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ABSTRACT 13 

Estimating the statistical parameters (mean, variance, and integral scale) that define the 14 

spatial structure of the transmissivity or hydraulic conductivity fields is a fundamental step 15 

for the accurate prediction of subsurface flow and contaminant transport. In practice, the 16 

determination of the spatial structure is a challenge because of spatial heterogeneity and data 17 

scarcity. In this paper, we describe a novel approach that uses time drawdown data from 18 

multiple pumping tests to determine the transmissivity statistical spatial structure. The 19 

method builds on the pumping test interpretation procedure of Copty et al. (2011) 20 

(Continuous Derivation method, CD), which uses the time-drawdown data and its time 21 

derivative to estimate apparent transmissivity values as a function of radial distance from the 22 

pumping well. A Bayesian approach is then used to infer the statistical parameters of the 23 

transmissivity field by combining prior information about the parameters and the likelihood 24 

function expressed in terms of radially-dependent apparent transmissivities determined from 25 

pumping tests. A major advantage of the proposed Bayesian approach is that the likelihood 26 

function is readily determined from randomly generated multiple realizations of the 27 

transmissivity field, without the need to solve the groundwater flow equation. Applying the 28 

method to synthetically-generated pumping test data, we demonstrate that, through a 29 

relatively simple procedure, information on the spatial structure of the transmissivity may 30 

be inferred from pumping tests data. It is also shown that the prior parameter distribution has 31 

a significant influence on the estimation procedure, given the non-uniqueness of the 32 

estimation procedure. Results also indicate that the reliability of the estimated transmissivity 33 

statistical parameters increases with the number of available pumping tests. 34 

  35 
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1. INTRODUCTION 36 
The modeling of groundwater flow and contaminant transport has evolved in recent decades 37 

into a valuable tool for the analysis of subsurface systems. Such modeling efforts require 38 

mapping the flow parameters - most notably transmissivity (T) or hydraulic conductivity (K) 39 

- over the domain of interest. Numerous field investigations have however demonstrated that 40 

hydrogeological parameters are highly heterogeneous, displaying complex patterns of spatial 41 

variability (e.g., Gelhar 1993; Rubin, 2003, Sudicky et al. 2010). Because flow and transport 42 

are strongly influenced by the heterogeneity of the subsurface system, incorporating the 43 

spatial variability of the underlying parameters is essential for the accurate evaluation of 44 

groundwater resources, and in particular for the prediction of contaminant transport as a 45 

necessary step for the design and implementation of groundwater remediation activities (e.g., 46 

Sanchez-Vila and Fernandez-Garcia, 2016).  47 

Complexity in hydrogeological patterns and the lack of detailed data have led researchers to 48 

formulate the flow and transport problem within a stochastic framework. With such an 49 

approach, flow parameters are defined by spatial random functions whose spatial structure 50 

can adequately be expressed in terms of few low-order statistical parameters, namely the 51 

spatial mean, variance, and integral scale, which jointly define the covariance function or 52 

semi-variogram (Kitanidis, 1997; Renard, 2007). These statistical parameters are typically 53 

determined from measurements of the attribute of interest, provided that a sufficiently large 54 

number of data with adequate spatial coverage is available.  55 

Groundwater flow and solute transport are strongly affected by the spatial distribution of T. 56 

At most sites, the number of T estimates determined from the interpretation of pumping tests 57 

is quite limited, hindering the accurate determination of the T covariance function. 58 

Moreover, traditional pumping test interpretation methods, such as those based on log-log 59 

plots (Theis, 1935) or semilog plots (Cooper and Jacob, 1946), generally yield single 60 

estimates of the flow parameters, which hardly provide information about the underlying 61 

heterogeneity. In fact, this averaging process results in T estimates with a smaller variance 62 

and a larger integral scale as compared to the actual point distributions, and hence, cannot 63 

be used to simulate the impact of small to medium scale variability, which is of interest in 64 

many field applications. 65 

These limitations motivated many researchers in the last three decades to examine the impact 66 

of spatial heterogeneity on the analysis of pumping tests and investigate whether information 67 

about the spatial variability of the flow parameters can be inferred from pumping tests (a 68 
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review of methods and solutions was provided by Sanchez-Vila et al., 2006). A very early 69 

study is Barker and Herbert (1982), who considered the effect of a high hydraulic 70 

conductivity anomaly embedded in an otherwise uniform aquifer. Butler (1988) used the 71 

Cooper and Jacob (1946) method to investigate the effect of a T anomaly on the interpreted 72 

transmissivity; it was shown that, for observation wells located at large distances from the 73 

pumping well, the perturbed non-uniform aquifer behaves as a homogeneous aquifer. On the 74 

other hand, Butler (1990) showed that the T values estimated with the Theis (1935) method 75 

place more weight on the local T, defined as the T in the vicinity of the pumping well. Feitosa 76 

et al. (1994) developed an inverse procedure for the estimation of the transmissivity as a 77 

function of distance from the pumping well for the case when the transmissivity field 78 

consists of a series of concentric homogeneous rings. 79 

For spatially variable T fields (i.e., T fields that are not defined in terms of a deterministic 80 

perturbation but that are individual realizations of a random field), Meier et al. (1998) and 81 

