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Abstract 

Facies delineation is defined as the separation of geological units with distinct intrinsic 

characteristics (grain size, hydraulic conductivity, mineralogical composition). A major 

challenge in this area stems from the fact that only a few scattered pieces of 

hydrogeological information are available to delineate geological facies. Several 

methods to delineate facies are available in the literature, ranging from those based only 

on existing hard data, to those including secondary data or external knowledge about 

sedimentological patterns. This paper describes a methodology to use kernel regression 

methods as an effective tool for facies delineation. The method uses both the spatial and 

the actual sampled values to produce, for each individual hard data point, a locally 

adaptive steering kernel function, self-adjusting the principal directions of the local 

anisotropic kernels to the direction of highest local spatial correlation. The method is 

shown to outperform the nearest neighbor classification method in a number of 

synthetic aquifers whenever the available number of hard data is small and randomly 

distributed in space. In the case of exhaustive sampling, the steering kernel regression 

method converges to the true solution. Simulations ran in a suite of synthetic examples 

are used to explore the selection of kernel parameters in typical field settings. It is 

shown that, in practice, a rule of thumb can be used to obtain suboptimal results. The 

performance of the method is demonstrated to significantly improve when external 

information regarding facies proportions is incorporated. Remarkably, the method 

allows for a reasonable reconstruction of the facies connectivity patterns, shown in 

terms of breakthrough curves performance. 
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1. Introduction 

Image reconstruction has a long history in a number of disciplines such as satellite 

image mapping, shape recognition in robotics, face recognition, and license plate 

reading, among other uses [Bughin et al. 2008, Daoudi et al. 1999, Yang & Huang 1994, 

Lin & Chen 2007]. The topic can be loosely subdivided into two main groups: (a) The 

reconstruction of incomplete images where some of the pixels have no information; and 

(b) The reconstruction of noisy images, where some of the pixels display wrong 

information and the main problem is detecting and reclassifying the misclassified 

pixels.  

A good reconstruction work relies heavily on the presence of data and on an efficient 

reconstruction algorithm that can either complete information gaps, or else filter noisy 

signals. A particular case of reconstruction appears in subsurface hydrology, where the 

information relies on very few points (well logs), so that the initial available picture for 

reconstruction is mostly a black signal (meaning no information) with some sparse data 

scattered throughout the medium. Reconstruction is, thus, a really difficult and error 

prone task.  

Many methods for the interpolation of scattered data exist [Franke, 1982] and some of 

them have been used for geologic facies reconstruction [i.e., Ritzi et al., 1994, 

Guadagnini et al., 2004, Tartakovsky and Wohlberg, 2004, Wohlberg et al., 2006, 

Tartakovsky et al., 2007]. In particular, Tartakovsky et al. [2007] compared the 

fractional error obtained in two synthetic examples using three approaches: indicator 

kriging (IK) [Isaaks & Srivastava, 1990, Ritzi et al., 1994, Guadagnini et al., 2004], 

support vector machines (SVM) [Tartakovsky and Wohlberg 2004, Wohlberg et al., 

2006] and nearest-neighbor classification (NNC) [Dixon, 2002]. Different sampling 

densities, ranging from 0.28% to 3.06%, and random sampling data generated following 

a 2D Poisson random process were used for comparison. Here sampling density refers 

to the proportion of pixels where hard data is available (pixels that are univocally 

classified). Their analysis indicated that NNC outperformed IK, in terms of proportion 

of correctly classified pixels, in both examples, and that SVM slightly outperformed 

NNC in one of the examples. 

There exist a number of reconstruction methods available in different disciplines that to 

our knowledge have never been used in geological facies reconstruction. A potential 

reason for this is that these methods were devised for the presence of massive data sets 
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that are never available in hydrogeology. One family of methods is based on kernel 

regression functions, widely used in signal theory for solving different problems such as 

image denoising, upscaling, interpolation, fusion, etc. Such methods have proved to be 

efficient for problems such as restoration and enhancement of noisy and/or incomplete 

sampled images. Even though regression methods have been used for reconstruction of 

images from extensive data sets, in principle, there is no reason not to use them when 

information is sparse. As an example, Takeda et al. [2007] tested a kernel regression 

method on an image reconstruction case in which only 15% of the pixels were 

informed, obtaining a very good reconstruction of a 2D image.  

Making an analogy between image reconstruction (from irregularly sampled data) and 

facies delineation (from scattered sampling points), we investigate the performance of a 

Steering Kernel Regression (SKR) method for the latter problem. The aim is to describe 

a methodology to use kernel regression as an effective tool for facies delineation, an 

application involving far less information available for image delineation from that for 

what it was originally developed (reconstruction). In doing this, we investigate the 

optimal tuning parameters to be used in the reconstruction of geological facies and their 

connectivity patterns.  

