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[1] Hydrologists routinely analyze pumping test data using conventional interpretation
methods that are based on the assumption of homogeneity and that, consequently, yield
single estimates of representative flow parameters. However, natural subsurface formations
are intrinsically heterogeneous, and hence, the flow parameters influencing the drawdown
vary as the cone of depression expands in time. In this paper a novel procedure for the
analysis of pumping tests in heterogeneous confined aquifers is developed. We assume that a
given heterogeneous aquifer can be represented by a homogeneous system whose flow
parameters evolve in time as the pumping test progresses. At any point in time, the
interpreted flow parameters are estimated using the ratio of the drawdown and its derivative
observed at that particular time. The procedure is repeated for all times, yielding time-
dependent estimates of transmissivity Ti(t) and storativity, Si(t). Based on the analysis of the
sensitivity of drawdown to inhomogeneities in the T field, the time-dependent interpreted
transmissivity values are found to be a good estimate of Tg(r), the geometric mean of the
transmissivity values encompassed within a progressively increasing radius r from the well.
The procedure is illustrated for Gaussian heterogeneous fields with ln(T) variances up to a
value of 2. The impact of the separation distance between the pumping well and observation
point on data interpretation is discussed. The results show that information about the spatial
variability of the transmissivity field can be inferred from time-drawdown data collected at a
single observation point.

Citation: Copty, N. K., P. Trinchero, and X. Sanchez-Vila (2011), Inferring spatial distribution of the radially integrated transmissivity

from pumping tests in heterogeneous confined aquifers, Water Resour. Res., 47, W05526, doi:10.1029/2010WR009877.

1. Introduction
[2] Accurate definition of subsurface flow parameters is

an essential step in any hydrogeological study. A common
approach for the estimation of flow parameters is through
the interpretation of pumping tests. Early, yet still widely
used, pumping test interpretation techniques include the
Theis method [Theis, 1935] and Cooper–Jacob method
[Cooper and Jacob, 1946] for confined aquifers, and the
Hantush inflection point method [Hantush, 1956] and the
graphical Walton method [Walton, 1962] for leaky aqui-
fers. All these methods assume that the subsurface system
can be represented by one or at most a few homogeneous
units. However, in reality natural subsurface systems are
heterogeneous and, hence, their representative hydraulic
parameters are spatially variable and support-dependent.
Given the significance of aquifer heterogeneity on ground-
water flow and contaminant transport, considerable effort

has been devoted to the estimation of representative flow
parameters (e.g., the review by Sanchez-Vila et al. [2006]).

[3] Over the past three decades, different approaches
have been proposed for the parameter estimation problem.
One approach has been to formulate a formal inverse
problem whereby measurements of the state variable (hy-
draulic head) and prior information are used to estimate
flow parameters over the entire domain [e.g., Carrera and
Neuman, 1986; McLaughlin and Townley, 1996; de
Marsily et al., 1999; Sun and Yeh, 2007]. The main diffi-
culty of such an approach is that the inverse problem can
be ill-posed as a result of data scarcity and noise [Sun,
1994]. To alleviate problems resulting from the scarcity
of direct hydrological data, some authors have proposed
the incorporation of related secondary data into identifica-
tion of the spatial distribution of flow parameters, such as
tracer test data [Bellin and Rubin, 2004; Huang et al.,
2004; Ptak et al., 2004] and geophysical data [Rubin and
Hubbard, 2005; Slater, 2007; Finsterle and Kowalsky,
2008].

[4] Novel field data acquisition techniques that can
potentially enhance the characterization of aquifer hetero-
geneity have been proposed recently. One such technique
is hydraulic tomography, which involves sequential pump-
ing or injection from one of a series of wells and monitor-
ing head change in the other wells [e.g., Gottlieb and
Dietrich, 1995; Butler et al., 1999; Bohling et al., 2002;
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Yeh and Liu, 2000; Zhu and Yeh, 2005; Illman et al.,
2007; Fienen et al., 2008; Castagna and Bellin, 2009; Yin
and Illman, 2009]. The densely collected head/discharge
data are then used in an inverse procedure to identify the
underlying spatial structure of the parameters. Another
example is the application of direct-push (DP) technolo-
gies, such as DP slug tests, DP injection logging, and the
hydraulic profiling tool. These technologies involve the
advancement of the DP tool through shallow subsurface
for rapid delineation of hydrogeological structures and
estimation of their hydraulic properties [Butler et al.,
2002, 2007; Dietrich and Leven, 2005; Dietrich et al.,
2008; Köber et al., 2009].

