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a b s t r a c t

Upon their release into the subsurface, non-aqueous phase liquids (NAPLs) dissolve slowly in groundwa-
ter and/or volatilize in the vadose zone threatening the environment and public health over extended
periods of time. The failure of a treatment technology at any given site is often due to the unnoticed pres-
ence of dissolved NAPL trapped in low permeability areas and/or the remaining presence of substantial
amounts of pure phase NAPL after remediation efforts. The design of remediation strategies and the
determination of remediation endpoints are traditionally carried out without quantifying risks associated
with the failure of such efforts. We conduct a probabilistic risk analysis (PRA) to estimate the likelihood of
failure of an on-site NAPL treatment technology. The PRA integrates all aspects of the problem (causes,
pathways, and receptors) without resorting to extensive modeling. It accounts for a combination of mul-
tiple mechanisms of failure of a monitoring system, such as bypassing, insufficient sampling frequency
and malfunctioning of the observation wells. We use a Bayesian framework to update the likelihood of
failure of the treatment technology with observed measurements of concentrations at nearby monitoring
wells.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

The ubiquity of subsurface NAPL contamination has led to a ra-
pid growth in the number of alternative remediation strategies.
While most of them perform well in controlled laboratory condi-
tions, many often fail in the field. The main reasons of such failures
are the uncertainty introduced by subsurface heterogeneity and
the presence of unidentified rate-limited mass transfer processes.
The impact of uncertainty on both the characterization of NAPL
plumes and the relative performance of alternative remediation
strategies is well documented [36,41]. However, quantification of
this uncertainty and its propagation through a modeling effort
are still in their infancy. Understanding this is key to identifying
an optimal remediation strategy and to other aspects of decision
making [2,24].

Nonlinearities in the equations used to predict the subsurface
migration and fate of NAPLs along with the large number of uncer-
tain parameters entering these equations, complicate both uncer-
tainty quantification and decision-making. A standard approach
for quantifying uncertainty in such complex phenomena is to treat
relevant flow and transport parameters as random fields, which
ll rights reserved.
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renders corresponding governing equations stochastic [5,8,43].
Solving these equations, either by stochastic averaging or with
Monte Carlo simulations (MCS), typically yields an ensemble mean
and variance of a NAPLs concentration in the subsurface. The for-
mer provides predictions of ‘‘likely’’ NAPL behavior (migration
and fate), and the latter serves as a measure of predictive
uncertainty.

Such solutions are often insufficient, since many environmental
regulations are formulated in terms of probabilities of a contami-
nant concentration exceeding a certain mandated value. The first
two statistical moments of a NAPLs concentration (its mean and
variance) do not provide such information, because the concentra-
tion statistics are typically highly non-Gaussian [33,40,10]. Instead,
full probability density functions (PDFs) of NAPL concentrations
have to be computed. While MCS can in principle be used to com-
pute the spatio-temporal evolution of the NAPLs concentration his-
tograms (and, hence, corresponding PDFs), a large number of
uncertain parameters, and uncertainty about the locations and
strength of multiple sources, potential receptors and pathways of
exposure, can render MCS computationally unfeasible.

Probabilistic risk analyses (PRAs) [44,47,1] alleviate the high-
dimensionality problem by invoking a system approach to decon-
tamination efforts. We develop a PRA framework to evaluate the
risk of failure of a generic remediation effort. The framework links
the various system components (exposure, sources and pathways)
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with their fate and transport phenomena. The method allows one
to update the probability of failure given the observed real-time
measurements of concentrations. This is achieved by integrating
a Bayesian interpretation of the system into the PRA.

In Section 2 we construct a representative fault tree (which lies
at the foundation of our PRA) for a generic NAPL decontamination
effort. Section 3 contains a probabilistic representation of this fault
tree in terms of Boolean algebra, which enables one to express the
probability of system’s failure through the combination of the
probabilities of failure of its constitutive parts (basic events). The
latter probabilities are computed in Section 4. In Section 5 we out-
line a Bayesian methodology to refine these probabilities by incor-
porating available data and in Section 6, we apply our general
framework to a representative synthetic NAPL decontamination
scenario. The main results of our analysis are summarized in
Section 7.
2. Fault tree analysis

2.1. A general pollution problem

A plethora of methods to conduct a probabilistic risk assess-
ment (PRA) of a system include failure mode and effect analysis
(FMEA), multi-barrier analysis (MBA), event tree analysis (ETA),
and fault tree analysis (FTA). While the goal of such approaches
is the same, their philosophy is slightly different. For example,
ETA and MBA methods are built on the concept of forward logic
where for a system to fail an initiating event must occur and then
be followed by a series of consequent events. In order for a system
to fail under an ETA, an accident sequence must occur. On the other
hand FTA is built on backward logic. In this case one identifies a
particular failure of the system and defines it as the top event. Then
one seeks the combination of all possible events that may contrib-
ute to this failure. Using Boolean operations ‘AND’, ‘OR’ and ‘NOT’,
one can write down which events or combination of events lead to
the top event and thus failure.

We focus on the FTA approach [44]. In particular, in this section
we develop a general methodology to construct fault trees for con-
tamination problems. In order to do so we must first define the
meaning of system failure and the events that lead to it. In general,
a contamination problem involves a mixture of contaminants
{C1, . . . ,Cn} coming from several sources and moving towards sev-
eral receptors {X1, . . . ,Xm}. The system failure is defined as the
event that the concentration of any of the contaminants surpasses
some critical value in any given receptor within a legally mandated
time interval t 6 T. Defining the event CCij as surpassing the critical
contaminant concentration C�ij for pollutant i and receptor j

CCij ¼ Ciðx 2 Xj; t 6 TÞ > C�ij
n o

; ð1Þ

we can formally write system failure as the occurrence of any of
these events, i.e.,

SF ¼ fCC11g [ fCC12g [ � � � [ fCCnmg: ð2Þ

For event CCij to take place, the following basic events (or sube-
vents) must occur:

� Contaminant sources – a given contaminant must be present
at a particular source. We denote this combination contami-
nant/source with a subscript i. In many cases we cannot be cer-
tain that a contaminant source exists, but rather suspect its
potential presence (e.g., in a highly agricultural zone there is a
significant probability that a contaminant source related to par-
ticular pesticides commonly used in the area may exist) and we
must deal with a probabilistic approach. The occurrence of this
event is denoted by CSi.
� Potential receptors – a receptor j must be susceptible to
adverse impact by any of the contaminants. Receptors can
include individual people, wildlife, water reservoirs or environ-
mentally sensitive zones. We abbreviate this event as PRj.
� Pathways – a path p connecting the contaminant source i with

the receptor j must potentially exist. This includes natural flow
fields (homogeneous or heterogeneous), preferential flow paths,
diffusive paths, capture zones, and so on. We abbreviate these
events as PWijp, where p is the pathway subscript.
� Fate and transport – mechanisms of natural attenuation or

remediation have not reduced the contaminant concentration
sufficiently along the p pathway. We abbreviate these events
as FATijp.

A generic fault tree for any number of contaminant sources,
receptors, pathways, and processes provides a graphic representa-
tion of all the events that must occur for the system to fail. Fig. 1
depicts such a general tree. This fault tree reveals that for the sys-
tem to fail two important mechanisms must occur: a pathway
must connect the contamination source with a given receptor,
and the transport processes occurring along these pathways can-
not preclude the adverse effects of contamination. All processes
taking place along a pathway are combined within a single FATijp

event. Although not strictly necessary, this is done to favor a com-
pact mathematical description of all processes occurring along one
pathway event.

A generic fault tree consists of different potential events, whose
inter-connections can be represented with Boolean operators. Once
a fault tree is constructed, the probability of each individual event
must be evaluated. This in turn enables the evaluation of the over-
all probability of system failure. Calculating the probability of indi-
vidual events is often no easy task and can rely on a variety of
methods from simple numerical or analytical models [1], to PDF
equations [45,46,39], to surveys [25], to expert opinion [27], to reli-
ability data bases [7]. In all cases when estimating the probability
of an event it may be advisable to err on the side of caution and be
conservative in choosing the worst-case scenarios.

Such conservative approaches should typically be made a priori,
aiming to identify those events that lead to the highest occurrence
of risk. More resources can then be dedicated to analyze these spe-
cific events and to refine their probability of occurrence. In this
work we illustrate how Bayesian methods can be integrated into
a probabilistic risk analysis to refine an initial estimate of the prob-
ability of failure into its optimal value. In most cases, if the initial
estimate is truly conservative, the probability of failure would de-
crease with increasing knowledge (Bayesian updating). On the con-
trary, it is also possible to envision scenarios where risk increases
with new information, indicating that the prior information was
far from what was expected. We explore this point in Section 6.8.

All of the events potentially leading to failure must be inte-
grated into a well-posed fault tree, which entails defining the sys-
tem failure and the events that can lead to it. Since a fault tree is
essentially a visualization of a Boolean logic expression it is impor-
tant to recognize that all events must be binary – i.e., true or false.
This means that situations where an event can take on multiple
states (e.g., high, medium or low levels of concentration) must be
tackled with a different approach (see, for example, the multi-state
reliability theory [28]).

2.2. Remediation actions

Observation wells are typically put in place to monitor and con-
trol a chosen remediation action. This is an important step for
monitored natural attenuation projects, and a necessary compo-
nent for many others. Let us consider a monitoring system consist-
ing of nw observation wells located at fx1; . . . ; xnwg. For the
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Fig. 1. Generic fault tree of a contamination problem.
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monitoring system to fail, the contamination needs to go unde-
tected by all the observation wells; otherwise the contamination
will be detected and further corrective actions should be taken
(e.g., shut-down of a producing well). To incorporate the monitor-
ing system, for each observation well k, we distinguish two com-
plementary pathway events that can cause an observation well’s
failure:

� Bypassing – the contaminant i can bypass the observation well
k, reaching the receptor j within the time interval T. This
includes the existence of preferential channels, unrepresented
flow and transport mechanisms, and so on. We abbreviate this
event as BPijk.
� Not bypassing – the observation well k can potentially detect

the contamination within the time interval T. We abbreviate
this event as BPijk.

Although the occurrence of bypassing BPijk leads directly to the
failure of the monitoring system, its complementary event BPijk

leads to failure if the following two events occur:

� Observation failure – the observation well k fails due to mal-
function, allowing the contaminant to pass undetected through
the monitoring system. This can include electromechanical
problems, measurement errors, human activities and others.
We abbreviate this event as OBSk.
� Small sampling frequency – the observation well k can poten-

tially detect the arrival of contamination but the time lag
between samples is too large to detect the plume before it
reaches the potential receptor within the time interval T. We
denote this event as SAijk.

Fig. 2 shows a generic fault tree for a monitoring system. In this
fault tree, one still identifies the main components of a contamina-
tion problem (sources, receptors, pathways and processes), which
are now combined with the features of a monitoring system. In
particular, the observation wells represent intermediate events be-
tween the two main levels of the hierarchy in the fault tree, i.e.,
sources/receptors and pathways/processes. These intermediate
events are linked through an AND gate to express that the monitor-
ing system will only fail if all observation wells fail simultaneously.
That is, if any of the observation wells detects the contamination
the system will not fail as further corrective measures can be
taken. Each observation well has two potential pathway events:
bypassing and not bypassing. When no bypassing occurs, the failure
of the system can still happen due to the occurrence of two poten-
tial events, i.e., the observation well fails either due to malfunc-
tioning or the selection of a small sampling frequency.