This paper is structured as follows; Section 2 briefly describes the fundamental concepts 

of facies reconstruction. Section 3 presents the details of the data-adapted kernel 

regression method. We test this method with respect to the NNC method in Section 4 by 

means of four synthetic images, here including the two figures profusely investigated by 

Tartakovsky et al. [2007] to allow for performance comparisons.  

 

2. The concept of facies reconstruction  

The term facies is used in geology to differentiate among geological units on the basis 

of interpretive or descriptive characteristics, such as sedimentological conditions of 

formation, mineralogical composition, presence of fossils (biofacies), structures, grain 

size, etc. [Tarbuck et al., 2002]. In this work, we consider that each facies is a clear 

distinctive geology unit, understood in a descriptive sense. Keeping this in mind, facies 

reconstruction is defined as the process of assigning each unsampled point (eventually 

also the sampled ones if misclassification errors are admitted) to one facies. Formally, 
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for any given facies Fk, the reconstruction problem can be addressed using an indicator 

function defined as  
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where the indicator variable I(x,Fk) is equal to 1 when a particular point in the domain, 

x, can be classified as belonging to facies Fk and zero otherwise. In this work we 

assume that the available data from the sampling points are clearly distinctive in order 

to be unmistakably classified as indicated in (1) without interpretation errors. From now 

on, we consider that only two facies are used for geological mapping. However, the 

method can be easily extended to any finite number of facies by direct superposition. 

Several methods have been proposed in the literature to estimate the spatial distribution 

of the indicator variable I(x,F1). Here we compile only three of such methods. The first 

one is indicator kriging (IK) [Journel, 1983], a method that provides a least-squares 

estimate of the probability that x belongs to F1 conditioned to nearby data. Once a 

threshold value is given, a distinction between categories (facies) can be done. The 

method relies on the theory of random functions to model the uncertainty of not having 

data at unknown locations. It accounts for the inherent spatial correlation of data but 

typically fails to properly estimate curvilinear geological bodies. Multiple point 

geostatistics [e.g., Strebelle, 2000] can overcome most of these problems by largely 

relying on an empirical multivariate distribution inferred from training images, i.e., 

under the assumption that significant information about the spatial distribution of facies 

is known from external sources (outcrops, modeling of sedimentological processes,…); 

these information is directly transferred to the final images.  

Alternatively, Support Vector Machine (SVM) methods are a set of popular tools for 

data mining tasks such as classification, regression, and novelty detection [Vapnik, 

1963; Bennett and Campbell, 2000]. SVM takes a training data, i.e., a set of n data 

points Ji= J(xi,F1)∈{-1,1}, i=1,..,n, and separates them into two classes by delineating 

the hyperplane that has the largest distance to the nearest training data point of any 

class.  

Last, the nearest-neighbor classification (NNC) simply classifies each point in the 

domain by finding the nearest (not necessarily in the Euclidean sense) training point, 

assigning to the unsampled location the class corresponding to that training point.  
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A comparison of the three methods presented is provided in a series of papers by 

Tartakovsky and Wholberg [2004], Wholberg et al. [2006], and Tartakovsky et al. 

[2007]. Surprisingly, the NNC method outperformed the more sophisticated ones, i.e., 

SVM and IK, indicating the validity of the parsimony principle for this problem. Yet, 

the comparison between methods in such works was done only in terms of the number 

of misclassified points without considering other performance metrics, such as 

connectivity features inherent in geological facies that can strongly impact contaminant 

transport simulations (e.g., Fernàndez-Garcia et al., 2010). We consider this issue as 

non-ideal and in the next section we seek for a method that can actually represent the 

presence of connected geological bodies with elongated and curvilinear shapes.  

 

3. Kernel regression approaches for facies classification 

Kernel regression methods have been developed in statistics to estimate the conditional 

expectation of a random variable without assumptions about its probability distribution 

function. These methods are well documented and summarized in the literature [e.g., 

Hardle, 1990; Simonoff, 1996; Li et al., 2007]. Suppose that we ignore the fact that the 

target classification output is a binary function I(x,F1). Instead, we consider that it is a 

continuous function that depends on the location x and a number of (yet unknown) 

parameters b=[b0,b1,…,bN]T. The regression model proposed here for facies 

classification assumes that the measured data Ii=I(xi,F1), i=1,…,n, can be expressed as 

iii mI ε+= );( bx ,      ni ,..,1= ,    (2) 

where m(xi,b) is the regression function to be determined, and εi are independent and 

identically distributed zero mean noise values. Kernel regression is a form of regression 

analysis in which the function m is exclusively dictated by the data, and not prespecified 

a priori (no model assumed). At each point x the conditional expected value of the 

dependent (indicator) variable can be estimated, i.e., m(x,b)=E[I(x,F1)]. The interest of 

kernel regression to facies reconstruction resides on the fact that the conditional 

expected value of the indicator variable is exactly the probability that the given facies 

