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Abstract

We address advective transport of a solute traveling toward a single pumping well in a two-

dimensional randomly heterogeneous aquifer. The two random variables of interest are the trajectory

followed by an individual particle from the injection point to the well location and the particle travel time

under steady-state conditions. Our main objective is to derive the predictors of trajectory and travel time

and the associated uncertainty, in terms of their first two statistical moments (mean and variance). We

consider a solute that undergoes mass transfer between a mobile and an immobile zone. Based on

Lawrence et al. [Lawrence, A.E., Sánchez-Vila, X., Rubin, Y., 2002. Conditional moments of the

breakthrough curves of kinetically sorbing solute in heterogeneous porous media using multirate mass

transfer models for sorption and desorption. Water Resour. Res. 38 (11), 1248, doi:10.1029/

2001WR001006.], travel time moments can be written in terms of those of a conservative solute times

a deterministic quantity. Moreover, the moments of solute particles trajectory do not depend on mass

transfer processes. The resulting mean and variance of travel time and trajectory for a conservative

species can be written as functions of the first, second moments and cross-moments of trajectory and

velocity components. The equations are developed from a consistent second order expansion in rY

(standard deviation of the natural logarithm of hydraulic conductivity). Our solution can be completely

integrated with the moment equations of groundwater flow of Guadagnini and Neuman [Guadagnini, A.,

Neuman, S.P., 1999a. Nonlocal and localized analyses of conditional mean steady state flow in bounded,
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randomly non uniform domains 1. Theory and computational approach. Water Resour. Res. 35(10),

2999–3018.,Guadagnini, A., Neuman, S.P., 1999b. Nonlocal and localized analyses of conditional mean

steady state flow in bounded, randomly non uniform domains 2. Computational examples. Water Resour.

Res. 35(10), 3019–3039.], it is free of distributional assumptions regarding the log conductivity field, and

formally includes conditioning. We present analytical expressions for the unconditional case by making

use of the results of Riva et al. [Riva, M., Guadagnini, A., Neuman, S.P., Franzetti, S., 2001. Radial flow

in a bounded randomly heterogeneous aquifer. Transport in Porous Media 45, 139–193.]. The quality of

the solution is supported by numerical Monte Carlo simulations. Potential uses of this work include the

determination of aquifer reclamation time by means of a single pumping well, and the demarcation of the

region potentially affected by the presence of a contaminant in the proximity of a well, whenever the

aquifer is very thin and Dupuit–Forchheimer assumption holds.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

A plausible scenario in risk assessment for repositories consists of drilling a well in the

vicinity of the repository many years after its closure, when the buried material is still hazardous.

If after several years of pumping the engineering barrier fails and some contaminant is released,

it is important to evaluate how long the contaminant would take to reach the well and thus, the

biosphere.

A completely different scenario, although based on the same physical concepts, would be

the clean-up of a contaminated aquifer using the pump and treat method. Depending on the

size of the plume, the type of contaminant and the subsurface conditions, it can be necessary

to pump until some remediation goals are met. The relevant question in this scenario would

be how long one has to pump at a given rate, and thus how expensive the clean-up would

be.

Both mentioned scenarios can arise in several geological settings, including both porous

and fractured formations. It is recognized that prediction of transport of solutes in a real

flow configuration is never certain. The uncertainty associated to the parameters governing

groundwater flow and solute transport is conveniently tackled within a stochastic

framework. The latter recognizes that in natural aquifers it is not possible to describe

deterministically either hydrogeological parameters or the space-time distribution of the state

variables of interest. Instead, the stochastic approach offers the appealing alternative of

characterizing these quantities in probabilistic terms, by means of either their complete

probability distribution or a few, significant statistical moments, particularly the low order

ones.

Here, we focus on the impact of the porous medium heterogeneity on contaminant transport

under convergent flow conditions, such as those created by a single pumping well. It is well

known that in the presence of a single pumping well creating a purely radial flow within a

homogeneous aquifer (a) the trajectory of any particle injected in the domain, in the absence

of dispersion, is a straight line connecting the point of injection and the well, (b) the velocity

of the particle at any given point is inversely proportional to the distance from the well and

directly proportional to the pumping rate, and (c) the travel time of a conservative solute is

proportional to the square of the distance from the well and inversely proportional to the

pumping rate. These simple results are not amenable to direct translation to a heterogeneous
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formation, where local velocities, trajectories and solute travel time become uncertain. This

work is aimed to deriving unbiased predictors of the two latter quantities (rendered by their

mean values), together with the associated predictive uncertainty (as rendered by second order

moments, i.e., variances).

The problem of determining statistical moments of travel time has been typically analyzed for

the particular case of mean uniform flow conditions in infinite domains (e.g. Shapiro and

Cvetkovic, 1988; Dagan et al., 1992; Cvetkovic et al., 1996; Rajaram, 1997; Guadagnini et al.,

2003). In these works either conservative or sorptive solutes are considered. Only a few results

are available for more complex flow conditions. Dagan and Indelman (1999) determine mean

and variance of travel time for a steady-state flow between a fully penetrating recharging and

pumping well (doublet) that takes place in an infinite aquifer upon assuming that the trajectory

of a tracer particle coincides with that observed in a homogeneous field. Zhang et al. (2000)

provide the expressions for mean and variance of travel time and trajectory of an ideal solute

particle in a two-dimensional non-uniform mean flow in the absence of source terms. Lessoff

and Indelman (2004) develop an expression for the variance of travel time of a conservative

solute to a fully penetrating well in a three-dimensional infinite domain. Their expression is

based on an approximation of first order (in terms of the variance of the natural logarithm of

hydraulic conductivity) that is valid for small anisotropy ratio (vertical to horizontal) of the log–

hydraulic conductivity correlation function. Their approximation does not hold for two-

dimensional media.