3. Development of minimal cuts

Fault tree analyses (FTA) evaluate the system failure by express-
ing it in terms of a series of basic events using Boolean logic.
Expressing the Boolean operators applied to two basic events A
and B as

A‘AND’B � A � B � A \ B;

A‘OR’B � Aþ B � A [ B;
ð3Þ

the fault tree in Fig. 1 represents the system failure as

‘System fails ðSFÞ’ ¼
X

ij

CCij ¼
X

ijp

CSi � PRj � PWijp � FATijp: ð4Þ

The next step is to identify the failure modes of our system. These
failure modes are known as minimal cut sets. Essentially, minimal
cut sets represent the smallest combinations of basic events that
are sufficient for the system to fail. It follows from (4) that the
smallest collection of basic events that leads to the system failure
is given by the following minimal cut sets: {CSi � PRj � PWijp � FATijp}.
Expressing these cut sets as SF = M1 + M2 + � � �, we quantify the
probability of system failure by

P½SF� �
X

a

P½Ma� �
X
a<b

P½Ma �Mb� þ
X

a<b<c

P½Ma �Mb �Mc� � � � � ; ð5Þ

which is the inclusion–exclusion law of probability.
Let us now concentrate on the failure of a monitoring system. In

this case the fault tree shown in Fig. 2 represents the system failure
as

‘System fails ðSFÞ’ ¼
X

ij

CCij ¼
X

ij

CSi � PRj �
Y

k

ðBijk þ Sijk þ OijkÞ
" #

;

ð6Þ

where Bijk, Sijk and Oijk represent the following groups of basic
events
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Bijk ¼ BPijk � FATijk;

Sijk ¼ BPijk � FATijk � SAijk;

Oijk ¼ BPijk � FATijk � OBSk:

ð7Þ

To identify the minimal cut sets, we need to reduce the Boolean
expression (6) to a sum of combinations of basic components. Let
us introduce the events BSOijq as

Xnq

q¼1

BSOijq �
Ynw

k¼1

ðBijk þ Sijk þ OijkÞ; nq ¼ 3nw : ð8Þ

Then (6) can be rewritten as

‘System fails ðSFÞ’ ¼
X

ijq

CSi � PRj � BSOijq: ð9Þ

The definition of BSOijq in (8) represents the productQnw
k¼1ðBijk þ Sijk þ OijkÞ as a full ternary tree diagram in which a given

node, for example Sijk�1, has three children {Bijk, Sijk, Oijk}. Each path
of the tree diagram depicts one BSOijq event. Thus, for a given
contaminant source i and receptor j, the event BSOijq represents
the simultaneous occurrence of nw distinct basics events. Each of
these events is selected sequentially out of the nw groups
fSij1;Bij1;Oij1g; fSij2;Bij2;Oij2g; . . . ; fSijnw

;Bijnw
;Oijnw

g. Each BSOijq event
represents a different sequence of multiple failures associated with
the monitoring system. For instance, the subset fBij1;Bij2; . . . ;Bijnw

g
accounts for the case of total bypass of the solute plume from the
monitoring system. The subset fOij1;Oij2; . . . ;Oijnw

g represents the
simultaneous failure of all observation wells due to malfunction
or human activities. This mechanism of multiple failures is a salient
feature of a monitoring system and has not traditionally been in-
cluded in previous risk-based transport models [21,19,30,23,22].

Expression (9) illustrates that the smallest collection of basic
events that leads to failure of the monitoring system is given by
the minimal cut sets {CSi � PRj � BSOijq}. In this case, quantifying
the probability of system failure can be significantly simplified.
The different BSOijq events cannot occur at the same time for a gi-
ven contaminant source i and receptor j. Indeed, if the plume by-
passes the observation well k, the events Oijk and Sijk cannot
occur; likewise, if the well fails then sampling cannot occur. For-
mally, the OR gate that connects these basic events can be thought
of as an exclusive OR gate, where one and only one event can occur.
Thus, they must be considered mutually exclusive and

P½BSOijq � BSOijr � ¼ 0; q – r: ð10Þ

Let us assume, for the sake of simplicity, that the occurrence of CSi is
independent of the occurrence of PRj, and that all their characteris-
tics are known (e.g., from expert opinion). Then

P½SF� ¼
X

ijq

P½CSi�P½PRj�P½BSOijqjCSi; PRj�: ð11Þ

It is reasonable to assume both that malfunction of a given observa-
tion well is independent of the occurrence of the other basic events
and that the probability of its occurrence is the same for all obser-
vation wells, P[OBSk] = P[OBS]. These two assumptions facilitate the
computation of probabilities of the basic events. Consider, for
example, a monitoring system that consists of two observation
wells. Then the BSOijq events involving the observation failure can
be estimated as

P½Sij1 � Oij2jCSi; PRj� ¼ P½Sij1 � Bij2jCSi; PRj�P½OBS�;
P½Bij1 � Oij2jCSi; PRj� ¼ P½Bij1 � Bij2jCSi; PRj�P½OBS�;
P½Oij1 � Oij2jCSi; PRj� ¼ P½Bij1 � Bij2jCSi; PRj�ðP½OBS�Þ2:

In summary, expression (11) replaces the difficult task of comput-
ing P[SF] with more tractable problems of computing probabilities
of basic events that can be estimated by solving an appropriate sto-
chastic transport model. As discussed in the following section,
many different approaches can be used to solve these stochastic
models. Our Bayesian probabilistic risk assessment approach can
be used in conjunction with any of these methods.
4. Computation of probabilities

In order to compute these probabilities, for each set of basic
components ijk (source, receptor, pathways), one needs to solve a
stochastic transport model or a set of alternative models. These
models provide a mathematical description of all transport phe-
nomena included in FATijk. These models are typically expressed
in terms of stochastic partial differential equations (PDEs) with
boundary and initial conditions applied to the variable Ci and
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conditioned to the contaminant source and receptor in question.
This is formally written as

Fijk½Ciðx; tÞ; h� ¼ 0; ð12Þ

where h is a vector of system parameters. We assume that different
contaminants do not interact with each other. For more complex
geochemical problems, a solution of this system can be formally
written as a system of n coupled equations with n unknowns,

Fijk½C1ðx; tÞ; . . . ;Cnðx; tÞ; h� ¼ 0; i ¼ 1; . . . ;n: ð13Þ

The randomness of the PDEs stems from uncertainties about sub-
surface processes. These uncertainties can be either structural (aris-
ing from errors in a conceptual model) or parametric (arising from
the imperfect knowledge of h).

