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[1] Fast chemical reactions are driven by mixing‐induced chemical disequilibrium.
Mixing is poorly represented by the advection‐dispersion equation. Instead, effective
dynamics models, such as multirate mass transfer (MRMT), have been successful in
reproducing observed field‐scale transport, notably, breakthrough curves (BTCs) of
conservative solutes. The objective of this work is to test whether such effective models,
derived from conservative transport observations, can be used to describe effective
multicomponent reactive transport in heterogeneous media. We use a localized formulation
of the MRMT model that allows us to solve general reactive transport problems. We test
this formulation on a simple three‐species mineral precipitation problem at equilibrium.
We first simulate the spatial and temporal distribution of mineral precipitation rates in
synthetic hydraulically heterogeneous aquifers. We then compare these reaction rates to
those corresponding to an equivalent (i.e., same conservative BTC) homogenized medium
with transport characterized by a nonlocal in time equation involving a memory function.
We find an excellent agreement between the two models in terms of cumulative precipitated
mass for a broad range of generally stationary heterogeneity structures. These results
indicate that mass transfer models can be considered to represent quite accurately the
large‐scale effective dynamics of mixing controlled reactive transport at least for the
cases tested here, where individual transport paths sample the full range of heterogeneities
represented by the BTC.
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1. Introduction

[2] Understanding and modeling multicomponent reactive
transport at the field scale is a necessary condition for the
design of remediation strategies in groundwater pollution
problems and for risk assessment evaluations. Numerical and
analytical methods are available to address multicomponent
reactive transport problems at the local scale. Yet, it is not
clear whether they can be extended to the field scale. Aquifers
are heterogeneous at all scales with hydraulic conductivity
values spanning over orders of magnitude, even in seemingly
homogeneous aquifers. As a result, large scale transport in
spatially heterogeneous media is different from the transport
observed in homogeneous media and in general non‐Fickian.
Realistic hydrogeological applications must directly or indi-
rectly embed this heterogeneity.
[3] Under certain conditions [e.g., Dagan, 1989; Gelhar,

1993], asymptotic large scale transport of conservative spe-
cies can be described by the advection‐dispersion equation
(ADE) with upscaled transport parameters. The asymptotic

limit is typically given by the time after which the species
distribution is spread out over a volume whose dimensions
are much larger than the largest heterogeneity scale. At pre-
asymptotic times, however, which are relevant for most
hydrogeological problems, observations [e.g., Adams and
Gelhar, 1992] display what is known as anomalous (non‐
Fickian) or nonergodic [Kitanidis, 1988] behavior, so that
concentrations are not well simulated by an ADE, even
allowing for upscaled parameters [Carrera, 1993]. In fact,
Neuman [1990] proposes an universal scaling law stating
that aquifers display an evolving range of scales and, there-
fore, nonergodic conditions apply to all transport problems,
regardless of travel distance.
[4] At the other end, departures from Fickian behavior are

also frequently observed at the laboratory scale [Valocchi,
1985; Levy and Berkowitz, 2003]. To describe effective
transport of conservative species at intermediate distances
different nonlocal methods have been developed: continuous
time random walks (CTRW) [Berkowitz and Scher, 1998;
Berkowitz et al., 2006], fractional advection‐dispersion equa-
tions (fADE) [Benson et al., 2000], multirate mass transfer
(MRMT) [Haggerty and Gorelick, 1995; Silva et al., 2009],
and memory functions [Carrera et al., 1998]. The last two
methods are mathematically equivalent. Furthermore, it has
been shown [Dentz and Berkowitz, 2003; Berkowitz et al.,
2006] that fADE and MRMT can be formulated as CTRWs.
Recent reviews and comparisons of nonlocal methods can
be found in work by, e.g., Berkowitz et al. [2006], Neuman
and Tartakovsky [2009], and Silva et al. [2009].
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[5] All these nonlocal methods are suited for describing
non‐Fickian BTCs of field and laboratory experiments
[Berkowitz and Scher, 1998; Kosakowski et al., 2001;
McKenna et al., 2001; Levy and Berkowitz, 2003; Haggerty
et al., 2004; Cortis and Berkowitz, 2004; Zinn et al., 2004;
Le Borgne and Gouze, 2008] and thus give valuable insight
into the mechanisms of anomalous transport behavior in
heterogeneous aquifers [Schumer et al., 2003; Dentz and
Berkowitz, 2003; Berkowitz et al., 2006; Zhang et al.,
2007; Berkowitz et al., 2008; Willmann et al., 2008].
[6] The question is whether nonlocal formulations for

representing conservative transport can be extended to reac-
tive transport. Since reactive transport is very sensitive to
the nature of reactions [Rubin, 1983], the fact that a certain
effective description works for one type of reaction does not
imply that it works for others. That is, we need to define the
type of reactions to be addressed. Reactions can be classi-
fied as linear or nonlinear, as controlled by kinetics (slow)
or equilibrium (fast), as homogeneous (all reactants in the
same phase) or heterogeneous, etc. Transport of sorptive
species in heterogeneous media was investigated with
emphasis on the spatial or the temporal distribution of con-
centrations since the early works of Selroos and Cvetkovic
[1992] and Bellin et al. [1993]. In fact, MRMT was initially
developed as a way to model heterogeneous sorption pro-
blems, and has been widely used in this context [Roth and
Jury, 1993; Rubin et al., 1997; Haggerty and Gorelick,
1998; Lawrence et al., 2002; Berkowitz et al., 2008].
Recently, Dentz and Castro [2009] and Dentz and Berkowitz
[2005] demonstrated that transport under spatially heteroge-
neous linear equilibrium adsorption properties, is effectively
represented by CTRW, or, equivalently, by MRMT.
[7] Regarding equilibrium or kinetic reactions, the situa-

tion is more complex. It can be shown [e.g., Margolin et al.,
2003] that effective transport in heterogeneous media under
linear kinetic reactions occurring homogeneously through-
out the domain can be represented by the same nonlocal
model as conservative solutes because the overall reaction
rate is controlled by the residence time distribution, which is
precisely what the BTC represents. Therefore, any model that
reproduces the BTC for a conservative solute also reproduces
the BTC and the overall reaction rate for solutes undergoing
linear reactions. This is not necessarily the case for multi-
component equilibrium or nonlinear kinetic reactions. Rezaei
et al. [2005] and De Simoni et al. [2005, 2007] showed that
equilibrium reaction rates are controlled by mixing and
depend on the species concentrations in a nonlinear way.
[8] The nonlocal formulations described above reproduce