Sanchez-Vila et al. (1999) showed that the transmissivity obtained with the Cooper and 82 

Jacob (1946) is close to the spatial geometric mean of the T field, regardless of the location 83 

of the observation point. On the other hand, the estimated storativity (S) varies spatially, 84 

demonstrating how the interpretation method significantly translates the heterogeneity in 85 

transmissivity into spatially variable S estimates. This finding was further confirmed by 86 

Trinchero et al. (2008b), who provided an analytical relationship between the estimated 87 

storativity and the porosity inferred from tracer test data (the latter parameter was considered 88 

as an indicator of transport connectivity).  89 

Copty and Findikakis (2004a) examined the sensitivity of transient drawdown in pumping 90 

tests to the statistical parameters describing the spatial structure of T, and noted that the time 91 

derivative of the drawdown is particularly sensitive to the heterogeneity in T. Oliver (1993) 92 

and Knight and Kluitenberg (2005) used the Frechet kernel to evaluate the sensitivity of the 93 

drawdown to the spatial variability of T and S. Leven and Dietrich (2006) used sensitivity 94 

coefficients to assess the influence of the spatial variability of T and S on the interpretation 95 

of pumping tests, leading to time-dependent interpreted parameters. Avci et al. (2011, 2013) 96 

developed a numerical method for the estimation of the variability of the T and S as a 97 

function of pumping time; the method could be used as a diagnostic tool to identify some 98 

aquifer system characteristics. Avci et al. (2014) evaluated the performance of a number of 99 

analytical methods for the estimation of the variation of the transmissivity with radial 100 

distance. Recently, Pechstein et al. (2016) discussed the relationship of the interpreted T 101 
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values derived from pumping tests to the underlying spatial variability of the T field. The 102 

authors showed numerically that the interpreted T value that best reproduces the pumping 103 

test data in confined heterogeneous aquifers is a weighted average of the point T values 104 

which uses the temporal derivative of the Frechet kernel as a spatial weight. 105 

Copty et al. (2008) and Trinchero et al. (2008a) considered the influence of spatial variability 106 

of the transmissivity on pumping tests conducted in leaky aquifers. A significant difference 107 

between flow towards a well in a confined non-leaky versus a leaky aquifer is that in the 108 

former case the cone of depression continues to expand with time, while in the latter a steady 109 

state condition is reached. As a result, the response of a pumping test in a leaky aquifer is 110 

more sensitive to variations in the local transmissivity in the vicinity of the well, as compared 111 

to the case of a confined aquifer. 112 

A number of studies have attempted to estimate directly, from pumping test data, the 113 

statistical spatial structure of the transmissivity field, commonly expressed in terms of two 114 

statistical parameters: variance and integral scale. Copty and Findikakis (2004b) examined 115 

the relation of the time-derivative of the drawdown to the integral scale and the variance of 116 

the log-transmissivity field. Neuman et al. (2004, 2007) developed a graphical approach that 117 

uses steady-state drawdown data for the estimation of the T variance and integral scale. Riva 118 

et al. (2009) applied this type-curve method to field data from the site of Poitiers, France. 119 

Firmani et al. (2006) used an expression of the equivalent hydraulic conductivity for steady-120 

state radially convergent flow towards a well in a heterogeneous aquifer to estimate the 121 

variance and integral scale of K. Zech et al. (2012) developed an analytical expression for 122 

the steady state drawdown due to pumping in a heterogeneous aquifer using the Coarse 123 

Graining upscaling method (Attinger, 2003), a method subsequently applied to real pumping 124 

test data from the Horkheimer Insel test site in Germany (Zech et al., 2015). This latter paper 125 

also discusses the quantity and spatial coverage of the data needed to obtain reliable 126 

estimates of the statistical parameters of the transmissivity field. Zech et al. (2016) extended 127 

the analysis to transient flow and showed that the number of measurements needed to obtain 128 

reliable estimates of the transmissivity spatial structure is reduced compared to steady state 129 

pumping tests.  130 

In parallel efforts, and to overcome the scarcity of hydrological data commonly encountered 131 

in field applications, a number of researchers have proposed incorporating additional 132 

secondary data in the identification of subsurface parameters such as geophysical data (see 133 

recent reviews such as Binley et al., 2015; Slater, 2007; Rubin and Hubbard, 2005). Novel 134 
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field data acquisition techniques, such as hydraulic tomography (e.g., Butler et al., 1999; 135 

