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The efficiency of artificial surface ponds (SPs) for managed aquifer recharge (MAR) is mostly controlled by
the topmost portion of the soil. The most significant soil property controlling recharge is the infiltration
capacity (Ic), which is highly variable in space. Assessing its spatial distribution in detail is prohibitive in
practice due to high costs, time effort, and limited site accessibility. We present an alternative method for
a quick and low-cost quantitative estimation of the spatial distribution of Ic based on satellite images. The
fact that hydraulic properties of topsoils and color intensities of digital images depend on some common
factors such as moisture content, nature and organization of grains, proportion of iron, and organic and
clay content among others, allow us to infer infiltration capacities from color intensities. The relationship
between these two variables is site specific and requires calibration. A pilot SP site in Catalonia (Spain) is
used as an application example. Two high-resolution digital images of the site are provided at no cost by
the local cartographic institute as well as from a popular Internet-based map server. An initial set of local
infiltration experiments, randomly located, were found to correlate to color intensities of the digital
images. This relationship was then validated against additional independent measurements. The result-
ing maps of infiltration were then used to estimate the total maximum infiltration of the artificial pond
area, the results being consistent with an independent flooding test performed at the site.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Managing water resources under scarcity is a necessity in many
arid and semiarid regions worldwide (Bouwer, 2002; Scanlon et al.,
2006; Gee and Hillel, 1988; Gale, 2005). Amongst the many prac-
tices that exist to increase groundwater availability as well as to
improve water quality in a given area, artificial or induced recharge
practices (ARs) are viable options (Greskowiak et al., 2005; Jha
et al., 2009; Dillon, 2002). A common system to induce recharge
is via excavated surface ponds (SPs). These facilities are popular
in developed and developing countries (e.g. Hofkes and Visscher,
1986; Asano, 1985; Cheng et al., 2009; Ting et al., 2002; Stone-
strom et al., 2007; Aish and de Smedt, 2004; O’Shea et al., 1981;
Tuinhof and Heederik, 2003). The recharge is performed by divert-
ing available water (e.g. reclaimed, storm water, river water) into
the pond and letting it infiltrate naturally from the top surface to
the underlying aquifer.
ll rights reserved.

etti).
In a properly designed SP facility, recharge is limited by the
infiltration capacity (Ic) of the soil. Ic is defined as the capacity of
the soil to allow water to percolate under steady flow conditions
driven exclusively by gravity. Ic varies depending on the specific
conditions of the system, and thus must be defined for realistic re-
charge conditions by site characterization experiments. Shallow
water depths are typically preferable (Bouwer, 1988).

Ic varies in space and time due to soil heterogeneities, clogging
processes and temperature fluctuations, as well as other processes
(Bouwer, 2002; Perez-Paricio and Carrera, 1999). As Ic is mostly
controlled by the first few centimeters of soil, a priori estimation
of infiltration capacity of the topsoil is required to guarantee suc-
cessful long-term performance of AR practices. Counter examples
where the top few centimeters are not the controlling factor can
be found when low permeability continuous layers exist at some
depth or when the infiltration process leads to a hydraulic connec-
tion between the bottom of the pond and the mound formed below
the pond (Bouwer, 2002).

Complete and detailed characterization of Ic of a given area is
helpful for optimal facility management and risk assessments
(e.g. Pedretti et al., 2012; Bolster et al., 2009). Because of temporal
processes that influence Ic, it should be re-evaluated or measured
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Nomenclature

Ic(x, t) local infiltration capacity [LT�1]
Ks(x, t) local saturated hydraulic conductivity [LT�1]
m(X) mean pixel value for the X channel in an image
r(X) standard deviation of the pixel values X channel in an

image
�lj weighted average lX,j among the X bands
r2

X Pearson’s regression coefficient
a multiband regression coefficient (slope)
b multiband regression coefficient (y-intercept)
e multiband regression error
r�lj multiband standard deviation referred to �lj

aX single bands regression coefficient (slope)
bX single bands regression coefficient (y-intercept)
eX single band regression error
Ic pond-scale infiltration capacity [LT�1]
Sj double-ring test site
X band or channel of the image: Red (R), Green (G) or Blue

(B)
lj, X average pixel value within the 3 � 3 window around the

experimental jth location in the X band
rlj;X

standard deviation referred to lX, j
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periodically. In addition, Ic is strongly related to local soil hydraulic
properties, such as the saturated hydraulic conductivity Ks (Lan-
ghans et al., 2011). In practice, Ks is known to be highly heteroge-
neous in space (e.g. Dagan, 1989) and a large number of dense
points could be required for a proper and complete characteriza-
tion. Hydrodynamic characterization of soils via direct surveys
can be prohibitively expensive and time consuming, or at times
even technologically unfeasible.