[5] Nonetheless, in many cases the only available infor-
mation consists of drawdown data at a few observation
points obtained from intermediate to long-time pumping
tests. Since hydraulic tests are quite expensive, there is a
need to maximize information derived from each individ-
ual test. For this reason, in recent years there has been
renewed interest in reevaluating the information obtained
from the application of pumping test interpretation proce-
dures to heterogeneous aquifer systems. For example,
Meier et al. [1998] and Sanchez-Vila et al. [1999] showed
that the transmissivity T estimated from drawdown data
from heterogeneous confined aquifers using the Cooper–
Jacob method is close to the geometric mean and insensi-
tive to the location of the observation point. Contrarily,
the estimated storativity is space-dependent, being indica-
tive of the flow point-to-point connectivity. Serrano
[1997] and Wu et al. [2005] showed that the transmissivity
and storativity values, estimated with the Theis method
using early drawdown data, vary with time. The storativity
estimates stabilize rather quickly to a value that is a func-
tion of the storativity of the aquifer volume between the
pumping and the observation wells, while the transmissiv-
ity at late times is a function of the entire flow domain,
and approaches a value that is close to the geometric mean
[supporting the results of Sanchez-Vila et al. 1999]. Oliver
[1993] used the Frechet kernel to evaluate numerically the
sensitivity of variation of the transmissivity and storativity
on the transient drawdown as a result of pumping. Knight
and Kluitenberg [2005] extended the work of Oliver
[1993] by deriving analytic expressions of the Frechet ker-
nels for pumping and slug tests. Leven and Dietrich
[2006] used sensitivity coefficients to study the effect of
spatial variability of the transmissivity and storativity of a
confined aquifer on the interpretation of single-well and
two-well pumping tests. For leaky aquifer systems, Copty
et al. [2008] compared estimated flow parameters from
standard analysis procedures developed for homogenous
media when applied to pumping tests conducted in hetero-
geneous ones.

[6] Several studies have examined the potential use of
drawdown data to estimate directly the statistical spatial
structure of hydraulic conductivity or transmissivity rather
than actual local values. The spatial structure is defined in
terms of a few parameters, such as the integral scale and
variance of local T values [Copty and Findikakis, 2004a,
2004b; Neuman et al., 2004, 2007; Firmani et al., 2006;
Riva et al., 2009]. This group of methods shows that the
spatial structure of the flow parameters may be estimated

from drawdown data, provided a large number of observa-
tion wells are available.

2. Motivation
[7] Despite the significance of heterogeneity for ground-

water flow and contaminant transport and the significant
efforts that have been directed toward this problem, field
hydrogeologists often rely on the application of conven-
tional pumping test analysis methods to interpret field data,
disregarding the presence of underlying heterogeneity. Such
methods use drawdown data collected at different times to
estimate representative values of the flow parameters. For
example, graphical methods [e.g., Theis, 1935; Walton,
1962] attempt to fit drawdown data observed at all available
times to normalized drawdown curves. The Cooper–Jacob
method, instead, is based on fitting a straight line to the late
drawdown data on a semilog plot. For homogeneous aqui-
fers, the different interpretation techniques yield estimates
of flow parameters that are equal to actual transmissivity
and storativity values of the aquifer. However, when applied
to heterogeneous aquifers, the estimates (termed ‘‘inter-
preted parameters’’ by Sanchez-Vila et al. [2006]) obtained
from conventional interpretation methods vary as the draw-
down cone of depression expands in time. For instance, at
early times interpreted transmissivity should be close to the
T value at the well, since the drawdown signal extends to
only a small region surrounding the well. At later times, a
larger aquifer volume is perturbed by the pumping test and,
hence, the estimated transmissivity approximates some
weighted average of the T values surrounding the well. The
spatially variable weights depend on the relative location of
the pumping and observation points, the statistical spatial
structure of the transmissivity field, leakage if present, the
dimensionality of the problem, the imposed boundary con-
ditions, and, most important, elapsed time (see discussions
by Dagan [1982], Desbarats [1992], and Copty and Findi-
kakis [2004b]). Furthermore, estimated parameters also
depend on the interpretation technique used, since each
method emphasizes different portions of the time-draw-
down data (see Trinchero et al. [2008a] for a discussion on
this topic for the specific case of leaky aquifers).