Yeh, and Liu, 2000; Zhu and Yeh, 2005; Yin and Illman, 2009; Illman et al., 2015) and direct 136 

push technologies (Butler et al., 2007; Dietrich et al., 2008; Bohling et al., 2012) have also 137 

been proposed. These approaches have been shown to have several benefits; most notably 138 

they allow for the collection of dense hydraulic head data in response to groundwater 139 

pumping that allows for the estimation of the three-dimensional hydraulic conductivity 140 

distribution in the vicinity of the tests. Despite these advantages, their application to routine 141 

field problems remains limited due to the relatively large costs associated and the difficulty 142 

of solving the groundwater inverse problem.  143 

Despite these recent developments, the determination of the underlying statistical spatial 144 

structure of the transmissivity field from pumping test data remains a challenge. In a recent 145 

study, Copty et al. (2011) developed an interpretation method for pumping tests, denoted as 146 

the Continuous Derivation (CD) method. The CD method uses the transient drawdown data 147 

and its time derivative to estimate interpreted transmissivities as a function of the radial 148 

distance, Ti(r). It was shown by Copty et al. (2011) that Ti(r) is close to the geometric mean 149 

of the T values over a radially increasing volume, Tg(r). The function Tg(r) varies from the 150 

transmissivity at the well for small values of r, to the geometric mean of the entire field, for 151 

large r values. In the current study, we extend the work of Copty et al. (2011) by examining 152 

whether Ti(r) can be used to infer the spatial structure of the transmissivity field. The goal is 153 

thus to develop a relatively simple pumping test interpretation method that can help in the 154 

definition of relevant characteristics of the local scale transmissivity spatial structure without 155 

the need for complex inverse modeling. We primarily focus on time-drawdown data derived 156 

from pumping tests, which remains a widely used technique for subsurface parameter 157 

estimation. 158 

For the sake of completion, we present in Section 2 the main features of the CD method, 159 

followed by the presentation of the Bayesian approach used to infer the spatial structure of 160 

the transmissivity field, namely the variance and the integral scale. Section 3 describes a 161 

numerical application of the proposed Bayesian method and discusses its potential 162 

applications and limitations.  163 

 164 

2. Pumping Test Interpretation Method 165 
2.1. The Continuous Derivation Method (CD) 166 
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For pumping tests conducted in heterogeneous aquifers, the cone of depression due to 167 

pumping expands in time. At early times the apparent transmissivity is close to the T value 168 

in the immediate vicinity of the well (order of few meters), while at later times it is some 169 

weighted average of the transmissivity of a much larger region around the well. The term 170 

“apparent” is used here in accordance with the terminology of Sanchez-Vila et al., 2006 171 

which refers to an estimate of the parameter that is function of space and that satisfies some 172 

relationship such as the Theis solution (Theis, 1935). The CD method (Copty et al., 2011) 173 

captures the full temporal transition between the local T value and the estimate obtained 174 

using late time data. The estimation method relies on the time-derivative of the drawdown 175 

because this is more sensitive than the drawdown itself to spatial variation of transmissivity 176 

(e.g., Bourdet, 2002).  177 

For two-dimensional flow towards a well in a confined aquifer, the time-dependent 178 

drawdown is given by the classical Theis’ solution: )(
4

),( uW
T

Qrts
π

= , where 
tT
Sru

4

2

= , 179 

W(u) is the well (i.e., the exponential integral) function, Q is the pumping rate, r is the 180 

separation distance between the pumping and observation wells, t is time, and S is storativity. 181 

The ratio of the drawdown to the drawdown time derivative, s’(t,r), can be written as (Copty 182 

et al., 2011): 183 

)exp()(3.2 uuW
s

s
c =

′
=γ       (1) 184 

 185 

A plot of the function γc is shown in Figure 1. It is observed that γc increases monotonically 186 

with dimensionless 1/u (equivalent to a dimensionless time). For a given pumping test, the 187 

ratio of the observed drawdown at any time t to its time derivative provides an estimate of u 188 

from (1). From the estimated u value, the interpreted transmissivity and storativity (Ti and 189 

Si, respectively) corresponding to that particular moment in time are then estimated as: 190 

( ) ( )
4 ( )i

QT t W u
s tp

= ; 2
4( ) i

i
tT uS t
r

=       (2) 191 

Applying the above procedure repetitively to the full duration of the test yields time-192 

dependent estimates of the flow parameters. Thus, the CD method provides estimates of the 193 

flow parameters that change with time, in contrast to conventional methods (e.g., the Theis 194 

method) that lump all observed drawdown together to estimate single representative values 195 

of T and S.  196 
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 197 

 198 
Figure 1. Plot of γc as a function of 1/u (modified from Copty et al., 2011) 199 

 200 

Through sensitivity analysis of the drawdown and its derivative to variations in the 201 

transmissivity, the interpreted transmissivity Ti-t relationship is mapped into a Ti-r* 202 

relationship, where r* is an radial distance computed as (Copty et al., 2011): 203 

S
tTr
65.1
4* = .       (3) 204 

Equation (3) indicates that there is a direct mapping between the values of r* and t. Copty et 205 

al. (2011) applied the CD method to synthetically generated 2D aquifers and found that the 206 

curves Ti(r*) match well to the function Tg(r), defined as the geometric mean of the 207 

transmissivity, computed over a circular area of the aquifer centered around the pumping 208 

well and with radius r. As r increases, Tg(r) approaches the geometric mean of the entire 209 

transmissivity field. Therefore, observation points located at a small distance from the 210 

pumping well (compared to the integral scale of T) would yield the most information about 211 

the spatial variability of T.   212 

 213 

 214 

2.2. Bayesian Approach for the Estimation of the Variance and Integral Scale  215 

Since the estimation of the transmissivity variance and integral scale is generally difficult 216 

and therefore associated with a high level of uncertainty, we define these two parameters as 217 

random functions. Denoting V and I as the variance and integral scale random functions, 218 

respectively, the primary goal of this paper is to estimate their conditional joint probability 219 
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density function (pdf), ( )N
c