F1 prevails at that location, since 

{ } { } { } { }1 1 1 1( , ) 1 Prob 0 Prob ProbE I F F F F= ⋅ ∈ + ⋅ ∉ = ∈x x x x    (3) 
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By definition, the probability of occurrence of a given facies is a continuous variable 

ranging between 0 and 1. In order to separate the data into classes or facies we must 

then establish a cut-off in the estimate of the indicator variable. This is similar to the 

facies reconstruction problem posed by the geostatistical indicator kriging approach. In 

this case, Ritzi et al. [1994] has suggested to define the boundary between facies by the 

isoline Prob{x∈Fk}=pk, where pk is estimated as either the global mean of the indicator 

values or the empirical relative volumetric fraction of the facies Fk. We propose here to 

use the same approach for classifying facies with regression methods. The benefits of 

such approach will be explored in section 4.  

Two kernel regression methods, namely the classical (CKR) and the adaptive steering 

(SKR) are presented next, and later their performance is compared in a number of 

synthetic cases.  

  

3.1. Classical kernel regression (CKR) 

Let us consider a local Taylor expansion of the mean response m(x,b) of the indicator 

values around the estimation location x0, 

2 2
0 0 1 2 3 4 5 6 7( ; ) ( ; , ) ' ' ' ' ' ' ' ' ' ...m m b b x b y b z b x b x y b y b x z≈ = + + + + + + +x b x b x   (4) 

where x’=x-x0 is the distance between any point and that being estimated, b0 is the 

mean response at x0, [b1,b2,b3]T is the gradient of the mean response at x0, and so on. 

The order of the polynomial is in principle arbitrary. Nonparametric regression 

generalizes the standard regression approach by locally estimating b at a given location 

x0 using only nearby data. This is done by weighting data located far away from the 

estimation location with a kernel function KH defined as 

( )xH
H

x 1

)det(
1)( −= KKH          (5) 

where H is a matrix that controls the degree of smoothing and is user dependent. The 

kernel associates a very low weight to points located far from the estimation point.  

Section 4 will explore the choice of kernel parameters for optimal facies reconstruction.  

The kernel function K is a continuous, bounded, and symmetric real function centered at 

zero that integrates to one and typically decays with distance. The choice of the kernel is 

known to not affect significantly the final solution and therefore a standard Gaussian 



7 
 

distribution is typically used for mathematical convenience. In n dimensions this is 

written as 

                                            
( ) /2

1 1( ) exp
22

T
nK

p
 =   

x x x        (6)   

For any given estimation location x0, the principle of least squares expresses that one 

should choose as estimates of b those values that minimize the weighted sum of squared 

residuals, S(b), the residual being the difference between data values and model 

predictions,  

        (7) 

Let us express equation (2) in matrix form,  

eXbI +=         (8) 

where I=[I1,..,In]T, e=[ ε1, …,εn]T, and  is a matrix composed of n rows and a number 

of columns that is associated with the degree of the polynomial chosen for b (i.e., in 3-D 

would be 4 for order 1, 10 for order 2,…) 

' ' ' ' 2 ' ' ' 2 ' '
1 1 1 1 1 1 1 1 1

' ' ' ' 2 ' ' ' 2 ' '

1 ...
... ... ... ... ...
1 ...n n n n n n n n n

x y z x x y y x z

x y z x x y y x z

 
 =  
  

X        (9) 

Then, the optimization problem is written as 

           (10) 

where W is a diagonal weight matrix given by  

{ })(K),...,(Kdiag 0nH01H xxxxW −−=            (11) 

Setting ∂S(b)/∂bj=0 to each parameter bj we obtain the following solution 

( ) WIXWXXb TT 1ˆ −
=           (12) 

This solution is formally the same to that of standard regression but the matrices W and 

X depend now on the estimation location x0. Knowing the optimal estimate of b, the 

probability that x belongs to F1 can be estimated by 
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  { } { }1 1 0 1 0 0̂Prob ( , ) ( , , )F E I F m F b∈ = = =x x x x x        (13) 

Let us define Weq by 

( ) WXWXXeW TTT
eq

1
1

−
=         (14) 

where e1 is a column vector with first element equal to one, and the rest equal to zero. 

Then, the Classical Kernel Regression (CKR) algorithm can be seen as a local weighted 

averaging of the data in which the probability that x belongs to F1 is determined by the 

following linear interpolation of indicator values   

0̂
T
eqb = ⋅W I          (15) 

Hence, Weq is a vector containing the equivalent weights of the indicator data values. 

The forms of these equivalent weights are exclusively dictated by the polynomial order 

chosen in (4). 