conservative BTCs, that is solute arrival times, but not
necessarily mixing. In fact, one can fit a given BTC with
models that consist of independent flow tubes with virtually
no mixing [Medina and Carrera, 1996; Luo and Cirpka,
2008]. The handling of mixing is precisely what distin-
guishes the ADE and the nonlocal formulations presented
before. The ADE equates spreading and mixing, both quan-
tified by macroscale hydrodynamic dispersion coefficients.
At preasymptotic times, such a transport description over-
estimates solute mixing and rather quantifies the rate of
growth of the area that could potentially be affected by a
pollutant [e.g., Dentz et al., 2000; Dentz and Carrera, 2007].
[9] Mixing describes the rate at which two water bodies

blend [e.g., Kitanidis, 1994; Kapoor and Kitanidis, 1998;
De Simoni et al., 2005]. Cirpka and Kitanidis [2000]

showed for moderately heterogeneous fields that transverse
dispersion controls mixing. At the local scale, transverse
dispersion results from the interplay between molecular dif-
fusion and velocity fluctuations caused by heterogeneity.
Molecular diffusion is the actual trigger mechanism for
mixing as it is the only process that mixes solute between
independent paths lines [e.g., Dentz and Carrera, 2007;
Zavala‐Sanchez et al., 2009]. As the molecular diffusion is
almost constant, advective heterogeneity seems to control
mixing already at the Darcy scale. Therefore, to study the
effect of heterogeneity on mixing it is important to use a
strong physical heterogeneity and a smaller transverse dis-
persion in order not to blend two different sources of
advective heterogeneity. Since mixing controls many chem-
ical reactions it is clear that mixing should be accounted
for in the governing equations for multicomponent reactive
transport in heterogeneous media.
[10] Work on the effect of heterogeneity on integrated

reaction rates under equilibrium conditions has been limited.
Luo et al. [2008], Binning and Celia [2008], Cirpka et al.
[2008], and Fernandez‐Garcia et al. [2008] evaluated the
global reaction rate for either generally heterogeneous or
stratified media, concluding that the integrated reaction rate
could not be obtained from an upscaled ADE equation.
Lichtner and Kang [2007] used a lattice‐Boltzmann model
to simulate pore scale precipitation/dissolution. Their model
is effectively equivalent to a MRMT model, but does not
address the effect of hydraulic heterogeneity.
[11] The objective of this work is, thus, to investigate

whether a mass transfer model is an appropriate tool to
describe mixing controlled multicomponent reactive trans-
port in heterogeneous aquifers. Our goal is to test whether
upscaling of conservative transport is sufficient to upscale
reactive transport. For this purpose we propose a model that
couples the MRMT model with reactions. We then compare
the results, in terms of the spatial and temporal distribution of
instantaneous reaction rate and cumulative reaction, between
detailed heterogeneous simulations in synthetic aquifers
using the ADE, and those coming from the MRMT model
with the known memory function derived from conservative
transport.

2. Multirate Mass Transfer Reactive
(MRMT‐R) Model

[12] In this section we propose a model for multi-
component reactive transport that extends the general
MRMT model. This is done in three steps, starting with the
corresponding model for conservative solute, presented here
for completeness, then showing the local scale reactive
problem we consider in this paper (mixing induced precipi-
tation), and finally coupling the two models to derive the
MRMT‐R model.

2.1. Conservative Transport Model Based on Multirate
Mass Transfer

[13] Amongst the different effective models available in
the literature to represent transport in heterogeneous media,
we select one based on multirate mass transfer, for reasons
that will become apparent when extending it to account for
reactions. The MRMT model represents the system as
composed by a mobile and a suite of immobile regions that
coexist at any given point in the domain. These regions
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interact. Solute mass is transferred between the mobile and
each of the immobile regions proportional to the difference
in the concentrations. This linear exchange can be seen as
diffusion. In fact, the model was originally developed to
represent diffusion into actual immobile regions. The
underlying idea is that flow paths with varying velocities
(residence times) coexist at some elementary volume, and
solute is transferred between paths by local diffusion/
dispersion. The MRMT model is an obvious simplification
of reality. However, it provides sufficient degrees of freedom
to accommodate any residence time distribution and, indeed,
it can be used to fit BTCs measured in lab or field tracer tests
[e.g., McKenna et al., 2001; Haggerty et al., 2004].
[14] The MRMT model considers a governing equation

which involves an advective, a dispersive and a sink/source
term to account for mass transfer with immobile zones.
Therefore, the resulting equation for concentration of a con-
servative species j in the mobile zone, cm, j, can be written as

�m
@cm; j
@t
¼ r � ðDrcm; jÞ � q � rcm; j � Gj ð1Þ

where D is the dispersion tensor, �m is the porosity corre-
sponding to the mobile zone, i.e., the ratio between pores
accessible by advection and the total volume, and Gj is the
source/sink term controlling the mass transfer of species j
between the mobile and the suite of immobile regions,
which we write as [Carrera et al., 1998; Haggerty et al.,
2000]

Gj ¼ �itot g*
@cm; j
@t
þ gcm0; j

� �
ð2Þ

where cm0, j is the initial concentration of the jth species,
* indicates a convolution (in time) product, and �itot is the
total immobile porosity, defined as the void volume fraction
that is not accessible by advection. With this definition, the
actual porosity (measurable in the field) is just � = �m + �itot.
Function g, termed memory function, accounts for the
probability distribution of the time that a solute particle
remains in the immobile regions. In general, this function
will depend on the velocity distribution.
[15] Equations (1) and (2) are termed “nonlocal” in time

because they do not depend only on cm, j(x, t), but also on the
past history of concentrations. In order to incorporate reac-
tions in an efficient way, we seek a formulation of (1) that
involves only the local species concentrations at a given
point and time, that is, we seek a ‘local’ formulation of the
above nonlocal transport problem. To this end, we expand
the memory function as a sum of exponentials

gðtÞ ¼
XN
i¼1

�ibie
��i t ð3Þ

where ai is the inverse of the characteristic waiting time
associated to the ith term, and bi is the corresponding frac-
tion of the immobile porosity. Notice that this expansion is
equivalent to discretizing the residence time distribution.
More interesting, it is equivalent to viewing the immobile
region as consisting of N immobile regions, each of which

exchanges mass with rate ai [Carrera et al., 1998; Haggerty
et al., 2000]:

@cim; j;i
@t

¼ �iðcm; j � cim; j;iÞ ð4Þ

where cim, j,i denotes concentration of species j in the immo-
bile zone i. Combining (3) and (4) allows, after some algebra,
rewriting (2) as (see Appendix B for details)

Gj ¼
XN
i¼1

�i�iðcm; j � cim; j;iÞ ð5Þ

where �i = bi�itot is the immobile porosity associated to
exchange rate ai (or residence time 1/ai). Imposing

XN
i¼1

�i ¼ �itot ð6Þ

is equivalent to having Si=1
N bi = 1.