Recharge is usually evaluated in homogeneous or homogenized
areas under flooding conditions driven by rainfall. A large number
of methods exist to evaluate recharge of water, e.g. energy or
chemical mass balances using analytical or numerical methods
(Caro and Eagleson, 1981; Das Gupta and Paudyal, 1988; Finne-
more, 1995; Hantush, 1967; Latinopoulos, 1986; ?). However, as
already mentioned it is well known that the infiltration capacity
varies in space. Often such variations can occur at scales below
the size of an infiltration pond, which implies that providing a sin-
gle value of infiltration for the full pond involves some homogeni-
zation process. In effect some representative equivalent infiltration
value is used instead of the local Ic map.

In most cases the information about local Ic values is sparse, if
not non-existent. Thus, it may be desirable to rely on secondary
information using geophysics, remote sensing, image analysis, or
any combination of the above. These methods provide dense infor-
mation over large scales about (secondary) variables that are re-
lated to the (primary) variable of interest. The secondary
variables’ spatial structure can be more easily evaluated and used
to infer that of the primary variable. In fact, variograms or covari-
ance functions about the secondary variables can be implemented
to study the spatial structure of primary data (e.g. Gooverts, 1997).

Remote sensing is a relatively well-understood, successful and
cost-effective solution to obtain qualitative estimations of recharge
or related hydrogeological variables over large scales (e.g. Saraf and
Choudhury, 1998; Granger, 2000; Milewskia et al., 2009). However,
very few cases in the literature have documented the use of such
approaches for quantitative assessments of infiltration capacity.
The use of photographic images is restricted to a few studies (e.g.
Chica-Olmo and Abarca-Hernandez, 2000; Reddy et al., 1989). His-
torically there has been a major economic barrier as the acquisition
of a typical sequence of satellite images analysis (Bons and Jessell,
1996), was a prohibitively expensive step.

This situation has changed in the recent years. Today, satellite
and aerial images of relatively high quality can be obtained at a
high resolution and affordable prices (or often no cost) from a vari-
ety of sources such as popular Internet-based map providers, car-
tographic or geological surveys, military research institutions,
national and international space agencies, etc.

Satellite or aerial images can cover entire geological basins, and
so can be extremely useful for hydrological studies. Often they can
be obtained at different resolutions (supports). An image is
composed of a fixed number of pixels with varying intensities. Dig-
ital images can be made up of several bands (or ‘channels’), both in
the visible range of colors (red to blue colors) and of non-visible
bands (such as the infrared one). The combination and superposi-
tion of the visible colors give rise to the typical image one observes
on a computer screen. In a single band, the relative intensity of
each pixel depends on the electromagnetic energy reflected by
the land surface. This is then processed by an acquisition device
with a given sensitivity. Understanding the interaction between
soil reflectance and the acquisition device is key to deriving infor-
mation from remote-sensing data (Goetz et al., 1985).

While technical descriptions about the characteristic features of
the capturing devices (cameras, video recorders, radars) and mon-
itor quality can be easily obtained from the technical spec sheets,
quantifying the soil reflectance in heterogeneous media remains
challenging. Some conditioning factors are for instance, moisture
content, iron-oxide mineral content, organic-matter content, sur-
face roughness, thickness and colonial organization of the vegeta-
tion canopy and grain structure and organization (see Irons et al.,
1989; Okin and Painter, 2004 for details).

Hydraulic properties of topsoils are also dependent on the same
factors as soil reflectance. For instance, the characteristic grain size
of a soil is related to the soil permeability (Hazen, 1882; Vukovic
and Soro, 1992), as well as the soil porosity (Kozeny, 1927; Car-
man, 1938; van Genuchten, 1980). Moisture content is also influ-
enced by both clay and organic-matter content. All this reasoning
suggests that soil reflectance can be used to obtain information
about hydraulic parameters of the topsoil.