IV YYivf 1, , , where NYY 1  denotes the drawdown data from N 220 

available pumping tests. The superscript c denotes conditional. 221 

Using the CD method, the drawdown data from each pumping test is converted to the 222 

geometric mean of the transmissivity as a function of radial distance from the well, Tg(r). 223 

Interpretation of each pumping test is done separately. If data from more than one 224 

observation well are present for the same pumping test, they would yield similar T estimates 225 

as they would be sampling the same aquifer volume. Under such conditions, it is sufficient 226 

to use data from only one observation well. This redundancy in information has also been 227 

noted by other researchers, such as Leven and Dietrich (2006) and Bohling and Butler 228 

(2010), who demonstrated the issue of reciprocity of sequential pumping tests when pumping 229 

and monitoring wells are reversed. Limitations of reciprocity have been also explored 230 

elsewhere (e.g., Delay et al., 2012; Sanchez-Vila et al., 2016). Substituting each pumping 231 

test by the transmissivity functions derived from the available pumping tests, the conditional 232 

joint pdf is rewritten as ( ))()(, ,1,, rTrTivf Ngg
c

IV  , where )()( ,1, rTrT Ngg   denotes the 233 

transmissivity estimates derived from pumping tests 1,…N. In other words, the goal here can 234 

be restated as the estimation of the joint pdf of V and I conditioned on the estimates of the 235 

geometric mean of the T field as a function of radial distance derived from all available 236 

pumping tests. To simplify the notation, the variable r is dropped from the ensuing 237 

derivations. It is however important to note that kgT ,  is not a single value but rather a full 238 

function of r. 239 

Using Bayes’ Theorem on conditional probability (e.g. Tarantola, 1987), the joint pdfs are:  240 

( ) ( ) ( ) ( )
( )NggT

IVNggT
Ngg

c
IVN

c
IV TTf

ivfivTTf
TTivfYYivf

,1,

,,1,
,1,,1,

,,
,,






×
==  (4) 241 

where 242 

( )ivTTf NggT ,,1,   is the likelihood of observing kgT , given that variance and integral scale 243 

values are v and i, respectively. This pdf can be seen as the reverse of the 244 

desired pdf, ( )Ngg
c

IV TTivf ,1,, ,   245 

( )NggT TTf ,1,     is the unconditional pdf of observing Ngg TT ,1,   246 
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( )ivf IV ,,    is the prior joint pdf of observing the variance and integral scale values 247 

v and i, respectively. 248 

The pdf in the denominator of (4) is denoted as ω, and can be expressed from the definitions 249 

of the marginal and conditional probabilities (Tarantola, 1987) as:  250 

( ) ( ) ( )∫ ×==
IV

IVNggTNggT didvivfivTTfTTf
,

,,1,,1, ,,ω   (5) 251 

In words, the pdf of Ngg TT ,1,   is equal to the probability of observing Ngg TT ,1,   given that 252 

V=v and I=i, integrated over all possible values of V and I; ω is a normalizing parameter that 253 

guarantees that (4) is a proper pdf; that is: ( ) 1,
,

,1,, =∫
IV

Ngg
c

IV didvTTivf   254 

If the separation distances between the different pumping tests is large such that the cones 255 

of depression do not significantly overlap (consequently, there is little redundancy in the 256 

data), then the pumping tests can be treated as independent (i.e., they sample different 257 

volumes of the aquifer). The likelihood function ( )ivTTf NggT ,,1,   can be re-written as a 258 

product of the individual pdfs: 259 

( ) ( ) ( ) ( )ivfivTfivTfYYivf IVNgTgTN
c

IV ,,...,1, ,,1,1, ω
=   (6) 260 

where  261 

( ) ( ) ( )∫=
IV

IVNgTgT didvivfivTfivTf
,

,,1, ,,...,ω    (7) 262 

Equation (6) states that the pdf of V and I conditional on the available pumping test data can 263 

be expressed in terms of products of N+1 pdfs. The first one, ( )ivf IV ,, , is the prior joint pdf 264 

of V and I, which reflects the level of knowledge of the site prior to conducting the pumping 265 

tests. Such information can be derived from previously conducted geologic or geophysical 266 

studies, or adopted from other sites with similar characteristics. In the absence of 267 

information, ( )ivf IV ,, , can be taken as some uniform (uninformative) distribution that 268 

includes all possible values, reflecting the lack of knowledge of the site. 269 

The remaining N pdfs are ( ) NkivTf kgT ,1,, = ; i.e., the individual likelihood functions of 270 

observing Tg,k given that the aquifer variance and integral scale are v and i, respectively, in 271 

pumping test k. As it will be described in the following subsection, the likelihood functions 272 

can be readily computed without the need for any inverse modeling by generating multiple 273 

realizations of the transmissivity field with different values of V and I, computing the 274 
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resultant pdf of the geometric mean of the generated transmissivity fields and then evaluating 275 