 

3.2. Steering kernel regression (SKR) 

The SKR method comes as a direct extension of the CKR algorithm. Since the latter is 

nothing but a weighted average of indicator data values, the final regression estimate of 

Prob{x∈F1} only depends on the geometric configuration of the data, and therefore 

ignores the inherent correlations between data positions and their values. Takeda et al. 

[2007] developed a SKR algorithm to include key structural features into the estimated 

fields.  

The key idea behind the SKR algorithm is to modify the size and orientation of the 

regression kernel to assign more weight along the direction of highest local spatial 

correlation. The advantage of doing this to classify facies is the following: consider a 

point x0∈F1 located close to a facies boundary; the conventional CKR algorithm 

(symmetric spherical kernel) will estimate the probability that x0 belongs to F1 by 

equally considering both nearby samples of the same facies F1 and samples of other 

facies located beyond the boundaries. The SKR method is designed to adapt the 

regression kernel to the boundary isosurface so as to assign more weight to those 

samples belonging to the same facies. This way, the denoising is affected most strongly 

along the boundaries, rather than across them, resulting in a strong preservation of 

details in the final output.  
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The algorithm works by reorienting the smoothing matrix in the direction of the 

gradients of the mean response m(x,b) through a redefinition of the kernel matrix 

                                            
2/1−= i

steer
i hCH                                         (16) 

                                 ( ))ˆ,()ˆ,( bxbxC j
T

ji mm ∇⋅∇≈ ,          ij w∈x        (17) 

where the overbar stands for averaging over the mean response adjacent to xi, wi is the 

window search around xi, and h is a global smoothing parameter. 

In contrast to the CKR algorithm, the smoothing matrix Hsteer at each individual point xi 

depends now on the solution of the regression function m(x,F1). This makes the SKR 

method to be nonlinear in nature. Its application must be therefore iterative, starting 

with a first initial estimate of m(x,F1) computed, for instance, with the CKR method. 

This estimate is used to measure the dominant orientation of the local gradients, then 

used to sequentially steer the local kernel function through (17), resulting in elongated, 

ellipsoidal contours spread along the indicator isosurface (or isocurve in 2D).  

We must state that while the method is applicable to 3D reconstruction problems, here 

we present the details only for the 2D problems. The main reason is to be able to use the 

same synthetic examples available in the literature for geologic facies reconstruction 

using IK, SVM or NNC methods. Under these conditions, and from (16), the new form 

of the regression kernel is 

( ) ( )
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When estimating the covariance matrix Ci through (17), the resulting matrix can be 

rank deficient and unstable. To overcome this problem, a multiscale technique for 

estimating local gradients [Takeda et al., 2007] can be adopted. Let us consider the 

following matrix Gi formed by a collection of p estimated gradient vectors at the 

neighborhood of the sampled location xi 

  
















∇
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=
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...
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bx
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m

m
,     ,...,pjwij 1    , =∈x         (19) 

The singular value decomposition of Gi factorizes this matrix in the following form 
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iiii VSUG =            (20) 

where the diagonal entries Sjj of Si (singular values) represent the energy in the 

dominant directions (singular vectors) of the local gradient field. These dominant 

directions are given by the column vectors of the matrix Vi. In particular, the second 

column of Vi, [V12, V22]T, determines the direction of smallest energy and represents 

the dominant orientation angle of Ci (direction with highest local spatial correlation) by  

    







=

22

12arctan
V
V

iθ          (21) 

The actual shape of the regression kernel is then calculated from the energy associated 

with the dominant gradient directions, 
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+

=
S
SE         (22) 

where λ1 is a regularization parameter that dampens the effect of noise and restricts the 

ratio from becoming degenerate. Knowing these parameters, the covariance matrix can 

be calculated by the combination of a scaling parameter γi, a rotation matrix Ri, and an 

elongation matrix Ei by means of  

     T
iiiii RERC γ=         (23) 

The different terms in (23) are defined as 
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=
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SS
i

22211 ,     (26) 

where λ2 is another regularization parameter aimed at dampening the effect of noise and 

keeping the scaling parameter from becoming zero, α is a structure sensitive parameter 

satisfying that 0<α<1, and M is the number of samples in the local analysis window wi. 
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3.3. Uncertainty in facies classification 

At this stage, it is important to highlight the following advantage of the SKR method 

compared to deterministic algorithms, e.g., the nearest neighbor classification (NNC). 