The goal of this paper is to explore the potential use of images
as an efficient, low-budget and fast method to assess Ic. We aim
to build a relationship between pixel intensities and hydraulic
properties in order to estimate Ic over large domains using satellite
images. As an illustrative case, we study a case study based on a pi-
lot SP facility in the municipality of Sant Vicenç dels Horts (Barce-
lona, Spain) located in the silico-clastic and highly heterogeneous
Llobregat alluvial aquifer.

The paper is organized as follows: Section 2 describes the site
and the available experimental data on Ic; Section 3 discusses the
image analysis; Section 4 shows an application of the proposed
methodology; and finally, Section 5 addresses a final discussion
about the physical meaning of the correlation encountered in the
example and about the limitations of this approach.
2. The artificial recharge facility in Sant Vicenç dels Horts

A SP was constructed in the municipality of Sant Vicenç dels
Horts near Barcelona to study managed artificial recharge prac-
tices in the Llobregat River Lower Valley aquifer. The purpose
of this pilot area is as a research facility to study the fate of



Fig. 1. Aerial photo of Sant Vicenç dels Horts and the Barcelona municipality. The site is located in the Lower Valley, a few km up from the beginning of the delta. The
Llobregat River can be traced in the picture. The UTM coordinates are 31T [418446.63 N, 4581658.18 E].

120 D. Pedretti et al. / Journal of Hydrology 430–431 (2012) 118–126
micropollutants during infiltration practices. The facility is located
in the prodelta region of the Llobregat River. The site is centered at
UTM coordinates 418446.63 North and 4581658.18 East (zone
31T). Different high-resolution satellite photos are available for
the site at different years. Fig. 1 shows an image available to the
public through a popular Internet-based map server, and captured
on November 15th, 2007.

The geology of the area is a sequence of fine- and coarse-grained
facies of silico-clastic materials, deposited according to the evolu-
tion of the paleoriver. The deposition of fine-grained materials oc-
curs in low energy streams (minimum on the alluvial planes),
while coarser material needs higher transport efficiency (maxi-
mum along the channel). Therefore the hydrogeological setting is
composed of sandy-gravel or gravelly-sand (depending on the pro-
portion of the average grain sizes), separated by non-continuous
fine-grained layers. At the scale of the pond, the unsaturated zone
has a thickness of between 8 and 10 m. The excavation of the pond
ranges from 4 to 6 m below the actual ground surface, on the wes-
tern edge of the Llobregat River. A series of field experiments were
performed in the SP to assess the local heterogeneities of the top-
soils. In the following sections, we summarize two of the most sig-
nificant activities, the vertical geological description of the ground
surface using open pits and a campaign of double rings infiltrome-
ter tests. Both were performed before any MAR activity was carried
out at the site (only natural rainfall actually infiltrated during this
time).

2.1. Vertical geological profiles of topsoils

Three open pits were dug to study the vertical distribution of
the geological materials at the upper meter measured from the
bottom of the pond. Additionally, samples were taken to obtain
the granulometry curve of the different materials described in
the open pits. This enabled the qualitative inference of the hydrau-
lic properties of the formation. Fig. 2 shows three vertical profiles
obtained at locations C1–C2–C3 (see Fig. 2). Visual abrupt changes
of soil color (seen in the field) are marked in the figure by solid
lines. These changes indicate that soil moisture content and grain
distributions are layered in the top sections. Specifically, for C1,
the 30-cm-thick top layer displays high moisture, clay and organic
content, overlapping the other deeper layers which show coarse-
grained materials at lower moisture content. Such differences are
visible in the left most photo of Fig. 2: the upper horizon is clearly
darker than the rest of the outcrop. Outcrops from pits C2 and C3
show similar horizontal layering. In this case, fine-grained materi-
als and organic content were not observed in the outcrop; the ver-
tical variability is due to changes in sand or gravel relative content.
(see Fig. 3.).

Just by looking at Fig. 2 it follows that there should be a corre-
lation between soil color and permeability, dark pixels being repre-
sentative of the less permeable materials. This proposed
correlation is explored in Section 3.
2.2. Field measurements of topsoil local infiltration capacity

Six double-ring infiltrometer tests (Bouwer, 1986) were per-
formed in February 2009 on the topsoil of the pond. The location
of these experiments (S1–S6 points in Fig. 1) was randomly-se-
lected. A double-ring infiltrometer technique was used. This tech-
nique has been well documented (Bouwer, 1986) for the direct
measurement of infiltration rates and its applicability has been as-
sessed and validated for several ground conditions (e.g. Bodhina-
yake et al., 2004).