the likelihood of Tg,k. Hence, it can be seen that the desired pdf, ( )N
c

IV YYivf 1, ,  depends on 276 

both prior information about the site, ( )ivf IV ,, , and the information derived from the 277 

pumping test, ( ) NkivTf kgT ,1,, = . 278 

 279 

Finally, the marginal pdfs of V and I are computed as: 280 

( ) ( )diYYivfYYvf
I

N
c

IVN
c

V ∫=  1,1 , ,     (8) 281 

( ) ( )dvYYivfYYif
V

N
c

IVN
c

I ∫=  1,1 , .     (9) 282 

The expected values of the variance and integral scale can be computed from the integral of 283 

the conditional joint pdf of V and I, ( )N
c

IV YYivf 1, , : 284 

[ ] ( ) didvYYivifIE
IV

N
c

IV∫=
,

1, ,  ,     (10) 285 

[ ] ( ) didvYYivvfVE
IV

N
c

IV∫=
,

1, ,  .     (11) 286 

 287 

2.3. Estimation of the likelihood function ( )ivTTf NggT ,,1,   288 

This section describes the method used to estimate the likelihood function ( )ivTTf NggT ,,1, 289 

. It is assumed that lnT is a multivariate Gaussian random spatial function with exponential 290 

semi-variogram. Other semi-variogram functions could also be considered. Multiple 291 

realizations (n=1000) of the natural logarithm of the transmissivity were randomly generated 292 

for various V and I values using the Turning band method (Mantoglou and Wilson, 1982). 293 

The geometric mean of the transmissivity over a circular area with radius r located at the 294 

center of the generated domain was computed as: 295 





= ∫ =

r

rg dATrT
0

)ln(exp)(      (12) 296 

Figure 2 displays Tg(r) for randomly selected transmissivity fields with variance V=1. The 297 

radial distance in the figure is normalized by the integral scale, I, while the ensemble 298 

geometric mean, )(, ∞→= rTT gog  was used to normalize the vertical axis. It can be seen 299 
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that the variability of Tg(r) decreases as r increases. For radial distances larger than about 300 

20I, Tg(r) approached the ensemble geometric mean for all of the generated transmissivity 301 

fields.  302 

 303 

 304 
Figure 2. Tg(r) as a function of radial distance for randomly selected transmissivity fields 305 

with V=1. Tg(r) is normalized by the ensemble mean of T used in data generation. The 306 

distance r is normalized by the integral scale, I. 307 

 308 

Figure 3 shows the expected value and upper/lower deciles of Tg(r) for V=1, 2 and 4.  The 309 

expected value was computed for each distance r as the arithmetic average of the 1000 310 

realizations. Similar curves for other values of the variance could be developed readily. 311 

Analysis of the generated realizations shows that 1000 simulations were sufficient (with 312 

error less than 1%). Figure 3 shows that for r=0 the expected value is simply the arithmetic 313 

mean of the transmissivity at the well. For r/I > 20, Tg(r) of each realization approaches the 314 

ensemble geometric mean and hence, the expected value over all realizations would also 315 

approach the ensemble geometric mean. The semi-variogram model selected influences the 316 

rate of change with distance, but not the end points. 317 

Although Figure 3 depicts only the average and upper/lower deciles, it is evident that for a 318 

particular value of V and r/I, there is a range of possible values of Tg(r). This range increases 319 

with the increase in the variance value, and decreases as r/I increases. This figure also shows 320 

overlap among the different set of curves; e.g., for a given distance, the possible range of 321 

values of Tg obtained with variance V=2 is fully comprised within the range spanned by V=4. 322 
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This overlap has an influence on the Bayesian estimation, as discussed in detail is section 323 

3.2.  324 

 325 
Figure 3. Expected value (solid line) and upper/lower deciles (dashed lines) for V=1, 2 and 326 

4. The red, black and blue lines correspond to V=1, 2, and 4, respectively. Tg(r) is normalized 327 

by the geometric mean of the transmissivity, Tgo used in data generation. 328 

 329 

Based on the information shown in Figure 3, it is possible to construct a distribution of all 330 

possible Tg(r) values corresponding for each V and r/I pairs. Figure 4 shows the pdfs of Tg(r) 331 

at 3 different distances: r/I=1, 5 and 10, and for V=1. As distance increases, the statistical 332 

distribution becomes narrower and less skewed. It is important to note that these pdf’s are 333 

computed only once and can be used in other problems provided the semi-variogram model 334 

is kept.  335 

Figure 4 also shows a sample calculation of the likelihood function for a Tg(r) obtained from 336 

a given pumping test. Starting from the Tg(r) values derived from the pumping test, one can 337 

calculate the pdf corresponding for each V and I pairs. Because the pdf’s depicted in Figure 338 

4 are for particular values of V and I, this calculation has to be repeated for all possible V 339 

and I pairs as defined by their prior joint distribution, ( )ivf IV ,, .  340 

According to the Bayesian formulation (Equation 4), the desired joint conditional pdf of V 341 

and I is function of the product of the likelihood function and the prior distribution. If for a 342 
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given pair (v,i), the product of ( )ivf IV ,, , and ( )ivTTf NggT ,,1,   is small, the probability of 343 

the transmissivity field having these v and i values would also be small. On the other hand, 344 

if this product is large, this would mean that this (v, i) pair is more likely.  345 