[16] In principle a large suite of memory functions could
be used. The main feature of these functions is their behavior
at large times, since they control the late time behavior of
breakthrough curves [Haggerty et al., 2000]. Also, in prin-
ciple a large number of parameters should be fitted (actually
2N − 1). For this reason, the memory function is parameter-
ized by a small number of parameters [e.g.,Rubin et al., 1997;
Carrera et al., 1998; Lawrence et al., 2002; Haggerty et al.,
2000] in most applications. Amongst these, a commonly used
model is the truncated power law [e.g., Dentz et al., 2004],
where function g(t) can be expressed in terms of two char-
acteristic times, t1 (time at which the power law behavior
starts manifesting), t2 (time at which concentration starts
decaying faster than the power law), and the slope of the
memory function, mg.

2.2. Reactive Transport in a Single‐Porosity Model

[17] The model presented in the previous subsection
accounts for a conservative solute undergoing advection, dis-
persion at the local scale and mass transfer between mobile
and less mobile (mathematically treated as immobile) zones.
In this section we extend the model to incorporate a binary
precipitation‐dissolution reaction at equilibrium, but it could
be extended to any system involving p ≥ 2 aqueous spe-
cies with q ≥ 1 equilibrium reactions, along the lines of
De Simoni et al. [2005]. The binary system proposed involves
two reacting aqueous species, Bj, j = 1, 2 (their respective
aqueous concentrations being cm,1 and cm, 2, in chemical equi-
librium with a mineral S at any point in space and time:

B1 þ B2 ! S ð7Þ

[18] The concentrations of the aqueous species are non-
linearly related by means of the mass action law, which,
under the assumption of low ionic strength can be written as

cm;1 � cm;2 ¼ K ð8Þ

where K is the equilibrium constant, modified for the
activity coefficients. Therefore, K will be a function of local
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chemistry and temperature. Without loss of generality, and
for the sake of simplicity, we disregard this variability. The
equality in equation (8) implies that the mineral is widely
available at all points in space. The governing nonlinear
transport equations for the two aqueous species become

�m
@cm; j
@t
¼ r � ðDrcm; jÞ � q � rcm; j � rm j ¼ 1; 2 ð9Þ

where rm is the reaction rate, defined as the amount of
precipitated moles per unit volume of aquifer and unit of
time. Note, that in equation (9) we keep the subindex m in
the concentrations and the reaction rate to indicate that they
correspond to that of the mobile zone; this identification
will be useful in the sequel. Note also that, since rm is the
same for j = 1 and 2, it is possible to define a linear com-
bination of the concentrations (denoted as component):

um ¼ cm;1 � cm;2 ð10Þ

so that the chemical source term rm is eliminated and the
governing equation is that of a conservative quantity:

�m
@um
@t
¼ r � ðDrumÞ � q � rum ð11Þ

[19] A more general reactive transport problem involving
p aqueous species with q equilibrium reactions could be
defined in terms of p − q components. The component defi-
nition in equation (10) is not unique. Another conservative
quantity would also be obtained by multiplying equation (10)
by a scalar. The resulting transport equation (equation (11)) is
independent of rm because precipitation removes the same
amount of moles of the two species. Therefore, their differ-
ence is unaffected by reaction (which is the definition of
conservative quantity). Assuming that it is possible to obtain
a solution for the component um, the two concentrations can
be obtained explicitly by solving the speciation problem (i.e.,
solving equations (8) and (10))

cm;1 ¼ um
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m
4
þ K

r
cm;2 ¼ � um

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2m
4
þ K

r
ð12Þ

[20] In many applications the main quantity of interest is
the reaction rate, rather than the actual solute concentrations.
This would be the case, e.g., in natural attenuation studies,
karst formation, mineral precipitation, etc. The reaction rate
can then be obtained from equation (9). Alternatively, De
Simoni et al. [2005] derived an explicit expression for the
calculation of r directly from the solution of the component,
being the product of two terms, one of them depending only
on speciation rspec and a second one which depends on the
concentration gradients and the dispersion tensor and char-
acterizes mixing rmix

r ¼ rspecrmix ð13Þ

with

rspec ¼ d2cm;2
du2m

¼ 2K

ðu2m þ 4KÞ3=2
rmix ¼ rTumDrum ð14Þ

2.3. Multirate Mass Transfer Reactive
(MRMT‐R) Model

[21] Combining the two models presented in this section,
it is possible to incorporate nonlinear reactions into the
MRMT model. An important point to note here is that the
incorporation of “immobile regions” in our effective model
is just a mathematical artifact to account for the amount of
solute that samples the less mobile parts of the domain. For
this reason, sink terms should be included in the “immobile
zones” to account for the precipitation that takes place when
the solutes reaching those areas by diffusion (actually slow
advection) generate chemical disequilibrium with the mineral.
It is important to state that we can have a different chemical
equilibrium condition in each one of the zones (mobile plus
N immobile). Thus, even though we preserve chemical equi-
librium at all points, defining concentration by averaging over
scales larger than the pore, effectively it appears that equi-
librium is not preserved [Luo et al., 2008; Binning and Celia,
2008; Donado et al., 2009]. This issue has significant
implication for total reaction rates, which will be explored
later.
[22] Combining equations (9) and (1), and introducing (5)

we can write the governing equation for the MRMT‐R
model

�m
@cm; j
@t
¼ r � ðDrcm; jÞ � q � rcm; j

�
XN
i¼1

�i�iðcm; j � cim; j;iÞ � rm j ¼ 1; 2 ð15Þ

The mass balance for the ith immobile zone is written as an
extension of (4)