Regarding the analysis of trajectories in heterogeneous media, Dagan (1984) considers a

mean uniform flow in an infinite domain and observes that the trajectory is closely approximated

by means of a Gaussian distribution. Indelman and Dagan (1999) analyze mean and variance of

the radial coordinate reached by solute particles injected at a well under divergent flow

conditions in an infinite domain.

Most of the existing work on transport under convergent flow conditions has focused on well

capture zone estimation using a Monte Carlo approach. Varljen and Shafer (1991) determine the

1- and 10-year probabilistic capture regions in a rectangular domain, in the presence of random,

conditional fields of hydraulic conductivity. Franzetti and Guadagnini (1996) and Guadagnini

and Franzetti (1999) study the influence of unconditional heterogeneity of transmissivity on

time-related capture zones and well catchment delineation for a single well operating under

uniform background flow. Riva et al. (1999) consider a similar problem for purely convergent

flow conditions. Van Leeuwen et al. (2000) and Feyen et al. (2001), respectively evaluate the

effect of conditioning upon transmissivity or head measurements on delineation of well capture

zones.

Travel time moments of sorptive solutes under non-uniform flow conditions have been

addressed by Cvetkovic et al. (1998) in an unconditional frame. Lawrence et al. (2002) and

Sánchez-Vila and Rubin (2003) tackled the problem in a conditional framework: the former

consider sorption parameters as deterministic, while the latter model them as random space

functions. Their main finding is the conclusion that the statistical moments of travel time of a

non-conservative solute can be expressed in terms of those of a conservative one. Lawrence et

al. (2002) and Sánchez-Vila and Rubin (2003) also stated that once the general relationship

between moments of conservative and non-conservative solutes has been established the next

step to be carried out would be the evaluation of the actual travel time moments of

conservative solutes for different flow configurations. In particular, Sánchez-Vila and Rubin

(2003) studied in detail the statistical moments of travel time for reactive solutes in a

convergent flow situation (like the one we tackle in this paper) and evaluated the travel time
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moments for conservative solutes on the basis of numerical Monte Carlo simulations available

in the literature.

Guadagnini et al. (2003) developed a fully non-linear mathematical formalism to calculate

mean and variance of travel time and trajectory of a conservative solute in a two-

dimensional domain under general non-uniform flow conditions. Sánchez-Vila and

Guadagnini (2005) extended the formal expressions of Guadagnini et al. (2003) to three-

dimensional random flows and solved analytically the equations satisfied by mean and

(cross-co)variance of particles travel times and trajectories under the special case of uniform

flow in the mean.

Here we start from the work of Guadagnini et al. (2003) and present analytical expressions for

the mean and variance of travel time of particles traveling under steady-state two-dimensional

convergent flow conditions. We consider Dirichlet-type boundary conditions and assume that the

head drawdown is negligible at a given distance. The choice of these conditions is based on the

work of Sánchez-Vila et al. (1999), who noted that for large pumping times the differential

drawdown between the pumping point and any observation point becomes constant with time.

Thus, since the shape of the drawdown surface does not vary with time, one can define a curve

with all points having the same drawdown. From a mathematical standpoint, this is analogous to

assigning zero drawdown to this curve; its shape would depend on the actual spatial distribution

of transmissivity, but in the mean it will be a circumference. Furthermore, we note that this

condition is equivalent to the one considered by Thiem (1906) from which it is possible to derive

the travel time of particles advancing within a homogeneous medium to be compared with our

results.

We then discuss the dependence of the solutions on (i) solute travel distance, (ii)

heterogeneity of the underlying random conductivity field, and (iii) domain size, i.e., extent

of the aquifer within which the effects of pumping are not negligible. The resulting

expressions are then compared with an extensive suite of Monte Carlo simulations. The

outline of the paper is as follows. Section 2 is devoted to state the problem in a stochastic

framework. It is followed by two sections devoted to the evaluation of the ensemble moments of

particle trajectory (Section 3) and travel time (Section 4) for conservative solutes. Finally,

Section 5 presents the comparison between the analytical results and numerical Monte Carlo

simulations.

2. Statement of the problem

We consider incompressible groundwater steady state convergent flow created by a well of

zero radius, located at the center of a circular randomly heterogeneous porous domain of radial

extent L. The well pumps at a constant deterministic rate, Q. Hydraulic head remains at a

constant deterministic value along the outer circular boundary. Riva et al. (2001) derived

analytically the statistical moments of hydraulic head and specific flux for this type of flow

configuration. Here the variables of interest are travel time and trajectory of non-conservative

solute particles released at time t0=0 at a general point of polar coordinates r0u (r0,h0), where
radial distances are measured starting from the well location.

The solute is considered to undergo mass transfer processes between a mobile and an

immobile phases. Assuming the parameters governing mass transfer are homogeneous,

Lawrence et al. (2002) found that the first two statistical moments of travel time for non-

conservative solutes can be expressed in terms of those of conservative solutes (Lawrence et al.,

2002; their Eqs. (14) and (15)). However, formal derivation and evaluation of the latter were not
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provided. As the trajectory moments are also independent of mass transfer processes, in the

remaining of the paper we will only analyze transport of conservative species.

The starting point, then, is Darcy’s law, which relates the fluid velocity V(r) at a vector

location ru (r, h) to the local hydraulic head, h(r), through the local hydraulic conductivity

K(r):

V rð Þ ¼ q rð Þ
n rð Þ ¼ � K rð Þ

n rð Þ jh rð Þ ð1Þ

where q(r) is the specific flux, n is the effective porosity. Porosity is taken as a constant, due to

its relatively modest spatial variability (see e.g. Varljen and Shafer, 1991). The trajectory of a

conservative solute traveling towards the well is rendered by the kinematic equations:

dr ¼ dr; rdhð Þ ¼ Vr r; hð Þdt;Vh r; hð Þdtf g ð2Þ

where r is the radial distance from the well, Vr and Vh are respectively the components of the

velocity vector, V(r), along the radial and tangential directions. The solution of Eq. (2) provides

the position reached at time t by the particle injected at location r=r0 at t= t0 and is given in

parametric form by

r ¼ r t; t0ð Þ; h ¼ h t; t0ð Þ ð3Þ

Upon obtaining t as a function of r from the first of Eq. (3), with the assumption that

r = r(t, t0) is invertible, and substituting it into the second of Eq. (3), an explicit equation for the

trajectory can be written as h =u(r,r0).