[8] Another limitation of some of the existing methods
(e.g., the Cooper–Jacob method for confined aquifers and
the Hantush inflection method for leaky aquifers) is that,
although they are straightforward and simple to apply, they
use only a subset of the available information. In the
Cooper–Jacob method only the late drawdown data are
used, while the Hantush inflection method uses the steady
state drawdown and information at the inflection point
only. Although the use of just a portion of the drawdown
curve is justified when the aquifer is homogeneous, in the
case of a heterogeneous system, this means that important
information provided by portions of the time-drawdown
data are completely disregarded.

[9] In this paper we develop a simple procedure for anal-
ysis of pumping tests in heterogeneous confined aquifers
that addresses some of the above limitations and that can
yield information about the variability of T in space in a
fast and cost-efficient way. The method uses drawdown
data and derivatives at one particular point in time to
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estimate flow parameters. It is shown that the interpreted
transmissivity is related to how the spatially integrated T
values around the well change with distance from the well.

3. Mathematical Derivation
3.1. Estimation of Time-Dependent Flow Parameters

[10] We consider radially convergent transient flow to-
ward a well in a heterogeneous confined aquifer. We fur-
ther assume that the shallow approximation or the Dupuit
assumption is valid, which implies that vertical flow is neg-
ligible [Dagan et al., 2009]. A consequence of the Dupuit
simplification is that local transmissivity, defined as the in-
tegral of hydraulic conductivity over depth, becomes a for-
mation property that is independent of flow [Sanchez-Vila
et al., 2006; Dagan et al., 2009].

[11] For a fully penetrating well in a homogeneous non-
leaky confined aquifer, the transient drawdown is given by
[Theis, 1935]

s ¼ Q
4�T

Z1

u

1
y

exp �yð Þdy ¼ Q
4�T

WðuÞ; ð1Þ

where s is drawdown, Q is the pumping rate assumed con-
stant in time, W(u) is the well function, and u ¼ r2S

4tT is a
dimensionless quantity involving the storativity S, elapsed
time since pumping started, t, and the radial distance from
the pumping well, r. The derivative of the drawdown with
respect to the logarithm (base 10) of time is

s0 ¼ @s
@logt

¼ 2:3Q
4�T

expð�uÞ: ð2Þ

Taking the ratio of equations (1) to (2) yields:

� ¼ 2:3s
s0
¼ W uð Þexp uð Þ: ð3Þ

[12] A plot of � as a function of 1/u is given in Figure 1,
showing that � increases monotonically with increase in 1/u
(i.e., increase in time). Therefore, for any particular value
of � at some time t, one can uniquely determine the value

u� and, consequently the well function W(u�). Then, the
interpreted transmissivity Ti and storativity Si can be com-
puted from equation (1) and the definition of u, respec-
tively,

Ti ¼
Q

4�sðtÞWðu
�Þ ð4Þ

Si ¼
4tTiu�

r2
: ð5Þ

[13] Equations (3)–(5) provide a simple and fast way to
obtain estimates of flow parameters from the ratio of draw-
down to the drawdown derivative �. The advantage of
using the drawdown derivative in the estimation of flow pa-
rameters is that the derivative is more sensitive to heteroge-
neity (as is also discussed in section 3.2.1).

[14] For noise-free drawdown data as a result of pump-
ing in a homogeneous confined aquifer, the above equa-
tions would yield the exact values of flow parameters
regardless of time and location. However, for pumping tests
conducted in heterogeneous (real) aquifers, equations (4)
and (5) yield interpreted estimates of transmissivity and
storativity that are, in general, dependent on time. By
repeatedly applying equations (4) and (5) to different
elapsed times, plots of the interpreted time-dependent
transmissivity Ti(t) and storativity Si(t) are obtained.