Statistical approaches not only provide a map of the spatial distribution of the estimates 

of indicator values (i.e., the probability that a given point belongs to a facies), but also 

the error variance of the estimates of b. If the error terms εi are uncorrelated, and all 

have the same variance σ2, then it can be shown that the estimator (12) is an unbiased 

estimate of b, and that the variance-covariance of the estimation matrix is  

    ( ) 12 −
= WXXC T

b σ         (27) 

Thus, the variance of the estimate of Prob{x∈F1} can be determined by 

    ( ) TT
SKR 1

1
1

22 eWXXe −
= σσ        (28) 

and the error variance can be estimated as  

Nn
Ss
−

=≈
)ˆ(22 bσ       (29) 

where the integer N is the number of estimated parameters. Knowing this, one can 

define an approximate confidence region in which the border between facies is most 

expected to be found. This will be illustrated in the synthetic example presented next.  

  

4. Synthetic Examples 

4.1. Methodology  

Since the NNC has been already demonstrated to outperform SVM and IK approaches 

[Tartakovsky et al., 2007], in this section we only compare the performance of the SKR 

method with that of NNC. The NNC algorithm is provided in the Appendix for 

completeness. Four synthetic geological field settings formed with two distinct facies 

(see Figure 1) were used to test the performance of SKR. Two of these fields, Figures 

1a and 1b, are identical to the ones presented by Tartakovsky et al. [2007]; the 

remaining two were specifically generated for this work. Figure 1c is a curvilinear 

shape, obtained from an abandoned meander in the Ebro river (Spain), potentially 
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indicating the shapes of paleochannels that could be found in the subsurface. Figure 1d 

is just a circle, in order to test the performance of the algorithm for a very simple shape 

that is easily reproduced with any reconstruction algorithm. Each of the figures consists 

of an image data discretized in 60×60 (=3600) pixels. Red and blue pixels correspond to 

facies F1 and F2, respectively. In accordance to previous sections, the following 

indicator function is used for facies reconstruction purposes,  

                                



∈
∈

=
2

1
1 0

1
),(

F
F

FI
x
x

x
               

 (30) 

The objective of the numerical simulations is to reconstruct the facies depicted in each 

individual image from a few measurements. We consider a random data set consisting 

of 10, 20, 30, 50, 80, and 110 measurements, corresponding to a range of 0.28% to 

3.06% of the total pixels investigated. Emphasis is given to the lowest sample densities 

(below 1%), which illustrate the most typical problem encountered in subsurface 

hydrology, i.e., those with scarce information covering a very low portion of the 

simulation domain. The SKR is used with a quadratic polynomial approximation of the 

mean response m(x,F1) in (4) and a Gaussian kernel.  

An analysis of the fractional error of the reconstructed images is used to compare the 

performance of the SKR and NNC methods. For each realization, the fractional error 

was obtained as the ratio of misclassified pixels to the total number of pixels in the 

images. One hundred realizations were created for each sample density, and the 

fractional error reported is the average over the ensemble of realizations. For 

comparison purposes, selected points associated with each sample density were the 

same for the SKR and the NNC methods. It is important to notice that Tartakovsky et al. 

[2007] used only 20 (rather than 100) randomly generated realizations for each sample 

density; for this reason, our calculated fractional error for NNC, although similar, is 

slightly different to theirs.  

The SKR method provides the probability of occurrence of facies F1 at a given location. 

Therefore, the output data is a continuous variable (i.e., m(x,b)∈[0,1]). A cut-off in the 

estimated values is then necessary to classify the data into facies. We explore two 

different strategies to introduce this cut-off. The first strategy considers that no prior 

information on the relative volumetric proportion of facies is known. In this case, the 

boundary between facies is determined by the isoline Prob{x∈F1}=Prob{x∈F2}=0.5, 
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expressing that both facies have the same probability of existence at the facies 

boundaries. We denote this method as SKR(0). When prior information on the relative 

volumetric proportion of facies is known, then one can define the boundary between 

facies by the isoline Prob{x∈F1}=p1 (i.e., Prob{x∈F2}=1- p1), where p1 is estimated 

either by the global mean of the indicator values or the empirical relative volumetric 

fraction of facies F1. The latter method is similar to the facies reconstruction problem 

posed by the geostatistical indicator kriging approach proposed by Ritzi et al. [1994]. 

We will denote this strategy as SKR(%).  

 

4.2. Choosing the kernel parameters  

Five different parameters control the solution of the SKR method: (1) the global 

smoothing parameter h, equation (16); (2) the size of the local orientation analysis 

window w, equation (17); (3) the regularization parameter λ1, equation (22); (4) the 

structure sensitive parameter α, equation (26); and (5) a second regularization parameter 

λ2, equation (26). This last one was directly fixed to 10-7. A sensitivity analysis of the 

lowest fractional error was carried for the remaining four parameters.  