The assumption that r = r(t, t0) is invertible involves that the radial component of velocity, Vr,

is always directed towards the well. This hypothesis is reasonable for convergent flows in mildly

heterogeneous conductivity domains. The differential equation for the projection of the

trajectory along the r-coordinate can be written in terms of the Lagrangian Velocity,

Vr(r,u(r,r0)), as:

dt ¼ dr

Vr r;u r; r0ð Þð Þ : ð4Þ

Under purely convergent flow conditions the well location is the endpoint of all particle

trajectories. The travel time to the well, that is the time required for a particle starting at location

r=r0 at t = t0=0 to reach the well, can be expressed upon integration of Eq. (4). Since we treat K

as a Random Spatial Function, the Eulerian velocity, V(r,h), the Lagrangian velocity,

V(r,u(r,r0)), the solute travel time, t(r=0, r0), and the particle trajectory u(r,r0) also become

random functions.

Here we model the natural logarithm of K, Y(r)= ln K(r), as a statistically homogeneous and

isotropic Random Spatial Function, with covariance between two points rIu (rI, hI) and

rIIu (rII, hII) given by

CY nI; nII; hI; hIIð Þ ¼ CY nI; nII; hI � hIIð Þ ¼ r2
Y exp � x2d2

� �
ð5Þ

where ni = ri /L (with i = I, II) are normalized coordinates, rY
2 is the variance of Y,

x ¼
ffiffiffi
p

p
L= 2kÞð , k is the correlation length, and d is the Euclidean normalized distance between

rI and rII, given by d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2I þ n2II � 2nInIIcos hI � hIIð Þ

q
.
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3. Ensemble moments of particle trajectory

Since for this type of flow the mean trajectory is radial, we focus only on the trajectory

variance. The stochastic differential equation governing the trajectory of a particle in a two-

dimensional steady-state flow is

rdu
dr

¼ qh r;uð Þ
qr r;uð Þ ð6Þ

Here qh and qr are the tangential and radial components of the specific flux, respectively.

Integrating Eq. (6) with the boundary condition u(r,r0)=h0 yields

u r; r0ð Þ ¼ h0 þ
Z r

r0

qh rI;uIð ÞdrI
qr rI;uIð ÞrI

ð7Þ

where uI=u(rI,r0). Eq. (7) provides the transverse position u, corresponding to a given

radial distance, r, of a particle initially located at r0u (r0, h0) and moving toward the

well.

The trajectory variance, representing the variability of the angular position of a particle that

has been released at n0= r0 /L and has reached the radial distance n = r /L from the well, can

be calculated by making use of the expression for tangential flux covariance developed by

Riva et al. (2001). At second order (in terms of rY) it is given (details are provided in

Appendix A):

r2 2ð Þ
u n0; nð Þ ¼ r2

Y

8p
L2

k2

Z 2p

0

Z 2p

0

Z 1

0

Z 1

0

R nII; hII; n; n0ð ÞR nI; hI; n; n0ð Þmc nI; nII; hI � hIIð Þ

	dnIdnIIdhIdhII ð8Þ

Here R ni; hi; n; n0ð Þ i ¼ I; IIð Þ and mc(nI,nII,hI�hII) are defined in Appendix B (Eqs. (B8) and

(B9), respectively).

The particle trajectory variability is better analyzed by introducing the quantity D defined as:

D r; r0ð Þ ¼ rju r; r0ð Þ � hu r; r0ð Þij ¼ rju V r; r0ð Þj ð9Þ

and representing a measure of the deviation of the particle (injected at r0) from the mean

trajectory, along a circumference arc of radius r. Here and in the following angular brackets

designate ensemble averaging in probability space and primed quantities are zero-mean random

fluctuations about the mean. The second order (in rY) variance of D is given by

r2 2ð Þ
D

n0; nð Þ ¼ L2n2r2 2ð Þ
u n0; nð Þ ð10Þ

The analysis of r2(2)
D is of more practical use than that of r2(2)

u , since it would allow

demarcating aquifer regions within which a particle initially released at n0 can be found

with a given probability. From Eq. (10) we can find the two limiting values

r2(2)
D (n0,n =0)=0 (the length of the arc is zero) and r2(2)

D (n0,n =n0)=0 (no uncertainty in the

release location).

Gaussian quadratures were employed to evaluate the four-dimensional integrals in Eq. (8). The

number of Gauss points needed to attain convergence increases with L /k; however, convergence
was obtained with less than 80 Gauss points even for the largest L /k values analyzed.
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Fig. 1 illustrates the effect of the particle release position, n0, on the variability of D by

depicting the ratio r2(2)
D / (r2

YL
2) calculated on the basis of Eq. (10) as a function of n for four

release points and L /k =10 (Fig. 1a) and 1 (Fig. 1b). The results suggest that the trajectory

variance is smallest when particles are released close to the well, since the effects of the

deterministic release and ending points are strong. The maximum value of r2(2)
D is located

between the well and n =n0 /2 so that the curves are (generally) not symmetric. This effect is

strong for large correlation scales (L /k =1) while the curves tend to become symmetric (Fig. 1a)

as the correlation scale decreases (i.e., L /k increases).

Fig. 2a and b illustrate the variation of r2(2)
D / (r2

YL
2), calculated on the basis of Eq.

(10), with n and L /k, when the particle is released along the domain boundary (n0=1). When L /

kV5, r2(2)
D generally increases with L /k (see Fig. 2a), except at points close to the well.