We briefly describe the method here. The device consists of two
concentric thin-walled metal cylinders, with an approximate
height of 40 cm, in which a falling head test is carried out. The test
consists of three parts: (a) the rings are pushed into the first (5–10)
centimeters of topsoil with minimum soil disturbance; (b) both
rings are filled with water to the same initial level; (c) the change
in water level (decrease) in the inner ring is measured over time.
The purpose of the external ring is to minimize lateral flow occur-
ring under the internal ring and ensures primarily vertical flow.
After a standard time of about 2 h, the soil is saturated and the
infiltration rates (i.e., changes of water heights versus variable time
intervals) tend asymptotically to a quasi-steady constant value.
The actual infiltrated volume versus time curve is interpreted by
means of a modified Kostiakov method (Smith, 1972). Vertical
infiltration rate is then determined by the amount of water poured
into the inner ring per unit of surface area and time. The inner ring
diameter is 0.4 m and as such our tests provide the infiltration
capacity of the S-location over a support area of 0.13 m2.
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Fig. 2. Vertical profiles at C1 (left), C2 (center) and C3 (right) excavated pits, located close to the double ring test zones S1, S4 and S5, respectively (see location of all these
points in Fig. 1). The right side of each picture shows the geological stratigraphic columns (legend at the bottom).
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For illustrative purposes we plot the infiltration curves for three
locations (S1, S2 and S6) in Fig. 3. These three are representative of
the low (S1), middle (S2) and high (S6) rate infiltration areas. Com-
plete results are summarized in the first two columns of Table 1.
Note that local infiltration rates span over at least two orders of
magnitude in this domain.
Table 1
Field measurements of infiltration capacities (Ic, in m/d) from the double ring tests at
the specified locations (Sj) and the correspondent average (lX,j) and standard
deviation (rX,j) of the 3 � 3 window pixel values for each X band (R, G or B) at the
j-site (j = 1, . . . ,9). Above, the data refer to the Internet-provided image; below, the
data corresponding to the original image are reported. For the full color map, Mj is the
arithmetic mean of the pixel values when all bands are considered together at the j
3. Image analysis

As reported in Section 2, heterogeneities occur at the site in
both vertical and horizontal directions, with different characteris-
tic scales. MAR facilities need to adequately map the spatial distri-
bution of the local infiltration capacity Ic(x, t) over the entire pond
since we are interested in total recharge as a function of time (i.e.
the spatially-averaged infiltration capacity IcðtÞ).

The spatial structure of Ic(x, t) cannot be inferred with great con-
fidence only from the information obtained at a few sparsely distrib-
uted data points (such as S1–S6 from the February 2009 campaign).
Additional information, either on Ic(x, t) or else on a related second-
ary variable must be sought for this purpose. While the former can be
expensive or challenging for a variety of reasons, secondary informa-
tion can be used to condition the primary information.
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Fig. 3. Experimental measurement of local infiltration rates from double-ring
infiltration tests and interpretation using the modified Kostiakov method, at three
location S1, S2 and S6. Ic is calculated as the infiltration rate measured after
120 min. The analytical curves proposed by Kostiakov (Smith, 1972) are shown for
reference. The actual value used in Table 1 is that inferred from the analytical curve
at t = 2 h, rather than the measured values itself, in order to avoid noise.
Secondary variables are typically related to primary variables
via mathematical and physically-based models; the density of sec-
ondary data is normally sufficient for detailed spatial descriptions,
and with some approximations, can be directly used to model the
primary information (Journel, 1999). In most cases the correlation
between the two variables is not perfect and some error (either
correlated or not) must be included in the model.

Our conjecture is to use satellite images of our pond to extract
secondary information, and infer primary information based on the
relationship between the measured Ic(x, t) and the pixel intensity of
the image at the test locations. Recalling Fig. 1 and Table 1, we can
see that point S1 corresponds to the lowest Ic value and is located
in a green area in the two images (dark in gray colors). Such visual
differences are no longer appreciable to the human eye (or at least
our eyes) for locations with high Ic values, since it is more difficult
location, and wj = weight from the regression analysis at the j location. The infiltration
tests for S7, S8 and S9 were performed in June 2009 and have been corrected to the
values of February 2009 by means of linear regression (see text).