Figure 2 provides a series of contour plots of the lowest fractional error associated with 

the image shown in Figure 1a and only for the case of lowest sample density (10 data 

points). Each contour plot displays the lowest fractional error as a function of two 

parameters. Blue dots correspond to the estimated values used to generate the contour 

plots. In general, the lowest fractional error is mainly controlled by h and α, being the 

output solution quite insensitive to w and λ1. A good quality of facies classification 

reconstruction is typically obtained with h=1 (pixel), w=5 (pixel), λ1=500 (-) and 

α=0.01 (-). This optimum combination of parameter values is explained as follows:  

• The structure sensitivity parameter, α, which must satisfy the condition 0<α<1, 

is devised to increase the steering kernel area in regions where large fluctuations 

exist (high-frequency data); so, large α values produce smooth estimates in high-

frequency data regions. The reconstruction problem in hydrogeology typically 

involves small densities and low-frequency data (scarce data) and thereby this 

correction is somehow uncalled for. Accordingly, the sensitivity analysis yields 

α=0.01, which basically expresses that the scaling factor γi is always close to 1. 
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• The window size, w, defines the search area over which the gradients ∇m used 

to determine the local covariance function Ci at a data point location are 

estimated. Results show that a relatively small region (w=5 pixels) is sufficient 

to properly capture the patterns of Ci, which is most likely due to the use of a 

small sample population and the lack of noise in the data values.  

• The parameter λ1 is a regularization parameter used to avoid numerical 

singularities during the estimation of the principal components of the elongation 

matrix E. Results show that the lowest fractional error decays with increasing 

λ1. Large values are needed here because S11 and S22 in equation (21) are 

relatively large for the field conditions considered. 

• Given that scaling is not required (γi ≈ 1) and that the solution is not much 

sensitive to both w and λ1, the global smoothing parameter h appears as the 

main controlling factor. This parameter determines the area underneath the 

steering kernel so that large h values will increase the influence of distant data 

points to the final estimation. Results show that a small h value close to 1 pixel 

is required in this synthetic example, which implies small steering kernel areas.  

An illustration of the shape of the steering kernel ellipses obtained during the iterative 

solution of the SKR method is shown in Figure 3 for a sample density of 0.83% 

(corresponding to 30 data points over 3600 pixels). Figure 3a shows the reference 

image, whereas the series of Figures (b)-(e) display the reconstruction solution at 

different iterations. Initially, there is no information on the local correlation of data 

values (gradients) and therefore the ellipses are circles of radius close to 1 pixel. Notice 

that circles in this method are uninformative. In subsequent iterations, a better gradient 

estimation is increasingly achieved and circles are reshaped to ellipses elongated in the 

direction of the highest local correlation (smallest gradient). As a result, large weights 

are given to the data values located in the direction of the local highest correlation while 

other data points are practically ignored. Based on this observation, the application of 

the SKR method to facies reconstruction can be seen as a specialized nearest neighbor 

procedure in which the distance metric is not measured by an Euclidian distance but in 

terms of the highest local correlation, changing for each data location.  

The parameter sensitivity analysis presented here considers a given sample density and 

a particular image. To complete the analysis, Figure 4 presents the global smoothing 
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parameter h as a function of sample density and for each reference image. The 

remaining parameters were set to w=5 pixels, λ1=500 and α=0.01. For a given sample 

density, the h value provided is the best estimate obtained manually by trial-and-error to 

minimize the fractional error. Figure 4 shows that, in the lowest sampling density, 

which is the typical scenario in subsurface hydrology, the lowest fractional error is 

always achieved when h=1 for both methods, i.e., SKR(0) and SKR(%). It was also 

observed that, in most cases, the SKR(0) method with no prior information on the 

volumetric proportion of facies yielded larger fractional errors as compared to the 

SKR(%) method. This effect was more significant for the smaller sample densities, the 

typical scenario in real applications.  

 

4.3. Simulation results  

Figure 5 shows the fractional error as a function of sample density for the different 

methods employed. In all cases, the fractional errors associated with both the SKR(0) 

and the SKR(%) methods were smaller than that of the NNC. Interestingly, while the 

performance of the SKR(0) method is only slightly better than that of the NNC method, 

with a relative error difference no larger than 1% in most cases, the introduction of prior 

information into the analysis via the SKR(%) method was capable to significantly 

outperform the other two approaches. This impact was most noticeable in Figure 1c. It 

is important to highlight here that for all the evaluated images, the benefit (in relative 

terms) given by the SKR(%) method was higher for the smaller sampling densities. This 

is an important finding in itself. Under real circumstances, in typical hydrogeology 

problems it is likely that the number of data points will be rather limited, rendering the 

SKR(%) method a valuable instrument to interpret facies delineation with the lowest 

estimation error.  

Let us emphasize the real benefit of using SKR(%) compared to the NNC algorithm. 