This is due to two effects: as L /k increases (while keeping L finite) (i) all fields in the

ensemble of realizations depart from the homogeneous behavior, where all trajectories are

radial (and r2
D=0), and (ii) the effect of the deterministic condition of the release point

(that tends to reduce r2
D) decreases. The dependence of r2(2)

D on L /k is then reversed

when L /kz6, i.e., r2(2)
D decreases with increasing L /k (see Fig. 2b). This can be

explained by analyzing the behavior of r2(2)
D for the limiting case L /kYl. The latter

can only be obtained by setting kY0, since L is finite. This situation might be

unrealistic in that it would represent a delta-correlated transmissivity that behaves as a

white noise. In this limiting case we obtain that limL=kYl r2 2ð Þ
D

¼ 0 meaning that solute

particles would behave as if they were traveling in a homogeneous medium. In other

words, advection through an uncorrelated structure leads to zero r2(2)
D because the
Fig. 1. Normalized variance of particle displacement from the mean trajectory versus normalized distance from the well

n, for various release locations, n0, and (a) L /k =10; (b) L /k =1.

,



Fig. 2. Normalized variance of particle displacement from the mean trajectory versus normalized distance from the well,

n, for different L /k values: (a) L /k V5; (b) L /kz6 (injection point is n0=1).
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tangential flux is also uncorrelated along the mean trajectory (which is a straight line).

This behavior is also suggested by numerical Monte Carlo simulations, performed for

increasing L /k (Section 5).

Fig. 3 depicts the normalized standard deviation r2(2)
u /rY of the angular particle position

versus L /k for four radial positions (n) reached by a particle released at n0=1, based on Eq. (8).

The maximum value for r(2)
u /rY is around 308, and is attained for the largest distance traveled

(i.e., in the vicinity of the well) and for L /kc2. The curves display (for each n) a local

maximum that increases with travel distance (i.e., as n decreases).
Fig. 3. Normalized standard deviation of the angular particle position (in sexagesimal degrees) versus L /k for different

particle locations, n(n0=1).
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4. Ensemble moments of solute travel time

In the following we provide expressions for the predictor of the travel time, given by its

ensemble mean, hti, together with travel time variance, rt
2.

4.1. Mean travel time

The starting point is Eq. (4). We follow a procedure similar to that outlined by Guadagnini et

al. (2003). Integrating Eq. (4), making use of Reynold’s decomposition (decomposing a random

quantity, A, as the sum of its ensemble mean, hAi, plus a zero-mean fluctuation, AV), expanding
velocities in Taylor’s series around the mean trajectory and disregarding terms with powers of

fluctuations larger than two, leads to the following expression for the mean travel time that a

given particle takes to reach the well:

ht r0ð Þi ¼ n

Z 0

r0

1

hqr rð Þi 1�
*

u V
Bq Vr r;uð Þ

Bu

����
u¼ūu

+
1

hqr rð Þi þ
u2
qr

r; ūuð Þ
hqr rð Þi2

" #
dr ð11Þ

Here:

(a) hqr(r)i is the mean radial component of the flux;

(b) huV Bq
V
r r;uð Þ
Bu ju¼ūui is the cross-covariance between the trajectory and the tangential derivate

of the radial component of the flux evaluated along the mean trajectory (see Appendix B);

(c) rqr
2(r, ū) is the variance of the radial component of the flux evaluated along the mean

trajectory.

Using the results outlined in Appendix B leads to the second order (in rY) approximation for

the mean travel time of a particle starting from a deterministic injection point (n0= r0 /L). Thus,
the zero order component of mean travel time, ht(0)i, is given by:

ht 0ð Þ n0ð Þi ¼ n

Z n0

0

2pnL2

Q
dn ¼ n

pL2

Q
n20 ð12Þ

and coincides with the solution for a homogeneous aquifer. The first order component of hti,
ht(1)i, vanishes. Making use of the flux covariance expression developed by Riva et al. (2001)

leads to the following expression for the second order (in rY) component, ht(2)i:

ht 2ð Þ n0ð Þi¼ n
8p3L4

Q3

�Z n0

0

n2
Z n0

n

BC
2ð Þ
qrqh

n; nII;u; h0ð Þ
Bu

����
u¼h0

dnII

#
dnþ

Z n0

0

n3r2 2ð Þ
qr

nð Þdn
�
:

"

ð13Þ

Here Cqrqh

(2) and r2(2)
qr

, are the second order cross-covariance between radial and tangential flux

components and the variance of the radial flux component, respectively. Since, for this flow

scenario, Cqrqh

(2) and rqr

2(2) are independent of the angular position (Riva et al., 2001), so is ht(2)i. A
compact expression for Eq. (13) for the particular case of a Gaussian autocorrelation function for

Y is presented in Appendix B (Eq. (B5)). Finally, the second order (in rY) approximation,

ht[2]i= ht(0)i+ ht(2)i, of the mean travel time is:

ht 2½ � n0ð Þi ¼ n
pL2

Q
n20 þ

r2
Y

2

L2

k2
I1 þ

I2

2p

 �� �
ð14Þ
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where I1 and I2 are given by Eqs. (B6) and (B7), respectively. The three- I1ð Þ and five- I2ð Þ
dimensional integrals can be evaluated using Gaussian quadratures.

Fig. 4 shows the dependence of the dimensionless second order mean travel time correction,

ht(2)i / (pnL2rY
2Q�1), based on Eq. (B5), on L /k for various injection points, n0. As a limiting

case, when L /kY0, we obtain limL=kY0 t
2ð Þ ¼ 0. In this case, the hydraulic conductivity is

constant (but unknown), so that in each realization the travel time to the well is given by the zero

order solution, with no uncertainty. Fig. 4 reveals that ht(2)i first increases and then, after

reaching a maximum, decreases with L /k (note that the decreasing limb of the curves

corresponding to injection points located close to the well, i.e., n0=0.1, 0.2, is not shown in Fig.