Structural uncertainty can be implemented in PRA studies by
evaluating the relative performance of several competing models
instead of a single one. By weighing predictions of each model,
one can ascertain the different degrees of reliability among models
(e.g., [3,18,29]).

Stochastic contaminant hydrology presents many different ap-
proaches and theories for solving stochastic PDEs, ranging from
small-perturbation approaches [4,14], to moment [26] and PDF
[39,45] equations, to Monte Carlo simulations [38,34]. While ana-
lyzing a system as a whole is often computationally prohibitive
due to a large number of uncertain parameters (i.e., high dimen-
sionality of the parameter space), evaluating probabilities of basic
events in the fault trees is more feasible since the latter depend on
fewer parameters.

Solutions of a stochastic PDE of subsurface transport are given
in terms of the PDFs of Ci or related quantities (e.g., travel times).
To transform these into the basic probabilities in (11), we need
to express the occurrence of the basic events Bijk, Sijk and Oijk in
terms of concentrations. Given a connection between the contam-
inant source i and the receptor j, we define the occurrence of
events {BijkjCSi, PRj} as

fBijkjCSi; PRjg ¼ Ciðxj; t 6 TÞ > C�ij;Ciðxk; t 6 TÞ < C�ij
n o

; ð14Þ

where xj and xk are the locations of the receptor j and observation
well k, respectively. Its complementary events are written as

fBijkjCSi; PRjg ¼ Ciðxj; t 6 TÞ > C�ij;Ciðxk; t 6 TÞ > C�ij
n o

: ð15Þ

Let us consider a monitoring system of nw observation wells, and let
si(xk, xj) denote the travel time of contaminant i moving from an
observation well located at xk to a receptor located at xj. We define
the occurrence of {SijkjCSi, PRj} as

fSijkjCSi;PRjg ¼ Ciðxj; t6 TÞ> C�ij;Ciðxk; t6 TÞ> C�ij;siðxk;xjÞ<Dtf

n o
;

ð16Þ

where Dtf is the time lag between measurements. These expres-
sions do not depend on the chosen stochastic transport model.
Thus, our PRA methodology to estimate the probability of system
failure of a contamination problem can be considered general and
not restricted to the chosen stochastic transport model.

5. Integration with Bayesian methods

5.1. The Bayes formalism

Bayesian methods employ the Bayes theorem to update a belief
about a hypothesis. In subsurface hydrology, the Bayesian formal-
ism has been typically used in geostatistical inverse methods to
account for uncertainty in the chosen stochastic model of hetero-
geneity (e.g., the mean and the covariance function of the natural
log of transmissivity) [20,48,12]. More recently, a Bayesian ap-
proach was used in inverse modeling, data assimilation, and condi-
tional simulation of spatial random fields [35]. Any of these
approaches can be integrated into PRA to update the probability
of system failure given some real-time observations of
concentrations.

Let f(h) denote a prior (not informed by concentration measure-
ment at the site) multivariate distribution of the parameters
involved in the transport model (12). As concentration measure-
ments of contaminant i, ci = (ci1,ci2, . . .), become available, f(h) is
updated into a posterior multivariate distribution f(hjci) according
to the Bayes theorem,

f ðhjciÞ ¼
f ðcijhÞf ðhÞR
f ðcijhÞf ðhÞdh

; ð17Þ

where f(cijh) is the likelihood function, L(h) = f(cijh).
The prior distribution is often subjectively estimated based on

the assessment of an expert. A few measurements result in small
changes in the prior, while a large number of concentration mea-
surements would give rise to a posterior distribution that can sig-
nificantly depart from the prior. After enough measurements are
taken, the posterior distribution becomes independent of the prior.
For these reasons, when uncertainties are significant, it is advisable
to use priors displaying a sufficiently large variance.

The likelihood function L(h) can be estimated using either para-
metric or non-parametric approaches. Parametric approaches de-
scribe the unknown likelihood function with a finite set of
parameters. The multi-normal distribution is often adopted for this
purpose. In non-parametric approaches, the likelihood function
can take any form. Although this can be computationally demand-
ing, it enables one to identify the true underlying structure.

5.2. Stochastic generation of posterior parameters

After updating the distribution function of the parameters
f(hjci), we randomly generate multiple realizations of h and simu-
late the concentration values Ci(x, t;h). The main difficulty arises
from the fact that, although in some cases it is possible to initially
consider the parameters as independent, this no longer holds once
measurements are used to update the posterior distributions. In
other words, f(hjci) is no longer composed of statistically indepen-
dent variables. To overcome this difficulty, we use the sequential
simulation algorithm of a multivariate distribution [16,15]. This
method decomposes f(hjci) into a product of conditional univariate
distributions such that

f ðh1;h2; . . . ;hN jciÞ ¼ f ðhN jhN�1; . . . ;h1;ciÞf ðhN�1jhN�2; . . . ;h1;ciÞ . . . f ðh1jciÞ;
ð18Þ

where N is the number of random variables. This decomposition
allows one to draw realizations of h = (h1, h2, . . . ,hN), conditioned
on ci, by recursively generating the N univariate conditional PDFs
of the decomposition.
6. An example: a DNAPL-polluted site

6.1. Problem description

We use a synthetic example to illustrate the advantages and
limitations of the proposed methodology. In particular, we conduct
an integrated Bayesian probabilistic risk assessment study of a
DNAPL-contaminated site to determine how the likelihood of fail-
ure of a monitoring system changes with time. For simplicity and
illustrative purposes, we consider a system that consists of one
contaminant source and one receptor, but remains complex in
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terms of pathways and observations. This is done to stress the sub-
tleties involved in the implementation of a monitoring system.

