ = 1.6 and θCa2+ = −0.8. This kinetic model resembles that of the example 554 

1, but with the presence of a negative exponent in the concentration of Ca2+. We 555 

consider that Fluorite is everywhere in the system and in high amounts, and so 𝑀𝑀𝑠𝑠 is a 556 

constant. Then the model has only one reactant and two products, although one of the 557 

products has an influence on the reaction rate. This means that, for this particular case, 558 

injection of the product particles is performed directly on the position of the reacting 559 

particle. We neglect the changes in the hydraulic properties of the porous medium 560 

resulting from dissolution. The chemical reaction can be embedded in (24) by defining 561 

that  562 

𝑔𝑔(cH+ , cCa2+) = 𝑐𝑐H+
θH+−1 𝑐𝑐Ca2+

θCa2+−1, #(49)  

and 𝑘𝑘 𝑀𝑀𝑠𝑠 = 𝑘𝑘𝑓𝑓. In this case, two overlapping plumes of H+ and Ca2+ are injected at the 563 

same initial location (note that the reaction rate has an asymptote in case of total 564 

absence of Ca2+). The parameters adopted during the simulations are summarized in 565 

Table 4. 566 

 567 

5.2. Results 568 
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Figures 2-9 compare the random walk solution obtained at the end of the simulation 569 

time with the corresponding finite difference solution for each reactive transport 570 

problem. The random walk solution is presented in terms of the mean concentration of 571 

the different chemical species and its standard deviation (the shaded zone delimits ±1 572 

standard deviation) obtained from 100 realizations. For completeness, the corresponding 573 

evolution of the total mass of the different chemical species remaining in the column 574 

during the simulation are also depicted in these figures. Considering that the reactive 575 

transport problems were simulated with only 5000 particles, a good match is obtained 576 

for all cases.  577 

 578 

We note that larger deviations from the finite difference solution can be seen at the 579 

concentration peaks. This is mostly attributed to the fact that the suboptimal 580 

approximation of the particle support volume directly affects the calculation of the 581 

probabilities in (29) through the estimation of concentrations in the compensation 582 

function 𝑔𝑔. This effect is seen most significant when 𝑔𝑔 deviates from zero-order 583 

(corresponding to second-order kinetic reactions, where there is no need for 584 

compensation).  585 

 586 

The approximation (38) used to determine the particle support volume ℎ𝑠𝑠 is only valid 587 

for Gaussian distributions of the species’ concentrations. This is particularly not 588 

satisfied for calcium ion in the acidic dissolution of Fluorite (see Figure 8). Hence, 589 

errors in the estimation of the resulting concentration map in this case example are 590 

slightly larger than in the others. In practice, the use of such an approximation of ℎ𝑠𝑠 591 

(known as the rule-of-thumb in statistics), implies that more particles are needed to 592 



31 
 

match the exact solution. Yet, the use of (7) may become computationally expensive in 593 

reactive transport problems otherwise. 594 

 595 

Figure 10 shows the average relative error (𝜖𝜖𝑟𝑟) and the coefficient of variation (𝐶𝐶𝑉𝑉𝑟𝑟) of 596 

the increase in the total amount of substance at the end of the simulation, calculated 597 

over 100 realizations by comparison with the finite difference solution,  598 

𝜖𝜖𝑟𝑟 =
〈𝑀𝑀𝑃𝑃𝑇𝑇〉 − 𝑀𝑀𝐹𝐹𝐹𝐹

∆𝑀𝑀𝐹𝐹𝐹𝐹
, #(50)  

𝐶𝐶𝑉𝑉𝑟𝑟 =
�〈𝑀𝑀𝑃𝑃𝑇𝑇

     2〉 − 〈𝑀𝑀𝑃𝑃𝑇𝑇〉2

|∆𝑀𝑀𝐹𝐹𝐹𝐹| , #(51)  

where 𝑀𝑀𝑃𝑃𝑇𝑇 is the total mass of a given chemical compound obtained at the final 599 

simulation time, 〈·〉 is the mean operator over all realizations, 𝑀𝑀𝐹𝐹𝐹𝐹 is the total mass of 600 

the chemical compound obtained with finite difference at the end of the simulation time, 601 

and ∆𝑀𝑀𝐹𝐹𝐹𝐹 is the total mass variation of the chemical compound obtained with the finite 602 

difference method. The mean relative error 𝜖𝜖𝑟𝑟 represents the systematic error associated 603 