4). In the limit for L /kYl, we obtain limL=kYl ht 2ð Þi ¼ 0. The physical explanation of this

result is that as L /k increases (while keeping L finite), the particle trajectory (not only its mean

value) becomes radial and each realization tends to display a radial symmetry. Therefore, the

travel time coincides with ht(0)i for each realization of the ensemble, again showing a similar

behavior of the uncorrelated and the homogeneous media. This result is also suggested by

numerical Monte Carlo simulations (Section 5).

An important result stemming from Eq. (14) is that ht(2)i is always positive for all cases

analyzed, indicating that the actual mean travel time in a two-dimensional randomly

heterogeneous domain is always larger than the travel time for a homogeneous medium. As a

consequence, using the classical formulae for homogeneous aquifer would always lead to

underestimating the mean recovery time. This result can have profound implications in

remediation scheme designs as well as in risk analysis and performance assessment exercises.

4.2. Travel time variance

The same procedure outlined in the previous section is employed to obtain the second order

(in rY) variance of the travel time to the well, rt
2(r0), of a particle injected at the deterministically

known position r0:

r2 2ð Þ
t r0ð Þ ¼ 16p4

Q4
n2
Z 0

r0

Z 0

r0

C 2ð Þ
qr

r; ūu; rI; ūuIð Þr2r2I drdrI ð15Þ
Fig. 4. Normalized second order correction of mean travel time versus L /k for various particle injection locations, n0.



Fig. 5. Normalized travel time variance versus L /k for various particle injection locations, n0.

M. Riva et al. / Journal of Contaminant Hydrology 82 (2006) 23–43 33
where Cqr

(2) is the (second order) covariance of the radial flux evaluated at two radial

distances from the well along the mean trajectory. For a Gaussian autocorrelation function of

Y, the travel time variance (in dimensionless coordinates) reduces to

r2 2ð Þ
t n0ð Þ ¼ 4p2n2

L4

Q2
r2
Y

�
2

3p
k2

L2
2exp � x2n20

� �
n20 �

1

2x2

 �
þ 1

x2
� 3n20

 �

þ 2

3

k
L

n30erf xn0½ � � n40
4

þ 1

p
1

8

L2

k2
I3 þ I4

 ��
: ð16Þ

The multidimensional integrals, I3 and I4, are defined in Appendix C. Similarly to ht(2)i, the
travel time variance is independent of h0.

When the release point is close to the well (n0Y0), Eq. (16) reduces to the obvious solution

rt
2(2)Y0. For the non-trivial case, one is also interested in the limiting values. First, for very

large k(L /kY0), we have limL=kY0 r2 2ð Þ
t ¼ 0, independently of the release location, as there is

no uncertainty in the travel time. Second, in the limiting case of an uncorrelated medium (i.e.,

L /kYl, while keeping L finite), we have limL=kYl r2 2ð Þ
t ¼ 0, consistently with what noted

in the previous sections regarding delta-correlated fields.

Fig. 5 shows how the dimensionless quantity rt
2(2) / (2pnL2rYQ

�1)2, based on Eq. (16), varies

with L /k for various injection points, n0. As above, Gaussian quadratures have been employed

to evaluate the two- I4ð Þ and four- I3ð Þ dimensional integrals in Eq. (16). In agreement with the

Monte Carlo-based numerical solutions obtained by Riva et al. (1999), the variance of travel

time increases monotonically with travel distance. With regard to the relationship between rt
2(2)

and L /k, the behavior is qualitatively identical as that of the correction term to the mean travel

time, ht(2)i.

5. Numerical demonstration of the analytical second order solution

The accuracy of our analytical second order solutions was checked against numerical Monte

Carlo simulations. The latter were performed by using the same code of Riva et al. (1999), with

different boundary conditions. Flow and transport are simulated in a square domain with 100

rows and 100 columns of uniform size (Dx =Dy =d). A circular boundary of radius L=50d was

defined around the well by designating all cells outside it as inactive.

The hydraulic head along the circular boundary was set constant. A well pumping at the

constant rate Q =100 (in consistent units) was placed at the central node of the grid. A Gaussian
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sequential simulator code (GCOSIM3D, Gómez-Hernández, 1991), was used to generate

random realizations of Y on the above defined two-dimensional grid. Each realization constituted

a sample from a multivariate Gaussian, statistically homogeneous field, with ensemble mean

hYi=0 and an isotropic Gaussian covariance function. Simulations were performed by varying

the main parameters within the following ranges: 0.1VrY
2V1.0, and 1VL /kV10. The effective

porosity, n, is taken equal to 0.3. Flow is solved by Galerkin finite elements using bilinear shape

functions. Solute transport in each realization is modeled by Particle Tracking, according to the

following procedure. An ideal tracer particle is located at each grid node along 4 perpendicular

axes centered at the well and its purely advective movement is modeled by

rmþ1 ¼ rm þ V rmð ÞDs=jV rmð Þj: ð17Þ

Here rm+1 and rm are the particle locations at times (m +1) and m, respectively; V(rm) is the

seepage velocity computed at rm and |V(rm)| is its module. The maximum displacement Ds=d /
1000 to be used in Eq. (17) was chosen empirically by adjusting it until an acceptable

compromise between simulation time and numerical accuracy in the reproduction of the particle

trajectory was obtained (for additional details, see Guadagnini and Franzetti, 1999).

The number of Monte Carlo simulations needed to obtain stability of travel time and

trajectory moments increases with the order of the statistical moment studied and with rY
2, and

(in general) decreases with increasing L /k. An acceptable compromise between CPU time

requirements and accuracy of reproduction of the analyzed statistical moments was obtained
Fig. 6. Comparison between zero and second order analytical solutions and numerical Monte Carlo simulations of the

normalized mean travel time as a function of the particle injection location,n0, and rY
2: (a) L /k =10; (b) L /k =1.
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with 4000 Monte Carlo iterations. The assessment of the reliability of the inferred computed

moments was performed both qualitatively and quantitatively on the basis of simple rules of

statistical inference (Ballio and Guadagnini, 2004). The maximum computed difference

associated to a probability level of 0.95 between the sample and the target (i.e., evaluated

with an infinite number of Monte Carlo iterations) statistical moments is equal to 0.031 r and

0.045 r2, respectively for the first and second order statistical moments. Here r represents the

standard deviation of the variable of interest (either travel time or trajectory).