Site Ic Red band Green band Blue band

lR,j rR,j lG,j rG,j lB,j rB,j

Internet image
S1 0.2 94.1 2.29 98.9 1.83 77.6 5.69
S2 2.6 179.1 1.83 168.1 4.39 160.3 4.82
S3 2.9 181.1 4.48 171.0 0.60 160.0 9.16
S4 3.3 187.3 0.50 177.9 5.21 166.4 8.81
S5 12.9 196.9 4.98 178.2 1.58 178.2 5.18
S6 12.6 196.0 1.58 185.0 5.05 176.0 6.17
⁄S7 0.17 103.2 5.21 104.7 1.80 84.7 4.53
⁄S8 3.04 183.3 1.80 172.3 5.42 162.7 5.00
⁄S9 0.75 142.4 5.41 132.4 7.12 120.4 9.28

Original image
S1 0.2 91.2 6.96 93.3 4.53 71.9 2.03
S2 2.6 193.5 7.10 179.1 4.83 151.2 245
S3 2.9 179.6 10.32 191.6 6.94 156.2 4.39
S4 3.3 181.4 11.89 160.9 7.24 145.2 0.52
S5 12.9 198.9 4.68 193.1 5.18 160.9 5.21
S6 12.6 202.4 6.64 203.3 4.16 179.4 1.58
⁄S7 0.17 83.8 4.47 86.3 3.77 58.6 5.22
⁄S8 3.04 198.0 5.09 195.0 5.91 150.3 1.99
⁄S9 0.75 141.9 10.04 149.0 7.96 146.4 5.41
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to distinguish bright colors. Nonetheless a relationship appears to
exist.

3.1. Description of the digital data for the Sant Vicenç dels Horts site

We analyze the relationship that exists between Ic(x, t) and the
pixel intensities of two types of digital images, coming from two
different sources. The first is obtained by an Internet-based map
software, while the second is an image provided by the local carto-
graphic institute. While the latter may suppose an initial, some-
times prohibitive, investment, we aim to achieve good-quality
information with former, which is completely free and is suitable
for fast and cheap assessments.

In our first case, the Internet image (the same in Fig. 1) is ob-
tained by capturing an image as a standard RGB (Red, Green and
Blue channels) raster (saved in TIFF file format). For convenience,
we choose to work only on a rectangular portion of the image
(marked in Fig. 1), which corresponds roughly to an area of
45 � 100 m2. This area is represented by 326 � 730 pixels, so that
each pixel corresponds to 0.02 m2. The raster is then composed of a
total of 2.38 � 105 pixels per band. This method is deliberately
quick and simple to illustrate that it can be cost effective and quick.
However, it must be noted that the method can suffer from a lack
of precise information due to image compression, resolution prob-
lems and filtering that may have been performed by the Internet
map software programmer or with other processing software to
save the TIFF file. In this case, this provider does not appear to pro-
vide sufficient information about the image to know exactly what
filtering processes and image editing were performed.

On the other hand, the second digital image of the exact same
space at the exact same time is provided directly by the local Car-
tographic Institute of Catalonia (ICC). The image is a non-filtered
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Fig. 4. Density of pixels in the three bands of the sampled image. A Gaussian curve
(dotted line) is fitted to the histograms of the Internet-provided images to test
visually the symmetry of the distributions.
RGB bands raster, in non-compressed TIFF format, with a pixel res-
olution of 25 cm2. We refer to this image as the ‘original’ image,
since all specifications are well known from the source. In fact, it
is known that the Internet map provider used images from the
ICC to build their software and images.

For comparison purposes, both digital images are taken as the
same moment in time and considered the same working area.
The color depth of both digital images is of 8 bits, offering
28 = 256 values on intensity per channel. The range is from 0
(black = minimum intensity) to 255 (white = maximum intensity).

Fig. 4 displays histograms of the pixel intensities for each X col-
or channel (X = R, G or B), and histograms of averaged values over
the three bands, for both images. For the Internet image, the color
intensities in all channels do not cover the entire range of possible
values, demonstrating a potential filtering that took place. More-
over, the statistics for each of the three channels are different.
Let m(X) and r(X) be respectively the mean and the standard devi-
ation of the pixel values for each X channel, calculated from the
histograms. The red (R) color intensities range from 35 to 225 with
m(R) = 184.64 and rR = 16.8. The Green (G) and Blue (B) channels
exhibit similar standard deviations (r(G) = 16.0 and r(B) = 16.9)
but with smaller means m(G) = 174.1715 and m(B) = 162.4). Notice
that the actual distribution of pixel data is quite symmetric, show-
ing slightly positively skewness and a leptokurtic effect. To test it
visually, we plot an equivalent Gaussian bell with the same m(X)
and r(X) in each band of the Internet based image.