to one realisation, whereas 𝐶𝐶𝑉𝑉𝑟𝑟 accounts for its random variability. Note that the sum of 604 

the squares of these two parameters is the Mean Squared Error (MSE) of ∆𝑀𝑀𝑃𝑃𝑇𝑇, 605 

normalized by ∆𝑀𝑀𝐹𝐹𝐹𝐹
     2. Results show that the proposed random walk method converges 606 

towards the exact solution with an increasing number of particles. It also demonstrates 607 

that not many particles are needed to simulate non-linear chemical reactions with 608 

sufficient accuracy. 609 

6. Importance of chemical kinetics in heterogeneous aquifers: An example 610 

A two-dimensional implementation of the proposed method in a heterogeneous aquifer 611 

is given in this section. The objective of this example is to illustrate the application of 612 
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the presented random walk approach in a more realistic setting. In doing this, we 613 

analyze the need of fully describing non-linear chemical kinetics in heterogeneous 614 

porous media.  615 

We study a reactive transport problem in a 2D rectangular confined aquifer with 616 

dimensions of 100×50 m2. The aquifer is characterized by a randomly generated log-617 

normally distributed hydraulic conductivity field 𝑌𝑌 = ln𝐾𝐾 with a mean of 〈𝑌𝑌〉  = 3 and 618 

a variance of 𝜎𝜎𝑌𝑌2 = 1. The 𝑌𝑌 field follows an isotropic exponential covariance function 619 

model with integral scale of 𝑀𝑀𝑌𝑌 = 5 m. The other aquifer properties are assumed 620 

homogeneous. Groundwater flow is considered at steady-state and subject to constant 621 

head conditions at the lateral boundaries and impermeable conditions otherwise. As a 622 

result, the mean flow direction is oriented in the x-direction and characterized by a 623 

mean hydraulic gradient of 0.00622. The flow problem is solved with a finite-difference 624 

code, MODFLOW-2000 [Harbaugh et al., 2000], with a domain discretized into regular 625 

cells of size 0.5 m. The resulting cell face flows were used to compute the random walk 626 

particle velocities according to the hybrid interpolation method suggested by LaBolle et 627 

al. [1996].  628 

The reactive transport problem is similar to the one defined in example 2 but considers a 629 

two-dimensional heterogeneous porous media. A schematic representation of the system 630 

is shown in Figure 11. A plume of dissolved organic matter, retarded with respect to 631 

groundwater by linear sorption, passes after some time through an oxygen plume. The 632 

chemical reaction follows the Michaelis-Menten kinetic model with the same 633 

formulation and parameter values as given in example 2. Table 2 shows the values of 634 

the parameters. The concentrations of the reactants are initially uniform in two separate 635 

rectangular areas depicted in Figure 11 and zero everywhere else in the domain. The 636 

concentration of all compounds in the inflow water is zero at all times. 637 
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The fast method of Botev et al. [2010] was used to determine the kernel bandwidth with 638 

a slight modification: the anisotropic kernel bandwidth matrix 𝑯𝑯 obtained by this 639 

method was transformed into an isotropic bandwidth by matching the determinants, i.e., 640 

ℎ2 = det (𝑯𝑯). As explained in section 3, the use of isotropic kernels facilitates the 641 

computation of the compensation function 𝑔𝑔 at the 𝐗𝐗𝐴𝐴𝐴𝐴
𝑖𝑖𝑗𝑗  location by linear interpolation. 642 

However, the kernel obtained by this approach is suboptimal compared to the original 643 

method by Botev et al. [2010], and presumably produced a slower convergence with 644 

respect to the number of particles.   645 

The convergence of the random walk solution was controlled by choosing a small 646 

enough time step and by performing a sensitivity analysis with respect to the number of 647 

particles. As expected, the convergence occurred for a higher number of particles 648 

compared to the 1D examples. Nevertheless, by using only 32,768 particles of each 649 

reactant, the estimated error in the total amount of product generated was below 1% as 650 

compared to the solution obtained with 131,072 particles. Figure 12 shows the three 651 

particle plumes at different moments of the simulation (for a better visualization, only a 652 

random subsample of 5,000 particles is shown), and the corresponding KDE 653 

reconstruction of the product concentrations. 654 

  655 

The actual impact of the reaction kinetics on the problem solution depends on whether 656 

mixing or chemical kinetics is the limiting process. In order to illustrate this, we 657 

compare the evolution of the CO2 production with the following equivalent second-658 