Fig. 6a and b depict the dimensionless travel time corresponding to different values of rY
2, as

obtained by zero and second order analytical solutions (Eqs. (12) and (14)) and by Monte Carlo

simulations, with L /k =10 and L /k =1, respectively. The effect of the second order travel time

correction, ht(2)i, becomes more significant as rY
2 and n0 increase. The agreement between

analytical and Monte Carlo solutions is excellent for rY
2b1 and deteriorates as rY

2 increases,

consistently with the order of the perturbation expansion.

Fig. 7a and b illustrate the comparison between the dimensionless travel time variance for

three values of rY
2(=0.1; 0.5; 1.0), as obtained by our second order analytical solution (Eq. (16))

and Monte Carlo simulations with L /k=10 and L /k =1, respectively. With the only exception of

the case rY
2=0.1, the analytical solution consistently underestimates the travel time variance.

This suggests that the travel time variance displays a supra-linear increase with rY
2, so that its

proper representation in highly heterogeneous aquifers under radial flow conditions apparently
Fig. 7. Comparison between second order analytical solutions and numerical Monte Carlo simulations of the normalized

travel time variance as a function of the particle injection location,n0, and rY
2: (a) L /k =10; (b) L /k =1.



Fig. 8. Comparison between analytical and Monte Carlo normalized standard deviation of the angular particle position (in

sexagesimal degrees) for L /k =1, 10, 20 and different particle locations, n(n0=1). Numerical Monte Carlo results are

computed for rY
2=1.

Fig. 9. Comparison between the Normal distribution and the Monte Carlo cumulative distribution of the natural logarithm

of travel time for various injection locations, n0, and rY
2: (a) L /k =10; (b) L /k =1.
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requires developing higher order approximations, with an increase in mathematical complexity

and computational burden. For the same set of parameters, the agreement between the analytical

dimensionless displacement variance, rD
2(2) / (rY

2L2), and its Monte Carlo based counterparts is

satisfactory (not shown).

Fig. 8 compares the analytical results of Fig. 3 against numerical Monte Carlo simulations,

calculated for rY
2=1.0 and L /k =1, 10, 20, as a support to the analysis presented in Section 3

regarding the limiting behavior of r(2)
u for very large L /k (while keeping L finite).

For weakly heterogeneous fields (rY
2=0.1) chi-square tests of the null hypothesis that the

natural logarithm of travel times, s= ln t, generated by the Monte Carlo method is Gaussian were

positive at a significance level of 5% for all particle starting positions. However, as rY
2 increases,

s passes the normality test only for starting locations far from the well (n0N0.5), even though the
visual agreement with the Normal distribution appears satisfactory for all n0. An example of the

results obtained is shown in Fig. 9a and b for rY
2=0.5 and L /k =10 and L /k =1, respectively.

Chi-square tests of the null hypothesis that either the trajectories or their natural logarithms

are Gaussian were negative at a significance level of 5%, even though, for practical purposes it

can be noted that u displays a good visual agreement with the Normal distribution, as shown, for

example, in Fig. 10a and b for rY
2=0.5 and L /k =10 and L /k =1, respectively.
Fig. 10. Comparison between the Normal distribution and the Monte Carlo cumulative distribution of the angular particle

displacement for various injection locations, n0, and rY
2: (a) L /k =10; (b) L /k =1.
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Assuming log-Gaussianity in the probability distribution of travel time and trajectories would

now allow the use of the results here presented in performance assessment or risk analyses

practice. For example, regarding travel times it would be possible to obtain the time

corresponding to bfirst arrivalQ, defined as the time for a given percentile of solute to reach

the well, or apply a transfer function to relate the probability distribution of travel time to a

probability distribution of risk. Regarding trajectories it would be possible to define the potential

extension of some areas with a given probability of containing the solutes released, for instance,

from a waste repository site.

6. Conclusions

We provide original formal expressions for the second order (in rY) statistical moments

(mean and variance) of travel time and trajectory of conservative solutes advected under two-

dimensional convergent flow conditions in randomly heterogeneous porous media. Assuming

that the parameters defining mass transfer processes between a mobile and an immobile zone are

homogeneous, the knowledge of mean and variance of travel time and trajectory of a

conservative solute allows obtaining the statistical moments characterizing displacement of a

sorptive solute. All the (ensemble) moments presented are given in integral format yielding their

explicit dependence on the statistical property of the log-conductivity field. The analytical

integral expressions are evaluated using Gaussian quadratures. The seemingly formal complexity

of the expressions presented is a consequence of the difficulty inherent to the problem examined.

Nevertheless, it allows obtaining valuable insight on the nature of the solution.

The following major conclusions are drawn from the paper.

(1) Valuable information about the variance of the trajectory can be derived by the study of the

deviation of the particle from its mean trajectory along an arc, D. The study of rD
2 can be of

practical use since it allows demarcating the domain region where contamination of a

known source can be found. This variance is zero both at the injection point and at the well,

and it displays a maximum whose value and location depend upon the initial injection point,

rD
2 and L /k. Since our results give an answer to the basic question of the extent of the

lateral spreading of solutes at a given radial distance from a pumping well, a natural

extension would include examining the trajectory variance along the radial direction,

rendering the uncertainty related to the radial location of a particle at a given time-of-travel.