The original ICC-provided image exhibits similar histograms of
color intensities but with higher variances than the Internet-pro-
vided image. Here, m(R) = 183.6, r(R) = 36.7; m(G) = 179.5791,
r(G) = 34.8; m(B) = 157.7, r(B) = 33.3. These histograms again dis-
play a positive skewness.
3.2. Accounting for support scales dissimilarities

A quantitative analysis of the correlation between Ic(x, t) and
color intensities from digital images can be visually inspected with
a scatter plot. However, the spatial support of the infiltration test
Fig. 5. Assigning pixel intensities to a given test j-location (Sj) for each X band (R, G
or B). The point location of the test is assigned to a given pixel in the image.
Intensity values are obtained as the average over the 3 � 3 pixel window centered
at this reference pixel (lj,X); the standard deviation ðrlj;X

Þ of the 9 pixel intensities
referred to lj,X are reported in Table 1.



D. Pedretti et al. / Journal of Hydrology 430–431 (2012) 118–126 123
(0.13 m2) is rather large compared to the pixel resolution (around
0.02 m2). In order to make comparable predictions we averaged the
pixel intensities in the digital images over a window of 3 � 3 pix-
els. The procedure is graphically explained in Fig. 5). For each Sj site
(S1–S9) and for each X band we estimated the local mean lj,X and
relative local standard deviation rlj;X

over a 3 � 3 pixel window
centered at j. The variance is a measure of the quality of the esti-
mation, which depends on the variations observed within the gi-
ven window. These values are reported in Table 1.
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3.3. Multiband regression model

We formulate a general regression model which considers the
quality of data varying with each observation location in each color
channel. This is done to include different degrees of confidence
which are implicitly associated with the regression model of each
color channel. In our case (Fig. 4), we see that, for each observation
window and image, the mean pixel values (lj,X) are in most cases
similar among color channels. However, the quality of the estima-
tion of lj,X given by its standard deviation rlj;X

varies with the
observation, so that the regression coefficients depend on the im-
age source and color channel. In an attempt to incorporate these
effects, we generalized the previous methodology as it follows.
Noting that the Pearson’s correlation, r2

X , measures the goodness
of fit to a linear regression model in each X band, for each j-point
we estimated the color intensity as a weighted average over the
color channels, �lj, such that

lj;X ¼
r2

Rlj;R þ r2
Glj;G þ r2

Blj;B

r2
R þ r2

G þ r2
B

ð1Þ

The results are shown in Table 2. We found that a linear regression
model can satisfactorily describe the dependence of the natural log-
arithm of Ic and averaged pixel intensity lj;X . The general form of
the equation is

lnðIcÞ ¼ a�lþ bþ e ð2Þ

Note that color intensities were found to follow a quite symmetric
distribution (Fig. 4). Despite they do not show an exactly Gaussian
behavior we could in principle assume that the related infiltration
capacity roughly follows a log-normal distribution, as given by
(2). Log-normal distribution model is a typical adopted for hydrau-
lic conductivities in soils (e.g. Freeze, 1975), to which Ic strictly
depends.

In (2), e expresses the model error. Since the quality of the esti-
mates of lj,X is not constant across observations, other regression
methods such as weighted least squares should be used. In this
method, the measurement error is weighted based on its corre-
sponding degree of confidence. Here, we estimated these weights
Table 2
Multiband average lj and calculated multiband weight ð �wjÞ among the X band at the
3 � 3 windows around the jth experimental S-sites (j = 1, . . . ,9). Data refer to the
Internet and the original images.