We consider the case where a chlorinated solvent contaminant
(TCE), in the form of a DNAPL, has been accidentally released into
the subsurface. This type of contamination has been widely recog-
nized as one of the most serious groundwater problems worldwide
[42,36]. Driven by gravity and helped by their low viscosity and
relatively low surface tension, these liquids can penetrate beneath
the water table. Once in the aquifer, DNAPLs are essentially immis-
cible with water but can slowly dissolve into groundwater with
concentrations that are sufficiently high to threaten the environ-
ment and public health.

We begin by assuming that a free-phase TCE source exists with-
in an area of 45 	 90 m2 (Fig. 3). The exact distribution of free-
phase TCE in this area is unknown. One potential receptor is lo-
cated 122 m from this area. The monitoring system consists of
two observation wells OBS1 and OBS2. The former is placed
down-gradient close to the source with the intent of providing
information about the source size and the amount of pollutant re-
leased. The latter is located closer to the receptor, intended to alert
the population in case an undetected episode of contamination
occurs.

To reflect real-like conditions we consider a scenario in which
information is scarce. The principle source of information is the
concentration values measured at the observation wells. These
measured concentrations were generated numerically with a
transport code that considers that the TCE source is immobile
but slowly dissolving with time in a highly heterogeneous aquifer.
6.2. Reference transport simulation

We consider a heterogeneous two-dimensional aquifer of
dimensions Lx = Ly = 200. Groundwater is driven by a mean uniform
gradient oriented along the x coordinate. The aquifer is confined,
with constant heads at x = 0 and x = 200, and no-flow at the
remaining model boundaries. All aquifer properties are constant
except for transmissivity, which varies randomly in space.

We generated one realization of the transmissivity field T(x)
using the stochastic field generator GCOSIM3d [16]. The
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computational domain is discretized into blocks of size
Dx = Dy = 1.0. The natural log of transmissivity Y = lnT follows a
multi-normal distribution with mean hYi = 4.8 and variance
r2

Y ¼ 3:2. The correlation structure is described by an anisotropic
spherical variogram,

cðhÞ ¼ r2
Y sphðkrðhÞkÞ; ð19Þ

sphðrÞ ¼ 1:5r � 0:5r3 if r 6 1
1 otherwise;

(
ð20Þ

where h is the distance vector between two points, and r(h) is the
transformed distance vector associated with a unitary equivalent
isotropic variogram,

rðhÞ ¼
cos v � sin v
sin v cosv

� �
�

1=ax 0
0 1=ay

� �
�

hx

hy

� �
; ð21Þ

and r = kr(h)k. This is obtained after a counterclockwise axes rota-
tion and scaling of the ranges. Stratification is not oriented in the
mean direction of flow so that v is the angle with respect to the x
axis. The parameter values used in the subsequent simulations are
summarized in Table 1. The resultant transmissivity map is dis-
played in the background of Fig. 3.

The source of dissolved TCE was simulated by imposing a time-
varying flux concentration Cs(t) at an arbitrary injection line within
the source (Fig. 3). Several mass-depletion models have been pro-
posed in the literature to describe the time-dependent release of
dissolved DNAPL mass into an aquifer. We use the model [32] that
relates the flux concentrations of dissolved DNAPL leaving a source
zone to mass removal by

CsðtÞ
C0
¼ MðtÞ

M0

� �b

; ð22Þ

where Cs is the flux concentration of dissolved DNAPL leaving the
source zone, C0 is the initial flux concentration, M(t) is the mass
of DNAPL at time t, and M0 is the initial DNAPL mass. The parameter
b accounts for changes in interfacial surface area as the source mass
diminishes, and thus reflects the effects of source-zone architecture,
flow-field dynamics, and mass transfer processes. For finger-domi-
nated residual DNAPL b > 1, whereas for DNAPL in the form of pools
and lenses b < 1 is small [31]. This is due to the fact that finger-dom-
inated source zones generally exhibit higher initial mass transfer
coefficients per unit mass than lens-dominated domains. The mass
depletion of DNAPL in the source zone is given by [31]
Table 1
Flow problem parameters adopted during the numerical simulations performed in a
heterogeneous medium.

Parameter Value

System
Observation well 1 (65, 101)
Observation well 2 (148, 91)
Receptor (186, 86)

Flow problem
Number of cells in x-direction, nx 200
Number of cells in y-direction, ny 200
Cell size in x-direction, Dx [L] 1.0
Cell size in y-direction, Dy [L] 1.0
Mean hydraulic gradient in x-direction, Jx [–] 0.01
Mean hydraulic gradient in y-direction, Jy [–] 0.0

Heterogeneous field
Mean of lnT [L2/T] 4.8
Variance of lnT [–] 3.2
Maximum variogram range, amax [L] 150.0
Minimum variogram range, amin [L] 15.0
Clockwise angle of rotation, v [degrees] 10.0
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MðtÞ
M0
¼

expð�BtÞ b ¼ 1;

½ðb� 1ÞBt þM1�b
0 �1=ð1�bÞ b – 1:

(
ð23Þ

The mass depletion rate constant B incorporates the effects of mass
transfer processes and flow field dynamics occurring in the source
zone. An analysis of the field data [6] shows the range of the values
of b for different remediation technologies (Table 2), with values
ranging from 0.15 to 5.2. In our example, we chose b = 1, somewhat
an average value of those reported in Table 2.

Forward transport simulations of dissolved TCE were performed
using the random walk particle tracking code RW3D-MT [9,37].
The code uses velocity fields obtained from the finite difference
groundwater flow model MODFLOW2000 [17]. Breakthrough
curves were estimated by reconstructing concentrations from par-
ticle distributions using the optimal Kernel Density estimation
method [11]. Table 3 summarizes the transport parameters used
in the forward simulation.

In this synthetic example, the solute travels through the heter-
ogeneous aquifer towards the receptor. The path taken by the sol-
ute is shown in Fig. 3, which depicts the trajectory of 50 particles
evenly selected out of the 105 injected particles representing the
entire plume. The location of the source zone and the initial
concentration released are not known with certainty and are the
subject of the stochastic analysis.