 346 

 347 
Figure 4: pdfs of Tg(r) at r/I=1, 5 and 10 and for V=1. The red arrow represents the likelihood 348 

function for an example T value derived from a particular pumping test 349 

 350 

The above discussion illustrates the benefits of formulating the parameter estimation within 351 

a Bayesian framework. First, it incorporates the information inferred from the pumping test 352 

data, as well as any prior information about the site. Second, the Bayesian formulation 353 

simplifies the calculation by expressing the desired conditional pdf, ( )Ngg
c

IV TTivf ,1,, ,   in 354 

terms of its reciprocal, ( )ivTTf NggT ,,1,   (Eq. 4). Whereas the former can viewed as a form 355 

of the inverse problem and its evaluation is not straight forward, ( )ivTTf NggT ,,1,   can be 356 

readily determined from the randomly generated transmissivity fields corresponding to the 357 

v and i values as presented above without the need for any inverse modeling. Third, the 358 

Bayesian approach provides an estimate of the entire pdf based on prior information and the 359 

pumping test data and, as such, provides a measure of the uncertainty of the estimates.  360 

In summary, we list below the main steps for the estimation of the conditional joint pdf of V 361 

and I, ( )Ngg
c

IV TTivf ,1,, ,  : 362 

1. Given N pumping tests, the geometric transmissivity as a function of radial distance 363 

)()( ,1, rTrT Ngg   is estimated using the CD method. Each pumping test is analyzed 364 

separately. 365 

2. The prior joint pdf of V and I, ( )ivf IV ,, , is defined based on prior information about the 366 

site. 367 
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3. For the available pumping tests, the likelihood function ( )ivTTf NggT ,,1,   is determined 368 

from Figures 3 and 4. By assuming the pumping tests are sufficiently far and, therefore, 369 

can be treated as independent, the likelihood function is expressed as a product of the 370 

likelihood functions of the individual pumping tests (Eq. 6). It is important to note that 371 

these figures do not require the simulation of the groundwater flow equation; they were 372 

developed by generated multiple realizations of the transmissivity field and averaging 373 

the T as a function of radial distance. The calculation of the likelihood function is 374 

repeated for all possible v and i pairs as defined by their prior distribution (step 2). 375 

4. The normalizing parameter, ω, is calculated from Eq. (5) or Eq. (7) if the pumping tests 376 

treated as independent. 377 

5. The desired conditional pdf is finally computed according to Eq. (4) or Eq. (6). The 378 

marginal distributions of V and I are determined from Eq (8) and Eq. (9), respectively.  379 

 380 

3. Application 381 

3.1. Data Generation 382 

To demonstrate the above parameter estimation procedure, the procedure was tested using 383 

1000 synthetic pumping tests conducted in confined heterogeneous aquifers. The 384 

heterogeneous transmissivity fields were generated using the turning bands method. It was 385 

assumed that the natural log transform of the transmissivity is a multivariate Gaussian 386 

random spatial function with zero mean (Tg=1), an exponential semi-variogram, with 387 

variance, V=1, and integral scale, I= 8 length units (lu). Storativity was assumed to be 388 

uniform, as field data usually indicate that the spatial variation in storativity is less than that 389 

of the transmissivity. The storativity value used in all simulations was 0.0001; which is a 390 

typical value for a confined aquifers (Domenico and Schwartz, 1997).  391 

The flow domain was assumed to be 481 by 481 lu. A fully penetrating pumping well was 392 

placed at the center of the domain. The observation point was assumed to be at a distance of 393 

I/8 from the pumping well. Constant head conditions were prescribed along the outer 394 

boundaries of the domain. The duration of the pumping test was τ=1, while the pumping rate 395 

was fixed at Q=2 (using consistent units for both τ and Q). Pumping tests were terminated 396 

before the drawdown data were affected by boundary effects.  397 
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The pumping tests were simulated using MODFLOW (Harbaugh et al., 2000). A uniform 398 

grid of 1 by 1 lu was used. The drawdown data were analyzed using the CD method yielding 399 

one Tg(r) for each of the 1000 simulated pumping tests. Using the proposed Bayesian 400 

approach, the inferred Tg(r) was then used to estimate the variance and integral scale. To 401 

assess the robustness of the proposed method, a Monte Carlo approach was adopted. First, 402 

each of the Tg(r) curves were used independently to estimate the variance and integral scale 403 

of the T field. This corresponds to the case when only a single pumping test is present (N=1). 404 

The method was then repeated by combining 5 and 10 pumping tests (N =5 and N =10, 405 

respectively) to test the performance of the method when multiple wells are present.  406 