�i
@cim;j;i
@t
¼ �i�iðcm; j � cim;j;iÞ � rim;i j ¼ 1; 2 ð16Þ

where rim,i is the mass removed (by precipitation) per unit
volume of aquifer and unit of time in the immobile zone i.
Introducing equation (10), the equations satisfied by the
conservative component read

�m
@um
@t
¼ r � ðDrumÞ � q � rum �

XN
i¼1

�i�iðum � uim;iÞ ð17Þ

@uim;i
@t
¼ �iðum � uim;iÞ ð18Þ

where we have introduced uim,i = cim,1,i − cim,2,i. Provided
we have a way to solve equations (17) and (18) component
in terms of um and uim,i, the actual concentration values in
the mobile zone are given by equation (12) plus

cim;1;i ¼ uim;i
2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2im;i
4
þ K

s
cim;2;i ¼ � uim;i

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2im;i
4
þ K

s
ð19Þ

Finally the reaction rates can be obtained as

r ¼ rm þ
XN
i¼1

rim;i ð20Þ
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with rm obtained from equation (15), and rim,i being after
equation (16)

rim;i ¼ ��i
@cim;j;i
@t
� �i�iðcim;j;i � cm; jÞ ð21Þ

where the value of rim,i is independent of j, that is, of the
species used for computing the mass balance. It is important
to note that the impact of heterogeneity is comprised only in
the memory function, which is determined from conserva-
tive transport. An alternative expression to equation (21) can
be found in work by Donado et al. [2009]. Some insights
into the numerical implementation of MRMT‐R are given in
Appendix A.

3. Behavior of the MRMT‐R Model

[23] The MRMT‐R model discussed in section 2 depends
on a number of parameters, including those that define the
memory function, mobile and immobile porosity, and the
equilibrium constant, among others. In this section we explore
the behavior of the model by analyzing the 1‐D problem dis-
cussed by Willmann et al. [2008].
[24] The domain is 3000 elements units long. A hydraulic

gradient is imposed so that water flows in the positive x
direction with a flux of 0.0062 (in consistent units). Mobile

porosity, �m, equals 0.147 and the longitudinal dispersivity,
al, 33.8, all in consistent units. The immobile regions are
characterized by an immobile porosity, �itot, of 0.153 (total
porosity is 0.3) and a following memory function with:
slope, mg, of 1 and characteristic times t1, t2, of 8000 and
800000 (all reported times are in consistent units). The
memory function is discretized using 20 terms with the a
and b distributions of Willmann et al. [2008]. Initial water
displays a constant chemical signature represented by um =
uim,i = 0, equivalent to consider that the concentrations of
the two species are identical cm,1 = cm, 2 = cim,1,i = cim,2,i (∀i).
During a short interval at the beginning (Dt = 1000) a pulse
of u = c1 − c2 = 0.5 is applied at the inlet boundary. That is,
water with a different chemical composition, but still in
chemical equilibrium with the mineral, enters the domain.
After this time interval, the system is flushed by water with
the initial composition (u = 0). In this particular simple geo-
chemical setup whenever two end‐member waters (the initial
one and that entering the system) are in equilibrium with the
mineral, any of their mixtures will be oversaturated. There-
fore, precipitation takes places wherever mixing occurs.
[25] Results are displayed in Figure 1. Notice that for t =

11000 (only slightly larger than t1), diffusion into immobile
regions has barely started acting as the mass transfer mech-
anism and the conservative component concentration in the

Figure 1. Evaluation of the spatial distribution of mineral precipitation. (a) Total precipitated mass for
three different times (1000, 11000, 51000). (b) Spatial distribution of reaction rate for an early time step
(t only slightly larger than t1); reaction rate in the mobile zones shows some ADE like behavior with the
characteristic double peak and is much stronger than reaction rate in the immobile zone. (c) The same plot
for a later time step, where no double peaks are displayed anymore (notice the different horizontal scale in
the plots). (d) Distribution of selected single immobile zones for the same time as Figure 1c; the total number
of immobile zones is 20.
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mobile region looks quite Gaussian. In fact, the peak is
located at x ’ 420, when it should have been located at
x = qt/�m = 443, if transport had been restricted to the mobile
region. On the other hand, the conservative component u
displays a marked tailing and a slight retardation (peak at
1900, while advection through the mobile region would
have brought it to 2130) at t = 51000, when diffusion into
immobile regions has become relevant. The behavior of the
solution in terms of reaction rates is discussed below.

3.1. Spatial Distribution of Reaction Rate in the Mobile
and Immobile Zones

[26] Due to the specified boundary conditions, the largest
amount of precipitation takes place at the inlet (left) boundary
(Figure 1a). With time reactions extend along the flow path.
Overall mineral precipitation in our model is the sum of that
taking place in the mobile and in the N immobile zones
(equation (20)). At early times the spatial distribution of
reaction rates in the mobile zone resembles what would be
obtained from an ADE transport model, with a characteristic
symmetric double peak and a zero value in between (the
actual expression given by equation (14)). The double peak
is still present in the MRMT‐R model, but the minimum
value is no longer zero, and the leading peak is slightly larger
than the trailing peak (the shape is nonsymmetrical; see
Figure 1b). The relatively large reaction rate obtained in the
mobile region reflects the two mixing mechanisms present
in equation (15), i.e., dispersion and exchange with immo-
bile regions. The total rm is obtained from mass balance in
equation (15). The reaction rate caused by dispersion is cal-
culated using equation (13) rate and the rest is caused by
exchange with immobile regions. Both for small and for large
times, mixing (and consequently reaction) due to mass
transfer is much larger than that due to dispersion (Figures 1b
and 1c). This is particularly relevant at small times consid-
ering that dispersion has barely started to affect the qualitative
shape of the conservative component.
[27] For small times, the total reaction rate integrated over

all immobile zones is much smaller than that at the mobile
zone, and displays a single maximum located in between the
two peaks of mobile zone reaction rate (slightly ahead of
the u peak). For later times, the total reaction rate distribution
displays a single peak (Figure 1c). Now, mobile and immo-
bile reaction rates display similar shapes, with their maxima
shifted toward the front, and long trailing tails. The peak
corresponding to the immobile zone is slightly delayed with
respect to that of the mobile one. Individual reaction rates for
5 zones out of the total N = 20 are shown in Figure 1d. The
reaction rate for each individual zone appears to be double
humped. The first hump corresponds to the mass transfer into
the immobile zone. It is the largest and slightly lagged with
respect to the plume peak, with the lag time decreasing with
increasing mass transfer coefficient a. The second hump
corresponds to the mass transfer out of the immobile zone. It
is also delayed inversely proportional to a. In fact, the two
humps nearly overlay for very large a values. The model is
not very sensitive to the amount of immobile zones used.
Results were visually identical when the number of zones was
reduced from 20 to 10. Differences became noticeable when
the number of zones was further reduced to 5.
[28] Simulation of mixing in this model is subtle. On the