[15] Since the methodology involves computing the de-
rivative of drawdown data curves, it is prone to errors
caused by noisy data. Different types of filters can be used
for the removal of noise before it is used in the interpreta-
tion. For example, Bourdet et al. [1989] and Spane and
Wurstner [1993] proposed a smoothing differentiation
expression, with a least squares regression option for noisy
data. Illman and Neuman [2001] showed that splines can be
used to effectively calculate derivatives.

3.2. Conversion of the Interpreted Time-Dependent
Estimates to Spatial Functions

[16] In this section the time-dependent estimates Ti(t)
and Si(t) are converted to radially dependent relations by

Figure 1. Plot of �, equation (3) as a function of 1/u.
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examining the sensitivity of the drawdown and its time de-
rivative to the spatial distribution of inhomogeneities in the
transmissivity field. Using a perturbation expansion, the
transient drawdown at an observation point (ro; �o) as a
result of pumping from a heterogeneous aquifer can be
expressed as follows:

sðro; �o; tÞ ¼ sð0Þðro; tÞ þ sð1Þðro; �o; tÞ þ sð2Þðro; �o; tÞ þ � � � ; ð6Þ

where s(0)(ro, t) is the drawdown of the equivalent (homo-

geneous) aquifer and the other terms, sðjÞðro; �o; tÞ for j ¼
1, . . . are solutions of stochastic partial differential equa-
tions that describe deviation from the homogeneous solu-
tion obtained from the perturbation expansion of the flow
equation. Assuming that storativity is constant, the first-
order term of equation (6) can be written as follows:

sð1Þðro; �o; tÞ ¼
Z2�

0

Z1

0

FT ðro; �o; r; �; tÞT 0ðr; �Þrdrd� ; ð7Þ

where FT ðro; �o; r; �; tÞ is the Frechet kernel for transmis-
sivity [Oliver, 1993; Parker, 1994] and T 0ðr; �Þ is the
deviation of the transmissivity from its representative
mean value (e.g., the geometric mean if T is assumed log-
Gaussian and isotropic). sð1Þðro; �o; tÞ represents the tran-
sient variation in the drawdown at the well due to devia-
tion of transmissivity from its mean value. Equation (7)
can be viewed as a convolution integral with the Frechet
kernel acting as a space and time-dependent weighting
function.

[17] The corresponding impact of heterogeneity of trans-
missivity on the time derivative of the drawdown is given by

@sð1Þðro; �o; tÞ
@t

¼
Z2�

0

Z1

0

@FT ðro; �o; r; �; tÞ
@t

T 0ðr; �Þrdrd�: ð8Þ

[18] We consider a homogeneous field To and a single
anomaly with transmissivity, To þ T0, located at (r; �). If
we associate the anomaly to a unitary support volume (�V ,
actually defined in 2D) and neglect higher-order perturba-
tion terms (i.e., retaining only the first-order terms in the
perturbation expansion), we can express the drawdown and
its time derivative at the observation well as follows:

sðro; �o; tÞ ¼ sð0Þðro; tÞ þ FT ðro; �o; r; �; tÞT 0ðr; �Þ�V ð9Þ

@sðro; �o; tÞ
@t

¼ @sð0Þðro; tÞ
@t

þ @FT ðro; �o; r; �; tÞ
@t

T 0ðr; �Þ�V : ð10Þ

[19] From equation (10) it can be seen that the time de-
rivative of the Frechet kernel is directly related to devia-
tions of @sðro;�o;tÞ

@t from the homogeneous value. In other
words, the time derivative of the Frechet kernel is an indi-
cator of the time-dependent influence of anomalous trans-
missivity on the time derivative of the drawdown at the
observation point.
3.2.1. Observation Point Coinciding With the
Pumping Well

[20] For the case of an observation point coinciding
with the pumping well and 2-D flow in a confined aquifer,

the Frechet kernel is given by [Knight and Kluitenberg,
2005]

FT ðr; tÞ ¼ �
Q

8�2T2
o Dt

exp � r2

2Dt

� �
K1

r2

2Dt

� �
; ð11Þ

where D is the diffusivity equal to To/S and K1 denotes the
modified Bessel function of the second kind, of order one.
Introducing a scaling parameter C ¼ � Q