The numerical results of the concentration breakthrough curves
obtained at the observation wells and at the receptor are shown in
Fig. 4. We consider a sampling campaign consisting of five
measurements, which are also depicted in Fig. 4.
Table 2
Review of depletion exponent values (after [6]).

Remediation action J/J0 M/M0 b

Natural gradient water flush 0.92 0.77 0.32
In situ chemical oxidation 0.0 0.05 –
Natural gradient water flush 0.91 0.68 0.24
Surfactant enhanced aquifer remediation 0.17 0.06 0.63
Cosolvent 0.16 0.1 0.80
Surfactant enhanced aquifer remediation 0.09 0.25 1.74
Cyclodextrin flushing 0.25 0.02 0.35
Ethanol flush 0.48 0.36 0.72
n-Propanol flush 0.19 0.2 1.03
Surfactant enhanced aquifer remediation 0.09 0.36 2.36
In situ chemical oxidation 0.11 0.18 1.29
Emulsified zero-valent iron 0.44 0.28 0.64
Six phase heating 0.05 0.05 1.00
Cosolvent 0.53 0.36 0.62
Pump-and-treat 0.09 0.66 5.80
Six phase heating 0.3 0.02 0.31
Surfactant enhanced aquifer remediation 0.46 0.28 0.61
In situ chemical oxidation 0.68 0.08 0.15
In situ chemical oxidation 0.01 0.06 1.64
Rotary steam stripping 0.24 0.3 1.19

Table 3
Transport parameters to generate the synthetic example.

Parameter Value

Line of injection [L] (53, 90)–(53, 112)
Injected concentration at t = 0, C0 [M/L3] 406.7
Coefficient B [T�1] 10�3

Mass depletion exponent, b [–] 1.0
Porosity, / [–] 0.3
Longitudinal dispersivity, aL [L] 0.3
Transverse dispersivity, aT [L] 0.1
Retardation coefficient, R [–] 1.0
Biodegradation decay constant, k [T�1] 0.0
Courant number [–] 0.05
Number of particles [–] 1.0 	 105
6.3. Fault tree analysis

Next we adapt the general fault tree of a contamination prob-
lem, developed in Section 2, to our specific problem. In particular,
the failure of the system is defined as the event that concentrations
surpass EPA groundwater drinking standard levels for TCE
(C⁄ = 0.005 ppm) at the receptor within a time interval T,

SF ¼ fCðxR; t 6 TÞ > C�g; ð24Þ

where xR is the location of the receptor. The fault tree events are
shown in Table 4 and follow the definition of system components
discussed in Section 2. The receptor is assumed to exist with cer-
tainty, P[PR] = 1, but the contaminant source (presence of DNAPL)
is assumed uncertain and quantified by P[NAPL] = 0.5. The event
SA represents the failure of the system due to a small sampling fre-
quency, which is fixed to Dtf = 2 days. The events OBS1 and OBS2

represent potential failure of the corresponding observation wells
due to mechanical or human activities, their probabilities are set
to P[OBS] = 0.1. In accordance with (11), the fault tree analysis for
this problem results in the probability of system failure,

P½SF�
P½NAPL� ¼ P½B1 � B2jNAPL� þ P½B1 � S2jNAPL� þ P½B1 � B2jNAPL�P½OBS�

þ P½S1 � B2jNAPL� þ P½S1 � S2jNAPL� þ P½S1 � B2jNAPL�P½OBS�
þ P½B1 � B2jNAPL�P½OBS� þ P½B1 � S2jNAPL�P½OBS�
þ P½B1 � B2jNAPL�ðP½OBS�Þ2: ð25Þ
Table 4
Glossary of event abbreviations.

Event Abbreviation

System failure SF
Presence of free-NAPL phase (CS) NAPL
Presence of a receptor PR
Bypass of the observation wells 1 and 2 BP1, BP2

No bypass of the observation wells 1 and 2 BP1; BP2

Failure of observation wells OBS
Failure of sampling frequency at wells 1 and 2 SA1, SA2

Natural attenuation fails (FAT) NA

Event BP1 � NA � SA1 S1

Event BP2 � NA � SA2 S2

Event BP1 � NA B1

Event BP2 � NA B2
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The details of the calculation of these probabilities are given in Sec-
tions 6.4, 6.5, 6.6, 6.7.

6.4. Stochastic model

We consider a stochastic transport model based on an advec-
tion–dispersion equation (ADE) with equivalent homogeneous
coefficients that are random. The reasoning behind this is that
we are not interested in completely reproducing the actual profile
of concentrations at a given point and time. Instead, our goal is
determine whether a simplified model is capable of providing valu-
able information about the contamination (location, extension and
depletion rate of the DNAPL source). We assume that the same sto-
chastic transport model is applicable to all FAT events. Fig. 5 shows
a sketch of the simplified transport model. Prompted by this, for
any given realization of the parameters, a solution of the assumed
ADE at a given downstream location is a time convolution

Cðx0; y0; tÞ ¼
Z t

0
Csðt � sÞFy y0 � y00; s

� �
Gx x0 � x00; s
� �

e�ks ds; ð26Þ

where

Gxðx; tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

4pD0‘t
q exp �ðx� v 0tÞ2

4D0‘t

" #
ð27Þ

and

Fyðy; tÞ ¼
1
2

erfc
y� Ly=2ffiffiffiffiffiffiffiffiffiffi

4D0tt
q

0
B@

1
CA� 1

2
erfc

yþ Ly=2ffiffiffiffiffiffiffiffiffiffi
4D0tt

q
0
B@

1
CA: ð28Þ

Here D‘ and Dt are the longitudinal and transverse dispersion coef-
ficients, D0‘ ¼ D‘=R; D0t ¼ Dt=R, v0 = v/R, R is the retardation factor, k
is the first-order biodegradation constant, and (x0, y0) denotes the
location where the dissolved DNAPL exits the source zone. The
plume travels in an arbitrary and unknown direction x0, which is
rotated about the origin by an acute angle c. Therefore,
x0 = xcosc + ysinc and y0 = �xsinc + ycosc. This allows us to account
for the observation that in most scenarios the mean plume direction
is not necessarily given by the direction of the mean hydraulic
gradient.