one hand, reaction at the mobile zone caused by mass

exchange with the mobile region resembles mixing caused
by dispersion. On the other hand, reaction caused by mixing
within the immobile regions is quite proportional to the
difference between mobile and immobile concentrations.
The implication is that, contrary to what might be expected,
mass transfer with immobile regions does not necessarily
imply full mixing between initial and inflowing waters.
Little actual mixing occurs for zones whose characteristic
time (1/a) is small compared to the concentration rise. That
is, these zones are effectively in equilibrium with the mobile
region. And they act as if their water was replaced rather
than mixed (i.e. their effect is equivalent to an increase in
mobile porosity and dispersivity). On the other hand, zones
with much larger characteristic times (small a) do act as
fully delayed mixing causing tailing for point injections and
delaying reaction for continuous injection. The implication
of this discussion is that, although mixing and spreading are
not equated in the MRMT‐R model, they are not quite
independent either. Mobile and immobile regions contribute
to both.

3.2. Sensitivity to the Equilibrium Constant

[29] Reaction rates at the local scale can be expressed as
the product of two independent terms: the mixing factor and
the speciation factor (e.g., equation (13) rate).While our work
focuses on mixing, the speciation factor may also be impor-
tant and is discussed here briefly to facilitate understanding
of later results. In our geochemical setup the speciation factor
is controlled entirely by the values of equilibrium constant,K,
and the component u. Figure 2a illustrates the dependence
of the speciation factor on u for several K values. For large u,
the speciation factor is largest for large K, but the opposite
holds for low K. Moreover, for small values (u <

ffiffiffiffi
K
p

) the
speciation factor is virtually constant, but drops as u−3/2 for
large u values.
[30] Nonmonotonic dependence of the speciation factor

with respect to K translates to the quantification of overall
precipitation (Figure 2b). Together with the nonlinearity of
the mixing factor, it leads to a somewhat unpredictable
behavior of reaction rates. The spatial distribution of pre-
cipitation rate changes dramatically with K. The reference
case discussed before used pK = −log10(K) = 2. When K is
decreased (pK = 4) the overall behavior changes slightly. The
reaction rate is generally increased and a slight double peak
is developed. For pK = 6 this effect is much more pronounced
and we see a well developed double peak. The reason here is
not, as in the previous section, incomplete mixing within the
immobile zone but that the reaction hardly takes place at
peak concentrations but only at much lower ones.

4. MRMT‐R Upscaling Methodology

[31] Willmann et al. [2008] showed that a MRMT model
could be used to provide an effective picture of conservative
transport through heterogeneous media. They analyzed how
the memory function is affected by different parameters
characterizing the heterogeneity of the system, such as the
variance of log hydraulic conductivity. The main objective in
this section is to find whether and under which conditions, the
MRMT‐R model is capable of reproducing key features of
multicomponent reactive transport in heterogeneous media
where an ADE is assumed at the local scale. The working
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hypothesis is that the memory function that is derived from
conservative transport would be directly applicable to reac-
tive transport. This is why our 2D heterogeneous fields rep-
resent individual (hydro)geological units with strong internal
heterogeneities rather than complex large scale areas with
different units with possibly individually different memory
functions.
[32] The methodology we use is numerical and can be

summarized in the following steps: (1) we create heteroge-
neous transmissivity fields with some characteristic features;
(2) we perform reactive transport simulations in the hetero-
geneous fields based on a local description of transport
governed by an ADE equation with a single sink/source term
to account for precipitation/dissolution; (3) we derive a
memory function from the BTCs observed for a conservative
species; (4) we model reactive transport in a homogenized
media by using the MRMT‐R model with the memory
function derived from the conservative transport, and (5) we
test whether the MRMT‐R simulations actually match the
observed curves in the heterogeneous media. These steps are
explained next.

4.1. Generation of Heterogeneous Transmissivity Fields

[33] We conceptualize the aquifer as two dimensional.
We focus on transport at intermediate distances compared to
a larger characteristic heterogeneity scale (such as the cor-
relation distance whenever it exists), where power law tails
are frequently observed in the field. According to Willmann
et al. [2008] tailing occurs due to the presence of connected
regions of high conductivity (preferential flow paths). For
this reason we use individual realizations of heterogeneous
fields obtained as follows (the actual selected fields can be
seen in Figure 3). The first field studied is an individual
unconditional realization of a multi‐Gaussian field with a
small correlation length (l = 20 in consistent units). This
field was generated using the Gaussian sequential simulator
GCOSIM3D [Gómez‐Hernández and Journel, 1993]. This
first field is used for comparison, since transport in multi‐
Gaussian fields has been the topic of extensive research. The
second field corresponds to an individual realization of a
conditional simulation using a power variogram. The con-
ditioning points (not shown in Figure 3) are selected to
produce a single preferential flow path connecting the high
permeability pixels. By construction, this field exhibits an
evolving range of scales. The third field is a connected field
constructed using the methodology of Knudby and Carrera
[2006]. This results in a field with narrow high T paths
surrounded by low conductive regions. The variance of log
transmissivity (Y) is set to 6 in all three fields. The expo-
nential covariance model was used in all three cases. Still,
this does not limit our results as model predictions are
insensitive to the choice of the covariance model as long as
uncertainties are not considered [Riva and Willmann, 2009].
The domain size is 1024 by 512 elements of unit size. No
flow is imposed on top and bottom and constant head
boundaries on the remaining sides, forcing a mean uniform
flow from left to right. The overall gradient is 0.0098. Notice
that we are interested in looking at the characteristic features
of transport in individual realizations, and this is the reason
not to pursue a Monte Carlo approach.