2�2T2
o r2 and the non-

dimensional time 1
u ¼

4Tot
r2S yields the dimensionless Frechet

kernel (F�T ¼ FT=C)

F�T ð1=uÞ ¼ uexp �2uð ÞK1 2uð Þ: ð12Þ

[21] Figure 2 shows the plot of the dimensionless Frechet
kernel F�T ð1=uÞ and its derivative with respect to the dimen-

sionless time, @F�T ð1=uÞ
@ð1=uÞ . It can be noticed that the impact of

the point anomaly on drawdown extends for the entire du-
ration of the pump test. Moreover, F�T ð1=uÞ ! 1=2 as 1/u

! 1, or equivalently FT ðr; tÞ ! � Q
4�2T2

o r2 as t ! 1. This

shows that at large times the impact of the anomaly
involved in equation (8), which eventually is integrated in
r, approaches a finite limit that is proportional to 1/r2

(where r is the location of the anomaly relative to the
pumping well, which coincides with the observation point).

[22] On the other hand, the influence of the point anom-

aly on @F�T ð1=uÞ
@ð1=uÞ and the time derivative of the drawdown is

limited to a relatively short period of time located around
the peak value of equation (12). A similar observation was
made by Oliver [1993]. The location of the peak value can
be found analytically by setting the second time derivative
of the Frechet kernel equal to 0,

@2F�T ð1=uÞ
@ð1=uÞ2

¼ 0: ð13Þ

Figure 2. Dimensionless Frechet kernel and its time de-
rivative for the case of coinciding pumping well and obser-
vation point.
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[23] It can be shown mathematically that this is equiva-
lent to

1
2

Koð2uÞ þ ð1� 2uÞ Koð2uÞ þ K1ð2uÞ½ � ¼ 0 ; ð14Þ

where K0 is the modified Bessel functions of the second
kind, of order 0. The root of equation (14) is given by
1/u ¼ 1.6505.

[24] The physical interpretation of this result is that
when pumping commences, a pressure signal is initiated at
the well and this signal travels radially outwards. The
dimensionless characteristic time 1/u ¼ 1.6505 is the time
needed for the peak of the pressure anomaly (defined as the
point corresponding to maximum @sð1Þ

@t ) to travel to the
anomaly and back, a total distance of 2r.
3.2.2. General Case (Observation Point Not
Coinciding With the Pumping Well)

[25] In the general case, when the observation point and
the pumping well are not coinciding, the dimensionless
Frechet kernel is given by [Knight and Kluitenberg, 2005]

F�T ðX ;Y ; �Þ ¼ �
R2 � 1=4
8�2R1R2�

exp �R2 þ 1=4
2�

� �
K1

R1R2

2�

� �
: ð15Þ

[26] All distances in equation (15) are normalized by a,
the separation distance between the pumping well and the
observation point. X and Y are the dimensionless coordi-
nates of the point where the anomaly in located. R is
the dimensionless distance between the anomaly and the
origin, which, without loss of generality, is located midway
between the observation and pumping well. R1 and R2 are
the dimensionless distances from the anomaly to the pump-
ing and observation wells, respectively. � ¼ Dt

r2
o

is the
dimensionless elapsed time.

[27] Figures 3a and 3b show the derivative of the dimen-
sionless Frechet kernel as a function of dimensionless time
for an anomaly located at different distances R and along
two directions: (1) along the line passing through the two
wells and (2) perpendicular to the line joining the two wells.
Whereas in the case of coinciding pumping well and obser-
vation point, the travel distance of the pressure signal to the
T anomaly and back is 2r, in the case of noncoinciding

Figure 3. Time derivative of the dimensionless Frechet kernel for an anomaly in the transmissivity
field at different distances and either (a) along or (b) perpendicular to the direction joining the pumping
and observation points.
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pumping and observation points, the corresponding travel
distance of the anomalous signal is R1 þ R2; thus, the
length dimension in the x axis of Figure 3 is expressed as
(R1 þ R2)/2. Figure 3 shows that for both directions consid-
ered and irrespective of where the anomaly and observation
point are located, the dimensionless Frechet kernel peaks at
about the same dimensionless time, 1/u ¼ 1.65. Using this
characteristic dimensionless time, the interpreted transmis-
sivity at time t, Ti(t), can be converted to a radially depend-
ent function Ti(r�) where

r� ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
4tT

1:65S

r
: ð16Þ

[28] In other words, after estimating Ti(t) and Si(t) from
the drawdown data at any particular time t using equations
(4) and (5), equation (16) can be used to map the time t into
a radial distance r*. In the following section, the proposed
pumping test interpretation methodology will be demon-
strated using synthetically simulated pumping tests in ran-
domly generated heterogeneous confined aquifer systems.