(2) Even for conservative tracers, the mean travel time for a heterogeneous domain is always

larger than that calculated for a homogeneous medium, since it can be expressed (to second

order in rY
2) as the sum of a term corresponding to the travel time in a homogeneous

domain, ht(0)i, and a positive correction, ht(2)i. The latter increases with the radial distance

from the well and the degree of heterogeneity of the aquifer (as rendered by rY
2). It also has

a non-monotonic dependence on L /k, so that ht(2)i vanishes when the domain is either very

small or very large (with respect to k). In these two limiting cases the mean travel time (at

least at second order in rY) coincides with that obtained in a homogeneous aquifer.

(3) The second order approximation of the travel time variance, rt
2(2), increases monotonically

with the distance between the release point and the well, and is a function of rY
2 and L /k.

For small values of L /k, rt
2(2) increases with L /k. Then the dependence of rt

2(2) on L /k is

reversed and rt
2(2) decreases as L /k increases, while keeping L finite.

(4) The natural logarithm of travel time passes the Gaussianity test for the cases considered.

As low order approximations of both the mean and variance have been provided, the full
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pdf of travel time is available. This knowledge can be used in aquifer remediation projects,

as it can be used to provide confidence intervals about the time needed for a conservative

or sorbing solute particle to reach the pumping well. Another immediate application would

be that of extending the work to solute fluxes, which would be of interest in risk analysis

and performance assessment exercises.
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Appendix A. Trajectory variance

Multiplying Eq. (6) by the fluctuation, u*V=uV(r*,r0), of the trajectory at the point of radial

coordinate r*, and taking expectation yields a differential equation satisfied by the covariance of

the angular positions respectively reached by a particle at radial coordinates r and

r*,Cu(r, r*,r0)= huVu*Vi:
rdCu r; rT; r0ð Þ

dr
¼
�

uTV
qh r;uð Þ
qr r;uð Þ

�
ðA1Þ

with boundary condition Cu(r, r*,r0)=C
0
u (at ru r0). When the initial position is determinis-

tically known (h0V=0), then C0
u =0. Expanding qr and qh around the mean trajectory,

ū = hu(r,r0)i, and integrating Eq. (A1) with deterministic boundary conditions (i.e., C0
u =0),

yields (at second order in rY)

C 2ð Þ
u r; rT; r0
� �

¼ � 2p
Q

Z r

r0

huTVq Vh rI; ūuIð Þi 2ð Þ
drI: ðA2Þ

The trajectory variance is obtained from the covariance in the limit for r*Y r,

r2 2ð Þ
u r; r0ð Þ ¼ � 2p

Q

Z r

r0

huVq Vh rI; ūuIð Þi 2ð Þ
drI: ðA3Þ

The trajectory variance is therefore a function of the cross-moment between u(r,r0) and the

tangential component of Darcy’s velocity. To obtain this cross-moment we multiply Eq. (6) by

the flux residual qhV(rI, ūI) and take ensemble average:�
r
du
dr

q Vh rI; ūuIð Þ
�

¼
�
qh r;uð Þ
qr r;uð Þ q Vh rI; ūuIð Þ

�
: ðA4Þ

Expanding qr and qh around the mean trajectory, the second order (in rY) cross covariance

between the trajectory evaluated at the radial position r and the tangential component of Darcy’s

velocity evaluated at rI along the mean trajectory, C(2)
uqh(r, rI,r0)= huVq Vh(rI, ūI)i(2), satisfies the

following equation:

dC
2ð Þ

uqh r; rI; r0ð Þ
dr

¼ � 2p
Q

C
2ð Þ
qh rI; ūuI; r; ūuð Þ: ðA5Þ
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Here C(2)
qh (rI, ūI, r, ū) is the O(rY

2) approximation of the covariance of the tangential

component of the velocity, evaluated along the mean trajectory at the radial coordinates rI
and r. The corresponding boundary condition that applies to Eq. (A5) is C(2)

uqh(r, rI,r0)=C
0
uqh

(at ru r0), C
0
uqh being the covariance between the angular position of the injection point and the

tangential component of Darcy’s velocity evaluated along the mean trajectory at the radial

coordinate rI. When the location r0 is deterministically known (i.e., h0V=0), then C0
uqh =0.

Assuming deterministic boundary conditions, integration of Eq. (A5) yields:

C
2ð Þ

uqh r; rI; r0ð Þ ¼ � 2p
Q

Z r

r0

C
2ð Þ
qh rI; ūuI; rII; ūuIIð ÞdrII: ðA6Þ

Finally, substituting Eq. (A6) into Eq. (A3) leads directly to

r2 2ð Þ
u r; r0ð Þ ¼ 4p2

Q2

Z r

r0

Z r

r0

C
2ð Þ
qh rI; ūuI ¼ h0; rII; ūuII ¼ h0ð ÞdrIdrII: ðA7Þ

Riva et al. (2001) show that for convergent flow the tangential flux covariance between two

points (r I,hI) and (r II,hII) depends only on angular separation, that is C (2)
qh (r I, hI,

rII,hII)=C
(2)
qh (rI, rII,hI�hII). Thus r2(2)

u is independent of the release point angular position.

Introducing the dimensionless coordinate n= r /L and using the expression for Cqh
(2) provided by

Riva et al. (2001), leads directly to Eq. (8), expressing the second order component of the

trajectory variance of a particle starting at n0 and reaching radial location n.
A necessary check to the solution is given by the following limiting cases. First, when the

domain is very small with respect to the correlation scale of Y (i.e., L /kY0, with finite L),

thus resembling a purely random, constant K field, then limL=kY0 r2 2ð Þ
u ¼ 0 at any given

location, n. Second, when the domain is very large with respect to the correlation scale of

Y (i.e., L /kYl; with finite L), then limL=kYl r2 2ð Þ
u ¼ 0 at any given location, n. Third,

r2(2)
u has been found to attain a finite (non-zero) value in the proximity of the well (nY0),

by numerical integration of Eq. (8), meaning that the direction from which the particle is

reaching the well is uncertain.