4.2. Reactive Transport Simulations

[34] Local scale reactive transport in the heterogeneous
fields is assumed to be described by the ADE. Note that the
basic methodology can easily be extended to a different form
of the local transport equation. We focus on local scale
advective‐dispersive transport because we are mainly inter-
ested in the loss of information in the upscaling process. We
used the approach outlined in section 2.2. That is, we first
solved transport of a conservative component (equation (11))
followed by speciation (equation (12)). The initial condition
is um = uim,i = 0.
[35] Boundary conditions are similar to those explained in

the previous section but imposed in all boundary nodes
corresponding to the 2D domain. That is, a pulse of u = 0.5
is applied to the water entering through the left nodes during
a short interval at the beginning (Dt = 1000). This is fol-
lowed by flushing with u = 0 water (initial conditions). The
remaining parameters for the local scale equation are a
porosity of 0.3 and longitudinal and transverse dispersivities
of 10 and 1, respectively. Molecular diffusion is not explicitly
modeled. While molecular diffusion triggers mixing at the
pore scale, its effect overcome by mechanical dispersion
at the Darcy scale. Concentrations are computed from

Figure 2. (a) Speciation factor (equation (14)) as a func-
tion of concentration for different pK (−log10K) values. The
speciation factor increases with pK for low values of u, but
decreases for high values). (b) Spatial distribution of the
reaction rate (equation (13) rate) for t = 51000 in the
example of Figure 1 for the three values of K. The reaction
rates are nonmonotonic with K.
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equation (12). The reaction rate is calculated at each time step
and each node through mass balance, that is solving for rm
in equation (9), and the cumulative precipitated mass is
recorded. Simulations are performed using code FAITH
[Sánchez‐Vila et al., 1993], which solves the transport equa-
tion using the Galerkin finite element method. The algorithm
is only conditionally stable, which restricts the values of
dispersivity we can use. But it is highly accurate, which
ensures that no numerical dispersion is present. Figure 4

shows an example plot of total precipitated mass. One
clearly sees “hot spots” of strong precipitation at locations
where strong mixing takes place. Analysis of Figure 4 is
nontrivial. Some hot spots occur at zones of fast transport,
where flow tubes become very narrow, so that local trans-
verse dispersion becomes a very efficient mixing mechanism
[Werth et al., 2006]. However, zones of fast transport down-
stream of other hot spots display moderate precipitation
because reactive capacity has been exhausted.

Figure 3. Transmissivity fields and corresponding breakthrough curves (BTCs) obtained from conser-
vative transport simulations. BTCs are the cumulated mass collected at the domain’s right boundary. The
three fields correspond respectively to single realizations of (a) a multi‐Gaussian field with short corre-
lation length, (b) a nonstationary field based on a power variogram, and (c) a field where connectivity
between the high transmissive pixels have been enhanced with respect to those of low conductivity.
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4.3. Derivation of Memory Function for Conservative
Transport

[36] The three BTCs presented in Figure 3, corresponding
to a conservative species, can be represented using anMRMT
model with a memory function derived according to
Willmann et al. [2008]. From a given BTC, one derives an
upscaled value for longitudinal dispersivity and mobile
porosity from the early time arrival of the BTC. The three
parameters defining the memory function are taken from late
time behavior. The two characteristic times when the power
law behavior starts, t1, and ends, t2, and the slope of the BTC,
mBTC. The slope of the memory function, mg, is related to the
slope of the BTC and depends on the boundary condition. The
two slopes are identical for resident concentration, while for
flux‐averaged concentration mg = mBTC − 1. The last relevant
parameter in the model, the immobile porosity, calculated by
�itot = �tot − �m, so as to ensure that total porosity remains
unchanged.

5. Effective Reactive Transport Behavior

[37] Type A field shows an almost Fickian behavior with
a slightly noticeable tail (Figure 3). The curves recorded from
the Type B and C fields show anomalous (non‐Fickian)
behavior. While these two fields are very different in terms
of their internal structure, they render similar breakthrough

curves, so that the fitted memory functions are almost
identical. The next step is to analyze how reactive transport
behaves in these fields and compare the results to those
obtained from the equivalent model. The comparison is
done in terms of vertically averaged spatial distributions of
(1) instantaneous reaction rates, and (2) cumulative precipi-
tated mass. In the following we study the effective reactive
transport behavior for heterogeneous fields, which cause
non‐Fickian effective conservative transport (Type B and C),
and fields, for which effective conservative transport is
essentially Fickian (Type A).

5.1. Non‐Fickian Conservative Transport

[38] Looking at fields B and C, we find clear indicators of
anomalous conservative transport. The breakthrough curves
for conservative solutes display the peak well ahead of one
pore volume and a power law late time behavior. This
behavior can be reproduced using a MRMT model.
[39] Field C is characterized by thin channels within a

matrix of less conductive material. Figure 5a shows a very
good match in terms of cumulative precipitated mass versus
distance for three selected time steps when comparing the
results from the real (heterogeneous) 2D field and the
upscaled 1D mass transfer model. The remarkable point is
that both the spatial distribution and the time evolution are
well reproduced. This observation is independent of the value

Figure 4. (top) The flow field and (bottom) the spatial distribution of total precipitated mass for a Type B
field. One can see hot spots (dark) of large precipitation where more mixing occurs. The flow lines generally
appear to become narrower in these areas [Werth et al., 2006]. It supports our hypothesis that the flow fields
and, therefore, heterogeneity controls mixing in such a highly heterogeneous field.
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of the equilibrium constant K (Figures 5b and 5c), despite
the very nonlinear response to this particular parameter:
larger K values (=0.01) lead to larger precipitation close to
the outlet, while smaller K values provide a similar amount
of precipitate throughout the system for late times.
[40] The spatial distribution of vertically averaged reac-

tion rates at one time step for the type C field is shown in
Figure 5d. The heterogeneous curve displays a slight double
peak with the largest peak at the front. This behavior is
reproduced quite well with the mass transfer model. Already
at such early time the effective model is capable of reprodu-
cing the main features of the heterogeneous solution. We also
compared the reaction rate at later times (not shown), but as
most of the mass has left the domain only the tails were fitted.
[41] Type B field (Figure 3) is characterized by large scale

structures, and the transitions from high to low conductive
zones are more gradual than in the Type C field. Still,
memory functions in those two fields are almost identical.
Figure 6 displays the comparison of precipitated mass ver-
sus distance for some specific times and different K values.
The agreement is still quite remarkable. On the contrary,
when comparing now the spatial distribution of instanta-
neous reaction rate in both models (see Figure 6d) the match
is rather poor. The heterogeneous medium leads to a double
peaked curve, with the two peaks of similar size, while the
effective model provides a hardly noticeable second peak,
and a long backwards tail. In this case the fluctuations in
vertically integrated reaction rates are sensitive to the pres-
ence of very large low and high conductive zones (Figure 3).
This effect is averaged out when integrated in the BTC
across the full domain. At larger travel times (not shown) the
agreement improves slightly. Still, we must conclude that

the methodology does not ensure good reproduction of local
reaction rates, which is to be expected because an upscaling
approach does not need to reproduce local scale effects.
Instead, large scale trends should be simulated. In fact, the
spatial distribution of cumulative reactions rates is qualita-
tively reproduced in all cases and times analyzed.