Consider the problem of reconstructing the image shown in Figure 1a from only 30 data 

points randomly located. Figure 6 compares the true image (cross symbols represent the 

sampling points) with the output of NNC and 4 iterations of the SKR(%) method. In this 

case, the fractional error associated with the SKR(%) method is only slightly better than 

that of the NNC but still important reconstruction features can be distinguished. NNC 

only depends on data configuration and not on the actual values or their spatial 
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correlation. As such, its reconstructed image (Figure 6b) fails to represent the central 

spatial continuity observed in facies F1, clearly extending from the northern to the 

southern boundaries. Instead, with only four iterations, the SKR(%) is able to correctly 

identify this spatial continuity of data values and properly represent the true connection 

north-south. Figure 3 illustrates the evolution of the local kernel functions associated to 

each data point in the same problem. In these images, the variable represented is the 

direct output data given by the SKR method without applying a classification strategy, 

and the progressive increase in the ratio of the two axes of the ellipse can be observed.  

In addition to the recognition of spatial continuity, the SKR(%) mehod is also capable 

of providing a measure of uncertainty in the delineation of the facies boundary. In 

principle this is not possible for any deterministic approach, such as that of the NNC 

algorithm. Figure 7 presents different maps to evaluate the uncertainty in the estimation 

corresponding to the same example already used previously. Interestingly, there is a 

very good correlation between low variance and high sampling density areas and 

viceversa. From this map, one can also delineate a safe zone for drawing the border 

between facies, plotted as gray areas in Figure 7e, those corresponding to values above 

0.3 times the standard deviation. By visual inspection, a very good agreement between 

the results from the SKR(%) method (Figure 7e) and the original facies boundaries 

visible in Figure 7a, can be appreciated.  

4.4. Impact on transport predictions 

In this paper, we contend that a key aspect to consider during the reconstruction of 

geological facies is the representation of connectivity. Even though the SKR method is 

shown to only slightly outperform the NNC in terms of volumetric fractional errors (see 

Figure 5), results demonstrated that the NNC is often not capable to properly describe 

the spatial continuity of the facies body. Solute transport simulations in a Monte Carlo 

framework were further performed to illustrate the impact that this effect can have on 

contaminant transport predictions. To do this, we considered the synthetic field 

presented in Figure 1a as a reference geological setting. The hydraulic conductivity is 

assumed to vary in space. A hydraulic conductivity of K=100 m/day and K=1 m/day 

was respectively assigned to the blue and red facies. Figure 8 shows the setup of the 

simulations. A non-reactive contaminant source was assumed to be originally located in 

a southern block region of size 5×5 m2 (it is assumed that each pixel has a length of 1 

m). Groundwater is assumed at steady-state and moves from south to north along the 
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main facies direction driven by a hydraulic gradient of 0.001 in the x-direction and 

0.002 in the y-direction. Prescribed heads are fixed at all boundaries according to this 

hydraulic gradient.  

Solute transport was simulated with a random walk code that solves the advection-

dispersion equation [Fernàndez-Garcia et al., 2005; Henri and Fernàndez-Garcia, 2014]. 

Transport parameters were considered constant with a porosity of 0.3, a longitudinal 

dispersivity of 0.1 m, and a transverse dispersivity of 0.01 m. The effect of 

heterogeneity inside each facies was not considered to only focus on the reconstruction 

problem. Contaminant concentrations were observed at a control plane located at y=5 

m. We then compare the transport simulations obtained with the reference hydraulic 

conductivity field with those resulting from the one hundred SKR(%) and NNC 

realizations generated using a sample density of 30 data points.  

The cumulative breakthrough curves are shown in Figure 9 normalized by the total mass 

injected. The ensemble of solutions provided by the SKR(%) and NNC methods is 

represented by the median and the 95% confidence interval (yellow region in this 

figure). Individual realizations are also depicted. Results clearly show that the SKR is 

more robust than the NNC method in terms of transport predictions. Even though the 

median solution provided by both methods is close to the true solution, the confidence 

interval of the SKR method is strikingly smaller than that obtained by the NNC, an 

effect that is more pronounced at late times. This indicates that the probability that 

reality is not properly represented by the SKR method is substantially smaller. 

Remarkably, this also reflects that, in many of the NNC realizations, the contaminant is 

forced to move through inexistent small permeability areas, resulting in artificial tailing 

and an artificial retardation. We also note that in some realizations, the poor south-north 

connection described by the NNC is such that the contaminant is partially exiting the 

system from the east and west boundaries without reaching at the control plane (note 

that some breakthrough curves do not contain all the mass injected). 

 

5. Conclusions 

A non-parametric method, SKR, originally designed for image processing [Takeda et al. 

2007], has been presented and tested for its application as a facies delineation algorithm. 

The performance of the method was compared with the nearest neighbor classification, 
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a method that has proven to be more efficient than others discussed in the literature 

[Tartakovsky et al., 2007]. Four synthetic scenarios were used for the comparison: two 

of them identical to the figures presented by Tartakovsky et al. [2007], and the other two 

figures are new for this work, one inspired on a cartographied river meander, and the 

other being a representation of a simple geometry. For each example different tests were 

studied ranging from very sparse to sparse number of data points available.  