Appendix B. Mean travel time

DenotingD1qrV rð Þ ¼ Bq Vr r;uð Þ
Bu ju¼ūu , multiplying Eq. (6) by D V1qr (r) and taking expectation yields:

r
dhuD1qrV rT

� �
i

dr
¼
�
qh r;uð Þ
qr r;uð Þ D1qrV rT

� ��
ðB1Þ

Expanding qh and qr around the mean trajectory leads to the following differential equation

for the O(rY
2) approximation of the cross covariance C(2)

uD1qr
(r, r*,r0)= huVD V1qr(r*)i(2):

dC
2ð Þ

uD1qr
r; rT; r0
� �
dr

¼ � 2p
Q

�
D1qrV rT

� �
qhV r; ūuð Þ

� 2ð Þ ðB2Þ

with the boundary condition C(2)
uD1qr

(r, r*,r0)=C
0
uD1qr

(at ru r0). We note that C0
uD1qr

=0 if the

vector location r0 is deterministically known (i.e., h0V=0). Integrating Eq. (B2) with deterministic

boundary condition yields:

C
2ð Þ

uD1qr
r; rT; r0
� �

¼ � 2p
Q

Z r

r0

BC
2ð Þ
qrqh rT;uT; rII; ūuII

� �
BuT juT¼ūuTdrII: ðB3Þ
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The cross-moment huV Bqr V r;uð Þ
Bu ju¼ūui

2ð Þ
at zero lag is obtained by taking the limit r*Y r in Eq.

(B3):

C
2ð Þ

uD1qr
r; rTur; r0
� �

¼ � 2p
Q

Z r

r0

BC
2ð Þ
qrqh r;u; rII; ūuIIð Þ

Bu
ju¼ūudrII: ðB4Þ

Finally, substituting the above results into Eq. (11) allows obtaining the second order

component of the mean travel time (Eq. (13)). Using the expressions for Cqrqh
(2) and of rqr

2(2)

proposed by Riva et al. (2001) leads to

ht 2ð Þ n0ð Þi ¼ n
pL2

2Q
r2
Y

L2

k2
I1 þ

I2

2p

� �
ðB5Þ

where

I1 ¼ �
Z n0

0

Z 2p

0

Z 1

0

n R nII; hII; n0; nð ÞdMC nII; n; hIIð Þ þ 2nMG n; nII; hIIð ÞMC nII; n; hIIð Þf g

	dnIIdhIIdn ðB6Þ

I2 ¼
Z n0

0

Z 2p

0

Z 2p

0

Z 1

0

Z 1

0

n2MG n; nI; hIð Þ
�
R nII; hII; n0; nð Þdmc nI; nII; #ð Þ

þ nMG n; nII; hIIð Þmc nI; nII; #ð Þ�dnIIdnIdhIdhIIdn # ¼ hI � hII ðB7Þ

R ni; hi; n0; nð Þ ¼ arctan
nni � coshi

sinhi

� �
� arctan

n0ni � coshi
sinhi

� �
� arctan

n � nicoshi
nisinhi

� �

þ arctan
n0 � nicoshi

nisinhi

� �
i ¼ I; II ðB8Þ

mc nI; nII; #ð Þ ¼ cos#þ 2x2 nI � nIIcos#ð Þ nII � nIcos#ð Þ
� �

exp � x2d2
� �

ðB9Þ

MC nII; n; hIIð Þ ¼ nII � ncoshIIð Þexp
�
� x2 n2 þ n2II � 2nnIIcoshII

� ��
ðB10Þ

dmc nI; nII; #ð Þ¼ exp � x2d2
� �

sin# 2x2 n2I þn2II
� �

�1þ 4x4nInII cos# n2I þ n2II �
3

2x2

 ���

� nInII 1þ cos2#
� ���

ðB11Þ

dMC nII; n; hIIð Þ¼ � nsinhII 1�2x2n2II þ 2x2nnIIcoshII
� �

exp �x2 n2þn2II� 2nnIIcoshII
� �� �

ðB12Þ

MG n; ni; hið Þ ¼ nn2i � nicoshi
1þ n2n2i � 2nnicoshi

� n � nicoshi
n2 þ n2i � 2nnicoshi

i ¼ I; II: ðB13Þ
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Appendix C. Travel time variance

The expressions of the different terms appearing in Eq. (16) are as follows:

I3 ¼
Z 2p

0

Z 2p

0

Z 1

0

Z 1

0

cos#þ 2x2 nI � nIIcos#½ � nII � nIcos#½ �
� �

exp � x2d2
� �

	P̃P n0; nI; hIð ÞP̃P n0; nII; hIIð ÞdnIdnIIdhIdhII # ¼ hI � hII ðC1Þ

I4 ¼

�Z 1

0

Z 2p

0

�
exp � x2 n2II þ n20 � 2nIIn0coshII

� �� �
	 nIIsin

2hII � n0coshII
� �

þ k
L
coshII 1� 2n2IIx

2sin2hII
� �

	exp � x2n2IIsin
2hII

� ��
erf nIIxcoshII½ �

þ erf x n0 � nIIcoshIIð Þ½ �Þ � nIIsin
2hIIexp � x2n2II

� �
g

	P̃P n0; nII; hIIð ÞdnIIdhII

if L=kY0:0

if L=kp 0

ðC2Þ

P̃P n0; ni; hið Þ ¼ 1� n2i
ni

n0coshi þ sin 2hið Þ
�
arctan cothið Þ


n2i �

1

n2i

�

þ n2i arctan
n0

nisinhi
� cothi

� �
� 1

n2i
arctan

n0ni
sinhi

� cothi

� ��

þ cos 2hið Þ
2

�
n2i ln

n2i
n2i þ n20 � 2nin0coshi

 !
þ 1

n2i
ln 1þ n2i n

2
0 � 2nin0coshi

� ��

i ¼ I; II ðC3Þ
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