4. Numerical Applications
[29] In the following set of simulations, we consider Y ¼

ln(T) fields that are realizations of a multivariate Gaussian
spatial random function with an exponential semivariogram
with mean mY ¼ 0 (i.e., Tg ¼ 1), integral scale I ¼ 8 arbi-
trary length units and variance �2

Y ranging from 1 to 2.
Transmissivity fields were generated using the Turning
Bands Method [Mantoglou and Wilson, 1982]. The domain
size is 481 by 481 length units, and the grid is uniform with
elements of size 1 by 1. Storativity is assumed uniform in
space with a value equal to 10�4. A well is placed at the
center of the aquifer and a pumping test is simulated using
MODFLOW [Harbaugh et al., 2000]. Transient drawdown
was simulated at two observation points located at ro ¼ I/8
and ro ¼ I, respectively, from the pumping well. A Dirichlet
condition was imposed at the outer boundary. Preliminary
simulations were performed to assure that for the duration
of the pumping test, the drawdown was not impacted by the
prescribed outer boundary conditions.

[30] The evolution of drawdown at the observation
points was then used to estimate the time-dependent trans-
missivity and storativity using equations (4) and (5). The
very late time drawdown values, which would be influ-
enced by the prescribed condition at the outer boundary of
the domain, were excluded from analysis.

4.1. Estimation of Time-Dependent Transmissivity
and Storativity

[31] The analysis procedure is first applied to four ran-
domly selected ln(T) fields with variance, �2

Y ¼ 1. Figure 4a
shows the plot of the interpreted transmissivity Ti(t) as a
function of time for each of these four transmissivity fields
based on drawdown data observed at ro ¼ I/8. At early
times, large variations between the different estimates are
observed because drawdown is influenced by transmissivity
in the vicinity of the well, which varies from one realization
to the other depending on the value of the log-transmissivity
variance. As the pumping test progresses in time, a larger
aquifer volume influences the pumping test and as a result
Ti(t) approaches the geometric mean of the generated T
field. Figure 4b shows Tg(r), the geometric mean of the
point T values within a distance r from the well, which was
computed as follows:

TgðrÞ ¼ exp
1
A

Z2�

0

Zr

0

Y ðr0; �0Þr0dr0d�0

2
4

3
5: ð17Þ

[32] Tg(r) is plotted in Figure 4b as a function of the
square of the radial distance. The agreement in the shapes
of the two sets of plots depicted in Figures 4a and 4b is
quite evident. The plots of Ti(t) are smoother than that of
Tg(r) suggesting that small-scale variations in transmissiv-
ity cannot be fully detected.

[33] Figure 5 shows the interpreted storativity, Si(t), as a
function of time computed using equation (5), correspond-
ing to the four T fields. Although storativity was assumed
to be uniform in the pumping test simulation, Si(t) exhibits
large variations in time and between realizations. Inspec-
tion of Figure 4 and Figure 5 jointly shows that the

Figure 4. (a) Interpreted transmissivity as a function of time, and (b) Geometric mean as a function of
radial distance squared; for four randomly selected T fields. The observation point is located at ro ¼ I/8.
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interpreted transmissivity, Ti(t), and storativity, Si(t) are
negatively correlated: when Ti(t) decreases with time, Si(t)
increases, eventually becoming larger than the actual S
value and vice versa. This is consistent with previous theo-
retical studies [Sanchez-Vila et al., 1999; Trinchero et al.,
2008b, Fernàndez-Garcia et al., 2010] that showed analyti-
cally that storativity estimates are indicative of the flow
point-to-point connectivity of the transmissivity field.
Whereas these studies show the impact of point-to-point
connectivity on the estimation of a single representative
storativity value, the results presented here extend this find-
ing to the entire transient behavior of the system.