order reaction, 659 

𝑟𝑟(𝐱𝐱, 𝑡𝑡) =
𝑘𝑘𝑓𝑓

𝑘𝑘CH2O 𝑘𝑘O2
 𝑐𝑐CH2O 𝑐𝑐O2 , 
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for three different values of 𝑘𝑘𝑓𝑓 ranging from five times smaller to five times higher than 660 

the value given in Table 2. Figure 13 shows that for a very fast reaction rate the process 661 

is mixing-limited (in this case mixing is driven by the difference in the retardation 662 

coefficients), and therefore the reaction kinetics do not have a significant effect on the 663 

results. These kind of reactions can be modeled as instantaneous (ref. xavi), as long as 664 

the mixing process is well represented by the transport model. On the other hand, in 665 

slow reactions, the reaction kinetics can make a very important difference in the results.    666 

7. Conclusions 667 

We have presented a new random walk particle tracking method to simulate reactions 668 

with complex kinetics involving two reactants. Reactive transport is solved in two 669 

stages: the first one corresponding to the chemical reactions, and the second one to the 670 

standard advection-dispersion equation. The method is based on the representation of 671 

particles by optimal kernel functions. This way, we derived the probability that a given 672 

particle reacts with any particle associated with other reactants. In the proposed 673 

methodology, complex kinetic reactions require linearizing a function of the local 674 

concentrations at the location of highest probability density of encounter between 675 

potentially reactive particle pairs. The implementation of the probability of reaction in 676 

random walk models has been achieved in this paper by particle annihilation, but other 677 

approaches such as particle mass variations can easily be incorporated. 678 

 679 

In addition, two simple relationships should be satisfied to fulfill stoichiometry: one 680 

relating the mass of interacting particles with the stoichiometric coefficients, and 681 

another one relating the mass of particles produced from reactions with the 682 

stoichiometric coefficients. In practice, the first relationship requires a careful choice of 683 
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the mass of the particles injected. The second relationship determines the mass of 684 

particles produced from the chemical reaction.  685 

 686 

Several synthetic examples demonstrate the potential applicability of the method in a 687 

wide range of applications, ranging from reaction-rate laws with fractional exponents to 688 

acidic dissolution and precipitation systems with nontrivial activity coefficients. Results 689 

have shown that a good match with a finite difference solution is obtained with 690 

relatively few particles. The method has been demonstrated to converge to the solution 691 

with an increasing number of particles. This rate of convergence depends on the type of 692 

chemical reaction, i.e., on the shape of the compensation function g. Finally, a 2D 693 

example dealing with non-linear Michaelis-Menten biodegradation in a randomly 694 

heterogeneous aquifer is provided to illustrate the capabilities of the method in a more 695 

realistic setting.  696 

 697 
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 858 

 859 

Tables  860 

Table 1: Simulation parameter values used in example 1.* 861 

 𝐀𝐀 𝐁𝐁 𝐂𝐂 

(𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝟒𝟒𝟒𝟒,𝟔𝟔) (𝟓𝟓𝟒𝟒,𝟔𝟔) − 
𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦 𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦 𝟒𝟒 

𝜶𝜶,𝜷𝜷,𝜸𝜸 𝟐𝟐.𝟑𝟑 𝟏𝟏.𝟑𝟑 𝟏𝟏 

𝜽𝜽 (eq. 37) 𝟐𝟐.𝟑𝟑 𝟏𝟏.𝟑𝟑  − 

𝑹𝑹 𝟏𝟏 𝟏𝟏 𝟏𝟏 

 

𝒌𝒌𝒇𝒇 𝟔𝟔 (𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑)−𝟐𝟐.𝟔𝟔 𝐝𝐝𝐝𝐝𝐲𝐲−𝟏𝟏 
𝒒𝒒 𝟒𝟒.𝟑𝟑 𝐦𝐦/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝓𝝓 𝟒𝟒.𝟐𝟐𝟓𝟓 

𝑫𝑫 𝟒𝟒.𝟒𝟒 𝐦𝐦𝟐𝟐/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝉𝝉 𝟖𝟖𝟒𝟒 𝐝𝐝𝐝𝐝𝐲𝐲𝐝𝐝 

* (𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 are the mean and standard deviation defining the initial normal distribution of 862 
solute particles in space, 𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 is the total amount of substance at the start of the simulation, 863 
and 𝜏𝜏 is the total simulated time. The other variables are defined in the text.  864 