The stochasticity of the system comes directly from the uncer-
tainty in the equivalent homogeneous coefficients. Despite a large
number of existing remediation strategies, they typically fail to
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Fig. 5. Conceptual representation of the simplified transport model.
remove enough DNAPL mass to reduce aquifer concentrations to
levels that meet groundwater standards [36,41]. The complex nat-
ure of the DNAPL architecture, the hard task of properly character-
izing soil attributes, and the difficulty in describing field-scale
DNAPL mass transfer processes render predictions of the actual
performance of an individual remediation project highly uncertain.
In our analysis, this uncertainty is represented by five uncertain
parameters: the initial concentration {C0} at the release area, the
size and location of this area {y0, Ly}, the depletion rate {B}, and
the apparent velocity {v} observed in the observation wells. All five
parameters are treated as random variables. In particular, the ran-
domness of {v, y0, Ly} is crucial in emulating the occurrence of pref-
erential channels associated with large velocities and smaller
plume sizes.

6.5. Computation of probabilities

The computation of P[SF] is made up of the following sequential
steps: For any given probability distribution of the parameters
f(hjc):

� We generate 100 realizations of the random variables h using
the sequential simulation algorithm described in Section 5.2;
� In each realization, we simulate the concentration break-

through curves at the observation wells and receptor through
the transport model given in Section 6.4;
� From the breakthrough curves, we estimate the travel time of

the contaminant moving from the observation wells to the
receptor;
� For each time interval T, the resulting outcome from the previ-

ous step is translated into probabilities through (14)–(16).

6.6. Priors

Prior distributions of these random variables are reported in
Table 5. Following the principle of indifference, we assign a uni-
form distribution to most priors. The effective velocity is an excep-
tion, since its mean �v and variance r2

v are computable from the
stochastic theories [4,14],

�v ¼ KgJ
/
; r2

v � r2
x

�v2

d2
ij

; ð29Þ

where r2
x ¼ 2Acm

‘ dij is the variance of the plume’s center of mass in
the x direction, dij is the travel distance from the source-zone i to
the xj location, and Acm

‘ refers to the variability of the center of mass
Table 5
Model parameters and prior distribution functions.

Parameter Priors

Porosity, / N.R. (0.3)
Solute velocity, v [L/T] Norm(4.21, 400, 0, 50)
Longitudinal dispersivity, a‘ [L] N.R.(10.0)
Transverse dispersivity, at [L] N.R.(3.0)
Rotation angle, c [degrees] N.R.(�10.0)
Retardation coefficient, R [–] N.R.(1.0)
Biodegradation decay constant, k [T�1] N.R.(0.0)
Source size in y-direction, Ly [L] Unif(1, 67)
Source location in x-direction, x0 [L] N.R.(53)
Source location in y-direction, y0 [L] Unif(60, 130)
Initial flux concentration, C0 [M/L3] Unif(300, 1000)
Depletion rate, B [T�1] Unif(10�1, 10�4)
Depletion exponent, b [–] N.R.(1.0)

N.R.(v) means that the variable is not assumed random and fixed to v. Unif(a,b) is
the uniform distribution that lies within the interval (a,b). Norm(m, r2, a, b) is the
truncated normal distribution with mean m, variance r2, and bounded below and
above by a and b.
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location among all possible aquifer realizations. We approximate
Acm
‘ by [13]

Acm
‘ � r2

Y Ix; ð30Þ

where Ix is the integral scale of Y = lnT in the x direction. The
approximation (30) provides a conservative estimate of risk, since
it is an upper bound value and real dispersion is always smaller
than this value.

6.7. Incorporation of data

A likelihood functions L(h) quantifies the probability of observ-
ing the data given h. If c = (c1,c2, . . .) is an independent sample of
concentrations, then

LðhÞ ¼ f ðcjhÞ ¼
Y

m

f ðcmjhÞ: ð31Þ
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When model predictions yield concentration values that are closer
to measurements for a given h, the corresponding L(h) value should
increase. To incorporate this feature, we take f(cmjh) to follow a
truncated power law density function

f ðcmjhÞ / jcm � CmðhÞj�n
; ð32Þ

where n is a hyper-parameter, cm is the mth measurement of
concentration, and Cm(h) is its corresponding model prediction
given h. The larger the n, the sharper the likelihood function. This
indicates that a larger relative weight is given to the vector of
parameters that actually lead to matching observed concentrations,
which provides peaked posterior distributions. Note that the likeli-
hood function (31) and (32) considers measurement errors to be
negligible. If this is not the case, one can incorporate this source
of uncertainty into L(h).
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6.8. Results

Fig. 6 shows the update of the prior marginal distributions of
the parameters,

f ðhiÞ ¼
Z

f ðh1; . . . ; hNÞdh1 � . . . � dhi�1 � dhiþ1 � . . . � dhN: ð33Þ

These integrals were computed numerically. As previously dis-
cussed, the transport parameters in our model are essentially effec-
tive parameters. As such, their posterior distribution functions must
reflect the effects of heterogeneity. This is clearly seen for the effec-
tive velocity and the effective initial flux concentration (the first and
zeroth moments of the breakthrough curves). The effective velocity
exhibits a bimodal posterior distribution, with modes close to the
apparent velocity of the solute plume (i.e., the ratio of the travel
distance to the mean arrival time) observed at wells OBS1 and
OBS2. The vertical dashed lines denote the apparent velocity values
observed at the wells.

The solute mass that passes through the observation wells de-
pends mostly on the intrinsic peculiarities of the transmissivity
field and the hydraulic connection between a source and a recep-
tor. As a result, its effective mean value exhibits large deviations
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Fig. 7. Stochastic generation of breakthrough curves using realizations of the different
symbols denote the observed measurements of concentrations.
from its original mean estimate. While this may seem to be a weak
point of our model, we contend the opposite. In the presented
example, the mean flow velocity is not really informative of the
system’s behavior, which is controlled by the fast pathway in the
vicinity of the source. This implies that the actual effective velocity
is larger than its mean value, while the effective source size is
smaller.