Site Internet image Original image

lj �wj lj �wj

S1 90.1 0.50 85.7 0.18
S2 169.2 0.34 175.1 0.19
S3 170.7 0.28 176.1 0.12
S4 177.2 0.34 162.9 0.11
S5 184.4 0.24 184.8 0.21
S6 185.6 0.32 195.4 0.18
⁄S7 97.4 0.24 76.5 0.25
⁄S8 172.8 0.30 181.7 0.20
⁄S9 131.7 0.17 145.7 0.12
as inversely proportional to the quality of the local multiband esti-
mation �lj, such that

�wj ¼
1ffiffiffiffiffiffiffi
r2

�lj

q ð3Þ

where r2
�lj

is the multiband estimation variance calculated as

r2
�lj
¼

r4
Rrlj;R

þ r4
Grlj;G þ r4

Brlj;B

ðr2
R þ r2

G þ r2
BÞ

2 ; ð4Þ

Estimates of the variances for all measurements are reported in Ta-
ble 1. Fig. 6 shows the resulting fitted regression models for each
digital image source. For Internet-provided image

lnðIcÞ ¼ 0:0380�l� 5:244 r2
X
¼ 0:85; ð5Þ

while for the original image we obtain

lnðIcÞ ¼ 0:0343�l� 4:466 r2
X
¼ 0:93: ð6Þ
3.4. Model validation

The regression model was validated against three independent
double-ring infiltrometer measurements obtained during a second
campaign. Their locations are also denoted in Fig. 1 and marked by
S7, S8 and S9 tags. These new experiments were specifically se-
lected to fill gaps in the linear regression model. The infiltration
tests for these 3 locations took place in June 2009.

Unfortunately, the new measures of Ic could not be used di-
rectly. Between the two campaigns, a large flooding test took place
80 105 130 155 180 200

−3

**

Multiband pixel values

Fig. 6. Linear fitting of the experimental tests of the infiltration capacity (Ic, in
natural log scale) versus the multiband weighted average pixel values ðlXÞ,
calculated at the 3 � 3 window around the Sj experimental site. Weights are given
by the relative quality of the information, based on the multiband window
variances r2

j;X
– see text. The region of confidence is expressed by the 95%

confidence boundaries.
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Fig. 7. Map of the local infiltration capacities (in m/d) calculated using the
multiband regression model based on the Internet image pixel values shown in
Fig. 1. The natural log scale is used to highlight the heterogeneous distribution of
soil hydraulic properties over the studied area.
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in the pond, resulting in a net decrease of infiltration capacity due
to clogging processes. The impact of flooding was analyzed by
repeating the previous infiltration tests at the S1–S6 locations. A
good linear relationship was found between the pre-clogged and
post-clogged infiltration values, which allowed us to correct the
June 2009 data to the values corresponding to February 2009
(see Pedretti et al., 2011 for details). These corrected value are re-
ported in Table 1. In Fig. 6 they are indicated with a star beside the
points. We see that they agree quite well with our regression mod-
el, lying within the region of confidence (expressed by the 95% con-
fidence boundaries of the multiband regression model).

3.5. Single band regression

A special case of the multiband model is when only single bands
are accounted for. Such models (single-band regression models)
are a general form of (2) and are especially useful when one spe-
cific channel or band provides a better fit than the others (provided
physical conditions are fulfilled).

For instance, infrared bands (when available) have been used to
evaluate specific patterns of soil moisture (e.g. Price, 1980). This
information could be related to some characteristic hydrodynamic
property of the soil, thus making the correlation more robust. In
our case, we explore the quality of a linear regression for the three
visible-color bands, separately in each image. This is simply done
by taking the single channels parameters in (2). The single band
model is thus

lnðIcðxÞÞ ¼ aXlðxÞX þ bX þ eX ð7Þ

where the regression coefficients are now referred to the selected
band X. We found that a good correlation exist for the three color
channels in each image. In the Internet-provided image,

aR ¼ 0:0383; bR ¼ �5:327; r2
R ¼ 0:94;

aG ¼ 0:0452; bG ¼ �6:342; r2
G ¼ 0:91;

aB ¼ 0:0393; bB ¼ �4:985; r2
B ¼ 0:92;

9>=
>;

while for the original image,

aR ¼ 0:0320; bR ¼ �4:586; r2
R ¼ 0:90;

aG ¼ 0:0335; bG ¼ �4:758; r2
G ¼ 0:878;

aB ¼ 0:0350; bB ¼ �4:094; r2
B ¼ 0:840;

9>=
>;

We observe that the parameters differ slightly from one other due
to small differences in the histogram distributions (m(X) and
r(X)). However, r2

X is greater than 84% for each of the three chan-
nels, which suggests that a good correlation exists for each case.
r2

B for the Internet image is slightly larger than the for the other
cases and perhaps this might suggest this is the preferred image
and band. However, given that the differences in r2 are so small,
in the following, we apply the general multiband model for illustra-
tive purposes.