The Bayesian estimation requires the definition of a prior distribution for the parameters of 407 

interest (variance and integral scale). In the present analysis, the prior distribution of the 408 

variance was assumed to be uniform between 0 and 5, UV(0,5). This range encompasses 409 

typical variance values encountered in the field (Gelhar, 1993). The prior pdf of the integral 410 

scale was also assumed to be uniform between 0 and 40 lu, UI(0,40). The uniform 411 

distributions are the least informative distributions in terms of priors, requiring only the 412 

definition of upper limits (5 and 40 lu, respectively). The corresponding joint prior pdf is 413 

fV,I(v,i)=1/5×1/40=0.005. The joint pdf is also uniformly distributed which means that all v 414 

and i pairs falling between the lower and upper limits of V and I respectively have the same 415 

probability of occurring. To assess the sensitivity of the prior distribution on the estimation 416 

of the variance and integral scale, the analysis was also repeated assuming the prior 417 

distributions of the variance and the integral scale are UV(0,3) and UI(0,30), respectively, 418 

which are closer to the parameter values used in data generation.  419 

 420 

3.2. Results 421 

The parameter estimation procedure was repetitively applied to all 1000 pumping tests. 422 

Figure 5 shows a randomly selected example of the conditional joint pdf of the variance and 423 

integral scale obtained with the Bayesian estimation procedure. The true variance and 424 

integral scale used in the data generation are 1 and 8 lu, respectively. The number of available 425 

pumping tests was 5. The conditional pdf joint should be contrasted to the prior 426 

fV,I(v,i)=0.005. This figure shows that conditioning on the pumping test data shifts the pdf 427 

from the diffuse prior towards the true values of the variance and integral scale (v=1, i=8 lu). 428 

The range of the more likely values of the variance and integral scale significantly decreased. 429 

 430 



17 

 431 
Figure 5. Example of the conditional joint pdf of the variance and integral scale based on 432 

data from 5 pumping tests. The prior distributions of the variance and integral scale are 433 

UV(0,5) and UI(0,40) which correspond to a prior pdf fV,I(v,i)=0.005. The true values are 434 

V=1 and I=8 lu. 435 

 436 

The marginal distributions of the integral scale and variance for 3 randomly selected cases 437 

are shown in Figure 6. Each of these conditional pdfs were computed assuming 5 pumping 438 

tests were available. The mean of the marginal pdfs of the integral scale for the three 439 

randomly selected cases were 5.8, 9.2 and 17 lu. The mean of the marginal pdfs of the 440 

variance on the other hand were 2.4, 1.8 and 0.86. For comparison, the prior pdfs of V and I 441 

are also shown in this figure. The corresponding means of the prior pdfs of the integral scale 442 

and variance were 20 lu and 2.5, respectively. These results show that the conditional 443 

variance and integral scale marginal pdfs are closer to the true values (V=1, I=8 lu) compared 444 

to the initial prior distribution. The conditional marginal pdfs do exhibit a tail that results 445 

from the diffuse prior distribution of V and I, and the overlap of the likelihood functions 446 

(Figures 3 and 4).  447 

 448 

 

Variance 
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 449 
Figure 6. Integral scale and variance marginal pdfs for three randomly selected cases. Each 450 

of these cases assumes 5 pumping tests are available. The prior distributions of the 451 

variance and integral scale are UV(0,5) and UI(0,40). The true values are V=1 and I=8 lu. 452 

 453 

Figure 7 presents the histogram of the conditional expected values of the integral scale (E[I]) 454 

and variance (E[V]), from the 1000 Monte Carlo results. The results are computed using 1, 455 

5 or 10 pumping tests. The average of E[V] and E[I] over all realization for N=1, 5, and 10 456 

are shown in Table 1, For comparison, the “true” values of V and I used in the generation of 457 

the T fields and the expected values of the prior distribution are also included. Figure 7 and 458 

Table 1 demonstrate that the Bayesian updating can be viewed as a weighted average of the 459 

prior pdf and the results of the pumping test.  Conditioning improves the estimation of the 460 

considered variables although, because of the overlap of the different likelihood functions 461 

(Figures 3), the resulting histograms still show some spread. Provided there is no redundancy 462 

in the data, increasing the number of pumping tests causes the estimates of the variance and 463 

integral scale to shift towards the true values. 464 

 465 

 466 
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Figure 7. Histograms of E[V] and E[I] based on the Monte Carlo analysis, assuming 1, 5 or 467 

10 pumping tests are available. The prior distributions are UV(0,5) and UI(0,40), implying 468 

expected values of 2.5 and 20 lu, respectively. The true values are V=1 and I=8 lu. 469 

 470 

Table 1: Average of E[V] and E[I] for all simulations, assuming N=1, 5 or 10 pumping tests 471 

are available and for different prior distributions of the variance and integral scale. For 472 

comparison, the true values used in the generation of the transmissivity field are also shown  473 

Prior distributions Number of 

Pumping 

Tests 

Average of 

E[V] 

Average of 

E[I], lu 

 

V: Uniform between 0 and 5 

I: Uniform between 0 and 40 lu 

0 2.5 20 

1 1.96 16.7 

5 1.47 13.9 

10 1.36 12.4 

 

V: Uniform between 0 and 3 

I: Uniform between 0 and 30 lu 

 