Note that the travel distance is small compared to the number
of integral scales that are needed in order to invoke ergodicity.
Fig. 2b illustrates this point by accounting for the possibility that
some of the particles can avoid the observation wells, while a large
number of particles concentrate very close to the source and near
OBS1. An ensemble mean description of this problem is clearly not
enough to capture these phenomenon.

Conversely, our model is capable of predicting the depletion
rate of the DNAPL mass. Although the aquifer is very heteroge-
neous r2

Y ¼ 3:2
� �

, the slow dissolution of DNAPL at the source
mainly controls the late-time behavior of the breakthrough curves.
As a result, the model is capable of accurately predicting the deple-
tion rate. The size and location of the source are slightly underes-
timated, due to the convergence of particle pathways and random
effects.
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The posterior multivariate distributions of the system parame-
ters were used to generate their equally likely realizations
conditioned on the data. Fig. 7 shows 100 realizations of the con-
centration breakthrough curves at the observation wells. These
realizations correspond to parameter values drawn from either
the prior (blue1 lines) or the posterior (red lines) marginal distribu-
tions with the sequential simulation algorithm. The Bayesian
update automatically recalibrates the system parameters to im-
prove predictions of our conceptual model. The bias in parameter
estimates is an indication that the parameter values converge to
their equivalent homogeneous counterparts.

Most importantly, our approach updates the probability of sys-
tem failure over time, as depicted in Fig. 8. The update suggests
that the risk of failure is higher than originally expected. This
important result demonstrates that the addition of information
does not necessarily imply a reduction of risk. The sampling estab-
lished that the the observation wells are capable of detecting the
leakage of dissolved TCE from the source zone. Hence, the likeli-
hood of bypassing the monitoring system (event B1B2) becomes
negligible. At the same time, the plume’s apparent velocity is larger
than its original estimate, identifying the existence of a preferential
1 For interpretation of color in Fig. 7, the reader is referred to the web version of
this article.
pathway. As a result, for the constant sampling frequency, the
posterior likelihood of system failure increases to account for the
simultaneous occurrence of a low sampling frequency at the two
observation wells (event S1S2).

Estimation of the probabilities of the basic events in the fault
tree enables us to identify the relative importance of these events
for system failure. The latter can be used to either redesign or pri-
oritize the remediation and future dynamics of the basic events.
This feature has not been previously explored in probabilistic risk
analyses (PRAs) in subsurface hydrology.

We demonstrate how a PRA can be used as a key tool for deci-
sion making. Several alternative definitions have been used to
quantify the importance of basic events. The Fussel–Vesely (FV)
importance of a basic event X is defined as the conditional proba-
bility of X given that the system fails, i.e., P[XjSF]. It can be esti-
mated as

FV ½X� ¼ P½XjSF� �
P

M:X2MP½M�P
MP½M� ; ð34Þ
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where M denotes a cut set, and M: X 2M refers to the cut sets
involving X. For instance, the FV importance of S2 (low sampling
frequency in observation well 2) is given by

FV ½S2� �
P½S1 � S2jNAPL� þ P½B1 � S2jNAPL�P½OBS� þ P½B1 � S2jNAPL�

P½SF�=P½NAPL� :

ð35Þ

Fig. 9 shows the temporal evolution of the FV importance of the
basic events involved in the monitoring system. Prior to sampling
and for large times, the joint occurrence of well malfunctioning
close to the source and insufficient sampling frequency near the
receptor is the most critical mechanism by which the system fails
(events O1 and S2). After sampling, the data suggests that the prob-
ability of having fast paths in the system is higher than initially
postulated. As a result, the conditional probability of event S1

increases.
7. Conclusions

Managing risk during remediation efforts is cumbersome due to
the difficulty of combining a large number of uncertainties associ-
ated with subsurface heterogeneities, rate-limited mass transfer
processes, and the existence of multiple potential sources, recep-
tors, and pathways of exposure. We developed a general PRA
framework to evaluate the risk of failure of a typical site remedia-
tion project that links multiple system components (exposure,
sources and pathways) with their fate and transport phenomena
as well as with a monitoring system. The proposed PRA method
is used to determine the likelihood of a remediation effort’s failure
to prevent the contaminant plume from reaching a receptor, with-
out being detected by a monitoring system.

Our PRA approach accounts for uncertainty about the size and
location of the contamination, the sampling frequency at observa-
tion points and the probability that the contaminant bypasses the
observation wells. It can be readily combined with any existing
transport model of a polluted site to quantify the probabilities of
basic events. A Bayesian interpretation of these probabilities with-
in the PRA framework allows for the use of measurements from
observation wells to update the probability of system failure over
time. A fault tree analysis, an integral part of the PRA, attributes
the failure of a monitoring system not to the failure of a single
observation well but rather to the combination of multiple joint ef-
fects that can lead the monitoring system to fail.

We used a synthetic example of the management of a DNAPL-
contaminated site to illustrate the importance of this feature. The
example considers the release of dissolved TCE into a heteroge-
neous aquifer. The monitoring system consists of two observation
wells. Our results show that the method can identify the sequence
of events by which the monitoring system is most likely to fail.
Prior to sampling, the design of the system dictates that the most
critical sequence of events is the failure of the observation well
close to the source due to malfunctioning, followed by the failure
of the observation well closest to the receptor due to a small sam-
pling frequency. As more information is added, the Bayesian inter-
pretation of the problem allows us to automatically recalibrate the
probability of system failure. Thus, after sampling, the PRA identi-
fies the joint failure of the observation wells due to small sampling
frequency is an important issue.

The example also illustrates that our PRA framework can be
used as a tool for decision making. In order to identify the most
critical events in the system, we introduced a quantitative measure
of the Fussel–Vesely importance of an event. This information can
be used to prioritize future developments or redesign the system.
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