5.2. Quasi‐Fickian Conservative Transport

[42] Ergodic transport will eventually develop whenever
travel distance is much larger than the correlation length
along the mean flow direction. In such a case transport can
be described by means of an ADE characterized by the mean
flow velocity and a constant macrodispersion coefficient.
This is the reason we incorporated field A in our simulations.
The conservative BTC at the outlet boundary shows a close
to Fickian behavior (recall Figure 3). The heterogeneous
reactive transport results are shown in Figure 7. In Figure 7a
we also show the difference between considering an ADE,
with an upscaled dispersivity coefficient of 85.0, or a MRMT
model with mobile and immobile porosities and dispersivity
equal to 0.2, 0.1 and 45.0, respectively, and the memory
function characterized by a slope of 2.0 and characteristic
times of t1 = 6 × 102 and t2 = 9 × 105. For large enough travel
times, the spatial distributions of cumulative precipitate in
the two models are practically identical except at the leading
front. Generally, our model agrees quite well with hetero-
geneous solution except at the outlet, which is affected by
the boundary condition. However, again the spatial distri-
bution of the reaction rate, Figure 7b, is not well reproduced
by the effective quasi‐Gaussian model indicating that the
local mixing mechanisms are not well captured by the

Figure 5. Model results for field type C (connected field). Comparison between the spatial distributions
of the vertically averaged precipitated mass in the heterogeneous media with those derived from the effec-
tive MRMT‐R model for three different time steps (1000, 11000, 51000) and for (a) pK = 2, (b) pK = 4,
and (c) pK = 6. (d) The instantaneous reaction rate for both models at a given time step for pK = 2, show-
ing a good agreement in the instantaneous spatial distribution.
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effective quasi‐Gaussian model. Similar behavior has been
observed by Luo et al. [2008].

6. Sensitivity Analysis

[43] In this section, we study the sensitivity of the
observed effective reactive transport behavior to the applied
initial and boundary conditions and, more, importantly, to
the value of transverse dispersivity, which is usually viewed
as the key parameter in reactive transport modeling.

6.1. Initial and Boundary Conditions

[44] The slope of a BTC depends strongly on the initial
and boundary condition applied. Yet, the memory function
does not change [Haggerty et al., 2000]. In all previous
simulations an initial pulse proportional to flux is applied at
the inlet boundary of the heterogeneous field. This results in
a flux‐averaged boundary condition, leading to a BTC slope
of mpulse. Applying a uniform initial distribution leads to a
different BTC, with a slope munif. Willmann et al. [2008]
found that whenever the boundary itself samples all the
variability of the system, munif = mpulse − 1. We look now at
the implications for reactive transport. Figure 8 displays the
spatial distributions of precipitated mass for these two
boundary conditions on Field C. We adjust the duration of
the pulse input (tp = 610) and the number of columns where
constant concentration are initially present (13) to assure the
same mass of solute enters in the system in both simulations.
Far from the inlet boundary the overall precipitation is larger
for the flux‐averaged boundary case than for the initial
uniform pulse. The opposite happens close to the boundary.
This difference inmass precipitated is caused by the dominant

transport mechanism in this field being flow within the fast
flowing channels, so that the largest amount of precipitation
takes place along the channels. The homogeneously distrib-
uted case seems to have only 1/5 of the mass within these
channels compared to the reference case. The MRMT‐R
model using the same memory function accounts very well
for both solutions with respect to total precipitated mass.
Intuitively one expects resident concentration to be used in
reactive transport, particularly as reactions takes place also
where water is almost stagnant (immobile zone). But from
our simulations we conclude that the distinction between flux
concentration and resident concentration only depend of the
boundary condition of the problem and that MRMT‐R is
capable of properly accounting for both.

6.2. Transverse Dispersion

[45] Transverse dispersion,aT, and molecular diffusion are
particularly important for reactive transport as they are the
main local scale parameters that control mixing [Cirpka and
Kitanidis, 2000]. Here, we compare the distributions of pre-
cipitated mass for three different aT values for the heteroge-
neous reference field C (Figure 8b). It can be seen that the
total precipitated mass is only slightly affected by the choice
of the aT value. The larger the value, the smoother the curve,
but the actual values do not change much. It can also be seen
that a larger transverse dispersion value delays the precipi-
tation for earlier time steps. In fact, this behavior also occurs
for conservative transport. It reflects the delayed arrival of the
mixing front caused by larger aT. For comparison the effec-
tive mass transfer model is shown as well and it can be
observed that all three aTs are represented well with the

Figure 6. Model results for field type B (nonstationary variogram). Comparison between the spatial
distributions of the vertically averaged precipitated mass in the heterogeneous media with those derived
from the effective MRMT‐R model for three different time steps (1000, 11000, 51000) and for (a) pK = 2,
(b) pK = 4, and (c) pK = 6. (d) The instantaneous reaction rate for bothmodels at a given time step for pK = 2.

WILLMANN ET AL.: COUPLING OF MASS TRANSFER AND REACTIVE TRANSPORT W07512W07512

11 of 15



MRMT‐R model, which by construction does not take into
account aT.
[46] Our results show that aT has little effect on the dis-

tribution of the precipitated mass. This is somewhat puzzling,
because transverse dispersion has been assumed to control
mixing. We conclude that aT while being the controlling
factor describing local scale mixing and, thus, a necessary
trigger for reactive transport, seems to be of subleading
importance for the quantification of the precipitated mass in
strongly heterogeneous fields. This apparent paradox can be
attributed to the fact that large scale mixing is controlled
here by explicit heterogeneity. Local scale dispersion at the
Darcy scale, or molecular diffusion at the pore scale, are
needed as a trigger mechanism, but the actual rate of large
scale mixing and reaction are determined by heterogeneity.
This is an important prerequisite for upscaling procedure of
mixing as the upscaled parameters only account for mixing
lost through homogenization and not as well for the one lost
through reduction of dimension.