0 1.5 15 

1 1.36 13.8 

5 1.21 12.5 

10 1.17 11.5 

“True” Values of I and V 1 8 

Note: The average values corresponding to N=0 are the values of the prior distributions 474 

before conditioning on the pumping well data 475 

 476 

To assess the impact of the prior V and I distributions, the parameter estimation procedure 477 

was repeated with the same pumping tests, but now assuming that the initial distributions of 478 

the variance and integral scales are uniformly distributed between 0 and 3 and between 0 479 

and 30 lu, respectively. Figure 8 shows the histograms of the E[V] and E[I] for different 480 

number of pumping tests. The corresponding average of E[V] and E[I] for all simulations are 481 

given in Table 1. With increase in the number of pumping tests, E[V] and E[I] move from 482 

the expected values of the prior distributions, Ep[V] =1.5 and Ep[I]=15 lu, towards the true 483 

parameter values, V=1 and I=8 lu. Compared to Figure 7, the impact of the number of tests 484 

on the estimation is less significant (in particular for E[V]), because the prior estimates were 485 
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closer to the true values. This demonstrates the benefits of using accurate prior distributions 486 

in Bayesian estimation procedures provided such information is available.   487 

 488 

 489 
Figure 8. Histograms of E[V] and E[I], assuming 1, 5 or 10 pumping tests are available. 490 

The prior distributions are UV(0,3) and UI(0,30), implying expected values of 1.5 and 15 lu, 491 

respectively. The true values are V=1 and I=8 lu. 492 

 493 

4. Summary and Conclusions 494 

Modeling of the spatial variability of transmissivity is essential for the accurate simulation 495 

of groundwater flow and contaminant transport. The spatial variability of T is commonly 496 

defined in terms of a semi-variogram or covariance function that is expressed in terms of 497 

two statistical parameters: the variance, V, and integral scale, I. It is therefore important to 498 

develop simple techniques for the estimation of these two statistical parameters. Despite the 499 

development in recent years of novel data acquisition techniques, the analysis of drawdown 500 

data from pumping tests remain the most commonly used technique for the identification of 501 

subsurface flow parameters. Traditionally, the interpretation of pumping tests generally yield 502 

single representative (apparent) estimates of the flow parameters. Here we explore whether 503 

pumping test data can be used to infer the variance and integral scale of the transmissivity, 504 

two statistical parameters that describe the spatial variability of the underlying transmissivity 505 

field. Estimates of the variance and integral scale can be employed in the analysis of flow 506 

and contaminant transport problems and their associated uncertainty, either directly using 507 

various analytical expressions found in the literature that relate flow and transport attributes 508 
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to the underlying aquifer heterogeneity, or numerically through the generation of multiple 509 

realizations of the transmissivity field. 510 

The starting point of the present study is the Continuous Derivation method (Copty et al., 511 

2011), which uses the drawdown and its time derivative to estimate a function that was 512 

shown to be close to the geometric mean of the transmissivity field defined over an 513 

increasing radial distance from the pumping well, Tg(r). Analysis of Tg(r) indicated that the 514 

early part of the curve is sensitive to the variance of the T field while the rate at which it 515 

approaches the geometric mean of T in the full domain could be related to the integral scale. 516 

This provided the basis for attempting to use Tg(r) for estimating V and I. 517 

The estimation of V and I was formulated using a Bayesian approach which expresses the 518 

conditional pdf of V and I as a weighted function of the prior pdf and the likelihood function 519 

that is itself dependent on the pumping test data. An important advantage of this approach is 520 

that the likelihood function is readily computed from multiple realizations of the 521 

transmissivity without the need to solve potentially complex inverse problems. Another 522 

feature of the Bayesian approach is that it provides a measure of the uncertainty of the 523 

estimated statistical parameters. 524 

The Bayesian estimation procedure was applied to a number of synthetic pumping tests. The 525 

analysis assumed that the natural log transform of the transmissivity distribution is a 526 

multivariate Gaussian random spatial function with an exponential variogram. The variance 527 

and integral scale were assumed to have a uniform joint prior distribution. The diffuse prior 528 

distributions considered in this application and the non-uniqueness of the likelihood function 529 

means that the results of the estimation procedure can be associated with a significant level 530 

of uncertainty, highlighting the challenges of the parameter estimation problem. Single as 531 

well as multiple pumping tests (N=5 and N=10) were assumed to be available. In the case 532 

when multiple pumping tests were available, it was further assumed that they are located far 533 

from each other such they sample different portions of the aquifer.   534 

The significance of the Bayesian estimation procedure becomes apparent when the 535 

conditional distribution of V and I is compared to the prior pdf of V and I which represents 536 

the level of information available prior to conducting the pumping tests. It is shown that 537 

improved estimates of V and I are obtained as the number of available pumping tests 538 

increases or when more accurate prior distributions are available. The results of this 539 

numerical example show that as little as 5 pumping tests may be sufficient to yield reliable 540 

estimates of the statistical parameters of the transmissivity field.  541 
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Overall, the proposed interpretation procedure can be viewed as an extension of traditional 542 

pumping test interpretation procedures, such as the Theis method, that besides best-fit 543 

estimates of the storativity and transmissivity, can potentially also provide estimates of the 544 

variance and integral scale of the transmissivity field.   545 

 546 
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