[34] A significant side result from Figure 5 is that at
early times, the cone of depression has sampled a limited
portion of the aquifer and, hence, the observations are not
yet affected by connectivity features. Consequently, the
interpreted storativity values are relatively close to the real
value. In real applications, however, estimation of storativ-
ity is error prone since the interpreted values are also
affected by a number of processes such as well storage or
well development, among others.

4.2. Comparison of Interpreted Transmissivity
to the Radial Geometric Mean

[35] Equation (16) allows for conversion of the time-
dependent transmissivity estimates Ti(t) to radially depend-
ent averages Tg(r). Figure 6 shows the corresponding plot
of Ti(r) as a function of r estimated from drawdown data
observed at ro ¼ I/8. Each of the curves is superimposed on
the geometric mean of the four transmissivity fields Tg(r)
(i.e., Figure 4b). The good agreement between the four
pairs of curves indicates that interpreted transmissivity esti-
mated from the ratio of the drawdown to drawdown rate
according to equation (4) is a good indicator of the geomet-
ric mean of transmissivity values defined over a continu-
ously increasing circle centered at the pumping well. This
is so despite the fact that the time-dependent support vol-
ume of transmissivity for radially convergent flow in heter-
ogeneous aquifers is not strictly circular.

[36] The pumping test analysis procedure is now
repeated for each of the four randomly selected fields but

using drawdown data from an observation point at ro ¼ I.
Figure 7 shows the corresponding plot of Ti(r) as a function
of r, which was computed using equation (16). As in Figure
6, the Ti(r) plots are each superimposed on the geometric
mean of the transmissivity field Tg(r). Since now the obser-
vation point is located further away from the pumping
well, the observed drawdown is delayed. By the time any
drawdown is observed, the pumping test would have per-
turbed a larger volume of the aquifer and, as such, it would
not be possible to infer information about the local T values
near the pumping well. For observation points located fur-
ther away such that ro � I, the drawdown data would be
sufficiently delayed such that the aquifer acts like an equiv-
alent homogeneous aquifer and the interpretation would
yield virtually uniform Ti(r) estimates. Hence, the proposed

Figure 6. Interpreted transmissivity (in bold) and the
geometric mean of the transmissivity (thin line) as a func-
tion of radial distance (normalized by the integral scale) for
the four randomly selected T fields. The observation point
is located at ro ¼ I/8.

Figure 7. Interpreted transmissivity (in bold) and the
geometric mean of the transmissivity (thin line) as a func-
tion of radial distance (normalized by the integral scale) for
the four randomly selected T fields. The observation point
is located at ro ¼ I.

Figure 5. Interpreted storativity as a function of time for
four randomly selected T fields. The actual storativity value
used in the drawdown simulation is 0.0001.
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method would potentially yield the most information when
the observation well is located at a distance from the pump-
ing well, which is small compared to the integral scale of
the T spatial field. In practice this is not a significant limita-
tion because the distances between the pumping well and
observation points are normally smaller than the integral
scale of the transmissivity field, which ranges from tens to
hundreds and even thousands of meters [Gelhar, 1993].

4.3. Monte Carlo Simulations
[37] In the preceding section the proposed pumping test

interpretation method was applied to a few selected trans-
missivity fields. In this section we use Monte Carlo simula-
tions to evaluate the performance of the interpretation
method over an ensemble of simulations. The model setup
is similar to that defined in the previous section. The ln(T)
field is assumed to be multivariate Gaussian with exponen-
tial semivariogram and variance �2

Y ranging from 1 to 2.
For each set of parameters, 200 transmissivity fields are
randomly generated.