Table 2: Simulation parameter values used in example 2.* 865 

 𝐂𝐂𝐇𝐇𝟐𝟐𝐎𝐎 𝐎𝐎𝟐𝟐 𝐂𝐂𝐎𝐎𝟐𝟐 

(𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝟕𝟕𝟒𝟒,𝟐𝟐) (𝟓𝟓𝟒𝟒,𝟖𝟖) − 
𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦 𝟏𝟏 𝐦𝐦𝐦𝐦𝐦𝐦 𝟒𝟒 

𝜶𝜶,𝜷𝜷,𝜸𝜸 𝟏𝟏 𝟏𝟏 𝟏𝟏 

𝑲𝑲𝑪𝑪𝑯𝑯𝟐𝟐𝑶𝑶,𝑲𝑲𝑶𝑶𝟐𝟐(eq.39) 𝟏𝟏.𝟔𝟔𝟔𝟔𝟔𝟔𝟕𝟕 𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑 𝟒𝟒.𝟒𝟒𝟏𝟏𝟓𝟓𝟔𝟔 𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑  − 

𝑹𝑹 𝟑𝟑 𝟏𝟏 𝟏𝟏 

 

𝒌𝒌𝒇𝒇 𝟒𝟒.𝟏𝟏𝟓𝟓 (𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑) 𝐝𝐝𝐝𝐝𝐲𝐲−𝟏𝟏   
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𝒒𝒒 𝟒𝟒.𝟑𝟑𝟐𝟐 𝐦𝐦/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝓𝝓 𝟒𝟒.𝟐𝟐𝟓𝟓 

𝑫𝑫 𝟒𝟒.𝟓𝟓 𝐦𝐦𝟐𝟐/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝉𝝉 𝟔𝟔𝟓𝟓 𝐝𝐝𝐝𝐝𝐲𝐲𝐝𝐝 

* (𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 are the mean and standard deviation defining the initial normal distribution of 866 
solute particles in space, 𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 is the total amount of substance at the start of the simulation, 867 
and 𝜏𝜏 is the total simulated time. The other variables are defined in the text.  868 

 869 

Table 3: Simulation parameter values used in example 3.* 870 

 𝐂𝐂𝐝𝐝𝟐𝟐+ 𝐂𝐂𝐎𝐎𝟑𝟑
𝟐𝟐− 𝐂𝐂𝐝𝐝𝐂𝐂𝐎𝐎𝟑𝟑 

(𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝟐𝟐𝟓𝟓,𝟓𝟓) (𝟑𝟑𝟓𝟓,𝟖𝟖) − 
𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟐𝟐.𝟓𝟓 𝐦𝐦𝐦𝐦𝐦𝐦 𝟐𝟐.𝟓𝟓 𝐦𝐦𝐦𝐦𝐦𝐦 𝟒𝟒 

𝜶𝜶,𝜷𝜷,𝜸𝜸 𝟏𝟏 𝟏𝟏 𝟏𝟏 
å𝑪𝑪𝒊𝒊𝟐𝟐+ , å𝑪𝑪𝑶𝑶𝟑𝟑𝟐𝟐− (eq. 43) 𝟒𝟒.𝟔𝟔 𝐧𝐧𝐦𝐦 𝟒𝟒.𝟓𝟓 𝐧𝐧𝐦𝐦  − 

𝑹𝑹 𝟏𝟏 𝟏𝟏 ∞ 

 

𝒌𝒌𝒐𝒐𝒐𝒐𝒔𝒔 𝟒𝟒.𝟒𝟒𝟒𝟒𝟐𝟐 (𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑)−𝟐𝟐.𝟔𝟔 𝐝𝐝𝐝𝐝𝐲𝐲−𝟏𝟏 
𝒌𝒌𝒆𝒆𝒒𝒒 𝟏𝟏𝟒𝟒−𝟐𝟐.𝟑𝟑 (𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑)𝟐𝟐      
𝒒𝒒 𝟒𝟒.𝟏𝟏 𝐦𝐦/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝓𝝓 𝟒𝟒.𝟐𝟐𝟓𝟓 

𝑫𝑫 𝟒𝟒.𝟏𝟏𝟓𝟓 𝐦𝐦𝟐𝟐/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝉𝝉 𝟏𝟏𝟒𝟒𝟒𝟒 𝐝𝐝𝐝𝐝𝐲𝐲𝐝𝐝 