4. Estimates of infiltration capacity at the pond scale

The methodology described above is used to estimate the spa-
tial distribution of Ic at the SP pilot site. Results are only shown
for the multiband regression model, but in this particular example
plots would be qualitatively identical and quantitatively similar
using the single-band model. The resulting infiltration map stem-
ming from the multiband regression analysis of the Internet digital
image is shown in Fig. 7. The local infiltration capacity is calculated
using (2) at each pixel in the whole image. As a way to evaluate the
adequacy of the model, we compared estimates of the global infil-
tration rate as calculated from the Internet image with observa-
tions of the total maximum infiltration recorded during a
flooding test performed at the SP site by local water authorities
from March to May 2009. The global infiltration rate ðIcÞ is calcu-
lated as the spatial average local Ic over the X area, as

Ic ¼
1
X

Z
X

IcðxÞdx ð8Þ

During this test, experimental value of the total infiltration rate
were calculated using a water balance in the pond (conservation
of mass in the pond including evaporation). The total maximum
infiltration rate was reached after 40 days (when the pond was
completely flooded) and was measured to be 3.6 m/day. Predictions
using the multiband model are of Ic ¼ 4:47 m=d for the original im-
age and Ic ¼ 3:92 m=d for the Internet image. We observe that the
latter prediction provides a relatively good agreement with the
experimental data, as the error is less than 10%. We deem this to
be an acceptable error given the trade-off between the cost of the
analysis and the estimation error. It is worth noting that a more
proper and detailed assessment of errors should follow a rigorous
evaluation of several factors, including errors in the calculation of
the global mass balance. In the latter case, for instance, the com-
bined effects gas clogging, incomplete pond flooding, errors in the
measurements of the discharge rates of entry water, etc. lead to
measurement uncertainty. This has not been considered in detail
here.
5. Discussion and conclusions

Dealing with spatial variability of soil hydraulic variables (like
the infiltration capacity) in the field is always challenging and
uncertain. This is due to the high cost of in situ site characteriza-
tion. In this paper we present an alternative and low-cost method
to map the infiltration capacity in heterogeneous alluvial forma-
tions from satellite images. We find that a relationship between
infiltration capacity (measured in some random locations) and
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color intensity of two digital images can be well established to
provide the spatial distribution of soil properties such as the infil-
tration capacity. The method was satisfactorily applied to an artifi-
cial recharge pond area close to the city of Barcelona.

The relationship we built appears to be robust, physically justi-
fiable, and satisfies some premises like monotonicity of the corre-
lation functions. In our test images, the ground surface appears not
to be affected by objects or other disturbances (for instance, a
presence of trees or shadows) that could have modified the natural
color or reflectance in portions of the domain. This avoids the
need to apply filters to the image to remove such imperfections,
which would modify the original pixel organization, structure
and intensities.

We justify the physical validity of our relationship by noticing
that the image depicts darker portions which have been associated
with fine-grained portion of the soils, with substantial organic con-
tent and vegetation canopy, whereas brighter colors correspond to
areas with cleaner sands and gravels of low fine content and veg-
etation. It is worth noting that the correspondence of dark soil to
dark pixels and vice versa may not be universal (e.g. depending
on the considered light spectrum range). Also different soil reflec-
tance can depend on several factors such the type of light, solar ray
inclination, time of day, and season. As such, we suggest that this
method should be valid for a rapid assessment of areas that are
geologically similar to the one we consider and for applications
where the ground surface is free of covering materials. Both these
conditions are characteristic of typical artificial recharge sites.

Most importantly, estimates of the total maximum infiltration
rate obtained for the artificial pond site based on this relationship
were consistent with a water mass balance performed during a
first inundation experiment at the site. Predicted values match
quite well with actual observations, according to official measure-
ments made by the local public administration.

Both digital images, the Internet digital image from a popular
web based provider and the one officially provided by the Catalan
Cartographic Institute, gave similar results, highlighting the
robustness of the method. The discrepancies that do arise suggest
that any estimates should be coupled with an uncertainty analysis
to quantify the reliability of this method as compared to other
more sophisticated but more expensive ones.
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