Two variations of the SKR method were tested depending on whether additional 

information about the exact proportion of facies was introduced in the algorithm 

(SKR(%)) or not (SKR(0)). Our results indicate that the SKR(0) method had similar or 

lower fractional errors than those obtained with NNC, except for two cases (Figure 1(c) 

and (d), with a sampling density of 0.28%). The SKR(%) outperformed all methods, 

with improvements up to 5% in terms of reduction in misclassified points. The 

improvement is better in relative terms for the lowest sampling densities. This finding 

leads us to believe that the SKR(%) method would be an useful tool on real cases, when 

scattered and few sampling data points are expected.  

One of the major advantages of the SKR method is the quantification of the uncertainty 

in the delineation of the facies boundaries. In this context, we presented a method to 

stochastically generate variance maps that allows one to identify potential areas where a 

boundary between facies is more likely to exist. An example of application for one of 

the study cases is provided, leading to the delineation of an area over which there is 

most probably a boundary between facies.  
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Appendix: The nearest-neighbor classification (NNC) 

The nearest-neighbor classification (NNC) employed by Tartakovsky et al. [2007] is a 

k-nearest-neighbor classification [Hastie et al., 2001] in which the classification of a 

test point is determined by majority vote amongst the k nearest-neighbor points in the 
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training set, Tartakovsky et al. [2007] considered the case in which k=1, for which the 

classification of each point in the domain is determined by finding the nearest training 

point, and assigning the known class of that point. Given a set of training data points 

Ii=I(xi, Fk), i=1,…,n, the NNC classification for an arbitrary point x in the domain is 

computed as follows: (1) Define j as the index of the training data point, from the 

set{ } 1

N
i i

x
=

, which is closest to query point x ; that is, 
2

argmini ij x x= − . Usually an 

Euclidean measure is prefer as distance metric, for simplicity, however, other metric can 

be used; (2) Assign the indicator function value of training data point jx  (i.e., ( )jI x ) as 

the indicator function value of query point x . This classification is simple to compute, 

and has no free parameters to estimate (no optimization of the method is possible). 
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Figure 1. Synthetic fields used for facies delineation: a and b are the same figures 

presented by Tartakovsky et al. [2007]. We generated Figure 1 (c) and (d) considering a 

real case scenario (a meander from the Ebro river, Spain), and a simple geometric figure 

(circle). Blue and red colors indicate the two distinct facies. 
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Figure 2. Sensitivity analysis of the parameters needed to reconstruct geological facies 

with the SKR method: the local orientation analysis window ( w ), the regularization for 

the elongation parameter ( λ ), the structure sensitive parameter ( α ) and the global 

smoothing parameter (h). Blue dots indicate the different value choices for the 

calculation of the fractional errors and the red star indicates the value used for our 

calculations, coincidently with the lowest fractional error. 
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Figure 3. Iteration comparison: a) Original figure corresponding to Figure 1a. Random 

sampling points are shown as blue and red squares (example with a sample density of 

30); b) Classical Kernel Regression results. The first, second and third iteration of the 

Steering Kernel is shown in c), d) and e), respectively.  
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Figure 4. Fractional error variation as a function of the smoothing parameter h for the 

four figures analyzed. Figures presented in the same order as shown in Figure 1: a) 

Figure A, b) Figure B, c) Meander, d) Ball. Discontinuous and continuous lines 

represent respectively the fractional error when SKR(0) and SKR(%) are considered. 
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Figure 5. Fractional error comparison: From top to bottom, synthetic fields (a), (b), (c) 

and (d) ordered according to Figure 1. NNC stands for nearest neighbour classification, 

0 for SKR(0) and % for SKR(%). 
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Figure 6. (a) Original figure showing the location of the random samples considered; 

(b) Nearest-neighbor classification; (c) Classic kernel regression h=1. Steering kernel 

regression: (d) iteration 1, (e) iteration 2, (f) iteration 3. Figures d, e and f are the result 

of equation (15) with (18). 
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Figure 7. (a) Original figure, (b) steering kernel iteration 3, (c) steering kernel iteration 

3 after equation (15) with (18), (d) Variance map showing the areas with the highest and 

lowest uncertainty (red and blue zones), (e) standard deviation map, showing in gray the 

area where the border between facies is more likely located. 
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Figure 8. Setup of transport simulations.  
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Figure 9. Cumulative breakthrough curves normalized by the total mass injected 

associated with the geological setting presented in Figure 1a. Comparison of the 

reference solution with the SKR and the NNC reconstructed fields with 30 sample 

locations. Yellow region depicts the 95% confidence interval over 100 realizations.  
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