* (𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 are the mean and standard deviation defining the initial normal distribution of 871 
solute particles in space, 𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 is the total amount of substance at the start of the simulation, 872 
and 𝜏𝜏 is the total simulated time. The other variables are defined in the text.  873 

 874 

Table 4: Simulation parameter values used in example 4.* 875 

 𝐇𝐇+ 𝐂𝐂𝐝𝐝𝟐𝟐+ 𝐇𝐇𝐅𝐅𝟒𝟒 

(𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 (𝟗𝟗𝟒𝟒,𝟓𝟓) (𝟗𝟗𝟒𝟒,𝟐𝟐𝟒𝟒) − 
𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 𝟐𝟐 𝐦𝐦𝐦𝐦𝐦𝐦 𝟒𝟒 𝐦𝐦𝐦𝐦𝐦𝐦 𝟒𝟒 

𝜶𝜶,𝜷𝜷,𝜸𝜸 𝟐𝟐 𝟏𝟏 𝟐𝟐 
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𝜽𝜽 (eq. 45) 𝟏𝟏.𝟔𝟔 −𝟒𝟒.𝟖𝟖 − 

𝑹𝑹 𝟏𝟏 𝟏𝟏 𝟏𝟏 

 

𝒌𝒌𝒇𝒇 𝟒𝟒.𝟕𝟕𝟐𝟐 (𝐦𝐦𝐦𝐦𝐦𝐦/𝐦𝐦𝟑𝟑)𝟒𝟒.𝟐𝟐 𝐝𝐝𝐝𝐝𝐲𝐲−𝟏𝟏 
𝒒𝒒 𝟒𝟒.𝟓𝟓 𝐦𝐦/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝓𝝓 𝟒𝟒.𝟐𝟐𝟓𝟓 

𝑫𝑫 𝟒𝟒.𝟒𝟒 𝐦𝐦𝟐𝟐/𝐝𝐝𝐝𝐝𝐲𝐲 

𝝉𝝉 𝟕𝟕 𝐝𝐝𝐝𝐝𝐲𝐲𝐝𝐝 

* (𝝁𝝁𝒙𝒙 ,𝝈𝝈𝒙𝒙)𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 are the mean and standard deviation defining the initial normal distribution of 876 
solute particles in space, 𝒎𝒎𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊 is the total amount of substance at the start of the simulation, 877 
and 𝜏𝜏 is the total simulated time. The other variables are defined in the text.  878 

 879 

 880 

Figures 881 

 882 

Figure 1: Schematic example of a product between two Gaussian pdf’s in one 883 
dimension. The product (yellow) is another Gaussian function centered in 𝑋𝑋𝐴𝐴𝐴𝐴 and with 884 
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a standard deviation ℎ𝑎𝑎𝑏𝑏 = �𝐻𝐻𝐴𝐴𝐴𝐴. Its integral over x is the probability of collocation of 885 
the two particles. 886 

 887 

 888 

Figure 2: Solute concentrations in example 1, at the start of the simulation and after 80 889 
days. The error zone around the Particle Tracking curves indicates ±1 standard 890 
deviation.  891 
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 892 

Figure 3: Evolution in time of the total amount of substance of each compound in 893 
example 1. The error zone around the Particle Tracking curves indicates ±1 standard 894 
deviation. 895 

 896 

Figure 4: Solute concentrations in example 2, at the start of the simulation and after 65 897 
days. The error zone around the Particle Tracking curves indicates ±1 standard 898 
deviation. 899 
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 900 

Figure 5: Evolution in time of the total amount of substance of each compound in 901 
example 2. The error zone around the Particle Tracking curves indicates ±1 standard 902 
deviation. 903 

 904 

Figure 6: Solute concentrations in example 3, at the start of the simulation and after 905 
100 days. The error zone around the Particle Tracking curves indicates ±1 standard 906 
deviation. 907 
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 908 

Figure 7: Evolution in time of the total amount of substance of each compound in 909 
example 3. The error zone around the Particle Tracking curves indicates ±1 standard 910 
deviation. 911 

 912 

Figure 8: Solute concentrations in example 4, at the start of the simulation and after 7 913 
days. The error zone around the Particle Tracking curves indicates ±1 standard 914 
deviation. 915 
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 916 

Figure 9: Evolution in time of the total amount of substance of each compound in 917 
example 4. The error zone around the Particle Tracking curves indicates ±1 standard 918 
deviation. 919 

 920 

Figure 10: The two measured error components for different initial number of particles 921 
of the reactants. 922 
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 923 