7. Conclusions

[47] We present an effective reactive mass transfer model
and investigate whether this model based on upscaling of
conservative transport is sufficient to upscale mixing con-
trolled multicomponent reactive transport. We develop a
mass transfer model (MRMT‐R) for a binary precipitation

dissolution system which is based on an upscaled memory
function derived from the observed BTC of a conservative
solute. Generally, we find that the MRMT‐R model is an
excellent tool for representing mixing controlled reactive
transport. In particular:
[48] 1. Total precipitation is well reproduced for all the

examples studied, in terms of both the total mass precipi-
tated and its spatial distribution for short, intermediate and
large travel times.
[49] 2. The MRMT‐R model mathematically separates

reactions taking place in the mobile and immobile zones. The
distinction is to some extent arbitrary. Fast flowing parts of
the domain can be modeled either within the mobile porosity
with an upscaled dispersion or within the immobile porosity
with large exchange rates, leading to practically identical
spatial distributions of overall reaction rates.
[50] 3. Applying different initial and boundary conditions

changes the reactive transport behavior dramatically. A
uniform initial (resident) distribution leads to stronger pre-
cipitation close to the inlet boundary and less precipitation

Figure 8. Sensitivity analysis for (a) boundary conditions,
including an flux averaged input pulse and initial uniform
concentration at the boundary nodes. After a distance of
200 the curves have the same shape but the precipitated
mass when a pulse is considered is 5 times larger than for
fixed initial concentration. The smoother cures are the effec-
tive MRMT‐R models which both reproduce very well the
heterogeneous solution. (b) Transverse dispersivities (0.1,
1.0, 10.0) is varied. The curves look similar but smooth
out with increasing dispersivity. The corresponding effec-
tive solution represents very well all the heterogeneous
curves.

Figure 7. Model results for field type A. (a) Comparison
between the spatial distribution of the vertically averaged
precipitated mass in the heterogeneous media with those
derived from the effective MRMT‐R model for three differ-
ent time steps (1000, 11000, 51000) and for pK = 2. (b) The
instantaneous reaction rate for both models at a given time
step.
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further downstream when compared to a flux weighted
input. Interestingly, the spatial distribution for the two cases
further away form the boundary is more or less the same
with lower values for the uniform initial distribution. The
MRMT‐R model reproduces very well precipitation for
either boundary condition using the same memory function.
[51] 4. Local scale mixing parameters (transverse dis-

persivity andmolecular diffusion) have only aminor effect on
total precipitation for the large scales investigated here, but
they need to be present as a trigger mechanism to obtain
reactions. For larger scales mixing appears to be controlled
by advective heterogeneity described by a conservative
memory function. The larger the transverse dispersivity, the
smoother the curve. That transverse dispersion is not very
important for large scale reactive transport is critical as
MRMT‐R (and most of the existing upscaled models) does
not explicitly account for it. Molecular diffusion was not
modeled explicitly, even it is a conceptual prerequisite for
local scale mixing. This limits our results to cases where
transverse hydrodynamical dispersion is controlled by trans-
verse mechanical dispersion and not by molecular diffusion.
[52] In short, the proposed MRMT‐R does represent quite

accurately upscaled reactive transport through heterogeneous
media using solely data derived from conservative transport.
We attribute this behavior to the fact that the MRMT model
allows approximating the distribution of concentrations (that
is, the actual PDF is approximated by the distribution of
mobile and immobile concentrations) and, hence, the non-
linearity of reactions. Still, a note of caution must be made
on the practical use of the method. The approach is only
valid if the BTC is representative for the individual travel
paths. As mentioned in the introduction, the observed BTC
may result from superimposing independent flow paths with
little mixing. In such cases, which should be expected in
plumes or if injection only spans a portion of the aquifer
thickness, the approach would overestimate mixing and
reaction. A detailed accounting of geological heterogeneity
or, perhaps, a nonlocal in space approach would be required
in those cases.

Appendix A: Some Details on the Numerical
Implementation of a Discrete MRMT‐R Model

[53] MRMT‐Rmodel presented here is implemented in the
2D finite element code TRACONF [Carrera et al., 1989].
The implementation of the general, conservative MRMT
scheme was outlined in Appendix A of Willmann et al.
[2008]. Additionally, after solving transport for the compo-
nent u, the mass balance for the reaction rate in the mobile
zone (equation (15)) and all immobile zones (equation (21))
have to be calculated at each time step. Both are mass balance
equations where the unknown is the reaction rate. Generally,
the implementation of this reactive mass transfer scheme is
straight forwards. Still, two difficulties exist; the treatment
of boundary conditions involving explicitly u and solving
the problem implicitly.
[54] The boundary conditions have to be corrected for

those operations that involve explicit values of u (like for
fixed concentration or flux dependent mass inflow). The
mass balance in equation (15) only closes if this correction
is performed. The respective mathematical operation setting
the boundary conditions has to be reverted and performed
again with c2 replacing u. For solving transport at an implicit

scheme it is critical to set the time correctly for the weighting
of u and c2. One can either calculate the reaction rate at
time k + � or the reaction rates at times k and k + 1 are
weighted by � and 1 − � respectively. We found much lower
mass balance error for the latter case.

Appendix B: Derivation of Equation (5)

[55] We start from equation (2) written in Laplace space

eGj ¼ �itotegðsecm; j � cm0; jÞ ðB1Þ

From (3), it immediately follows that

eg ¼XN
i¼1

�ibi
�i þ s

ðB2Þ

also, from equation (4) it directly follows that

secim; j;i � cim0; j;i ¼ �iecm; j � �iecim; j;i ðB3Þ

with the subindex 0 indicating initial values. Isolatingecm, j in equation (18) and substituting it together with
equations (B2) and (B1) we obtain

eGj ¼
XN
i¼1

bi�itot �iðecm; j � ecim; j;iÞ � �i

�i þ s
ðcm0; j � cim0; j;iÞ

� �
ðB4Þ

if initially the system was in equilibrium regarding the
mobile and immobile phases, the last term in equation (B4)
cancels out and by taking the inverse Laplace transform of the
resulting equation we immediately recover equation (5).
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