[38] For each of the simulated pumping tests, the inter-
preted transmissivity Ti(t) is estimated according to equa-
tion (4) using drawdown data from an observation point
located at a distance ro ¼ I/8 from the pumping well. As in
the previous estimate, the Ti(t) relation is converted into

Ti(r) using equation (16). The interpreted transmissivity
Ti(r) is then compared to the transmissivity geometric
mean Tg(r) at r ¼ I, 2I, 4I, and 8I. Figure 8 compares Ti(r)
and Tg(r) for the case of I ¼ 8 and �2

Y ¼ 1. Each plot also
shows the Pearson’s correlation coefficient between the
two sets of data Ti(r) and Tg(r). The results show good
agreement between the two sets of data Ti(r) and Tg(r) for
all distances considered, with the Pearson’s coefficients
ranging from 0.921 to 0.985. Figure 9 compares the Ti(r) to
Tg(r) for the case of I ¼ 8 and �2

Y ¼ 2. The correlation
coefficients vary from 0.863 to 0.965. These values are
slightly lower than the case with �2

Y ¼ 1, however, the
agreement between the two curves remains high.

[39] In summary, using the methodology proposed in
this paper one would obtain a picture of the radially inte-
grated transmissivity field as a function of distance (e.g.,
Figure 6). Through further analysis, this information can
potentially be used to infer the spatial structure of the
transmissivity field and, subsequently, in generating condi-
tional T fields that honor the pumping test interpretation
results. For illustration, the relationship between the inte-
gral scale and variance on the interpreted transmissivity
values can be qualitatively assessed from Figure 6. The
integral scale of the transmissivity field influences the
distance beyond which the interpreted transmissivity

Figure 8. Comparison of the interpreted transmissivity and the geometric mean of the transmissivity
for different distances from the well and for I ¼ 8 and �2

Y ¼ 1. Each point corresponds to one individual
simulation, for a total of 200.
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stabilizes to a value close to its geometric mean. On the
other hand, the ln(T) variance influences the magnitude of
the variations in the interpreted transmissivity (vertical
axis of Figure 6). When multiple pumping tests are avail-
able, higher-reliability estimates of the variance and inte-
gral scale may be obtained by jointly evaluating the
interpreted T plots, each determined from an individual
pumping test using the outlined procedure.

5. Conclusions
[40] Although heterogeneity of flow parameters is a sa-

lient characteristic of almost all natural geologic systems,
pumping test data are widely analyzed using methods that
are based on the assumption of aquifer homogeneity. This
paper describes a new method for the analysis of pumping
tests in heterogeneous confined aquifers that can provide in-
formation about the spatial variability of flow parameters
rather than estimating a single representative value of the
perturbed aquifer. The method uses the ratio of the draw-
down to the drawdown derivative at a single point in time to
estimate the transmissivity and storativity at the considered
time. This is repeated over time yielding time-dependent
interpreted flow parameters, Ti(t) and Si(t). The time-depend-
ent interpreted transmissivity is then expressed as a function
of radial distance from the well.

[41] The method is applied to randomly generated multi-
variate Gaussian ln(T) fields. Results show that for ln(T) var-
iances up to 2 and for observation points located up to r ¼ I
from the pumping well, the interpreted transmissivity Ti(r)
estimated with the proposed procedure is consistently in
good agreement with the geometric mean of the transmissiv-
ity Tg(r) computed over a circular area of the aquifer centered
around the pumping well. As the separation distance between
the observation point and the pumping well increases, Ti(r)
can still provide partial information about the radial trend of
Tg(r). However, estimates of transmissivity in the immediate
vicinity of the well cannot be inferred as a result of the delay
in drawdown response at the observation point.

[42] The interpreted storativity Si(t) is shown to depend
on the point-to-point connectivity of the transmissivity
field, consistent with previous studies. Si(t) is close to the
actual value at early times. At later times, storativity is
shown to be dependent on the connectivity of the T field.
Moreover, Si(t) decreases as Ti(t) increases, and vice versa.

[43] In summary, the results presented in this paper show
that additional information about the spatial variability of
transmissivity can be derived from time-drawdown data.
While conventional single-well pumping test interpretation
methods use time-drawdown data to estimate a single rep-
resentative estimate of the transmissivity, we propose in
this paper a method based on time-drawdown data and its

Figure 9. Comparison of the interpreted transmissivity and the geometric mean of the transmissivity
for different distances from the well and for I ¼ 8 and �2

Y ¼ 2. Each point corresponds to one individual
simulation, for a total of 200.
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time derivative that yields an estimate of the geometric
mean of transmissivity defined over a continuously increas-
ing circle centered at the pumping well.
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